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Abstract

We present efficient algorithms to find a maximum-density planar subset of n 2-pin nets in
a channel. The simplest approach is to make repeated usage of Supowit’s dynamic program-
ming algorithm for finding a maximum-size planar subset, which leads to O(n®) time to find
a maximum-density planar subset. But we also provide an algorithm whose running time is
dependent on other problem parameters and is often more efficient. A simple bound on the
running time of this algorithm is O(nlgn + n(t + 1)w), where ¢ is the number of two-sided nets,
and w is the number of nets in the output. Though the worst-case running time is still O(n3),
this algorithm achieves better results when either ¢ or w is of modest magnitude. In the very
special case when there are no two-sided nets, the bound stated above becomes O(nlgn + nw);
this bound can also be achieved in the case of no single-sided nets. In addition, the bounds
stated so far can be strengthened by incorporating into the running time the number of edges
in certain interval overlap and interval containment graphs.
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Figure 1: Shown in the figure is a channel routing problem with four nets. Here, Iy =1, r1 =6, I = 2,
12=9,13=3,r3=7,14 =5, and ry =8.

1 Introduction

The channel routing problem has received a great deal of attention in VLSI layout design. Tradi-
tionally, channel routers have assumed two or perhaps three layers are available for interconnection.
Most of these routers use Manhattan style routing, in which each layer is reserved primarily for
wires in the horizontal direction or for wires in the vertical direction. Thus, the routing of each
net is composed of horizontal and vertical wire segments in different layers. Routing nets wholely
in one layer introduces difficult constraints given the limited resources of just two or three routing
layers. But as chip fabrication technology has evolved to incorporate more layers of interconnect,
it has become more feasible to deviate from the Manhattan routing style on some layers. If a
substantial number of nets can be laid out in a coplanar fashion, it may well be worthwhile to
dedicate one of the several chip layers to fully routing those nets. An example of a channel router
incorporating such a strategy is MulCh [2]. MulCh tries various assignments of roles to the routing
layers and assign nets to a layer or layers in a greedy-style heuristic approach. In this paper, we
discuss algorithms for extracting substantial collections of coplanar nets, which may constitute a
more powerful heuristic for use in multilayer channel routers.

One approach for obtaining an appropriate collection of coplanar nets is to extract the largest
possible number of coplanar nets, which is equivalent to finding a maximum-cardinality independent
set in a circle graph [5]. This approach, however, does not consider reducing the density of the
remaining nets of the channel, which is a good measure of the difficulty of routing the remaining
nets. We therefore propose to extract a set of coplanar nets of maximum density, which we refer
to as an MDPS (maximum-density planar set). Then, since the MDPS may include nets from only
a limited range of the channel, one can extract additional coplanar nets by continuing to work on
the set of nets obtained by removing the original MDPS and the nets intersected by nets in the
MDPS. One can either proceed to apply the MDPS algorithm recursively or one may settle for an
application of an algorithm for maximum-cardinality independent set, yielding the planar set of
largest size containing the original MDPS.

Figure 1 illustrates a channel routing problem and some of the notation to be used. There is a
set IV of 2-terminal nets; all the terminals lie on the two parallel “sides” of the channel. For net 1,
the column containing the leftmost terminal is denoted /;, and the column containing the rightmost
terminal is denoted r;. As shown in the illustration, these terminals may lie on opposite sides or
both on top or bottom. Nets with both terminals on the same side of the channel will be referred
to as single-sided nets; nets with terminals on opposite sides will be referred to as two-sided nets.
We will use ¢ to denote the number of two-sided nets and w to denote the number of nets in the
MDPS.

We will assume henceforth that all of the I; and r; values are in the range from 1 to 2n, but we
will charge nlgn time for this assumption. If the input actually comes in the form of a list of net



numbers in all the columns of the channel, and running time is measured as a function of the size
of such input, we need not pay the nlgn cost. But if the input comes in the form of just the /; and
r; values, we spend nlgn time sorting them and renumbering.

In the next two sections of this paper, we present two types of algorithms for finding an MDPS
of 2-terminal nets in a channel. Section 2 reviews algorithms of Supowit [5] and Buckingham [1,
pp- 119-124] for maximum-cardinality planar subset and discusses their use for finding maximum-
density planar subsets. Section 3 describes an approach to finding maximum-density planar subsets
based on the use of an algorithm by Masuda et. al. that can find maximum cliques of families
of interval overlap or interval containment graphs [4]. The approach based on use of Supowit’s
algorithm, yields an overall running time of O(n®). Using Buckingham’s algorithm, the running
time is less on certain types of input problems. The algorithm of Section 3 greatly expands the
class of input problems that can be solved more efficiently. A simple bound on the running time is

O(nlgn+ n(t+ 1)w).

2 Using Maximum Independent Set Algorithms for Circle Graphs

In this section, we review algorithms of Supowit and Buckingham for finding maximum independent
sets in a circle graph and discuss their use for finding maximum-density planar subsets of the nets
in a channel. In either case, the approach to finding an MDPS is simple. Just march across the
channel column by column, considering at each stage only those nets that cross the current column.
Among those nets, find the maximum-cardinality planar subset by using the algorithm of Supowit
or Buckingham. The largest of these maximum-cardinality planar subsets is the maximum-density
planar subset. ;

Two notations we will use are as follows. Let S|c denote the nets contained in the set 5 that
cross the column ¢. Note that “crossing” nets include those that terminate at the column. Also,
let MP(S) denote the maximum-size planar subset of the set 5. Now we need only describe the
methods of Supowit and Buckingham for finding MP(N|c).

2.1 Supowit’s Algorithm

Supowit’s algorithm is a dynamic programming algorithm running in time O(n?). By executing it
once on the set N|c for each ¢, the overall running time to obtain a maximum-density planar subset
is O(n?).

Supowit computes MP(N|c) by computing MP(N'|c) for each subset N’ of N obtained by
considering only the nets with terminals lying between two specified terminals in a “circular”
ordering of the terminals in the channel. More precisely, let N(i,j) denote the nets in N with
terminals lying between the i-th and j-th terminals in a circular ordering. Then MP(N(z,7)|c) can
be computed from MP(N(i,j — 1)|c) and other already computed terms as follows. Within the
circular ordering of terminals, let k denote the terminal connected to j and let [, %] denote the
net with terminals 5 and k. If the net [j, k] does not cross column ¢, then MP(N(%,7)|c) is just
MP(N(i,j — 1)|c). Otherwise, MP(N(i,j)|c) may be obtained as the larger of MP(N(¢,5 — 1)|c)
and MP(N(i,k — 1)) U [4,k]U MP(N(k + 1,7 — 1)|c). Thus a double loop over ¢ and j running
from 1 to 2n suffices to compute MP(N|c).

2.2 Buckingham’s Algorithm

The running time of Buckingham’s algorithm is dependent on the number of containments in
the circle graph sequence, which we will denote as k. That is, net [j,k] is contained in [/, k'] if



j' < j < k < k' in the circular ordering of the terminals. Then the running time of Buckingham’s
algorithm is O(n + x). When his algorithm is applied column by column the running time is O(n?)
plus the sum over ¢ the x values for N|ec.

Buckingham’s algorithm works by making one pass over the circular ordering of terminals,
finding the largest planar subset of nets with terminals lying between the beginning of the ordering
and the current position. Doing this requires a recursive call upon reaching the second terminal of
each net that contains other nets; the recursive call is applied to the sequence of terminals contained
within that net. Analysis of this algorithm yields the O(n + k) running time.

3 A More Efficient Algorithm

This section gives an algorithm for finding an MDPS that is often more efficient than the algorithms
in Section 2. It incorporates an algorithm by Masuda, et. al. [4] for finding maximum cliques in
interval overlap graphs. (Actually, the algorithm finds the size of the maximum clique in each
of the subgraphs of the interval overlap graph obtained by restricting attention to nets crossing
a particular column, and this is the capability we require.) The algorithm can also be readily
adapted to work with interval containment graphs, which is an additional capability we require. In
this section, we begin by providing background on the algorithm of Masuda, et. al.; then we show
how to use that algorithm to find an MDPS.

3.1 Overlap Graphs, Containment Graphs, and Maximum Cliques

We begin with the definition of interval overlap graphs and interval containment graphs. Let
F = {hL,I,,...,1,} be a family of closed intervals on the real line. A graph G. = (V,E) is
called an interval containment graph for F if there is a one-to-one correspondence between V and
F such that two vertices in V are adjacent to each other if and only if one of the corresponding
intervals in F contains the other. (The interval I; = [l;,r1] contains the interval Iz = [l3,ro] if
L <1l <7rp < 1) Agraph G, = (V,E) is called an interval overlap graph for F if there is
a one-to-one correspondence between V and F such that two vertices in V are adjacent to each
other if and only if the corresponding intervals in F overlap each other but neither one contains
the other. (Two intervals I; = [l1,71] and I; = [l;, ;] overlap each other if I; < I < ry < ryor
I <13 <73 <71.) It is convenient also for us to be able to refer to the interval graph G;, which is
the union of GG, and G,.

The connection between these graphs and the nets in a channel is obtained by simply viewing
each net as corresponding to an interval extending from its left terminal to its right terminal. Hence,
we will use sets of nets and sets of intervals interchangeably in most notations. For example, G,(F)
will represent the interval overlap graph corresponding to a set of intervals F' or a set of nets F
similarly G.(F) is the corresponding interval containment graph. Also, we will continue using the
notation of Section 2 to refer to restrictions to a column, e.g., F|c will denote the intervals contained
in the set F that cross column c.

The algorithm of Masuda et. al. finds, for each column c in the channel, the size of the maximum
clique of G,(F|c). The running time given in [4] is O(nrlgnp + min{mp,nFwr}), where ng is
the number of intervals in F, mp is the number of edges in G,(F), and wg is the size of the
maximum clique of G,(F’). But, under the assumption that no two intervals have a common right
endpoint or a common left endpoint and all endpoints are between 1 and 2np, the algorithm runs
in time O(np + min{mg,npwr}). The restriction on common endpoints will be met because
of the particular classes of intervals to which we will apply the algorithm of Masuda et. al. in
Section 3.2. Also the limitation on the range of the terminal positions can easily be enforced given



the assumption that the terminal positions in the entire channel were sorted up front as mentioned
in Section 1. In our further description of the algorithm of Masuda et. al. and our adaptation of
it, it is also important to realize that given the limited range of terminal positions, we can do such
tasks as sorting a set of nets in order of left endpoint in time linear in the number of nets (by bin
sorting).

A key observation of Masuda et. al. is that finding maximum cliques is equivalent to solving
certain instances of the longest increasing subsequence (LIS) problem, which we review here. Let
7 = [r(1),7(2),...,7(s)] be a sequence of distinct numbers. If a subsequence Y = [r(i1), 7(i2), .. .,
m(4;)] of 7 satisfies 7(i1) < m(iz) < -+- < m(4;), then it is called an increasing subsequence (IS). A
longest increasing subsequence (LIS) of 7 is an IS with maximum length among all 1S’s of .

The correspondence between maximum cliques and longest increasing subsequences is obtained
as follows. First we sort the set of intervals F = {I;, I, ..., I} in order of ascending right endpoint
and renumber the intervals so that r; < ro < --- < r,. Next, create for each ¢, a sequence 7. of
the intervals numbers from F|c sorted in ascending order of their left endpoints. Now there is a
one-to-one correspondence between IS’s of 7, and cliques of G,(F|ec).

The results for interval overlap graphs can be applied to interval containment graphs by simply
considering longest decreasing subsequences instead of longest increasing subsequences. (Finding
the maximum clique of an interval containment graph G(F') can be done in O(nrlgnr) time [3],
but that algorithm does not find the size of each G.(F|c), a capability we require in Section 3.2.)
The algorithm of Masuda et. al. that finds all the requisite longest increasing subsequences will
serve equally well to find the longest decreasing subsequences for the interval containment graph in
O(np + min{mp, npwr}) time once the sorting is accounted for up front. Again, nf is the number
of nets, mp is the number of edges in the graph under consideration, and wp is the size of the
maximum clique.

3.2 The Algorithm

In this section we explain how to use the maximum clique techniques to find an MDPS of a set
of nets in a channel. For simplicity, we show in detail only how to find the size of an MDPS. By
keeping track of decisions made in determining the size, one can readily determine the actual set
of nets in the MDPS.

Given a set of 2-pin nets in a channel, we divide the nets into four subsets ST{single-sided nets
connected to top), SB(single-sided nets connected to bottom), DR(double-sided right going nets)
and DIL(double-sided left going nets), as shown in Figure 2.

In accordance with our earlier comments, we assume that the nets in each of the four subsets
are sorted in ascending order of right endpoints. Also, define MC(F) to be a maximum clique of
the interval containment graph G.(F), if F C ST or F C SB; M({F) to be a maximum clique of
the interval overlap graph G,(F), if F C DL or F C DR. In addition, define a clique of an MDPS
to be a subset of an MDPS for which there exists some column that is crossed by every net in the
subset.

Remark 1 SB and ST are mutually coplanar. Furthermore, the problem of finding a mazimum-
density planar subset of SB or ST is equivalent to finding a mazimum clique of the interval con-
tainment graph for SB or ST, respectively.

Remark 2 If z € DR, y € DL, and there ezists some column c such that l; < ¢ < rgy and
I, < ¢ < ry, then z and y must intersect each other. Thus, a mazimum clique of an MDPS may
contain either elements of DR or elements of DL, but not both.
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Figure 2: Four types of nets: (a) ST type (b) SB type (c) DR type (d) DL type

Remark 3 The problem of finding an MDPS of DL or DR is equivalent to finding a mazimum
cligue of the interval overlap graph for DL or DR, respectively.

For simplicity, let’s consider a channel with only 2-sided nets first. From Remark 2 and 3,
we only have to find a maximum clique of the interval overlap graphs for DR and DL, and the
larger one is an MDPS. To find either maximum clique, we need only O(n + min{m,nw}) time,
where n, m, and w represent nets, overlap edges, and output size for the corresponding graph. For
simplicity, we express the overall running time (including the sorting up front) using n, m, and w
as the overall nets, overlap edges, and output size, yielding O(nlgn + min{m, nw}) time to find an
MDPS.

Now let’s consider a channel with only single-sided nets. In this case, we find the maximum-
density planar subsets column by column. Suppose we want to find the maximum-density planar
subsets at column j. From Remark 1, it is equivalent to finding maximum cliques in the interval
containment graphs for ST and SB at every column. So the algorithm works as follows: For ¢ = 1
to 2n, find | MC(ST]c)| and |[MC(SBjc)|, and then the size of the MDPS is max;<c<an {| MO ST|c)|+
|MC(SB|c)|}. Since it takes O(n + min{m,nw}) time to find [MC(S7|c)|’s and |MC(SB|c)|’s, the
algorithm has O(nlgn + min{m, nw}) time complexity, with n, m, and w as before except that we
are now dealing with interval containment edges.

Finally, let’s consider a channel with both single-sided and double-sided nets. Because a clique
of an MDPS cannot contain both elements of DL and DR, we first compute an MDPS containing
no elements of DR; then compute an MDPS containing no elements of DL, the larger one is an
MDPS.

Let DL = {v1,...,Vny, }. In what follows, we will establish some relationship among DL, ST,
and SB.

Remark 4 If v; is in the mazimum cligue of an MDPS, then for any element z of ST in the
mazimum clique of the MDPS, r, < r,,, and for any element y of SB in the mazimum clique of
the MDPS, 1, > l,,. Moreover, if v;,Vi41,...,v; are all in the mazimum clique of an MDPS, then
Fa L MUy 0oy i w1y > max (e sl k-

Now define ST,,,SB,,, and DL, in the following way:
8Ty, = Adalo€ ST, ta< ¥y}
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Figure 3: In this figure, C; ; contains 3 two-sided nets, r,;, and I, are shown as above.

SBv,— = {ala’ € §B,1, > lUi}
DL, = {w|lveeDL,z>14il, <, <r,}

Also define P; to be the maximum clique of an MDPS containing »; such that if there exists other
vy € MDPS, then i < z. If the MDPS contains two-sided nets, then |M DPS| = maxi<;<n,, {F;}-
With these definitions we obtain the following two results from Remark 4:

Lemma 1 If y; is in the mazimum cligue of an MDPS, then no elements of ST— ST, orSB— SB,,
are in that clique. i

Lemma 2 Let C;; be the mazimum cliqgue of an MDPS containing MC(DL,,|j) and no other
elements of DL. Then, forl,, <j <71,

Cisl = IMADLLI)| + , max {IMAST, )|+ MASBIR)} ,

where 1, is the rightmost left endpoint of MC{DLy,|j), and |P;| = maxy, <j<r,, {|Ci |}

Proof. By the construction of DL,,, the right endpoint of v; is the leftmost right endpoint of all
elements in DL,,, and the left endpoint of v; is the leftmost left endpoint of all elements in DL,,.
Thus, v; is included in every MC{DL,,|7) for I,, < j < r,,. (See Figure 3.) From Remark 4,
only elements of S7,, and SB, can be included with MC{DL,,|7) in C; ;. Since any two nets from
different sets among DL,,, ST,,, and SB, are coplanar, we can find an MDPS at column j by
finding maximum cliques of the three sets separately, which yields the expression for |C; ;|. Finally,
the expression for P; follows because it must contain one of the MC{DL,,|j) sets. |

From Lemma 1 and 2, we can compute (the size of) an MDPS, using the algorithm shown in
Figure 4. After we find an MDPS of nets containing only SB, ST, and DL, an MDPS of nets
containing only SB, ST, and DR can be computed similarly. The larger one is an MDPS of all the
nets.

For X being any of the four sets SB, ST, DL, or DR, let nx, mx, and wy denote the number
of nets in X, the number of edges in G;(X), and the maximum clique size for G;(X). Also let n,
m, and w be the maximum over the choices for X of the corresponding parameters.

Lines 1-2 can be completed in time O(n + min{mgr, nsrwsr} + min{msp,nspwsp}), and
lines 3-6 can be completed in that amount of time multiplied by npr. In the remainder of the
algorithm, the running time of most steps is bounded by nnpr. The npr executions of line 9
requires an additional O(npr min{mpy, nprwpr}) time, but this is dominated by the time required
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find IMO(STI1)|, . .., |MAST2n)|, [ MO SBI1)],...,|MC(SB|2n)|
Py — maxigogan{| MASTIC) + IMC(SBie)}
for i — 1 to npy, do
find ST,,, SB,,
find [MUST;[1)l,...,|MAST,|2n)||[MASB,|1)],. .., IMOSB,,|2n)|
endfor
for i — 1 to npy do
find DL,,
find |[MC(DL,,|1)|,...,|MQ DL, |2n)|
|Ciy; | < 1+ maxy,, <k<r,, {|MAST, k)| + |[MCOSBy|k)|}}
for j—1Il,+1tor, do
if [MO(DLy|5)| > |[MGDL,|j —1)|
then
Let v € DL be such that [, = j.
(Gl — max{|Ci ], IMCUDL,17)] + maxi, ke, IMCIST,,|8)| + IMC(SBIR)}}
else ‘
ICiil < |Cij-l
endif
endfor
P; — |Ci 4
endfor

|MDPS| — max{Po, maxi<i<np, {Fi}}

Figure 4: This algorithm uses interval containment graphs and interval overlap graphs to compute an

MDPS.



by line 15. The test in line 12 ensures that line 15 is executed at most min{mpr,nprwpr} times;
each execution requires O(n) time. Putting all the terms together, the running time of the procedure
in Figure 4 is

O(n(npr + min{mpr,nprwpr}) + (npr + 1)(min{msp, nspwsp} + min{msr, nsTwsr})) .

Finally, the overall time to find an MDPS can be obtained by incorporating terms based on DR
and the nlgn sorting time performed up front.

Under a variety of conditions in which the sets of the four types of nets have small numbers of
edges in the corresponding interval graph or small clique sizes, the running time is substantially
superior to the naive O(n3) approach. Even if we simplify the bound greatly, we can see substantial
opportunity for the running time to be o(n3). In particular, we can express the overall running time
to find an MDPS as O(n(lgn +t+ min{m,tw})+ min{m, nw}), where t is the number of two-sided
nets in the channel. If we simplify further by removing the minimization with respect to m and
note that w is always at least 1, we obtain a bound of O(n(lgn+tw+w)) = O(nlgn+n(t+1)w).

4 Conclusion

In addition to providing a naive O(n®) method for finding a maximum-density planar subset of
nets in a channel, we have presented a method that runs in time o(n®) for many types of input
problems. For example, superior running time is obtained if the number of two-sided nets or the
number of nets in the output is o(n). The running time can also be kept to o(n>) under more limited
but different conditions by applying Buckingham’s maximum planar subset algorithm column by
column. These two algorithms actually could be interleaved to obtain o(n®) running time in the
union of the favorable cases for the two algorithms. An open area for investigation is to obtain a
simpler algorithm that runs in o(n®) time in all of these cases or to obtain an algorithm that has
o(n®) running time on all n-net problems.
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