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Abstract

This paper compares message routing capabilities of im-
portant networks proposed for general-purpose parallel
computing. All the networks have been proven to have
some type of universality property, i.e., an ability to simu-
late other networks of comparable cost with modest slow-
down, using appropriate cost and communication models.
But in this paper we seek an empirical comparison of com-
munication capability under typical direct use rather than
an analysis of worst-case results for simulating message
traffic of another network.

1 Introduction

A significant challenge to massively parallel computing
is providing an economical interconnection network that
can support general patterns of communication among
processors. It has been noted that the hypercube is uni-
versal in the sense that it can simulate any network on
the same number of processors with logarithmic slowdown
(e.g., see [18]). The high pin-out and area requirements of
the hypercube are serious detriments, however, which led
to development of various types of “fat-tree” networks,
which have the property that they can simulate any net-
work of comparable VLSI area with slowdown polylog-
arithmic in the area under circuit-switched, packet, or
wormhole routing models [3, 4, 8, 9, 10, 13, 14]. This
research has influenced the design of parallel computers
by Thinking Machines Corporation and Meiko [5, 12, 15].
Most area-universality analyses have been performed in
the “unit wire delay model”, i.e., assuming that unit time
suffices to send a bit across a wire regardless of its length.
This model has generally proved reasonable for current
technology, but may become less appropriate as we build
larger systems; an extension of the fat-tree referred to as
the “fat-pyramid” [8] has been shown to be area-universal
given any reasonable dependence of delay on wire length.
We use a simple version of the “butterfly fat-tree” (BFT)
and fat-pyramid as illustrated in Figure 1. Finally, the
mesh has been a popular network for parallel computing,
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Figure 1: A fat-pyramid. Processors are placed at the
leaves, represented by circles; the squares are switches.
This network can be viewed as containing 2h copies of
a mesh of size

√
n/4/2h ×

√
n/4/2h for levels h with

0 ≤ h ≤ log2
√
n/4. The switch denoted (h, c, x, y),

where h is the level, c is the copy number of the mesh
(0 ≤ c < 2h) at this level that contains the switch, and
x and y specify a mesh position in an ordinary Cartesian
coordinate system (0 ≤ x, y <

√
n/4/2h) is connected to

(h+ 1, 2c, ⌊x/2⌋ , ⌊y/2⌋) and (h+ 1, 2c+ 1, ⌊x/2⌋ , ⌊y/2⌋)
by “tree edges” for h < log2

√
n/4. The fat-tree is as

above, but with only the tree edges; i.e., the edges within
the meshes are removed. (A different layout of the fat-
pyramid is used to obtain results independent of wire de-
lay.)

and it is easy to see that the mesh is area-universal under
linear wire delay, which may be the most accurate model
in the distant future (e.g., see [6]).

We perform an empirical comparison of message
routing on the networks mentioned above, since examina-
tion of typical performance in practice may lead to sub-
stantially different conclusions than an analysis of worst-

1



case slowdown for simulating another network. This pa-
per focuses on the unit wire delay model; though the uni-
versality advantages of the mesh or fat-pyramid come in
to play with different models of wire delay, it is interest-
ing to see whether there is significant detriment to us-
ing these networks in the unit delay model. Most of the
simulations here are performed in the simple (store-and-
forward) packet routing model, but we also compare to
wormhole routing, where messages (worms) are composed
of flits or flow control digits, and worms snake through the
network one flit after another with only a constant num-
ber of flits being stored in an intermediate node at any
time. In store-and-forward routing, messages are con-
ceptually transferred from node to node as atomic units,
but we still count an appropriate number of flit steps to
transfer a packet of many bits from one node to another
to achieve a fair comparison with wormhole routing.

2 Equalizing Hardware Cost

To make fair comparisons between different networks
(with a given number of processors), we adjust the
channel width (the number of wires connecting adja-
cent nodes) in each, to make the cost of interconnec-
tions equal. We consider three models of hardware cost
that have received substantial recent attention. Bisec-
tion width and pin-out constraints have been consid-
ered in prior empirical studies of wormhole routing on
k-ary n-cube networks [1, 7]. The Thompson model for
area [16, 17] has been the focus of theoretical analyses
of area-universality [3, 4, 8, 9, 10, 13, 14]. The bisection
width of a network is the minimum number of wires cut
when the network is divided into two equal halves. The
pin-out of a node is the degree times the channel width
W , and total pin-out is the sum of the pin-outs over all
nodes. VLSI layout area is evaluated based on the as-
sumption that all processors and switches are placed on
a 2-D substrate. The substrate has two layer of intercon-
nect for the x-direction and y-direction, respectively, with
a minimum wire width and separation. Such a model can
serve as a good abstraction for a variety of VLSI packag-
ing technologies, such as wafer-scale integration or printed
circuit boards [2]. Since the area required for the proces-
sors is the same for all networks, we consider only the
area necessary to achieve the interconnections. For each
of the networks, we can analyze the area by expressing
the side length with n processors as S(n) =

√
n ·d ·W ·P ,

where P is the wiring pitch and d can be thought of as
an average wire density per row or column (with channel
width 1) when the processors are laid out in a

√
n by

√
n

grid.

Tables 1 through 3 give the bisection widths (B),
pin-outs (PO), and average wire densities (d) for a range
of values of n along with channel widths (W ) to equalize
cost.

n mesh hypercube BFT fat-pyramid
B W B W B W B W

16 4 32 8 16 4 32 6 21
64 8 32 32 8 8 32 16 16
256 16 32 128 4 16 32 40 13
1024 32 32 512 2 32 32 96 11
4096 64 32 2048 1 64 32 224 9

Table 1: The bisection width with channel width 1 and
the channel width to maintain constant bisection width
across different networks.

n mesh hypercube BFT fat-pyramid
PO W PO W PO W PO W

16 48 32 64 24 52 30 60 26
64 224 32 384 19 232 31 296 24
256 960 32 2048 15 976 31 1328 23
1024 3968 32 10240 12 4000 32 5664 22
4096 16128 32 49152 10 16192 32 23488 22

Table 2: The pin-out with channel width 1 and the chan-
nel width to maintain constant pin-out across different
networks.

n mesh hypercube BFT fat-pyramid
d W d W d W d W

16 1 32 2 16 2 16 3 10
64 1 32 5 6 3 10 4.5 7
256 1 32 10 3 4 8 6 5
1024 1 32 21 2 5 6 7.5 4
4096 1 32 42 1 6 5 9 4

Table 3: The wire density per row/column and the chan-
nel width under constant layout area constraints.

3 Experimental Results and Conclusions

It has been customary to use network latency as the pri-
mary performance measure because of its tendency to
limit performance in practice in today’s fine-grained par-
allel systems. The average latency is the average time
to completely transmit a message from source to destina-
tion. It depends on load rate (the number of message bits
generated per cycle per node), and simulations are run at
a fixed load rate with random sources and destinations
until average latency reaches a steady state. The average
latency generally stays rather constant at low load rates
and then increases rapidly as the network saturates. In
practice, parallel networks should be designed to oper-
ate on the the flat portion of the latency curve. Maxi-
mum throughput is another important performance met-
ric, and for certain applications such as sample sorting



can be dominant [11]. Maximum throughput can be read
from the latency graphs by looking for the load rate at
which the network saturates.

Figures 2 through 4 show packet routing simulation
results under constant bisection width, constant pin-out,
and constant area constraints, respectively. Simulations
are shown for several values of n up to n = 4096. Message
lengths of 320 bits are used throughout.

The most striking aspect of the packet-routing sim-
ulation results in Figures 2 through 4 is that the mesh
always performs very well in comparison to the other net-
works despite the use of the unit wire delay model. While
the best low-load latency is obtained with the fat-tree un-
der constant bisection and constant pin-out constraints
(for large networks), it is surprising that the performance
of the fat-tree is not generally better than what is shown
by our simulations, particularly under the sort of area
constraint that motivated study of the fat-tree. Perfor-
mance of the fat-tree and fat-pyramid might be better
with the more area-efficient variation in [8, Secs. II–III].
Also interesting is that for the most part, the packet rout-
ing graphs look qualitatively very similar to those ob-
tained from wormhole routing with a reasonable range
of worm lengths. (As would be expected, however, the
packet routing results tend to show higher average laten-
cies and higher maximum throughput.) Only in the case
of constant pin-out did the choice of packet routing ver-
sus wormhole routing cause some change in the ranking
of networks by low-load latency; our wormhole routing
results for constant pin-out are shown in Figure 5.
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Figure 2: Comparison of packet routing latency under constraint of equal bisection width.

Figure 3: Comparison of packet routing latency under constraint of equal pin-out.



Figure 4: Comparison of packet routing latency under constraint of equal interconnect area.

Figure 5: Comparison of wormhole routing latency under constraint of equal pin-out.
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