
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Computer Science: Faculty Publications and 
Other Works 

Faculty Publications and Other Works by 
Department 

1997 

Parallel Algorithms for Single-Layer Channel Routing Parallel Algorithms for Single-Layer Channel Routing 

Ronald I. Greenberg 
Rgreen@luc.edu 

Shih-Chuan Hung 

Jau-Der Shih 

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs 

 Part of the Theory and Algorithms Commons, and the VLSI and Circuits, Embedded and Hardware 

Systems Commons 

Author Manuscript 
This is a pre-publication author manuscript of the final, published article. 

Recommended Citation Recommended Citation 
Greenberg, Ronald I.; Hung, Shih-Chuan; and Shih, Jau-Der. Parallel Algorithms for Single-Layer Channel 
Routing. Parallel Processing Letters, 7, 3: 267-277, 1997. Retrieved from Loyola eCommons, Computer 
Science: Faculty Publications and Other Works, http://dx.doi.org/10.1142/S0129626497000280 

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department 
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other 
Works by an authorized administrator of Loyola eCommons. For more information, please contact 
ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
© World Scientific Publishing, 1997. 

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1142/S0129626497000280
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


PARALLEL ALGORITHMS FOR SINGLE-LAYER CHANNEL

ROUTING

RONALD I. GREENBERG and SHIH-CHUAN HUNG

Electrical Engineering Department, University of Maryland
College Park, Maryland 20742, USA

E-mail: rig@eng.umd.edu and hungkop@eng.umd.edu

and

JAU-DER SHIH

Department of Mathematics and Science Education, National Pingtung Teachers College, No. 1
Lin Sen Road

Pingtung, Taiwan, Republic of China
E-mail: JDSHIH@pintu.npttc.edu.tw

ABSTRACT

We provide efficient parallel algorithms for the minimum separation, off-
set range, and optimal offset problems for single-layer channel routing. We
consider all the variations of these problems that are known to have linear-
time sequential solutions rather than limiting attention to the “river-routing”
context, where single-sided connections are disallowed. For the minimum sep-
aration problem, we obtain O(lgN) time on a CREW PRAM or O( lgN

lg lgN
)

time on a (common) CRCW PRAM, both with optimal work (processor-
time product) of O(N), where N is the number of terminals. For the offset
range problem, we obtain the same time and processor bounds as long as
only one side of the channel contains single-sided nets. For the optimal offset
problem with single-sided nets on one side of the channel, we obtain time
O(lgN lg lgN) on a CREW PRAM or O( lgN

lg lgN
) time on a CRCW PRAM

with O(N lg lgN) work. Not only does this improve on previous results for
river routing, but we can obtain an even better time of O((lg lgN)2) on the
CRCW PRAM in the river routing context. In addition, wherever our results
allow a channel boundary to contain single-sided nets, the results also apply
when that boundary is ragged and N incorporates the number of bendpoints.

Keywords: Parallel algorithms, single-layer channel routing, VLSI layout

1 Introduction

Much attention has been given to single-layer routing for VLSI. Most popular has

been river routing [6], the connection of two (horizontal) rows of corresponding

terminals using the channel region between the rows of terminals; see also [16]

and the references therein. More general arrangements of modules and nets have

been considered for testing routability of terminals in fixed positions, but it is

also desirable to answer more sophisticated questions. For example, the minimum

separation problem involves finding the minimum vertical separation between two

rows of terminals that is required for routability (given that the horizontal positions

of the terminals are completely fixed). In other problems, we are allowed to offset

1



the upper row of terminals as a block to the left or the right, though the individual

terminals do not shift position relative to one another. In particular, the optimal

offset problem involves finding the offset that minimizes the amount of separation

necessary to route the channel. The offset range problem involves finding all offsets

that give enough room to route at a given separation.

We consider these problems in all contexts for which linear-time sequential al-

gorithms are known instead of considering only river routing, where each net is

restricted to have exactly one terminal on each side of the channel. The input we

assume is two arrays of terminals sorted by x-coordinate. The top terminals (and,

in arithmetic contexts, their x-coordinates) are denoted t1, t2, . . . , tm, and the bot-

tom terminals are denoted b1, b2, . . . , bn. We use N to denote m + n. Associated

with each terminal is a net number. Terminals belonging to the same net are to

be connected together. We also assume that each terminal has a pointer to the

next terminal of the same net in a clockwise ordering of the terminals. (Such an

assumption is implicit in [4], albeit for two-terminal nets. The assumption can ac-

tually be eliminated as long as there is a constant number of terminals per net,

since a simple O(1) time and O(N) work algorithm on the arbitrary CRCW PRAM

allows every terminal to find all other terminals of the same net, and general results

for EREW and common CRCW simulations yield the needed bounds [11]. Even

when the number of terminals per net is not constant, it is possible to eliminate

the assumption by allowing randomization or a modest increase in time or work,

using results on sorting of small integers (e.g, [10, 15]).) For simplicity, we use a

rectilinear, grid-based model in which terminals lie on gridpoints and wires are dis-

joint paths through grid edges. Also, for convenience, we allow routing on channel

boundaries.

We henceforth assume that each net has two terminals. Multiterminal nets can

be handled by a transformation described in [7] (and known previously). Then a

single-sided net has its two terminals on the same side of the channel, whereas a

two-sided net is the type of net allowed in river routing.

We also assume henceforth that the channel is routable in one layer, i.e., no

two nets are topologically forced to cross. (This condition can be verified without

increasing the running time of our parallel algorithm by viewing the first and last

terminals of each net as a left parenthesis and right parenthesis, respectively, and

testing for proper nesting. The test for proper nesting requires only a prefix sum

(discussed further in Section 2) of −1 and +1 values for left and right parentheses,

respectively.)

The results obtained in this paper and the best corresponding prior results are

summarized in Table 1. In that table, “river” refers to the river routing model de-

scribed above, the “general” model includes any single-layer channel routing prob-

lem, and the “intermediate” model is one in which all single-sided nets are on one

side of the channel. Henceforth, CRCW always refers to the common CRCW, in

which all concurrent writes must be of the same value.
Most prior work on single-layer routing has been limited to sequential models of

computation; linear-time sequential algorithms for the problems considered in this

2



Table 1: Running time and work (processor-time product) for the algorithms presented in this

paper and related prior work. Note that “N”, for example stands for “O(N)”.

prior CREW CRCW
problem model source time work time work

min. sep. general — lgN N lgN/ lg lgN N
min. sep. river [1, 4] lgN N lg lgN N

offset range intermediate — lgN N lgN/ lg lgN N
offset range river [1] lgN N lg lgN N

opt. offset intermediate — lgN lg lgN N lg lgN lgN/ lg lgN N lg lgN
opt. offset river — lgN lg lgN N lg lgN (lg lgN)2 N lg lgN

opt. offset river [1] lg2 N N lgN lgN lg lgN N lgN

paper can be found in [7], [8], and [16]. For the river routing model only, parallel
results for the problems in this paper are given by Aggarwal and Park [1]. In
addition to obtaining results for more general routing models, this paper improves
the time and work bounds for optimal offset. This paper improves those bounds even
further when attention is restricted to the river routing model on the CRCW. Chang,
JáJá, and Ryu [4], independently obtain the same CREW bounds as Aggarwal and
Park for minimum separation in the river routing model and also give an optimal
(work) algorithm for routability testing for switchboxes.

The remainder of this paper is organized as follows. In Section 2, we explain
the parallel operations used in this paper. We also indicate how to conveniently
express the routability conditions for single-layer channel routing. These conditions
are then used in Section 3 to solve the minimum separation, offset range and op-
timal offset problems. Section 4 gives some concluding remarks, including a brief
explanation of why our results can be readily extended to cases in which chan-
nel boundaries containing single-sided nets are ragged (i.e., arbitrary, horizontally
monotone, rectilinear boundaries, rather than straight lines.)

2 Preliminaries

2.1 Basic Parallel Operations

Given a sequence of N elements {x1, x2, . . . , xN} with a binary associative operator
∗, the prefix sums are all the partial sums defined by:

pi = x1 ∗ x2 ∗ . . . ∗ xi 1 ≤ i ≤ N

For a given array A(i) with 1 ≤ i ≤ N , the range maxima problem is to find the
element with maximum value between two given positions i and j. A query can be
answered in O(1) time after the preprocessing described in [11].

The range maxima preprocessing can be implemented in O(lgN) (respectively
O( lgN

lg lgN )) time with O(N) work on a CREW (CRCW) PRAM [3]. The prefix sums
computation can be performed with the same time and processor bounds on the
CREW [13], and on the CRCW as long as the input elements are integers in the
interval [1, N ] [5].

Another useful operation is that of finding all nearest smaller values (ANSV).
The form of the problem that we will use is as follows. Given a sequence of values

3



a1, a2, . . . , aN , find for each i, the least j > i such that aj < ai. This problem can
be solved with linear work in O(lg lgN) time on the CRCW and O(lgN) time on
the CREW [2].

Note also that finding the maximum of N numbers can be done with the same
resource bounds as ANSV [11].

2.2 Cut Conditions

We need a few definitions in order to use a general theory of single-layer routing
developed by Maley [14]. Define a critical cut to be a line segment that connects a
top and bottom terminal or runs from a terminal straight across to the opposite side
of the channel. Define a pivotal cut to be a line segment that connects a top and
bottom terminal or runs at 45◦ from a terminal to the opposite side of the channel.
Also let the flow across a cut χ be the number of nets that must cross χ, namely
those nets having terminals on both sides of χ and those having an endpoint of χ
as a terminal. The capacity of χ is one greater than the maximum of the horizontal
and vertical separations of its endpoints; if χ is the line segment from (x1, y1) to
(x2, y2), then

capacity(χ) = max{|x1 − x2|, |y1 − y2|}+ 1 .

The cut χ is safe if flow(χ) ≤ capacity(χ), which means that there is enough space
along χ for the wires to get through.

Lemma 2.1 The following three statements are equivalent (for a channel that has
been verified to be routable in one layer as mentioned in Section 1):
1. The channel is routable.
2. Every critical cut is safe.
3. Every pivotal cut is safe.

Proof. This lemma follows from the corresponding results in [14, §2.1,2.3,2.6.5].
(Our slightly different definitions of flow and capacity allow Maley’s formulation in
terms of cuts emanating from “feature” endpoints to correspond to cuts emanating
from terminals. Since we allow routing on the channel boundaries, the only “fea-
tures” are terminals and two routing obstacles (horizontal lines) located one unit
outside of what we have been referring to as the channel boundaries.) 2

We can further strengthen the result for critical cuts as follows. Define the span
of a cut χ to be the horizontal distance between its endpoints. Call χ sparse if χ is
not vertical and flow(χ) ≤ span(χ) + 1, and dense otherwise. A sparse cut is safe
regardless of the separation, but a dense cut χ is safe if and only if the separation
is at least flow(χ)− 1.

Lemma 2.2 The minimum channel separation is the maximum of flow(χ)−1 over
dense critical cuts χ. 2

When all single-sided nets are on the bottom, we can strengthen the result for
pivotal cuts, but first we must review results regarding contours of single-sided nets.
The contour of the single-sided nets is the routing boundary that the two-sided nets
must stay unit distance away from when the single-sided nets are routed as tightly
as possible against the bottom of the channel. (See Figure 1.)

The following Lemma from [4] shows that a contour of single-sided nets can be
found efficiently.

4



single-sided contour
..

..
..

..
..

..
..

.

..
..

..
..

..
..

..
.

r

s

p

q

u

vb

a

Fig. 1: With all single-sided nets on the bottom, only those 45◦ cuts from bottom terminals shown
with dashed lines need to be checked. The hollow circles mark the convex corners of the contour

of single-sided nets.

Lemma 2.3 The bendpoints in the contour of a set of N single-sided nets can be
found in O(lgN) (respectively O( lgN

lg lgN )) time using O( N
lgN ) (resp. O(N lg lgN

lgN ))

processors on a CREW (CRCW) PRAM. 2

Now, we are ready to state a result of [8] relating to pivotal cuts:

Lemma 2.4 A channel with all single-sided nets on the bottom is routable if and
only if all 45◦ cuts from bottom terminals of two-sided nets and all 45◦ cuts crossing
the contour of single-sided nets at a convex corner are safe. 2

3 The Algorithms

3.1 The Minimum Separation Problem

Our algorithm for this problem is based on Lemma 2.2. To ensure that vertical cuts
are captured, first add a dummy terminal across from each real terminal. Then we
find the minimum separation that makes all dense (critical) cuts emanating from
bottom terminals safe. To find all dense cuts emanating from bj , we search for the
two farthest dense cuts, one going to the right and one going to the left from bj ;
these two cuts form a “cone” such that cuts emanating from bj are dense if and
only if they lie inside the cone.

We now provide some further definitions and notations used in this subsection.
First, we say that a terminal is covered by a single-sided net on its side of the
channel if it lies in the closed interval defined by the endpoints of the net; define
S(τ) to be the number of single-sided nets covering τ . Now, two-sided nets are
said to lie to the left or right of a terminal on the top (or bottom) according to
the location of the net’s top (respectively bottom) terminal. Also, a two-sided net
is a right net if its top terminal is to the right of its bottom terminal; it is a left
net if its top terminal is to the left of its bottom terminal. Define R(τ) to be the
number of right nets to the left of terminal τ , and L(τ) to be the number of left
nets to the left of τ . Also define IL(τ) (and IR(τ)) to be 1 if τ is a terminal of a
left (respectively right) net, and zero otherwise.

The heart of this algorithm is to form the cone for each terminal bj . According
to the definition, a nonvertical cut tibj is dense if |ti− bj |+1 < flow(tibj). We now
show how to find the farthest cuts emanating from each terminal bj on the bottom
that are dense. Note that for any dense cut tibj , R(ti) ≤ R(bj), and L(ti) ≥ L(bj).
Thus, for dense cuts, flow(tibj) = L(ti)−L(bj) + IL(ti) +R(bj)−R(ti) + IR(bj) +
S(ti) + S(bj). Defining, bl(j) to be bj + L(bj) − R(bj) − S(bj) − IR(bj) + 1 and

5



tl(i) to be ti + L(ti) − R(ti) + S(ti) + IL(ti), we need to find the smallest ti such
that bl(j) < tl(i); for similar definitions of tr(i) and br(j), we also find the largest
ti such that tr(i) < br(j). It can be shown that the four functions bl, tl, br, and tr
are non-decreasing. Now, we can give an algorithm for forming the cone for each
bottom terminal.

procedure Find-Cones

1. Compute tl(i), bl(j), tr(i) and br(j) for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

2. Merge tl(i) with bl(j) and tr(i) with br(j) in order of nondecreasing values.
If a tie occurs, put br(j) before tr(i) and put bl(j) after tl(i).

3. For each bl(j), find the nearest tl(i) to the right in the merged sequence. If
we do not find such a tl(i) corresponding to a ti with lesser x-coordinate than
bj , then the farthest dense cut to the left from bj is vertical. Similarly, for
each br(j), find the nearest tr(i) to the left in the merged sequence, and select
a vertical cut if necessary.

The merging can be done using the approach of Kruskal [12] in O(lg lgN) time
with O(N) work on a CREW PRAM. Also steps 1 and 3 can be implemented
by using prefix-sums. Therefore, algorithm Find-Cones can be implemented with
optimal work inO(lgN) (respectivelyO( lgN

lg lgN )) time on a CREW (CRCW) PRAM.
Once we find the cone for each bottom terminal, we can use the information to

find the minimum separation for the single-layer channel routing problem:

procedure Minimum-Separation

1. Apply algorithm Find-Cones to find the farthest dense cuts to form a cone
for every terminal on the bottom.

2. Find the maximum flow F (bj) among the cuts inside the cone for every ter-
minal bj .

3. The minimum separation is −1 + max{F (b1), F (b2), . . . , F (bn)}.

Theorem 3.1 Algorithm Minimum-Separation finds the minimum separation
for single-layer channel routing with O(N) work in time O(lgN) on a CREW
PRAM and in time O( lgN

lg lgN ) on a CRCW PRAM.

Proof. We have already explained how step 1 can be performed within the spec-
ified time and processor bounds, and step 3 simply involves a minimum that can
be computed in the same bounds. To find the maximum flow in each cone in
step 2, we use the range maxima technique. Since, the flow for a dense cut tibj
is L(ti) − L(bj) + IL(ti) + R(bj) − R(ti) + IR(bj) + S(ti) + S(bj), and the terms
dependent on j are fixed for any given cone, the task is to find the maximum of
tl(i)− ti over each cone. The preprocessing for range maxima and the single query
per bj can also be implemented within the stated bounds. 2

6



3.2 The Offset Range Problem

In this subsection, we consider the offset range problem for single-layer channel
routing with single-sided nets on one side. Without loss of generality, assume that
all single-sided nets are on the bottom. Henceforth, we use s to represent the
separation and d for the offset (the positive or negative distance by which the upper
block of terminals is moved right from its original position).

According to Lemma 2.4, we only need to ensure that all 45◦ cuts from bottom
terminals of two-sided nets and all 45◦ cuts crossing the contour of single-sided nets
at a convex corner are safe. The most direct approach to obtain the desired result
for offset range is to simply check all 45◦ cuts from bottom terminals, but we use
a slightly less direct approach that will help us to solve the optimal offset problem
as well. For this approach, we need to separate the bottom terminals of two-sided
nets from those of single-sided nets. Let a1, a2, . . . , am be the x-coordinates of
the bottom terminals of two-sided nets and c1, c2, . . . , ch the x-coordinates of the
bendpoints of the contour of single-sided nets.

Using Lemma 2.4, it is shown in [8] that we need only check 4m cuts. To obtain
this formulation, we define Ti to be the number of two-sided nets whose bottom
terminals are to the left of ci. Also, let Ei be the extension of the single-sided
contour at ci, the nonnegative distance that the contour rises above its baseline
at that column. Finally, define cri to be the nearest bendpoint of the single-sided
contour to the right of ai such that Tri − i + Eri > s and cli to be the nearest
bendpoint to the left of ai such that i− Tli + Eli > s+ 1.

Adapting the result of [8] to the notation in this paper, we have that the pair
(s, d) is feasible if and only if l(s) < d < u(s), where

l(s) = max
1≤i≤m

{ai−s−1, cli − Eli}+ s− ti (1)

and
u(s) = min

1≤i≤m
{ai+s+1, cri + Eri} − s− ti . (2)

Here we define aj = −∞ if j ≤ 0 and aj = ∞ if j > m; also cli (cri) is defined to
be −∞ (∞) if there is no bendpoint satisfying the necessary conditions.

We can now prove the following theorem:

Theorem 3.2 The offset range for single-layer channel routing with single-sided
nets on one side can be found with O(N) work in O(lgN) (respectively O( lgN

lg lgN ))

time on a CREW (CRCW) PRAM.

Proof. The contour of single-sided nets can be found within the requisite resource
bounds by Lemma 2.3. The li and ri values can be found by solving an ANSV
problem, and then we need only compute a maximum and minimum of m ≤ N
values; these operations can be performed with O(m) work in O(lgm) time on the
CREW or O(lg lgm) time on the CRCW as indicated in Section 2. 2

3.3 The Optimal Offset Problem

This subsection considers the optimal offset problem for river routing and channels
with single-sided nets on one side (the bottom). In both cases, the optimal offset

7



problem is solved by using an algorithm for offset range as a subroutine. For chan-
nels with single-sided nets on one side, we use the results of Section 3.2 to obtain
optimal offset results better than those of Aggarwal and Park, even though their
results apply only to river routing. For river routing on the CRCW, we improve
their optimal offset bounds even further.

Our algorithm adapts Mirzaian’s halving technique [16] for relating optimal off-
set to offset range. We actually focus here on finding optsep(P ), the minimum sep-
aration attainable with an optimal offset for the routing problem P ; once optsep(P )
is determined, the solution of the offset range problem can be used to determine
the optimal offsets. From the original problem P , we create a simpler problem P e

that has about half the separation of P . The basic idea is to halve the extensions
of the contour of single-sided nets, remove every other two sided net, and compact
the channel horizontally to eliminate the freed space. More precisely, we perform
the transformation specified as follows:

tei = t2i − i , aei = a2i − i , rei = r2i , and lei = l2i 1 ≤ i ≤ ⌊m/2⌋

and

cej = cj − ⌈Tj/2⌉ , and Ee
j = ⌊Ej/2⌋ j ∈ { rei , lei | 1 ≤ i ≤ ⌊m/2⌋ } .

The following lemma, from [8], relates optsep(P ) to optsep(P e):
Lemma 3.1 Let s = optsep(P ) and se = optsep(P e). Then 2se ≤ s ≤ 2se + 3. 2

Let P0 be the original problem, and define Pk to be P e
k−1, for 1 ≤ k ≤ p = lgm.

(For ease of presentation, we assume the number of two-sided nets m is 2p for some
integer p.) Also, let sk = optsep(Pk). From the above lemma, once we know sk+1,
then sk can be solved by checking only 4 possible separations to achieve the optimal
offset. Now, sk−1 can also be solved by checking all the possible separations derived
from the 4 separations. (Again each possible separation of sk induces 4 possible
separations for sk−1.) By considering the union of these separations, we only have
to check 10 possible separations to solve sk−1. Continuing this line of reasoning, we
have the following corollary:

Corollary 1 If sk is known, then sk−l can be solved by checking only 3 · 2l − 2
possible separations. 2

Figure 2 shows our algorithm to solve the optimal offset problem. The algorithm
finds the optimal separations sp/2i , for 1 ≤ i ≤ lg p. Each separation is determined
from previously computed separations by using Corollary 1.

We first derive the resource bounds of this algorithm when applied to river
routing, and then we extend the analysis to channels with single-sided nets on one
side.

Theorem 3.3 The optimal offset for river routing can be found with O(N lg lgN)
work in O(lgN lg lgN) (respectively O((lg lgN)2)) time on a CREW (CRCW)
PRAM.

Proof. First we explain the CREW result. Lines 1–3 can be executed in time
O(lgm) time with O(m) work. (To see this, it suffices to consider repeated halving
of the number of two-sided nets in constant time, with the work at each stage
decreasing geometrically to a constant as the number of nets decreases.) In lines 4–
6, each sp/2i can be found in O(p) = O(lgm) time as follows. First, sp/2 has at

8



procedure Optimal-Separation
1 for i← lg p to 1 do
2 find Pp/2i

3 endfor
4 for i← 1 to lg p do
5 find sp/2i
6 endfor
7 find s0

Fig. 2: This algorithm finds the minimum separation for the optimal offset problem.

most 2p/2 possible values because there are only 2p/2 nets in Pp/2. The feasibility

of each separation can be checked in O(p) time with O(2p/2) work by the proof of
Theorem 3.2 or [1]. So all the possible separations can be checked simultaneously
with O(2p) work. The minimum separation among the feasible separations is the

optimal separation. Now, suppose sp/2i is known; then at most O(2p/2
i+1

) possible
values need to be checked for sp/2i+1 by Corollary 1. By a similar argument as
before, sp/2i+1 can be found in O(p) time with O(2p) work. Finally, Line 7 is
again O(p) time and O(2p) work. The total time and work, including all the passes
through the loop in lines 4–6, are O(p lg p) and O(2p lg p), respectively.

On the CRCW, we can do each pass through the loop in lines 1–3 in O(lg lgm)
time with O(m) work, and there are O(lg lgm) passes. The remaining analysis is the
same as before except with the O(lg lgm) time offset range result for river routing
on the CRCW that comes from Aggarwal and Park [1] or the proof of Theorem 3.2.
This yields O(lg p) time and O(2p) work to compute each sp/2i (and s0). 2

When there are single-sided nets on one side of the channel, we need modify our
argument only slightly. The analysis above remains valid, except that we must do
one computation up front of the contours and the li and ri values. Adding in the
extra resources required, we obtain the following:

Corollary 2 The optimal offset problem for channels with single-sided nets on one
side can be solved with O(N lg lgN) work in O(lgN lg lgN) (respectively O( lgN

lg lgN ))

time on a CREW (CRCW) PRAM. 2

4 Conclusion

This paper has provided efficient parallel algorithms for (1) the minimum separation
problem for general single-layer channels and (2) offset problems for single-layer
channels in which only one side of the channel has multiple connections to a single
net. In addition, we have improved previous results for optimal offset in river routing
problems, where each net has exactly one terminal on each side of the channel.

The above results also apply whenever a channel boundary that is allowed to
have multiple connections to a single net is also allowed to be ragged. (We must
first add dummy terminals at all the bendpoints of the ragged boundary, increasing
N accordingly.) For the minimum separation problem, we need only incorporate
the extension of the boundary at ti into the range maxima computation in the proof
of Theorem 3.1 and then the extension at bj into the maximization over the dense
cuts emanating from bj . For the offset problems, we simply incorporate boundary

9



extension terms into each of the a and c terms in Equations (1) and (2).
An obvious open question is whether any of the bounds on time or work can be

improved. In particular, the algorithms for optimal offset use N lg lgN work rather
than the O(N) work that can be achieved sequentially. An additional open question
is whether offset problems can be efficiently solved in parallel when both sides of
the channel contain single-sided nets; for sequential computation, this problem is
considered in [9].

Acknowledgements

This work was supported in part by NSF grants CCR-9109550 and CCR-9321388.
Thanks also to Uzi Vishkin and Joseph JáJá of the University of Maryland, Omer
Berkman of King’s College, and Yossi Matias of AT&T Bell Labs for helpful dis-
cussions.

References

1. A. Aggarwal and J. K. Park. Parallel searching in multidimensional monotone ar-
rays. Journal of Algorithms. To appear. Earlier versions appear as IBM Research
Report RC 14826 and in Proceedings of the 29th Annual Symposium on Foundations
of Computer Science.

2. O. Berkman, B. Schieber, and U. Vishkin. Some doubly logarithmic optimal parallel
algorithms based on finding all nearest smaller values. Technical Report UMIACS-
TR-88-79, University of Maryland Institute for Advanced Computer Studies, Oct.
1988. To appear in J. Algorithms.

3. O. Berkman and U. Vishkin. Recursive star-tree parallel data-structure. Tech-
nical Report UMIACS-TR-90-40, University of Maryland Institute for Advanced
Computer Studies, Mar. 1990. Earlier version in Proceedings of the 30th Annual
Symposium on Foundations of Computer Science.

4. S.-C. Chang, J. JáJá, and K. W. Ryu. Optimal parallel algorithms for one-layer
routing. Technical Report UMIACS-TR-89-46, University of Maryland Institute for
Advanced Computer Studies, Apr. 1989.

5. R. Cole and U. Vishkin. Faster optimal prefix sums and list ranking. Information
and Control, 81:334–352, 1989.

6. D. Dolev, K. Karplus, A. Siegel, A. Strong, and J. D. Ullman. Optimal algorithms for
structural assembly. VLSI Design, pages 38–43, 1982. Earlier version in Proceedings
of the 13th ACM Symposium on Theory of Computing.

7. R. I. Greenberg and F. M. Maley. Minimum separation for single-layer channel
routing. Information Processing Letters, 43(4):201–205, Sept. 1992.

8. R. I. Greenberg and J.-D. Shih. Single-layer channel routing and placement with
single-sided nets. 1993. Submitted.

9. R. I. Greenberg and J.-D. Shih. Feasible offset and optimal offset for general single-
layer channel routing. SIAM Journal on Discrete Mathematics, 8(4), Nov. 1995. To
appear. Earlier version in Proceedings of 2nd Annual Israel Symposium on Theory
of Computing and Systems, 1993.

10. T. Hagerup. Constant-time parallel integer sorting. In Proceedings of the 23rd ACM
Symposium on Theory of Computing, pages 299–306. ACM Press, 1991.

11. J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

12. D. Kruskal. Searching, merging and sorting in parallel computation. IEEE Trans.

10



Computers, C-32(10):942–946, Oct. 1983.

13. R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the ACM,
27(4):831–838, Oct. 1980.

14. F. M. Maley. Single-Layer Wire Routing and Compaction. MIT Press, 1990.

15. Y. Matias and U. Vishkin. Converting high probability into nearly-constant time —
with applications to parallel hashing. In Proceedings of the 23rd ACM Symposium
on Theory of Computing, pages 307–316. ACM Press, 1991.

16. A. Mirzaian. River routing in VLSI. Journal of Computer and System Sciences,
34:43–54, 1987.

11


	Parallel Algorithms for Single-Layer Channel Routing
	Author Manuscript
	Recommended Citation

	tmp.1524850513.pdf.ryOa9

