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Abstract

2D-mesh and torus networks have often been proposed
as the interconnection pattern for parallel computers.
In addition, wormhole routing has increasingly been
advocated as a method of reducing latency. Most
analysis of wormhole routed networks, however, has
focused on the torus and the broader class of k-ary n-
cubes to which it belongs. This paper presents a per-
formance model for the wormhole routed mesh, and it
compares the performance of the mesh and torus based
on theoretical and empirical analyses.

keywords: interconnection network, wormhole
routing, latency, throughput, 2D-mesh, torus

1 Introduction

2D-mesh and torus networks have often been proposed
as the interconnection pattern for parallel computers.
For example, the Intel Paragon [2] uses a 2D-mesh ar-
rangement of processors. A recent example of a torus-
based machine, albeit in three dimensions, is the Cray
T3E [3].

In addition, wormhole routing [5] has increas-
ingly been advocated as a method of reducing mes-
sage routing latency. In this model, packets are com-
posed of flits or flow control digits, and packets snake
through the network one flit after another; only a con-
stant number of flits may be stored in an intermediate
node at any time. Most analysis of wormhole routed
networks, however, has focused on the class of k-ary
n-cubes networks (which includes the two-dimensional
torus), e.g., [1, 4, 6, 7, 8].

Figure 1 illustrates the mesh and torus networks
in a 4×4 size. The mesh links are bidirectional. Unidi-
rectional links in the torus suffice for complete reach-
ability and lead to a fairer comparison with the mesh
than would bidirectional links, by giving the two net-
works the same bisection width.

This paper presents a performance model for the
wormhole routed mesh in Section 3 after presenting a

Figure 1: 4× 4 mesh and torus networks.

general framework for wormhole routing in Section 2.
In Section 4, comparisons between the model and sim-
ulations are provided. In addition, the analytical and
empirical results for the mesh are compared to cor-
responding results for the torus. Finally, Section 5
contains concluding remarks.

2 Wormhole Routing Performance

Model

This section presents a general approach to analyze
the performance of wormhole routed interconnection
networks. We use average latency as the principal
measure of network performance. The approach gen-
eralizes the analysis of Draper and Ghosh applied to
k-ary n-cubes [6].

The model presented in this section is based on
the following assumptions: (1) Arrivals at each source
node are governed by a Poisson process, and destina-
tions are uniformly random. (2) Worms have fixed
length and are longer than the diameter of the net-
work. (3) Contentions at incoming links to a node are
resolved according to First-Come First-Served (FCFS)
scheduling. (4) Messages arriving at destinations are
immediately consumed at the rate of one flit per step,
i.e., no blocking is encountered at destinations.

Figure 2 shows the switch model used in the anal-
ysis presented in this paper. A network node is com-
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Figure 2: A node in the network has a routing element
(RE) and a processing element (PE), which is attached
to the RE through an injection channel and an ejection
channel.

prised of a processing element (PE) connected by an
injection channel and an ejection channel to a routing
element (RE) that also has incoming and outgoing in-
ternode channels. A typical message path includes an
injection channel, several inter-node channels and an
ejection channel.

The latency for a message injected from a node
in the network is determined by the waiting time and
service time of the injection channel, with the service
time depending on waiting and service times of suc-
cessive channels in the path. When a message is gen-
erated at a PE attached to switch j, it will wait in an
injection queue for a time denoted by Winj,j . Once
the head flit of the message is accepted by the net-
work, the message will hold the injection channel for
a service time denoted by xinj,j . At the end of service
time, i.e. when the tail of the message has left the
injection channel, it will take another D − 1 steps for
the entire message to be received at the destination,
where D is the number of channels in the path. This
is because under the long worm assumption, when the
tail of the message has left the injection channel, the
head flit must have arrived at the destination where
no further blocking is encountered. The latency Lj for
the message injected at node j is then

Lj = Winj,j + xinj,j +D − 1 . (1)

Averaging over all nodes (and the probability distri-
bution of message generation), the average latency L
for the entire network is then

L =
1

N

∑

j

Lj

=
1

N

∑

j

(

W inj,j + xinj,j

)

+D − 1 , (2)

where N is the number of nodes in the network and D
is the average message distance.

The mean waiting time W inj,j in the above equa-
tion can be approximated using a traditional M/G/1
queueing model once the service time xinj,j is known,
since the queueing behavior at the injection queue is

i

=0j
=1j

Figure 3: Possible subsequent channels for incoming
channel i

identical to that in store-and-forward routing. The
source service time xinj,j however, is quite different
from store-and-forward routing where service time is
simply the length of the message. In wormhole rout-
ing, since a message is spread over many channels at
a time step, the service time for a channel depends on
the service times and the waiting times at the subse-
quent channels on the path to the destination. The
service times for all the channels on a message’s path
need to be resolved in reverse order of the traversal
order, i.e., from the ejection channel back towards the
injection channel. For general k-ary n-cubes where e-
cube routing is used to avoid deadlock, this implies the
service times are resolved in the order of low dimen-
sions followed by high dimensions.

The service time at an arbitrary channel on a
message’s path can be analyzed with the aid of Fig-
ure 3. Messages from an incoming channel i with ar-
rival rate λin

i may be routed to outgoing channels de-
noted by j=0,1, etc. The service time for the incom-
ing channel depends on the service times and waiting
times at all possible outgoing channels. Denote the
probability that a message from incoming channel i is
routed to outgoing channel j by Ri|j , the service time
for incoming channel i can then be expressed as

xin
i =

∑

j

(xj + wj) ·Ri|j , (3)

where xj is the service time for the outgoing channel
j and wj is the waiting time for outgoing channel j.
The above equation states that the service time at a
channel depends on the service time of the subsequent
channel and the waiting time for the subsequent chan-
nel.

The mean waiting times wj may be approxi-
mated using the M/G/1 model, and the M/G/1 mean
waiting time Wj may itself be approximated by in-
corporating a suggestion of Draper and Ghosh [6, pp.
206–207], yielding

W j =
λjx

2
j

2(1− λjxj)
·

[

1 +
(xj − s/f)2

x2
j

]

. (4)

where λj is the message rate on outgoing channel j,
s denotes the size of the worm, and f denotes the flit
size (so that s/f is the length of the worm in flits).



But the M/G/1 model assumes independent ar-
rivals at the inputs of a switch, all of which may block
one another, which is not accurate for wormhole rout-
ing. In actuality, once an input link is occupied by a
worm, there can be no more arrivals on that link until
the first worm is fully serviced. Thus, once a worm
arrives on a link, it only needs to wait for worms from
other incoming links. Therefore, to use the M/G/1
waiting time result, we multiply by a blocking proba-
bility Pi|j :

wj = Pi|jWj , (5)

where Pi|j may be expressed as

Pi|j = 1−
λin
i

λj

Ri|j . (6)

following Draper and Ghosh [6]. We may view Pi|j as
the probability that a message deemed by the M/G/1
model to block an incoming message from input chan-
nel i is actually a possible blocking message, i.e., one
that comes from some other input channel.

By combining Equations 3, 5 and 6 we obtain
the service time for messages incident to an incoming
channel i:

xin
i =

∑

j

[

xj + (1−
λin
i

λj

Ri|j)Wj

]

Ri|j . (7)

Note here that W j is the mean waiting time obtained
from Equation 4, λin

i is the total message rate on in-
coming channel i and λj is the total message rate on
outgoing channel j.

We now apply the framework of this section to
the 2D-mesh in the next section.1

3 Analysis of 2D-Meshes

We now apply the model of Section 2 to the 2D-mesh
network. In this network, nodes are connected by bidi-
rectional links, without wrap-arounds at the edges of
the mesh. Let the number of nodes be k2, i.e., k is
the side length in each dimension. Each node in the
network represents a switch and a processor as in Fig-
ure 2.

An important issue for wormhole routing is dead-
lock avoidance. In a mesh network (and in k-ary n-
cubes), deadlock may be prevented by using e-cube
routing, i.e., messages are routed in one dimension
and then the other (in the 2D case). In the analysis

1The specialization of our approach to k-ary n-cubes, and

the 2D-torus in particular, differs from Draper and Ghosh only

in that they essentially ignore injection and ejection channels.

We treat injection and ejection channels like any other channel,

except that we retain the simplification of omitting waiting time

for ejection channels, which is relatively insignificant.

presented here, we assume routing in the y dimension
first.

We label each node in the network using a pair
of indices 〈j0, j1〉, with j0 and j1 (0 ≤ j0, j1 < k)
denoting the position of the node in the x and y-
dimension, respectively. We can label each channel
in the network using a node label together with a di-
rection (N,S,E,W); for example, 〈j0, j1, N〉 denotes the
channel going north from node 〈j0, j1〉. Since each link
is bidirectional, there are 2k(k − 1) channels in each
dimension.

We adopt the concept of channel equivalence
class, defined by [6] as a set of channels that have
identical statistical properties regarding message rate
and service time. Because of the symmetry in a 2D-
mesh network, an east-bound channel 〈j0, j1, E〉 has
identical traffic behaviors as its corresponding west-
bound channel 〈k − 1− j0, j1,W 〉, i.e., they belong to
the same channel equivalence class. Similarly north-
bound channel 〈j0, j1, N〉 and its corresponding south-
bound channel 〈j0, k − 1− j1, S〉 belong to the same
class. Thus, we can reduce the number of equivalence
classes to k(k− 1) in each dimension. We only have to
determine the behavior of west and south-bound chan-
nels and then map the results to east and north-bound
channels.

Furthermore, channels in the x-dimension with
the same x-positions (i.e., 〈j0, j1, E〉, j1 = 0, 1, ..., k −
1) are equivalent, therefore the number of equivalence
classes is reduced to k−1 for x-dimension channels and
we can drop the y-index from the channel labels, i.e.,
we will use 〈j0,W 〉 to denote a west-bound channel
from node 〈j0, j1〉 with an arbitrary j1 (0 ≤ j1 < k).
Since our analysis is focused on west and south-bound
channels, for convenience we will drop the direction
labels for them, i.e. we will use 〈j0〉 (0 < j0 < k) to
denote the k − 1 channel equivalence classes in the x-
dimension and 〈j0, j1〉 (0 ≤ j0 < k, 0 < j1 < k) to
denote the k(k − 1) channel equivalence classes in the
y-dimension. We specify the direction labels explicitly
when we refer to east and north-bound channels.

In this section, we first discuss message rates to
each channel equivalence class. We then determine the
service times for the k−1 channel equivalence classes in
the x dimension, followed by the service times for the
k(k−1) channel equivalence classes in the y-dimension.
Service times and waiting times at injection channels
are then determined and average latency is determined
using Equation 2.

3.1 Message Rates

Assume messages arrives to each injection channel ac-
cording to a Poisson process with rate λnode. Also
assume the mean departure rate is equal to the mean



arrival rate to a channel provided that the channel is
stable (channel utilization factor < 1). The message
rates for each channel is determined according to the
number of source nodes that use the channel and the
number of destination nodes that can be reached from
the channel.

Extending the channel notation in a natural way
to injection and ejection channels, we have:

λ〈inj,j0,j1〉 = λ〈j0,j1,ej〉 = λnode (0 ≤ j0, j1 < k) .
(8)

For the k − 1 channel equivalence classes in the x-
dimension, the message rates are

λ〈j0〉 =
j0(k − j0)k

k2 − 1
λnode (1 ≤ j0 < k) . (9)

There are k(k − 1) channel equivalence classes in the
y-dimension; the message rates are

λ〈j0,j1〉 =
j1(k − j1)k

k2 − 1
λnode

{

0 ≤ j0 < k
1 ≤ j1 < k

. (10)

(Note that although the message rates for the channels
in the y-dimension are independent of j0, the service
times are not, which is why there are different equiva-
lence classes for different values of j0.

3.2 Service Times

Service times are resolved in the order of ejection chan-
nels, x-dimension channels, y-dimension channels and
injection channels. At the ejection channel, once the
head flit of a message is received, the rest of the mes-
sage will be received one flit at a time without any
further blocking. Therefore the service time at the
ejection channels is equal to the length (in number of
flits) of the message as specified by Equation 11 in
Figure 4.

The service times for x-dimension channels are
determined as follows: Upon leaving channel 〈j0〉, a
message exits to the ejection channel available at that
point, with probability R〈j0〉|ej = 1

j0
, or continues to

the next channel in the same direction, with proba-
bility R〈j0〉|〈j0−1〉 =

j0−1
j0

. The service time x〈j0〉, ob-
tained using Equations 7 through 9 is given by Equa-
tion 12 in Figure 4.

The service times for the y dimension chan-
nels are determined as follows: Upon leaving channel
〈j0, j1〉, a message may exit to the ejection channel
available at that point, with probability R〈j0,j1〉|ej =
1

j1k
, continue to the next channel in the same direction,

with probability R〈j0,j1〉|〈j0,j1−1〉 = j1−1
j1

, switch to a
west-bound channel, with probability R〈j0,j1〉|〈j0〉 =
j0
j1k

, or switch to an east-bound channel, with probabil-

ity R〈j0,j1〉|〈j0,E〉 = k−1−j0
j1k

. The service time x〈j0,j1〉,

obtained using Equations 7 through 10 is given by
Equation 13 in Figure 4

The service times at the injection channels are
determined as follows: Upon leaving an injection chan-
nel at node 〈j0, j1〉, a message may go north-bound,

with probability Rinj|〈j0,j1,N〉 = (k−1−j1)k
k2−1 , south-

bound, with probability Rinj|〈j0,j1〉 = j1k

k2−1 , east-

bound, with probability Rinj|〈j0,E〉 =
k−1−j0
k2−1 , or west-

bound with probability Rinj|〈j0〉 = j0
k2−1 respectively.

Therefore, the service time for an injection channel,
obtained using Equations 7, 9, and 10 is given by Equa-
tion 14 in Figure 4.

The waiting times W〈inj,j0,j1〉 are computed us-
ing x〈inj,j0,j1〉 and Equation 4. The average latency
for the entire network is then

L =
1

k2

k−1
∑

j0=0

k−1
∑

j1=0

(W〈inj,j0,j1〉 + x〈inj,j0,j1〉) +D − 1 .

(15)
For uniform random messages, D = 2k

3 + 2.

4 Comparison of Mesh and Torus

Models to Simulations and to Each

Other

In this section we show the close correspondence of the
analysis of Section 3 with simulations of the mesh, and
we compare the mesh to the torus.

The lower right portions of Figures 5 and 6 show
the comparison of latency results from the model and
simulation for a 2D-mesh with 64 nodes and 256 nodes.
The model agrees well with simulation results for all
cases under study. The experimental values were ob-
tained from simulation over 100,000 clock steps at each
load rate, with data for the first 10,000 clocks dis-
carded to get rid of start-up effects. At each load rate,
the mean and standard deviation of the latency were
computed; the network is stable at low load rates, but
as the load rate approaches saturation, the latency de-
viations grow large. At each load rate, we computed a
percentage error as the ratio of the standard deviation
to the mean; we show empirical data points only for
load rates at which the error is less than 5%.

For modeling of the torus network we use the
results of Draper and Ghosh [6] with only slight modi-
fication as noted in footnote 1; see Appendix A. (One
important difference that may be noted between the
mesh and torus networks is that e-cube routing does
not suffice to prevent deadlock in the torus, but adding
in the use of virtual channels [5] does.)

Figures 5 and 6 show both the close correspon-
dence of the torus model with experimental results and



x〈j0,j1,ej〉 = s/f (11)

x〈j0〉 = (s/f)
1

j0
+

[

x〈j0−1〉 +
1

k − j0 + 1
W〈j0−1〉

]

j0 − 1

j0
(12)

x〈j0,j1〉 = (s/f)
1

j1k
+

[

x〈j0〉 +
k(k − j0)− (k − j1)

k(k − j0)
W〈j0〉

]

j0
j1k

+

[

x〈k−1−j0〉 +
kj0 + j1
k(j0 + 1)

W〈k−1−j0〉

]

k − 1− j0
j1k

+

[

x〈j0,j1−1〉 +
1

k − j1 + 1
W〈j0,j1−1〉

]

j1 − 1

j1
(13)

x〈inj,j0,j1〉 =

[

x〈j0〉 +
k(k − j0)− 1

k(k − j0)
W〈j0〉

]

j0
k2 − 1

+

[

x〈k−1−j0〉 +
k(1 + j0)− 1

k(1 + j0)
W〈k−1−j0〉

]

k − 1− j0
k2 − 1

+

[

x〈j0,j1〉 +
k − j1 − 1

k − j1
W〈j0,j1〉

]

j1k

k2 − 1
+

[

x〈j0,k−1−j1〉 +
j1

1 + j1
W〈j0,k−1−j1〉

]

(k − 1− j1)k

k2 − 1
(14)

Figure 4: Service times for channels in the mesh. Here s and f are the message and flit size, respectively.
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Figure 5: Comparison of model and simulation results
for the mesh and torus with 64 nodes using message
lengths of 20 and 32 flits.
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Figure 6: Comparison of model and simulation results
for the mesh and torus with 256 nodes using message
lengths of 32 and 64 flits.

a comparison of latencies between mesh and torus net-
works of 64 and 256 nodes. We see that the torus net-
work tends to saturate at an earlier load rate (about
one half that of the mesh). Also, at low load rates,
the latency for the torus is slightly higher than that of
the mesh under the same load condition and with the
same message lengths.

In addition to showing better performance than
the torus at any load rate, the mesh is easier to lay
out. The networks have the same bisection width, and
although the torus can be laid out with area and maxi-
mum wire length only a constant factor larger than for
the mesh [4, Fig. 5], it cannot quite achieve the same

area and wire length bounds as the mesh.

One may further note that under very low load
rate, a very simple model for latency may be applied,
namely number of flits plus average message distance.
The key difference between the mesh and torus then
is that the average message distance (excluding injec-
tion and ejection channels) is 2k/3 for the mesh versus
k2/(k + 1) for the torus. The average distances may
be computed by doubling the average distance in the
x dimension, Dx, which may be found by consider-
ing a single row of the mesh or torus and utilizing the
probability k/(k2 − 1) that a message from a node in
a specified x-position goes to a node in some specific
other x-position. We find

Dx =
1

k

k−1
∑

i=0

k−1
∑

j=0

|i− j|
k

k2 − 1

for the mesh, and

Dx =
1

k

k−1
∑

i=0

k−1
∑

j=0

j
k

k2 − 1

for the torus.



5 Conclusions

This paper has derived an accurate model for predict-
ing the performance of wormhole routed 2D-mesh net-
works. It has also presented empirical simulations and
comparisons showing that the 2D-mesh network ex-
hibits better performance than the torus.

Earlier comparisons among k-ary n-cubes [4]
have favored low-dimensional networks under the im-
portant hardware cost measure of equal bisection
width. The results of this paper show that an even
more dramatic comparison can be obtained by step-
ping out of the general k-ary n-cube framework, in
which the two-dimensional network is the torus, to
consider the two-dimensional mesh.

One of the main directions for future research is
to generalize beyond the uniform random message pat-
terns considered here. It would be desirable to com-
pare networks in terms of the performance of real par-
allel algorithms and to achieve a better understanding
of the sensitivity of different algorithms to throughput
and latency.

A Performance Model for the Worm-

hole Routed Torus

λnet = λnode

k − 1

2

kn

kn − 1

λnew = λnode

kn−1(k − 1)

kn − 1

λsw = λnode

(k − 1)2

kn − 1

λj =

{

λnet for j ≤ 1

λnode
kn−1(k(k−1)−j(j−1))

2(kn
−1)

for j > 1

flitxfer = 1 +
λnet

2
msgl

xbase = flitxfer ·msgl

FW (y, z) =
yz2

(

1 +
(

z−xbase

z

)2
)

2(1− yz)

xj0 =

{

xbase j0 = 0; else
k+j0−3
k+j0−1

(

xj0−1 +Wj0−1
λnew

λj0−1

)

+ 2
k+j0−1

x0

Wj0 = FW (λj0 , xj0)

xj0,j1 =







xbase

k
+ k−1

k

(

xj0 +Wj0

(

1− λsw

2λj0

))

j1 = 0;

k+j1−3
k+j1−1

(

xj0,j1−1 +
λnewWj0,j1−1

λj1−1

)

+
2xj0,0

k+j1−1

Wj0,j1 = FW (λj1 , xj0,j1)

x
inj
j0,j1

=
[

xj0 +
(

1− λnode

λj0

1
k+1

)

Wj0

]

1
k+1

+
[

xj0,j1 +
(

1− λnode

λj1

k
k+1

)

Wj0,j1

]

k
k+1

,

W
inj
j0,j1

= FW (λnode, x
inj
j0,j1

)

D =
k2

k + 1

L =
1

k2

k−1
∑

j0=0

k−1
∑

j1=0

(

x
inj
j0,j1

+W
inj
j0,j1

)

+ (D − 1)flitxfer + 2
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