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AN INTERVAL ARITHMETIC NEWTON METHOD FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS 
.;- ·----,, -

WE INTRODUCE AN INTERVAL NEWTON METHOD FOR BOUNDING SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS. 

IT ENTAILS THREE SUB-ALGORITHMS: 

- A GAUSS-SEIDEL TYPE STEP 

- A REAL CNON-INTERVAU NEWTON ITERATION 
- SOLUTION OF THE LINEARIZED EQUATIONS BY ELIMINATION 

WE EXPLAIN WHY EACH SUB-ALGORITHM IS DESIRABLE AND HOW THEY FIT TOGETHER TO PROVIDE SOLUTIONS 
IN AS LITTLE AS 1/3 TO 1/4 THE TIME REQUIRED BY KRAWCZYK'S METHOD. 

I. INTRODUCTION TO INTERVAL ARITHMETIC 

II. INTRODUCTION TO INTERVAL NEWTON METHODS 
III. COMPOSITION OF THE ALGORITHM 

IV. EXPERIMENTAL RESULTS 

••• • ~# _..,. 



I. INTERVAL ARITHMETIC 

A. MOTIVATION FOR INTERVAL ARITHMETIC 

B. THE FOUR ARITHMETIC OPERATIONS 

C. EXTENDED INTERVAL ARITHMETIC 

D. GENERAL FUNCTIONS AND DIRECTED ROUNDING 

E. COMPUTER IMPLEMENTATIONS 



A. MOTIVATION FOR INTERVAL ARITHMETIC 

** AUTOMATIC ERROR ANALYSIS!! 

PRIMARY SOURCES OF ERROR ARE: 

- ROUNDING 

- LIMITED ACCURACY OF INPUT DATA 
- LOSS OF LEADING SIGNIFICANT DIGITS IN SUBTRACTION OF NEARLY EQUAL VALUES (CANCELLATION) 

FOR EXAMPLEJ ON A FIVE DECIMAL DIGIT MACHINE WITH X=.99999 AND Y=.99998J SUPPOSE WE 

COMPUTE Z=X-Y. BY HAND WE GET 
.99999 

-.99998 
.00001 OR .1 x 10-4. 

SINCE WE KNOW NOTHING ABOUT X AND Y AFTER THE FIFTH DIGITJ WE CAN SAY ONLY THAT O<Z<,2 x 10-4. 

BUT THE COMPUTER WILL GIVE A FIVE DIGIT ANSWERJ E.G. Z=.lOOOOE-4. <THE ANSWER MAY BE 

SLIGHTLY DIFFERENT DUE TO BASE CONVERSIONS.) THE COMPUTER GIVES NO INDICATION OF THE 

LIMITED ACCURACY OF ITS FIVE DIGIT ANSWER. 



B. THE FOUR ARITHMETIC OPERATIONS 

A/B similar 

IN MULTIPLICATION AND DIVISION THE NUMBER OF PRODUCTS OR QUOTIENTS 

CALCULATED CAN BE REDUCED BY TESTING THE SIGNS OF THE INTERVAL ENDPOINTS. 



C. EXTENDED INTERVAL ARITHMETIC 

A/B = 

[Ar/B1_,+<X] IF Ar <O AND Br=O 

[-
00.,Ar/Br] u[Ar/B1.,+00

] IF Ar <O., B1<0_, AND Br>O 



D. GENERAL FUNCTIONS AND DIRECTED ROUNDING 

USING EXACT INTERVAL ARITHMETIC TO EVALUATE ANY FUNCTION f INVOLVING THE FOUR BASIC 

OPERATIONS, WE CAN BE SURE THAT f(X)~{f(x>IX1 <x<Xr} WHERE X = [x1,Xr]. IN ACTUAL 

COMPUTATIONS WITH A FINITE ACCURACY MACHINE, WE MUST PERFORM DIRECTED ROUNDING TO INSURE 

THAT THE RESULT OF OUR CALCULATION IS AN INTERVAL CONTAINING THE DESIRED RESULT. AS EACH 

ARITHMETIC OPERATION IS PERFORMED, WE ROUND THE LEFT ENDPOINT OF THE RESULT DOWN AND THE 

RIGHT ENDPOINT UP. 

THOUGH WE ARE SURE TO GET RESULTS BRACKETING THE CORRECT ANSWER, OUR RESULT MAY BE 

PESSIMISTIC. IT IS A CHALLENGE IN INTERVAL ANALYSIS TO FIND ALGORITHMS WHICH DO NOT 

LEAD TO OVERLY PESSIMISTIC NUMERICAL RESULTS. OFTEN SIMPLE REARRANGEMENT OF AN ARITHMETIC 
EXPRESSION CAN MAKE A SUBSTANTIAL IMPROVEMENT. 

FOR EXAMPLE, (X+[O,l]>IX SHOULD BE WRITTEN AS 1 + [o,1]1x. 

LETTING X = 1,3 WE CAN CALCULATE 

X+ fO,l] = H~ ~~ = [1/3,4] AND 1 + ¥ = [1,1] + [0,1] %: [1,2]. 



E. COMPUTER IMPLEMENTATIONS 

1) KLUGE 

2) PRECOMPILER 

3) INTEL 8087 OR 432 MICROPROCESSORS 

4) ADDITIONAL VARIABLE TYPE uXOTHER" ADDED TO THE MNF AND M77 FORTRAN 
COMPILERS DEVELOPED AT THE UNIVERSITY OF MINNESOTA COMPUTING CENTER. 

( J~fo<~\l 
sf\tR..ca citt eh-cl.) 



II. INTRODUCTION TO INTERVAL NEWTON METHODS 

CONSIDER A CONTINUOUSLY DIFFERENTIABLE FUNCTION f :Rn+Rn WITH JACOBIAN J, AND 

LET y BE A ZERO OF f, 

BY TAYLOR'S THEOREMJ 
f(x) + J( s)(y-x) = f(y) = o. 

IF X IS A BOX (AN INTERVAL VECTOR) CONTAINING x AND YJ THEN THE POINTS INDICATED BY THE 

NOTATION s ARE CONTAINED IN X. THUS y IS CONTAINED IN THE SET Z OF POINTS SATISFYING 

f(x) + J(X)Cz-x) = o. 
INTERVAL NEWTON METHODS FIND A BOX N (XJX) CONTAINING Z. THE PROCESS IS INTERATED. 

GIVEN A BOX X(O)J NEW ITERATES ARE OBTAINED AS 

xCk+l) = x(k) n NcxCk) JxCk)). 

IT IS BEST FIRST TO MULTIPLY BY AN APPROXIMATE INVERSE OF JcJ WHERE Jc DENOTES THE 

CENTER OF J(X). 

LETTING B DENOTE OUR APPROXIMATE INVERSEJ THE MULTIPLICATION YIELDS 

MCz-x) = b WHERE M=BJ(X) AND b=-Bf (X) I 



MCz-x)=b CM=BJCX) AND b=Bf(x)) 

INTERVAL NEWTON METHODS DIFFER IN HOW THIS EQUATION IS SOLVED. 

- KRAWCZYK METHOD: DOES NOT ATTEMPT TO OBTAIN ZJ BUT ONLY A BOUND FOR Z. 

- HANSEN-SENGUPTA METHOD: SAME APPLIESJ BUT CONVERGENCE SUPERIOR TO KRAWCZYK METHOD. 

- ELIMINATION METHOD: SOLVE THE EQUATION BY GAUSSIAN ELIMINATION. SEEKS Z RATHER THAN A 
BOUND FOR ZJ BUT THIS METHOD CANNOT ALWAYS BE EMPLOYED SINCE M MAY CONTAIN A SINGULAR 

MATRIXJ AND MORE IMPORTANTLYJ INTERVALS TEND TO GROW DURING THE ELIMINATION PROCESSJ 
SO THAT POOR RESULTS MAY BE OBTAINED. 

- REAL ITERATION IS EMPLOYED TO IMPROVE THE VALUE OF x BEFORE ELIMINATION IS ATTEMPTED. 

- INNER ITERATION REDUCES THE NUMBER OF TIMES JCX)J BJ AND BJCX) MUST BE COMPUTED. 



III. COMPOSITION OF THE ALGORITHM 

A. INITIAL HANSEN-SENGUPTA STEP 

B. REAL ITERATION 

C. ELIMINATION ITERATION 

D. ADDITIONAL HANSEN-SENGUPTA ITERATION 

E. SPLITTING THE BOX 



A. INITIAL HANSEN- SENGUPTA STEP 

AFTER CALCULATING J AND BJ AND PERFORMING THE MULTIPLICATION BY BJ WE FIRST PERFORM 
ONE HANSEN-SENGUPTA STEP. WE WISH TO SOLVE THE i-TH EQUATION OF M(z-x)=b FOR THE 

i-TH VARIABLE. THAT IS 

Y· = x.+R./M· · 1 1 1 1 1 

WHERE n 
R. = b. - • L1M .. ( x. -x. ) I 

1 1 J= lJ J J 
j ;Ci 

HERE WE HAVE REPLACED zj BY xj FOR ALL j;Ci. THE INTERVAL YiCONTAINS EVERY SOLUTION 
z. IN x. I 

1 1 

- WE PERFORM THE CALCULATIONS FIRST FOR THOSE i SUCH THAT OfMiiJ AND IN EACH CASEJ WE 

REPLACE Xi BY 
x/ = X·nY .. 1 1 1 

~WE THEN PROCEED TO DEAL WITH THOSE COMPONENTS FOR WHICH OEMii IN A SIMILAR MANNER. 
HERE WE MAY OBTAIN A "GAP" WHICH MAY BE USED LATER TO SPLIT THE BOX. 



B. REAL ITERATION 

- WE ATTEMPT TO FIND AN IMPROVED APPROXIMATION x FOR A ZERO OF f IN X CIF ONE EXISTS) 

BY STARTING AT xCO)=mCX) AND COMPUTING 



C. ELIMINATION ITERATION 

- IF WE HAVE FOUND AN x SUCH THAT llfCx)ll IS SUFFICIENTLY SMALL, WE ATTEMPT TO PERFORM AN 

LU DECOMPOSITION OF M. 

- IF SUCCESSFUL, WE CALCULATE b=-Bf Cx) AND PERFORM FORWARD AND BACK SUBSTITUTION TO SOLVE 

MCz-x)=B. THEN WE INTERSECT OUR SOLUTION WITH x AND CALCULATE A NEW x AT THE CENTER 

OF THE NEW X. 

- EACH TIME THE WIDTH OF X CTHE WIDTH OF ITS WIDEST COMPONENT) DECREASES SIGNIFICANTLY 

CTO .9 OF THE PREVIOUS WIDTH, SAY), WE REPEAT THE ELIMINATION STEP, STARTING AT THE 
CALCULATION OF b=-BfCx) WITH THE NEW x. 



D. ADDITIONAL HANSEN-SENGUPTA ITERATION 

- IF WE ARE UNABLE TO COMPLETE AN ELIMINATION STEPJ WE PERFORM HANSEN-SENGUPTA 

ITERATION INSTEAD. 

- SINCE WE HAVE ALREADY DONE OUR BEST TO FIND A WIDE GAP IN THE BOX XJ WE PERFORM 

THE CALCULATIONS 
0 

y. = X·+R./M· · WHERE R· = b.-.E1M. ·<X·-X·) 
1 1 1 11 1 1 J= lJ J J 

j ~l 

X~ = X·f\Y· 1 1 1 

ONLY FOR THOSE i SUCH THAT OfMii' 

- EACH TIME X IMPROVES SIGNIFICANTLYJ WE CALCULATE A NEW x AT ITS CENTER AND REPEAT 
THE HANSEN-SENGUPTA STEP. 



E. SPLITTING THE BOX 

- IF WE HAVE FOUND A GAP USING THE INITIAL HANSEN-SENGUPTA STEP DESCRIBED EARLIERJ 

WE MAKE USE OF THAT GAP TO SPLIT THE BOX <IF IT STILL DOES SO) 

- IF WE HAVE FOUND NO GAP AND WE HAVE NOT MANAGED TO IMPROVE THE BOX WIDTH SIGNIFICANTLY 
AT ANY STAGEJ WE SPLIT THE BOX AT THE CENTER OF ITS WIDEST COMPONENT. 

- WHEN THE BOX IS SPLITJ ONE PART BECOMES THE CURRENT BOXJ AND THE OTHER IS PLACED ON A 
STACK FOR LATER PROCESSING. 

- WHETHER OR NOT WE SPLIT THE BOXJ WE NOW RETURN TO THE BEGINNING OF THE OUTER STEPJ 
THE CALCULATION OF THE JACOBIAN MATRIX. 



F. SUMMARY OF ALGORITHM 

1. CALCULATE J(X) I 

2. CALCULATE BJ THE APPROXIMATE INVERSE OF Jc. 

3. CALCULATE M=BJ(X). 
4. SET x EQUAL TO THE CENTER OF X. 

5. PERFORM A HANSEN-SENGUPTA STEP FOR THOSE i SUCH THAT OfMii' 

6. PERFORM A HANSEN-SENGUPTA STEP FOR THOSE i SUCH THAT OEMiiJ AND 
SAVE THE LARGEST GAP. 

7. PERFORM REAL ITERATION TO IMPROVE xJ STARTING AT THE CENTER OF X. 
8. IF llf'(X)li IS NOT SUFFICIENTLY SMALLJSKIP TO STEP 14. 

9. PERFORM THE LU DECOMPOSITION OF M IF POSSIBLE; OTHERWISE SKIP TO 
STEP 14. 

10. CALCULATE Bf(x) AND SOLVE FOR Z BY FORWARD AND BACK SUBSTITUTION. 
11. REPLACE x BY x~z. 

12. IF THE WIDTH OF X IMPROVED SIGNIFICANTLYJ SET x EQUAL TO THE 
CENTER OF XJ AND RETURN TO STEP 10. 

13. SKIP TO STEP 16. 

14. PERFORM A HANSEN-SENGUPTA STEP FOR THOSE COMPONENTS SUCH THAT O$Mii. 
15. IF X IMPROVED SIGNIFICANTLYJ SET x EQUAL TO THE CENTER OF XJ AND 

RETURN TO STEP 14. 

lG. IF WE HAVE A GAP SAVED FROM STEP 6J USE IT. IF THE BOX SPLITSJ PUT 
ONE PART ON THE STACKJ AND KEEP THE OTHER PART AS THE NEW X. 
RETURN TO STEP 1. 

17. IF THE BOX DID NOT IMPROVE SIGNIFICANTLY IN STEPS 5 AND 6J IN 
STEP llJ OR IN STEP 14J THAN SPLIT AT THE CENTER OF THE WIDEST 
COMPONENT. SAVE ONE HALF ON THE STACKJ AND USE THE OTHER HALF AS 
THE NEW X. 

18. RETURN TO STEP 1. 

IF IN STEPS 5 AND 6, IN STEP 11, OR IN STEP 14, THE BOX IS NARROWED 
TO WITHIN THE ACCEPTABLE TOLERANCE OR IS FOUND NOT TO CONTAIN A SOLUTION, 
THE MOST RECENTLY STACKED BOX BECOMES THE NEW X, AND WE RETURN TO STEP 1. 
WHEN WE ENCOUNTER AN EMPTY STACK, WE ARE DONE. 



IV. EXPERIMENTAL RESULTS 

- SEVERAL PROBLEMS WERE SOLVED USING VARIOUS VERSIONS OF THE ALGORITHM DESCRIBED ABOVE 

AND,, FOR COMPARISON,, VARIOUS VERSIONS OF THE KRAWCZYK METHOD. 

- IN THE FINAL VERSION OF OUR ALGORITHM AS DESCRIBED ABOVE,, IT IS POSSIBLE TO VARY THE 

FACTOR REPRESENTING SIGNIFICANT IMPROVEMENT OF THE BOX WIDTH. THIS ALLOWS THE USER 

TO APPLY SOME CONTROL OF HOW MUCH INNER ITERATION IS PERFORMED,, ACCORDING TO HOW 

DIFFICULT IT IS TO CALCULATE THE JACOBIAN,, THE INVERSE OF ITS CENTER,, AND THE NECESSARY 

INTERVAL ARITHMETIC MATRIX PRODUCT. 

- WE SHOW REPRESENTATIVE RESULTS FOR THE BROYDEN BANDED FUNCTION 

2 E f.(x) = X·C2+5x.) + 1 -· J x.(l+x.) 
1 1 1 JE i J J 

Ci=l,, ... ,,n) 

WHERE Ji = {j [j=L maxCl .. i-5)~j~min(n,,i+l)L 

THE INITIAL BOX WAS ~1 .. 1] IN EACH COMPONENT AND CONTAINS ONE SOLUTION. IT WAS REQUIRED 
THAT THE SOLUTION BOX HAVE A WIDTH LESS THAN 10-8. 



THE FOLLOWING VALUES OF INTEREST ARE TABULATED FOR THE SAMPLE RUNS: 

S = THE SIGNIFICANT BOX WIDTH IMPROVEMENT FACTOR 

No = THE NO. OF OUTER STEPS = THE NO. OF JACOBIAN EVALUATIONS = THE NO. OF MATRIX 
INVERSIONS = THE NO. OF INTERVAL ARITHMETIC MATRIX-MATRIX PRODUCTS. 

NF = THE NO. OF INTERVAL ARITHMETIC FUNCTION EVALUATIONS = THE NO. OF INTERVAL ARITHMETIC 
MATRIX-VECTOR PRODUCTS = NK OR NE + NHSl 

NK = THE NO. OF KRAWCZYK STEPS 

NR = THE NO. OF REAL ITERATIONS = THE NO. OF REAL FUNCTION EVALUATIONS = THE NO. OF REAL 
MATRIX-VECTOR PRODUCTS 

NLu= THE NO. OF INTERVAL ARITHMETIC LU DECOMPOSITION ATTEMPTS 

NE = THE NO. OF ELIMINATION STEPS 

NHsl= THE NO. OF HANSEN-SENGUPTA STEPS FOR THOSE i WITH ofMii 

NHs2= THE NO. OF HANSEN-SENGUPTA STEPS FOR THOSE i WITH OEMii 

THE TIME IS MINUTES:SECONDS. THE EXPERIMENTS WERE RUN ON THE SLOW HP 9845. 



S REPRESENTS THE SIGNIFICANT BOX IMPROVEMENT FACTOR 
No REPRESENTS THE NO. OF OUTER STEPS 
TIME IS MINUTES:SECONDS 

n=3J KRAWCZYK METHOD WITH INNER ITERATION 

s No TIME 
-

.6 57 8:34 

.7 46 7:30 

.8 44 9:52 

.9 36 11:48 

n=3J HANSEN SENGUPTA METHOD WITHOUT INNER ITERATION 

S No TIME 
- -

.8 21 2:37 

n=3J NEW METHOD 
s No TIME 
- -

.6 13 2:31 

.8 13 2:29 

.9 12 2:28 

.99 12 2:28 

n=5J KRAWCZYK METHOD WITH INNER ITERATION 

~ No TIME 
.9 194 80:14 

n=5J HANSEN SENGUPTA METHOD WITHOUT INNER ITERATION 
s No TIME 

-
.9 80 30:03 

n=5J NEW METHOD 
s No TIME 

- -
.9 46 23:17 



n=3, KRAWCZYK METHOD WITH INNER ITERATION 

s No NF NK TIME 
- -
.6 57 80 80 8:34 
.7 46 74 74 7:30 
.8 44 114 114 9:52 
.9 36 153 153 11:48 

n=3, HANSEN-SENGUPTA METHOD WITHOUT INNER ITERATION 
s No NF NHSl NHS2 TIME 

-
.8 21 21 21 16 2:37 

n=3, NEW METHOD 
s No NF NR NLU NE NHSl NHS2 TIME 

.6 13 27 18 2 3 24 13 2:31 

.8 13 26 17 2 3 23 12 2:29 

.9 12 27 17 2 3 24 12 2:28 

.99 12 27 17 2 3 24 12 2:28 

n=5, KRAWCZYK METHOD WITH INNER ITERATION 
s No NF NK TIME 

- -
.9 194 234 234 80:14 

n=5, HANSEN-SENGUPTA METHOD WITHOUT INNER ITERATION 
s No NF NHSl NHS2 TIME 

.9 80 80 80 45 30:03 

n=5, NEW METHOD 

s No NF NR NLU NE NHSl NHS2 TIME 

.9 46 88 47 2 6 82 38 23:17 



E. COMPUTER IMPLEMENTATIONS 

1) KLUGE - A SUBROUTINE CALL FOR EVERY ARITHMETIC OPERATION. LABORIOUS PROGRAMMING AND SLOW EXECUTION. 

2) PRECOMPILER - THERE DOES EXIST A PRECOMPILER WHICH TRANSLATES FORTRAN TO INCLUDE THE REQUISITE CALLS 

TO AN EXTERNAL LIBRARY OF INTERVAL SUBROUTINES. EXECUTION SPEED IS 19 TO 192 TIMES SLOWER THAN THE 

SINGLE PRECISION VERSION OF THE PROGRAM. 

3) INTEL 8087 OR 432 MICROPROCESSORS - INTEL HAS DEVELOPED CHIPS TO PERFORM DIRECTED ROUNDING WITH THE 

INTENTION OF IMPLEMENTING INTERVAL ARITHMETIC, BUT A COMPILER DOES NOT YET EXIST TO EXPLOIT THIS NEW 

HARDWARE. 

4) ADDITIONAL VARIABLE TYPE "XOTHER" ADDED TO THE MNF AND M77 FORTRAN COMPILERS DEVELOPED AT THE UNIVERSITY 

OF MINNESOTA COMPUTING CENTER. WHENEVER THE COMPILER ENCOUNTERS OPERATIONS INVOLVING VARIABLES OF TYPE 

XOTHER, APPROPRIATE ROUTINES ARE USED TO PERFORM THE DESIRED OPERATIONS. EASY TO USE. 4 TO 6 TIMES 

SLOWER THAN ORDINARY SINGLE PRECISION IMPLEMENTATIONS FOR ALGORITHMS DOMINATED BY ARITHMETIC OPERATIONS. 

PROGRAMS WITH MANY FUNCTION CALLS MAY BE 12 TIMES SLOWER. 
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