
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

10-1992

Packet Routing in Networks with Long Wires Packet Routing in Networks with Long Wires

Ronald I. Greenberg
Loyola University Chicago, Rgreen@luc.edu

H.-C. Oh

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Other Computer Engineering Commons, Other Operations Research, Systems Engineering

and Industrial Engineering Commons, and the Theory and Algorithms Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

Recommended Citation Recommended Citation
Ronald I. Greenberg and H.-C. Oh. Packet routing in networks with long wires. In Proceedings of 30th
Allerton Conference on Communication, Control, and Computing, pages 664--673, 1992.

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
A revised version can be found at http://ecommons.luc.edu/cs_facpubs/98

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://ecommons.luc.edu/cs_facpubs/98

Packet Routing in Networks with Long Wires

Ronald I. Greenberg and H.-C. Oh
Department of Electrical Engineering

University of Maryland
College Park, MD 20742

rig@eng.umd.edu and ohc@eng.umd.edu

October 22, 1992
Author version for Proceedings of 30th Annual Allerton Conference on

Communication, Control, and Computing, pages 664–673, 1992

Abstract

In this paper, we examine the packet routing problem for networks with wires of
differing length. We consider this problem in a network independent context, in which
routing time is expressed in terms of “congestion” and “dilation” measures for a set
of packet paths. We give, for any constant ε > 0, a randomized on-line algorithm
for routing any set of N packets in O ((C lgε(Nd) +D lg(Nd))/ lg lg(Nd)) time, where
C is the maximum congestion and D is the length of the longest path, both taking
wire delays into account, and d is the longest path in terms of number of wires. We
also show that for edge-simple paths, there exists a schedule (which could be found off-

line) of length O
(
(cdmax +D) lg(dmax)

lg lg(dmax)

)
, where dmax is the maximum wire delay in the

network. These results improve upon those of Leighton, Maggs, and Rao, which assume
that unit time suffices to traverse a wire of any length. Our results also improve upon
those of Shmoys, Stein, and Wein for job-shop scheduling as long as we incorporate a
technical restriction on the job-shop problem.

1 Introduction

An efficient packet routing algorithm is critical to the design of most large-scale general-
purpose parallel computers. One must move data between different locations in an appropri-
ate routing network as quickly as possible and with as little queueing hardware as possible.
The packet routing problem has been extensively studied in the past, mostly in the context
of specific networks and specific message patterns. Recent works by Leighton, Maggs, Rao,
and Ranade have provided very general packet routing results (based on summary measures
of the message traffic), which even yield many improvements upon prior analyses of spe-
cific networks and message patterns [1, 2, 3]. But these works have made the simplifying
assumption that unit time suffices for any transmission of a packet from one network node
to another regardless of the actual length of wire connecting the nodes. This assumption
becomes less and less tenable as we build larger and larger parallel machines. Hence this
paper considers the situation in which an arbitrary delay is associated with each wire.

Except for the introduction of nonunit wire delay, we follow the commonly used store-and-
forward routing model and the usual graph-based terminology. Packets are atomic objects,
which at each time step, either wait in a queue or are in transit on some edge of the network
connecting two nodes. Associated with each edge e is an edge delay of de > 0 time steps
required for a packet to traverse that edge, and at any given time, at most one packet can be
present on each edge. (There are other interesting routing models, for example allowing the
use of transmission lines on which packets can be pipelined, circuit-switching, or wormhole
routing, which are not considered in this paper.)

Packets wait in three types of queues. Before routing begins, packets are stored at initial
queues in the nodes where they are generated. Each time a packet traverses an edge, it
enters the edge queue at the end of that edge; a packet can begin to traverse an edge only if
the queue at the end of that edge is not full. Finally, when a packet reaches its destination,
it is placed into a final queue at that node. The sizes of the initial and final queues are
determined solely by the packet routing problem to be solved, but we seek routing schedules
that bound the maximum queue size for edge queues.

We may view the packet routing problem as being comprised of two tasks, selecting a
path through the network for each packet and setting a schedule for when packets move and
wait. The second task has traditionally been the more difficult one, and it is the focus of
this paper. Of course, the selection of paths affects the time and queue size required by a
legitimate schedule. For example, the maximum distance d, in number of edges, traveled
by any packet is a lower bound on the routing time; this distance is often referred to as
the dilation in the literature. In fact, the routing time is lower bounded by the maximum
over all packet paths of the sum of edge delays along the path. We refer to this measure
as the generalized dilation D, which differs from d when the unit wire delay assumption is
discarded. Similarly, the routing time is lower bounded by the congestion c, the maximum
over all edges of the number of packets that must traverse the edge over the entire course of
the routing, and by the generalized congestion C, the maximum over all edges of the number
of packets traversing the edge multiplied by the delay of the edge. We also use the notation
dmax for the maximum over edges e of the edge delay de.

Leighton, Maggs, and Rao have given a randomized on-line algorithm for the unit wire
delay case, which (with high probability) produces a schedule of length O (c+ d lg(Nd))
with queues of size O (lg(Nd)), where N is the number of packets [2]. This naturally im-
plies that in the problem with general edge delays, we could obtain a schedule of length
O (dmax(c+ d lg(Nd))) by simply using dmax time steps to simulate each step of the unit
delay algorithm. In Section 2, we give, for any ε > 0, an on-line algorithm that produces
a schedule of length O ((C lgε(Nd) +D lg(Nd))/ lg lg(Nd)) with queues of size O

(
lg(Nd)

lg lg(Nd)

)
.

This is a significant improvement, since cdmax and ddmax may be much larger than C and
D. It should also be noted that the constants hidden in the O-notation are of modest size
at least for ε = 1, so the algorithm is practical.

Our on-line algorithm is also an improvement upon the result obtained from the (off-line
but polynomial time) algorithm of Shmoys, Stein, and Wein [4] for job-shop scheduling. In
job-shop scheduling, the problem input consists of a set of jobs and a set of machines. Each
job consists of a sequence of operations, each of which has a specified duration and must be
processed on a specified machine. The operations of a job must be processed in order, and
each machine can handle at most one operation at a time. We can draw a correspondence
between job-shop scheduling and packet routing by thinking of jobs as packets and machines
as network edges. The schedule length of Shmoys, Stein, and Wein translated into our

notation for packet routing is O
(
(C +D) lg2(Nd)

lg lg(Nd)

)
. Our superior result for packet routing

can be applied to job-shop scheduling as long as we impose the restriction that on any given
machine, all operations are of the same duration.

Leighton, Maggs, and Rao have also shown, for unit wire delay, that when the paths
traversed by the packets are edge-simple, there exists some schedule of length O (c+ d)
requiring only constant size queues. This immediately implies existence of a schedule of
length O (dmax(c+ d)). Though wwe have not removed both the lg(Nd) factor and all
dependence on dmax in the off-line case, we show in Section 3 that there exists a schedule of
length O

(
(cdmax +D) lg(dmax)

lg lg(dmax)

)
with queues of size O (dmax). This result also applies to the

restricted form of job-shop scheduling with the additional restriction that no job has more
than one operation on a single machine.

2 On-Line Algorithm

Our basic approach to produce a schedule on-line is, as in [2, 4], to first produce an “uncon-
strained” schedule in which several packets may travel on the same edge at the same time and
then “flatten” it into a legitimate schedule. We begin by showing how to produce a schedule
of length O

(
(C +D) lg(Nd)

lg lg(Nd)

)
with queues of size O

(
lg(Nd)

lg lg(Nd)

)
when dmax is bounded above

by a polynomial in N and d; later we refine the result to obtain, for any constant ε > 0,
a schedule of length O ((C lgε(Nd) +D lg(Nd))/ lg lg(Nd)) with queues of size O

(
lg(Nd)

lg lg(Nd)

)
and no restriction on dmax.

For our initial result, the method for constructing the unconstrained schedule and the
analysis of this phase are essentially the same as in the approach of Shmoys, Stein, and Wein.
Each packet chooses an integral delay randomly and uniformly from the interval [1, C]. A
packet that is assigned delay x waits in its initial queue for x time steps and then proceeds to
its destination without stopping. Though this may cause more than one packet to traverse
a single edge at the same time, it is unlikely that too many will do so:

Lemma 1 (Shmoys, et. al.) When dmax is bounded above by a polynomial in N and d,
the strategy of delaying each packet in its initial queue an integral amount chosen randomly
and uniformly from [1, C] yields an unconstrained schedule that is of length at most C + D

and, with high probability, has no more than O
(

lg(Nd)
lg lg(Nd)

)
packets traversing any edge at any

time.

Proof. We begin by considering the probability p that more than τ packets are present on
a particular edge e during a particular time step t. Though packets may spend many time
steps traversing e, there are at most C total time units of routing on edge e. Thus, there
are at most

(
C
τ

)
ways to choose τ units of packet routing to occur on edge e at time t. The

probability that an individual one of these τ units is scheduled on edge e at time t is at most
1/C since each packet chose a delay uniformly at random from C possibilities. If these τ
units of routing are all from different packets, the probability that they all occur on edge

e at time t is at most
(

1
C

)τ
, since packet delays are chosen independently; otherwise the

probability is 0. Thus, we have

p ≤
(
C

τ

)(
1

C

)τ

≤
(
eC

τ

)τ (1

C

)τ
=

(
e

τ

)τ
,

where the bound on
(
C
τ

)
can be obtained by using Stirling’s approximation to the factorial.

For sufficiently large Nd, if τ = k lg(Nd)
lg lg(Nd)

, then, p ≤ (Nd)−(k−1). To bound the probability

that there exists any edge and time with more than k lg(Nd)
lg lg(Nd)

packets, we multiply p by the
Nd bound on the number of edges used by some packet and by the C + D time steps in
the unconstrained schedule. The latter factor is also polynomial in N and d, since we have
assumed dmax is. Thus, choosing k large enough yields the desired result.

We must now explain how to flatten the unconstrained schedule into a legitimate schedule.
The flattening procedure is trivial when each wire delay is just one unit of time. In that
case, an unconstrained schedule S of length L with at most γ packets on an edge at one
time can be flattened to a legitimate schedule of length γL by replacing each unit of S’s
time with γ units of time in which the packets on any given edge are routed in turn. In the
more general context of nonunit wire delay, Shmoys, Stein, and Wein show how to flatten
into a schedule of length γL lg dmax, but we show that a flattened schedule of length γL can
be obtained by taking advantage of a distinction between packet routing and the general
form of job-shop scheduling considered in [4]. In particular, any two packets that traverse
the same edge spend the same amount of time in transit on that edge. We further show that
we can flatten schedules produced as in Lemma 1 on-line, whereas Shmoys, Stein, and Wein
consider only an off-line context.

Lemma 2 Consider any unconstrained schedule of length L with at most γ packets on an
edge during any time step. The unconstrained schedule can be simulated by γL steps of
a legitimate schedule, and the simulation can be performed on-line if all the delays in the
unconstrained schedule are in the initial queues.

Proof. The flattening process involves routing the packets on each edge e in order of their
start times for traversing e in the unconstrained schedule (with ties broken arbitrarily). Each
packet is routed as soon as possible in the legitimate schedule (given the constraint of one
packet per edge at any time), except that a packet that begins traversing edge e at time
t in the unconstrained schedule does not do so before time γt in the legitimate schedule.
(Figure 1 shows an example of an unconstrained schedule and its flattened version.)

The process just described can be accomplished on-line by having each packet carry a field
that holds the time that the packet begins traversing the upcoming edge in the unconstrained
schedule. Initially, each packet holds the delay assigned in its source processor. Each time
a packet is dispatched on an edge, it adds in the delay of that edge. Thus, each network
node can decide when to dispatch packets on its outgoing edges by inspecting the packets
and associated information queued at its incoming edges.

It remains to be shown that all packets are routed by time γL. Let us refer to the routing
of a particular packet on a particular edge as an operation. Also, let tωUB and tωUE represent
the begin and end times for operation ω in the unconstrained schedule, and let tωLB and
tωLE represent the times in the legitimate schedule. Our flattening process, clearly enforces
tωLB ≥ γtωUB, and we now show that tωLE ≤ γtωUE.

1

3

2e1

4

6

5e2

5 7

6

2 8

9

e3

e3

e4

e2

e1 1 3 2

4 5 6

5 2 6 7 8 9

3 7 6 8 12 2 9 5 10 11 1314

3

6

7

2

8 9

10

11

12 5 13

e4

14
-

.. .

-

0 γ 2γ 3γ 4γ 5γ

time

time

(a) (b)
0 L

Figure 1: An example of the flattening process for four edges, e1, e2, e3, and e4. (a) The
initial unconstrained schedule of L = 7 and γ = 3. (b) The flattened version of the schedule
in (a).

We proceed by induction on time. Under the assumption that tωLE ≤ γtωUE whenever
tωUE ≤ t, we can show that the same is true whenever tωUE ≤ t + 1. (The base case with
t = 0 is trivial.) Consider any operation ω with tωUE = t + 1, and denote the packet and
edge involved as m and e, respectively. (If there is no such operation, we are done.) Since
tωUB ≤ t, we know from the induction hypothesis that any operation ω′ for a packet m′

on edge e with tω
′

UB ≤ tωUB has the property that all other operations for m′ on edges that
precede e in the path of m′ complete by time γtω

′
UB in the legitimate schedule. This implies

that there exists such an operation ω′ with tω
′

LB = γtω
′

UB; we let ω∗ be the one maximizing tω
∗

LB.
By the definition of ω∗, the legitimate schedule places some packet on edge e at every time
step from tω

∗
LB to tωLE. All of these packets begin at times in [tω

∗
UB, t

ω
UB] in the unconstrained

schedule and therefore end by time tωUE (since all traversals of edge e take time de). Thus
the completion time of ω in the legitimate schedule is

tωLE ≤ tω
∗

LB + γ(tωUE − tω
∗

UB)

= γtω
∗

UB + γ(tωUE − tω
∗

UB)

= γtωUE .

By putting together Lemmas 1 and 2, we obtain the following result:

Theorem 3 When dmax is bounded above by a polynomial in N and d, any set of packets
can be routed on-line in O

(
(C +D) lg(Nd)

lg lg(Nd)

)
steps using queues of size O

(
lg(Nd)

lg lg(Nd)

)
, with high

probability.

We can remove the restriction on dmax by using a technique similar to [4], but again we
must show how to perform the task on-line:

Theorem 4 Any set of packets can be routed on-line in O
(
(C +D) lg(Nd)

lg lg(Nd)

)
steps using

queues of size O
(

lg(Nd)
lg lg(Nd)

)
, with high probability.

Proof. We can begin by thinking of each di as being rounded down to the nearest multiple of
dmax

Nd
, denoted d′i. In the resultant network, N ′, edges have at most Nd distinct lengths which

are multiples of dmax

Nd
. By working with a routing clock period of dmax

Nd
, we can use Lemma 1

to produce the unconstrained schedule we used above, since C and D are polynomial in N
and d when expressed in units of dmax

Nd
. The only problem is that in the real network N ,

each d′i must be adjusted upward to di. But each adjustment is at most dmax

Nd
, which we can

handle by simply doubling the clock period to 2dmax

Nd
, i.e., giving packets twice as much time

at each step to travel or wait on the same edge as before. This adjustment does not change
the number of packets using any edge during any time step, so we can proceed with the
flattening process just as before.

We can also improve the schedule length by tightening the analysis in Lemma 1:

Theorem 5 With high probability, on-line routing of any set of packets can be achieved in
O
(
1
ε
(C lgε(Nd) +D lg(Nd))/ lg lg(Nd)

)
steps using queues of size O

(
lg(Nd)

lg lg(Nd)

)
.

Proof. We modify Lemma 1 to produce an unconstrained schedule of length D+ αC (for α
to be determined) by choosing delays from [1, αC]. Once τ is determined, the final flattened

schedule will be of length (D + αC)τ . In Lemma 1, the upper bound on p becomes
(
e
ατ

)τ
.

Then for α = (lg(Nd))ε−1 (with ε > 0) and τ = k
ε

lg(Nd)
lg lg(Nd)

, we obtain p ≤ (Nd)−(k−1) for
sufficiently large Nd.

It should be noted that the constant k in the proof of Theorem 5 is of modest size,
so we certainly obtain a practical algorithm for ε = 1, the case that leads to Theorem 4.
Even Theorem 4 specialized to unit edge delay improves upon the on-line result of Leighton,
Maggs, and Rao except when c is somewhat larger than d. But we can also handle this case
by obtaining an on-line algorithm with running time more closely parallel to that of Leighton,
et. al. We could then interleave different routing algorithms to obtain an algorithm with
running time on the order of the minimum of the running times of the individual algorithms.

Theorem 6 Any set of packets can be routed on-line in O (C +D lg(Nd)) steps using queues
of size O (lg(Nd)), with high probability.

Proof. The proof is the same as for Theorem 5 except that we use α = 1/ lg(Nd) and
τ = Ω(lg(Nd)).

3 Off-Line Schedule

In this section, we show that for any set of packets with edge-simple paths, there exists
a schedule of length O

(
(cdmax +D) lg(dmax)

lg lg(dmax)

)
using queues of size O (dmax). Our proof

is nonconstructive, but the result may provide useful information. For a communication
pattern that is to be used often enough, it may be worthwhile to spend substantial off-line
computation time determining a good schedule.

In this section, we make heavy use of the Lovász Local Lemma [5]:

Lemma 7 (Lovász Local Lemma) Let A1, · · · , Am be events each occurring with depen-
dence at most b, i.e., every one of the events is mutually independent of at least m− b other
events. If ∀i Pr {Ai} ≤ p and 4pb < 1, then the probability that none of these events occurs
is greater than zero.

Our strategy to obtain the off-line schedule consists of three stages. In the first stage,
we use an approach similar to Leighton, Maggs, and Rao [2, 3] of making a succession
of refinements to the “greedy” schedule, in which packets never wait. In this succession
of refinements, we bound the congestion in smaller and smaller intervals of time until the
number of packets using an edge is at most O (dmax) during any set of Θ(d2max) consecutive
time steps. In the second stage, we bound the number of packets using an edge during
any unit time step to O

(
lg(dmax)

lg lg(dmax)

)
. In the final stage, we produce a legitimate schedule by

applying the flattening process described in Section 2.

We only sketch the iterative refinement process of the first stage, since it closely parallels
that of Leighton, et. al. First, we review a few definitions. A set of T consecutive time steps
is referred to as a T-frame or a frame of size T . We also define the congestion in a frame
to be the largest number of packets that traverse any edge during the frame. The relative
congestion in a frame is the ratio of the congestion in the frame to the size of the frame.
We begin with a special refinement that transforms the greedy schedule, S0, into a schedule
S1 in which the relative congestion in each (dmax lg c)-frame is O

(
1

dmax

)
. Each successive

refinement transforms a schedule Si with relative congestion at most ri in any frame of size
(at least) dmaxIi (with Ii = Ω(dmax)) into a schedule Si+1 with relative congestion at most
ri+1 in any frame of size (at least) dmaxIi+1, where ri+1 ≈ ri and Ii+1 � Ii.

For the initial refinement that produces S1 from the greedy schedule of length |S0| = D,
we assign each packet an integral delay x chosen randomly and uniformly from the interval
[1, αcdmax]. The resultant schedule is of length αcdmax + D. Without loss of generality, we
assume that cdmax = D, so |S1| = (1 + α)cdmax. We can also assume that c = Ω(dmax);
otherwise we skip this stage and apply Lemma 9 directly to the greedy schedule.

We claim that there is some way of choosing x’s so that for I1 = lg c, the relative
congestion is O

(
1

dmax

)
in any frame of size (at least) I1dmax in S1. We prove this claim

by using the Lovász Local Lemma. For each edge e, we define a bad event as the event
that more than lg c packets use e during any (dmax lg c)-frame. For any packet, there are at
most de ≤ dmax delays that cause it to be present on e at a particular time step. Thus, the
probability that it appears on e during a particular (dmax lg c)-frame is at most dmax lg c+dmax

αcdmax
.

So, the probability that any bad event occurs is

p ≤ (1 + α)cdmax

(
c

lg c

)(
2dmax lg c

αcdmax

)lg c

,

since the number of (dmax lg c)-frames is certainly at most (1 + α)cdmax. Also, at most c
packets pass through an edge, and each of these packets passes through at most d ≤ D
other edges. Therefore, since we were able to assume cdmax = D and c = Ω(dmax), we have
a dependence b of at most cD = O (c3). Thus, for a sufficiently large constant α, we have
4pb < 1, from which the claim follows for frames of size exactly I1dmax. The proof is easily
extended to apply to all frames of size at least I1dmax, and we henceforth do not make this
distinction.

We now sketch the remainder of the refinement process. The first step in the ith refine-
ment is to break Si into blocks of (2I3i + 2I2i − Ii)dmax consecutive time steps and reschedule
each block independently.

Within each block, we assign each packet an integral delay x chosen randomly and uni-
formly from [1, Iidmax]. A packet assigned delay x is actually delayed once every Ii steps
in the first xIi steps. In order to make the packets end up in the same positions at the
end of the rescheduled block as in the block of Si (so that the blocks remain independent),
we also insert a delay every Ii steps in the last (Iidmax − x)Ii steps. Since we are allowing
nonunit edge delays, some of the delays we have inserted may occur in the midst of an edge
traversal rather than at a queue, but we will show how to move the delays to queues later.
If 2I3i + 2I2i − Ii < Ii−1, which holds as long as Ii is larger than some constant, a packet has
been delayed at most once in the entire block before we insert new delays. If any new delay
would be within Ii steps of the single old delay, it is not inserted. Omitting these delays has
a negligible effect on the probability analysis, but it allows us to maintain the invariant that
every packet waits at most once every Ii steps in Si+1.

It can be shown that there is some way of choosing the delays so that in between the first
and last I2i dmax steps of a block, we can decrease the frame size from Iidmax to (lg2 Ii)dmax
without increasing the relative congestion much. Furthermore, we can keep the relative
congestion from increasing much in the first and last I2i dmax steps by increasing the frame
size in these regions from Iidmax to I2i dmax. Now, we move the block boundaries so that the
regions with the larger frame size form a “fuzzy region” at the center of each new block.
Finally, we decrease the frame size in the fuzzy regions with little increase in the frame size
elsewhere through another round of assigning random delays to packets. This time packets
choose integral delays randomly and uniformly from [1, I2i dmax]. A packet with delay x waits
once every (I3i dmax/x) steps in the first I3i dmax steps (i.e., before the fuzzy region) and once
every I3i dmax/(I

2
i dmax − x) steps in the last I3i dmax steps (after the fuzzy region).

Lemma 8 summarizes the result of this refinement procedure:

Lemma 8 As long as Ii = Ω(dmax), the ith refinement step described above decreases the
frame size from Iidmax to Ii+1dmax = (lg4 Ii)dmax for the entire schedule, while the relative
congestion becomes ri+1 = ri(1 +O (1) /

√
lg Ii).

Proof. This lemma can be proved in a similar fashion to [2, 3].

We perform refinement steps until we obtain a schedule Sj with Ij = O (dmax). In Sj, the
congestion in frames of size O (Ijdmax) = O (d2max) is O (Ij) = O (dmax). At this point, we
move delays that fall in the midst of an edge traversal to the edge queue for the corresponding
edge, which has no effect on the congestion in any frame and does not require queues larger
than O(dmax). Since every packet waits at most once every Ij−1 = Ω(dmax) steps in Sj, we
end up with each packet waiting at most once in each edge queue. Thus, we have obtained
a schedule S∗ of length O (cdmax) and congestion O (dmax) in each O (d2max)-frame.

Now we proceed to the second stage of our off-line construction, which we apply to frames
of size Θ(d2max) that have congestion O (dmax). (Recall that the refinement stage actually
bounds the relative congestion in all frames of size at least T for some T that is O (d2max).)
The required result for the second stage is embodied in the following lemma:

Lemma 9 Suppose we have a schedule SU with congestion k = O (dmax) and |SU | = O (kdmax).

Then, there is a schedule, of length O (kdmax), in which at most O
(

lg(dmax)
lg lg(dmax)

)
packets use

an edge during any unit time step.

Proof. Each packet chooses a delay x randomly and uniformly from [1, αkdmax], where α is
a constant to be determined. The resultant schedule is of length αkdmax+ |SU | = O (kdmax).

We claim that for η = Ω(lg(dmax)
lg lg(dmax)

), there is a way of choosing x’s such that at most
η packets use an edge during any unit time step. Again we use the Lovász Local Lemma.
For each edge, the bad event of more than η packets using the edge at some time step

occurs with probability p at most O (kdmax)
(
k
η

) (
dmax

αkdmax

)η
. The dependence b is at most

k |SU | ≤ O (d3max). Thus, for a α ≥ e and η = Ω(lg(dmax)
lg lg(dmax)

), we have 4pb < 1, from which the
claim follows.

To complete the second stage we use Lemma 9 to independently reschedule frames of
size Θ(d2max) with congestion O (dmax) in S∗. (We are able to make the frames independent
by extending each one by dmax time steps so that each operation of routing a packet on an
edge occurs entirely within one frame.) We end up with a schedule of length O (cdmax) with

at most O
(

lg(dmax)
lg lg(dmax)

)
packets on an edge at any time step and queues that still have size

O(dmax).

Finally, for the third stage of the off-line construction, we simply apply Lemma 2, and
we have proved the following theorem:

Theorem 10 For any set of packets with edge-simple paths, there exists a legitimate schedule
of length O

(
(cdmax +D) lg(dmax)

lg lg(dmax)

)
using queues of size O (dmax).

References

[1] F. T. Leighton, Bruce M. Maggs, Abhiram G. Ranade, and Satish B. Rao. Randomized
routing and sorting on fixed-connection networks. Manuscript, 1991.

[2] F. T. Leighton, Bruce M. Maggs, and Satish B. Rao. Packet routing and job-shop
scheduling in O(congestion + dilation) steps. Manuscript, 1991.

[3] Tom Leighton, Bruce Maggs, and Satish Rao. Universal packet routing algorithms. In
Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pages
256–269. IEEE Computer Society Press, 1988.

[4] David B. Shmoys, Clifford Stein, and Joel Wein. Improved approximation algorithms
for shop scheduling problems. In Proceedings of the 2nd Annual SIAM Symposium on
Discrete Algorithms, pages 148–157, 1991.

[5] Joel Spencer. Ten Lectures on the Probabilistic Method. SIAM, 1987.

	Packet Routing in Networks with Long Wires
	Author Manuscript
	Recommended Citation

	tmp.1504125787.pdf._d5B6

