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Abstract—One of the greatest technological improvements
in recent years is the rapid progress using machine learning
for processing visual data. Among all factors that contribute
to this development, datasets with labels play crucial roles.
Several datasets are widely reused for investigating and analyzing
different solutions in machine learning. Many systems, such as
autonomous vehicles, rely on components using machine learning
for recognizing objects. This paper compares different visual
datasets and frameworks for machine learning. The comparison
is both qualitative and quantitative and investigates object
detection labels with respect to size, location, and contextual
information. This paper also presents a new approach creating
datasets using real-time, geo-tagged visual data, greatly improv-
ing the contextual information of the data. The data could
be automatically labeled by cross-referencing information from
other sources (such as weather).

I. INTRODUCTION

Creating machines that can solve complex problems has

been the dream for humans. Movies such as 2001 Space

Odyssey depicted machines capable of understanding human

speech. Such goals were unattainable until recently. Machine

learning can be applied to analyze data with underlying

patterns that are difficult to express by mathematical rules. The

complexity of machine learning models often requires massive

amounts of data. Among all successful stories of machine

learning, the technologies for recognizing objects in images

and videos are one of the most noticeable achievements. Many

factors contribute to this; among them, large datasets play

crucial roles. Visual datasets with labels are used to train

and evaluate machine learning models and lead to success in

computer vision with novel architectures, such as AlexNet [1],

Faster-RCNN [2], and FCIS [3].

Many datasets are created by searching and download-

ing images from the Internet (such as Flickr), for example,

ILSVRC [4], COCO [5], SUN [6], and PASCAL VOC [7].

Another source of images is gathered from driving a car with

a dash-cam for creating KITTI [8] and the Caltech Pedestrian

Datasets [9]. Prior work on machine learning often chooses

one dataset and demonstrates that the proposed solution is

better than the existing work for this particular dataset. The

most difficult part of creating a dataset is not acquiring the

data—this can be automated easily. Instead, it is labeling the

data. The very fact that the datasets are used for training and

evaluating machine learning models means that the existing

computer solutions are inadequate and the labels must be

created by human efforts. This laborious process significantly

slows down the creation of a dataset and could also affect the

selection of the data. Some researchers suggest using computer

graphics to create labels [10], but graphics technologies do not

always generate ”photo-realistic” images and videos.

To make labeling easier, some existing datasets use images

or videos in which the objects of interest stand out. In other

words, many images in these datasets have few objects, each

occupying many pixels in the images. COCO [5] and SUN [6]

are examples of a conscious movement away from this image

selection bias, but this appears to be an exception. There is

a need for labeling massive amounts of diverse data quickly

and accurately.

Despite the importance of the datasets, a comparison

is made only when a new dataset is introduced, and the

comparison is often focused on only two to four other

datasets [4][5][7]. There are exceptions to this. In Dollàr et

al. [11], they compare 13 datasets and 12 methods. However,

to the authors’ knowledge, there is not a comparison across

the datasets used in their paper. On the contrary, this paper

presents a qualitative and quantitative comparison of eight



datasets and introduces network camera data as a new source

for image datasets. This paper focuses on the distribution of

object locations in the image and the ratio of the object size

to the image size. In this paper, only the “person” class is

considered for two reasons: (1) “the ability to interact with

people is one of the most interesting and potentially useful

challenges” [11] and (2) limiting our scope to the people class

allows comparison between datasets with an arbitrary number

of classes.

Due to the challenges in creating labels, this paper presents

a new method for creating datasets by using real-time geo-

tagged visual data. This approach gives researchers the flex-

ibility to create new datasets that meet their specific needs.

Moreover, the time and location metadata can greatly improve

the data’s contextual information. For example, an image taken

at a traffic intersection in the early morning of a holiday has

fewer vehicles than another image taken during rush hour. As

another example, an image taken in a national park sees trees

and sky, without any skyscrapers. This paper explains how to

construct a system that can create datasets by retrieving real-

time geo-tagged data from network cameras.

This paper is organized as follows. In Section 2, several

commonly used datasets are introduced. Section 3 explains

how to discover network cameras that can provide real-time

and geo-tagged data. Section 4 compares the datasets. In

Section 5, potential improvements of the datasets for future

machine learning research are discussed. This paper is con-

cluded in Section 6.

II. DATASET SUMMARY

This section summarizes many different visual datasets,

including ImageNet Large Scale Visual Recognition Chal-

lenge (ImageNet or ILSVRC) [4], Common Object in Con-

text (COCO) [5], Scene UNderstanding (SUN) [6], Pattern

Analysis, Statistical Modelling, and Computational Learning

Visual Object Classes (PASCAL VOC) [7], Institut National de

Recherche en Informatique et en Automatique Person Dataset

(INRIA) [12], the Caltech Pedestrian Dataset (Caltech) [9],

and Karlsruhe Institute of Technology and Toyota Techno-

logical Institute at Chicago Object Detections (KITTI) [8].

Appendix Table I lists the ID’s of the example images selected

by this paper. All images below only visualize the people class

labels.

A. PASCAL VOC

PASCAL VOC [7] started its first challenge in 2005 for ob-

ject detection and classification of four classes. The motivation

was that “methods are now achieving such good performance

that they have effectively saturated on these datasets.” [13].

By 2008, PASCAL VOC introduced 20 classes, and in 2009
became a popular benchmark for object detection [7]. In 2012,

the last year of the competition, the PASCAL VOC training

and validation datasets consisted of 27, 450 detection objects

in 11, 530 images with 20 different classes. For segmentation,

VOC’s training and validation dataset consists of 6, 929 seg-

(a) (b)

Fig. 1. PASCAL VOC Example Images. The red boxes indicate “axis-
align bounding-boxes” [7] marked by two pairs of pixel coordinates
to indicate an object’s location within an image. While every person
should be marked, some instances of small people are not marked
(a) and some large ones are missed (b).

(a) (b)

Fig. 2. ImageNet Example Images. Images are marked with
bounding-box labels. Notice how the labels are large and centered
in the images.

mented objects in 11, 530 images. Figure 1 gives two PASCAL

VOC example images.

B. ImageNet

The ImageNet [4] competition started in 2010 and cur-

rently continues to be one the most popular machine learning

competitions. Many successful classification and object de-

tection models have resulted from this competition, including

Krizhevsky’s AlexNet [1]. For object detection, ImageNet

consists of 465, 567 images for training and 20, 121 images

for validation for 200 different classes including guacamole,

neck brace, iPod, chime, etc. Two example images are shown

in Figure 2. To label the dataset, ImageNet utilized Amazon

Mechanical Turk. ImageNet has been used as the data for other

competitions as well, such as the training data for the Low-

Power Image Recognition Challenge [14].

C. SUN

The SUN [6] dataset was started to provide researchers with

a comprehensive collection of annotated images covering a

wide variety of scenes. It contains 4, 479 object categories and

313, 884 instance segmentation labels in 131, 067 images. For

people alone, SUN has 6, 202 instances of people in 2, 062
images. Instance segmentations follow the contours of the

objects of interest, and hence they create tighter containers

for object detection labels (as shown in Figure 3). However,



(a) (b)

Fig. 3. SUN Example Images. In (a), the large label covering the
crowd is also a person label. This could be interpreted as a large
label for the crowd of people, but is a different . Comparing (a) and
(b) shows how the number of instances varies across images. The
colors indicate a single instance’s segmentation, which may consist
of two or more disconnected polygons. The colors also repeat. It
should be apparent from the context if two labels of the same color
are distinct or meant to be shared.

(a) (b)

Fig. 4. INRIA Example Images. In these images, there are many
people unlabeled. Despite the missing labels, INRIA continues to be
a popular dataset for machine learning and has contributed greatly to
the computer vision community.

instance segmentation labels take more time to annotate than

bounding-boxes labels.

D. INRIA

INRIA [12] People Dataset was created in 2005 and is

comprised of 1, 237 bounding-box labels for people in 614
positive images. A positive image means that people are

labeled in the image. The dataset also includes 1, 218 negative

images containing no labels. It has been reported that INRIA

contains missing labels [15]. There does not seem to be a

rational for the missing labels. In both images of Figure 4,

there does not appear to be distinguishing features between the

labeled people and the unlabeled people. Despite the missing

labels, the original INRIA dataset is still popular and has made

laudable contributions to pedestrian detection [11].

E. KITTI

The KITTI [8] Vision Benchmark Suite began in 2012 and

contains a variety of labels for tracking, scene flow, odometry,

etc. Since KITTI’s images come from a video file, there is also

a temporal relationship between images for object tracking.

For object detection, KITTI provides stereo images, temporal

frames, Velodyne point clouds, and the bounding-box labels.

(a) (b)

Fig. 5. KITTI Example Stereo Image Pair. (a) is the left image and
(b) is the right image. For object detection, bounding-box labels only
exist for the left image and only for people.

(a) (b)

Fig. 6. Caltech Example Images. The Caltech Pedestrian dataset
contains bounding-box labels for “people” and person. “People”
labels are used when there are many people grouped together, like in
the top of (a), and on the left and right in (b).

There are 4, 487 people labeled in 7, 480 images. Figure 5

shows an example stereo image pair. KITTI was labeled by

the KITTI team with help from a set of hired annotators.

F. Caltech Pedestrian Dataset (Caltech)

Introduced in 2012, The Caltech Pedestrian Dataset [9]

consists of approximately ten hours of 600× 400 taken at 30
frames per second video from a vehicle driving through regular

urban traffic. The dataset provides bounding-box labels of

pedestrians for every frame a person is visible in two formats:

the full and visible bounding-box label. A full label marks a

tight bounding-box region around the entire person. If there

is occlusion, the hidden area is estimated. The visible label

marks an label only around the visible portion of the person.

The example images in Figure 6 have the full and visible

labels. This is different from PASCAL VOC’s [7] handling of

occluded images, where only the visible portion of an object

is marked. Caltech contains a total of 346, 621 bounding-box

labels in about 250, 000 frames.

G. COCO

Introduced by Microsoft in 2015, Microsoft Common Ob-

ject in Context (COCO) [5] is a dataset containing instance

segmentation of 80 common objects in their natural context.

The term “common” refers to the objects that can be “easily

recognizable by a four-year-old” [5]. COCO’s labels also

include captioning, and keypoints were added in 2016. Figure

7 shows examples where the objects are centered in the

images. The COCO dataset is comprised of 2.5 million labeled

instances in 382, 000 images. To create the large-scale dataset,

COCO was labeled with extensive use of Amazon Mechanical

Turk.



(a) (b)

Fig. 7. COCO Example Images. COCO contains instance segmenta-
tions similar to SUN. In these images, the objects are centered in the
images.

III. NETWORK CAMERA DATA

Millions of network cameras are deployed world-

wide [16] [17]. Data from network cameras are different from

other image sources such as search engines or publically

available repositories such as Flickr. The objects in these

images are generally smaller than those in other datasets.

The small size of objects in network data is because network

cameras are usually mounted in high-locations on buildings.

Network data is often real-time. This is critical in some

applications. In Figure 8, images from the 2016 Houston Flood

show rescue workers, emergency vehicles, cars, and trucks

stuck in the water from the flood. One application of real-time

data is the detection of areas affected by natural disasters. This

section describes a project called the Continuous Analysis of

Many Cameras (CAM2) [18], which acquires and processes

real-time data from network cameras.

(a) (b)

(c) (d)

Fig. 8. Real-time geo-tagged data gives data context. This data is from
the flood in Houston, Texas in 2016. A possible use of the CAM2
system is to alert local authorities when natural disasters occur to the
location most effected by the event.

A. Camera Discovery Procedure

The complete explanation of network camera discovery for

CAM2 is in Dailey et al. [19], but a summary is provided here.

Network cameras can be defined as cameras whose images

are accessible through the network. Some network cameras

may be available only through restricted accesses, but many

publically available cameras can be viewed by anyone. There

are two classifications of network cameras: IP (Internet Proto-

col) cameras and non-IP cameras. IP cameras have individual

IP addresses, generally host their own web servers, and are

accessible directly over the Internet. Notably, they respond to

Hypertext Transfer Protocol (HTTP) GET requests. Non-IP

cameras are not assigned individual IP addresses and hence

are not directly accessible over the Internet. The data is often

aggregated into file servers and accessible through websites

which often include data from more than one camera.

For Non-IP camera discovery, aggregation websites are

scraped using Selenium or BeautifulSoup4. Due to the variety

of interfaces to websites, each website requires a new script

to be written to scrape the camera data. The camera data

and location information is commonly made available in three

different formats: JSON or XML files, loaded into a JavaScript

Applet, or loaded in the HTML page. On aggregated websites,

the location of the camera is sometimes exact with the given

longitude and latitude or more general like a street address.

The process for IP camera discovery is more automated.

This process is outlined in Figure 9 and relies on issuing HTTP

requests and detecting the responses. IP cameras are often

hosted by an organization. Using data from Internet Assigned

Numbers Authority (IANA), all valid IP addresses for an

organization can be generated. Once a camera is discovered,

it is added to the network camera database. If the download is

successful, the camera’s location is estimated using the Google

Geolocation API.

Fig. 9. IP Camera Discovery.



B. System Integration

The camera database is integrated into the CAM2 system,

as seen in Figure 10. The CAM2 system provides users real-

time data analysis tools which are run using the CAM2’s

Cloud Computing. CAM2 Cloud Computing is done using

Amazon Web Services (AWS). Some of the current tools

provided by CAM2 are edge detection, motion detection, and

color quantization. Users can also upload custom modules. In

Figure 10, the contents inside the blue square comprise the

CAM2 system. A user interfaces the CAM2 system through

the web portal and is authenticated using information stored

in the user database. When the user chooses the cameras,

the camera database provides the run-time system with the

information to retrieve data from these cameras. The resource

manager determines the most cost-efficient resource alloca-

tions for executing the analysis programs [20][21][22][23][24].

Fig. 10. CAM2 Architecture.

C. Creation of the CAM2 Sample Dataset

A small dataset has been created using the CAM2 system to

compare network data to other datasets. This dataset consists

of a modest 640 images with 3, 322 bounding-box labels of

people. Even though CAM2 has demonstrated the ability to

retrieve and analyze 97 million unique images in 24 hours [22],

the size of the dataset is initially small since object detection

labeling is laborious to annotate. Aside from the bounding-

box, each label also contains the date, time, and camera ID.

The camera ID can be used in conjunction with the camera

database to retrieve more meta-data about the image such as

latitude, longitude, resolution, indoor/outdoor, and a frame-

rate estimate. The data is taken from 111 different cameras

with an effort to capture the diverse range of network camera

quality.

D. Automatic Labeling

The CAM2 system provides a solution to unlabeled, con-

tinuous, live-feed network data. CAM2 can leverage the large

repository of cameras to create a large dataset of automatically

labeled images for image classification. Network cameras

capture the same area under many different conditions such

as daytime, nighttime, every season (shown in Figure 11),

and holiday events. This can be cross-referenced with known

events, like the weather, to create an automatic labeling

platform. For example, a camera can be annotated with “has-

Trees”, “hasBuildings”, and/or “hasStreet”, each indicating

that trees, buildings, or streets are visible in the camera view.

While classification tasks require a single ground-truth label,

using images with many labels gives the data more context.

Furthermore, while large classification datasets exist, such as

Places2 [25] with more than 10 million images and Tiny

Images [26] containing 80 million image, the CAM2 system

can retrieve more that 95 million images in a single day.

Moreover, the data from network cameras can provide long-

term observations. For example, Figure 11 shows a scene from

a network camera over multiple years.

There are two known issues with an automatic labeling

system for the CAM2 system. The first issue is that network

cameras may scan an area, like a pan-tilt-zoom (PTZ) camera,

or jump between different camera feeds. When the camera

changes viewpoint, there may be categories marked as present

for the camera which are not actually present in the current

viewpoint. The second issue is that the redundancy in data

pulled from the same camera (i.e., the background is the same)

reduces the amount of new information contained in the data.

However, the same camera’s image can change dramatically

over time, as can be seen from the Houston Flood images

in Figure 8 and more subtly seen in the season changes in

Figure 11. Further research is required to investigate the impact

of these issues.

IV. DATASET COMPARISON

A. Real-time Geo-tagged Data

Network camera data offers both the geographic location

and temporal relationships between frames. However, the

CAM2 geographic location is the location of the IP address

hosting the camera. Therefore, the accuracy of the identified

location is challenging to evaluate. Some cameras’ data con-

tains indicators of the true camera location, such as a well-

known landmark, while for other network cameras the ground-

truth locations are more challenging to find. One method of

determining the true location of cameras is to cross-reference

the network camera data with current events. Figure 12 shows

the locations of the network cameras which the CAM2 system

can access.

The geographic location and the temporal relationship be-

tween images are features special to network data. These

traits are desirable to give the data greater context. While one

or the other is present in some datasets, the combination is

unavailable in all of them.

B. Quantitative Measures

There are two quantitative measures to be compared be-

tween the datasets: (a) what is the distribution of the dataset

labels and (b) what is the relative size of the dataset labels

compared to the entire image? The distribution of the labels

is analyzed through the people-density maps in Figure 13,



(a) 10/26/2011 (b) 12/31/2011 (c) 06/01/2012 (d) 10/10/2015 (e) 12/30/2016

Fig. 11. The data from Grand Teton (Wyoming’s Yellowstone) changes over the years. CAM2 data can also be used to cross-reference the
weather reports. Additionally, the variation of data from a single camera along with the weather and climate information can be a large
resource of data for machine learning applications.

Fig. 12. The cameras of CAM2 are distributed across the world. The
number of the map indicates the number of cameras in each location.

and the relative label size is analyzed through the plots in

Figure 14.

In this paper, people-density maps are defined as a square

image that visualizes the distribution of a dataset’s bounding-

box or instance segmentation label locations. For each label,

the polygon’s location relative to the image dimensions is

plotted onto the square grid. The color-mapping provides the

distribution of the label locations so that label locations can be

compared across datasets. The color-mapping range provides

a reference to compare the intensities of different colors.

The process for creating a people-density map was com-

pleted by using the bounding-box or instance segmentation

labels in each dataset. In order to standardize the results, each

pixel coordinate (x, y) of an image size w × l, for width

and length, is represented as a percentage of the total image

width and length:
(

x
w
, y

l

)

. The percentage indicates the pixel’s

location on the fixed, square grid. When completed for each

pixel in a label, this rescales the original label onto the square

grid. The square grid begins with all zero values. A value of

one is added to the area covered by the polygon. After all the

labels are added, the square grid is divided by the total number

of labels added. In Figure 13, each image uses a resolution of

500 × 500. The resolution determines the precision that the

people-density map can capture. The precision determines the

fidelity of the process to capture the label location. In this case,

the figures provided use a precision of 1

500
% in both the x and

y directions. Notably, the people-density map hardly changed

from when the resolution was increased from 100 × 100 to

500× 500. Therefore, a higher resolution was not computed.

Figure 13 shows the people-density map for each dataset.

The minimum, mean, and maximum percents are marked on

the vertical color bar from bottom to top. The density plots can

be used to compare the concentration of labels across datasets.

The coloring indicates the density of labels in that region - red

indicates a high density of people labels and blue indicates a

low density. However, the absolute coloring for each density

plot should not be compared directly between the datasets. The

range of the color bar, or vertical axis, must be considered as

the maximum values of the color bars vary (the minimum is

always 0%). For example, the maximum value of map (a) is

43.03%, while the maximum value of map (e) is only 8.52%.

To compare the datasets’ concentration intensities, one must

consider that the deep red region’s value in map (e) would

appear as a blue-white color in map (a). The variety of the

color bar ranges is required so the distribution of locations in

each plot can be seen.

The color-mapping also visualizes the label location across

the datasets. In five datasets from Figures 13 (a), (b), (c), (d),

and (h), the labels are centered. The sharp gradient of the color

in Figure 13 (b) indicates a high density of people focused

in the center of the dataset, with a much lower, more even

concentration of images outside of the center. In Figure 13

(a), the gradient from red to blue is much smoother with

many white pixels in between. This means that the labels in

Figure 13 (a) are even more concentrated in the center of

the image than in Figure 13 (b), since there are fewer blue

pixels and a much higher mean value: 21.33% versus 7.75%.

A more evenly distributed density mask has a small color bar

range, a smaller mean and the people-density map color is

predominantly the color of the mean value.

PASCAL VOC has the most centering effect of the objects

in the image, with a range of [0.03%, 43.03%]. The larger

range of PASCAL VOC means that more images are centered,

and the smaller range of COCO implies the distribution is

more even. The Caltech Pedestrian dataset, Figure 13 (e),

seems to have a concentrated number of detections in two

locations on the sides of the image. This is reasonable since

Caltech is taken from a dash-cam. It is likely that there are

more people on either side of the car (on the sidewalks) than in

front of the car (on the road). The KITTI dataset, Figure 13 (f),

contains very few detections across the top. This is reasonable



(a) PASCAL VOC (b) INRIA (c) ImageNet (d) COCO

(e) CALTECH (f) KITTI (g) CAM2 (h) SUN

Fig. 13. The people-density maps show the location and concentration of people bounding-box labels or instance segmentations in an image
(better viewed in color). The images are each scaled from [0.0%, dataset max%]. The different ranges of the axes are required so that the
characteristics of each distribution are visible.

(a) VOC (b) INRIA (c) ImageNet (d) COCO

(e) CALTECH (f) KITTI (g) CAM2 (h) SUN

Fig. 14. The ratio of people detections to the rest of the image. Note the log scale on the vertical axis. The domain is grouped into 10%
sections. The first group is [0%, 10%), the last group is [90%, 100%), and there exists a final category for the complete 100% coverage.

since the data is collected from a camera mounted on the

car. With the reason similar to Caltech, there are likely fewer

people labeled far out in the middle of the road.

The network camera data in CAM2, Figure 13 (g), seems

to have scatter concentrations of detections across the people-

density map. The network camera data also has the lowest

mean pixel value of 0.73 and the smallest range. This indicates

that network camera data has a more even distribution of the

label locations than the other seven datasets.

The size of a label relative to the entire image size can help

determine the difficulty of a label. If a dataset contains many

large objects of interest, then the object detection task may

be easier than if the dataset contains many small objects. In

Figure 14, the plot represents the percent of labels within a

range of label to image size ratios. The plots are created in two

steps. First, the union of all binary mask labels is superimposed

on a zero-valued image. The number of pixels contained in the

binary mask is divided by the total number of pixels in the

image. The percentage is assigned to one of the 11 ranges

going from [0%, 10%) by ten to the final bin of 100%.

As seen in Figure 14, the distribution of the relative object

ratios follows a similar trend for each dataset except (a) and

(c). PASCAL VOC’s and ImageNet’s distributions in Figure 14

(a) and (b), respectively, appear to be evenly distributed. The

even distribution implies that most labels in the two datasets

are large. Specifically, over 70% of labels accounts for 10% or

more of the total image area. The Caltech dataset in Figure 14

(e) has the highest concentration of images in the first region,

[0, 10), with 96.5% of the dataset’s labels. In Figure 14 (g),

the CAM2 network data follows with 92.94% of the labels in

the first region. Overall, it appears that many datasets contain

many small objects in their images.



V. DATASET IMPROVEMENTS

The datasets mentioned in this paper, especially large-scale

datasets such as ILSVRC [4], COCO [5], and SUN [6],

are major contributors to the recent, significant progress in

computer vision. However, it is known that datasets such

as these include issues [4][27][28][29] in terms of image

selection bias and human labeling error.

There are two points worth mentioning about these potential

dataset issues: (1) the image selection bias and (2) labeling

quality. First, image selection bias appears in two ways: (1a)

the resource of data and (1b) the selection of images within the

resource. Exploring (1a), PASCAL VOC [7], COCO [5], and

ILSVRC [4], all collect images from Flickr, which introduces

sampling bias. The samples used for current machine learning

tasks are disproportionately sampled from a specific type of

image, i.e., images that people take and upload to Flickr,

instead of having a representational sample from the true

distribution of possible images. Additional studies are needed

to compare Flickr and network camera data.

Furthermore (1b), datasets tend to select a specific type of

image. In Khosla et al. [29], 300 randomly sampled images

from PASCAL VOC’s [7] and ILSVRC’s [4] classification

datasets were shown to be separable with 29% and 21% accu-

racy, respectively, against 12 other datasets using a histogram

of gradients (HOG) detector followed by a linear support

vector machine (SVM) [12]. In Tommasi et. al. [28], using

the convolutional layers of AlexNet [1] followed by a 12-

way linear SVM, the accuracy improved to about 50% for

PASCAL [7] and maintained about 20% for ILSVRC [4].

Both of those accuracies are good. These two examples of

separation serve as an attempt to quantify the difference

between the two dataset image types. Further investigation is

required to determine how significant these results are, but it

provides a baseline understanding of a distinction between the

datasets.

Another issue, (2), is that due to the large number of images

in both COCO [5] and ILSVRC [4], they utilize Amazon

Mechanical Turk for labeling. This increases the chance for

labeling error [30]. Some examples of a possible missing

labels are shown in Figure 15 for COCO (left) and ILSVRC

(right). Overall, it is difficult to measure the true number of

missing labels in a dataset because marking the ground truth

is laborious.

Network camera data may provide a partial solution to both

problems. For (1), the solution is obvious: network camera

data is a completely new repository for datasets. For (2),

network cameras could be cross-referenced with events (such

as weather) to automatically label the images for classification.

While this does not yet solve the missing labels for object

detection, perhaps the automatic classification of the images

is only a first step.

VI. CONCLUSION

This paper describes and compares eight visual datasets

and proposes a new method for creating a dataset using net-

work cameras. This paper focuses on seven popular machine

(a) (b)

(c) (d)

(e) (f)

Fig. 15. The COCO (left) and ImageNet (right) datasets contain
missing people labels in the images. It seems that especially in
crowds, more labels are missing.

learning datasets for object detection, focusing exclusively on

the “people” labels, and introduces a sample set of network

camera data. The labels from each dataset are examined.

First, we examine the distribution of label density for object

detection datasets. We discover that many dataset labels are

centered in the image. Labels for network camera data appear

to be significantly less centered than other datasets. This

paper also investigates the size of the objects (in number

of pixels) compared to total image size. We find that while

some datasets such as PASCAL VOC and ImageNet contain

many objects which take up more than 10% of the total image

size, other datasets contain mostly objects which are smaller.

Finally, directions for future improvement on dataset creation

are proposed and network camera data is offered as a possible

solution.
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APPENDIX

TABLE I. Sample Image Sources

Image Source Image ID

Figure 1 (a) Pascal VOC 003865

Figure 1 (b) Pascal VOC 003856

Figure 2 (a) ImageNet 1001

Figure 2 (b) ImageNet 1008

Figure 3 (a) SUN a\airport\terminal
\sun\acpxjhfbxfstfrtj

Figure 3 (b) SUN a\airfield
\sun\bqrkjzaxxucgirds

Figure 4 (a) INRIA person 203

Figure 4 (b) INRIA crop001056

Figure 5 (a) KITTI 00015 (left)

Figure 5 (b) KITTI 00015 (right)

Figure 6 (a) Caltech set01\V001
Figure 6 (b) Caltech set03\V008
Figure 7 (a) COCO 188592

Figure 7 (b) COCO 197658

Figure 15 (a) COCO 114907

Figure 15 (b) ImageNet 1026

Figure 15 (c) COCO 156071

Figure 15 (d) ImageNet 1066

Figure 15 (e) COCO 188465

Figure 15 (f) ImageNet 1088
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