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Randomized Routing on Fat-Trees

(Preliminary Version)

Ronald I. Greenberg
Charles E. Leiserson

Laboratory for Computer Science

Massachusetts Institute of Technology
- Cambridge, Massachusetts 02139

Abstract

Fat-trees are a class of routing networks for hardware-
efficient parallel computation. This paper presents a
randomized algorithm for routing messages on a fat-tree.
The quality of the algorithm is measured in terms of the
load factor of a set of messages to be routed, which is
a lower bound on the time required to deliver the mes-
sages. We show that if a set of messages has load factor
A = Qlgnlglgn) on a fat-tree with n processors, the
number of delivery cycles (routing attempts) that the
algorithm requires is O(A) with probability 1 — O(1/n).
The best previous bound was O(Algn) for the off-line
problem where switch settings can be determined in ad-
vance. In a VLSI-like model where hardware cost is
equated with physical volume, we use the routing algo-
rithm to demonstrate that fat-trees are universal routing
networks in the sense that any routing network can be
efficiently simulated by a fat-tree of comparable hard-
ware cost.

1 Introduction

Fat-trees constitute a class of routing networks for
general-purpose parallel computation. This paper pre-
sents a randomized algorithm for routing a set of mes-
sages on a fat-tree. The routing algorithm and its anal-
ysis generalize an earlier wniversality result by showing,
in a three-dimensional VLSI model, that for a given
volume of hardware, a fat-tree is nearly the best rout-
ing network that can be built. This universality result
had been proved only for off-line simulations (8], where
switch settings can be determined in advance; this pa-
per extends it to the more interesting on-line case, where
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Figure 1:

cated at the leaves, and the internal nodes contain concentrator

The organization of a fat-tree. Processors are lo-

switches. The capacities of channels increase as we go up the tree.

messages are spontaneously generated by processors.
As is illustrated in Figure 1, a fat-tree is a routing net-

work based on Leighton’s tree-of-meshes graph [7]. A set

of n processors are located at the leaves of a complete bi-

‘nary tree. Each edge of the underlying tree corresponds

to two channels of the fat-tree: one from parent to child,
the other from child to parent. Unlike a normal tree in-
terconnection which is “skinny all over,” each channel
of a fat-tree consists of a bundle of wires. The number
of wires in a channel ¢ is called its capacity, denoted by
cap(c). Each internal node of the fat-tree contains cir-
cuitry that switches messages from incoming to outgoing
channels.

The capacities of the channels in a fat-tree determine
how much hardware is required to build it, where we
measure hardware in terms of three-dimensional volume.
The greater the capacities of the channels, the greater
the communication potential, and also, the greater the
volume. The capacities in a universal fat-tree [8] grow
exponentially as we go from leaves to root, where the



base of the exponential is at most 2. Section 5 shows
that for a given amount of hardware, a universal fat-tree
is nearly the best network that can be built.

We shall consider communication through the fat-
tree network to be synchronous, bit serial, and batched.
By synchronous, we mean that the system is globally
clocked. By bit serial, we mean that the messages can
be thought of as bit streams. Each message snakes its
way through the wires and switches of the fat-tree, with
leading bits of the message setting switches and estab-
lishing a path for the remainder to follow. By batched,
we mean the messages are grouped into delivery cycles.
During a delivery cycle, the processors send messages
through the network. Each message attempts to estab-
lish a path from its source to its destination. Since some
messages may be unable to establish connections dur-
ing a delivery cycle, each successfully delivered message
is acknowledged through its communication path at the
end of the cycle. Rather than buffering undelivered mes-
sages, we simply allow them to try again in a subsequent
delivery cycle. The routing algorithm is responsible for
grouping the messages into delivery cycles so that all
the messages are delivered in as few cycles as possible.

The mechanics of routing messages in a fat-tree are
almost as simple as routing in an ordinary tree. For each
message, there is a unique path from its source processor
to its destination processor in the underlying complete
binary tree, which can be specified by a relative address
consisting of at most 2 lg n bits telling whether the mes-
sage turns left or right at each internal node.

Within each node of the fat-tree, the messages des-
tined for a given output channel are concentrated onto
the available wires of that channel. This concentration
may result in “lost” messages if the number of messages
destined for the output channel exceeds the capacity
of the channel. We assume, however, that the concen-
trators within the node are ideal in the sense that no
messages are lost if the number of messages destined for
a channel is less than or equal to the capacity of the
channel. Such a concentrator can be built, for example,
with a log-depth sorting network [1]. A more practical
log-depth circuit can be built by combining a parallel
prefix circuit [6] with a butterfly (a. k. a. FFT, Omega)
network.

The performance of any routing algorithm depends on
the locality of communication in a set of messages be-
cause some messages may be routed locally within sub-
trees of the fat-tree without soaking up bandwidth near
the root. The locality of communication for a message
set M can be summarized by a measure A(M) called the
load factor, which we define in a more general network
setting.

Definition: Let R be a routing network. A set

load factor delivery cycles
0< AM) <1 1

< O(lgn)

M) <lgnlglgn O(lgnlg(A(M)))
o(A\(M))

Figure 2:
message set .M on a fat-tree with n processors. All bounds are
achieved with probability 1 — O(1/n). We assume in line 4 that
the load factor A(M) is polynomially bounded.

Number of delivery cycles required to deliver a

S of wires in R is a (directed) cut if it partitions
the network into two sets of processors A and
B such that every path from a processor in A
to a processor in B contains a wire in S. The
capacity cap(S) is the number of wires in the
cut. For a set of messages M, define the load
load(M,S) of M on a cut S to be the number
of messages in M that must cross S. The load
factor of M on S is

. load(M,S)
A(M,S) = anis)

and the load factor of M on the entire network
R is
AM) = max A(M,S) .

The load factor provides a simple lower bound on the
number of delivery cycles required to deliver a set of
messages. When the set of messages is known in ad-
vance, it has been shown (8] that a set M of messages
can be delivered in O(A(M) lg n) delivery cycles on a fat-
tree with n processors. Our routing algorithm, whose
running time is summarized in Figure 2, improves this
off-line result in two ways. First, the algorithm does
not need to know the set of messages in advance, but
can deliver them on-line. Second, the bounds on run-
ning time generally improve (and always at least match)
the previous off-line bound. The only caveat is that our
algorithm is randomized instead of being deterministic,
but the stated bounds are achieved with high probabil-
1ty.

The analysis in terms of load factor is not restricted
to permutation routing or situations where each pro-
cessor can only send or receive a constant number of
messages, as is common in the literature. We consider
the general situation where each processor can send and
receive polynomially many messages. Furthermore, we
make no assumptions about the statistical distribution
of messages, except insofar as they affect the load factor.



Our routing algorithm also differs from others in the
literature in the way randomization is used. Unlike the
algorithms of Valiant [11], Valiant and Brebner [12],
Aleliunas (2], Upfal [10] and Pippenger [9], for exam-
ple, it does not randomize with respect to paths taken
by messages. Instead, for each delivery cycle, each un-
delivered message randomly chooses whether to be sent.

The remainder of this paper is organized as follows.
Section 2 describes the randomized algorithm for rout-
ing on fat-trees. Section 3 contains some preliminary
lemmas needed to analyze the algorithm, and Section 4
contains the full analysis, Section 5 contains a vari-
ety of results that follow from the randomized routing
algorithm. It shows how the universality result of [8]
can be extended to on-line simulations, and it includes
a modification of the routing algorithm which achieves
better bounds when each channel has capacity Q(lgn).
It also gives an existential lower bound for the naive
greedy approach to routing messages which shows that
the greedy strategy is inferior to the randomized algo-
rithm for worst case inputs. Finally, Section 6 contains
some concluding remarks.

2 The routing algorithm

This section gives a randomized algorithm for routing
a set M of messages, which is based on routing ran-
dom subsets of the messages in M. The algorithm
RANDOM is shown in Figure 3, and it uses the sub-
routine TRY-GUESS shown in Figure 4. Section 4 will
provide a proof that on an n-processor fat-tree, the prob-
ability is at least 1 — O(1/n) that RANDOM delivers
all messages in M within the number of delivery cylces
specified by Figure 2, if the two constants k; and k-
appearing in the algorithm are properly chosen.

The basic idea of RANDOM is to pick a random sub-
set of messages to send in each delivery cycle by inde-
pendently choosing each message with some probability
p. This idea is sulliciently important to merit a formal
definition.

Definition: A p-subset of M 1z a subset of M
formed by independently choosing each mes-
sage of M with probability p.

We will show in Section 4 that if p is sufficiently small,
a substantial portion of the messages in a p-subset are
delivered because they encounter no congestion during
routing. On the other hand, if p is too small, few mes-
sages are sent. RANDOM varies the probability p from
cycle to cycle, seeking random subsets of M which con-
tain a substantial portion of the messages in M but
which do not cause congestion.

The algorithm RANDOM varies the probability p be-
cause the load factor A(M) is not known. The over-

w

send M

U «— M — {messages delivered}

)\guess —2

while kjAguess < kzlgn and U # @ do
TRY-GUESS(A guess)
Aguess — Aquess

endwhile

Aguess < (k2/ki)lgnlglgn

while U # § do

10 TRY-GUESS(Aguess)

11 /\guess — 2) quess
12 endwhile

© 00 N O U AW N

Figure 3: The randomized algorithm RANDOM for delivering
a message set M on a fat-tree with n processors. This algorithm
achieves the running times in Figure 2 with high probability if
the constants k; and ko are appropriately chosen. Since the load
factor A(M) is not known in advance, it is necessary to make
guesses, each one being tried out by the subroutine TRY-GUESS.

procedure TRY-GUESS(Aguess)

1 A« Aguess

2 while A > 1do

3 for + « 1 to max {k;\, k= lgn} do

4 independently send each message of U
with probability 1/rA -

5 U «— U — {messages delivered }

6 endfor

i A 2/2

8 endwhile

9 send U

10 U « U — {messages delivered}

Figure 4: The subroutine TRY-GUESS used by the algorithm
RANDOM which tries to deliver the set U of currently undelivered
messages. When Agyess > A(U), this attempt will be successful
with high probability, if the constants k; and ko are appropriately
chosen. (The value r is the congestion parameter of the fat-tree
defined in Section 4, which is typically a small constant.) In that
case, A is always an upper bound on A(U), which is at least halved
in euch iteration of the while loop. When the loop is finished,

A(U) £ 1, so all the remaining messages can be sent.



all structure of RANDOM is to guess the load fac-
tor and call the subroutine TRY-GUESS for each one.
TRY-GUESS determines the probability p based on
RANDOM's guess Agyess and a parameter r, called the
congestion parameter, which will be defined in Section 4.
If Aguess is an upper bound on the true load factor
A(M), each iteration of the while loop in TRY-GUESS
halves Agyess with high probability, as will be shown
in Section 4. When the loop is finished, we have
AMU) £ Aguess < 1, and all the remaining messages
can be delivered in one cycle. The number of delivery
cycles performed by TRY-GUESS is O(lg Aguesslgn)
if 2 < Aguess < O(lgn), and the number of cycles is
O(Aguess + lgnlglg n) if Aguess = Q(lgn).

RANDOM must make judicious guesses for the load
factor because TRY-GUESS may not be effective if
its guess is smaller than the true load factor. Con-
versely, if the guess is too large, too many delivery cycles
will be performed. Since the amount of work done by
TRY-GUESS grows as lg Aguess for Aguess small, and
as Aguess for Aguess large, there are two main phases
to RANDOM’s guessing. (These phases follow the han-
dling of very small load factors, ie., A(M) < 2.)

In the first phase, the guesses are squared from one
trial to the next. Once /\guess 18 sufficiently large, we
move into the second phase, and the guesses are doubled
from one trial to the next. In each phase, the number
of delivery cycles run by TRY-GUESS from one call to
the next forms a geometric series. Thus, the work done
in any call to TRY-GUESS 1s only a constant factor
times all the work done prior to the call. With this
guessing strategy, we can deliver a message set using
only a constant factor more delivery cycles than would
be required if we knew the load factor in advance.

3 Preliminary lemmas

This section contains three lemmas that will be needed
to analyze the algorithm RANDOM from the preceding
section. The first lemma relates the definition of load
factor given in Section 1 to the channel structure of the
fat-tree. The other two are technical lemmas concerning
basic probability. One is a combinatorial bound on the
tail of the binomial distribution of the kind attributed to
Chernoff [4], and the other is a more general, but weaker,
bound on the probability that a random variable takes
on values smaller than the expectation.

The first lemma states that in a fat-tree, the load
factor of a set of messages is determined by the cuts on
the channels alone.

Lemma 1 The load factor of a set M of mes-
sages on a fat-tree 1s

A(M) = max A(M,¢) ,

where ¢ ranges over all channels of the fat-
iree.

The next lemma is a “Chernoff” bound on the tail of a
binomial distribution. Suppose that we have ¢t indepen-
dent Bernoulli trials, each with probability p of success.
It is well known [5] that the probability that there are
at least s successes out of the ¢ trials is

B(s,t,p) = kz; (;)pk(l o 2

The lemma bounds the probability that the number of
successes 1s larger than the expectation pt.

Lemma 2

ept\ "
B < (20) 1

S

The final lemma in this section bounds the probability
that a bounded random variable takes on values smaller
than the expectation.

Lemma 3 Let X < b be a random wvariable
with ezpectation . Then for any w < u, we
have

Pr{ng}gl—l:_w.l

4 Analysis of the routing algorithm
RANDOM

This section contains the analysis of RANDOM, the
routing algorithm for fat-trees presented in Section 2.
We shall show that the probability is 1 — O(1/n) that
RANDOM delivers a set of M of messages on a univer-
sal fat-tree with n processors in the number of delivery
cycles given by Figure 2

We begin by analyzing the routing of a p-subset M’
of a set M of messages. If the number load(M’,c) of
messages in M’ that must pass through ¢ is no more
than the capacity cap(c), then no messages will be lost
by concentrating the messages into c. We shall say that
¢ is congested by M' if load(M',c) > cap(c). We now
show that the likelihood of channel congestion decreases
exponentially with channel capacity if the probability of
choosing a given message out of M is sufficiently small.

Lemma 4 Let M be a set of messages on a
fat-tree, let A\(M) be the load factor on the fat-
tree due to M, let M' be a p-subset of messages
from M, and let ¢ be a channel through which
a gwen message m € M' must pass. Then
the probability is at most (epA(M)) "0} that
channel ¢ 1s congested by M'.



Proof. Channel ¢ is congested by M’ if load(M’,c) >
cap(c). There is already one message from the set M’
going through channel ¢, so we must determine a bound
on the probability that at least cap(c) other messages
go through c. Using Lemma 2 with s = cap(c) and
t = load(M, c), the probability that the number of mes-
sages sent through channel c is greater than the capacity
cap(c) is less than

ep loac )\ St
B(cap(c),load(M,¢c),p) < <—216Ti§i\)l’—)->
< (epA(M))™)

The next lemma will analyze the probability that a
given message of a p-subset of M gets delivered. In or-
der to do the analysis, however, we must select p small
enough so that it is likely that the message passes ex-
clusively through uncongested channels. The choice of
p depends on the capacities of channels in the fat-tree.
For convenience, we define one parameter of the capaci-
ties which will enable us choose a suitable upper bound
for p.

Definition: The congestion parameter r of fat-
tree is the smallest positive value such that for
each simple path ¢y, ¢q, ..., ¢; of channels in
the fat-tree, we have

Lfenennler) 1
e
r 2

ezl

For a fat-tree based on a complete binary tree, the
longest simple path is at most 2lgn, where n is the
number of processors, and thus r < 4elg n. For universal
fat-trees, the congestion parameter is a constant because
the capacities of channels grow exponentially as we go
up the tree. (All we really need is arithmetic growth
in the channel capacities.) The congestion parameter is
also constant for any fat-tree based on a complete binary
tree if all the channels have capacity (lglgn). The re-
maining analysis treats the congestion parameter r as a
coustant, but the analysis does not change substantially
for other cases.

We now present the lemma that analyzes the proba-
bility that a given message gets delivered.

Lemma 5 Let M be a set of messages on a
fat-tree with congestion parameter r, let A\(M)
be the load factor on the fat-tree due to M, and
let m be an arbitrary message in M. Suppose
M' is a p-subset of M, where p < 1/rA(M).
Then if M' s sent, the probability that m gets
delivered is at least %p.

B S —

Proof. The probability that m € M is delivered is at
least the probability that m € M’ times the probability
that m passes exclusively through uncongested chan-
nels. The probability that m € M' is p, and thus we
need only show that, given m € M’, the probability
is at least % that every channel through which m must
pass is uncongested. Let ¢y, co, ..., ¢; be the channels in
the fat-tree through which m must pass. The probabil-
ity that channel ¢; is congested is less than (e/r)cariex)
by Lemma 4. The probability that at least one of the
channels is congested is, therefore, much less than

l

cap(cek) 1
I ioass
k=l i

by definition of the congestion parameter. Thus, the
probability that none of the channels are congested is at
least % |

We now focus our attention on RANDOM itself. The
next lemma analyzes the innermost loop (lines 3-6) of
RANDOM’s subroutine TRY-GUESS. At this point in
the algorithm, there is a set U of undelivered nessages
and a value for A. The lemma shows that if ) is indeed an
upper bound on the load factor A(U) of the undelivered
messages when the loop begins, then A/2 is an upper
bound after the loop terminates. This lemma is the
crucial step in showing that RANDOM works.

Lemma 6 Let U be a set of messages on an
n-processor fat-iree with congestion parameter
r, and assume A(U) < A. Then after lines §-
6 of RANDOM’s subroutine TRY-GUESS, the
probability is at most O(1/n?) that A(U) > %/\.

Proof. The idea of the proof is to show that the load
factor of an arbitrary channel ¢ remains larger than )
with probability O(1/n%). Since the channel ¢ is chosen
arbitrarily out of the 4n — 2 channels in the fat-tree, the
probability is at most O(1/n?) that any of the channels
is left with load factor larger than ).

For convenience, let C be the subset of messages that
must pass through channel ¢ and are undelivered at
the beginning of the innermost loop in RANDOM. Let
Cy = C, and for 1 > 1, let C; € C;_; denote the set
of undelivered messages at the end of the ith iteration
of the loop. Notice that AMCi,¢) = |Ci| Jeap(c), since
|Ci| = load(Cy, ¢).

We now show there exists values for the constants
ki and ks in line 3 of TRY-GUESS such that for
z = max {k; A, ko lg n}, the probability is O(1/n°) that
Al e) > %/\, or equivalently, that

|C.| > %/\cap(c) - (1)



It suffices to prove that the probability is O(1/n%)
that fewer than %|C| messages from C are delivered
during the z cycles under the assumption that |C;| >
—/\cap( ) for: =0, 1, < z — 1. The intuition behind
the assumption |C;| > )\cap( ) is that otherwise, the
load factor on channel ¢ is already at most %)\ at this
step of the iteration. The reason we need only bound the
probability that fewer than % |C| messages are delivered
during the z cycles is that inequality (1) implies that
the number of messa,ges delivered is fewer than |C| —
Lacap(c) < IC] - 1A(C, eJeap(c) < 4[],

We shall establish the O(1/n®) bound on the prob-
ability that at most %|C| messages are delivered in
two steps. For convenience, we shall call a cycle good
if at least cap(c)/8r messages are delivered, and bad
otherwise. In the first step, we bound the probabil-
ity that a given cycle is bad. Using Lemma 5 with

= 1/rA < 1/rA(U) < 1/rX(C;) in conjunction with
the assumption that |Ci| > £Acap(c), we can conclude
that the expected number of messages delivered in any
given cycle is greater than zi;$Acap(c) > cap(c)/4r.
Then by Lemma 3, the probability that a a given cycle
is bad is at most 1 — 1/(8 — 1) <1 — 1/8r. (Although
this bound is sufficiently strong to prove our theoretical
results, it is weak because the probability that a message
is delivered in a given cycle is not independent from the
probabilities for other messages, and thus we must rely
on the bound given by Lemma 3. In practice, one would
anticipate that the dependencies are weak, and that the
algorithm would be effective with much smaller values
for the constants k; and ks than we can prove here.)

The second step bounds the probability that a sub-
stantial fraction of the z delivery cycles are bad. Specif-
O(1/n) that
at least some small constant fraction g of the z cycles are
good. By picking k; = 4r/q, which implies z > 4r) /q,
at least gzcap(c)/8r > % |C| messages will be delivered.
We bound the probability that at least (1 —g)z of the z
cycles are bad by using a counting argument. There are

ically, we show that the probability is 1 —

(“_z,”z) ways of picking the bad cycles, and the proba-
bility that a cycle is bad is at most 1 — 1/8r. Thus, the
probability that at most % |C'| messages are delivered is

Pr {S é—, C'| messages delivered}
(1=q)=
< : e
(1—gq)= 8r
e L\ e
= i I i e ! T PR el
< Ael-g ) ( =
S 2—:/12r '
if we choose ¢ = 1/e*rInr, as the reader may verify.

Since z = max {k; A, k3 lgn}, if we choose k; = 36r, the
probability that fewer than % |C'| messages are delivered

is at most 1/n%. li
Now we can analyze RANDOM as a whole.

Theorem 7 For any message set M on an
n-processor fat-tree, the probability vs at least

— O(1/n) that RANDOM will deliver all the
messages of M within the number of delivery
cycles specified by Frgure 2.

Proof. First, we will show that if Aguess > A(M), the
probability is at most O(1/n) that the loop in lines 2
through 8 of TRY-GUESS fails to yield A(U) < 1. Ini-
tially, A > A(U), and we know from Lemma 6 that
the probability is at most O(1/n?) that any given it-
eration of the loop fails to restore this condition as A
is halved. Since there are lgAguess iterations of the
loop, we need only make the reasonable assumption that
Aguess is polynomial in n to obtain a probability of at
most O(1/n) that A(U) remains greater than 1 after all
the iterations of the loop.

Now we just need to count the number of delivery cy-
cles which will have been completed by the time we call
TRY-GUESS with a )\gu,ess such that /\(M) S )\guess.
Let us denote by )‘?]uess the first Agyess which satisfies
this condition, and then break the analysis down into
cases according to the value of \(M).

For A(M) < 1, we do not actually even call
TRY-GUESS. We need only count the one delivery cycle
executed in line 1 of RANDOM.

For 1 < A(M) < 2, we need add only the k; lg n cycles
executed when we call TRY-GUESS(2).

For 2 < A(M) < (ko/ky)lgn, the number of deliv-
ery cycles involved in each execution of TRY-GUESS
s O(lg Aguesskz lg n), since we perform O(lg Aguess) it-
erations of the loop in lines 2-8 of TRY-GUESS, each
containing ks lg n iterations of the loop in lines 3-6. The
value of Ajyegs is at most A(M)?, so the total number
of delivery cycles is

O(lgnlg A(M)?) + O(lg nlg A(M)) +0(1gnig\/,\(M))
+0(lgnlg Y/A(M)) + --- + O(lgn)
>, O(lgnlg(x (M)~‘ )

0<i<l+lglg A(M)

0(2' ' lgnlg(A(M)))
OSi<I+lglg A(M)
O(lgnlg A(M)) ,

Il

since the serles is geometric.

For A(M) > (k;/k,)lgn, the number of delivery cy-
cles executed by the time we reach line 8 of RANDOM is
O(lgnlglgn) according to the preceding analysis, and
then we must continue in the quest to reach Aguess-
If A(M) < (ky/k)lgnlglgn, then we need only add

the number of delivery cycles involved in the single call



TRY-GUESS((k2/ky)lgnlglgn). This additional num-
ber of delivery cycles is also O(lgnlglgn), which is
O(lgnlgA(M)).

If A\(M) > (k2/ki)lgnlglgn, the number of delivery
cycles executed before reaching line 8 is O(lgnlglgn) as
before, which is O(A(M)). We must then add O(Aguess)
cycles for each call of TRY-GUESS in line 10. Since
AGuess is at most 2A(M), the total additional number
of delivery cycles 1s

O(2A(M)) + O(A(M)) + O(A(M)/2) + - -
+0(lgnlglgn)

> 02 A(M))

0<i<t

0(A(M)) ,

Il

where t = 1+1g(k A(M)/k2lgnlglg n). The total num-
ber of delivery cycles is thus O(A(M)). |l

The 1 — O(1/n) bound on the probability that
RANDOM delivers all the messages can be improved
to 1 — O(1/n*) for any constant k by choosing kp =
12(k + 2)r, or by simply running the algorithm through
more choices of Aguess-

We can also use KANDOM to obtain a routing al-
gorithm which guarantees to deliver all the messages
in finite time with expected number of delivery cycles
given in Figure 2. We simply interleave RANDOM with
any routing strategy that guarantees to deliver at least
one message in each delivery cycle. If the number of
messages is bounded by some polynomial n”, then we
choose ko such that RANDOM works with probability
1—0(1/nk).

5 Further results

This section contains additional results relevant to rout-
ing on fat-trees. We first present an improved version
of the universality theorem from [8]. Then we give two
results on fat-tree routing that follow from the analysis
of RANDOM. Finally, we show that there are message
sets on which a greedy routing strategy fails to work
well.

Universality

The performance of the routing algorithm RANDOM
allows us to generalize the universality theorem from [8],
which states that a universal fat-tree of a given volume
can simulate any other routing network of equal volume
with only a polylog factor increase in the time required.
The original proof assumed the simulation of the routing
was off-line. Our results show that the simulation can
be carried out in the more interesting on-line context.

Theorem 8 Let F'T be a universal fat-tree of
volume v on a set of n processors, and let R
be an arbitrary routing network also of wvol-
ume v on a set of n processors. Then there
1s an wdentification of processors in FT with
the processors of R with the following prop-
erty. Any message set M that can be delivered
in time t by R can be delivered by FT in time
O((t+1glg n)1g® n) with probability 1—O(1/n).

Sketch of proof. The proof follows that of [8]. The reader
1s referred to that paper for details. The routing network
R of volume v is mapped to FT in such a way that any
message set M that can be delivered in time ¢t by R
puts a load factor of at most O(tlg(n/v?*/®)) on FT.
By Theorem 7, the message set M can be delivered by
RANDOMin O(tlg(n/v?/3)+1g nlglg n) delivery cycles
with high probability. Since each delivery cycle takes at
most O(lg® n) time, the result follows. fi

Remark. The delivery cycle time of the off-line fat-
trees presented in (8] is ©(lgn). The on-line fat-trees
described in Section 1 have a basic delivery cycle time
of (-D(Ig'2 n) because the concentrator switches have log-
arithmic depth. We have discovered a simpler on-line
fat-tree with delivery cycle time of ©(lgn), but unfor-
tunately, the number of delivery cycles required by a
RANDOM-like algorithm is increased by a factor of lg n.
It seems reasonable to look for fat-tree structures which
save the factor of lgn in delivery cycle time without
displacing it elsewhere.

Off-line routing

Our analysis for RANDOM has repercussions for the
off-line routing case. Since we have shown that with
high probability, the number of delivery cycles given by
Figure 2 suffices to deliver a message set with load factor
A, there must exist off-line schedules using this many
delivery cycles, which improves the bound of O(\lgn)
given in [8]. The previous off-line bound was proved by
deterministically constructing a routing schedule that
achieves the bound. Our better bound does not yield a
deterministic construction of the routing schedule, but
it does yield a probabilistic one.

Larger channel capacities

We can improve the results for on-line routing if each
channel ¢ in the fat-tree is sufficiently large, that is if
cap(c) = Q(lgn) Specifically, we can deliver a message
set M in O(X(M)) delivery cycles with high probability,
1.e., we can meet the lower bound to within a constant
factor. The better bound is achieved by the algorithm
RANDOM-2 shown in Figure 5.



e Sigee il
while M # @ do

3 for each message m € M, choose a random
number 7, € {1,2,...,z}

4 for 1 — 1 to z do

5 send all messages m such that 7, =<

6 endfor

7 Z—2z

8 endwhile

Figure 5: Algorithm RANDOM-2 for routing in a fat-tree with
channels of capacity (lgn).

Theorem 9 For any message set M on an
n-processor fat-tree with channels of capacity
Q(lgn), the probability vs at least 1 — O(1/n)
that RANDOM-2 will deliver all the messages
of M in O(A(M)) delivery cycles, of AM(M) s
polynomaally bounded.

Proof. Let the lower bound on channel size be algn, and
let n* be the polynomial bound on the load factor A(M).
We consider only the pass of the algorithm when z first
exceeds ¢2(F+2)/2X(M). We ignore previous cycles for
the analysis of message routing, except to note that the
number of delivery cycles they require is O(A(M)).

We first consider a single channel ¢ within a single
cycle ¢ from among the z delivery cycles in the pass.
Since each message has probability 1/z of being sent in
cycle z, we can apply Lemma 4 with p = 1/z to conclude
that the probability that channel ¢ is congested in cycle
1 1s at most

(e)\(M)>r:t[n(") 5 kt:(’np‘r‘)

z

2—(k+2)1gn

1
nk+2 °

INA

Since there are O(n) channels, the probability that there
exists a congested channel in cycle 7 is O(1/n**1). Fi-
nally, since there are z < 2¢2(K T2/ )\(M) = O(M\(M)) =
O(n*) cycles, the probability is O(1/n) that there exists
a congested channel in any delivery cycle of the pass.

Greedy strategies

We have shown that there are no message sets on which
RANDOM fails to work well. It is natural to wonder
whether a simple greedy strategy of sending all undeliv-
ered messages on each delivery cycle, and letting them
battle their ways through the switches, might be as ef-
fective. We can show that no greedy strategy works as

1  while M # ¢ do

2 send M

3 M — M — {messages delivered}

4 endwhile

Figure 6: Algorithm GREEDY for delivering a message set

M.

well as RANDOM. Specifically, for any A > 1, there
is a message set with load factor A which causes the
greedy strategy to take Q(Algn) delivery cycles on an
n-processor fat-tree. This lower-bound result is based
on an idea originally due to Miller Maley of MIT.

Figure 5 shows the greedy algorithm. The code for
GREEDY does not completely specify the behavior of
message routing on a fat-tree because the switches have
a choice as to which messages to drop when there is
congestion. (The processors also have this choice, but
we shall think of them as being switches as well.) In
the analysis of RANDOM, we could presume that all
messages in a channel were lost if the channel was con-
gested. To completely specify the behavior of GREEDY,
we must define the behavior of switches when channels
are congested.

The lower bound for GREEDY covers a wide range of
switch behaviors. Specifically, we assume the switches
have the following properties.

1. Each switch is greedy in that it only drops messages
if a channel is congested, and then only the mini-
mum ]]lllll])el' necessary.

2. Each switch is oblivious in that decisions on which
messages to drop are not based on any knowledge of
the message set other than the presence or absence
of messages on the switch’s input lines.

We define the switches of a fat-tree to be admaissible if
they have these two properties. The conditions are satis-
fied, for example, by switches that drop excess messages
at random, or by switches that favor one input channel
over another. An admissible switch can even base de-
cisions on its previous decisions, but it cannot predict
the future or make decisions based on knowing what (or
how many) messages it or other switches have dropped.

Theorem 10 Consider an n-processor fat-tree
with admissable switches, where the channel
capacities grow at a rate o in the range 1 <
a < 2. Then for any A > 1, there exists a mes-
sage set with load factor A on which GREEDY
requires 1(Algn) delivery cycles.

Sketch of proof. We use an adversary argument and con-
structs a message set in which all messages are directed



out the root. We first specify that the root switch is
congested for (2()) delivery cycles and demand to know
what decisions the switch has made. Of the two subtrees
of the root switch, we call the one which provides more
than half the delivered messages the favored subtree. If
both supply the same number, we pick one arbitrarily
to be favored.

We then recursively design a message set for the un-
favored side that has load factor A, and put as many
messages as possible on the favored side without ex-
ceeding a load factor of A for the entire fat-tree. We
design the message set in such a way as to be consistent
with our specification that the root switch be congested
for Q1(A) delivery cycles. The crux of the construction
is to ensure that as we go down the fat-tree following
unfavored sides of switches, the messages delivered ear-
lier will not uncongest the switches lower down. At each
level of the fat-tree, we show that (A) delivery cycles
are required. |

6 Concluding remarks

The analysis of the algorithm RANDOM gives reason-
ably tight asymptotic bounds on its performance, but
the constant factors in the analysis are large. In prac-
tice, smaller constants probably suffice, but it iz difficult
to simulate the algorithm to determine what constants
might be better. Unlike Valiant’s algorithm for rout-
ing on the hypercube, our algorithm does not have the
same probabilistic behavior on all sets of messages, and
therefore, the simulation results may be highly corre-
lated with the specific message sets chosen. The search
for good constants is thus a multidimensional search in
a large space, where each data point represents an ex-
pensive simulation.

The idea of using load factors to analyze arbitrary
networks is a natural one. We have been successful in
analyzing fat-trees using this measure of routing diffi-
culty. It seems unlikely that large parallel supercom-
puters will only need to route permutations, but rather,
they will need some distributed means to break apart
their message sets into routable permutations. We ex-
pect that analysis in terms of load factor can be applied
to other networks with positive results.
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