uuuuuuuuuuuuuuuuu

Loyola eCommons
Computer Science: Faculty Publications and Faculty Publications and Other Works by
Other Works Department
12-1993

Parallel Algorithms for Single-Layer Channel Routing

Ronald I. Greenberg
Rgreen@luc.edu

Shih-Chuan Hung

Jau-Der Shih

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

b Part of the Theory and Algorithms Commons, and the VLSI and Circuits, Embedded and Hardware
Systems Commons

Recommended Citation

Ronald I. Greenberg, Shih-Chuan Hung, and Jau-Der Shih. Parallel algorithms for single-layer channel
routing. In Algorithms and Computation: 4th International Symposium, ISAAC '93 Proceedings, volume
762 of Lecture Notes in Computer Science, pages 456--465. Springer-Verlag, 1993.

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@Iluc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Loyola University Chicago

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

ﬁr‘oceelinjs of TSAAC 1"‘3) f(f. L/.S—é‘ ?65‘

Parallel Algorithms for Single-Layer Channel
Routing*

Ronald I. Greenberg, Shih-Chuan Hung, and Jau-Der Shih

Electrical Engineering Department
University of Maryland
College Park, MD 20742

Abstract. We provide efficient parallel algorithms for the minimum sep-
aration, offset range, and optimal offset problems for single-layer chan-
nel routing. We consider all the variations of these problems that have
linear-time sequential solutions rather than limiting attention to the
“river-routing” context, where single-sided connections are disallowed.
For the minimum separation problem, we obtain O(lg N) time on a
CREW PRAM or O(z&%;) time on a CRCW PRAM, both with op-
timal work (processor-time product) of O(N), where N is the number
of terminals. For the offset range problem, we obtain the same time and
processor bounds as long as only one side of the channel contains single-
sided nets. For the optimal offset problem with single-sided nets on one
side of the channel, we obtain time O(lg Nlglg N) on a CREW PRAM
or O(lg N) time on a CRCW PRAM with O(N Iglg N) work. Not only
does this improve on previous results for river routing, but we can obtain
an even better time of O((Iglg N)?) on the CRCW PRAM in the river

routing context.

"1 Introduction

Much attention has been given to single-layer routing for VLSI. Most popular has
been river routing [6], the connection of two (horizontal) rows of corresponding
terminals using the channel region between the rows of terminals; see also [16]
and the references therein. More general arrangements of modules and nets have
been considered for testing routability of terminals in fixed positions, but it is
also desirable to answer more sophisticated questions. For example, the minimum
separation problem involves finding the minimum vertical separation between
two rows of terminals that is required for routability (given that the horizontal
positions of the terminals are completely fixed). In other problems, we are allowed
to offset the upper row of terminals as a block to the left or the right, though the
individual terminals do not shift position relative to one another. In particular,
the optimal offset problem involves finding the offset that minimizes the amount
of separation necessary to route the channel. The offset range problem involves
finding all offsets that give enough room to route at a given separation.

* Supported in part by NSF grant CCR-9109550.

We consider these problems in all contexts for which linear-time sequential
algorithms are known instead of considering only river routing, where each net
is restricted to have exactly one terminal on each side of the channel. The input
we assume is two arrays of terminals sorted by z-coordinate. The top terminals
(and, in arithmetic contexts, their z-coordinates) are denoted to, ¢, .. s bmet,
and the bottom terminals are denoted bo,b1,...,b,_1. We use N to denote m+n.
Associated with each terminal is a net number. Terminals belonging to the same
net are to be connected together. We also assume that each terminal has a pointer
to the next terminal of the same net in a clockwise ordering of the terminals. (It
may be possible to eliminate this assumption under some circumstances, e.g.,
constant number of terminals per net, allowing randomization, and /or allowing a
modest increase in time or work, by applying results on sorting of small integers
(e.g, [10, 15]).) For simplicity, we use a rectilinear, grid-based model in which
terminals lie on gridpoints and wires are disjoint paths through grid edges. Also,
for convenience, we allow routing on channel boundaries.

We henceforth assume that each net has two terminals. Multiterminal nets
can be handled by a transformation described in [7], that might be considered
“folklore”. Then a single-sided net has its two terminals on the same side of the
channel, whereas a two-sided net is the type of net allowed in river routing.

We also assume henceforth that the channel is routable in one layer, i.e., no
two nets are topologically forced to cross. (This condition can be verified with-
out increasing the running time of our parallel algorithm by doing parentheses
matching [2].)

The results obtained in this paper are summarized in Table 1, where the
river routing model is as described above, the general model includes any single-
layer channel routing problem, and the intermediate model is one in which all
single-sided nets are on one side of the channel.

Table 1. Running time and work (processor-time product) for the algorithms presented
in this paper.

CREW CRCW
problem model time work time work
min. sep. general O(lg N) O(N) [0(g N/1glg N)| O(N)
offset range |intermediate] O(lg N) O(N) |O(gN/lglgN) O(N)
optimal offset|intermediate| O(Ig Nlglg N)[O(Nlglg N) O(lg N) O(Nlglg N)
optimal offset river O(lg Nlglg N)[O(N1glg N)| O((iglg N)?) O(Nlglg N)

Most prior work on single-layer routing has been limited to sequential models
of computation; linear-time sequential algorithms for the problems considered in
this paper can be found in [7], [9], and [16]. For the river routing model only,
parallel algorithms for the problems in this paper are given by Aggarwal and

Park [1]. For optimal offset, their results are O(Ig2 N) time on the CREW and
O(lg N 1glg N) time on the CRCW, both with O(N1g N) work. We obtain su-
perior bounds even for the more general problem labeled as the “intermediate”
model in Table 1. We improve these bounds even further for river routing on
the CRCW by using the offset range results of Aggarwal and Park quoted in
Sect. 3.3. Chang, JaJ4, and Ryu [4], independently obtain the same bounds as
Aggarwal and Park for minimum separation in the river routing model (match-
ing our CREW bounds for the general model and improving the CRCW bounds
of the general model) and also give an optimal (work) algorithm for routability
testing for switchboxes.

The remainder of this paper is organized as follows. In Sect. 2, we explain
the parallel operations used in this paper. We also indicate how to conveniently
express the routability conditions for single-layer channel routing. These condi-
tions are then used in Sect. 3 to solve the minimum separation, offset range and
optimal offset problems. Section 4 gives some concluding remarks.

2 Preliminaries

2.1 Basic Parallel Operations

Given a sequence of N elements {z1, zs, ..., zn} with a binary associative op-
erator *, the prefiz sums are all the partial sums defined by:

Pi=Ti1*Ta*x... %z, 1<i<N

For a given array A(7) with 1 <i < N, the range mazima problem is to find
the element with maximum value between two given positions i and Jj- A query
can be answered in O(1) time after the preprocessing described in [11].

The range maxima preprocessing can be implemented in O(lg N) (respec-
tively O(&%)) time with O(N) work on a CREW (CRCW) PRAM [3]. The
prefix sums computation can be performed with the same time and processor
bounds on the CREW [13], and on the CRCW as long as the input elements are

integers in the interval [1, N] [5].

2.2 Cut Conditions

We need a few definitions in order to use a general theory of single-layer routing
developed by Maley. Define a critical cut to be a line segment that connects a
top and bottom terminal or runs from a terminal straight across to the opposite
side of the channel. Define a pivotal cut to be a line segment that connects a top
and bottom terminal or runs at 45° from a terminal to the opposite side of the
channel. Also let the flow across a cut x be the number of nets that must cross
X, namely those nets having terminals on both sides of ¥ and those having an
endpoint of x as a terminal. The capacity of x is one greater than the maximum

of the horizontal and vertical separations of its endpoints; if y is the line segment
from (zlvyl) to (Zz,yz), then

capacity(x) = maz{|z1 — x|, |y1 — yal}+1.

The cut x is safe if flow(x) < capacity(x), which means that there is enough
space along x for the wires to get through.

Lemmal. A channel is routable if and only if every critical cut or every pivotal
cut s safe. O

This lemma follows from the corresponding results in (14, §2.1,2.3,2.6.5]. (Our
slightly different definitions of flow and capacity allow Maley’s formulation in
terms of cuts emanating from “feature” endpoints to correspond to cuts emanat-
ing from terminals. Since we allow routing on the channel boundaries, the only
“features” are terminals and two routing obstacles (horizontal lines) located one
unit outside of what we have been referring to as the channel boundaries.)

We can further strengthen the result for critical cuts as follows. Define the
span of a cut x to be the horizontal distance between its endpoints. Call y sparse
if x is not vertical and flow(x) < span(x) + 1, and dense otherwise. A sparse
cut is safe regardless of the separation, but a dense cut y is safe if and only if
the separation is at least flow(y) — 1.

Lemma2. The minimum channel separation is the mazimum of flow(x) — 1
over dense critical cuts . O

When all single-sided nets are on the bottom, we can strengthen the result
for pivotal cuts, but first we must review results regarding contours of single-
sided nets. Define the contour of single-sided nets on the bottom to be the
upper boundary of the routing region consumed in the routing of these nets
that minimizes total wire length. That is, when the nets are routed as tightly
as possible against the boundary of the channel, the contour is formed by the
uppermost nets and portions of the channel boundary.

The following Lemma from [4] shows that a contour of single-sided nets can
be found efficiently.

Lemma 3. The bendpoints in the contour of a set of N single-sided nets can
be found in O(IgN) (respectively O(2EN_)) time using O(évﬁ) (respectively

lglg N
O(N—ig—lﬁﬁ)) processors on a CREW (CRCW) PRAM. a

Now, we are ready to state a result of [9] relating to pivotal cuts:

Lemmad4. A channel with all single-sided nets on the bottom is routable if and
only if all 45° cuts from bottom terminals of two-sided nets and all 45° cuts
crossing the contour of single-sided nets at a convexr corner are safe. O

3 The Algorithms

3.1 The Minimum Separation Problem

Our algorithm for this problem is based on Lemma 2. To ensure that vertical cuts
are captured, first add a dummy terminal across from each real terminal. Then
we find the minimum separation that makes all dense (critical) cuts emanating
from bottom terminals safe. To find all dense cuts emanating from b;, we search
for the two farthest dense cuts, one going to the right and one going to the left
from b;; these two cuts form a “cone” such that cuts emanating from b; are
dense if and only if they lie inside the cone.

We now provide some further definitions and notations used in this subsec-
tion. First, we say that a terminal is covered by a single-sided net on its side of
the channel if it lies in the closed interval defined by the endpoints of the net.
Two-sided nets are said to lie to the left or right of a terminal on the top (or
bottom) according to the location of the net’s top (respectively bottom) termi-
nal. Also, a two-sided net is a right net if its top terminal is to the right of its
bottom terminal; it is a left net if its top terminal is to the left of its bottom
terminal. Define R(7) to be the number of right nets to the left of terminal T,
and L(7) to be the number of left nets to the left of 7. Also define S(7) to be
the number of single-sided nets covering 7. Define IL(7) (and IR(7)) to be 1 if
7 is a terminal of a left (respectively right) net, and zero otherwise.

The heart of this algorithm is to form the cone for each terminal b;. According
to the definition, a nonvertical cut ¢;b; is dense if |t; — b;| + 1 < flow(t;b;). We
now show how to find the farthest cuts emanating from each terminal b; on the
bottom that are dense. Note that for any dense cut #;b;, R(t;) < R(b;), and
L(ti) > L(b;). Thus, for dense cuts, flow(:b;) = L(t;)— L(b;) +IL(%;) + R(bj)—
R(t;) + IR(bj) +S(t:) + S(b]) Defining, bl(j) to be b; + L(bj) — R(bj) = S(bj) -
IR(b;) + 1 and tl(7) to be t; + L(t;) — R(t;) + S(t;) 4 IL(t;), we need to find the
smallest #; such that bl(j) < tI(¢); for similar definitions of tr(i) and br(j), we
also find the largest ¢; such that tr(i) < br(j). It can be shown that the four
functions bl, tl, br, and tr are non-decreasing. Now, we can give an algorithm
for forming the cone for each bottom terminal.

procedure FIND-CONES

1. Compute t1(¢), bl(j), tr(¢) and br(j) for 0 <i<m—1land 0<j<n—1.

2. Merge tl() with bl(j) and tr(7) with br(j) in order of nondecreasing values.
If a tie occurs, put br(j) before tr(7) and put bl(j) after ti(3).

3. For each bl(j), find the nearest tl(i) to the right in the merged sequence.
If we do not find such a tl(7) corresponding to a ¢; with lesser z-coordinate
than b;, then the farthest dense cut to the left from b; is vertical. Similarly,
for each br(j), find the nearest tr(i) to the left in the merged sequence, and
select a vertical cut if necessary.

The merging can be done using the approach of Kruskal [12] in O(Iglg N)
time with O(N) work on a CREW PRAM. Also steps 1 and 3 can be imple-
mented by using prefix-sums. Therefore, algorithm FIND-CONES can be imple-
mented with optimal work in O(lg N) (respectively O(éﬁév—N)) time on a CREW
(CRCW) PRAM.

Once we find the cone for each bottom terminal, we can use the information
to find the minimum separation for the single-layer channel routing problem:

procedure MINIMUM-SEPARATION

1. Apply algorithm FIND-CONES to find the farthest dense cuts to form a cone
for every terminal on the bottom.

2. Find the maximum flow F(b;) among the cuts inside the cone for every
terminal b;.

3. The minimum separation is —1 + max{F(b;), F(by),...,F(b,)}.

Theorem 5. Algorithm MINIMUM-SEPARATION finds minimum separation for
single-layer channel routing with O(N) work in time O(lgN) on a CREW PRAM
and in time O(l—églgN—N) on a CRCW PRAM.

Proof. We have already explained how step 1 can be performed within the spec-
ified time and processor bounds, and step 3 simply involves a minimum that can
be computed in the same bounds. To find the maximum flow in each cone in
step 2, we use the range maxima technique. Since, the flow for a dense cut m
is L(t;) — L(bj) + IL(t;) + R(b;) — R(t;) + IR(b;) + S(t:) + S(b;), and the terms
dependent on j are fixed for any given cone, the task is to find the maximum
of tl(¢) — ¢; over each cone. The preprocessing for range maxima and the single
query per b; can also be implemented within the stated bounds. a

3.2 The Offset Range Problem

In this subsection, we consider the offset range problem for single-layer channel
routing with single-sided nets on one side. Without loss of generality, assume
that all single-sided nets are on the bottom. Additional notation used in this
subsection is as follows. Let s be the separation and d the offset (the positive or
negative distance by which the upper block of terminals is moved right from its
original position) . Define 7'(7) to be the number of two-sided nets to the left of
the terminal 7. Also, define IT(7) to be one if 7 belongs to a two-sided net, and
zero otherwise.

According to Lemma 4, we only need to ensure that all 45° cuts from bottom
terminals of two-sided nets and all 45° cuts crossing the contour of single-sided
nets at a convex corner are safe. In this subsection, we achieve that task by
checking all 45° cuts from bottom terminals bo, b1, ..., bp_y. For a cut y em-
anating from b;, the flow contributed by single-sided nets is S(bj); to be safe,

X can accommodate at most s + 1 — S(b;) more flow. For simplicity, we de-
note s + 1 — S(b;) as e;. Then, for the left-going 45° cut from b; to be safe,
we need that b; — s > ¢; + d when the number of two-sided nets crossing
cut E exceeds e;. Finding the i that gives the tightest constraint, we have
bj —s > tr(b,)—e;+1T(b;) + d. A similar argument for the right-going cut yields
bj +s< i7(5;)+e,+1 + d. So the feasible offsets, if any, are given by

Osfjnsarf_l{bj + 85— t7(b,)te;+1} <d < ogljngi,?—l{bj — 8 — U (b;)—e;+1T(3,)} -

The most difficult operation involved in the computation just specified is
finding the S(b;) and T'(b;) values, for which performing prefix sums suffices, so
we have the following theorem:

Theorem 6. The offset range for single-layer channel routing with single-sided
nets on one side can be found with O(N) work in O(Ig N)) (respectively O(82))
il

Iglg N
time on a CREW (CRCW) PRAM.

3.3 The Optimal Offset Problem

This subsection considers the optimal offset problem for river routing and chan-
nels with single-sided nets on one side. In both cases, the optimal offset problem
is solved by using an algorithm for offset range as a subroutine. For channels with
single-sided nets on one side, we use the results of Sect. 3.2 to obtain optimal
offset results better than those of Aggarwal and Park, even though their results
apply only to river routing. For river routing on the CRCW, we further improve
their optimal offset bounds by using their results for offset range, O(Iglg N) time
and O(N) work. (On the CREW, their offset range results offer no improvement
over the results of Sect. 3.2.)

We first explain how to solve the problem for river routing, and then we
extend the algorithm to channels with single-sided nets on one side. For ease of
presentation, we assume the number of nets N is 2P for some integer p.

Our algorithm adapts Mirzaian’s halving technique [16] for relating optimal
offset to offset range. Let T° be the original set of two-sided nets, and define
T* to be the set of even-numbered nets of T*=1 for 1 < k < p. Also define
optsep(A) to be the minimum separation attainable with an optimal offset for
a channel with the set A of nets. (Once optsep(A) is determined, the solution
of the offset range problem can be used to determine the optimal offsets.) The
following lemma adapted from [16]? states the relationship between optsep(T*)
and optsep(T*+1):

Lemma?7. Let s* = optsep(T*) and s*+! = optsep(T*+1), then 0 < st —
gpttle 9 O

? This lemma differs slightly from [16] because we are allowing routing on both bound-
aries of the channel.

From the above lemma, once we know s*+1 then s* can be solved by checking
only three possible separations to achieve the optimal offset. Now, s*~! can
also be solved by checking all the possible separations derived from the three
separations. (Again each possible separation of s* induces 3 possible separations
for s¥~1) By considering the union of these separations, we only have to check
7 possible separations to solve s*~1. Continuing this line of reasoning, we have
the following corollary:

Corollary 8. If s* is known, then s*=' can be solved by checking only 211 — 1
possible separations.

Our algorithm finds the optimal separations s?/2", for 1 <1 < lgp. Each sepa-
ration is determined from previously computed separations by using Corollary 8.
Figure 1 shows the algorithm to solve the optimal offset problem.

procedure OPIMAL-SEPARATION

i for i —lgp to 1 do
2 find T7/?'

3 endfor

4 for : — 1 to lgp do
5 find sP/2'

6 endfor

74 find s°

Fig. 1. This algorithm finds the minimum separation for the optimal offset problem.

Theorem 9. The optimal offset for river routing can be found in O(lgNlglgN)
(respectively O((1glg N)?)) time using O(IgLN) (respectively 0(%)) processors
on a CREW (CRCW) PRAM.

Proof. First we explain the CREW result. Lines 1-3 can be executed in time
O(lg N) time using O(lglN) processors. (To see this, it suffices to consider re-
peated “halving” of the net set, with the time at each stage decreasing geomet-
rically to a constant as the number of nets decreases.) In lines 4-6, each s?/2'
can be found in O(p) = O(IgN) time as follows. First, s?/? has at most 2°/2
possible values because there are only 2?/2 nets in 7%/2. The feasibility of each
separation can be checked in O(p) time using O(%) processors by the offset

range algorithm of Sect. 3.2 or [1]. There is a total of 0(2§) processors, so all
possible separations can be checked at the same time. The minimum separation
among the feasible separations is the optimal separation. Now, suppose sP/2 g
known; then at most 0(2”/2’“) possible values need to be checked for sp/2 ! by
Corollary 8. By a similar argument as before, sP/2""" can be found in O(p) time.
Finally, Line 7 is again an O(p) time computation. The total time, including all
the passes through the loop in lines 4-6, is O(plgp).

On the CRCW, we can do each pass through the loop in lines 1-3 in time
O(lglg N) with O(N/1glg N) processors, and there are O(Iglg N) passes. The
remaining analysis is the same as before except that we use the CRCW result
of Aggarwal and Park [1] for offset range, yielding O(lgp) time to compute each
sP/?" (and s°). a

When there are single-sided nets, we first use Lemma 3 to find the contour of
the single-sided nets. At each column, we define the eztension of the contour to
be the distance that the contour extends into the channel at that column. Let 7°
be the original set of two-sided nets and let L° be the original contour of single-
sided nets. We define 7" as before, and recursively define L¥ to be a contour with
the extensions of L¥~! divided by two (and rounded down to integral values).
(The new problem 7% U L¥ can be viewed as an ordinary problem instance with
at most half as many nets as 7%~ U L*~! by using Lemma 4. The bottom
endpoints of the cuts going through convex corners of the new contour can be
viewed as the new bottom terminals of single-sided nets that are of interest.)
The following lemma from [9] states the relationship between optsep(T* U L*)
and optsep(T*+! U LF+1):

Lemma10. Let s* = optsep(T* U L¥) and s*+! = optsep(T**+1 U L¥+1). Then
s¥ > 255+ _ 1 qnd sF < 25811 42, a

Now we can use the halving technique as before; the only difference is that
we have to check 4 possible separations for s* once s¥*! is known. We follow
a similar analysis as in Theorem 9, but the CRCW details must be altered to
avoid using the result of Aggarwal and Park that only applies to river routing.
Instead, we plug in the offset range results from Sect. 3.2.

Corollary 11. The optimal offset problem for channels with single-sided nets
on one side can be solved in O(lg Nlglg N) (respectively O(lg N)) time using
O(lgLN) (respectively O(N—llg—'ﬁﬁ)) processors on a CREW (CRCW) PRAM. O

4 Conclusion

This paper has provided efficient parallel algorithms for (1) the minimum sep-
aration problem for general single-layer channels and (2) offset problems for
single-layer channels in which only one side of the channel has multiple connec-
tions to a single net. In addition, we have improved previous results for optimal
offset in river routing problems, where each net has exactly one terminal on each
side of the channel. An obvious open question is whether any of the bounds on
time or work can be improved. In particular, the algorithms for optimal offset
use N lglg N work rather than the O(N) work that can be achived sequentially.
An additional open question is whether offset problems can be efficiently solved
in parallel when both sides of the channel contain single-sided nets; for sequential
computation, this problem is considered in [8].

5

Acknowledgements

Thanks to Uzi Vishkin and Joseph J4J4 of the University of Maryland, Omer
Berkman of King’s College, and Yossi Matias of AT&T Bell Labs for helpful
discussions.

References

10.

1L
12.

13.
14.

15.

16.

. Alok Aggarwal and James Park. Notes on searching in multidimensional monotone

arrays. In 29th Annual Symposium on Foundations of Computer Science, pages
497-512. IEEE Computer Society Press, 1988.

O. Berkman, Baruch Schieber, and U. Vishkin. Some doubly logarithmic opti-
mal parallel algorithms based on finding all nearest smaller values. Technical Re-
port UMIACS-TR-88-79, University of Maryland Institute for Advanced Computer
Studies, October 1988. To appear in J. Algorithms.

. O. Berkman and U. Vishkin. Recursive star-tree parallel data-structure. Tech-

nical Report UMIACS-TR-90-40, University of Maryland Institute for Advanced
Computer Studies, March 1990.

Shing-Chong Chang, Joseph J4J4, and Kwan Woo Ryu. Optimal parallel algo-
rithms for one-layer routing. Technical Report UMIACS-TR-89-46, University of
Maryland Institute for Advanced Computer Studies, April 1989.

R. Cole and U. Vishkin. Faster optimal prefix sums and list ranking. Information
and Control, 81:334-352, 1989.

. Danny Dolev, Kevin Karplus, Alan Siegel, Alex Strong, and Jeffrey D. Ullman. Op-

timal algorithms for structural assembly. VLSI Design, pages 38-43, 1982. Earlier
version in Proceedings of the 13th ACM Symposium on Theory of Computing.

. Ronald 1. Greenberg and F. Miller Maley. Minimum separation for single-layer

channel routing. Information Processing Letters, 43(4):201-205, September 1992.
Ronald I. Greenberg and Jau-Der Shih. Feasible offset and optimal offset for single-
layer channel routing. In Proceedings of 2nd Annual Israel Symposium on Theory
of Computing and Systems, pages 193-201. IEEE Computer Society Press, June
1993. Revised version submitted to SIAM Journal on Discrete Mathematics.

. Ronald I. Greenberg and Jau-Der Shih. Single-layer channel routing and placement

with single-sided nets. Submitted to Discrete Applied Mathematics, 1993.

Torben Hagerup. Constant-time parallel integer sorting. In Proceedings of the 23rd
ACM Symposium on Theory of Computing, pages 299-306. ACM Press, 1991.
Joseph JaJa. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

D. Kruskal. Searching, merging and sorting in parallel computation. IEEE Trans.
Computers, C-32(10):942-946, October 1983.

R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the ACM,
27(4):831-838, October 1980.

F. Miller Maley. Single-Layer Wire Routing and Compaction. MIT Press, 1990.
Yossi Matias and Uzi Vishkin. Converting high probability into nearly-constant
time — with applications to parallel hashing. In Proceedings of the 23rd ACM
Symposium on Theory of Computing, pages 307-316. ACM Press, 1991.

Andranik Mirzaian. River routing in VLSI. Journal of Computer and System
Sciences, 34:43-54, 1987.

This article was processed using the IATEX macro package with LLNCS style

	Parallel Algorithms for Single-Layer Channel Routing
	Recommended Citation

	tmp.1504128543.pdf.qLzHu

