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On the Area of Hypercube Layouts 1

Ronald I. Greenberg

Dept. of Mathematical and Computer Sciences, Loyola University, 6525 N.

Sheridan Rd., Chicago, IL 60626-5385, USA

Lee Guan

Acecomm Corporation, 704 Quince Orchard Rd., Gaithersburg, MD 20878, USA

Abstract

This paper precisely analyzes the wire density and required area in standard layout
styles for the hypercube. It shows that the most natural, regular layout of a hy-
percube of N2 nodes in the plane, in a N �N grid arrangement, uses b2N=3c+ 1
horizontal wiring tracks for each row of nodes. (In the process, we see that the
number of tracks per row can be reduced by 1 with a less regular design, as can also
be seen from an independent argument of Bezrukov et al..) This paper also gives
a simple formula for the wire density at any cut position and a full characteriza-
tion of all places where the wire density is maximized (which does not occur at the
bisection).

Key words: interconnection networks, hypercube, wire density, VLSI layout area,
mincut linear arrangement, optimal linear arrangement, channel routing

1 Introduction

The (binary) hypercube network has been widely considered as a network
for parallel computing, but its VLSI layout requires a great deal of wiring
area. Studies of communications capabilities of the hypercube versus other
networks (e.g., [1{5]) have varied the width of links between nodes in order
to equalize the hardware costs of the networks being compared under various
cost measures, some of which are closely related to VLSI layout area.
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Recall that the interconnection pattern for a hypercube of N2 nodes can be
speci�ed by numbering the nodes from 0 to N2�1 and requiring a link between
any two nodes whose numbers expressed in binary di�er in exactly one bit.
When the numbers di�er in the ith bit from the right, we refer to the link
between the nodes as a dimension i link. (Though the links between nodes
are generally considered to be bidirectional, we count them as one wire for
simplicity.Results quoted in this paper must be multiplied by 2 to obtain exact
correspondence with results given in Dally [2] or Ranade and Johnsson [3].)

The network cost measure used by Dally [2] is bisection width (the mini-
mum number of wires that must be cut to divide the set of nodes into two
equal halves with no connections between them). This measure may be justi-
�ed by Thompson's lower bound [6,7] indicating that area is at least 1=4 of
the square of the bisection width. Thompson's bound, however, does not give
a precise correspondence between bisection width and area. Furthermore, as
Dally notes, the maximum wire density (number of wires that must cross a
cutline) does not occur at the bisection in the \normal layout" of the hyper-
cube (nodes placed as in Figure 1). (Note that each row and column of the
layout is itself a hypercube, so we can focus henceforth on the layout of an
N -node hypercube in a single row.)

Ranade and Johnsson [3] consider the actual area required for the normal
layout by bounding the number of horizontal tracks per row required to lay out
the interconnections (following the common approach of placing vertical wires
in one chip layer and horizontal wires in another). (The situation involving
vertical tracks is completely analogous to that involving horizontal tracks.)
They focus, however, on optimality to within an unspeci�ed constant factor
and only upper bound the number of tracks per row as N � 1, as obtained by
the assignment of wires to tracks illustrated in Figure 1.

A more sophisticated track assignment by Chen, Agrawal, and Burke [8] (with
a di�erent ordering of the nodes), yields N � lgN tracks per row. 2

A still better measure for the number of tracks per row, utilized in [4,5], is
b2N=3c. That this number represents the congestion for the natural embedding
of the hypercube into a square grid also follows from an independent statement
of Nakano [9] and an argument of Bezrukov et al. [10].

This paper gives a short alternative proof of the congestion result that also
yields a concise formula for the wire density at every cut position and a full
characterization of all positions where density is maximized. The analysis is
then extended to account for the exact placement of the terminals and wires in
the layout. It would be desirable to make all nodes identical, e.g., by placing
the connections of each node in order of dimension (as in Figure 1); this

2 We use lg x for log2 x, and we assume N is a power of 2.
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Fig. 1. The normal hypercube layout and a naive track assignment for N2 = 64.

would be particularly convenient when implementing the common form of
hypercube algorithm referred to as a \normal algorithm" (e.g., see [11]), in
which only one dimension of communication links is used at any step, and
the dimensions are used consecutively. Uniformity of nodes is also helpful for
assembling the system and for replacing defective nodes. We show that such
a uniform approach incurs a penalty of exactly one track per row in the VLSI
layout, whereas full freedom to permute the terminals allows a layout with
b2N=3c tracks per row.

The rest of this paper is organized as follows. Section 2 introduces notation and
provides background regarding the congestion result. Section 3, gives a simple
formula for the wire density at each intercolumn position and a full character-
ization of those positions where the density is maximized. Then the analysis
is extended to include the density at cutlines that run through nodes, which
completes the analysis of the number of wiring tracks required. Section 4, com-
ments on hypercube layouts in which the nodes are placed di�erently than in
the normal scheme illustrated in Figure 1.

2 Background

As a �rst step towards determining the usage of wiring tracks in the nor-
mal hypercube layout, we focus on the intercolumn wire density per row. We
sketch here a short proof, shown fully in [12], that the maximum intercol-
umn wire density per row in the normal hypercube layout is b2N=3c and that
the leftmost intercolumn position where this maximum is realized is position
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b(N + 1)=3c. In the process we introduce notation for our main results in the
next section and note important symmetry properties.

We de�ne f(i; k) to be the number of dimension k links (i.e., links spanning
2k�1 columns) that cross intercolumn position i in the normal layout. Using
0 to denote the position to the left of all the nodes, it is easy to see that
the pattern for f(0; k), f(1; k), . . . , f(N � 1; k) is 0, 1, 2, . . . , 2k�1 � 1, 2k�1,
2k�1 � 1, 2k�1 � 2, . . . , 1, and repeat as necessary; we may express this as

f(i; k) = i
�
1� 2

��
i� 1

2k�1

�
mod 2

��
mod 2k : (1)

Then we de�ne S(i;N) to be the total number of connections crossing inter-
column position i in the normal layout, i.e.,

S(i;N) =
lgNX
k=1

f(i; k) : (2)

For the proof sketch in this section, there is also a more convenient mathe-
matical expression for the maximum intercolumn wire density and and the
leftmost position where the maximum is realized:

m(N)= (4N � (�1)lgN � 3)=6 (3)

p(N) = (N � (�1)lgN )=3 (4)

Then the result discussed in this section is that max0<i<N S(i;N) = m(N)
and that i = p(N) is the least i at which the maximum is achieved. The result
follows from the following Lemma and two Theorems:

Lemma 1 S(i;N) = S(N � i;N) for 0 < i < N .

Proof sketch The result follows from showing f(i; k) = f(N � i; k) for 0 <
i < N and 1 � k � lgN , which follows from Equation 1.

Theorem 2 S(p(N); N) = m(N).

Proof sketch The proof is by induction on lgN using Equations 1{4 and
Lemma 1. 2

Now we need only that S(i;N) � m(N), but the following theorem includes
additional information to make the proof easier:
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0 1 2 3 4 5 6 7

Fig. 2. Wiring a row in m(N) = 5 tracks for N = 8.

.

0 1 2 3 4 5 6 7

Fig. 3. Wiring a row requires m(N)+1 = 6 tracks for N = 8 when the wires leaving
each node are in order of increasing dimension.

Theorem 3 S(i;N) � minfm(N);m(N)� (p(N)� i)g for 0 < i < N .

Proof sketch We again use induction on lgN .

We �rst use Equations 1{4 to show that S(i;N) � m(N)� (p(N)� i). Then
we show S(i;N) � m(N) by considering the three cases of i > N=2, i � p(N),
and p(N) < i � N=2 and using Lemma 1 again. 2

3 Number of wiring tracks

Though we know the maximum intercolumn wire density per row in the layout
of Figure 1, we still need to determine the number of horizontal wiring tracks
required to route the wires. Fortunately, an early channel routing algorithm
of Hashimoto and Stevens [13], the left-edge algorithm, guarantees that the
density and number of tracks are equal, since we have no vertical constraints
(e.g., see [14]). To obtain a layout using exactly m(N) tracks, however, we
must be free to permute the locations of connections on each hypercube node
so that the density (maximum number of wires crossing a vertical line) is no
higher when the cutline runs through nodes than when it runs between nodes.
A layout using m(N) = 5 tracks for one row of the 64-node hypercube is
illustrated in Figure 2. (This �gure uses a track assignment slightly di�erent
than the assignment produced by the left edge algorithm in order to reduce
the number of wire crossings.)

If we require that each node has its connections in order of dimensions 1, 2,
. . . lgN , we cannot achieve a routing in m(N) tracks when N > 2; Figure 3
with 6 tracks shows the best layout of a row when N = 8. Even with this
�xed order of connections, however, the density (and therefore the number of
tracks) is just m(N) + 1 for N > 2. Our approach to obtaining this stronger
result also produces a characterization of all locations where the density is
maximized. We encapsulate these results in the following two Theorems.
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Theorem 4 The values of i in binary for which S(i;N) is maximized are

those obtained as follows. Starting from the leftmost bit of i and moving right,

choose pairs of bits to be 01 or 10 except that when lgN is even, the last pair

may be 11. When lgN is odd, the 1 remaining bit is set to 1.

PROOF. Considering the number i represented in binary, de�ne b(i; j) to be
the bit in the j-th position from the right (1 � j � lgN), and de�ne e(i; j) to
be the excess of 1's over 0's in bit positions greater than j (i.e., the number of
1's minus the number of 0's in the relevant portion of i's representation). Also,
let r denote the number of consecutive 0's at the right end of i's representation.
(Using the notation 0r to represent a string of r 0's, note that with i of the
form X10r, i�1 is X01r, and �i is X10r, where X is the bitwise complement
ofX.) Starting from the de�nitions of S(i;N) and f(i; k) in Equations 2 and 1,
we can express S(i;N) as

lgNX
k=1

i(1� 2b(i� 1; k)) mod 2k

=
lgNX
k=1

kX
j=1

b(i(1� 2b(i� 1; k)); j) � 2j�1

=
lgNX
j=1

lgNX
k=j

2j�1

8><
>:
b(i; j) if b(i� 1; k) = 0

b(�i; j) if b(i� 1; k) = 1

=
lgNX
j=1

2j�1
�
b(�i; j)+ b(i; j)

2
(lgN � j + 1) +

b(�i; j)� b(i; j)

2
e(i� 1; j � 1)

�

=
rX

j=1

0 + 2r(lgN � r) +
lgNX

j=r+2

2j�2 [lgN � j + 1+ (1� 2b(i; j))e(i� 1; j � 1)]

= 2r(lgN � r) + lgN
lgNX

j=r+2

2j�2 �
lgNX

j=r+2

j2j�2 +
lgNX

j=r+2

2j�2(1� 2b(i; j))e(i; j)

= 1
2
N +

lgNX
j=r+2

2j�2(1� 2b(i; j))e(i; j)

= 1
2
N �

r+1X
j=1

2j�2(1� 2b(i; j))e(i; j)+
lgNX
j=1

2j�2(1� 2b(i; j))e(i; j)

= 1
2
N �

rX
j=1

2j�2(e(i; 0)+ j) + 2r�1(e(i; 0)+ r � 1) +
lgNX
j=1

2j�2(1� 2b(i; j))e(i; j)

= 1
2
(e(i; 0)+N � 1) +

lgN�1X
j=1

2j�2 �

8><
>:
e(i; j) if b(i; j) = 0

�e(i; j) if b(i; j) = 1
: (5)

From this expression, we can see that S(i;N) is maximized by setting pairs of
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bits greedily from the left end of i's representation, except for a slight variation
when j becomes small, as in the theorem statement. (It is also easy to check
that this maximum equals m(N) of Equation 3.) 2

Now we proceed to analyze the maximum density in a row of the layout when
it is required that each node has its connections in order of dimensions 1, 2,
. . . lgN . We de�ne T (i; p;N) to be the number of wires crossing a cutline
just to the right of the p-th terminal position on a node in column i � 1 for
1 � p � lgN (so T (i; lgN;N) = S(i;N)).

Theorem 5 For N > 2, the maximum value of T (i; p;N) over all i and p is

m(N) + 1 and is realized at an i for which S(i;N) = m(N).

PROOF. We can express T (i; p;N) in terms of S(i;N) by using the notation
de�ned at the beginning of the proof of Theorem 4; speci�cally, T (i; p;N) =
S(i;N)+ e(i� 1; p). The term e(i� 1; p) can be reexpressed in terms of e(i; p)
based on the value of r de�ned above. For p > r, we have e(i� 1; p) = e(i; p).
For p � r, we have e(i� 1; p) = e(i; p) + 2(r � p � 1).

When r = 0, we know p > r, and we see that the strategy for choosing
i described in Theorem 4 remains optimal, since the e(i; p) term is small
compared to 2j for most values of j in Equation 5. With such an i, the largest
e(i; p) we can achieve is 1 (if at least one of the pairs of bits under the strategy
of Theorem 4 is 10 or 11).

When r = 1, the situation is essentially the same as for r = 0, except that
we must choose p > 1 to maximize e(i� 1; p). We still must choose an i that
maximizes S(i;N), and e(i� 1; p) will be at most 1.

Choosing r � 2 contradicts choosing i to maximize S(i;N), and the de�cit
in the value of S(i;N) cannot be recouped through the term e(i� 1; p). (For
r = 2, e(i � 1; p) cannot exceed e(i; p), while increasing values of r cause
increasing deterioration in the value of S(i;N).) 2

Note that this result is not an idiosyncrasy of the particular ordering chosen for
the terminals on each node. Rather, because of the symmetry in the layout, it
is apparent than any ordering that is the same for all nodes leads to m(N)+1
tracks; an ordering that reduces T (i; p;N) where it exceeds m(N) will make
a corresponding increase from m(N) to m(N) + 1 in another position.
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0 1 3 2 6 7 5 4

Fig. 4. The top row of a gray code derived layout for N = 8.

4 Alternative layouts

Another frequently considered method of mapping hypercube nodes to a reg-
ular grid is to use a gray code derived layout. The numbering of nodes in
the top row of a gray code layout for a 64-node hypercube is illustrated in
Figure 4. (Here we have not required the terminals on each node to be in di-
mension order.) Ranade and Johnsson [3] noted that the area and maximum
wire length for the normal layout and the gray code layout are the same up to
a constant factor. In fact, the arguments of Sections 2 and 3 can be extended
to show that the maximumwire density and number of wiring tracks required
per row is exactly the same for the gray code layout as for the normal layout,
including a one track penalty when the nodes are identical. It is also easy to
show that the total (horizontal) wire length per row is the same (in terms of
the number of columns spanned). The maximum (horizontal) wire length in a
row of the normal layout, however, is essentially half as large as for the gray
code layout.

The results of Harper [15,16], Nakano [9], and Bezrukov et al. [10] show that
the normal layout minimizes total wire length and intercolumn wire density,
while a di�erent layout minimizes maximum wire length. Bezrukov et al. also
consider two new cost measures for embeddings of hypercubes into grids based
on the frequent use of normal algorithms [17].
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