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Abstract

A performance model for wormhole routed intercon-
nection networks is presented and applied to the but-
terfly fat-tree network. Experimental results agree very
closely over a wide range of load rate. Novel aspects of
the model, leading to accurate and simple performance
predictions, include (1) use of multiple-server queues,
and (2) a general method of correcting queuing results
based on Poisson arrivals to apply to wormhole rout-
ing. These ideas can also be applied to other networks.

keywords: interconnection network, wormhole
routing, latency, throughput, butterfly fat-tree

1 Introduction
Many recent multicomputers have adopted worm-

hole [3] routing techniques to reduce the communica-
tion latency for fine-grained parallel programs. Several
performance models have been presented for wormhole
routing. Dally [2] focused on k-ary n-cube networks,
and the other works have been primarily geared to-
wards improving accuracy or simplicity of some as-
pects of the prior models. In particular, Draper and
Ghosh [4] present a simple model that is particularly
accurate for binary hypercubes. The common feature
of these models is the use of results from queuing the-
ory in an iterative fashion working backwards from
message destination to message source.

None of the prior works, however, lead directly to
a suitable model for the network of particular interest
in this paper, the butterfly fat-tree. Fat-trees consti-
tute an interesting class of networks due to their area-
universality properties (e.g., [5, 6, 9]) and their influ-
ence on the design of actual parallel computers [1, 10].

There are several ways that modeling the butter-
fly fat-tree differs from modeling k-ary n-cubes. First,
the butterfly fat-tree is not node-symmetric, so it does
not suffice to analyze the traffic situation at a single
node. Still, the butterfly fat-tree has a very regular

structure, and deadlock never results when messages
are routed over shortest paths. Deadlock avoidance
schemes for k-ary n-cubes produce some complication
in the sense that they create asymmetry among differ-
ent links in the network, but they actually lead to a
major simplification by fixing a specific path for any
message with a given source and destination. In the
butterfly fat-tree, messages often have a choice among
two outgoing links from a node, necessitating the use
of multiple-server queuing models.

In this paper, we first present an improved general
model for analyzing wormhole routed networks in Sec-
tion 2. In Section 3, we apply the model to the butter-
fly fat-tree network and compare to simulation results.
Concluding remarks are included in Section 4.

2 A Wormhole Routing Model
This section presents a general approach to analyz-

ing the performance of wormhole routed interconnec-
tion networks. The measures we seek to compute are
average latency and throughput.

The model presented in this section is based on the
following assumptions, common to other analyses: (1)
Arrivals at each source node are Poissonian, and des-
tinations are uniformly random. (2) Worms have a
fixed length longer than the diameter of the network.
(3) Contentions at incoming links to a node are re-
solved according to First-Come First-Served (FCFS)
scheduling. (4) Messages arriving at destinations are
immediately consumed at the rate of one flit per time
step, i.e., no blocking is encountered at destinations.

2.1 Average Latency

An interconnection network consists of processing
elements (PE) and routing elements (RE). In direct
networks(e.g., k-ary n cubes) a node consists of both
a PE and an RE. In indirect networks (e.g., tree-based
networks where processors are placed at leaves) pro-
cessing elements and routing elements are separate
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Figure 1: A general routing model. A network consists
of processing elements (PE) and routing elements (RE). A
PE is attached to an RE through an injecting channel and
an ejecting channel.

nodes. Figure 1 shows a general routing model that
can be used to represent both direct and indirect net-
works. a PE is always attached to an RE through
an injecting channel and an ejecting channel. An RE,
however, may or may not have a PE attached to it.

When a message is generated at a processing node
j, it encounters the following latencies: 1) A wait-
ing time Winj,j for the injecting channel. This waiting
time doesn’t depend on the routing scheme (store-and-
forward or wormhole), and can be determined as long
as the behavior of message arrival rates and the ser-
vice time for the injecting channel are known. Un-
der the Poisson arrival assumption the waiting time
can be resolved using the M/G/1 model. 2) A ser-
vice time xinj,j at the injecting channel. This is the
time from the moment the first flit of the message is
accepted by the injecting channel to the moment the
last flit of the message has left the injecting channel.
In wormhole routing, the flits of a message spread over
many links on the message’s path. When the head flit
is blocked, the other flits of the worm are blocked in
place. Under the long-worm assumption, the service
time at the injecting channel includes the waiting times
due to blocking at all subsequent channels. 3) An ad-
ditional time to traverse the rest of the channels on
the message’s path. Under the assumptions that the
length of the worm is longer than the diameter of the
network and that there is no blocking at the destina-
tion, when the tail of the message has left the injecting
channel, the head of the message must have arrived at
the destination; the rest of the message will be received
one flit per clock step. Therefore, it will take another
D− 1 clock steps for the entire message to be received
at the destination, where D is the length of the path.

From the above analysis we can write the the la-

tency Lj for the message injected at node j as

Lj = Winj,j + xinj,j +D − 1 . (1)

Averaging over all processing nodes (and the proba-
bility distribution of message generation), the average
latency L for the entire network is then

L =
1

N

∑
j

Lj =
1

N

∑
j

(
W inj,j + xinj,j

)
+D−1 , (2)

where N if the number of processing nodes in the net-
work and D is the average message distance.

The service time at the injecting channel xinj,j de-
pends on the service time of the subsequent channels.
More precisely, the service time of a channel is the sum
of the waiting time and the service time encountered at
the channel immediately following it. Service times are
resolved in the reverse order of the channels traversed,
from the last channel (ejecting channel) backwards to
the injecting channel.

2.2 Waiting Times and Service Times
At any RE, messages from an incoming channel i

may be routed to outgoing channels denoted by j = 0,
1, etc. The service time for the incoming channel de-
pends on the service times and waiting times at all pos-
sible outgoing channels. Denote the probability that
a message from incoming channel i is routed to out-
going channel j by Ri|j , the service time for incoming
channel i can then be expressed as

xin
i =

∑
j

(xj + wi|j) ·Ri|j , (3)

where xj is the service time for the outgoing channel j
and wi|j is the waiting time for outgoing channel j of
messages from incoming channel i. The above equa-
tion states that the service time at a channel depends
on the service time of the subsequent channel and the
waiting time for the subsequent channel.

The mean waiting times wi|j is caused by contention
for the outgoing channel j. When a message is blocked,
it must wait for the message that is holding the out-
going channel to be fully serviced. (A worm in service
can not be preempted since only the head flit contains
routing information.) This motivates us to take ad-
vantage of well-known queuing models that have been
employed to analyze store-and-forward routing.

When an outgoing channel is treated as single
server, results from the M/G/1 model [8] can be used:

WM/G/1 =
ρx(1 + C2

b )

2(1− ρ)
, (4)

where ρ = λx is the server utilization, λ is the rate of
message arrivals destined for the outgoing channel, x



is the mean service time, and C2
b =

σ2
b

x2 , where σ2
b is

the variance of service time distribution. In light of
arguments of Draper and Ghosh [4, p. 206], we adopt
the following approximation:

C2
b =

(x− s/f)2

x2 , (5)

where s and f are the length of the message and the
flit width respectively, so that s/f is the length of the
message in flits.

Substituting for ρ and C2
b in Equation 4, we have

WM/G/1 =
λx2

2(1− λx)
·
[
1 +

(x− s/f)2

x2

]
. (6)

In certain situations, multiple outgoing links from
a switch must be treated as one multi-server channel.
This is usually due to the existence of redundant paths
to increase bandwidth. Multiple-server systems with
general service time distributions (M/G/m queues) are
more complicated than M/G/1 queues, but we make
use of an approximation of Hokstad [7] that leads to:

WM/G/2 =
λ2x3

2(4− λ2x2)
(1 + C2

b ) . (7)

We again use Equation 5 to approximate C2
b , yielding:

WM/G/2 =
λ2x3

2(4− λ2x2)
·
[
1 +

(x− s/f)2

x2

]
. (8)

But the M/G/m model assumes independent ar-
rivals at the inputs of a switch, all of which may block
one another, which is not accurate for wormhole rout-
ing. Once an input link is occupied by a worm, there
can be no more arrivals on that link until the first
worm is fully serviced. Thus, once a worm arrives on
a link, it only needs to wait for worms from other in-
coming links. Therefore, to use the M/G/m waiting
time result, we multiply by a blocking probability Pi|j :

wi|j = Pi|jWj , (9)

where Pi|j should reflect the probability that m mes-
sages deemed to be in service by the M/G/m model
actually emanate from m distinct incoming links other
than link i. A simple approximation is

Pi|j = 1−m
λin
i

λj
Ri|j , (10)

where λin
i is the total message rate on incoming chan-

nel i, λj is the total message rate on outgoing channel
j, and the number of servers, m, is less than the num-
ber of incoming links. When m = 1, the expression is

exact, i.e., Pi|j is 1 minus the probability that an ar-
bitrary message destined for output j is from input i.
For larger m, we approximately account for the prob-
ability that any of the servers holds a message from
input i; if all the arrival rates on incoming links are
modest relative to the rate on outgoing channel j, the
probabilities of multiple arrivals from the same input
in the M/G/mmodel are small enough to safely ignore.

By combining Equations 3, 9 and 10 we obtain the
service time for messages on incoming channel i:

xin
i =

∑
j

[
xj + (1−m

λin
i

λj
Ri|j)Wj

]
Ri|j . (11)

Equation 11 is used together with Equations 6 and 8
to iteratively resolve the service times for all channels.
Average latency is then determined from Equation 2.

2.3 Throughput
Throughput is another important metric of network

performance. Through the above analysis, waiting
times at each link on a route can be obtained, from
which we can determine the service time at the source.
To find the throughput, the source service time is set
equal to the reciprocal of the source arrival rate [2]. At
this operating point messages are being offered as fast
as the network can deliver them; the network saturates
and can accept no more traffic.

3 Analysis of Butterfly Fat-trees
Section 2 presented a general performance model for

wormhole routed networks. We now apply the general
model to the butterfly fat-tree. We start with a brief
description of the network. We then determine the
message rates, service time and waiting time to each
channel. Latency and throughput are then resolved
and compared with results from empirical simulations.

3.1 The Butterfly Fat-Tree
We use the butterfly fat-tree with N processors as

shown in Figure 2. Each node is labeled by a pair of
indices (l, a), where l represents the level of the node in
the network and a represents the address of the node in
that level. The level of a node is its distance from the
leaves. At the lowest level (l = 0) are the N proces-
sors with addresses 0 to N−1. Each switch S(l, a) has
six ports: parent0, parent1, child0, child1, child2 and
child3. The processors are connected to N/4 switches
at the 1st level such that processor P (0, a) is con-
nected to the childa mod 4 of switch S(1, ⌊a/4⌋). At
the l-th level (for l = 1 to log4 N) there are N/2l+1

switches. The connections of a switch are determined
by the switch’s address as follows: parent0 of S(l, a) is
connected to childi of S(l + 1, ⌊ a

2l+1 ⌋ · 2l + a mod 2l),
and parent1 of S(l, a) is connected to childi of S(l +

1, ⌊ a
2l+1 ⌋·2l+(a+2l−1) mod 2l), where i = ⌊a mod 2l+1

2l−1 ⌋.



Figure 2: Butterfly Fat-Tree With 64 Processors

There is more than one shortest path between a
pair of leaves in the butterfly fat-tree. More precisely,
a message can take any of the two up links from a
switch, if the destination is not in the subtree rooted at
the switch. (There is no redundancy for down links.)
When a worm needs to go up, it selects an up-link
randomly, if that link is blocked, it tries the other,
and if both are blocked, it waits.

3.2 Message Arrival Rates
To obtain the message arrival rates to each link, we

assume the mean departure rate of a node is equal to
the mean arrival rate provided that the network is not
saturated [4]. Note that in a butterfly fat-tree, links
that are at the same level and run in the same direction
(up or down) are symmetrical, hence there is no need
to distinguish among them. We can label the links and
their arrival rates by a pair of indices ⟨i, j⟩ where i is
the starting level of the link and j is the ending level of
the link in the network, 0 ≤ i, j ≤ n with n = log4 N .

Assume each processor injects messages into the
network at a rate of λ0. Under steady state condi-
tions, we have λ0,1 = λ1,0 = λ0 for links between the
processors (l = 0) and the first level switches (l = 1).

Now consider links between switches between level
l and l + 1 (1 ≤ l < n). Since there are N = 4n

processors in the system, a message may have 4n − 1
destinations, of which 4l − 1 can be reached without
going up from level l. Then, the probability that a
message goes up from level l, denoted P ↑

l , is

P ↑
l =

4n − 4l

4n − 1
, (12)

and the probability that a message goes down is

P ↓
l = 1− P ↑

l . (13)

P ↓
l is used later when computing service times.
The total message rates going up from level l to level

l+1 is P ↑
l 4

nλ0. There are
4n

2l
links between level l and

l+1. The message rate to each channel going from level

l to level l + 1 is λl,l+1 = P ↑
l 4

nλ0/(4
n/2l) = λ0P

↑
l 2

l.
The message rate going downward from level l + 1 to
level l equals that going up from level l to level l + 1
due to symmetry. In summary, we have

λl,l+1 = λ0
4n − 4l

4n − 1
2l (14)

λl+1,l = λl,l+1 . (15)

3.3 Waiting and Service Times
Since a message is received by the destination pro-

cessor one flit at a clock as soon as the head flit has
reached the destination, the service time for links from
a level 1 switch to a processor is deterministic, i.e, the
length of a worm:

x1,0 = s/f . (16)

The mean waiting time W 1,0 is determined using
Equation 6, i.e.,

W 1,0 = WM/G/1(λ1,0, x1,0) . (17)

For any other down-going channels from level l + 1
to level l (1 ≤ l < n), there are 4 possible outgoing
channels (the 4 children), each with the same probabil-
ity (1/4). The mean service time xl+1,l is determined
using Equation 11:

xl+1,l = xl,l−1 +

(
1− 1

4

λl+1,l

λl,l−1

)
W l,l−1 . (18)

The mean waiting time W l+1,l is determined using
xl+1,l:

W l+1,l = WM/G/1(λl+1,l, xl+1,l) . (19)

Now consider up-going channels, starting with
channel ⟨n− 1, n⟩. There are only 3 possible outgoing
channels (siblings) after traversing channel ⟨n− 1, n⟩,
each with the same probability (1/3). Therefore

xn−1,n = xn,n−1 +

(
1− λn−1,n

λn,n−1

1

3

)
Wn,n−1

= xn,n−1 +
2

3
Wn,n−1 . (20)

The mean waiting time Wn−1,n is determined using
the two-server model (Equation 8), i.e.,

Wn−1,n = WM/G/2(̂λn−1,n, xn−1,n) . (21) Correction:
Insert: 2

For any other up-going channels from level l− 1 to
level l (1 ≤ l < n − 1), a message may go upward

from level l with probability P ↑
l or go downward with



probability P ↓
l . In the case that the message goes up-

ward, there are two redundant up-going channels that
are treated as one two-server channel. In the case that
the message goes downward, there are three possible
outgoing channels (siblings), each with the same prob-
ability (1/3). Therefore the mean service time is

xl−1,l =

[
xl,l+1 +

(
1− λl−1,l

λl,l+1
P ↑
l

)
W l,l+1

]
P ↑
l

+

[
xl,l−1 +

(
1−

P ↓
l

3

)
W l,l−1

]
P ↓
l .(22)

The mean waiting time W l−1,l is determined using the
two-server model (Equation 8)

W l−1,l = WM/G/2(̂λl−1,l, xl−1,l) , (23)

except for l = 1. Channel ⟨0, 1⟩ is from processor to

Correction:
Insert: 2

first level switch with no redundant channel; therefore,
the single server model should be applied, i.e.,

W 0,1 = WM/G/1(λ0,1, x0,1) , (24)

3.4 Average Latency
Now we can use Equation 2 to compute the aver-

age latency. For the butterfly fat-tree, xinj,j = x0,1

and Winj,j = W0,1. Since all processors are equivalent
due to symmetry, averaging over injecting channels is
unnecessary. Therefore the latency is determined as

L = W 0,1 + x0,1 + (D − 1). (25)

3.5 Throughput
Maximum throughput is computed by setting the

source service time to the reciprocal of the source ar-
rival rate, i.e.,

x0,1 =
1

λ0
. (26)

Source service time x0,1 increases as arrival rate in-
creases, while 1

λ0
is a monotonically decreasing func-

tion of λ0. Graphically, if x0,1 and 1
λ0

are plotted
against arrival rate, the maximum throughput is the
arrival rate at the intersection of the two curves. In
practice we let source arrival rate increase (starting at
a small value) until the above equation is satisfied.

3.6 Experimental Validation
The performance model for the butterfly fat-tree

was validated through comparisons with simulations.
Fixed length messages are used for the simulation. La-
tencies from the model and simulation were compared
for networks with up to 1024 processing nodes. Mes-
sages of 16, 32 and 64 flits in length are studied. Fig-
ure 3 shows the result of the comparisons for average
latencies with 1024 processors. The model produced
accurate predictions on latency and throughput for all
cases under study.
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Figure 3: Comparisons of latency and throughput between
model and simulation for 1024-processor

4 Conclusion
We have presented a general performance model

for wormhole routed networks and applied it to the
fat-tree network. Included in the process was the use
of two-server queuing models, and the framework can
be extended for networks that require queuing models
with more than two servers

Average latency and maximum throughput for the
butterfly fat-tree network were analyzed using the the
model presented and validated through comparison
with simulation results. The model was simple but
produced very accurate predictions of performance.
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