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An Empirical Comparison of Area-Universal and Other Parallel
Computing Networks

Ronald I. Greenberg Lee Guan
Mathematical and Computer Sciences Electrical Engineering

Loyola University University of Maryland
6525 North Sheridan Road College Park, MD 20742

Chicago, IL 60626

Abstract

This paper provides empirical comparison of the
communication capabilities of two area-universal net-
works, the fat-tree and the fat-pyramid, to the pop-
ular mesh and hypercube networks for parallel com-
putation. While area-universal networks have been
proven capable of simulating, with modest slowdown,
any computation of any other network of compara-
ble area, prior work has generally left open the ques-
tion of how area-universal networks compare to other
networks in practice. Comparisons are performed us-
ing techniques of throughput and latency analysis that
have previously been applied to k-ary n-cube networks
and using various existing models to equate the hard-
ware cost of the networks being compared. The in-
creasingly popular wormhole routing model is used
throughout.

keywords: performance evaluation, fat-tree, fat-
pyramid, mesh, hypercube, area-universal networks,
parallel computation

1 Introduction

Among the major impediments to massively paral-
lel computing has been the difficulty of building a rich
interconnection network and providing rapid commu-
nication among processors in a large system. Several
works geared toward providing a general-purpose in-
terconnection scheme with modest hardware cost have
performed theoretical analyses of variants of the fat-
tree architecture [3, 4, 8, 9, 11, 14, 15]. The theo-
retical results show that under a variety of routing
models, a fat-tree is area-universal, i.e., it requires
only a slowdown polylogarithmic in its area to sim-
ulate the behavior of any other network occupying the
same area. This research has influenced the design of
actual parallel computers by Thinking Machines Cor-

poration and Meiko [5, 13, 16]. Little empirical evalua-
tion of the practical performance comparison between
area-universal networks and other popular networks
for building large systems has been reported, however.
This paper performs such a comparison under various
standard models for equalizing hardware costs of the
network realizations being compared. Empirical com-
parison is particularly interesting, since some empir-
ical simulations of message routing on fat-trees have
already shown better performance in practice than the
performance predicted by provable bounds [11].

Throughout this paper, we use wormhole rout-
ing [7], due to its practical tendency to reduce routing
time as well as the storage requirements of intermedi-
ate nodes. In this model, packets are composed of flits
or flow control digits, and packets snake through the
network one flit after another; only a constant number
of flits may be stored in an intermediate node at any
time.

The networks considered in this paper include the
two extremes of the k-ary n-cube family considered by
Dally [6], namely the mesh1 and the (binary) hyper-
cube, both of which are popular networks for parallel
computers. We also consider the variant of the fat-
tree referred to as the butterfly fat-tree, introduced
by Greenberg and Leiserson [9]. Finally, we consider
the fat-pyramid network [8], an augmentation of the
fat-tree with hierarchical mesh connections, which was
introduced to maintain area-universality without the
usual simplifying assumption that unit time suffices to
traverse any wire regardless of its length.

Different physical constraints have been used as
measures of network cost. Dally [6] compared net-
works under the constraint that they have the same bi-
section width (minimum number of wires cut when the
network is divided into two equal halves). The channel

1Actually, our mesh differs slightly from Dally’s torus with
wraparound connections.



widths (number of wires between adjacent nodes) of
networks built on the same number of processors are
adjusted to equalize bisection width. This compar-
ison favored low-dimensional networks (closer to the
mesh than the hypercube). Abraham and Padman-
abhan [1] used the constraint of constant pin-out, the
total number of wires emanating from the processors
and switches in the network. There comparison (with
some difference in the routing model) found higher di-
mensionality to be more important than wider chan-
nel width. In this paper, we expand the compari-
son to include area-universal networks using both of
these simple constraints. We also compare the net-
works based on equal area in the Thompson model for
VLSI [18, 19], the model that motivated the original
design of area-universal networks. (Bisection width is
closely related to but not the same as measuring area;
Thompson showed that area is lower bounded by a
constant times the square of bisection width.)

The rest of this paper is organized as follows. Sec-
tion 2 describes the networks and routing model con-
sidered. Section 3 describes the constraints used to
model hardware cost and obtain performance compar-
isons of networks of comparable cost. Section 4 gives
the simulation results, and section 5 contains conclud-
ing remarks.

2 Networks and Routing Model

For completeness, we begin by reviewing the in-
terconnection pattern for the mesh and hypercube.
Labeling the n processors of the mesh as (x, y) for
0 ≤ x, y <

√
n, we connect (with bidirectional links)

(x, y) to (x + 1, y) for 0 ≤ x <
√
n − 1 and connect

(x, y) to (x, y + 1) for 0 ≤ y <
√
n − 1. Labeling

the processors of the hypercube with the binary rep-
resentations of the numbers 0 to n− 1, two processors
are connected if their labels differ in exactly one bit
position (thought of as a physical dimension).

The structure of the fat-pyramid is shown in Fig-
ure 1 from [8]; the (butterfly) fat-tree is a subnetwork
of the fat-pyramid. (We consider simple versions of
these networks, though processors can be packed a
bit more densely [8, Section II].) A precise descrip-
tion of the interconnection pattern for the switches in
the fat-pyramid can be given as follows. We begin
with a collection of ordinary two-dimensional meshes
at levels 0, 1, . . . , log2

√
n/4 representing distance from

the leaves in the underlying tree structure. At level h,
there are 2h copies of a

√
n/4/2h×

√
n/4/2h mesh. We

then denote a switch by an ordered 4-tuple (h, c, x, y),
where h is the level, c is the copy number of the
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Figure 1: A fat-pyramid. Processors are placed at the
leaves, represented by circles; the squares are switches.
This network is obtained by superposing hierarchical
mesh connections on a butterfly fat-tree. The origi-
nal fat-tree connections are represented by thin lines
and the mesh connections by thick lines. (A differ-
ent layout of the fat-pyramid is used to obtain results
independent of wire delay.)

mesh (0 ≤ c < 2h) at this level that contains the
switch, and x and y specify a mesh position in an
ordinary Cartesian coordinate system (0 ≤ x, y <√

n/4/2h). Then for 0 ≤ h < log2
√
n/4, switch

(h, c, x, y) is connected to (h+1, 2c, ⌊x/2⌋ , ⌊y/2⌋) and
(h+ 1, 2c+ 1, ⌊x/2⌋ , ⌊y/2⌋). The fat-tree is as above,
but without the mesh connections.

In wormhole routing, messages (worms) are com-
posed of flits (flow control digits). A worm snakes
through the network one flit after another. An inter-
mediate switching node starts to forward a worm to
the next node (if there is no contention at the outgo-
ing buffer to the next node) as soon as it has received
enough flits to determine the destination of the worm.
The switching nodes has a constant sized queue for
each port so that only constant number of flits may
be stored in each queue. When wormhole routing is
used deadlock may occur. For the hypercube, e-cube
routing [7] may be used to avoid deadlock. In e-cube
routing, worms route through dimensions in the or-
der specified by scanning the address bits from MSB
to LSB. For a mesh (with no wraparound links as op-
posed to the related torus), it also suffices to route first
in one dimension and then in the other. This dead-
lock avoidance strategy also applies to the hierarchical



mesh networks in the fat-pyramid network.
Simulation programs have been developed to con-

duct the comparison of the four types of networks un-
der wormhole routing. We focus on the unit delay
model, in which the time to send a bit across a wire
is independent of the wire length. In this context,
simulation of the fat-pyramid shows the degree of per-
formance loss resulting from using the more general
network under the unit delay model; further work is
planned to explore performance with differing wire de-
lay. All comparisons are performed among networks
that are expected to have comparable hardware cost,
by adjusting the number of wires connecting nodes
that are adjacent in the network as described in the
next section.

3 The Constraints on Channel Width

A primary concern for performance comparison is
the constraint on the channel width, the number of
wires connecting adjacent nodes, to make the cost
of interconnections equal among different networks.
The actual cost is determined by many technology-
dependent issues and is therefore approximated via an
appropriate model. Two measures of cost used in prior
studies (for k-ary n-cubes or multidimensional meshes)
are the bisection width and pin-out. We examine the
bisection width and pin-out constraints first, and then
we consider equalizing area based on the Thompson
model [18, 19].

3.1 Constant Bisection Width Constraint

Dally [6] used bisection width as a measure of cost
for the comparison of k-ary n-cubes. The bisection
width of a network is the minimum number of wires
cut when the network is divided into two equal halves.
To equalize network costs, a larger channel width W
is associated with networks that can be bisected by
cutting fewer channels. The bisection widths for the
mesh, hypercube, butterfly fat-tree and fat-pyramid
(in units of channel width) are

√
n, n/2,

√
n and√

n log16 4n, respectively. (The least obvious result is
the last, for which we add the number of channels to
bisect the underlying fat-tree as well as each of the 2h

meshes at level h:
√
n+

∑log2

√
n/4−1

h=0 2h(
√
n/4/2h).)

The corresponding bisection widths (B) for a range
of values of n are listed in Table 1. In each row,
channel widths (W ) are given to equalize the bisec-
tion width across different networks. For convenience,
the channel width for the mesh is fixed at 32, and the

other channel widths are rounded to the nearest inte-
ger to approximately equalize bisection width. (Chan-
nel width of 32 for the mesh is a reasonable value,
since this would correspond to up to 128 connections
per processor.)

3.2 Constant Pin-out Constraint

Abraham and Padmanabhan [1] used pin-out as a
measure of cost. The pin-out of a node is the de-
gree times the channel width W . For a k-ary n-
cube, to maintain constant pin-out, a decrease in
the dimensionality k mandates an increase in chan-
nel width W . The butterfly fat-tree and the fat-
pyramid networks have different pin-outs for proces-
sor and switch nodes, but we can use the total pin-
out, the sum of the pin-outs over all nodes. The to-
tal pin-outs for n-processor networks in units of chan-
nel width are 4(n −

√
n), n log2 n, (n + 3(n −

√
n))

and (n + 5(n −
√
n) −

√
n log2 n) for the mesh, hy-

percube, butterfly fat-tree and fat-pyramid networks
respectively. The total pin-out for the fat-tree is ob-
tained by adding the pin-out of the processors to
6 times the sum of the number of switches at all

the levels: n + 6
∑log2

√
n/4

h=0 2h(n4 /2
2h). For the fat-

pyramid, we must add an additional 4 connections
for each switch but subtract off the missing connec-

tions at mesh edges: n + 10
∑log2

√
n/4

h=0 2h(n4 /2
2h) −

4
∑log2

√
n/4

h=0 2h(
√
n/4/2h). The number of pin-outs

(PO) as described above are listed in Table 2 for a
range of values of n. In each row, channel widths (W )
are given to equalize the total pin-out across different
networks.

3.3 Constant Layout Area Constraint

Anther constraint of interest is the layout area.
With the layout area constraint, different networks are
laid out on the same area with the same number of
processors. The VLSI layout area is evaluated based
on the assumption that all processors and switches are
placed on a 2-D substrate. The substrate has two layer
of interconnects for x-direction and y-direction respec-
tively. Such a model can serve as a good abstraction
for a variety of VLSI packaging technologies, such as
wafer-scale integration or printed circuit boards [2].
More accurate modeling may require considering a
complicated hierarchy of interconnection that consists
of many levels, but the model here captures much of
the complexity of interconnection, with more accuracy
at least than looking only at bisection width.



n mesh hypercube BFT fat-pyramid
B W B W B W B W

16 4 32 8 16 4 32 6 21
64 8 32 32 8 8 32 16 16
256 16 32 128 4 16 32 40 13

1024 32 32 512 2 32 32 96 11
4096 64 32 2048 1 64 32 224 9

Table 1: The bisection width with channel width 1 and the channel width to maintain constant bisection width
across different networks.

n mesh hypercube BFT fat-pyramid
PO W PO W PO W PO W

16 48 32 64 24 52 30 60 26
64 224 32 384 19 232 31 296 24
256 960 32 2048 15 976 31 1328 23

1024 3968 32 10240 12 4000 32 5664 22
4096 16128 32 49152 10 16192 32 23488 22

Table 2: The pin-out with channel width 1 and the channel width to maintain constant pin-out across different
networks.

The layout area of a network includes the area for
the processors and the area required due to intercon-
nections. Since the area required for the processors
is the same, we remove it from consideration and ex-
amine only the area necessary to achieve the intercon-
nections. If processor area is very large relative to the
wire pitch, it simply means we can scale up the channel
widths of all the networks by a substantial factor.

For each of the networks, we can analyze the area
by expressing the side length with n processors as

S(n) =
√
n · d ·W · P (1)

where P is the wiring pitch (constant throughout our
analyses) and d can be thought of as an average wire
density per row or column (with channel width 1)
when the processors are laid out in a

√
n by

√
n grid.

For the mesh d = 1. For the hypercube, we can
use a layout as in [17], which is known to have op-
timal area. The maximum wire density per row is

d = 2k+2−(−1)k−3
6 , where k = log4 n, which will be

explained more fully in the final paper.
For the butterfly fat-tree and the fat-pyramid, we

can obtain the side length from recurrence relations
based on Figure 1. For the butterfly fat-tree, the re-
currence is

S(n) = 2 · S(n/4) +
√
n ·W · P (2)

with S(4) = 2W · P . The solution is

S(n) =
√
n log4 n ·W · P (3)

so d = log4 n for the butterfly fat-tree. Similarly, for
the fat-pyramid d = 3

2 log4 n.
The wire densities as described above are listed in

Table 3 for a range of values of n. In each row, chan-
nel widths (W ) are given to equalize the area across
different networks.

4 The Performance Comparisons

It has been customary to use network latency as the
primary performance measure because of its tendency
to limit performance in practice in today’s fine-grained
parallel systems. The maximum throughput is another
important performance metric, and for certain appli-
cations such as sample sorting can be dominant [12].
The actual relationship of the execution time to the
maximum throughput and average latency is deter-
mined by the nature of a parallel algorithm, and is
beyond the scope of this paper. We will investigate
both maximum throughput and average low load-rate
latency for the networks under study.

The maximum throughput of a network is the max-
imum amount of messages that can come out of each



n mesh hypercube BFT fat-pyramid
d W d W d W d W

16 1 32 2 16 2 16 3 10
64 1 32 5 6 3 10 4.5 7
256 1 32 10 3 4 8 6 5

1024 1 32 21 2 5 6 7.5 4
4096 1 32 42 1 6 5 9 4

Table 3: The wire density per row/column and the channel width under constant layout area constraints.

node in the network per clock cycle. Throughput
varies with load-rate, which is the frequency with
which processors generate messages. Throughput and
load-rate are sometimes measured in fractions of the
capacity per node of a network, where the capacity is
defined as the maximum number of messages that can
be in a network at one time. It is appropriate and
convenient to use capacity as measures of throughput
when comparing the performance of the same network
under different operating conditions, or when compar-
ing networks with the same capacities. However, since
we are dealing with networks with different capacities,
the actual number of bits per cycle per node is used
as the basis for measuring load-rate and throughput.

As load-rate increases from zero, throughput fol-
lows load-rate until the load-rate has reached a cer-
tain value, when throughput starts to saturate. Ad-
ditional increase in load-rate does not further increase
throughput. As network size grows, the total through-
put goes up, but the throughput per node generally
decreases. For the mesh, butterfly fat-tree and fat-
pyramid, this is mainly caused by the bisection width
limitation, i.e., the bisection width doesn’t scale up
at the same ratio as does the number of processors.
The hypercube network doesn’t have bisection width
limitation. However, when subject to the constraints
(bisection width, pin-out, or area) to maintain equal
cost, the hypercube network has to further reduce the
width of each channel as network size grows. More-
over, the blocking of available channels by messages in
the network also contributes to the decrease of the per
node throughout.

The average latency, however, stays rather con-
stant at low load-rates. As load-rate increases, aver-
age latency increase slowly until the network saturates,
when the average latency increases rapidly due to the
queuing time. In practice, parallel networks should
be designed to operate on the the flat portion of the
latency curve.

Figure 2 through Figure 4 show the simulation re-

sults for latency under constant bisection width, con-
stant pin-out and constant area constraints respec-
tively. Maximum throughput can be read from the
latency graphs by looking for the load rate at which
the network saturates. The results are obtained from
network simulators for uniform random message pat-
terns, using the channel widths calculated in Section 3.
A worm length of 320 bits is used for all networks.
Simulations are shown for several values of n up to
n = 4096. Simulations for larger n are in progress.

Under the constant bisection width constraint, the
mesh network always has the best maximum through-
put. The hypercube network has the least through-
put and the largest latency (in the graphs with 64
processors and up). This agrees with Dally’s find-
ings that the bisection width constraint strongly favors
low-dimensionality [6]. The butterfly fat-tree network
tends to achieve lower average latency than the mesh
for large network size (≥ 256). The fat-pyramid net-
work has lower throughout and higher latency com-
pared with butterfly fat-tree because of its narrower
channel width. It’s performance is not far behind that
of the fat-tree, but it remains poorer than the mesh at
least for moderate network size.

When the constant pin-out constraint is used, the
hypercube network shows average latency close to
that of the mesh and fat-pyramid. The butterfly fat-
tree again shows the lowest latency for n ≥ 1024.
The hypercube network has much higher throughput
than other networks in agreement with Abraham and
Padmanabhan’s findings that constant pin-out favors
high-dimensionality networks [1]. But the opposite
conclusion is reached based on a comparison of low-
load latency; here there is some disagreement with [1]
due to the choice of a different routing model and other
parameters. As the network size grows, there is also
trend that the butterfly fat-tree and fat-pyramid show
lower latency than the mesh.

With the constant area constraint, the butterfly fat-
tree and the fat-pyramid networks show very close



Figure 2: Throughput and latency comparison under constraint of equal bisection width.

Figure 3: Throughput and latency comparison under constraint of equal pin-out.



Figure 4: Throughput and latency comparison under constraint of equal interconnect area.

throughput, both small compared with those of the
hypercube and mesh. The mesh network has the low-
est average latency. The butterfly fat-tree and fat-
pyramid have latencies between mesh and hypercube
for network sizes of 256 and up. The poor showing of
the fat-tree and fat-pyramid networks is probably sub-
stantially attributable to the use of the simple, basic
structure illustrated in Figure 1, which use area a lit-
tle larger than linear in the number of processors. We
will perform further studies using the better variants
of these networks that achieve linear area as discussed
in [8, Section II].

5 Conclusions

The comparison of performance among different
network architectures is critically affected by the con-
straint used to determine the available channel widths
to equalize hardware cost. Layout area should be a
more accurate measure than bisection width, and fur-
ther study is called for using the more area-efficient
versions of the fat-tree and fat-pyramid in [8] rather
than just the simplified versions of the network con-
sidered so far. In addition, the area model is still a
simplification of real packaging constraints. It would
be desirable to more closely model this hierarchy of
interconnection technologies.

Under constant bisection width and constant pin-
out constraints the butterfly fat-tree achieves lower
latency for n ≥ 1024. The results obtained through
simulation of random message pattern are more opti-
mistic than the theoretical upper bounds under which
some slowdown could occur [10, Section 3.1.1]. In
addition, the butterfly fat-tree and fat-pyramid show
close performance to each other under the unit wire
delay model, but with a little poorer showing by the
fat-pyramid. Since the purpose for introducing the
fat-pyramid was to achieve favorable performance in
comparison to other networks in the context of nonunit
wire delay, additional empirical simulations should be
performed with appropriate nonunit wire delay mod-
els.

The results presented in this paper (and many other
papers) are based on uniform random message pat-
terns. The performance of real parallel algorithms and
the dependency of execution time on throughput and
latency are topics of interest for future research.
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