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Abstract

This paper considers the optimal offset, feasible offset, and optimal placement problems for a more
general form of single-layer VLSI channel routing than has usually been considered in the past. Most
prior works require that every net has exactly one terminal on each side of the channel. As long as only
one side of the channel contains multiple terminals of the same net, we provide linear-time solutions to
all three problems. Such results are implausible if the placement of terminals is entirely unrestricted; in
fact, the size of the output for the feasible offset problem may be Ω(n2). The linear-time results also
hold with a ragged boundary on the side of the channel with multiple connections to the same net.

Keywords: VLSI, placement, wire routing, channel routing, single-layer routing, algorithms

1 Introduction

We are given two horizontal lines, whose positions may be adjusted to form the top and bottom boundaries
(sides) of a rectilinear grid, and a set of n nets. Each net consists of terminals located at grid points on the
two sides, and we refer to the region between (and including) the two sides as the channel. An acceptable
routing must specify paths along grid-line segments within the channel such that terminals belonging to the
same net are connected, but the wiring paths for any two different nets do not cross or have any grid-line
segments in common. (See Figure 1.) We assume that there exists such a routing, a condition that can be
verified in linear time [8]. The principal measure of routing quality is the number of horizontal grid lines
that are used, or, equivalently, the separation between the sides of the channel. In seeking to minimize the
separation, we allow the two rows of terminals to be shifted relative to one another by an amount referred
to as the offset as illustrated in Figure 1. (The offset may be positive or negative.)
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Figure 1: A single-layer channel and a routing that achieves the minimum separation. The number above
or below each terminal identifies the net to which it belongs.
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This situation models connection of VLSI modules having terminals on their boundaries. Though VLSI
chips generally use more than one interconnection layer, single-layer routing actually becomes more relevant
as technological advances increase the number of layers on a chip. The heuristic multilayer channel router
MulCh [1] obtains good results by dividing general problems into subproblems with one, two, or three layers.

In this paper, we consider three specific problems relating to single-layer channel routing. The optimal
offset problem involves finding the offset that minimizes the amount of separation necessary to route the
channel. The feasible offset problem involves finding all offsets that give enough room to route at a given
separation. Finally, the optimal placement problem considers a scenario in which the terminals on each of
the two sides are grouped into several chunks. Within each chunk, the positions of the terminals are fixed,
but, on each side of the channel, the chunks can slide back and forth as long as their order does not change.
The goal in this problem is to minimize the channel length given a channel width.

The river routing scenario, in which each net has exactly one terminal on each side of the channel has
been well analyzed [4, 6], but real channels may include nets with many terminals (e.g. some of the examples
in [1]). (Such multiple connections are even more likely in the optimal placement problem with multiple
modules.) We show that if only one side of the channel contains multiple connections to the same net, then
feasible offset, optimal offset, and optimal placement can still be solved in O(n) time for problems with n
nets. (The necessary premise is relatively likely to be satisfied by some one-layer subproblems of a multilayer
problem if not by the full set of nets.) On the other hand, if the terminal positions are entirely unrestricted
(except for the planarity requirement), linear-time solutions are implausible. In particular, there may be
Ω(n2) disjoint intervals of offsets that are feasible for a given separation. Thus, the feasible offset problem
cannot be solved in better than Ω(n2) time, except perhaps by using some unusual output representation;
furthermore, the optimal offset and optimal placement problems do not appear to be easier even though
they have a smaller output size. (For further analysis of this unrestricted version of the problem, see [3].)

There is actually no loss of generality in restricting attention to nets that have just two terminals (by
a reduction described in [2] that derives from “folklore”). Thus, river routing is overly restrictive only in
that it requires that the two terminals must be on opposite sides of the channel. We refer to the type of
net allowed in river routing as a two-sided net, whereas a net with its two terminals on the same side of the
channel is a single-sided net.

We show in Sections 3, 4, and 5 of this paper that the feasible offset, optimal offset, and optimal placement
problems can all be solved in O(n) time as long as all single-sided nets are on one side of the channel. The
results also apply when the channel boundary containing single-sided nets is ragged. These results depend
upon the convenient expression in Section 2 of the routability conditions for such a channel.

2 Cut Conditions

In this section we use the theory of single-layer routing developed by Maley [5] to derive a routability test
for channels with single-sided nets on one side. We justify this routability test carefully, since the literature
contains erroneous proposals of a similar test for general channels (as explained in [2]).

Without loss of generality, we assume all single-sided nets are on the bottom side. The contour of these
single-sided nets is the routing boundary that the two-sided nets must stay unit distance away from when
the single-sided nets are routed as tightly as possible against the bottom of the channel. (See Figure 2.)

Our first step for all the problems treated in this paper is to determine the contour of the single-sided
nets, which Pinter [7] shows can be done in linear-time:

Lemma 1 (Pinter) The bendpoints in the contour of a set of n single-sided nets can be found in O(n)
time.

We need a few more definitions to invoke Maley’s theory. A cut χ is a line segment connecting a top and
bottom terminal or traveling at 45◦ from a terminal to the opposite side of the channel; these correspond to
the “pivotal cuts” in [5]. The flow across χ is the number of nets that must cross χ, i.e., those nets having
terminals on both sides of χ or having an endpoint of χ as a terminal. The capacity of χ is one greater than
the maximum of the horizontal and vertical separations of its endpoints; if χ runs from (x1, y1) to (x2, y2),

capacity(χ) = max{|x1 − x2|, |y1 − y2|}+ 1 .
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Figure 2: Only those 45◦ cuts from bottom terminals shown with dashed lines need be checked. The hollow
circles mark the convex corners of the contour of single-sided nets.

The cut χ is safe if flow(χ) ≤ capacity(χ), which means that there is enough space along χ for the wires to
get through.

Lemma 2 A channel is routable if and only if every cut is safe.

This lemma follows from the corresponding result in [5, §2.1]. (Our slightly different definitions of flow
and capacity and routing on channel boundaries allow Maley’s formulation in terms of cuts emanating from
“feature” endpoints to correspond to cuts emanating from terminals.)

We now show that many cuts can be removed from consideration. First, we need not check cuts emanating
from a terminal a that are outside the “cone” formed by the two 45◦ cuts from a; pivoting a 45◦ cut around
a so that the other endpoint moves further away increases capacity at least as much as flow, so cuts outside
the cone are safe if the 45◦ cuts are. Now we say a cut χ is dominated by cuts α and β if all these cuts have
the same capacity, and the nets that must cross χ must all cross α or all cross β. In this case, χ need not
be checked because it is unsafe only if α or β is unsafe. Since all the single-sided nets are on the bottom,
many cuts are dominated by others. In particular, any cut χ connecting to a terminal only at the top of the
channel is dominated by the two parallel cuts emanating from bottom terminals, one to the left and one to
the right, that are nearest to χ. Additionally, any remaining cut that is not a 45◦ cut is dominated by the
two 45◦ cuts emanating from its bottom endpoint. Finally, the cuts from terminals of single-sided nets are
unnecessary unless they cross the contour of single-sided nets at a convex corner. For example, in Figure 2,
cut ab has no greater flow than pq, and uv is dominated by pq and rs. From the above reasoning, we have:

Theorem 3 A channel with all single-sided nets on the bottom is routable if and only if all 45◦ cuts from
bottom terminals of two-sided nets and all 45◦ cuts crossing the contour of single-sided nets at a convex
corner are safe.

We need a few more definitions to express the safety conditions algebraically. Let b1, b2, . . . , bt denote
the x-coordinates of the upper terminals of two-sided nets (in sorted order) and a1, a2, . . . , at denote the
x-coordinates of the bottom terminals of two-sided nets; ai is to be connected to bi, for 1 ≤ i ≤ t. Also
let c1, c2, . . . , ck denote the x-coordinates where the contour of single-sided nets bends. Then let ti be the
number of two-sided nets whose bottom terminals are to the left of ci, and let ei be the extension of the
single-sided contour at ci, the nonnegative distance that the contour rises above its baseline at that column.

Theorem 3, leads directly to a set of 2(t + k) conditions for feasibility of separation s and offset d. But
it is helpful for Section 4 to perform a further analysis to bring the number of conditions to at most 4t.
(To simplify our presentation, we assume through the rest of this paper that a separate check is performed
to ensure that ei ≤ s + 1 for all i.) We do this by deriving the tightest constraint on each bi, considering
separately four classes of cuts based on whether the cut is from a terminal of a two-sided net or runs through
a convex contour corner, and whether the cut is angled to the left or the right. By defining cri to be the
nearest bendpoint to the right of ai such that tri − i + eri > s and cli to be the nearest bendpoint to the
left of ai such that i− tli + eli > s+ 1, the complete set of constraints is

max{ai−s−1, cli − eli}+ s < bi + d < min{ai+s+1, cri + eri} − s 1 ≤ i ≤ t . (1)

3



Here we define aj = −∞ if j ≤ 0 and aj = ∞ if j > t; also cli (cri) is defined to be −∞ (∞) if there is no
bendpoint satisfying the necessary conditions. The analysis can be extended to the case in which the bottom
boundary of the channel is ragged, i.e., bottom terminals of two-sided nets may also have extensions, but we
omit that case for simplicity.

3 The Feasible Offset Problem

If we let

l(s) = max
1≤i≤t

{ai−s−1, cli − eli}+ s− bi and u(s) = min
1≤i≤t

{ai+s+1, cri + eri} − s− bi ,

then we know from Condition (1) that a pair (s, d) is feasible if and only if l(s) < d < u(s).

Theorem 4 The feasible offset problem can be solved in O(n) time.

Proof. All we need to do is to compute l(s) and u(s). We can find all ti’s, for 0 ≤ i < k, by a linear scan.
Furthermore, since li is nondecreasing as i increases, we can find all the li’s in O(n) time. Thus, we can
compute l(s) in O(n) time. Similarly, u(s) is computable in O(n) time. (Note that once the li and ri values
are known, only O(t) time is required.)

4 The Optimal Offset Problem

In this section, we use a halving technique as in [6] to solve the optimal offset problem in O(n) time. We
actually focus here on finding optsep(P ), the minimum separation attainable with an optimal offset for the
routing problem P ; once optsep(P ) is determined, the solution of the feasible offset problem can be used
to determine the optimal offsets. From the original problem P , we create a simpler problem P e that has
about half the separation of P . The basic idea is to halve the extensions of the contour of single-sided nets,
remove every other two sided net, and compact the channel horizontally to eliminate the freed space. More
precisely, we perform the transformation specified as follows:

bei = b2i − i , aei = a2i − i , rei = r2i , and lei = l2i 1 ≤ i ≤ ⌊t/2⌋

and
cej = cj − ⌈tj/2⌉ , and eej = ⌊ej/2⌋ j ∈ { rei , lei | 1 ≤ i ≤ ⌊t/2⌋ } .

The following lemma states the relationship between optsep(P ) and optsep(P e):

Lemma 5 Let s = optsep(P ) and se = optsep(P e). Then 2se ≤ s ≤ 2se + 3.

Sketch of proof. A cut χ in P that crosses f nets, p of which are single-sided nets and q of which are
two-sided nets can be seen to correspond to a cut χe with the following properties: (1) The flow of χe is in
the range [p−1

2 + q−1
2 , p

2 +
q+1
2 ] = [ f2 − 1, f

2 + 1
2 ], and (2) the horizontal extent of χe is diminished relative to

χ to the same extent as the flow. Thus se + 1 ∈ [ s+1
2 − 1, s+1

2 + 1
2 ], i.e., 2s

e ∈ [s− 3, s].

Theorem 6 The optimal offset problem can be solved in O(n) time.

Proof. We compute the contour of single-sided nets and the li and ri values once up front in O(n) time,
and let T (t) be the remaining time to find optsep(P ), where P has t two-sided nets. In O(t) time, we can
transform P to P e, which we solve recursively. From Lemma 5, once we know optsep(P e), we only need
to check 4 possible separations to achieve the optimal offset. Each separation can be checked in O(t) time
according to the proof of Theorem 4. Thus, we have T (t) ≤ T (⌊t/2⌋) +O(t), which yields T (t) = O(t).
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Figure 3: Two sets of chunks on either side of a channel. Variables are assigned to the horizontal position
of each chunk’s left edge.

5 The Optimal Placement Problem

The optimal placement problem is defined in [4] as follows. The terminals on each side of the channel are
grouped into chunks which must be placed as a unit. On each side of the channel, the order of the chunks is
fixed, but their positions are not. As shown in Figure 3, the separation is the vertical distance between the
two lines of terminals, and the spread is the horizontal dimension of the channel. Given a separation s, we
seek a placement which achieves the minimum spread. For simplicity, we assume that terminals can not sit
on the corners of the chunks; removing this restriction forces only slight modification to the algorithm.

From Section 2, the condition for the channel to be routable is

αi + s+ 1 ≤ bi ≤ βi − s− 1, 1 ≤ i ≤ t , (2)

where αi = max{ai−s−1, cli − eli}, and βi = min{ai+s+1, cri + eri}. The key observation here, is that every
αi, βi, and bi value corresponds to a fixed position on some module, independent of the module placement.
Thus, we can translate our cut conditions (2) into constraints on the module placement in the same fashion
as in [4]. Let us number the chunks from 1 to k on the top and k+1 to m on the bottom. For each chunk i,
let the variable vi represent the horizontal position of its left edge. Any placement can therefore be specified
by an assignment of values of these variables. Also add two variables, v0 and vm+1, to the set of variables
to represent the left and right boundaries of the channel. The spread is thus vm+1 − v0.

Now, the constraint αi+s+1 ≤ bi ≤ βi−s−1 can be rewritten in the form vg−vf ≥ rgf and vh−vg ≥ rhg.
For each pair of adjacent chunks i and i+1 on the same side, there is an additional constraint vi+1−vi ≥ wi,
where wi is the width of chunk i. We also have constraints v1 − v0 ≥ 0, vk+1 − v0 ≥ 0, vm+1 − vk ≥ wk, and
vm+1 − vm ≥ wm for boundary conditions.

Now define a placement graph G(V,E) to be a directed graph such that each vertex represents a variable
vi, and a directed edge with weight λfg goes from vf to vg if there is a constraint of the form vg − vf ≥ λfg.
Minimizing vm+1 − v0 subject to the constraints can be achieved by solving a single-source-longest-paths
problem in the placement graph. Furthermore, It is shown in [4] that if a placement graph satisfies Lemma 7
below, linear time suffices to solve the necessary longest-paths problem. Thus, we need only show Lemma 7
holds despite having generated our constraints from a more general arrangement of nets than in [4].

To state Lemma 7, we define a partial order≺ on the vertices so that u ≺ v when the chunks corresponding
to u and v lie on the same side of the channel and u’s is to the left of v’s. The boundary vertices v0 and
vm+1 satisfy v0 ≺ x ≺ vm+1 for all other vertices x. The partial order ⪯ is the natural extension to ≺ that
includes equality. Also, a cross edge is an edge corresponding to chunks on opposite sides of the channel.

Lemma 7 Any placement graph G=(V,E) has the following properties:
(1) There do not exist cross edges (u,v) and (x,y) such that u ≺ x and y ≺ v.
(2) There do not exist cross edges (u,v) and (x,y) such that v ≺ x and y ≺ u.

Proof. Note first that αi and βi are nondecreasing as i increases. (To see this for αi, just note that ai−s−1

and cli − eli are nondecreasing.) Now we prove properties (1) and (2) by contradiction.
(1) There are two cases for a pair of edges violating property (1), each of which yields a contradiction:

5



Case I: The edge (u, v) is caused by bi in v and αi in u, and the edge (x, y) is caused by bj in y and
αj in x. Since y ≺ v, bj is to the to the left of bi, i.e., j < i. Then, since αi is nondecreasing as i
increases, we have αj ≤ αi, which implies x ⪯ u.

Case II: The edge (u, v) is caused by bj in u and βj in v, and the edge (x, y) is caused by bi in x and
βi in y. By a similar argument to Case I, we can get a contradiction.

(2) There are also two cases for a pair of edges violating property(2); again each case yields a contradiction.

Case I: The edge (u, v) is caused by bi in v and αi in u, and the edge (x, y) is caused by bj in x and βj

in y. Since v ≺ x, bi is to the left of bj , i.e., i < j. Then, since βi is nondecreasing as i increases,
we have βi ≤ βj . Also αi ≤ βi by definition; therefore, αi ≤ βi ≤ βj , which implies u ⪯ y.

Case II: The edge (u, v) is caused by bj in u and βj in v, and the edge (x, y) is caused by bi in y and
αi in x. Using a similar argument as in Case I yields a contradiction.

As indicated above, the proof of Lemma 7 immediately yields the main result of this section:

Theorem 8 The optimal placement problem can be solved in O(n) time.
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