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CHAPTER I 

INTRODUCTION 

People with neuropathologies that are treated with dopamine (DA) agonists may 

be at risk to develop impulse control disorders (ICDs).  ICDs are defined as a group of 

psychiatric disorders characterized by a failure to resist an impulse, drive, or temptation 

to perform an act that is harmful to the individual or to others.  In North America, they 

most commonly occur in the form of pathological gambling, hypersexuality, excessive 

shopping, or excessive eating.  The first published reports of this phenomenon came from 

Parkinson’s disease (PD) patients.   Reports in restless leg syndrome (RLS) patients then 

followed.  Speculation regarding the particular drugs most responsible for these behaviors 

included Requip® (ropinirole) and Mirapex® (pramipexole; PPX).  Both drugs are direct 

DA receptor agonists that demonstrate a preference for the DA D3 receptor (D3R) over 

the DA D2 receptor (D2R).  PPX was FDA approved for PD in 1997 and for RLS in 

2006 and currently is being used off label for other pathologies including major 

depression, fibromyalgia, and bipolar disorders.  In these latter two conditions, case 

reports about patients developing PPX-induced pathological gambling have appeared.  

Thus, once thought to be a phenomenon to the PD population, ICDs are now evident in 

several other neuropathologies.  The idea that properties of the DA agonists themselves 

can influence impulsive behavior is gaining acceptance as clinical studies using healthy  
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controls demonstrate that drugs such as PPX can shift reward-based learning towards 

increased risk-taking.  Although it appears that the properties of these DA agonists are  

contributing to ICDs, it does not preclude the possibility that a brain state, such as that 

seen in PD, makes the individual more vulnerable. 

At the time this dissertation was being developed there was a struggle for some 

people to accept these therapy-induced ICDs as a true phenomenon.  Common questions 

arose.  Was the incidence of ICDs greater in PD than in the general population?  How 

could a drug used for motor complications be causing individuals to throw away their life 

savings at a casino, or increase their sexual desires?   Given the anecdotal evidence at the 

time, there was a clear need to develop preclinical animal models to study the 

neurobiology, pharmacology, and behavioral effects of these drugs. 

The overall goal of this thesis dissertation project was to expand our knowledge 

on the neuropsychopharmacology of DA agonist-induced impulsivity.  At the time this 

dissertation was being developed, PPX was the drug, pathological gambling was the 

behavior, and PD was the pathology most widely reported for this phenomenon.  

Therefore, we first developed a behavioral paradigm (i.e., a probability discounting) to 

measure risk-taking, one aspect of gambling.  Next, we utilized this paradigm to 

determine if risk-taking was altered after acute and/or chronic PPX treatment.  We 

incorporated an animal model of PD in this study to determine if a PD-like brain state 

alters the response of PPX in the discounting paradigm.  The final series of studies 

focused on determining if a limbic brain region that is involved in reward-related 

behaviors is also altered by acute and chronic PPX exposure.  Prior work from our 

laboratory and others suggest that the ventral pallidum (VP) would be a region of interest.  
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The VP mediates animals’ responses to rewards and VP neural activity integrates 

predictive, incentive, and reward value information.  As studies show that PPX can alter 

aspects of impulsivity, such as risk-taking, as well as enhance the motivational salience 

of reward-related cues, it is possible that the VP plays a role in mediating these effects of 

PPX.  Accordingly, we hypothesized that VP neuronal activity is altered by behaviorally 

relevant doses of PPX.  To test this hypothesis, we utilized single cell extracellular 

electrophysiological techniques to investigate the effects of systemic PPX on VP 

neuronal firing rate.  Finally, as D3Rs can mediate reward-seeking behavior, we 

investigated the influence of D3Rs in the ability of PPX to alter VP neuronal firing rate 

using PG01037, one of the most D3R-selective antagonists available to date.  

Collectively, my studies demonstrate that acute administration of PPX treatment 

enhances risk-taking in rats and also modulates VP neuronal firing rate, this modulation 

appears to be mediated by D3R activation.  Chronic treatment with PPX enhances 

risking-taking compared to acute treatment.  Chronic treatment also enhances the potency 

of PPX to alter VP neuronal firing rate.  Finally, these studies suggest that a PD-like brain 

state does not alter PPX-induced alterations in risk-taking.   
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CHAPTER II 

 LITERATURE REVIEW 

Parkinson’s disease and dopamine replacement therapy 

Parkinson’s disease 

PD is classically considered a movement disorder that is characterized by a 

significant loss of DA in the dorsal striatum and loss of neurons in the nigrostriatal 

pathway (Fearnley and Lees, 1991; Bernheimer et al., 1973).  When the cardinal motor 

signs present (bradykinesia, resting tremor and rigidity) approximately 60% of 

dopaminergic nigral neurons are lost and striatal DA content is reduced by 60-80% 

(Tissingh et al., 1998).  An understanding of the motor pathways that are influenced by 

the dopaminergic nigrostriatal system can help explain how movement is affected in PD.  

As diagrammed in Fig. 1, a popular model of the motor circuitry of the basal 

ganglia (Albin et al., 1989; Wichmann and DeLong, 1993) involves “direct” and 

“indirect” pathways.  Both pathways originate in the striatum (caudate putamen) and 

converge on the same motor output structures (i.e., medial globus pallidus (GPm) and the 

substantia nigra pars reticulata (SNpr)).  DA released from the substantia nigra pars 

compacta (SNpc) is able to both excite and inhibit striatal neurons; this modulation is 

thought to occur via DA activating D1-like receptors and D2-like receptors, respectively.  

In general, D1-like family of receptors (which includes the D1 and D5 subtypes) are  
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highly localized in striatal neurons that project directly to the GPm/SNpr, whereas D2-

like family of receptors (which includes the D2R, D3R and D4R subtypes) are highly 

localized in striatal neurons that project to the GPm/SNpr via the lateral globus pallidus 

(GPl) and subthalamic nucleus (STN) (Gerfen et al., 1990; Surmeier et al., 1996; Gong et 

al., 2003).  DA-induced activation of the direct pathway and inactivation of the indirect 

pathway can have opposite effects on motor behavior (Kravitz et al., 2010).  Thus, in 

general, DA acting on D1Rs in the direct pathway facilitates movement; DA acting on 

D2Rs in the indirect pathway inhibits movement.   

Several mechanisms by which DA modulates (i.e., increases or decreases) the 

activity of striatal neurons have been elucidated.  For example, DA can modulate the 

intrinsic excitability of striatal neurons.  At rest striatal neurons are held in a 

hyperpolarized state and glutamatergic input from the cortex can depolarize the 

membrane potential of these striatal neurons (Shen et al., 2007).  Activation of D2Rs 

diminishes, while activation of D1Rs supports the ability of glutamate to depolarize the 

neuron (Surmeier et al., 2007).  DA can also modulate the ion channels that influence 

neuronal firing.  For example, activation of striatal D2Rs in the indirect pathway can 

inhibit neuronal activity by suppressing calcium currents (Hernandez-Lopez et al., 2000).  

D1R activation can excite neuronal activity by enhancing L-type calcium currents 

(Hernandez-Lopez et al., 1997).   These, plus other mechanisms are thought to allow 

nigrostriatal DA to modulate motoric behavior. 

Recently, a third ‘hyperdirect’ pathway was incorporated into this circuit model 

which is a cortico-STN-pallidal pathway (for review, see (Nambu et al., 2002)).  The 

term ‘hyperdirect’ refers to the observation that the signal conduction time from this 
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pathway is faster than that observed in the direct and indirect pathway (Nambu et al., 

2000).  The hyperdirect pathway exerts powerful excitatory effects on the GPm/SNpr 

and, similar to the indirect pathway, its activation results in an inhibition of the thalamic 

motor nuclei and motor cortex.   

In PD, nigrostriatal dopaminergic degeneration induces a decrease of striatal 

inhibition via the direct pathway and an increase in subthalamic activation via the indirect 

pathway, both of which result in hyperactivity of the GPm/SNpr (see Fig. 2).  The 

increase of inhibition exerted by the GPm/SNpr on the motor thalamo-cortical projections 

leads to inhibition of motor cortical areas, resulting in an inhibition of movements, seen 

as bradykinesia in PD.   

The ability of DA agonists to not only improve motor but also affect decision 

making has been linked to the indirect and direct pathway.  Frank and colleagues have 

generated computational models that use these direct pathway (i.e., the ‘GO’ pathway) 

and the indirect pathway (i.e., the ‘NoGo’ pathway) to explain how reinforcement 

learning can influence decision making both in a PD-like brain state and with DA agonist 

treatment (Frank et al., 2004).  This will be discussed in further sections. 

 

Dopamine replacement therapy 

DA replacement therapy is used to treat the motor symptoms in PD.  Common 

therapies include the indirect DA agonist, levodopa (L-DOPA), and the direct DA 

agonist, PPX.  L-DOPA was first introduced as a therapy for PD in the 1960’s.  In the 

brain, L-DOPA is taken up by surviving neurons and converted to DA by the enzyme 

DOPA decarboxylase.  DA is then stored and, upon neuronal activation, is released.  DA 
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acts on two different G-protein coupled receptor families, the D1Rs and D2Rs.  As 

mentioned above, the D1 family includes the D1R and D5R subtypes; these are coupled 

to the Gs protein, and can activate adenylyl cyclase and thus increase intracellular 

concentrations of the second messenger cyclic adenosine monophosphate (cAMP).  The 

D2 family includes the D2R, D3R, and D4R subtypes that are coupled to the Gi/o protein 

and inhibits the formation of cAMP by inhibiting adenylyl cyclase (Spano et al., 1978; 

Kebabian and Calne, 1979).  In PD, the imbalance of the direct pathway and the indirect 

pathway is thought to be rectified by DA synthesized from L-DOPA.  Over time, 

however, its continued use leads to dyskinesias or abnormal involuntary movements 

(Marsden and Parkes, 1977) which can be more debilitating than the movement disorder 

caused by the disease itself.  During L-DOPA therapy, motor response fluctuations also 

occur throughout the day, alternating between “ON” and “OFF” periods.  In the “ON” 

periods, L-DOPA is working optimally, during “OFF” periods the patient is slow, rigid, 

tremulous, and dystonic.  Therefore, due to some of the shortcomings of L-DOPA 

treatment, other DA replacement therapies alone, or in combination with L-DOPA are 

used.   

PPX was FDA-approved for PD treatment in 1997.  The half life of PPX in 

humans is 8-12hr (Wright et al., 1997), whereas in rats, it is estimated to be 

approximately 4hr (Ferger et al., 2010; Panchal et al., 2010).  PPX is a direct DA receptor 

agonist that functions via activation of the D2-like receptor family, with highest affinities 

for D3Rs.  Examples of reported Kis for PPX are as follows: D3R, 0.9nM; D2R, 6.9nM; 

D4R, 15nM; D1R >1,000nM (Piercey et al., 1996).   PPX has a low affinity for α2-

adrenoceptors and negligible affinities for other adrenergic, histaminergic, serotonergic, 
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cholinergic, glutaminergic, adenosine, and benzodiazepine receptors (Piercey, 1998).  

Collectively, studies show that PPX has a preference for the D3R over the D2R; however, 

there are discrepancies regarding the degree of selectivity of PPX for these two receptors 

between in vivo and in vitro assays.  In vitro studies, using binding assays and 

mitogenesis assays, report PPX to be 5 to 170-fold more selective for D3Rs compared to 

D2Rs (Mierau et al., 1995; Sautel et al., 1995; Perachon et al., 1999; Newman-Tancredi 

et al., 2002).   

The Woods laboratory (Collins et al., 2009; Collins et al., 2007; Collins et al., 2005) and 

others (Yamada and Furukawa, 1980) have demonstrated that various dopaminergic 

drugs, including PPX, induce yawning in rats (which is driven in part by DA receptor 

stimulation in the paraventricular nucleus of the hypothalamus (Mogilnicka and Klimek, 

1977; Holmgren and Urba-Holmgren, 1980; Argiolas et al., 1989).  They show that DA 

agonists produce an inverted U shaped dose-response curve.  Lower doses increase while 

higher doses decrease the number of yawns per minute.  Activation of D3Rs drives the 

initial ascending arm of the curve while D2Rs drive the latter descending part of the 

curve (Collins et al., 2005).  Using this behavioral assay, the Woods laboratory 

determined that PPX-induced yawning at doses up to 100µg/kg are D3R selective, while 

higher doses activate D2Rs (Collins et al., 2009; Collins et al., 2007; Collins et al., 2005).  

They also determined that PPX is ~30 fold selective for D3R over D2R (Collins et al., 

2007).  These discrepancies in selectivity between in vivo and in vitro may be due to the 

differences in species, expression systems, radioligands, and/or assay conditions (Collins 

et al., 2007).  Regardless of these discrepancies, it is clear that PPX is acting as a direct 
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agonist at both D2R and D3Rs.   It is this receptor activation profile that is believed to be 

contributing to both motor and reward-related effects of PPX. 

D2Rs are located throughout the nigrostriatal and mesolimbic systems, whereas 

D3Rs are relatively less abundant and restricted more to the mesolimbic regions 

compared to the nigrostriatal pathway (Bouthenet et al., 1991; Diaz, 1995; Diaz, 2000; 

Levant, 1997; Sokoloff, 1990; Landwehrmeyer, 1993a; Landwehrmeyer, 1993b; Meador-

Woodruff, 1994).  D2R and D3R are located both postsynaptically and presynaptically.  

Presynaptically, they function as autoreceptors that affect DA synthesis, release and 

signaling.  The ability of PPX to alleviate PD symptoms is thought to lie in its ability to 

directly stimulate postsynaptic receptors in the striatum.  The mechanism of action for 

PPX to improve motor impairments in PD is unknown.  However, PPX has been 

proposed to simultaneously excite the “direct” pathway (by D3R stimulation) and inhibit 

the “indirect” pathway (by D2R stimulation).  As explained by Piercey (1998), in the 

caudate, neurons can be characterized as type I or II based on the waveform of their 

action potentials.  PPX, acting on D3Rs, can excite type II caudate neurons (Piercey et 

al., 1997) assumed to be in the “direct” pathway.  At least three studies provide evidence 

that D3Rs can be expressed in the direct pathway.  First, D3Rs colocalize with D1Rs on 

substance P/dynorphin-containing neurons (Surmeier et al., 1996).  Second, DA 

denervation of the striatum (i.e., a 6-OHDA-induced lesion to the medial forebrain 

bundle (MFB) can lead to D3R expression on D1-expressing neurons (Bordet et al., 

1997).  Third, PPX-induced activation of type II caudate neurons can inhibit neuronal 

activity in the SNpr (Hoffman et al., 1996) which is a predicted outcome of activation of 

the direct pathway (see Fig. 1).  The ability of D3Rs to activate the striatal neurons seems 
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counterintuitive since this receptor is Gi linked.  However, D1R and D3Rs can form 

heterodimers in the striatum (Marcellino et al., 2008).  In vitro studies show that chronic 

stimulation of the D3R with PPX leads to a sensitized activation of adenylyl cyclase 

(Maggio et al., 2009) suggesting that this could lead to activation of the direct pathway 

via the D1R associated Gs-protein.  Therefore, it appears that PPX improves motor 

deficits by activation of striatal D2Rs and D3Rs which re-establishes a balance in the 

basal ganglia direct and indirect pathways.   

 

Introduction to impulse control disorders 

Although beneficial for motor symptoms, DA replacement therapies such as L-

DOPA and PPX can induce maladaptive reward-related behaviors in some individuals.  

One of the most detrimental side effects includes ICDs.  ICDs have been described as 

“behavioral addictions” (Grant et al., 2010) and are defined by a “failure to resist an 

impulse, drive or temptation to perform an act that is harmful to the person or others” 

(American Psychiatric Association, 2000).  DA agonist-induced ICDs are diverse and 

culturally based (Kim et al., 2012).  In North America, they commonly include 

problem/pathological gambling, hypersexuality, compulsive shopping and binge eating 

(Weintraub et al., 2010).  The Dominion Report, a cross sectional study which included 

over 3000 PD patients, reported that ICDs occur in approximately 14% of PD patients; 

pathological gambling was found in 5% of the patients (Weintraub et al., 2010).  Life 

time prevalence of pathological gambling in the North American general population is 

estimated at 1-2% (Shaffer and Hall, 2001).  The Dominion Report provides evidence 

that ICDs can develop directly from agonist treatment. 
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Impulsivity can be regarded as “actions that appear poorly conceived, prematurely 

expressed, unduly risky, or inappropriate to the situation” (Daruna and Barnes, 1993).  

While at times impulsivity can be a beneficial character trait, (Dickman, 1990), it is 

generally recognized as a dysfunctional trait that is frequently associated with numerous 

neurological and psychiatric disorders including frontal lobe damage, schizophrenia, 

attention deficit-hyperactive disorder, substance abuse disorders and behavioral 

addictions, such as pathological gambling.  According to the American Psychiatric 

Association, ICDs are a form of psychiatric disorder (American Psychiatric Association, 

2000). 

In the 1970’s, there were some case reports of hypersexuality in patients treated 

with L-DOPA (Ballivet et al., 1973; Bowers, Jr. et al., 1971; Wodak et al., 1972), but 

over the years little attention was given to this issue (Harvey, 1988; Jimenez-Jimenez et 

al., 1999; Vogel and Schiffter, 1983).  When cases of ICDs re-emerged in the 2000’s 

(Seedat et al., 2000; Molina et al., 2000), relatively fewer case reports linked L-DOPA 

use to ICD’s (Molina et al., 2000) as compared to the direct DA agonists.  Indeed, the 

Dominion Report revealed that ICDs were more common in patients treated with a DA 

agonist than in patients not taking a DA agonist (Weintraub et al., 2010).  They reported 

that an ICD was present in 17.7% of patients taking both a DA agonist and L-DOPA, and 

in 14.0% taking a DA agonist without L-DOPA.  These data clearly point to a role of DA 

agonists, and not L-DOPA, in medication-induced ICDs. 

Rather than ICDs, L-DOPA monotherapy has been linked to DA dysregulation 

syndrome (a.k.a., hedonistic homeostatic dysregulation), a condition in which the patient 

takes their DA replacement therapy in excess of their therapeutic requirements (Lawrence 
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et al., 2003).  Their medication use is maladaptive in so much as they self-escalate their 

doses even in the face of adverse consequences, which can include disabling dyskinesias, 

mood disorders and complex stereotypies (Lawrence et al., 2003).  It is estimated that up 

to 4% of PD patients develop a DA dysregulation syndrome (Lawrence et al., 2003). 

Epidemiological studies have characterized several vulnerabilities related to the 

occurrence of ICDs in PD patients.  These include male gender, younger age, younger 

age at PD onset, a pre-PD history of ICD(s), personal or family history of substance 

abuse, and general impulsive personality traits (Voon et al., 2007; Weintraub et al., 

2010).  Lacking are reports that detail the onset of ICDs once DA agonist treatment is 

started, although one case study reported that in some patients onset occurred within 3 

months of starting or escalating the dose of agonist (Dodd 2005).  The primary 

management of ICDs in PD is discontinuation of DA therapy.  The urges associated with 

ICDs can dissipate within days to weeks, and some patients are aware of this quite 

suddenly after a dose reduction (Macphee, personal communication).  Not all patients can 

tolerate this, however, due to worsening motor symptoms and/or a DA withdrawal 

syndrome (Pondal et al., 2012; Rabinak and Nirenberg, 2010).   

 

Impulse control disorders and reward-related learning 

ICDs such as pathological gambling are fundamentally a breakdown in the 

decision-making process.  Reward based decision-making is critically dependent on 

learning about rewards.  I would like to discuss at least three forms of learning that are 

necessary to help an individual make appropriate reward-based decisions which I think 

are critical in the development of ICDs, particularly pathological gambling.  The first 
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form of learning is a general reinforcement learning strategy that is based on trial and 

error.  During this type of learning, an individual can generate predictions about whether 

or not a reward is going to be present, when the reward will be delivered, and how large 

or small the reward will be.  Depending on the learned expectations of the reward, the 

individual can appropriately decide if it is worth seeking out.  Positive outcomes, such as 

novel rewards, can generate seeking behavior, while negative outcomes, such as omission 

of rewards, can generate inhibition of behavior.  In ICDs, it is thought that reward 

omissions are not properly processed, therefore learning from negative outcomes is 

impaired.  The consequence is aberrant decision making.  A second form of learning is 

reversal learning.  In this case, an individual can inhibit a behavior that is no longer 

reinforcing and switch to a different behavior.  Such behavioral flexibility is critical when 

reward-related conditions are changing.  If the ability to learn a new rule changes or the 

ability to inhibit a response is impaired, the individual may continue to perform a 

behavior that once was, but no longer is, reinforcing.  These two forms of learning are 

critical in guiding behavior that can lead to maximizing rewards.  These forms of learning 

are particularly critical for maximizing rewards in a probability discounting task.  This is 

a task that is used to measure risk-taking, on aspect of impulsivity, and a prominent 

behavior in ICDs such as pathological gambling.   In a probability discounting task, a 

subject chooses between a small reward that is always delivered and a large reward that is 

delivered with varying probabilities.  Risk-taking is defined as a preference for the large, 

uncertain reward.  Learning about reward predictions is critical in this task.  When the 

probability of delivery of the large reward is high, it is optimal for the individual to 

choose the large reward over the small reward.  However, when the probability of 
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delivery of the large reward is low and choosing that option continually leads to no 

reward, it optimal to switch and choose the smaller, guaranteed reward.  Inherent to 

optimizing rewards is the ability to demonstrate reversal learning (i.e., the ability to make 

the switch from selecting a previously large reward to now selecting a small, but certain 

reward).   

A third form of learning is reward-mediated associative learning.  Learning about 

cues that are associated with rewards is critical because those cues can predict the 

availability of the reward.  As mentioned before, ICDs have been compared to drug 

addictions where behaviors are continued, even in the face of adverse consequences 

(Brewer and Potenza, 2008).  Through associative learning, cues that have become linked 

to rewards can acquire salience and the cues can then act as powerful reinforcers that 

motivate the individual to seek out rewards and related cues, thus driving the addiction.  

Abnormal learning about rewards/cues could influence decision-making such that 

reward-seeking becomes the focus of the individual and self-control and behavioral 

inhibition are compromised.  This behavioral profile is consistent with impulsive-like 

behaviors.   In rats, D2/D3R agonists, including PPX can influence associative learning 

(Riddle et al., 2012; Collins et al., 2011) and reversal learning (Haluk and Floresco, 

2009).  In PD patients, PPX can disrupt reward-related learning in probability reversal 

learning task; it appears that learning by negative outcomes is impaired (Cool et al., 

2001).  In this dissertation we employed a probability discounting task to test our 

hypothesis that PPX would increase risk-taking behavior in rats.   
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Impulse control disorders and the related neurocircuitry 

Brain regions that can mediate the three forms of learning discussed above are 

located in the limbic regions of the brain.   I will discuss each of these brain regions and 

their contribution to decision making (see Fig. 3 for a schematic of these brain regions).   

Dopaminergic neurons in the VTA can fire in a slow ‘tonic’ pattern or in a 

bursting ‘phasic’ pattern (Grace and Bunney 1984).  The tonic firing supplies a baseline 

level of extrasynaptic DA in postsynaptic structures and in general activates D2Rs 

(Grace, 1991), whereas the phasic firing releases a transient increase in DA thought to be 

restricted in the synaptic cleft and is thought to act on D1Rs (Grace, 1991).  These firing 

patterns encodes reward prediction errors  (Montague et al., 1996; Schultz et al., 1997; 

Pagnoni et al., 2002; Pessiglione et al., 2006; Cohen et al., 2012; Enomoto et al., 2011).  

For example, some of these neurons will fire in a phasic pattern when an unpredicted 

reward is encountered (i.e., a positive reward prediction error; Hollerman et al., 1998; 

Waelti et al., 2001).  On the other hand, some of these neurons will show a transient 

depression in baseline rate of activity, thought to be a pause in the spontaneous ‘tonic’ 

firing (Grace and Bunney 1984), when an expected reward is not delivered (Schultz, 

2002; Bayer et al., 2007; Tobler et al., 2003).  This results in a transient decrease in tonic 

release of DA to output structures and has been referred to as a ‘DA dip’.   

Many of the VTA output structures are also implicated in influencing risky 

decision making.  These include the NA, AMG, and the VP.  DA released from the VTA 

onto the NA is critically involved in the reinforcing and motivational effects of natural 

and drug rewards (Wise and Bozarth, 1981; Koob, 1996).  DA signaling in this 

mesoaccumbal pathway plays an important role in response selection, behavioral 
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flexibility, associative learning, and risk-taking behavior as measured in probability 

discounting paradigms (Salamone et al., 1997; Ikemoto and Panksepp, 1999; Cardinal 

and Howes, 2005).  The NA can also generate prediction errors, (Sugam et al., 2012; 

Schultz et al., 1992).  The AMG processes stimulus–reward associations, particularly 

emotional responses.  This is critical for the role of the AMG in associative learning 

(Kentridge et al., 1991), reversal learning (Stalnaker et al., 2009; Churchwell et al., 

2009), and prediction errors (McNally et al., 2011).  The AMG also plays a role in risk-

taking as measured in a probability discounting task (St Onge et al., 2012).  The 

hippocampus computes spatial and contextual information (Stubley-Weatherly et al., 

1996) that is important for associative learning (Shen et al., 2006), and novelty learning 

(Cooper et al., 2001; Legault and Wise, 2001).  The ventral pallidum (VP) is a critical 

substrate in associative learning (Dallimore et al., 2006; Mickiewicz et al., 2009; Gong et 

al., 1996).  It encodes predictive and motivational information about rewards and their 

associated stimuli (Tindell et al., 2004;Tindell et al., 2005).  The VP also encodes 

expected reward values (Tachibana and Hikosaka, 2012).  Additionally, the VP has a 

direct influence over tonic spiking activity of dopaminergic neurons in the VTA 

(Floresco et al., 2003), thus placing it in position to modulate the response of VTA to 

rewards.  The subthalamic nucleus (STN) is another brain region that mediates decision 

making.  Historically associated with the movement and the basal ganglia, the STN is 

now known to influence impulsivity (Bogacz et al., 2012) as well as mediate reversal 

learning (El Massioui et al., 2007).  Finally, the pedunculopontine nucleus (PPN), which 

is located in the brainstem, is a region that encodes reward prediction errors (Kobayaski 

and Okada, 2007) and is involved in associative learning (Bortolanza et al., 2010).  The 
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PPN can directly regulate the phasic firing of dopaminergic neurons in the VTA 

(Floresco et al., 2003), thus placing it in position to modulate the response of VTA to 

rewards.   

 The PFC plays a critical role in mediating self-control.  The PFC can be divided 

into several different subregions, with each controlling different aspects of decision-

making.  There are three regions that are considered particularly relevant for risk-taking 

and pathological gambling (see Fineberg et al., 2009).  These include the orbitofrontal 

cortex (OFC), the ventromedial PFC (VMPFC) and the anterior cingulate cortex (ACC).   

Damasio, Bechara and colleagues revealed that the OFC mediates risk-taking as 

measured in an Iowa gambling task (Bechara et al., 1994; Bechara et al., 1999).  The 

OFC is also involved in reversal learning (Ragozzino, 2007).  Damage to the 

ventrolateral PFC (VLPFC) results in a blunted reaction to aversive outcomes as well as 

risk-taking behavior (Floden et al., 2008).  The ACC mediates response-inhibition and 

reversal learning (Kerns et al., 2004; Kosaki and Watanabe 2012).  The ACC also 

encodes reward prediction errors and is speculated to evaluate the consequences of 

choices made (Wallis and Kennerley, 2011).  Collectively, all of these regions work 

together to evaluate reward-relevant contextual information from the environment and 

evaluate expectations of rewards so as to make decisions on how to execute behavior.  

Clinical studies demonstrating how these brain regions are affected in aberrant decision 

making are discussed below.   
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The ventral pallidum and its role in reward-meditated behaviors 

In this section, I will expand on the importance of the VP as a mediator of reward-

related behaviors.  The VP is located at an interface between the mesolimbic system and 

the nigrostriatal system.  A schematic of these brain regions are shown in Fig. 4.  The VP 

receives projections from the NA (Groenewegen et al., 1993; Nauta et al., 1978; Chrobak 

and Napier, 1993), AMG (Krettek and Price, 1978; Bayer et al., 2007; Leonard and Scott, 

1971; Mitrovic and Napier, 1998; Maslowski-Cobuzzi and Napier, 1994), PFC (Delgado-

Martinez and Vives, 1993; Sesack et al., 1989), STN (Turner et al., 2001; Groenewegen 

and Berendse, 1990), and VTA and SNpc (Maslowski-Cobuzzi and Napier, 1994; 

Mitrovic and Napier, 2002; Klitenick et al., 1992).  The VP projects to the NA (Churchill 

and Kalivas, 1994; Hakan et al., 1992), STN (Maurice et al., 1997; Bell et al., 1995), PFC 

(Sesack et al., 1989), VTA (Groenewegen et al., 1993; Kalivas et al., 1993), SNpr 

(Maurice et al., 1997), and brainstem targets including the PPN (Tsai et al., 1989).  Based 

on these inputs and outputs of the VP, it is in a critical position to integrate limbic-

processed reward information and influence final motor activation (Mogenson et al., 

1980). 

Studies highlight a role for the VP in reward and addiction.  For example, the VP 

mediates food reward and consumption (Cromwell and Berridge, 1993; Berridge, 1996; 

Stratford et al., 1999), conditioned place preference (Dallimore et al., 2006; Mickiewicz 

et al., 2009; Gong et al., 1996), and drug self-administration (Tang et al., 2005; Caille and 

Parsons, 2004).  Furthermore, the VP supports ICSS (Panagis et al., 1995).  Critical 

information about rewards is encoded in VP neuronal firing activity.  For example, the 

VP encodes predictive and motivational information about rewards and their associated 
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cues (Tindell et al., 2004; Tindell et al., 2005).  The VP also encodes expected reward 

values (Tachibana and Hikosaka, 2012).  Indeed, rodent and human studies demonstrate 

that the VP is activated by reward cues (Tindell et al., 2009; Mahler and Aston-Jones, 

2012; Tsurugizawa et al., 2012; Childress et al., 2008).  A neuroimaging study detected a 

positive correlation between activation of the VP following appetizing food cues and 

‘reward drive’ (Beaver et al., 2006).  Activation of the VP was also detected during a 

human functional MRI study in which there was increased motivational behavior in 

response to cues that predicted the potential gain of a large quantity of money 

(Pessiglione et al., 2007).   

 D2/D3R agonists, such as quinpirole, can influence VP neuronal activity (Napier 

and Maslowski, 1994; Maslowski and Napier, 1991; Napier, 1992).  Therefore, it is 

predicted that PPX will also influence VP neuronal activity.  The VP is a dopaminergic 

receptive structure (Napier et al., 1991; Napier and Potter, 1989; Klitenick et al., 1992).  

Although the DA innervation is sparse (Fallon and Moore, 1978; Klitenick et al., 1992), 

50-70% of VP neurons are responsive to local application of DA, with similar 

proportions of firing rate-enhancements and suppressions observed (Johnson and Napier, 

1997; Napier and Maslowski, 1994; Mitrovic and Napier, 2002; Napier and Potter, 1989; 

Napier et al., 1991).  A majority of VP neurons are sensitive to electrical activation of the 

VTA and SN (Maslowski-Cobuzzi and Napier, 1994; Mitrovic and Napier, 2002).  

Pharmacological assessments of VP neuronal activity indicate that both D1Rs and D2Rs 

are expressed in the VP (Maslowski-Cobuzzi and Napier, 1994; Napier and Mitrovic, 

1999).  Using microiontophoresis techniques that allow application of D1R and D2R 

agonists within the vicinity of individual recorded VP neurons, spontaneously firing of 
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VP neurons is decreased by D1R agonists while D2R agonists increase firing rates 

(Napier and Maslowski, 1994).  When these agonists are delivered systemically the 

opposite effects are seen.  That is, D1R agonists increase VP neuronal firing rate; 

whereas D2R agonists produce rate decreases (Maslowski and Napier, 1991; Napier, 

1992; Heidenreich et al., 2004; Heidenreich et al., 1995).  These results indicate that VP 

neuronal activity is influenced by direct and indirect circuit related effects.  D3R are also 

expressed in the VP as well as in the related circuitry including the NA, AMG, PFC, 

VTA, SN, and STN (Tziortzi et al., 2011; Murray et al., 1994; Flores et al., 1999; 

Bouthenet et al., 1991; Diaz et al., 1995; Diaz et al., 2000; Levant, 1997; Sokoloff et al., 

1990; Stanwood et al., 2000a; Stanwood et al., 2000b).  Moreover, DA acts as a  

modulator within the VP.  For example, stimulation of the VTA attenuates glutamate-

evoked responses in the VP that are induced by AMG stimulation (Maslowski-Cobuzzi 

and Napier, 1994).  Also, co-application (using microiontophoresis) of DA with either 

glutamate or GABA substantially alters both GABA- and glutamate-evoked VP 

responses (Johnson and Napier, 1997).   Given the direct and indirect effects of DA on 

VP neuronal firing, its role in associative learning and drug seeking behavior, its ability 

to encode predictive and motivational information about rewards and their associated 

cues and its ability to influence tonic DA activity in the VTA, we hypothesize that the VP 

is involved in mediating PPX-induced impulsivity. 

 

Pramipexole-induced alterations in reward-related behavior in clinical settings 

Following the numerous case reports of DA agonist-induced ICDs, clinical 

laboratories began investigating the ability of PPX to influence decision making.  An 
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initial report from the de Wit laboratory suggested that PPX did not influence a variety of 

measures of impulsivity (Hamidovic et al., 2008); however, other studies in healthy 

subjects (Pizzagalli et al., 2008; Riba et al., 2008) as well as in RLS and PD patients 

(without ICDs) (Abler et al., 2009; van Eimeren et al., 2009; Cools et al., 2006; Bodi et 

al., 2009) demonstrated that PPX alters reward-based decision-making.  For example, 

Riba (2008) demonstrated that PPX induces riskier choices following unexpected high 

wins in healthy subjects.  Cools (2006) demonstrated that PD patients are impaired in a 

probabilistic reversal learning task when reversals were signaled by unexpected 

punishment.   The difference between the negative findings in the Hamidovic study and 

the latter studies that showed a PPX-induced effect can possibly be explained by the tasks 

used (i.e., the latter studies all generally used a probabilistic reversal learning task).  

Overall, these studies demonstrate that acute PPX treatment can alter reward-related 

decision making, regardless of the brain state of the individual.  Thus, it appears that PPX 

alters decision making, particularly when probabilistic tasks are involved. 

Recently, behavioral investigations into the differences between PD patients with 

ICDs (PD-ICD) on and off their medication have been made.  Two studies by Voon and 

colleagues demonstrate that PD-ICD individuals display aspects of impulsivity, 

particularly on their medication.  First, PD-ICD individuals have a bias towards riskier 

choices (Voon et al., 2011a), when they are on or taken off their medication (Voon et al., 

2010).  Second, in a temporal discounting task, PD-ICD individuals on 1mg PPX show a 

preference for smaller immediate rewards over larger delayed rewards, indicative of 

increased impulsive choice (Voon et al., 2011b).  Another group replicated these 

findings, showing that PD-ICD individuals on their medication demonstrate higher 
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impulsive choice in a temporal discounting task as opposed to when they were off their 

medication (Housden et al., 2010). 

 Advances in the neurobiology of DA agonist-induced pathological gambling in 

PD patients have been made.  Studies show that PD-ICD individuals process reward and 

risk differently from both PD patients without ICDS and healthy controls.  Indeed, in the 

PD-ICD patients, there appears to be a reduction in activity in the frontostriatal circuitry 

that mediates self-control and an enhancement or sensitization of the mesolimbic system 

that mediates motivation.  Several imaging studies have confirmed a decreased activity in 

the OFC and cingulate cortex in PD patients with DA agonist-induced pathological 

gambling.  For example, in a PET study using a probabilistic feedback task, a DA agonist 

challenge in controls (PD patients with no ICD) increases activity in the OFC and 

cingulate cortex, whereas PD-ICD patients show decreases in activity of these brain 

regions (van Eimeren et al., 2010).  In an fMRI study using a probabilistic feedback task, 

PD-ICD individuals made more riskier choices and demonstrated a reduction in activity 

in the OFC and ACC compared to PD patients without ICDs (Voon et al., 2011a).  On the 

other hand, Steeves and colleagues reported an increase striatal DA release in PD-ICD 

individuals on vs. off medication during a gambling task (Steeves et al., 2009).  At rest, 

imaging studies show that PD-ICD patients compared to PD patients without ICDs have 

greater activity in the hippocampus, AMG and VP (Cilia et al., 2008).  These findings 

dovetail with the proposed circuitry that drives impulsivity (see Fig. 3). 
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Effects of pramipexole in rodent models of impulsivity and measurements of reward 

To date, only a few preclinical studies have assessed the effects of PPX on 

impulsive decision-making.  These studies focused on aspects of risk-taking as measured 

with probability discounting tasks or on impulsive choice, measure by temporal 

discounting tasks.  For example, Fowler and colleagues studied the effects of acute PPX 

in two different rodent models of impulsivity.  They found that PPX (0.1-0.3mg/kg) 

increases preference for gambling-like schedules of food reinforcement such that rats 

switch their preference from a fixed ratio-1 to a variable ratio schedule of reinforcement 

(Johnson et al., 2011).  They also found that PPX influences impulsive choice such that 

rats prefer a smaller-sooner over a larger-delayed food reward when treated with 0.1 and 

0.3mg/kg PPX; however, non-significant trends were found with 0.3mg/kg in a delayed 

discounting task that measures choice over a range of delays that increase throughout the 

session (Madden et al., 2010).  Another lab reported an apparent increase in impulsive 

choice with PPX (0.32mg/kg) although there was a general decrease in choice of the 

large reinforcer independent of delay (Koffarnus et al., 2011).  Collectively, these studies 

provide evidence that acute PPX influences several aspects of decision-making that 

contribute to impulsive behavior. 

There are only two studies that have investigated the intrinsic rewarding 

properties of PPX and both investigated the influence of a PD-like brain state on the 

measured outcomes.  The Napier lab demonstrated that PPX is sufficiently reinforcing to 

support acquisition of a place preference (Riddle et al., 2012) and revealed that a higher 

dose of (±)PPX (4mg/kg, ip) is necessary to induce a place preference in controls 

compared to PD-like rats in which 2mg/kg is sufficient.  Another laboratory 
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demonstrated that rats self-administer PPX (0.25mg/kg/infusion), albeit at lower rates 

than other drugs of abuse such as cocaine (Engeln et al., 2012).  Using a progressive 

ratio-3 task, they revealed weak motivational properties of PPX (i.e., mean break points 

are approximately 3-5 lever presses but range from 5 to 22 lever presses), while an 

extinction paradigm demonstrated that PPX does not sustain high seeking behavior (i.e., 

extinction occurs within 10 minutes).  In all three experimental measures PD-like rats 

performance did not differ from sham controls.  Overall, these two studies provide 

evidence that PPX has intrinsic rewarding properties, but further studies are needed to 

verify if a PD-like brain state modifies the behavioral outcomes. 

Similar to other rewards, PPX can also enhance the motivational salience of 

reward associated cues.  Woods and colleagues demonstrated that PPX enhances the 

reinforcing effects of cues that were previously paired with cocaine (Collins et al., 

2011a).  In the presence of the previously cocaine-paired cues, nose poking rates 

significantly increase during this substitution.  Similar results were seen in a progressive 

ratio task.  Moreover, rats pretreated with PPX demonstrated a significantly higher break 

point when they poke for the presentation of previously paired cocaine cues.  

Collectively, the studies described in this section indicate that PPX alters aspects of 

impulsivity, is intrinsically reinforcing, and can motivate reward-seeking behavior.   

 

Involvement of the D2R family in impulsivity 

Various impulsivity traits are linked to the D2-like receptor family.  Genetic 

studies have associated impulsivity traits with both the D2R and D3R gene (Blum et al., 

1995; Colzato et al., 2010; Forbes et al., 2009; Hamidovic et al., 2009; Noble, 2000; 
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Comings et al., 1994).  Variants of the DRD3 gene are associated with ICD in PD (Lee et 

al., 2009b).   

Several reports in both humans and animals have implicated low D2/D3R 

availability as factor underlying aspects of impulsivity.  Volkow and colleagues used 

PET imaging in humans and demonstrated that cocaine and methamphetamine abusers, 

individuals that are considered to be impulsive, have lower D2R availability compared to 

controls (Volkow et al., 2001;Volkow et al., 1993).  In rats, Dalley et al., (2007) found 

that accumbal D2/D3R availability negatively correlated with impulsivity.  Moreover, 

impulsivity, as measured in a five-choice serial reaction time (5-CSRT) is directly 

correlated with higher rates of cocaine self-administration (Dalley et al., 2007).  Several 

other studies correlate various measures of impulsivity with low D2/D3R availability in 

the striatum (Reeves et al., 2012; Ghahremani et al., 2012; Lee et al., 2009a).  Low 

expression levels of midbrain D2/D3 autoreceptors are also associated with aspects of 

impulsivity in humans and monkeys (Zald et al., 2008; Nader et al., 2006; Buckholtz et 

al., 2010).  For example, Nader et al. (2006) used PET to measure D2R availability in the 

basal ganglia.  They demonstrated in monkeys that D2R availability (before drug intake) 

is inversely related with rates of cocaine self-administration.  Furthermore, cocaine intake 

produces a robust decrease in D2R availability.  During abstinence from cocaine, D2R 

availability recovers in some monkeys.  In humans, trait impulsivity is negatively 

correlated with availability of D2/D3R (Buckholtz et al., 2010).  This study also revealed 

that autoreceptor availability is negatively correlated with the magnitude of 

amphetamine-induced DA release in the striatum that predicted stronger subjective 

“wanting” for more drug following the amphetamine treatment.  These findings are in 
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line with the theory of incentive salience which predicts that hyperactivity of DA striatal 

release enhances motivational salience (Berridge and Robinson, 1998), a driving force in 

impulsive behaviors. 

 However, there are conflicting reports regarding the expression of D3Rs during 

conditions of sustained increases in dopaminergic transmission (i.e., repeated treatments 

with DA agonists or in individuals that chronically abuse drugs).  Studies showed that 

there is actually an upregulation of D3Rs and, when concomitantly measured a 

downregulation of D2Rs.  For example, in human poly drug users that include 

methamphetamine a PET study showed an upregulation of D3Rs in the SN and VP 

(Boileau et al., 2012b).  Animal studies support these findings.  In rats, a 14 day 

treatment with D2/D3 agonists (7-OH-DPAT or quinpirole) increases expression of D3Rs 

in the VP and SN, and decreases D2R in the VP, SN, and NA (Stanwood et al., 2000b).  

Fourteen days of PPX treatment also leads to increases in NA D3Rs (Maj et al., 2000; 

Tokunaga et al., 2012).  Moreover, rats that demonstrate cocaine-induced locomotor 

sensitization have an increase in D3R density and a decrease in D2R density in the 

ventral striatum 42 days after the last cocaine treatment (Collins et al., 2011b). 

 A positive correlation between D3Rs and impulsivity makes sense considering the 

findings over the past decade that antagonism of D3Rs attenuates actions of several 

abused drugs in various  rodent models of drug addiction (for review, see (Heidbreder 

and Newman, 2010).  Collectively, studies indicate that D3Rs are not involved with the 

rewarding effects of drugs and sucrose per se, but rather the motivation to obtain and/or 

to seek them out.  For example, D3R antagonists do not affect responding on low fixed 

ratio (FR-2) conditions but do decrease responding with higher fixed ratios and 
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progressive ratio tasks, which are considered to require more effort in order to obtain the 

reward (Higley et al., 2011; Gilbert et al., 2005; Vorel et al., 2002).  Regarding 

impulsivity, 100µg/kg PPX, a dose that is thought to be D3R-selective, and 300µg/kg 

PPX, a dose thought to be more D2/D3R selective (Collins et al., 2009; Collins et al., 

2007; Collins et al., 2005), alter gambling-like behaviors (Johnson et al., 2011) and 

delayed discounting (Madden et al., 2010) in rats.  This suggests that D3Rs as well as 

D2Rs are driving PPX-induced impulsivity.  A recent neuroimaging study supports the 

concept that D3Rs have a role in reward-related behaviors; pathological gamblers have a 

positive correlation between D3R levels and gambling severity and impulsiveness 

(Boileau et al., 2012a). 

  

Regulation of D2R and D3Rs in Parkinson’s disease  

The regulation of D2/D3R in PD may play a role in expression of impulsive 

behavior.  Dopaminergic cell loss in PD and denervation of output structures leads to an 

increase in D2Rs and a decrease in D3Rs (Rinne et al., 1990; Brooks et al., 1992; Ryoo 

et al., 1998).  For example, human PET studies reveal an upregulation of striatal D2R in 

non-treated PD patients (Rinne et al., 1990).  Striatal D2R adaptations have been 

contributed to a denervation supersensitivity, in which the system compensates for the 

decreased levels of DA (Lee et al., 1978).  However, such compensation does not occur 

with the D3R.  Recent studies show that drug naïve patients with early stage PD have a 

decrease in D3R expression in the ventral striatum and GP (Boileau et al., 2009).  Similar 

changes in D2/D3Rs have also been found in animal models of PD (Graham et al., 1990).  

In rats with a unilateral 6-OHDA-induced lesion to the MFB, there is a decrease in D3R 
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expression and mRNA in the nucleus accumbens (NA) and SN ipsilateral to the MFB 

lesion (Bordet et al., 1997; Stanwood et al., 2000a; Levesque et al., 1995).  D3R loss is 

consistent with loss of dopaminergic terminals.  In contrast, D2R expression and mRNA 

are increased (Levesque, 1995; Stanwood et al., 2000a).  Moreover, D3R mRNA is not 

altered in the dorsal striatum following MFB 6-OHDA-induced lesions (receptor levels 

were not measured; Bordet et al., 1997).   D3R adaptations are also linked to brain-

derived neurotrophic factor (BDNF), a member of the nerve growth factor related family 

of neurotrophins.  BDNF is found in many brain regions, including the VTA (Seroogy et 

al., 1994) and SNpc (Hyman et al., 1991).   BDNF, which can be transported 

anterogradely (Altar et al., 1997) and released upon depolarization (Thoenen, 1995) can 

control D3R expression (Guillin et al., 2001).  Studies show D3R binding and mRNA 

levels in the NA are decreased after 6-OHDA-induced lesions of the MFB and 

impairments of fast anterograde axonal transport of midbrain dopaminergic neurons 

(Levesque et al., 1995).  Based on these studies, it believed that destruction of the 

ascending dopaminergic neurons reduces release of BDNF onto terminal regions that 

consequently leads to a decrease in D3Rs expression.   

Whether these region specific alterations in D2R upregulation and D3R 

downregulation influence impulsive behavior in PD patients is unknown, but these 

receptors profiles suggests a decrease in impulsive behavior, which has generally been 

described in PD patients (Menza et al., 1993; Tomer and Aharon-Peretz, 2004; Bodi et 

al., 2009).  Moreover chronic treatment with DA agonists produce the opposite receptor 

adaptations as seen with DA deafferentation.  For example, in rats a fourteen day 

treatment with D2/D3 agonists, 7-OH-DPAT or quinipirole, increases expression of 



29 
 
D3Rs in the VP and SN and decreases D2R in the VP, SN and NA (Stanwood et al., 

2000b).  Rats treated for 14 days with PPX (0.3 and 1mg/kg) show increase expression of 

D3Rs in the NA (D2R expression was not studied; Maj et al., 2000; Tokunaga et al., 

2012).  Thus, given the important roles of D2/D3Rs in impulsivity it is interesting to 

speculate that the dysregulation of D2/D3Rs in a PD-like brain state as well as following 

chronic treatment with DA agonists may play a factor in susceptibility to PPX-induced 

ICDs.  

 

Significance 

The goal of this thesis dissertation is to expand our knowledge on the 

neuropsychopharmacology of PPX-induced impulsivity.  From this literature review, it 

can be seen that characterization of the neurobiology of PPX-induced ICDs is ongoing.  

Progress in elucidating the effects of acute and chronic PPX has been in made in the 

clinic.  Slower progress has been made regarding animal models that study PPX-induced 

impulsivity.  These few studies have only looked at behavioral effects with acute PPX.  

We sought to determine if PPX would alter risk-taking, one aspect of impulsivity, in a 

rodent model of PD as well as in controls using our novel ICSS-mediated probability 

discounting paradigm.  Our findings add to the literature as we have included assessments 

of both PD-like rats and chronic treatment with withdrawal and subsequent reinstatement 

of PPX treatment.  The literature supports a role of the VP in reward-motivated 

behaviors, particularly with salience attribution.  This brain region is embedded within 

the limbic-motor circuitry where PPX is known to influence the neuronal activity.   

Moreover, D3Rs, which are implicated in reward-seeking behaviors, are expressed in 
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both the VP and the related limbic circuitry.  The second focus of this dissertation was to 

determine if PPX, given systemically at doses known to alter aspects of impulsivity in the 

rat, could alter neuronal activity in the VP.   Further, we assessed the ability of a D3R 

antagonist to alter these effects.  The literature provides us with ample evidence that D3R 

expression is regulated by dopaminergic tone.  Thus, we also assessed the effect of 

systemic PPX on neuronal firing in both rats treated chronically with PPX as well as in 

two different rodent models of PD.  Our findings revealed that the VP is engaged by a 

range of PPX doses known to alter reward-related behavior.  These changes in VP 

neuronal activity are under the influence of D3Rs.  Our data provide evidence that rats 

treated chronically with PPX enhanced the potency of PPX to alter VP neuronal firing 

rate.  A late, but not early, stage model of PD, showed a trend to enhance the potency of 

PPX.   These findings will help guide the field of behavioral addictions to determine the 

neuroanatomical substrates and receptor subtypes involved in PPX-induced effects on 

reward-related behaviors. 
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Figure 1.  Schematic of the “backbone” of basal ganglia circuitry based on output 

pathways from the dorsal striatum.  The direct pathway provides a direct connection from 

the dorsal striatum to GPm/SNpr.  The indirect pathway is comprised of the dorsal 

striatum-GPl-STN-GPm/SNpr connections.  Enclosed areas represent the following brain 

structures:  GPl, lateral globus pallidus; GPm, medial globus pallidus; SNpr, substania 

nigra pars reticulata; SNpc, substantia nigra pars compacta; STN, subthalamic nucleus.  

Note: the projection from the SNpc is largely dopamine, and the illustrated excitatory vs 

inhibitory influences on the dorsal striatum are lent by the activating striatal D1R versus 

D2R, respectively. 
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Figure 2.  Schematic of the changes proposed to occur in the basal ganglia circuitry 

following degeneration of the nigrostriatal pathway (i.e., a parkinsonian brain state).  

Dotted lines indicate degeneration of the brain region and its projections.  Compared to 

Fig. 1, the increase in width of a line indicates a larger influence from the originating 

brain structure.  A decrease in width of the line indicates a smaller influence from the 

originating brain structure.  Enclosed areas represent the following brain structures:  GPl, 

lateral globus pallidus; GPm, medial globus pallidus; SNpr, substania nigra pars 

reticulata; SNpc, substantia nigra pars compacta; STN, subthalamic nucleus. 
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Figure 3.  Schematic diagram of brain circuits that are likely involved in impulsivity, 

particularly reward-motivated motor behaviors that reflect risk-taking.  Enclosed areas 

represent the following brain structures: ACC, anterior cingulate cortex; AMG, 

amygdala; NA, nucleus accumbens; OFC, orbitofrontal cortex; PPN, pedunculopontine 

nucleus;  STN, subthalamic nucleus; VP, ventral pallidum; VTA, ventral tegmental area.  
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Figure 4. Schematic of the overlapping neurocircuitry between reward and motor 

systems.   Particular focus for this dissertation is the overlapping connections of motor 

and reward systems that involved the VP.  Enclosed areas represent the following brain 

structures: AMG, amygdala; NA, nucleus accumbens; GPl, lateral globus pallidus; GPm, 

medial globus pallidus; PPN, pedunculopontine nucleus;  SNpr, substania nigra pars 

reticulata; SNpc, substantia nigra pars compacta; STN, subthalamic nucleus; VP, ventral 

pallidum; VTA, ventral tegmental area. 
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CHAPTER III 

 INTRACRANIAL SELF-STIMULATION AS A POSITIVE REINFORCER TO 
STUDY IMPULSIVITY IN A PROBABILITY DISCOUNTING PARADIGM 

 

Abstract 

 Probability discounting is used to study risky decision-making in humans and 

rodents.  In these paradigms, the subject chooses between a small reward that is always 

delivered and a large reward that is delivered with varying probabilities.  Risk-taking is 

defined as a preference for the large, uncertain reward.  The aversive consequence 

associated with this task involves choosing the large reward and not obtaining it.  To 

study this form of impulsivity in rodents, food reinforcement is commonly used.  Using 

this reinforcer, and the need to food-deprive rodents to enhance task performance, may be 

problematic in rodent models that exhibit eating disorders, in pharmacological 

assessments that alter feeding, and for assessments of the neurocircuitry that is engaged 

by both feeding and risk-taking.  We reveal here that electrical intracranial self-

stimulation (ICSS) can be used as the positive reinforcer in risk assessments (i.e., 

probability discounting).  ICSS was selected as it is rapidly acquired, the operant 

procedures are retained for months, and no tolerance or satiety develops to the reinforcer; 

thus, ICSS can be used in multiple test sessions in a repeated measures design.  We 

developed an efficient, standardized, six phase ICSS-mediated protocol that allowed for 

assessments of risk-taking in a probability discounting task. We demonstrated that the  
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discounting behavior remained stable for several weeks.  The value of this protocol is 

discussed in terms of practical as well as theoretical advantages of using ICSS-mediated 

reinforcement.   

 

 Introduction 

Impulsivity can be regarded as “actions that appear poorly conceived, prematurely 

expressed, unduly risky, or inappropriate to the situation” (Daruna and Barnes, 1993).  

While some beneficial aspects of impulsivity are known (Dickman, 1990), it is generally 

recognized as a dysfunctional trait that is frequently associated with numerous 

neurological and psychiatric disorders including frontal lobe damage, schizophrenia, 

attention deficit-hyperactive disorder and substance abuse disorders. According to the 

American Psychiatric Association, impulse control disorders (ICDs) are a form of 

psychiatric disorder (American Psychiatric Association, 2000).  ICDs include 

trichotillomania, intermittent explosive disorder, pathological gambling, kleptomania, 

pyromania, hypersexuality, compulsive shopping and others. 

To understand impulsivity and ICDs, and to subsequently develop therapies 

targeted to particular aspects of the disorder, laboratory protocols that model attributes of 

impulsivity are required.  Risky decision-making is one facet of impulsivity.  A common 

method used to study risky choice in both humans and laboratory rodents is the 

probability discounting paradigm (Mobini et al., 2000; Rachlin et al., 1991; Richards et 

al., 1999).  In this task, the subject can choose between a small reward that is always 

delivered and a large reward that is delivered with varying probabilities.  Risky behavior 

is defined as a preference for the large uncertain reward.   The aversive consequence 
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associated with this task involves choosing the large reward and not obtaining it 

(Cardinal and Howes, 2005).  In rodent testing of probability discounting, food is often 

used as the positive reinforcer and to motivate the animal, salience of the food is 

enhanced by food-deprivation.  This approach presents several disadvantages which can 

potentially confound outcomes.  First, internal factors, such as hunger or thirst, can 

themselves lead to a change in impulsive behavior in animals (Minamimoto et al., 2009; 

Schuck-Paim et al., 2004).  Second, chronic food restriction can lead to adaptations in 

dopaminergic (Carlson et al., 1988; Carr et al., 2009; Carr et al., 2003; Collins et al., 

2008) and serotonergic signaling (Haleem and Haider, 1996; Huether et al., 1997; 

Kohsaka et al., 1980).  These neurotransmitters also play a role in impulsivity (Adriani et 

al., 2009; Mehlman et al., 1994; Mobini et al., 2000; Soubrié, 1986; Winstanley et al., 

2005).  Moreover, this reward option may not be possible for assessments of risky choice 

in rat models of human neuropathologies that present eating disorders or for testing 

pharmacologics that alter feeding behaviors.  Thus, we sought to design a probability 

discounting paradigm that utilized a positive reinforcer that avoided such shortcomings.  

To be broadly applicable to a range of laboratory assessments, we determined that criteria 

for this reinforcer should include the following: (i) it should more directly engage brain 

“reward centers” than is possible with food reward.  (ii) It should be conducive to robust 

operant task testing.  (iii) It should demonstrate a range of reward values that can be 

discriminated by the rat.  Finally, (iv) it should support stable responding for several 

weeks.  We reveal here that ICSS meets these criteria.  In ICSS procedures, rats perform 

an operant task to obtain a positive reinforcing current delivered via an electrode 

implanted in reward regions of the brain (Olds and Milner, 1954).  For the current study, 
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we selected the medial forebrain bundle (MFB) at the level of the lateral hypothalamus 

(LH) as the stimulation target.  This structure is well known to readily support ICSS with 

a large range of stimulation parameters.  We detail how this reward parameter can be 

successfully implemented for probability discounting paradigms, and we verify 

performance stability and persistence.  

 

Methods 

Male Sprague-Dawley rats weighing 250-274g upon arrival (Harlan, Indianapolis, 

IN) were housed in pairs under environmentally controlled conditions (7:00AM/7:00PM 

light/dark cycle, temperature maintained at 23-25°C) with access to rat chow and water 

ad libitum.  All rats were handled according to established procedures in the Guide for 

the Care and Use of Laboratory Animals (National Research Council, Washington DC); 

specific protocols were approved by the Institutional Animal Care and Use Committee at 

Rush University Medical Center.   

 

Implantation of electrode into the lateral hypothalamus 

Eight rats were anesthetized with sodium pentobarbital (50mg/kg ip; Sigma, St. 

Louis, MO), and placed into a small animal stereotaxic instrument (David Koft, Tujunga, 

CA) with the nose piece set at 3.3mm below the horizontal.  A midline scalp incision was 

made and a hole was drilled through the skull at -2.8mm posterior to bregma and 1.8mm 

lateral to midline.  A bipolar stimulating electrode (MS303/3-B/SPC; Plastics One, 

Roanoak, VA) was stereotaxically lowered -8.4mm from dura into the LH.  Electrodes 

were secured to the skull with stainless steel screws and dental acrylic, and the incision 
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was sutured.  Rats were returned to their home cage following full recovery from 

anesthesia, and one week later, testing in the operant chambers was initiated.  

 

Test Apparatus 

Rats were tested in operant chambers (30.5 cm x 24.1cm x 21.0 cm; Med-

Associates, St. Albans, VT), enclosed in ventilated, sound attenuated boxes outfitted on 

one wall with two retractable levers and a stimulus light above each lever.  On the 

opposite wall, a single 100mA house light was located in the top center.  Intracranial 

stimulation was delivered by constant current stimulators (PHM-152/2 Dual 

programmable ICSS stimulator) via bipolar leads connected to 2-channel commutators 

(Plastics One, Roanoak, VA) mounted above the chamber. 

 

 Behavioral testing protocol 

Acquisition of the probability discounting task was accomplished with a six phase 

protocol.  Each phase included ongoing assessments of individual task performance, and 

the protocol was designed to sequentially fine-tune and verify the ICSS parameters as the 

rats progressed through the phases in order acquire the probability discounting task.  As 

rats advanced, they were trained to build on prior task performance in order to meet 

standardized phase milestones.  Table 1 illustrates the time-line for the protocol, as well 

as the objectives, criteria and maximal number of sessions necessary for rats to complete 

phase criteria.  The methodologies associated with each phase, along with an explanation 

of data analyses, are provided below.  
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Phase 1: Shaping  

Following one week recovery from surgery, rats were trained to lever press to 

obtain a positively reinforcing electrical brain stimulation (EBS) using shaping 

procedures modified from Chester and colleagues (Chester et al., 2006).  At the 

beginning of a 30min session, one of the two levers was extended.  Shaping occurred by 

successive approximation, during which experimenter-applied EBS was used to initially 

direct the rat towards the lever, and then to aid the rat in making the association between 

a lever press and receiving an EBS.  At the start of this process, each EBS consisted of 

biphasic 100µA square wave pulses applied as a 100Hz for 500μs.  Each pulse was 200µs 

long and a 100µs delay separated each pulse.  With the EBS frequency and pulse duration 

remaining constant, the current intensity was adjusted for individual rats based on their 

performance to approach and ultimately press the lever.  The procedure used for this 

adjustment was as follows:  Lack of behavioral responses (e.g., sniffing, rearing, 

approaching the lever) resulted in 20μA increasing increments.  If responses indicative of 

aversion occurred (freezing, crouching, twitching) the current was decreased by 20μA 

increments until aversive behaviors were no longer observed.  Once the rat pressed the 

extended lever eight times in approximately one min, that lever was retracted and the 

other lever was extended and shaping proceeded (the order of left vs. right lever 

presentation was counter balanced across sessions).  The minimum criteria set for this 

phase was steady lever pressing (~eight presses/min) on both levers.  Once lever pressing 

was established, the current intensity was incremented until no further increase in lever 

pressing rate was seen.  This intensity level was used for the remaining Phases.   
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Phase 2: Training on Fixed Ratio (FR)-1  

The purpose of this Phase was to demonstrate stable lever pressing rates.  To do 

so, one lever was extended during each 30min session (right and left levers were counter 

balanced across sessions) and the number of lever presses was recorded.  To complete 

this phase, rats had to meet the following minimum criteria in consecutive sessions: (1) 

lever press at least five times within the first two min of the session (i.e., to initiate the 

session), and (2) display a minimum average of eight lever presses per min in the session.   

Lever pressing rates for the last two sessions were averaged for each rat and group means 

± SEM are reported.  Data were analyzed using a paired t-test with significance set at 

p<0.05.   

 

Phase 3: Rate-Current Intensity Functions 

 The purpose of this Phase was to determine the effect of various LH stimulation 

parameters on the rate of lever pressing.  A single lever was used in a session which was 

approximately 30-40min in duration (right and left levers were presented in a counter 

balanced order across sessions).  To evaluate the impact of various current intensities on 

lever press response rate, rate-intensity functions were generated for each rat.  In this 

task, the LH stimulation frequency (100Hz) and train duration (500μs) where held 

constant while various intensities were pseudo-randomly presented.  In the first 30sec of 

the session, rats had access to the lever which was set to deliver the current intensity used 

to meet Phase 2 criteria.  This was used as a protocol ‘reminder’; these data were not 

analyzed.  Seventeen current intensity levels between 10 and 350µA were evaluated, and 

each of these levels was tested during a two min time period during which the lever was 
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extended, and number of lever presses was recorded.  Following the 2min period, the 

lever was retracted for a 10sec time-out.  The higher currents that produced maximal 

lever pressing responding were not sufficient to induce classical aversive-like behaviors.  

A curve comparing current intensity and number of presses was generated from each 

session  and both the maximal number of lever presses (Emax) and the minimal number of 

lever presses (threshold) were determined using a non-linear regression (GraphPad Prism, 

La Jolla, CA).  A third order polynomial was fitted to visualize these two features.  To 

complete this phase, both the Emax and threshold had to be stable (i.e., exhibit < 20% 

variability) for three consecutive sessions.  A final ‘stable curve’ was generated by 

averaging the three curves which met criteria and the currents that produced 90%, 60% 

and 40% of Emax were determined (i.e., effective current (EC); ECur90, ECur60 and 

ECur40, respectively; GraphPad Prism 5.0).  A linear correlation was conducted between 

lever pressing rate and EBS current intensity to verify that changes in EBS frequency 

altered ICSS. 

 

Phase 4: Training in Discrete Trials 

This Phase was designed to train rats to recognize the temporal nature of 15sec 

trials using each rat’s own ECur60 as the reinforcer.  To do so, rats were trained on a 

simplified version of the full discounting task, as modified from Cardinal and Howes 

(2005).  Each session consisted of 200 trials.  The session began with both levers 

retracted and chamber lights off.  Trials occurred at 15sec intervals.  Two sec after the 

start of a trial, the house light was illuminated, followed three sec later by the extension 

of one lever.  The rat had 10sec to press that lever one time, if the response was not 
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executed, the trial was aborted (termed an omitted trial), the lever retracted and the house 

light turned off.  If a lever press was made, an EBS was delivered (i.e., ICSS occurred) 

and the stimulus light over the lever was turned on.  After 0.5sec, all lights were turned 

off and the lever retracted.  Levers were alternately extended among trials.  The minimum 

criteria set for this phase was for rats to have 50 or less omitted trials per session for four 

consecutive sessions. 

 

Phase 5: Choice Tests  

The purpose of this Phase was to determine for each rat, a small and large 

reinforcer that could be used in the probability discounting phase.  The Phase was 

designed to train rats to recognize and select, lever-specific, reinforcement values using 

the FR-1 discrete trials employed in Phase 4.  The initial reinforcement values used were 

the current intensities that corresponded to the ECur90 (i.e., large reinforcer) and ECur40 

(i.e., small reinforcer) obtained for each rat in rate-intensity functions in Phase 3.  Each 

session consisted of three blocks.  A block consisted of 20 forced-choice trials followed 

by 20 free-choice trials.  In forced-choice trials, each lever was extended independently 

allowing the rat to associate particular reinforcement values with each lever.  In free-

choice trials, both levers were extended, giving the rat an opportunity to choose between 

levers and thus demonstrating reinforcement preference.  Across the three blocks, the 

reinforcement value associated with the left lever changed from no EBS (i.e., “no 

reinforcer”), to ECur90, to ECur40. The reinforcement value associated with the right lever 

changed from ECur40, to no EBS, to ECur90.  The lever associated with each sequence of 

reinforcement values was counter balanced across sessions.  To determine a 
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reinforcement preference in each block, data were analyzed from free-choice trials.  

Reinforcement preference was defined by the “free-choice ratio”; i.e., the number of 

selections for the large reward divided by the total number of lever responses made x100.  

The first two blocks allowed the rat to demonstrate that the given EBS was reinforcing, 

(as indicated by the continued selection of that lever over the lever that offered no EBS).  

The third block provided a means to verify that the rats could distinguish between the 

various reinforcement values.  As rats innately prefer a large reinforcer over a small 

reinforcer, lever selection over the 20 free-choice trials provided an index of that 

preference. 

To complete this Phase, rats had to choose the larger of the two reinforcers in 

each block, on average, at least 70% of the time for three consecutive sessions.  If a rat 

failed to achieve this criterion in any of the blocks for two consecutive sessions, the 

larger reinforcer value was adjusted by increasing the current intensity in 5μA intervals 

until the rat met the 70% criteria across blocks (without demonstrating behaviors 

indicative of aversion, e.g., freezing).  It was required that reinforcer values remained the 

same for the final three test sessions in which the minimum criteria were met.   

 

Phase 6: Probability Discounting Task 

The purpose of this Phase was to determine the relationship between a rat’s 

selection of a large reinforcer and the probability of that reinforcer being delivered.  

Procedures were modified from Cardinal and Howes (2005).  The modifications involved 

reducing the time needed for each of the trials (as ICSS occurs at a quicker pace than 

self-administration of food).  This allowed us to increase the number of trials and blocks 
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in each session; therefore, each session consisted of six or seven blocks.  Each block 

consisted of 20 forced-choice trials followed by 20 free-choice trials.  Trials occurred in 

consecutive 15sec intervals.   For each session, one lever was designated the “small 

reinforcer/certain” (SC) lever and the other was the “large reinforcer/risky” (LR) lever.  

Thus, selection of the SC lever always resulted in delivery of the small reinforcer, while 

selection of the LR lever resulted in delivery of the large reinforcer but with various 

probabilities.  SC and LR lever designation was kept constant for each rat, but 

counterbalanced across rats.  The values of the small and large reinforcers corresponded 

to those used at the end of the Choice Test phase for current intensity.  The large 

reinforcer probabilities used were 1.0, 0.85, 0.65, 0.5, 0.25, 0.125 and 0.0625.  As carried 

out by Cardinal and Howes (2005), these probabilities were systematically decreased 

across the blocks in each session.  Rats underwent 14 baseline sessions, most often as 

twice daily for seven days.  Occasionally, testing occurred only once a day.  There was 

no difference between morning and afternoon curves, nor was there a difference between 

curves tested once or twice a day (data not shown).  In cases when rats were tested twice 

a day, the two sessions were averaged and the mean was used to illustrate discounting for 

that day.  If only one test session was run in a day, the single curve represented 

discounting for that day.  The daily discounting curves for each rat were averaged across 

rats to yield a daily group mean ± SEM.  Data from free-choice trials of each probability 

(i.e., each block) were analyzed to determine a free-choice ratio (i.e., number of 

selections of the LR lever divided by the total number of lever responses made x100) vs. 

probability function.  Two aspects of the group behavior were determined, acquisition 

and stability.  A linear correlation was conducted between free-choice ratio and 
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probability magnitude to determine if the group acquired the discounting task.  A two-

way repeated measures (rm)ANOVA with ‘day’ and ‘probability’ as the factors was 

conducted to determine stability.  Stability was defined as a significant main effect (p < 

0.05) for the probability factor, but no main effect of day or interaction (P > 0.1) across 

three consecutive daily discounting curves (St Onge and Floresco, 2009; Winstanley et 

al., 2003).   

 

Persistence of Stable Probability Discounting Behavior 

It was of interest to determine if the discounting behavior endured, and to 

ascertain the utility of the model for assessments of pharmacological interventions.  To 

make these determinations, a subset of rats (n=3) underwent a “mock treatment protocol” 

consisting of twice daily injections of saline (0.9% NaCl; 0.1ml/kg, ip) for two weeks 

(corresponding to days 38 to 51 of the protocol).  Probability discounting was evaluated 

on six days during this time period.  On the test day, discounting was evaluated one and 

6.5hr after the morning injection; the two sessions were averaged for each rat on each test 

day and a group mean ± SEM was determined for each day.  The small and large 

reinforcers corresponded to the current intensity values used during baseline data 

collection.  Subsequently, we desired to determine if stable discounting behavior could be 

maintained if testing occurred less frequently.  Thus, at the end of the saline treatment, 

rats were tested four and eight days later (corresponding to days 55 and 59 of the 

protocol).  Rats were tested twice on each test day, the daily sessions were averaged for 

each rat and a group mean ± SEM was determined for each day.  To determine 

persistence and stability in the free-choice ratio, the daily discounting curve from the last 
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day of baseline was compared to both the daily discounting curve from the 14th day of 

saline treatment (day 51) and from day 59.  Data were analyzed using a two-way 

rmANOVA with ‘time’ and ‘probability’ as factors.  Stability was defined as described 

for Phase 6.  

 

Frequency as the Reward Modality in a Probability Discounting Task 

This experiment was performed to ascertain if probability discounting could be 

obtained if the small and large reinforcer values differed in levels of current stimulation 

frequency (Hz) , rather than stimulation intensity (i.e., µA).  Rats (n=3) that had 

completed the saline treatment and persistence protocol above were retrained in Phases 3, 

5 and 6 using Hz as the ICSS dependent variable.  First, lever pressing rate vs. ICSS 

current frequency function (i.e., rate-frequency function) determined the impact of 

varying stimulation frequencies on lever press response rate.  For this assessment, the 

train duration (500μs) and current intensity (set at ECur60- ECur90 as determined for each 

rat in the prior study) were held constant while 17 various frequencies levels ranging 

from 5-140Hz (pseudo-randomly presented) were evaluated for ICSS behavior.  The 

resulting rate-frequency curves were analyzed as in Phase 3 for rate-intensity curves.  

Next, rats were assessed in the Choice Test (as described above for Phase 5) wherein 

their ability to recognize levers differing from reinforcement values based on stimulation 

frequency was determined.  The initial reinforcement values used were the EBS 

frequencies that corresponded to the ECur90 (i.e., large reinforcer) and ECur40 (i.e., small 

reinforcer) obtained from each rat’s rate-frequency curve.  After the rats met the Choice 

Test criteria, they were tested in the Probability Discounting Task.  The large reinforcer 
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probabilities used were 1.0, 0.85, 0.65, 0.5, 0.25, and 0.0625.  Rats were tested twice a 

day for two consecutive days.  For each rat, a daily discounting curve was determined 

and the group daily mean was obtained.  The two group daily means were averaged to 

yield a mean± SEM. 

 

Histology 

At the conclusion of the behavioral assessments, all rats were deeply 

anaesthetized with chloral hydrate (400mg/mg; Sigma, St. Louis, MO), and killed by a 

transcardial perfusion.   For some rats, this was accomplished using ice cold 0.9% NaCl 

followed by 4% paraformaldehyde solution.  Other rats received a 5V current (DC) 

applied to the stimulating electrode for 30sec to deposit iron and/or produce a very 

discrete lesion at the electrode tip.  The iron deposits were visualized by a blue coloration 

produced via trychloroacetic acid (0.5%) and potassium ferricyanide (3%) added to a 4% 

paraformaldehyde solution used for transcardial perfusion after perfusing with ice cold 

0.9% NaCl.  Brains were removed, post-fixed in either 4% paraformaldehyde or 10% 

formalin before being stored in a 30% sucrose solution.  Brains were sliced in 40μm 

coronal sections, mounted on slides.  For all rats, stimulation electrode tip placements 

(indicated by an iron-reactive dye or a tissue lesion) were confirmed by two independent 

observers.   

 

Results   

 Phase 1: Shaping   

For this Phase, rats had to learn the association between a lever press and 
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receiving an experimenter-applied EBS.  Rats with stimulation electrode tips placed in 

the MFB (n=6; Fig. 5) met the minimum criteria of eight lever presses/min on both levers 

within three sessions (corresponding to protocol test days 7-8).  Rats with electrode tips 

outside the MFB (n=2; Fig. 5), did not successfully shape after six sessions and 

subsequently were removed from the study.  For the six rats with proper the tip location, 

there was no correlate with any ICSS current or behavior measurements which are 

described below.  

 

Phase 2: Training on FR-1  

For this Phase, rats had to demonstrate steady lever pressing on both the left and 

right lever.  To pass this Phase, rats had to initiate lever pressing at the beginning of each 

session and maintain a minimum average of eight lever presses/min for four consecutive 

sessions.  All six rats met these criteria within four sessions (corresponding to protocol 

test days 9-10).  The average lever presses/min for the left and right lever was 25 ± 4 and 

27 ± 4, respectively.  The rate of responding on either lever was not different (paired t-

test p= 0.13), suggesting no lever bias.  The range of current intensities used was 100-

260μA. 

 

 Phase 3: Rate-Intensity Functions 

 For this Phase, rate of lever pressing was evaluated as a function of various 

current intensities.   All six rats met the minimum criteria (e.g., stable Emax and threshold 

for three consecutive sessions) within eleven sessions (corresponding to protocol test 

days 11-16).  Based on the average of the three curves which met stability criteria, the 
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final Emax ranged from 66 to 157 lever presses per two min.  The final threshold ranged 

from 5 to 12 lever presses per two min. Verifying that magnitude of EBS current intensity 

(i.e., µA level) incrementally altered ICSS lever pressing, the final stable curves for all 

six rats exhibited a significant linear regression with r2 values ranging from 0.74 to 0.95, 

p <0.01. A representative rate-intensity curve of an individual rat is shown in Fig. 6A. 

 

Phase 4: Training in Discrete Trials  

For this Phase, rats were trained on a simplified version of the probability 

discounting task.  The minimum criteria were 150 or more successful trials per session 

(which consisted of 200 total trials) for at least four consecutive sessions.  All six rats met 

these criteria within six sessions (corresponding to protocol test days 17-19).  Throughout 

all sessions, the average number of omitted trials was 16 ± 3.  The range of current 

intensities used for training was 122 to 263μA, with an average 203 ± 21μA.   

 

Phase 5: Choice Tests 

For this Phase, rats had to demonstrate reinforcement preference for a lever 

associated with a reinforcer from one without a reinforcer, as well as preference for a 

lever associated with a large reinforcer from a small reinforcer.  The minimum criteria 

were to choose the larger of the two reinforcers in each block, on average, at least 70% of 

the time for three consecutive sessions.  All six rats met these criteria within 14 sessions 

(corresponding to protocol test days 20-26).  The starting range for the large reinforcer 

(i.e., ECur90) was 167 to 364μA; the average was 278 ± 28μA.  Adjustments were made 

for three of the six rats, and the new values corresponded to ECur91 to ECur92 so that the 
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final range for the large reward was 167 to 374μA, with an average of 281 ± 29μA.  

Intensities for the small reinforcer (i.e., ECur40) ranged from 106 to 235μA, with an 

average of 177 ± 20μA.  Reinforcement preference across the three blocks for sessions 

that met criteria were 91 ± 0.02%, 94 ± 0.02%, 90 ± 0.02%, respectively.  

 

 Phase 6: Acquisition and Stability of Probability Discounting 

As a group, rats acquired the probability discounting task in the first test session 

(Fig. 7).  A linear regression revealed a positive correlation (r2 =0.70; p<0.01) between 

selection of the LR and probability magnitude.  In other words, selection of the large 

reinforcer decreased as the probability for its delivery decreased.  This process was 

quantified by the “free choice ratio’ i.e., selection of the LR lever/total number of 

responses.  As a group, rats achieved stable daily discounting by the fourth test day.  

Based on the free choice ratio obtained on the second, third and fourth day (taken on 

protocol days 28-30) a two way rmANOVA revealed no effect of ‘day’ F2,15=0.85, 

p=0.45 an effect of ‘probability’ F6,90=69.25, p<0.01 and no interaction F12,90=0.26, 

p=0.99.  To determine that discounting remained stable across longer periods of time, rats 

continued to be tested in the discounting task for an additional 4-7 days (protocol days 

34-37).  Discounting remained stable; based on the free choice ratio obtained on final 

three test days, a two way rmANOVA revealed no effect of ‘day’ F2,15=0.79, p=0.47 an 

effect of ‘probability’ F6,90=104.80, p<0.01 and no interaction F12,90=0.84, p=0.61.   

 

Persistence of Stable Probability Discounting Behavior  

Fig. 8 shows that rats demonstrated persistent stability in their behavior following 
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14 days of saline treatment (protocol days 38-51) as compared to the last day of baseline 

discounting in Phase 6.  Furthermore, when testing was separated by three non-testing 

days stability endured; that is, tests were conducted on protocol days 55 and 59, and no 

difference was obtained between these two tests.  These observations were demonstrated 

using a two way rmANOVA which revealed no effect of ‘day’ F2,6=0.29, p=0.75 (i.e., the 

last day of baseline i.e., protocol day 37, the last day of saline treatment, day 51, and the 

end of the study, day 59) an effect of ‘probability’ F6,36=92.55, p<0.01 but no interaction 

F12,36=0.37, p=0.97.  Overall, rats maintain a profile that was not indicative of risky 

behavior.  At the lowest probabilities, rats preferred the lever that always delivered a 

small reinforcer, thus avoiding the aversive consequence of pressing the risky lever and 

failing to obtain any reward.   

 

Frequency as the Reward Modality in a Probability Discounting Paradigm 

 The above SC and LR lever selection results were based on small and large levels 

of ICSS current intensity, i.e., µA.  To test whether this probability discounting paradigm 

can be used with a reward modality of stimulation frequency, i.e., Hz, three rats were 

assessed in a modified version of Phases 3, 5 and 6.  The same set of minimum criteria 

described for the current intensity assessments was used for the current frequency 

assessments.  For the lever pressing rate vs. current frequency stimulation (rate-frequency 

function) assessment, the train duration (500μs) and current intensity were held constant 

(the intensity ranged between 153 and 181μA for the three rats tested), while various 

frequencies ranging from 5-140Hz were evaluated for each rat.  All rats met the 

minimum criteria within seven sessions.  Based on the average of the three curves which 
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met stability criteria, Emax ranged from 60 to 81 lever presses per two min.  The final 

response threshold ranged from 3 to 9 lever presses per two min.  Shown in Fig. 6B is a 

representative rate-frequency curve of an individual rat.  Verifying that increments in 

EBS current frequency altered ICSS lever pressing, the stable curves for all four rats 

exhibited a significant linear regression with r2 values ranging from 0.84 to 0.87, p <0.01.  

The range of EFreq90 extrapolated from the stable curves was 113 to 152Hz; the average 

was 131 ± 11Hz.  The range of EFreq40 was 84 to 96Hz, with an average of 89 ± 4Hz.   

In the Choice Test (Phase 5), the initial EBS values tested were ECur90 and 

ECur40.  The large reinforcement value was optimized in two rats using by using ECur93 

to ECur95. These corresponded to 123 to 162Hz, and an average of 138 ± 12Hz.  Rats 

successfully met the minimum criteria for this Phase within eight sessions.  As a group, 

the reinforcement preferences across the blocks for the last three sessions were 92 ± 

0.03%, 100 ± 0.0%, 93 ± 0.02%.  

For assessing probability discounting (Phase 6) using ICSS frequency as the 

reward modality, rats were tested twice a day for two consecutive days.  Fig. 9 

demonstrates that as the probability of receiving the large reinforcer decreased, there was 

a proportional decrease in the selection of the LR lever (i.e., free choice ratio; linear 

regression, r2 =0.97; p<0.01).  Comparing Fig. 9 with Fig. 8 reveals that rats displayed a 

similar discounting profile whether the choice in EBS reinforcer is based on or current 

intensity or frequency.   
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Discussion 

 The current report revealed that ICSS can be used as a positive reinforcer to study 

risk-taking in a probability discounting paradigm.  With this paradigm, rats rapidly 

learned to lever press for EBS, and they reliably chose to receive a larger EBS more than 

a smaller EBS, regardless if the variable EBS modality was intensity or frequency, 

indicating the larger EBS was a stronger reinforcer.  As the delivery probability of the 

large reinforcer decreased, rats decreased their selection for the lever associated with the 

large reinforcement (i.e. risky lever), and this behavioral profile remained stable for 

several weeks.  These findings demonstrate that this paradigm can be used efficiently to 

assess risk-taking, including the effects that chronic manipulations (e.g., repeated 

pharmacological treatments) have on the behavior. 

 The described six phase protocol emulated several features of standard 

discounting paradigms that use food as the reinforcer (Cardinal and Howes, 2005).  Rats 

learned the association between performing an operant task (e.g., lever pressing) and 

receiving a reinforcer (Phase 1) and were able to demonstrate stable and persistent lever 

pressing for the reinforcer (Phase 2).  Training for the discounting task was accomplished 

with a simplified version of the full discounting task (Phase 4) and then the rats were 

moved to the full discounting task (Phase 6).  Moreover, the behavioral profile generated 

from probability discounting with ICSS was similar to that obtained with food 

reinforcement (Cardinal and Howes, 2005); rats decreased their selection for risky lever 

as the probability of delivery for the large reward decreased.   

 In food reinforcement studies, it is typical to use one pellet as a small reinforcer 

and four (or more) pellets as the large reinforcer.  This approach incorporates at least two 
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assumptions in well-trained rats: (1) Given a choice between the two, food-deprived rats 

will consistently select the larger number of pellets when both are offered at 100% 

probability (Ghods-Sharifi et al., 2009; St Onge and Floresco, 2009).  (2) Food-deprived 

rats will consistently choose the single pellet when the larger number of pellets is 

delivered at a small probability (Cardinal and Howes, 2005).  These assumptions are 

verified after discounting training and experimental procedures are performed, with the 

idea that the outcomes reflect selection behaviors exhibited throughout the prior testing 

sessions.  ICSS procedures bypass the need to generalize reinforcer values, and specific 

current parameters for the small and large reinforcer can be easily identified for each rat.  

Two different procedures were used to individualize and fine-tune the final small and 

large reinforcer values to be used for the discounting task.  First, the lever pressing rate 

vs. current intensity, or current frequency relationship was ascertained.  This relationship 

is similar to a drug dose-response curve, where magnitude of the independent variable 

(dose, or in our case EBS current intensity or frequency) is correlated to the response, and 

with sufficient test range, the asymptotes that indicate threshold and Emax are determined.  

Based on the matching law, which states relative rates of response will match the relative 

‘rates of reinforcement [in] concurrent schedules of reinforcement’ (Herrnstein, 1970), it 

was assumed that the more a rat lever pressed for a particular current intensity or 

frequency, the more reinforcing that particular current parameter was for the animal.  

Thus, current parameters that produced 90% maximal responding (ECur90) and 40% 

maximal responding (ECur40) were initially chosen to designate large and small 

reinforcers, respectively.   

 The Choice Test was the second procedure used to fine tune the small and large 
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reinforcement values.  We verified that the current corresponding to ECur90-95 and ECur40  

were reliably reinforcing, and that all rats choose the higher current value when the 

alternate lever presented a lower value or no EBS.  Importantly, these were performed 

before training in the discounting task, thus, helping to assure reliability and salience of 

the reinforcement values during assessments of risk-taking.   In a separate study, we have 

now verified that this discriminatory capacity is maintained during at least 19 days of 

probability discounting tests (Rokosik and Napier, 2012).  These assessments verify that 

in spite of slight differences in electrode placement within the LH, and thus the potential 

for different neurons to be activated by the stimulation current (Fulton et al., 2006), the 

individualization of small and large reinforcers provided a means for the rats to robustly 

and stably identify difference in salience magnitude and to demonstrate reinforcement 

preference.  In the Choice Test, the first two blocks included a situation where one lever 

delivered no EBS; therefore, there was a possibility that extinction learning may have 

occurred.  However, the ‘no EBS levers’ were different for the first two blocks, and in the 

third block, both levers were associated with a reinforcer (albeit of different value).  In 

spite of this, the rats consistently selected the larger reinforcer across all blocks, even if 

the larger reinforcer was previously associated with no EBS.  Thus, if extinction learning 

did occur within a block, it did not alter the rats’ ability to properly execute the Choice 

Test for subsequent blocks.  This not only ensured the effects to extinction learning could 

be accounted for, but also verified that rats did not develop a chamber side/lever bias, and 

confirmed that reversal learning is intact (i.e., the ability to learn when previously 

reinforcing associations no longer apply and to change future actions accordingly).  As 

deficits in reversal learning are associated with some forms of impulsivity (Berlin et al., 
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2004) the ability to monitor this cognitive parameter is an additional valuable feature of 

the model.    

The current study, in conjunction with a recent separate study (Rokosik and 

Napier 2012) demonstrates a number of advantages that discounting protocols with ICSS 

as the positive reinforce offer over food-reinforcement protocols:  These include the 

following:  (1) It is more efficient (in spite of the need to add two additional phases).  For 

example, unlike food pellets where time is required to retrieve and consume the 

reinforcer, EBS is delivered and received immediately after the lever press.  

Consequently, trials can be shortened from the typical 30-40sec to 15sec.  (2) Satiation, 

which is a concern in food reinforcement studies is not an issue in ICSS procedures 

(Olds, 1958) which affords the opportunity to increase the total number of trials and 

blocks (i.e., probabilities) per session.  (3) The frequency of testing can be increased; the 

current study conducted two sessions/day.  This allows for increased sample size, 

providing a better representation of the phenomenon and likely improving the ability to 

detect treatment differences.  Efficiency was an objective of this paradigm, and twice 

daily testing allowed for a rapid assessment of stability and reproducibility. (4) The rats 

rapidly acquire the discounting task.  The current study revealed that in stark contrast to 

studies using food reinforcement, a statistically significant positive correlation between 

probability of delivery of the large reinforcer and selection of the LR lever was obtained 

in the first test session.  In food reinforcement studies (using either delay or probability 

discounting tasks) it can take approximately 10 testing sessions for this correlation to 

emerge (Evenden and Ryan, 1996; St Onge and Floresco, 2009).  (5) Stability of the 

discounting behavior also develops rapidly.  In the current study, rats achieved stable 
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behavior by the fourth test day.  This is in stark contrast to food reinforcement studies 

were it can take approximately 30 days to reach stable criteria for the discounting task 

(Ghods-Sharifi et al., 2009; St Onge et al., 2010; St Onge and Floresco, 2009). (6) The 

probability order within a session can be readily manipulated.  This is an important 

feature, as the order of presentation of the probabilities may affect subsequent lever 

selection.  In the current study, a descending order of probabilities was used, as is 

common in food reinforcement studies (Cardinal and Howes, 2005).  We observed that in 

well-trained rats, as the probability of delivery of the large reinforcer decreased from 1.0 

to 0.0625, selection for the risky lever decreased from nearly 100% to 0%.  This 

established that predictable near zero, probabilities resulted in a near zero response.   In a 

separate study, we have tested the ability of rats to perform in the ICSS-mediated 

discounting task when the order of probabilities was pseudo-randomized (Rokosik and 

Napier  2012).  These rats acquired the discounting task and met stability criteria in a 

similar time frame as rats in the current study.  However, at the lowest probabilities, rats 

chose the risky lever a higher percentage of the time (i.e., between 30-50%).  This 

indicates that when a given probability level did not predict subsequent probabilities, the 

motivation for the rat to continue to select the risky lever remained high, even when the 

odds of obtaining a large EBS were very low.   Floresco and colleagues (St Onge et al., 

2010) also attempted to use a mixed order of probabilities (i.e., 1.0, 0.125, 0.25 and 0.5) 

with food reinforcement.  In contrast to our observations with ICSS, they reported that 

rats were not able to effectively perform the discounting task, for at the lowest probability 

(0.125), rats where still choosing the risky lever ~75% of the time, compared to 50% of 

the time when probabilities were presented in a descending systematic order.  In 
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summary, while the predictability of the systematic decrease in probability appears to 

influence choice behavior in both food- and ICSS-mediated probability discounting, the 

robust and immediate nature of ICSS assisted the rats in adapting to the unpredictable 

changes.  As probability discounting tasks are used as a tool to assess risky behavior, and 

unpredictability is a fundamental aspect of risk, the ability to randomize probability is 

another valuable feature of the current model.  (7) The lever assignment of LR can be 

changed without interfering with task acquisition.  Moreover, this method assures that 

lever selection does not reflect an innate, or non-reward-mediated, bias.  In the current 

study, LR vs. SC lever assignment was counterbalanced between rats (but a consistent 

designation was used for each rat).  In a separate study, we determined that similar 

discounting behavior was obtained when LR and SC were counterbalanced left vs. right 

among sessions (Rokosik and Napier, 2012).  To our knowledge, such flexibility has not 

been demonstrated in discounting studies using food reinforcement.  (8) ICSS bypasses a 

confound of dysregulation in energy balance, which can alter risk-taking.  ICSS directly 

engages reward centers of the brain (Olds and Milner, 1954).  This immensely salient 

modality is highly motivating so that the rats rapidly learn to associate EBS 

reinforcement in an operant task.  The salience of food reinforcement is not robust and 

rats typically are food deprived to 80-90% of their free-feeding body weight to motivate 

them to learn and subsequently perform operant tasks (Weingarten, 1983).  As rats 

progress through test sessions, there is concern that rats become satiated (Cardinal and 

Howes, 2005; St Onge and Floresco, 2009), and the energy balance of the animal can 

change.  For example, risk-sensitive foraging theories, which state that if an animal is 

offered a choice between a fixed, predictable outcome vs. a variable, unpredictable 
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outcome, the decision will be based on the energy state of the animal (Stephens, 1981).  

Verifying these possibilities are reports demonstrating that alterations in hunger or thirst 

states, change impulsive behavior (Minamimoto, La et al., 2009;Schuck-Paim, Pompilio 

et al., 2004).  (9)  Finally, ICSS bypasses the possible influence that satiety state may 

have on the neurochemistry within brain networks involved in impulsivity.  The 

neurotransmitters, serotonin and dopamine play a role in impulsivity in both humans and 

rodents (Adriani et al., 2009; Mehlman et al., 1994; Mobini, et al., 2000; Soubrié, 1986; 

Winstanley et al., 2005) and these transmitter systems undergo adaptations in animals 

that have been food deprived (Carlson et al., 1988; Haleem and Haider, 1996; Huether et 

al., 1997; Kohsaka et al., 1980).  There is also an interest in the affects that 

psychostimulants have on impulsivity, particularly in light of the use of these drugs in 

substance abuse disorders and for treatment in attention deficits hyperactivity disorders.  

Food deprivation can confound results in these studies as well.  For example; food 

deprived rats more vigorously seek out, and are more sensitive to the rewarding effects 

of, amphetamine and cocaine (Bell, et al., 1997; Cabeza de Vaca and Carr, 1998; Carroll 

et al., 1984).  Thus, conclusions drawn from food reinforcement studies must take into 

account the adaptations known to occur with food deprivation.   

We revealed that once established, probability discounting could be measured 

every day or every fourth day, and similar risk-taking profiles were obtained.  We also 

demonstrated that the baseline risk-taking profile was not altered by repeated systemic 

injections of saline, a common vehicle used in drug studies.  These findings are of 

technical importance showing the paradigm can be applied to long term evaluations of 

chronic drug treatments, and that infrequent testing is sufficient to obtain an accurate 
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assessment of the behavior.   

Two factors influence the strength of an EBS: current intensity and frequency.  

We verified that the capacity to perform probability discounting is independent of 

stimulation current modality, such that the task is sensitive to different levels of current 

intensity or frequency.  The value of this last milestone lies in the theoretical constructs 

of what neuronal elements are engaged with various stimulation parameters.  With 

increasing current intensity, the current spread increases, and more neurons (of 

potentially different transmitter phenotypes) are activated (e.g., see (Maslowski and 

Napier, 1991; Mitrovic and Napier, 1995).  In contrast, when frequency of stimuli is 

increased within physiological ranges and with a constant intensity, the firing rate is 

increased but the population of activated neurons remains consistent (Pillolla et al., 

2007).  We revealed that lever pressing rate was positively correlated to changes in 

magnitude of EBS intensity or frequency, that individualized smaller and larger rewards 

could be obtained and discriminated by the rats for both modalities, and that both 

modalities supported the probability discounting task.    This agrees with findings that, 

when the EBS train duration is kept constant (as was done in the current study), the 

subjective value of reward is a product of the current intensity and frequency (Gallistel 

and Leon, 1991).  For example, doubling the current intensity will half the frequency 

needed to maintain the same reward magnitude (Gallistel and Leon, 1991).  Data from the 

current study revealed more variability among rats when collecting rate-intensity curves, 

as compared to rate-frequency curves.  This could be explained by the fact that rats tested 

in the latter had completed the entire probability discounting task with current intensity 

and therefore, these rats were exceptionally well-trained.  However, it may be related to 
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the modality; ongoing studies in our laboratory continue to obtain more moderate 

variability among rats when using the rate-frequency curves. 

In conclusion, we reveal here that ICSS can serve as a positive reinforcer for 

probability discounting paradigm protocols.  The present six phase protocol leads to 

stable discounting functions that persist for several weeks and allows for the assessment 

of chronic manipulation, such as pharmacological treatments, on risk-taking behavior.  
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Table 1.  The six phase ICSS-mediated probability discounting paradigm; time-line and 

phase details. 

a Surgery occurred on Day 0, followed by six days of recovery. 

b Intensity (µA) or frequency (Hz). 
  

Phase Title Phase Training 
Objective 

Phase acquisition 
criteria 

Maximal # of 
sessions to 

reach criteria 
 

Timeline 
for phasesa 

(Days)  

1. Shaping Associate a lever 
press with EBS. 

Steady lever pressing 
(~eight presses/min) on 
both levers 

3 7-8 

2. FR-1  Demonstrate steady 
lever pressing on 
both levers 

Lever press ≥ five times 
within the first two min of 
the session (i.e., to initiate 
the session) and maintain a 
minimum average of eight 
lever presses/min in four 
consecutive sessions.   

4 9-10 

3. Rate-
Current 
Strengthb 
Function 

Demonstrate a 
stable positive 
correlation between 
LH stimulation 
parametersb and the 
rate of lever 
pressing. 

 Emax and threshold values 
±20% for three 
consecutive curves. 

11 11-16 

4. Discrete 
Trials  

Recognize the 
temporal nature of 
15sec trials 

Complete >150 
trials/session for four 
consecutive sessions. 

6 17-19 

5. Choice Test Recognize and 
select from 
differing, lever-
specific, 
reinforcement 
values (i.e., large 
and small 
reinforcer) 

Select the larger of the two 
reinforcers in each block, 
for an average of ≥70% of 
the trials for three 
consecutive sessions.  14 20-26 

6. Probability 
   Discounting 
Task  

Demonstrate a 
positive correlation 
between selection of 
a large and/or risky 
reinforcer and the 
probability of that 
reinforcer being 
delivered. 

Data subjected to a two 
way rmANOVA with Day 
and Probability as factors.  
Stability defined as no 
effect of day, a significant 
effect of probability and 
no interaction (p<0.1) for 
three consecutive days. 

3 27-37 
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Figure 5.  Illustration of electrode tips targeted at the medial forebrain bundle at the level 

of the lateral hypothalamus (LH). Collapsed onto three neuroanatomical plates are 

representations of the tip of the electrode (circles) targeted to the medial forebrain bundle 

(modified from Paxinos and Watson (1997)).  For two of the eight rats, the electrode was 

implanted such that the tip was ventral to the target area (triangle) and these two rats did 

not perform ICSS.  The numbers indicate distance from bregma.   
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Figure 6.  A representative rate-current intensity and rate-frequency function.  After 

maintaining stable lever press responding with various current intensities (A) or 

stimulation frequencies (B) for three consecutive sessions, a final curve was generated for 

each rat tested (n=6, and 4, respectively).  Shown are the mean ± SEM.  The plot is drawn 

as a third order polynomial to help visualize Emax, and threshold.  Determinations of 

ECur90, ECur60 and ECur40 from this type of curve are explained in the methods section. 
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Figure 7.  Acquisition of the probability discounting task in Phase 6.  Shown are data 

taken from six rats during their first session for the discounting task.  A positive 

correlation between the free-choice ratio (i.e., per block, number of times rats selected the 

large/risky (LR) lever divided by the total number of lever presses made X 100) and the 

probability that the large reinforcer was delivered. The plot is drawn as a third order, 

nonlinear regression, the statistics for which are R2=0.37.  The reinforcer options were 

based on current intensity.  Shown are the mean ± SEM. 
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Figure 8.  Persistence of stable discounting behavior.  Following two weeks of periodic 

discounting testing during saline treatment (protocol days 38-51), rats were tested in the 

probability discounting task on protocol days 55 and 59.  Compared to the last day of 

baseline discounting, day 37 (squares), stable behavior was maintained to the end of the 

saline treatment, day 51 (triangles), and on the last day of the study, day 59 (diamonds).   

Shown is the free-choice ratio (i.e., per block, number of times rats selected the 

large/risky (LR) lever divided by the total number of lever presses made X 100) vs. the 

probability that the large reinforcer was delivered.  The reinforcer options were based on 

current intensity.  Shown are the mean ± SEM; (n=3 rats) for each curve. 
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Figure 9.  Probability discounting behavior using frequency (Hz) as a reward modality.  

Rats underwent two days of testing in the discounting task using a small and large 

reinforcer that differed only in current frequency of the brain stimulation.  Shown is the 

free-choice ratio (i.e., per block, number of times rats selected the large/risky (LR) lever 

divided by the total number of lever presses made X 100) vs. the probability that the large 

reinforcer was delivered.   Data are presented as the mean ± SEM; (n=3 rats).  The profile 

of the discounting curve is similar to the discounting curves generated using current 

intensity as the reward modality (compare to Fig. 4).  
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CHAPTER IV 

PRAMIPEXOLE ALTERED PROBABILISTIC DISCOUNTING: COMPARISONS 
BETWEEN A RODENT MODEL OF PARKINSON’S DISEASE AND CONTROLS 

 

Abstract 

The dopamine (DA) agonist pramipexole (PPX) can increase measures of 

impulsiveness, and PPX therapy for neurological diseases (Parkinson’s disease (PD), 

restless leg syndrome) is associated with impulse control disorders (ICDs) in 

subpopulations of treated patients.  A commonly reported ICD is pathological gambling 

in which risk-taking is a prominent feature.  Probability discounting is a measureable 

aspect of risk-taking.  We recently developed a probability discounting paradigm wherein 

intracranial self-stimulation (ICSS) serves as the positive reinforcer.  Here we used this 

paradigm to determine effects of PPX on discounting.  We included assessments of a 

rodent model of PD, in which 6-OHDA was injected into the dorsolateral striatum of both 

hemispheres and which produced persistent PD-like deficits in posture adjustment.  Rats 

were trained to perform ICSS-mediated probability discounting, in which PD-like and 

control groups exhibited similar profiles.  Rats were treated twice daily for two weeks 

with 2mg/kg (±)PPX (a racemic mixture of the drug that is equivalent to 1mg/kg of the 

active form), a dose that improved lesion-induced motor deficits.  In both groups, PPX 

increased discounting; preference for the large reinforcer was enhanced 30-45% at the 

most uncertain probabilities.  There was no difference between the two groups.   



70 
 

 
 

Tolerance did not develop with repeated treatments.  Increased discounting 

subsided within two weeks of PPX cessation, and re-exposure to PPX reinstated 

heightened discounting.  Such findings emulate the clinical scenario; therefore, ICSS for 

discounting assessments in rats exhibited high face validity.  This model should prove 

useful in medication development where assessment of the propensity of a putative 

therapy to induce risk-taking behaviors is of interest.   

 

Introduction  

DA agonists PPX and ropinirole are FDA-approved for treatment of motor 

dysfunction in PD and restless leg syndrome (RLS).  DA agonist therapy is associated 

with impulse control disorders (ICDs) in an estimated 14% of treated PD patients (Voon 

and Fox 2007; Weintraub et al. 2010) and 7-12% of treated patients with RLS (Pourcher 

et al. 2010; Driver-Dunckley et al. 2007).  These drugs are being used off label for other 

pathologies, including fibromyalgia and bipolar disorders wherein ICDs are also 

observed (Holman 2009; Strejilevich et al. 2011).  Independent of the pathology for 

which the therapy is implemented, ICD onset is reported to relate to onset of DA agonist 

treatment, and symptoms typically subside with dose reduction or discontinuation (Dodd 

et al. 2005; Driver-Dunckley et al. 2007; Mamikonyan et al. 2008; Quickfall and 

Suchowersky 2007).  In North America, ICDs associated with DA agonists commonly 

include problem/pathological gambling, compulsive sexual behavior, compulsive buying, 

and binge-eating (Weintraub et al. 2010).  These behavioral disorders are reward- or 

incentive-based and repetitive in nature (Evans et al. 2009), indicating that DA agonists 

can lead to dysregulation of general reward processes.  Supporting this concept, acute 
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PPX can enhance reward-mediated learning (Pizzagalli et al. 2008; Santesso et al. 2009) 

and impulsivity in healthy human volunteers (Riba et al. 2008); but see (Hamidovic et al. 

2008).   

To better understand the link between DA agonists and ICDs, and to provide a 

means to screen new therapies without a propensity to induce aspects of impulsivity, a 

valid animal model is needed.  Towards that end, we developed a novel probability 

discounting paradigm in laboratory rats (Rokosik and Napier, 2011).  This task measures 

how changes in probabilities alter decision making.  For example, subjects are given a 

choice between a small reward that is always delivered and a large reward that is 

sometimes delivered.  If the probability of obtaining a large reward is high, the subject 

will prefer the large reward; however, lower probabilities will drive preference for the 

small reward that is guaranteed.  If the subject discounts probability, the ability of lower 

probabilities to drive preference for the small certain reward will be decreased.  Thus, an 

increase in discounting reflects a reduced influence or perhaps importance of the low 

probabilities, and the subject will exhibit preference for the large reward during both high 

and low probabilities for reward obtainment.  This profile is reflected in a shallower slope 

for curves illustrating discounting behaviors (Figs 8 and 9 are examples of normal 

discounting curves, whereas Figs 16 and 17b show drug-induced increases in 

discounting).   Probability discounting is a popular method to study risky decision-

making, one facet of impulsivity.  Problem gamblers demonstrate increased risk-taking in 

probability discounting paradigms (Holt et al., 2003; Madden et al., 2009; Petry, 2011).   

To provide a potent, rapid, and reliable reward that allows for repeated tests of 

discounting, we employed intracranial self-stimulation (ICSS) as the positive reinforcer 
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in rats (Rokosik and Napier, 2011).  The ability for repeated testing is a critical feature 

for assessments of chronic treatments.  As yet, laboratory evaluations have not been 

conducted for chronic PPX administration, and this is needed to better emulate the 

therapy scenario used clinically.  To fill this gap, the current study evaluated the effects 

of chronic PPX treatment on probability discounting.  To emulate the pathology for 

which PPX is most often used clinically, we included assessments in a 6-OHDA model of 

PD.  As DA agonists, including PPX, are front-line therapy for early stage PD 

(Bonuccelli et al., 2009), we sought to model the human brain at this stage, i.e., when 

dopaminergic lesions are largely confined to the putamen (Kish et al., 1988).  The rodent 

dorsolateral striatum (DLS) is the homolog of the primate putamen, and lesions of DA 

inputs to the DLS via 6-OHDA injections are a common way to model early stages of PD 

in rats (Deumens et al., 2002; Przedborski et al., 1995).  Notably, early stage PD, the DA 

projections that comprise the mesolimbic pathway are left relatively intact (Bernheimer et 

al., 1973; Kish et al., 1988).  In the DLS-lesion, this pathway is left intact.  It remains 

unclear as to why SNpc neurons are more susceptible to cell death, however there have 

been several potential explanations.  For example, vulnerability of SNpc neurons have 

been related to the presence of iron (Faucheux et al., 1995; Lv et al., 2011) elevated 

cytosolic DA (Mosharov et al., 2009) elevated DA metabolites (Galvin, 2006) and 

elevated DA transporter glycosylation (Afonso-Oramas et al., 2009).  On the other hand, 

dopaminergic neurons in the VTA are protected by the presence of calcium binding 

proteins such as Calbindin-D28k and calretinin (German et al., 1992) and expression of 

transcription factors, such as Otx2 (Simeone et al., 2011) which can protect neurons from 

excessive amounts of calcium and DA, respectively.  Moreover, SNpc neurons are 
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susceptible to cell death by α-synuclein (Dawson and Dawson, 2003), whereas evidence 

suggests that these protein aggregations do not lead to VTA neuronal degeneration 

(Maingay et al., 2006). 

 

Materials and Methods  

Subjects 

Male Sprague-Dawley rats weighing 250-274g upon arrival (Harlan, Indianapolis, 

IN) were housed in pairs under environmentally controlled conditions (7:00AM/7:00PM 

light/dark cycle, temperature maintained at 23-25°C) with access to rat chow and water 

ad libitum.  Rats were handled according to federal standards.  Protocols were approved 

by Rush University IACUC.   

 

Treatment drugs 

Pramipexole (synthesized as the racemic mixture; Daya Drug Discoveries; 

Hazelwood, MO) (±PPX) was dissolved in saline and given intraperitoneally (ip) as 0.25, 

0.5, 1.0, 2 or 4mg/ml/kg for assessments in stepping and 2mg/kg for the discounting task.  

To induce dopaminergic lesions, 6-hydroxydopamine-hydrobromide (6-OHDA; Sigma-

Aldrich, St Louis, MO) was dissolved in 0.2% ascorbic acid in a sterile saline solution 

(pH=5.0) and infused into the striatum at a dose of 7.5µg/2µl/side (as the salt).  Thirty 

min beforehand, rats were given 25mg/kg, ip (as the salt) of desipramine-HCl (DMI; 

Sigma-Aldrich, St Louis, MO) dissolved in sterile water to reduce uptake of the 6-OHDA 

into adrenergic neurons.   
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Surgical procedures for 6-OHDA injections and electrode implantation 

To stereotaxically lesion the striatum and implant the stimulation electrode rats 

were anesthetized with sodium pentobarbital (50mg/kg/ml ip; Sigma-Aldrich, St Louis, 

MO), administered DMI, and the head placed in a stereotaxic frame (David Kopt, 

Tujunga, CA) with the nose piece set at 3.3mm below the horizontal.  A 33 gauge, 

bilateral injector was lowered to the dorsolateral striatum (DLS; 1.0mm anterior to 

bregma, 3.4mm lateral from midline, 4.7mm ventral from skull).  Thirty min post DMI, 

6-OHDA was injected at a rate of 0.2µl/min for 10 min.  Sham controls were similarly 

injected with the ascorbic acid vehicle.  The injectors were left in place for an additional 

min (to allow the solution to diffuse away from the tip) and the skull holes were filled 

with bone wax.  A bipolar stimulating electrode (MS303/3-B/SPC; Plastics One, 

Roanoak, VA) was lowered to the lateral hypothalamus (LH; 2.6mm posterior to bregma; 

1.8mm lateral; 8.4mm ventral).  Electrodes were secured to the skull with stainless steel 

screws and dental acrylic, and the incision was sutured.  Rats were allowed at least five 

days recovery from surgery before operant testing was initiated. 

 

Behavioral Testing 

Motor assessment: Forelimb adjusting step test 

6-OHDA-induced motor deficits were verified using the forelimb adjusting step 

test, (Olsson et al. 1995) conducted one day before surgery and at least once a week post-

surgery.  To do so, the experimenter suspended the rat's rear legs and one forelimb while 

the rat supported itself on its unrestrained forelimb.  The rat was ‘dragged’ on the 

unrestrained forelimb 0.9m/5sec in abduction and adduction directions for both 
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forelimbs, and the number of adjusting steps was counted.  Three stepping trials were 

taken per session, and the average score was determined.   

An initial study was conducted to validate the rat model of PD employed here 

with regard to (i) brain DA deficits, and (ii) motor dysfunction for a time frame that 

would coincide with duration of the probability discounting paradigm.  6-OHDA-treated 

rats were sacrificed 21 days (n=6) or 60 days post-lesion (n=6); sham rats (n=5) were 

sacrificed 60 days post-lesion.  Forelimb stepping adjustments were measured every three 

days.  Lesion extent was verified in ex vivo tissue harvested 21 or 60 days after 6-OHDA 

infusion using tyrosine hydroxylase immunohistochemistry. 

 A separate group of lesioned rats (also implanted with stimulation electrodes) 

were used to conduct a (±)PPX dose vs. stepping response evaluation.  These rats were 

tested with the stepping task one day before surgery and every week after.  

Approximately 40 days after the lesion, the following protocol was used: PPX was 

administered to sham (n=7) and 6-OHDA-treated rats (n=5) in the AM and stepping 

adjustments were measured immediately before, and 1 and 6hr after treatment.  In the 

PM, a second PPX injection (of the same dose) was given and stepping was measured 

17hr later.  Treatments (vehicle, 0.25, 0.5, 1, 2 and 4mg/kg, ip) were administered weekly 

in a pseudo-randomized order.   

 

Intracranial self-stimulation (ICSS) procedures and apparatus 

ICSS experiments were conducted in operant chambers (30.5cm x 24.1cm x 

21.0cm; Med-Associates, St. Albans, VT) outfitted with a chamber light, and two 

retractable levers each under a stimulus light and enclosed in ventilated, sound attenuated 
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boxes.  Electrical brain stimulation (EBS) was delivered by a programmable stimulator 

(PHM-152/2) via bipolar leads connected to commutators (Plastics One, Roanoak, VA) 

mounted above the chamber.  Typically, two ICSS test sessions were conducted per day.  

The following describes the testing protocols for various phases in the probability 

discounting paradigm:  

 

ICSS-mediated probability discounting 

A nine phase paradigm was used to determine rats’ baseline discounting and 

effects of PPX, as previously described (Rokosik and Napier, 2011).  Table 2 shows the 

acquisition criteria for Phases 1-6 that were required before initiating PPX treatment 

(Phases 7-9) in the current study.  Briefly, Phase 1, Shaping. A single lever was extended 

and electrical brain stimulation (EBS; 200μs biphasic square wave pulses with a 100µs 

delay between pulses, applied at 100Hz for 500ms) was delivered.  Only the initial 

current intensity (100μA) was adjusted for each rats based on their performance to 

approach and ultimately press the lever.  The final intensity level was used for the 

remaining Phases.  Phase 2, Fixed ratio-1 (FR-1) reinforcement.  To establish stable ICSS 

lever pressing, rats underwent a continuous FR-1 reinforcement schedule wherein one 

lever was extended for a 30min session.  Phase 3, Rate-Frequency Function.  Rats were 

pseudo-randomly presented with one of 16 different current frequencies tested in 10Hz 

increments, ranging from 10-160Hz.  Train duration and current intensity were held 

constant.  For each frequency, rats had access to the lever for 2min and the number of 

lever presses were recorded.  Following each 2min period, the lever retracted for 10sec.  

In each session, a lever pressing rate vs. ICSS current frequency (termed the rate-
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frequency function) was collected and the maximal (Emax) and minimal (threshold) 

number of lever presses were determined using a non-linear regression (GraphPad Prism, 

La Jolla, CA).  When a rat met phase acquisition criteria (see Table 3), averages of three 

curves were used to determine ICSS frequencies that produced 90%, 60% and 40% of 

Emax (termed effective current (ECur); ECur90, ECur60 and ECur40, respectively; see Fig. 

10).  Phase 4, Discrete Trials.  Rats were trained to recognize the temporal nature of trials 

using each rat’s own ECur60 as the reinforcer.  Each session was comprised of 200 trials.  

Trials occurred in 15sec intervals.  Each session began with both levers retracted and the 

chamber light off; 2sec later, the chamber light was illuminated, followed 3sec later by 

the extension of one lever.  The rat had 10sec to press the lever, if the response was not 

executed, the trial was aborted (termed an omitted trial), the lever retracted and the 

chamber light turned off.  If a lever press was made, an EBS was delivered and the 

stimulus light over the lever was turned on.  After 0.5sec, all lights were turned off and 

the lever retracted.  The two levers were alternately extended among trials.  Phase 5, 

Choice Test.  The purpose of this Phase was to determine for each rat, a small and large 

reinforcer that could be used in the probability discounting phase.  Using the FR-1 

discrete trials described in Phase 4, rats were trained to select from different, lever-

specific, reinforcement values.  Each session consisted of three blocks.  Each block 

consisted of 20 forced-choice trials followed by 20 free-choice trials.  In forced-choice 

trials, one lever was extended at a time allowing the rat to learn the reinforcement value 

associated with that lever.  In free-choice trials, both levers were extended, and the rat 

had to choose between the lever-specific reinforcement values.  Initially, small and large 

reinforcers corresponded to the rat’s ECur90 and ECur40 (obtained in Phase 3).  To 
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complete this phase, rats had to demonstrate a “free-choice ratio” (the number of 

selections for the large reinforcer divided by the total number of lever responses made 

x100) of at least an average of 70% across the three blocks.  Phase 6, Probability 

Discounting Task.  Each session consisted of nine blocks as used in Phase 5, but here, 

one lever was designated “small/certain lever” (SC) and the other was “large/risky” lever 

(LR).  A press on the SC lever always delivered the small reinforcer (i.e., approximately 

ECur40); a press on the LR lever delivered the large reinforcer (approximately ECur90) 

with varying probabilities.  The following three series of probability presentations were 

cycled during this, and subsequent phases: (i) 0.5, 0.3, 0.85, 0.6, 0.05, 0.7, 1.0, 0.4 and 

0.15; (ii) 0.15, 0.6, 0.4, 0.05, 0.7, 0.3, 0.85, 1.0 and 0.5; and (iii) 0.7, 0.4, 1.0, 0.15, 0.5, 

0.85, 0.05, 0.3 and 0.6.  For each series, the LR lever was designated either to the left or 

right lever; therefore, each rat experienced six different probability formats.  Data from 

free-choice trials of each probability (i.e., block) were analyzed to determine a baseline 

free-choice ratio vs. probability function.  If in a block, there were 50% or more 

omissions from the free-choice trials (i.e., more than 10 of 20 trials tested), data from that 

block were excluded from subsequent analysis.  This criterion was held for Phases 6-9 

(each of which employed the probability discounting task), and overall, less than 2% of 

the blocks were excluded.  Phase 7, (±)PPX treatment.  One day following the last 

baseline test, PPX treatment was initiated.  The regimen was 2mg/kg (±)PPX, ip, twice a 

day (in the AM and PM) for 13 days (termed, chronic treatment).  PPX-induced changes 

in discounting were assessed 30min and 6hr following the AM injection on the first and 

every third day of the chronic treatment.  Phase 8, withdrawal.  In a subset of rats, PPX 

was withdrawn for 15 to 69 days after cessation of treatment.  Phase 9, re-instatement.  
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PPX treatment was reinitiated twice a day for seven days.  Probability discounting was 

assessed every third morning throughout Phases 8 and 9. 

 

Histology and tyrosine hydroxylase immunohistochemistry (TH-IHC) 

Rats were deeply anaesthetized with chloral hydrate (400mg/kg; Sigma, St. Louis, 

MO).  A 5V DC current was applied to the stimulating electrode for 30sec to deposit iron 

and/or produce a very discrete lesion at the electrode tip.  The iron deposits were 

visualized by a blue coloration produced via trichloroacetic acid (0.5%) and potassium 

ferricyanide (3%) added to a 4% paraformaldehyde solution used for transcardial 

perfusion after perfusing with ice cold 0.9% NaCl.  Brains were removed, post-fixed in 

4% paraformaldehyde and stored in a 30% sucrose solution.  Brains were sliced in 40μm 

coronal sections.  Striatal sections were immunoreacted with a primary monoclonal 

mouse anti-TH antibody (ImmunoStar, 22941) diluted 1:10,000 and a biotinylated horse 

anti-mouse IgG (Vector Laboratories, BA2001) diluted 1:100.  The signal was amplified 

by avidin and biotinylated horseradish peroxidase using the Elite ABC Vectastain Kit 

(Vector Labs, PK6100).  Immunostaining was visualized with 3,3-Diaminobenzidine 

tetrachloride dehydrate (Sigma, D5637) solution activated with 0.3% H2O2.   

 

Data analysis  

To compare PD-like and control rats, data from Phases 1-6 were analyzed using a 

Student’s t-test.  A linear correlation was conducted between (i) lever pressing rate and 

EBS frequency (Hz; Phase 3) to verify that changes in EBS frequency altered ICSS, and 

(ii) free-choice ratio and probability magnitude (Phase 6) to determine if the two groups 
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acquired the discounting task.  To determine treatment-induced changes in free-choice 

ratio collected in Phases 6-9, a two way repeated measures (rm) ANOVA was conducted.  

For Phases 6-7, day and probability were factors.  For Phases 8-9, phase and probability 

were factors.  A post hoc Newman-Keuls provided individual comparisons.  Forelimb 

stepping was similarly analyzed with time and dose as factors.  If a data point exceeded 

two standard deviations from the group mean, it was considered an outlier and it was 

excluded from analysis.  Significance was p<0.05 for group/treatment comparisons; data 

are reported as group means ± SEM.   

 

Results 

Intra-Dorsolateral Striatal Injections of 6-OHDA Produced Persistent Motor Deficits 

that were Reversed by Pramipexole 

We conducted an initial study to validate that the DLS infusions of 6-OHDA 

resulted in a lesion that was sufficiently robust and persistent to produce stable and 

enduring reduction of TH in the DLS and in deficits in forelimb stepping, similar to a 

previous report (Chang et al., 1999).  The DLS of 6-OHDA-treated rats showed profound 

reductions in TH staining that persisted for 60 days (Fig. 11).  For the six rats killed at 

21d post lesion, the tissue sections which showed the largest lesion extent were between 

+1.2mm to +0.7mm anterior to bregma, and the lesion could be detected from +2.2mm to 

-0.26mm.  While all rats had similar pre-surgery baseline stepping, those treated with     

6-OHDA displayed stepping deficits in both left and right forelimbs when tested in both 

the adduction and abduction direction.  These deficits, which were similar for 21 and 60d 
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post lesion, and were about 40-50% of that obtained from sham rats (see Table 3).  These 

data were analyzed using a planned contrast two way rmANOVA.  For all four parameter 

tested, there was a significant (p<0.05) effect of treatment group and post-surgery time, 

and group by time interactions (Left abduction: group F(2,48) = 13.63, time F(1,48) = 

193.95, interaction F(2,48) = 20.84.  Right abduction: group F(2,48) = 14.21, time F(1,48) = 

142.02, interaction F(2,48) = 15.78.  Left adduction: group F(2,48) = 12.30, time F(1,48) = 

146.04, interaction F(2,48) = 40.01.  Right adduction: group F(2,48) = 3.30, time F(1,48) = 

54.83, interaction F(2,48) = 18.37.)  This study verified that the 6-OHDA treatment 

protocol profoundly reduced dopaminergic innervation of the DLS and that this lesion 

was sufficiently robust and enduring to produce stable deficits in motor function that 

persist for at least 60 days.  Thus, this 6-OHDA treatment protocol was employed for the 

subsequent ICSS studies, and stepping adjustments of the left forepaw in the abduction 

direction were used as the representative motor index of the DLS lesion.   

To verify that the deficits remained throughout the 85 days needed to complete 

the study, a separate group of rats that completed the ICSS-mediated discounting 

paradigm (n=21) were also assessed for forelimb stepping each week post-surgery.  We 

determined that stepping remained at approximately 17 steps/session for control rats and 

at 4-5 for PD-like rats.  Similar to the rats tested 60d post lesion (discussed above), these 

motor deficits persisted throughout the study (i.e., for 85 days, data not shown). 

To evaluate the ability of PPX to reverse 6-OHDA-induced motor deficits, rats 

that failed to meet acquisition phase criteria in the discounting paradigm (n=5/16 PD-like; 

7/17 shams; refer to Table 2 for criteria) were used.  For these rats, the pre-surgery 

baseline average of adjusting steps/session were 14-15 and this level was not altered in 
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control rats by either vehicle treatment or any dose of (±)PPX tested (data not shown).  In 

contrast, PD-like rats showed a significant effect of (±)PPX dose (F(5,20) =34.17, p<0.01) 

and post-treatment time (F(3,60) =316, p<0.01) and an  interaction (F(15,60) = 46.88, 

p<0.01).  As shown in Fig. 12, at doses ranging from 0.5-4.0mg/kg ip, (±)PPX improved 

stepping deficits in PD-like rats at 1hr post treatment; 1.0-4.0mg/kg maintained stepping 

improvements for at least 6hr post treatment.  Adjusting steps returned to pre-(±)PPX 

deficit levels 17hr after injection for all doses tested.  The stepping deficit was not altered 

by vehicle or 0.25mg/kg (±)PPX.  The 2mg/kg (±)PPX dose produced robust motor 

improvements that persisted for 6hr and yet was below maximal improvement seen.  

Furthermore, this dose was not sufficient to influence behavior at 17hr post injection 

(Fig. 12).  Therefore, the treatment given in the late afternoon was mostly cleared from 

the animals before the morning injection, and PPX likely did not accumulate during the 

repeated injections.  These outcomes guided the dosing protocol selected for the 

probability discounting paradigm, i.e., 2mg/kg (±)PPX (i.e., 1mg/kg of the active form), 

administered twice a day.  This decision was also guided by reports that (i) 1mg/kg of     

(-) PPX alters reward-mediated behavior, i.e., enhances the reinforcing effects of cocaine 

(Caine et al., 1997) and (ii) twice-daily injections of 1mg/kg of (-)PPX in rats increases 

expression of forebrain D3 receptors (Maj et al., 2000), which are involved in ICDs and 

addictions (Heidbreder and Newman, 2010).   
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PD-like and Control Rats Performed Similarly in the Probability Discounting 

Paradigm 

Post mortem histological evaluations verified that rats completing the ICSS-

mediated paradigm had electrode tip placements located in the lateral hypothalamus (Fig. 

13).  To determine if PD-like rats differed from controls in any aspect of paradigm 

acquisition, performance in Phases 1-6 was monitored and compared for the two groups 

(refer to Table 3).  All rats quickly acquired stable ICSS lever pressing, and both groups 

lever pressed on an FR-1 at similar rates.  Likewise, the ECur90, ECur 60, and ECur 40 

obtained from each rat’s ICSS rate vs. current frequency curve did not differ between 

groups.  The averaged rate-frequency functions for PD-like and control rats are 

graphically indicated in Fig. 14.  Both groups exhibited significant linear regressions; 

PD-like, r2=0.94, p<0.01; and control rats r2=0.91, p<0.01.  The two groups learned and 

met phase criteria for the discrete trials and the choice tests in a similar time frame (Table 

2).  All rats that entered Phase 6 were able to learn the discounting task.  Fig. 15 

illustrates that both groups acquired the probability discounting task in the first session of 

Phase 6, as demonstrated by a reduction in selection the LR lever as the probability for 

delivery of the large reinforcer decreased (PD-like rats: r2=0.73, p<0.01; control rats: 

r2=0.85, p<0.01).  While the range for individual rats to obtain stable baseline discounting 

was three to six days, as groups, both the PD-like and control met stability criteria in the 

first three test days.  For these three days of discounting, control rats showed an effect of 

probability (F(8,216) = 47.89, p<0.01) but no day effect (F(2,27) = 0.32,p=0.73), nor 

interaction (F(16,216) = 1.17, p=0.29).  There were 7 data points removed due to meeting 
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statistical outlier criteria.  Likewise, for PD-like rats, there was an effect of probability 

(F(8,240) = 62.6, p<0.01), without an effect of day (F(2,30) = 0.23, p=0.80) or interaction 

(F(16,240) = 1.3, p=0.20).  There were 8 data points removed due to meeting statistical 

outlier criteria.  Thus, for both groups there was a direct relationship between reward 

probability and free-choice ratio which did not differ for the first three baseline test days.  

For this Phase, 9 of 1,134 total blocks had response omissions of 50% or more, and were 

omitted from the free choice ratio analyses.    

 

Pramipexole Increased Discounting in the Probability Discounting Task 

To determine if PPX altered probability discounting, rats were treated with 

2mg/kg (±)PPX twice a day (approximately 8AM and 5PM) for 13 days during Phase 7.  

Discounting was measured 30min and 6hr after the AM injection approximately every 

three days.  These data were compared to pretreatment baseline sessions which were 

similarly conducted twice a day.  Thus, to control for the possible effects of time of day 

for testing on outcomes, AM baseline sessions were compared to the tests taken 30min 

after PPX (also an AM test), and PM baseline sessions were compare to the tests taken 

6hr after the AM PPX injection (refer to Fig. 16).  For PD-like rats, comparisons of free-

choice ratio for AM baseline to 30min after the 1st and 25th (±)PPX injection revealed 

enhanced discounting (Fig. 16A).  There was a significant effect of test (i.e., baseline, 1st 

and 25th injection of ±PPX; F(2,29) =14.45, p<0.01) and probability (F(8,232) =31.07, 

p<0.01) and an interaction (F(16,232) =5.85, p<0.01).  Likewise, comparison of PM baseline 

to 6hr following the 1st and 25th PPX injection revealed that PPX-induced heighted 

discounting was sustained (Fig. 16C), with a significant effect of test (F(2,30) =28.78, 
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p<0.01), probability (F(8,240) =65.42, p<0.01) and the interaction (F(16,240) =6.49, p<0.01).  

A post hoc Newman-Keuls comparison revealed that discounting was most pronounced 

following the 25th (±)PPX treatment for both 30min and 6hr post-injection (Fig. 16).  

Unexpectedly, some control rats exhibited a large number of trial omissions 30min 

following the first treatment of PPX.  Observation of these rats in the operant boxes 

revealed they were engaged in continuous stereotypic sniffing and licking of the floor 

metal bars, with some head bobbing.  The behaviors abated 6hr after the PPX injection.  

The rats became tolerant to the motor effects, for on the 4th day of treatment (and the 

second discounting test) they were fully engaged in the lever pressing task and 

discounting performance could be accurately evaluated.   However, the acute motor 

confound precluded discounting assessments for the first, 30min post-PPX treatment in 

control rats.  After the 7th injection (i.e., the 4th day of PPX treatment), control rats clearly 

demonstrated increased discounting as the selection for the risky lever at the 0.05, 0.15 

and 0.30 probabilities were greater than baseline by 31%, 25% and 27%, respectively.  

Fig. 16B illustrates the enhancement in discounting observed 30min after the 25th 

injection for control rats. There was a significant effect of test (F(1,18) =4.97, p=0.04) and 

probability (F(8,144) =20.93, p<0.01) and an interaction (F(8,144) =3.22, p<0.01).  

Comparison of PM baseline testing to the 1st and 25th injection for the 6hr period also 

showed a significant increase in risky behavior (Fig. 16D), with a significant effect of test 

(F(2,26) =22.34, p<0.01), probability (F(8,208) =42.21, p<0.01) and an interaction (F(16,208) 

=2.18, p<0.01).  As illustrated in Fig. 16D, a post hoc Newman-Keuls comparison 

revealed that discounting was most pronounced following the 25th PPX treatment.  For 

this Phase, 50 out of 2,457 total blocks had response omissions of 50% or more, and were 
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omitted from the free choice ratio analyses. 

To help interpret PPX-induced changes in probability discounting, we evaluated 

the effects of the agonist on various behaviors that are critical for the discounting task.  

First, demonstrating that rats maintained their ability to discriminate among the 

reinforcement values (i.e., no reward vs. small reward vs. large reward), we determined at 

various times during the PPX treatment that responding in the Choice Test (i.e., the Phase 

5 protocol) was preserved (i.e., selection for the larger reinforcer was approximately 70% 

or higher) for both PD-like (n=9) and control (n=8) rats.  Second, we determined the 

ability of PPX to alter the reward values.  Following the 13 days of (±)PPX in Phase 7, a 

subset of rats (controls, n=5 and PD-like, n=3) continued to received 2mg/kg (±)PPX 

twice a day for three additional days and the lever pressing rate vs. ICSS current 

frequency (i.e., the Phase 3 protocol) was assessed.  The ECur 90 was similar between 

baseline (as determined in Phase 3) and chronic PPX for both groups (controls paired t-

test(4)=0.89, p=0.43; PD-like t-test(2)=2.5, p=0.13).  However, PPX increased the rate of 

lever pressing at the lowest ICSS frequencies with a decrease in apparent threshold for 

both groups (data not shown) and for the PD-like group there was an associated reduction 

in ECur40 (paired t-test(2)=7.35, p=0.02). This shift went from 100Hz at baseline to 52Hz 

after the 32nd PPX treatment.   Such a change was not seen in control rats (paired t-

test(4)=1.2, p=0.3) .  As a collective, these evaluations indicated that even though the 

value of the small reward may have been enhanced by PPX, the rats continued to 

recognize the ECur40 as less than the ECur90 so as to correctly execute the Choice Test 

and linked Discounting Test throughout the chronic PPX treatment protocol. 
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Discontinuation of Pramipexole Decreased Probability Discounting 

Following discontinuation of PPX treatment, rats were continually assessed for 

discounting in Phase 8.  No overt behavioral indices of withdrawal were observed (e.g., 

body weight, grooming), and hereafter the term ‘withdrawal’ is used to indicate the 

absence of drug treatment, not a behavioral index.  Three days following the last 

injection, both control and PD-like rats maintained an increase in preference for the LR 

lever; however, reductions in this LR lever preference were evident 15 days after 

treatment cessation.  Within this time period, some rats began to show a decrease in 

general performance and omissions during the discounting task increased (i.e, more than 

10 omitted trials out the 20 total); therefore, these rats were removed from the study.  Of 

the rats that maintained performance, eight were PD-like and three were controls.  For the 

PD-like rats, after 15 days of PPX withdrawal, selection for the LR lever decreased as 

compared to 30min after the 25th PPX injection (Fig. 16A).  There was a significant effect 

of Phase (i.e., withdrawal vs. 25th PPX injection; F(1,14) =7.29, p=0.02), probability 

(F(8,112) =16.96, p<0.01) and an interaction (F(8,112) =2.24, p=0.03).  Indeed, discounting 

during this withdrawal time was nearly indistinguishable from baseline behavior; at the 

three lowest probabilities (i.e., 0.05, 0.15 and 0.3), rats respectively selected the LR lever 

52%, 55% and 59% of the time during baseline and 42%, 55% and 65% during 

withdrawal from chronic PPX.  As illustrated in the inset of Fig. 17A, the three control 

rats demonstrated similar reduction in discounting as observed in the PD-like rats.  That 

is, after 15 days of withdrawal, control rats selected the LR lever 44%, 29% and 43% of 

the time at the three lowest probabilities (i.e., 0.05, 0.15 and 0.3, respectively), which was 

similar to baseline values of 39%, 50% and 56%, respectively.  During this PPX 
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withdrawal period, 4 out of 198 total blocks had response omissions of 50% or more, and 

were omitted from the free choice ratio analyses. 

 

Re-initiation of Pramipexole Reinstated Increased Discounting 

A subset of drug-withdrawn rats (n=6; all PD-like) maintained successful 

performance of the discounting task and thus were continually tested up to 69 days post 

treatment.  Throughout this time period, discounting remained near baseline levels (Fig. 

17B).  Subsequently, the twice daily 2mg/kg (±)PPX treatment was reinitiated.  The 

increase in discounting was reinstated by the 7th day of treatment (i.e., after the 13th 

injection) (Fig. 17B), with a significant effect of Phase (i.e., withdrawal vs. reinstatement; 

F(1,10) =6.38, p<0.03), probability (F(8,80) =10.06, p<0.01) and an interaction (F(8,80) =5.86, 

p<0.01).  The increase in discounting seen with reinstatement of PPX was very similar to 

that obtained during the initial PPX treatment.  Indeed, at the three lowest probabilities 

(i.e., 0.05, 0.15 and 0.3) during the initial PPX treatment, 30min after the 25th injection, 

rats respectively selected the LR lever 77%, 72% and 90% of the time which is 

comparative to 79%, 90% and 84% (respectively) taken 30min after the 13th 

reinstatement injection.  During the reinstatement assessments, 1 out of 54 total blocks 

had response omissions of 50% or more, and these were omitted from the free choice 

ratio analyses. 

 

Discussion  

Probability discounting is a popular method to study risky decision making, and 

problem gamblers demonstrate increased discounting in these paradigms (Holt et al., 
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2003; Madden et al., 2009; Petry, 2011).  The current study utilized our new rat model of 

probability discounting that employs ICSS as the positive reinforcer (Rokosik and 

Napier, 2011), to reveal that PPX increased discounting.  We also revealed that tolerance 

did not develop with repeated treatments, and responding was comparable between PD-

like and control rats.  Additionally, we verified that increases in discounting returned to 

baseline levels within two weeks of PPX treatment cessation, and re-exposure to PPX 

reinstated heighten discounting.  These outcomes are in line with clinical reports wherein 

ICD onset is related to onset of DA agonist treatment, and symptoms typically subside 

with dose reduction or discontinuation (Dodd et al., 2005; Driver-Dunckley et al., 2007; 

Mamikonyan et al., 2008; Quickfall and Suchowersky, 2007).  Thus, using ICSS for risk 

assessments in rats exhibits high face validity to the human experience with PPX.  

ICSS provides an immediate and robust reward that does not suffer from 

satiety/tolerance, nor cause any withdrawal-like symptoms.  Using ICSS, as opposed to 

food reinforcement, proved to be exceptionally advantageous for evaluating the effects of 

chronic PPX treatment on probability discounting.  First, the ICSS-mediated discounting 

task was acquired by rats in the first test session, and stable baseline discounting was 

achieved in three days of testing.  This contrasts food reinforcement discounting where 

typically 10 test sessions are needed for acquisition and 25-35 days are required to reach 

stable discounting behavior (St Onge et al., 2010; Ghods-Sharifi et al., 2009).  Second, 

ICSS allows for testing several probabilities in a randomized order, a feature that is not 

successfully implemented with food-reinforced discounting (St Onge et al., 2010).  

Randomization encourages rats to continue selecting the LR lever even at very low 

probabilities (in contrast to what is obtained with protocols using predictable, descending 
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probabilities) (Rokosik and Napier, 2011).  Thus, we were able to detect both increases 

and decreases in selection of the LR lever at the lowest probabilites, where the most 

robust discounting often occurs.  Finally, in food reinforcement studies, animals typically 

are food-deprived to motivate them to perform the operant tasks.  Food-restriction alters 

the behavioral effects of PPX (Collins et al., 2008) which could confound outcomes of 

discounting tests with the agonist.  To summarize, ICSS afforded a means to 

unambiguously assess discounting during chronic drug administration, following 

subsequent, cessation of treatment, and drug reinstatement, all in the same test subjects. 

The current study demonstrated the ability of a rodent model of PD to perform a 

probability discounting task.  Although PD-like rats were robustly and persistently 

impaired in the forelimb adjusting step test, they readily performed the lever-pressing 

tasks and they did not show any behavioral deficiencies in the acquisition or execution of 

the discounting paradigm.  Moreover, the PD-like rats displayed similar profiles as 

controls with regard to the reinforcing properties of ICSS currents (as assessed in the 

lever pressing rate vs. current frequency profiles) and basal discounting.  These 

observations indicate that DA deafferentation of the DLS does not alter the capacity, or 

motivation, to perform ICSS-mediated probability discounting.   

 Acute PPX treatment in healthy humans can increase measures of impulsiveness 

(Riba et al., 2008) as well as disrupt reward-related learning (Pizzagalli et al., 2008; 

Santesso et al,. 2009), (but see also (Hamidovic et al., 2008)).  As a therapeutic agent, 

PPX can promote problem gambling independent of the pathology for which the drug is 

prescribed (e.g., PD (Seedat et al., 2000; Weintraub et al., 2010), RLS (Quickfall and 

Suchowersky, 2007; Tippmann-Peikert et al., 2007), fibromyalgia (Holman, 2009), and 
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bipolar depression (Strejilevich et al., 2011)).  It is unclear if these pathological 

conditions render individuals more susceptible to the impulsivity-related effects of PPX.  

Given that PPX is highly prescribed during the early stages of PD and reports suggest 

these patients have a relatively high incidence of PPX-induced ICDs (Weintraub et al., 

2010), we included a model of PD in the current study.  However, we demonstrated here 

that a brain state that models aspects of early stages of PD did not render rats more 

sensitive to the PPX-induced effects.  It should be noted that this lack of differentiation 

between PD-like rats and controls may reflect the relatively high dose of PPX studied; 

lower doses of the agonist may be able to discriminate the two groups.  Our findings that 

PPX increased discounting in control rats are in line with food-reinforcement studies 

using food restricted intact laboratory rats, wherein PPX increases preference for a 

gambling-like schedule of reinforcement (i.e., variable ratio) (Johnson et al., 2011).  

These converging preclinical findings support a link between PPX treatment and 

alterations in decision-making in regard to discounting.   

 In humans tested in probabilistic choice tests, PPX can disrupt learning from 

negative outcomes (i.e., when a reward is expected but not delivered) (Cools et al., 2006; 

Bodi et al., 2009).  In probability discounting, when the probability of delivery of the 

large reinforcer is very low (e.g., 0.05, 0.15 and 0.3), the likelihood of not receiving a 

reward is at the highest.  Negative outcomes during these low probabilities likely lessen 

the appeal of lever pressing for the large reinforcer and shift preference to the SC lever.  

This profile was seen in the current study for tests during baseline and withdrawal.  In 

contrast, PPX enhanced responding on the risky lever during low probability.  This 

outcome is consistent with the agonist reducing the negative consequences of a non-
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rewarded response.  A similar outcome might be predicted if PPX reduced the value of 

ICSS reward; however, the ECur90 (current level used for the rats’ large reward) was not 

altered by chronic PPX and the ECur40 (the small reward) was slightly elevated.  While 

we have recently determined with a condition place preference paradigm that PPX can 

support reward-mediated associated learning (Riddle et al., 2012), outcomes from the 

current operant task suggest that PPX may increase discounting by reducing the 

perceived negativity of unrewarded operant responses rather than enhancing the value of 

the reward associated with the risky lever.  This interpretation is supported by clinical 

studies with functional magnetic resonance imaging (fMRI) that investigated the 

influence of PPX on reward prediction errors during a gambling task.  A positive reward 

prediction error occurs if an unpredicted reward is encountered and negative reward 

prediction error occurs if a predicted reward is omitted.  In one study, PD patients treated 

with PPX showed a correlation between increases in risk-taking and impairments in the 

deactivation of the fMRI signal in the orbitofrontal cortex during trials with a negative 

prediction error (van Eimeren et al., 2009).  This suggests that the subjects were impaired 

from learning in trials in which losing occurred.  In another study, RLS patients treated 

chronically with DA agonists, including PPX, demonstrated increases in fMRI signaling 

in the ventral striatum during trials in which expected rewards were omitted (Abler et al., 

2009).  It is noteworthy that the PPX-induced effects were observed in all RLS patients 

tested, similar to the ability of PPX to enhance discounting in all rats tested in the current 

study.  Nevertheless, none of the RLS patients developed an ICD (Abler et al., 2009).  

This outcome underscores the fact that enhancement in discounting or risky behaviors is 
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not equivalent to developing an ICD per se but likely represents a particular aspect of 

these complicated disorders.   

 Which receptors mediate the behavioral effects of PPX is unclear.  PPX is a direct 

acting DA agonist with a preference for the D3R subtype of DA receptors.  For example, 

in vivo rat studies using presumed D2R- and D3R- selective behavioral assays (i.e., 

hypothermia and yawning, respectively), PPX is ~30 fold selective for D3R over D2R 

(Collins et al., 2007), 1.0mg/kg (-)PPX is sufficient to activate both D2R and D3R 

(Collins et al., 2007; Collins et al., 2005; Collins et al., 2009).  Thus, it is likely that both 

subtypes were engaged by 2mg/kg dose of (±)PPX used in the current study.  Indeed, 

both D2 and D3R have been implicated in reward-mediated behaviors (Heidbreder et al., 

2005; Self, 1998) and impulsivity (St Onge and Floresco, 2009; van Gaalen et al., 2009; 

Buckholtz et al., 2010).  Additional probability discounting studies including those with 

lower doses of PPX as well as receptor-subtype selective antagonists would aid in 

elucidating the particular receptor(s) involved in PPX-induced enhancement in 

discounting. 

 PPX shifted discounting in PD-like rats with a single injection; however, repeated 

treatments were required to reach maximal discounting.  These findings indicate that 

acute occupation of relevant DA receptors is sufficient to enhance discounting; however, 

the adaptations in this system that were imposed with chronic administration may 

promote the effect.  Chronic PPX treatments can lead to desensitization of DA neuronal 

D2/D3 autoreceptors (Chernoloz et al., 2009) and an increase in expression of D3R in 

dopaminoceptive regions (Maj et al., 2000).  Whatever the mechanism, the 

neuroadaptations were reversible in the current study, for when PPX treatment was 
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discontinued for two weeks, discounting decreased near baseline levels.  These findings 

concur with clinical reports showing that DA agonist-induced ICDs in humans can be 

eliminated with drug discontinuation (Macphee et al., 2009; Mamikonyan et al., 2008; 

Quickfall and Suchowersky, 2007; Dodd et al., 2005; Driver-Dunckley et al., 2007).    

 In summary, converging evidence suggests that PPX can influence the processing 

of rewards and drive decision making towards higher discounting and more risky choices.  

The animal model of PPX-induced discounting presented here provides a valuable new 

means to elucidate the pharmacological and neurobiological underpinnings of this aspect 

of impulsivity.  This model should prove useful in the development of novel therapeutics 

devoid of enhancing discounting as well as a means to screen current and future 

compounds for their potential to promote risky behaviors.   
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Table 2.  Phase 1-6 descriptions of acquisition phase criteria and comparisons of 

behavioral outcomes between PD-like and control rats.  

Phase 
Title 

Phase acquisition 
criteria 

Behavioral Measurements  
p  Sham 

Rats 
PD-like 

Rats 

1. Shaping Associate a lever 
press with EBS. 

No. of sessions to 
acquire task: 1-2 1-2 0.24 

2. FR-1 

Initiate lever 
pressing and 

maintain a minimum 
average of eight 

lever press/min in 
four consecutive 

sessions. 

Lever presses/min 
Left lever: 

Right lever: 
 

Current amplitude: 

 
24±4 
25±4 

 
100-280 

 
25±3 
23±2 

 
160-260 

 
0.82 
0.61 

 
0.19 

3. Rate- 
Frequency 
Function 

Demonstrate stable 
behavior, i.e., Emax 

and threshold values  
±20% of the mean 

for three consecutive 
curves. 

ECur (Hz) 
ECur90: 
ECur60: 
ECur40: 

 
117±14 
90±11 
81±10 

 
135±8 
101±6 
89±5 

 
0.29 
0.35 
0.41 

4. Discrete 
Trials 

Demonstrate 
completion of more 
than 150/200 trials 
per session for two 

consecutive 
sessions. 

 
No. of sessions to 

acquire task: 
 

 
2-6 
4±1 

 
2-7 
3±1 

 
 

0.65 

5. Choice 
Test 

Select the larger of 
the two reinforcers 

in each block, for an 
average of at least 

70% of the trials for 
three consecutive 

sessions. 

Preference for large 
reinforcer (%) 

Block 1: 
Block 2: 
Block 3: 

 
No. of sessions to 

acquire task: 

 
89.2±0.02 
92.3±0.02 
82.9±0.02 

 
6-15 
10±1 

 
92.2±0.02 
91±0.02 

86.8±0.01 
 

5-10 
8±1 

 
0.35 
0.63 
0.18 

 
 

0.06 

6. 
Probability 
Discounting 

Task 

Demonstrate stable 
discounting.  Data 
from daily curves 

were subjected to a 
two way rmANOVA 

with Day and 
Probability as 

factors.  Stability 
defined as, no effect 
of Day, significant 

effect of probability, 
no interaction 

 
 
 

No. of sessions to 
stability: 

 

 
 
 

3-5 
3±0.2 

 
 
 

3-6 
4±0.3 

 
 
 
 

0.39 
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(p<0.1) for three 
consecutive days. 

Behavioral measurements in each phase were compared between groups using a 

Student’s t-test, p<0.05.  Data are shown as a range or as means ± SEM.  For Phase 2, 

lever pressing rates for the last two sessions were averaged for each rat.  For the three 

blocks shown in Phase 5, the reinforcer associated with the left lever changed from no 

EBS (i.e., no reinforcer), to ECur90, to ECur40, the right lever changed from ECur40, to no 

EBS, to ECur90, respectively.   
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Table 3.  Abduction and adduction forepaw adjusting steps in sham controls (n=5) 

and 6-OHDA-treated PD-like rats sacrificed either 21 (n=6) or 60 (n=6) days post- 

surgery.  Comparisons were made between one day before surgery (pre-surgery) 

and end of study for each behavior. 

 
 

 
ABDUCTION 

Sham 
(60d post- 
surgery) 

6-OHDA-treated 
(21d post- 
surgery) 

6-OHDA-treated 
(60d post- 
surgery) 

Left forepaw:    
pre-surgery 15±1 15±1NS 16±1 NS 
end of study  12±1 6±2* 6±1* 

Right forepaw:    
pre-surgery  14±1 15±1 NS 15±1 NS 
end of study  12±1 5±1* 7±2* 

 
ADDUCTION 

Left forepaw: 
pre-surgery 

 
11±1 

 
12±1 NS 

 
10±1 NS 

end of study  10±1 3±1* 5±2* 
Right forepaw:    

pre-surgery 11±1 13±1 NS 12±1 NS 
end of study  11±1 6±1* 7±2* 

 
 

Stepping data were collected at a rate of 0.9m/5sec.  Data are presented as mean ±SEM. 

Data were analyzed with a two way rmANOVA.  Superscripts indicate planned contrasts  

analyzed with Newman Keuls,  no significant (NS) difference (p>0.05) vs. sham pre-

surgery and *p<0.01 vs. sham end of study. 
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Figure 10.  ICSS rate-frequency function.  In Phase 3, the relationship between ICSS 

lever pressing rate and stimulation frequency (an index of signal strength) was obtained 

for each rat.  Illustrated is the final curve (i.e., met stability criteria as described in Table 

1) for an individual PD-like rat.  From this curve, the ECur90 (solid line), ECur60 (dotted 

line), and ECur40 (dashed line) were determined using a non-linear regression (GraphPad 

Prism, La Jolla, CA).   
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Figure 11.  Dorsolateral striatal lesions.  (A) Representative photomicrographs of TH-

IHC at the level of the DLS (~1.0mm AP from bregma) in one hemisphere.  Compared to 

sham (vehicle-injected;  left), 6-OHDA reduced staining in the DLS at 21 days (middle) 

and 60 days (right) post treatment.  Scale bar = 1mm.  (B)  Bilateral illustration of the 

extent and location of 6-OHDA-induced lesions 21 days after injection.  For the six rats 

killed at this time, the tissue section which were targeted during surgery  (1.0mm anterior 

to bregma) were analyzed by two observers.  Each independently outlined the TH-like 

staining for the section for each rat.  The outer most borders delineated by lack of 

staining was determined.  Illustrated are the outlines for the largest lesion area from both 

observers (neuroanatomical plates modified from Paxinos and Watson (Paxinos and 

Watson 1998).  The borders of the lesion after 60 days were less discrete (see A, far 

right); but in general, the lesion size was similar to that seen at 21 days.   
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Figure 12.  Motor deficits produced by intra-dorsolateral striatal injections of 6-OHDA 

are reversed by pramipexole.  Illustrated is adjusting stepping from the left forelimb in 

the abduction direction for PD-like rats.  Approximately 40 days after the lesion surgery, 

rats underwent a series of weekly step tests.   Pre-PPX deficits (Before) were obtained 

immediately prior to the PPX injection.  PPX reversed these stepping deficits in a dose-

dependent manner.  PPX significantly increased the number of adjusting steps with 0.5, 

1, 2 and 4mg/kg at 1hr, while at 6hr this increase was only seen with 1, 2 and 4mg/kg.    

The number of adjusting steps returned to pre-treatment levels 17hr after injection.  No 

change from before injection was seen after an injection with vehicle or 0.25mg/kg of 

(±)PPX.   Post hoc Newman Keuls: *, vs. before (±)PPX injection.  Arrows indicate 

times of (±)PPX injection. 
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Figure 13.  Electrode placement for intracranial self-stimulation (ICSS).  Illustration of 

the stimulation electrode tip location within the lateral hypothalamus (LH) for 6-OHDA-

treated (open circles, n=11) and sham (closed squares, n=10) rats that completed the 

probability discounting paradigm.  Neuroanatomical plates were modified from Paxinos 

and Watson (Paxinos and Watson 1998) and numbers indicate the distance in mm from 

bregma.  Note that the LH regions stimulated were similar for both groups of rats.   
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Figure 14.  ICSS rate-frequency functions: comparisons between 6-OHDA-treated and 

sham rats.  The relationship between ICSS lever pressing rate and stimulation frequency 

was similar for 6-OHDA-treated (n=11) and sham (n=10) rats.  Shown are the group 

means±SEM from stable curves generated by each rat.  Plots are drawn as a third order 

polynomial to visualize Emax and threshold.   
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Figure 15.  Acquisition of the probability discounting task.  During Phase 6, 6-OHDA-

treated (n=11) and sham (n=10) rats acquired the probability discounting task during the 

first training session.  Illustrated are the group means±SEM for the percent selection of 

the large/risky (LR) lever (i.e., free-choice ratio) vs. the probability that the large 

reinforcer was delivered for the first discounting session.  The plot is drawn as a linear 

regression.  
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Figure 16.  Pramipexole increased probability discounting.  In Phase 7, 6-OHDA-treated 

(n=11) and sham (n=10) rats received 2mg/kg (±)PPX ip twice a day for 13 days for a 

total of 26 injections.  Discounting sessions were conducted 30min and 6hr after the 

morning (AM) injection, on the first and every third day after initiating the treatment.  

Data from these two sessions were compared to the pretreatment baseline (BL0) for the 

respective time periods.  PPX increased discounting in 6-OHDA-treated rats tested after 

the first PPX treatment and the 25th (±)PPX treatment at both (A) 30min and (C) 6hr post 

injection.  Similar increases in discounting were seen in sham rats (B) 30min and  (D) 6hr 

after PPX treatment.  Shown is the percent selection of the large/risky (LR) lever (i.e., 

free-choice ratio) vs. the probability that the large reinforcer was delivered.  Post hoc 

Newman Keuls:  *, vs. BL;  #, vs. 1st injection.   
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Figure 17.  Withdrawal from pramipexole decreased probabilistic discounting while re-

initiation of pramipexole reinstated the increase in discounting.  Shown is the percent 

selection for the large/risky (LR) lever (i.e., free-choice ratio) vs. the probability that the 

large reinforcer was delivered.  (A) Phase 8; PPX treatments were terminated.  Illustrated 

are data from 6-OHDA-treated rats (n=8).  Discounting measured on days 12 and 15 of 

withdrawal were averaged for each rat, and group data were compared to discounting 

obtained 30min after the 25th PPX injection.   Inset illustrates data from sham rats (n=3); 

smooth line indicates 25th injection of (±)PPX and dotted line indicates withdrawal phase.  

(B) Phase 9; ±PPX treatment was re-initiated in a subset of withdrawn 6-OHDA-treated 

rats (n=6).  Rats received 2mg/kg (±)PPX ip twice a day for seven days for a total of 14 

injections.  Discounting measured on the last two withdrawal days was averaged for each 

rat, and group data were compared to discounting data collected after the 13th (±)PPX 

injection during re-initiation.   Post hoc Newman-Keuls: *, vs. withdrawal.   
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CHAPTER V 

PRAMIPEXOLE-INDUCED CHANGES IN VENTRAL PALLIDAL NEURONAL 
FIRING: EVALUATIONS IN 6-OHDA-INDUCED PARKINSONIAN-LIKE BRAIN 

STATES OR FOLLOWING REPEATED TREATMENT WITH PRAMIPEXOLE 
 

 

Abstract 

Pramipexole (PPX) is a D3-preferring D2/D3 dopamine (DA) receptor (D2/D3R) 

agonist used for therapy in neurological disorders, including Parkinson’s disease (PD).  

Its clinical use has been linked to impulse control disorders (ICDs) in some patients.  In 

laboratory rats, PPX can increase measures of impulsivity and enhance the motivational 

salience of reward-related cues.  The ventral pallidum (VP) encodes and regulates 

salience attribution and exhibits high expression of D2/D3Rs.  In the current study, we 

determined the effects of systemic (-)PPX (the active enantiomer) on VP neuronal 

activity.  A range of doses previously shown to alter reward-related behaviors were 

tested.  The expression level of D2/D3Rs reportedly changes following partial and/or 

severe degeneration of dopaminergic neurons in the nigrostriatal system as well as after 

repeated treatment with DA agonists.  Thus, we investigated whether such chronic 

conditions altered PPX-induced responding by VP neurons.  To do so, we recorded the 

extracellular spiking activity of VP neurons in chloral hydrate-anesthetized rats in 

controls, following 6-OHDA-induced lesions of the dorsolateral striatum (DLS) in both  
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hemispheres, following a 6-OHDA-induced lesion of the medial forebrain bundle (MFB) 

in one hemisphere, or following14 days of twice daily injections with 2mg/kg (±)PPX (a 

racemic mixture of the drug that is equivalent to 1mg/kg of the active form).  We 

determined that basal neuronal activity did not differ among the controls and the three 

treatment groups.  However, in response to acute intravenous injections of PPX, the 

potency (i.e.,ED50) was enhanced in rats treated chronically with PPX; the maximal effect 

(Emax) of PPX was not altered.  Compared to controls, potency and maximal effect were 

not altered in rats with lesions to the DLS nor the MFB.  Antagonism of the PPX-induced 

effects was achieved with PG-01037, a D3R-preferring antagonist, in the majority of VP 

neurons that responded to 300µg/kg (-)PPX.  The findings indicate that the VP is engaged 

by doses of PPX that alter reward-related behaviors and that D3Rs play a role in such 

responses.  Moreover, a chronic treatment regimen with PPX, that our lab previously 

demonstrated can increase risk-taking behavior, increased the potency of PPX to alter VP 

neuronal firing rate.  Possible implications for the role of the VP in PPX-induced ICDs 

are discussed. 

 

Introduction 

Pramipexole (PPX) is a full dopamine (DA) agonist that is FDA-approved for 

therapy of motor impairments in Parkinson’s disease (PD).  These motor impairments 

result from a decrease in striatal DA transmission in the nigrostriatal system.  In early 

stage PD, the DA projections that comprise the mesolimbic pathway are left relatively 

intact (Bernheimer et al., 1973; Kish et al., 1988).  PPX acts on the D2 receptor family 

and has a slight preference for the D3 receptor subtype (D3R) over the D2 receptor 
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subtype (D2R) (~30-fold selective for D3R over D2R (Collins et al., 2007).  Whereas 

D2Rs are highly expressed throughout the nigrostriatal and mesolimbic systems, D3R are 

relatively less abundant and restricted more to the mesolimbic regions (Bouthenet et al., 

1991).  At the higher doses administered to patients, PPX acts on both D2R and D3Rs.  

The motoric improvements are likely due to a normalization of nigrostriatal activity; 

however, D2/D3Rs in the intact mesolimbic system are also being activated.  It is now 

well documented that a subset of PPX-treated patients develop impulse control disorders 

(ICDs) that includes behavioral addictions such as pathological gambling, hypersexuality, 

impulsive shopping and overeating (Weintraub et al., 2010).  It is thought that these 

individuals engage in these maladaptive behaviors because of the influence of PPX on the 

intact mesolimbic system (Cools et al., 2006).   

The ventral pallidum (VP) is a brain structure located at an interface between the 

mesolimbic system and the nigrostriatal system (see Fig. 3 for a circuit diagram).  The 

VP integrates efferent projections from the nucleus accumbens (NA; Groenewegen et al., 

1993; Nauta et al., 1978; Chrobak and Napier, 1993)), amygdala (AMG; (Krettek and 

Price, 1978; Bayer et al., 2007; Leonard and Scott, 1971; Mitrovic and Napier, 1998; 

Maslowski-Cobuzzi and Napier, 1994)), prefrontal cortex (PFC; (Delgado-Martinez and 

Vives, 1993; Sesack et al., 1989)), subthalamic nucleus (STN; (Turner et al., 2001; 

Groenewegen and Berendse, 1990), VTA and SN pars compacta (Maslowski-Cobuzzi 

and Napier, 1994; Mitrovic and Napier, 2002; Klitenick et al., 1992).  The VP projects to 

the NA (Churchill and Kalivas, 1994; Hakan et al., 1992), STN (Maurice et al., 1997; 

Bell et al., 1995), PFC (Sesack et al., 1989), medial dorsal thalamus (Churchill et al., 

1996; O'Donnell et al., 1997), VTA (Groenewegen et al., 1993; Kalivas et al., 1993), 
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substantia nigra pars reticulata (SNpr; (Maurice et al., 1997)) and brainstem targets 

including the pedunculopontine nucleus (PPN; (Tsai et al., 1989)).  Based on these inputs 

and outputs of the VP, it is in a critical position to integrate limbic-processed reward 

information and influence final motor activation (Mogenson et al., 1980). 

Behavioral and electrophysiological studies reveal a direct involvement of the VP 

in reward-related behavior.  VP firing can track rewards and the incentive salience of 

reward-predictive cues so that the cues become “wanted” (Tindell et al., 2005; Tindell et 

al., 2004).  VP neurons also encode expected reward values (Tachibana and Hikosaka, 

2012).  The VP is also involved in reward based associative learning (Dallimore et al., 

2006; Mickiewicz et al., 2009; Gong et al., 1996) and reward seeking behaviors (Tang et 

al., 2005; McFarland and Kalivas, 2001).   Activation of the VP was detected during a 

human functional MRI study in which there was increased motivational behavior in 

response to cues that predicted the potential gain of a large quantity of money 

(Pessiglione et al., 2007).   Our lab has reported that PPX can induce reward-mediated 

associative learning as measured in a conditioned place preference paradigm (Riddle et 

al., 2012).  Others have shown in rats that PPX can increase salience of cues previously 

associated with cocaine (Collins et al., 2011).  Thus, the ability for PPX to increase the 

motivational salience of reward predicting cues may, at least in part, be due to VP 

activity.   

Here, we examined the consequence of intravenously (iv) injected PPX               

(1-3000µg/kg) on VP neuronal firing rate, using single cell extracellular 

electrophysiological recording techniques in chloral hydrate anesthetized rats.  This range 

of doses includes those that alter reward-mediated behavior (Riddle et al., 2012; Caine et 
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al., 1997; Collins et al., 2011).  We considered that if systemic PPX does change the 

firing rate of VP neurons, this will demonstrate that the VP is engaged by PPX and would 

support a role for the VP in reward-motivated behavioral outcomes of PPX therapy.  The 

range of doses includes the lower, more D3R-selective doses, as well as higher doses that 

will activate D2Rs (Collins et al., 2005; Collins et al., 2008; Collins et al., 2007).  The VP 

(Stanwood et al., 2000a), as well as the related limbic circuitry (Bouthenet et al., 1991), 

express a moderate to high level of D3Rs.  D3R are located presynaptically on 

dopaminergic midbrain neurons where they function as autoreceptors (Meller et al., 1993; 

Gobert et al., 1995).  Lesions studies provide evidence that D3Rs are also expressed on 

cell bodies of the NA (Stanwood et al., 2000a).  D3Rs have gained much attention in the 

areas of reward and impulsivity (see (Heidbreder and Newman, 2010).  It has been 

speculated that PPX-induced activation of these receptors in particular, might be driving 

the ICDs (Dodd et al., 2005; Fan et al., 2009).  Indeed, in rodent studies, activation of 

D3Rs enhances the motivational salience of rewards and can strongly modulate the 

influence of environmental stimuli on seeking behavior (Orio et al., 2010; Higley et al., 

2011; Gilbert et al., 2005).  To help determine influence of D3Rs on PPX-induced 

changes in VP neuronal firing rate, we took advantage of the D3R-preferring doses of 

PPX to ascertain if the responses could be blocked by a D3R-preferring antagonist, 

PG01037 (133-fold selectivity for D3R over D2R; (Grundt et al., 2005)).  

Given that DA agonist-induced ICDs occur in PD patients, another aim of this 

study was to determine if the effects of PPX on the firing rate of VP neurons are altered 

in the parkinsonian brain state.  We hypothesized a change in PPX-induced effects 

because the VP has both direct and indirect connections with the basal ganglia, and the 
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VP is altered in PD-like brain states (Turner et al., 2002).  As PPX is prescribed to 

patients throughout the course of PD, we chose to study both an early and late stage 

model of PD.  We used a partial lesion of the dorsolateral striatum (DLS) to emulate 

important features of early stage PD, which include region specificity and motor 

impairments.  For example, early in the disease reductions in DA are restricted to the 

putamen (i.e., part of the dorsal striatum), with the ventral striatum being relatively 

spared (Bernheimer et al., 1973; Kish et al., 1988).  In addition, once putamen DA is 

decreased by 50-80%, motor impairment start to occur (Bernheimer et al., 1973; Guttman 

et al., 1997; Morrish et al., 1998).  In the rat brain, the lateral striatum is thought to be 

homologous to the human putamen (Deumens et al., 2002).  In particular, the DLS 

receives projections from the sensorimotor cortex that are responsible for forepaw motor 

function (Deumens et al., 2002; Chang et al., 1999; Carli et al., 1985).  We and others 

have demonstrated that 6-OHDA targeted to the DLS produces persistent and stable 

deficits in the adjusting forelimb stepping task (Olsson et al., 1995) up to two months 

post lesion (Rokosik and Napier, 2012; Riddle et al., 2012; Chang et al., 1999).  The 

current electrophysiological studies were conducted 20-30 days post DLS lesion.  This 

time frame was chosen because it corresponds to when the lesion of the nigrostriatal 

pathway (at both the terminals and cell bodies) stabilizes (Blandini et al., 2007) and 

motor deficits are present (Rokosik and Napier, 2012).   

To study the later stages of PD we used a unilateral 6-OHDA-induced lesion 

targeted to the medial forebrain bundle (MFB).  This type of lesion produces near 

complete destruction of the ascending dopaminergic system in the injected hemisphere 

(Heidenreich et al., 2004; Ungerstedt, 1968) and also produces motor deficits 
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contralateral to the lesion, as can be measured in the forelimb stepping task (Chang et al., 

1999).  In late stages of PD, both striata are affected.  However, although a bilateral 

lesion would be optimal to study for late stage PD, such a lesion can interfere with the 

ability for the rat to eat and drink and thus survive (Ungerstedt, 1971; Ljungberg and 

Ungerstedt, 1976).  Therefore, to circumvent this issue, we chose to use a unilateral 

lesion.  Our electrophysiological studies were conducted 10-16 days post MFB lesion.  

This time frame was chosen because it corresponds to when the lesion of the nigrostriatal 

pathway (both fiber degeneration and cell death) stabilizes (Jeon et al., 1995) and 

forepaw motor deficits are present (Chang et al., 1999).  The time frame was also chosen 

based on electrophysiological data that demonstrate alterations in the neurocircuitry 

under study. For example, increases in firing rate and oscillatory activity are evident in 

the STN within this time frame (Parr-Brownlie et al., 2007).  Additionally, our lab has 

demonstrated that 6-OHDA-induced lesions to the SN that produce near total depletion of 

DA in the ascending dopaminergic projections enhance the effects of NMDA receptor 

activation in VP neurons (Turner et al., 2002).  This supports the idea that sensitivity in 

VP neuronal firing can occur after chronic depletion of DA in the ascending 

dopaminergic projections.  

PPX-induced ICDs are seen in PD, as well as other neuropathologies such as 

restless leg syndrome (Driver-Dunckley et al. 2007), fibromyalgia (Holman 2009), and 

bipolar disorders (Strejilevich et al. 2011).  In these cases, ICDs develop during the 

chronic use of PPX.  This implies that over time adaptations that occur in an attempt to 

maintain homeostasis in the brain, are contributing to the ability of PPX to induce ICDs.  

Our lab recently reported that acute and chronic treatment (14 days twice daily injections) 
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with 2mg/kg, (±)PPX (a racemic mixture equal to 1mg/kg of the active racimer) enhances 

probability discounting, an index of risk-taking, in both controls and a rodent model of 

early stage PD (Rokosik and Napier, 2012).  This behavior was maintained three days 

after the last PPX injection.  In the current study, we investigated whether PPX-induced 

changes in VP neuronal firing in an intact rat was altered following the same chronic 

drug treatment and withdrawal time period that produced the increase in risk-taking.  As 

described below, adaptations occur in the PD-like brain state, as well as during chronic 

PPX treatment.  Therefore, to best isolate the contribution of PPX-induced plasticity, the 

chronic PPX treatment studies were done in control rats only.   

In the current study, measured outcomes of the PPX-induced effects for all 

treatment conditions included the efficacy of PPX and potency of PPX to alter firing rate 

of VP neurons.  Efficacy is a measure of the maximal effect (Emax) of the agonist.  

Potency is a measure of how much drug is required to elicit a given response.  It is 

typically measured as the dose of the drug that gives 50% of the maximal response 

(ED50).  Changes in the number of receptors can influence the efficacy and/or potency of 

a drug (Kramer et al., 2011).  We hypothesized that Emax and ED50 of PPX would be 

altered in rats with a 6-OHDA-induced lesion to the DLS, rats with a 6-OHDA-induced 

lesion to the MFB, and rats treated chronically with PPX.  This hypothesis was based on 

the following:  Regarding the PD state (i) dopaminergic cell loss in PD and subsequent 

denervation to output structures leads to an increase in D2Rs and a decrease in D3Rs 

(Rinne et al., 1990; Brooks et al., 1992; Ryoo et al., 1998).  (ii) In rats with a unilateral  

6-OHDA-induced lesion to the MFB, D3R expression and mRNA in the NA and SN 

decrease on the lesion side only (Bordet et al., 1997; Stanwood et al., 2000a; Levesque et 
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al., 1995) whereas D2R expression and mRNA increases in these areas (Levesque et al., 

1995; Stanwood et al., 2000a).  Studies have yet to investigate changes in D2R and D3R 

expression following 6-OHDA-induced DLS lesions.  Regarding chronic agonist 

treatment (iii) sustained increase in dopaminergic transmission typically downregulates 

D2Rs but upregulates D3Rs.  For example, in rats a fourteen day treatment with D2/D3 

agonists, 7-OH-DPAT or quinipirole, increases expression of D3Rs in the VP and SN and 

decreases D2R in the VP, SN and NA (Stanwood et al., 2000b).  (iv) Rats treated for 14 

days with PPX (0.3 and 1mg/kg) show increase expression of D3Rs in the NA (D2R 

expression was not studied; Maj et al., 2000; Tokunaga et al., 2012).   

In summary, the overall aim of this paper was to determine the effects of acute 

systemic PPX on VP neuronal activity and the involvement of D3Rs in the measured 

responses.  Furthermore, we wanted to determine if the effects of PPX were altered in 

two different animal models of PD as well as in rats that were treated with a dosing 

regimen of chronic PPX known to produce an increase in risk-taking behaviors.  The 

following hypotheses were made for this study: (i) VP neurons will show a change in 

firing rate in response to systemically administered PPX.  (ii) The D3R preferring 

antagonist, PG01037, will attenuate the PPX induced alterations in VP neuronal firing.  

(iii) Compared to controls, the potency and maximal effect of PPX will be altered in both 

rodent models of PD, as well as in rats treated chronically with PPX. 

 

Materials and methods  

Male Sprague–Dawley rats (Harlan, Indianapolis, IN) weighing 225–274 g upon 

arrival were housed in pairs under the environmentally controlled conditions of the local 
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vivarium (7:00 AM/7:00 PM light/dark cycle, temperature maintained at 23–25 ◦C) with 

ad libitum access to rat chow and water.  All rats were handled according to established 

procedures in the Guide for the Care and Use of Laboratory Animals (National Research 

Council, Washington, DC).  Experiments were carried out at Loyola University Medical 

Center and Rush University Medical Center.  Specific protocols were approved by the 

Institutional Animal Care and Use Committee at each university. 

 

Treatment Drugs 

To induce dopaminergic lesions, 6-hydroxydopamine-HBr (6-OHDA; Sigma-

Aldrich, St Louis, MO) was dissolved in 0.2% ascorbic acid in a sterile saline solution 

(pH=5.0) and infused into the MFB at a dose of 12µg per 4µl per side (as the salt) or 

infused into the striatum at a dose of 7.5 µg per 2 µl per side.  Rats were given a 30-min 

intraperitoneal (ip) injection pretreatment of desipramine-HCl (DMI; Sigma-Aldrich;    

25-30 mg/kg, as the salt, dissolved in sterile water) and pargyline (Sigma-Aldrich; 

50mg/kg, as the salt, dissolved in 0.9% sterile saline) to aid 6-OHDA in lesioning the 

dopaminergic system.  Pramipexole (synthesized as the racemic mixture; Daya Drug 

Discoveries, Hazelwood, MO) (±PPX) was dissolved in saline and given ip as 2 mg/kg 

for chronic treatment in a subset of rats.  For all electrophysiological experiments, (-)PPX 

(the active S(-) enantiomer; Tocris, Ellisville, MO) was given at doses (0.001-3.0mg/kg, 

as the salt and equal to 1-3000µg/kg) that were administered intravenously (iv) in a series 

of cumulative and divided doses.  PG01037 was generously provided by Dr.  Amy H.  

Newman (Medicinal Chemistry Section, National Institute on Drug Abuse, Baltimore, 

MD).  It was dissolved in 2% tween-80 (Sigma-Aldrich) and given at three doses (3, 10, 
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and 30mg/kg, as the salt) that were administered iv in a series of increasing cumulative 

doses.   

Surgical procedures for the medial forebrain bundle and dorsolateral striatal 6-

hydroxydopamine-induced lesions 

To stereotaxically lesion the MFB, rats were anesthetized with an ip injection of 

sodium pentobarbital (50 mg/kg/ml; Sigma-Aldrich) or continuous isofluorane inhalation.  

The head was placed in a stereotaxic frame (David Kopf, Tujunga, CA) with the nose 

piece set at 3.3mm below the horizontal.  For 6-OHDA injections into the MFB, a        

33-gauge, bilateral injector was lowered to the (4.2 mm anterior to lambda, ±1.6 mm 

from midline, 8.5 mm ventral from skull).  Following a 30min pretreatment with DMI 

and pargyline, 6-OHDA was injected unilaterally at a rate of 0.5 µl/min for four minutes.  

The ascorbic acid vehicle was similarly infused in the contralateral hemisphere.  The 

injectors were left in place for an additional min (to allow the solution to diffuse away 

from the tip), and upon removal the skull holes were filled with bone wax.  The 

procedure for the lesions of the DLS was similar to the MFB lesion.  In brief, rats were 

anesthetized with continuous isofluorane inhalation and given a 30min DMI pretreatment 

(25mg/kg, ip).  A 33-gauge, bilateral injector was lowered to the DLS (1.0mm anterior to 

bregma, 3.4mm lateral from midline, 4.7mm ventral from skull) and 6-OHDA was 

injected at a rate of 0.2 µl/min, for a total of ten minutes.  Sham controls were similarly 

injected with the ascorbic acid vehicle.   

Rats with a unilateral MFB lesion were prepared for electrophysiological studies 

10-17 days post lesion.  Rats with a bilateral DLS lesion were prepared for 

electrophysiological studies 20-30 days post lesion.   
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Chronic DA agonist treatment in intact rats 

Rats received 2mg/kg ±PPX, ip, twice daily for 14 days.  Rats were prepared for 

electrophysiological recordings 2-4 days after the last drug injection.   

 

Extracellular electrophysiology 

Surgical Preparation 

Rats were anesthetized with chloral hydrate (400mg/kg, ip) and the lateral tail 

vein was cannulated to allow for iv administration of treatment drugs and supplements of 

chloral hydrate.  The rat was placed in a stereotaxic frame with the nose piece set at 

3.3mm below the horizontal.  To access the VP, the skull was exposed and a burr hole 

was drilled through the skull 0.2-0.6 mm posterior to bregma, 2.0-3.0 mm lateral to the 

midline.  Body temperature was maintained at 36º C throughout the experiment. 

 

Extracellular recording 

 Action potentials from VP neurons were recorded extracellularly though a single 

barrel micropipette pulled from 2.0 mm O.D. glass tubing (A-M Systems, Inc., Everett, 

WA) with a vertical puller (Narishige PE-2, Tokyo, Japan).  The tip was broken back to a 

diameter of approximately 2 µm and the electrode was filled with a 2% pontamine sky 

blue/0.5 M sodium acetate solution.  The impedance of these electrodes was 3-8 MΩ, as 

measured in 0.9% saline at 165 Hz with a microelectrode tester (Winston Electronics 

Company, Millbrae, CA).  To record from VP neurons this glass microelectrode was 

lowered through the burr hole with a hydraulic microdrive (Trent Wells, South Gate, CA) 

to a depth of 7.5-8.5 mm ventral to dura.   
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 Electrical signals recorded by the electrode were passed through a high-

impedance amplifier (Fintronics, Inc., Orange, CT), filtered (200-2000 Hz cutoffs) and 

monitored on an oscilloscope (Tektronix, Inc., Beaverton, OR) and an audiomonitor 

(Grass Instruments, Quincy, MA).  The signals were relayed to a window discriminator 

(Fintronics, Inc.) with the digital output representing action potentials from single, 

spontaneously active neurons.  The output was recorded by a computer that, with the aid 

of custom software, displayed rate histograms and stored all data for future statistical 

analysis.  The action potentials were characterized by waveform (i.e., biphasic with an 

initially negative voltage deflection or triphasic with an initially positive voltage 

deflection), amplitude (peak to peak) and, duration (µsec).  Neuronal firing was 

characterized by rate and pattern (i.e., interspike interval (ISI)).  To be included in these 

evaluations, the ratio of the action potential amplitude to background “noise” had to be at 

least 4:1.  Data were collected from one neuron per rat.   

 After recording a minimum of five minutes of stable neuronal firing activity (< 

20% variability), rats received an iv injection of 0.1 ml saline followed by eight injections 

of (-)PPX (0.001-3.0mg/kg given in a cumulative fashion).  Each iv injection was given 

at two min intervals.  The saline injection was given as a control for volume injection; a 

saline effect was defined as >20% change from baseline.  If, on a rare occasion, a saline 

effect was obtained, data from that neuron were excluded from further analysis.   

 A separate group of intact rats received a single iv injection of saline (0.1ml) 

followed by injection of 0.3mg/kg (-)PPX.  Subsequently, rats were administered three 

doses of PG01037 (3, 10, and 30mg/kg iv given in a cumulative fashion).  Saline and 

PPX were given in two min intervals, whereas PG01037 was given in 5 min intervals.   
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At the completion of all the experiments, an anionic current was passed through 

the microelectrode to deposit pontamine sky blue, thus marking the location of the tip of 

the microelectrode.  Rats were then overdosed with chloral hydrate and decapitated.  

Brains were extracted and placed in a10% buffered formalin solution (Fisher, 

Kalamazoo, MI) for 48hr, and then stored in a 30% sucrose/0.4M phosphate buffered 

solution.  For histological evaluations, frozen brains were sliced in 40 mm coronal 

sections.  The location of markers for the tip and track of the electrodes were examined 

and agreed upon by two people.  A randomly selected subset of rats was used for tyrosine 

hydroxylase (TH; the rate limiting synthetic enzyme for DA) immunohistochemistry 

(IHC) evaluations of the 6-OHDA-induced lesions.  Tissue was processed for TH-IHC 

using the protocol previously employed (Rokosik and Napier, 2012).   

 

Data Analysis 

Neuronal firing rate following injections was transformed to a percent of 

pretreatment control (i.e., baseline), determined by comparison of the firing rates 

averaged over the last 60 sec interval of baseline (considered 100%) with that observed 

during the last 60 sec interval following each injection.  A “response” to PPX was 

considered to have occurred if firing rate changed from baseline by at least 20% during 

two applications of the agonist with the inclusion of the 300µg/kg dose.  The 300µg/kg 

dose was chosen because it falls within the range of selectivity for the D2/D3R (which 

allows us to capture the influence of both D2 and D3Rs) is near the maximal effect 

(which allows us to capture a near complete dose response, but does not extend into the 

plateau where physiological limits may mask a dose-related response).  We categorized 
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responses based on the ability of PPX to produce rate-enhancements, rate-suppression, 

biphasic responses, or no change.  For cells that demonstrated a “response”, a third order 

polynomial was fit to the data and a regression analysis was performed (GraphPad Prism, 

La Jolla, CA).  For regressions that demonstrated an r2 ≥ 0.7, cumulative log dose-

response curves were generated to determine the maximal effect (Emax) of the agonist and 

the dose that produced 50% of the maximal effect (ED50; GraphPad Prism).  In order to 

statistically assess the single point parameters, Emax and ED50 were determined for each 

neuron, and the geometric mean of each measure was calculated for the treatment group.   

To determine if the maximal effect and/or the potency of PPX were altered by    

6-OHDA-induced lesions or repeated treatment with PPX, direct comparisons in dose-

response relationships among the treatment groups were made.  To aid in this analysis, 

we standardized PPX effects as a percent of baseline.  Both rate enhancements and 

suppressions were observed; however, there was no difference between the geometric 

Emax and ED50 of PPX-induced increase and decreased rate profiles (data not shown).  

This finding is consistent with the idea that rate increases and decreases reflect similar 

pharmacological mechanisms at the drug/receptor level, and the different firing rate 

outcomes reflect circuit-mediated direct and indirect effects.  Thus, for purposes of 

analyzing shifts in the dose-response relationship as an index of changes in drug/receptor 

interactions, we evaluated PPX-induced responses as an absolute change from baseline.  

The mean values of Emax and ED50 in the various treatment groups were compared using 

either an ANOVA or Student’s t-test.  If the calculated Emax or ED50 was more than 2 

standard deviations away from the mean, it was considered to be an outlier (and thus an 

erroneous estimate of the event) and the neuron was excluded from analysis.  Using these 
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criteria, no more than one cell was omitted per treatment condition.  Firing patterns were 

quantified by a mean to mode ratio ISI using customized software.  A Student’s t-test or 

ANOVA were used to compare neuronal firing characteristics (i.e., firing rate and 

pattern), electrophysiological profiles and the pharmacological assessments across 

control and treatment groups.  A Student’s t-test was also used to determine if the 

magnitude of the PPX response differed when given  as a cumulative dose or single 

injection.  A one way repeated measures (rm)ANOVA was used to compare the ability of 

different doses of PG01037 to antagonize the single PPX dose effect.  If ANOVA was 

significant, Newman-Keuls pairwise post hoc evaluations were then used when 

appropriate.  Categorical comparisons were accomplished using Pearson’s Chi-square 

(χ2) test of association or a Fisher’s exact test.  Significance of all statistical evaluations 

was set at p ≤ 0.05.   

 

Results 

Tyrosine hydroxylase immunohistochemistry  

The striatum ipsilateral to a vehicle injection into the MFB exhibited robust TH-

IHC staining, while the striatum ipsilateral to MFB 6-OHDA injection into was 

essentially devoid of TH-IHC (Fig. 18A), similar to our prior work (Heidenreich et al., 

2004; Muma et al., 2001).  Also similar to our previous work, rats that received bilateral 

6-OHDA injections into the DLS had reduced TH-IHC staining that was confined to the 

targeted area (Fig. 18B; Rokosik and Napier, 2012; Riddle et al., 2012).   
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Control groups for assessing effects of dopaminergic lesions or chronic PPX treatment 

on both basal and PPX-induced changes in the electrophysiological profile of ventral 

pallidal recordings 

For the current study, we used the vehicle-DLS group as a control comparison for 

the 6-OHDA-DLS and 6-OHDA-MFB groups.  This decision was supported by previous 

work from our laboratory that demonstrated injections of the 6-OHDA ascorbic acid 

vehicle to the MFB do not alter basal firing of VP neurons compared to intact controls 

(Heidenreich et al., 2004).  Furthermore, as discussed below, we found that basal firing 

rate of neurons following vehicle injections into the DLS did not differ from intact 

controls (see Table 5).  In the current study, we also used non-treated rats as a control for 

the chronic PPX treatment group.  Our prior work also has verified that baseline 

electrophysiological characteristics of the VP are similar in rats that received repeated 

daily treatments of saline compared to untreated rats (McDaid et al., 2007).  

 

Basal electrophysiological profile of ventral pallidal recordings and effects of 

dopaminergic lesions or chronic PPX treatment 

Data were obtained from a total of 196 neurons located throughout the 

infracommisural and sublenticular VP (Fig. 19).  Across the five treatment groups of rats 

(vehicle-DLS, 6-OHDA-DLS, 6-OHDA-MFB, non-treated, and chronic PPX), recording 

sites were distributed similarly.  Two neuronal subpopulations have been identified 

within the VP (Zahm et al., 1985; Carsen et al., 1985).  The majority of neurons are 

GABAergic and approximately 25% of VP neurons are cholinergic (Gritti et al., 1993).  

Prior extracellular studies of the basal forebrain of rats have suggested a correlation 
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between neuronal firing characteristics and neuronal subpopulations (Turner et al., 2001; 

Turner et al., 2002).  To determine if subpopulations could be identified in the current 

study, and if so, whether the subpopulations would be differentially altered by either the 

6-OHDA treatments and/or chronic PPX, we quantified several aspects of the action 

potential configuration and spiking activity.   

Two distinct action potential profiles were observed; those with an initially 

negative-going, biphasic waveform and those with an initially positive-going, triphasic 

waveform.  To assess differences in the amplitude and duration of these waveforms we 

pooled data from the non-treated and vehicle-DLS control groups (Table 4).  Neurons 

that demonstrated a biphasic waveform produced action potentials with an amplitude of 

459±15µV and a duration of 1.5 ± 0.02ms.  Neurons that demonstrated a triphasic 

waveform produced action potentials with an amplitude of 76 6± 57µV and a duration of 

1.3 ± 0.08ms.  The amplitude and duration were significantly different between the 

biphasic and triphasic waveforms (see Table 4 for statistics). Consistent with our prior 

reports (Heidenreich et al., 2004; Turner et al., 2002), the two profile groups did not 

differ in firing rate or pattern (see Table 5 for statistics).   

When comparing among the vehicle-DLS, 6-OHDA-DLS and 6-OHDA-MFB 

groups (shaded in green in Table 4 and 5) the amplitude of the biphasic waveform was 

significantly smaller in VP spikes from 6-OHDA-MFB rats as compared to the vehicle-

DLS rats.  When comparing among the non-treated and chronic PPX treatment groups 

(shaded in blue in Table 4 and 5), a larger amplitude of the triphasic waveform was 

obtained from neurons of the chronic PPX treatment group as compared to the non-

treated control group.  In this context, it is notable that our prior evaluations of VP action 
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potential profiles were not altered by 6-OHDA-induced lesions (Heidenreich et al., 2004; 

Turner et al., 2002).  Note that amplitude is an action potential characteristic that can be 

related to proximity of the electrode tip to the axon hillock of the neuron being recorded 

(Purves, 1981), so care must be taken to assure the electrode is as close to the soma as 

possible.  Moreover there should be a sufficient sample size to average out sampling 

variability of the amplitude.  As differences in action potential characteristics (Table 4), 

but not spiking characteristics (Table 5) were found between neurons that demonstrated 

biphasic and triphasic waveforms, we pooled data collected from these recordings for all 

further assessments. 

 

Procedural controls for studying the effects of acute PPX administration 

The primary objective of this study was to determine if the VP neuronal responses 

to an acute treatment with PPX were altered by 6-OHDA-induced lesions to the DLS or 

MFB, or chronic treatment with PPX.  This was accomplished by iv administration of 

multiple doses of PPX given in an escalating fashion to allow a complete dose-response 

analysis for each recorded VP neuron.  Several control experiments were conducted to 

validate the dose-response protocol.  In the first control, we verified that the multiple iv 

injections did not influence the firing rate of VP neurons across time.  This was 

accomplished by administering nine saline vehicle injections given every two minutes 

that were in equal volume to that used to administer PPX) (see Fig. 20).  This protocol 

verified that, in agreement with previous studies ((Heidenreich et al., 1995; Maslowski 

and Napier, 1991), the mechanical techniques of the injection or the increased volume of 

solution introduced to the circulatory system via the tail vein cannula did not alter VP 
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activity and that firing could be maintained within 20% of pretreatment baseline 

throughout the repeated infusion protocol.  Thus, change in firing rate that was more than 

20% from baseline was used as our criterion for a treatment effects.  When a drug is 

repeatedly administered, factors such as tachyphylaxis (i.e., acute tolerance) may 

influence the measured outcome.  In the second control experiment, we verified that 

PPX-induced changes in VP neuronal firing rates were similar following a single 

injection as compared to a the same dose achieved with multiple injections.  For this 

comparison, we selected 300µg/kg (-)PPX, a dose that induced near maximal responses 

in the PPX multiple dose-response evaluations (see Table 6).  A Chi-square analysis of 

the distribution of responses following either a cumulative divided dose or single 

injection indicated that the number of neurons in each category were not different.  A      

t-test indicated that the magnitude of the average increase in firing rate induced by the 

single injection of PPX was not different from the response after the 300µg/kg 

cumulative dose, nor was the magnitude of the average suppression of firing rate.  Thus, 

effects of the same dose of PPX were comparable with those observed after a single 

injection or as a divided cumulative dose.   

The secondary objective of these studies was to determine if the D3R was 

involved in PPX-induced responses.  To do so, we evaluated the ability of iv PG01037 to 

antagonize the effect of a single 300µg/kg iv injection of PPX; therefore, it was necessary 

to verify that the vehicle used for PG01037 was not able to alter responding to PPX.  

Accordingly, we determined that firing rate recorded for 15min following a PPX 

injection was stable and that three subsequent iv injections of PG01037 vehicle, given in 

five minutes intervals (the protocol used to test PG01037-mediated antagonism), did not 
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affect firing rate (see Fig. 21).  Thus, any changes in firing rate that occurred after the 

administration of PG01037 were considered to be a consequence of the antagonist and 

not the wearing off of PPX-induced effects nor the effects of the vehicle solution. 

 

Effects of PPX on VP neuronal firing rate in two models of Parkinson’s disease 

The effects of acute iv PPX on VP neuronal firing rate were assessed in rats with 

DLS injections of 6-OHDA or its vehicle (n=29 and n=24, respectively), and on VP 

neurons ipsilateral to unilateral 6-OHDA-injections into the MFB (n=37).  A histogram 

example of a dose-related response (i.e., rate suppression) produced by cumulative doses 

of PPX is shown in Fig. 22 (shown also are the cumulative doses and timing intervals for 

this set of experiments).  The number of ‘responders’ (i.e., those showing a (-)PPX-

induced rate change >20% by 300µg/kg (-)PPX) vs. non-responders, and the distribution 

of responses among the three treatment groups, are summarized in Table 7.  Chi-square 

analyses revealed no significant difference in the distribution of neuronal responses 

among the four categories (i.e., increase, decrease, biphasic or no change).  These data 

suggest that neither partial lesions of striatal DA nor near complete depletion of the 

ascending a dopaminergic system influenced the ability 300µg/kg (-)PPX to alter firing 

of VP neurons.   

Next we analyzed dose-response relationships between the 6-OHDA-MFB,         

6-OHDA-DLS and vehicle-DLS groups (Fig. 23A).  A two way repeated measures 

ANOVA revealed no effect of treatment group (F(2,119)=0.01, p=0.99), an effect of dose 

(F(7,96937)=20.29, p<0.001), and no interaction (F(14,2580 )=0.27, p=0.99).  This indicates 

there was a dose related response to (±)PPX, but a lesion to the DLS or MFB did not 
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affect this response.  To determine if either 6-OHDA-induced lesions altered PPX-

induced responding in terms of efficacy and/or potency, a one way ANOVA was used to 

compare Emax and ED50 among the three groups.  No difference was obtained for Emax 

(Fig. 23B), but there was a difference in ED50 among the groups (Fig. 23C).  A post hoc 

Newman-Keuls analysis of the ED50 revealed that neither the 6-OHDA-DLS or 6-

OHDA-MFB group was different from the vehicle-DLS group; however, there was a 

difference between the 6-OHDA-DLS and 6-OHDA-MFB groups.  It is noteworthy that 

there does appear to be a trend towards a greater potency of PPX (i.e., a lower ED50) in 

the 6-OHDA-MFB group compared to vehicle-DLS.  

To determine if the sensitivity of VP neurons to respond to D3R-selective doses 

or D2/D3 selective doses of PPX was altered in the 6-OHDA-DLS and/or 6-OHDA-MFB 

groups, we determined the percent of neurons in each group that showed a response 

(>20% change in firing rate) at each PPX dose tested.  All neurons tested were included.  

To assure that the response was not due to chance, the response requirement had to be 

met for at least two consecutive doses.  Fig. 24 is a histogram of the results.  Separate 

Chi-square analyses conducted at each dose revealed that compared to the vehicle-DLS 

group and the 6-OHDA-DLS group, there were significantly more neurons in the           

6-OHDA-MFB group that responded to higher doses (i.e., 300 and 1000µg/kg).  Taken 

together, these data suggest that partial lesions of the nigrostriatal pathway do not alter 

the potency of PPX to alter VP neuronal firing, but a more complete lesion of the 

ascending dopaminergic pathway may enhance the potency of PPX and this may be 

reflected in an enhanced sensitivity to D2R stimulation compared to D3R stimulation.   
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Effects of PPX on VP neuronal firing rate in rats treated chronically with PPX 

The effects of acute systemic PPX on VP neuronal firing rate were also assessed 

in non-treated control rats (n= 30) and rats that received 2mg/kg (±)PPX, ip, twice daily 

for 14 days followed by 2-4 drug-free days (n=27).  To determine if the total number of 

neurons that responded to PPX, as well as the particular response category were altered 

by chronic PPX treatment, Chi-square analyses were conducted (see Table 8).  No 

significant differences were obtained between the two groups for the number of 

responders vs. non-responders, nor a difference in the type of response displayed.  We 

next analyzed the dose-response relationship between the non-treated control group and 

rats chronically treated with PPX (Fig. 25A).  A two way repeated measures ANOVA 

revealed no effect of treatment group (F(1,2176)=0.65, p=0.42), an effect of dose 

(F(7,68403)=35, p<0.001), with no interaction (F(7,3005 )=1.5, p=0.16).  This indicates there 

was a dose related response to (±)PPX, but chronic treatment with PPX does not affect 

this response.  A t-test revealed no difference in the geometric Emax (Fig. 25B), but did 

find a significant difference between groups with respect to the geometric ED50 indicating 

that the potency of (-)PPX was increased in the PPX chronically treated group (Fig. 25C).  

Chi-square analyses revealed no difference between groups regarding the sensitivity for 

VP neurons to response at any of the doses tested (Fig. 26).  However, there appears to be 

a trend for VP neurons in the chronic PPX group to respond to D3R-selective doses.  This 

group had on average 50% more VP neurons that showed a response at the four lowest 

doses tested.  On the contrary, there is a similar percent of neurons in each group 

responding at the three higher doses.  This suggests D3Rs rather than D2Rs may be 

playing a role in the enhanced potency of PPX seen in the chronic PPX treatment group.   
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Effects of blocking D3Rs on PPX-induced changes in VP neuronal firing rate.   

To ascertain if the effects of PPX on VP neuronal firing rates could be altered by 

the D3R-preferring antagonist, PG01037, a subset of intact rats (n=17) treated with the 

single acute dose of 300µg/kg (-)PPX were tested with 3mg/kg iv PG01037 (see Fig. 28 

for the injection protocol and an example of treatment responses).  Some rats also 

received 10 and 30mg/kg PG01037 in a cumulative fashion.  Eight of the 14 rats tested 

with 30mg/kg unexpectedly died; thus, we only report effects of 3 and 10mg/kg 

PG01037.  Of the 17 neurons tested with PPX, 10 neurons demonstrated a rate 

suppression.  PG01037 at a dose of 3mg/kg antagonized (defined as attenuation of 

agonist-induced response by at least 20%) the agonist-induced effect in 8 of these 

neurons.  A one way rmANOVA (F(2,387 )=13, p<0.001) determined that the firing rate 

was different across the three conditions (ie., during baseline, after the PPX injection, and 

after the 3mg/kg PG1037; Fig. 28).  A post hoc Newman-Keuls revealed that PPX 

significantly decreased the firing rate compared to baseline levels and that 3mg/kg 

PG01037 significantly increased the firing rate that was altered by PPX.  There was no 

significant difference between baseline firing rate and that following the 3mg/kg 

PG01037, indicating a reversal (defined as a re-establishment of baseline firing rate) of 

the PPX effects.  Of these eight rats, seven then received a subsequent cumulative dose of 

10mg/kg PG01037.  A t-test comparing spikes per second after 3mg/kg (13.9 ± 3.8) and 

10mg/kg (11.8 ± 2.8) PG01037 revealed no difference between these doses (p=0.42).  

Similar trends were seen (data not shown) in three neurons that demonstrated             

PPX-induced rate increases.  It should be noted that of the 11 neurons that demonstrated 

antagonism with 3mg/kg PG01037, firing rate returned to baseline levels in 7 of these, 
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however, 6 of the neurons demonstrated firing rates that were different than baseline 

levels.  Additionally there were 4 neurons that demonstrated no PPX-induced effects, but 

upon administration of 3mg/kg PG01037, one of the four neurons did show a change in 

firing rate.   Overall, these data suggest that D3Rs activated by 300µg/kg (-)PPX can alter 

the neuronal firing of VP neurons as demonstrated in the directionality of PG01037-

induced effects and also the ability to reverse firing rate back to baseline (i.e., pre-PPX) 

firing rate.  However, there were clearly examples in which this was not the case, and 

thus occasionally, PG01037 appears to be influencing endogenous DA-induced 

effects.  Therefore, caution should be taken when interpreting PG01037-induced effects.  

 

Discussion   

These experiments revealed the following:  (1) Neither persistent 6-OHDA-

induced lesions of the DLS or MFB, nor chronic PPX treatment altered basal activity of 

VP neurons as recorded in chloral hydrate-anesthetized rats.  (2) Compared to controls, 

neither lesions of the DLS nor the MFB altered the potency or efficacy of PPX.             

(3) Chronic PPX increased the potency of PPX, as reflected in the capacity of low doses 

of the agonist to alter firing of VP neurons. (4) Effects of PPX up to 300µg/kg likely 

reflect a preponderance of D3R activation. 

 

Lack of effect of dopamine denervation on basal activity of VP neurons 

Some of the brain regions within the basal ganglia that are affected throughout the 

course of PD monosynaptically innervate the VP.  These include the ascending 

dopaminergic system which directly regulates VP neuronal activity (Maslowski-Cobuzzi 
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and Napier, 1994; Mitrovic and Napier, 2002; Klitenick et al., 1992) and the STN which 

has a robust excitatory influence on VP neurons (Turner et al., 2001; Groenewegen and 

Berendse, 1990).  The unilateral 6-OHDA-induced dopaminergic lesion of the MFB, a 

model of late stage PD, leads to near complete destruction of dopaminergic neurons 

(Heidenreich et al., 2004; Ungerstedt, 1968) and an increase in firing rate and oscillatory 

activity of the STN (Parr-Brownlie et al., 2007).  In agreement with previous studies, we 

found that lesions of the ascending dopaminergic system did not alter the basal firing 

properties of VP neurons (Turner et al., 2002; Heidenreich et al., 2004).  This suggests 

compensatory mechanisms are engaged during conditions of DA deafferentation that 

allow the VP to maintain a steady baseline firing profile.   

The bilateral 6-OHDA-induced dopaminergic lesion of the DLS, a model of early 

stage PD, leads to a partial and discrete destruction of some nigral neurons (Blandini et 

al., 2007) and alterations in STN neuronal activity, including irregular pattern of firing, 

without a change in firing rate (Breit et al., 2007).  Lack of change in basal spiking 

characteristics following this lesion may be due to insignificant changes in the circuitry 

that regulate VP neuronal spiking activity.   

 

Lack of effect of chronic (±)PPX treatment on basal activity of VP neurons 

Fourteen days of chronic PPX treatment leads to an increase expression of D3Rs 

in the NA (Maj et al., 2000; Tokunaga et al., 2012) and similar treatment paradigms with 

other D2/D3R preferring agonists such as 7-OH-DPAT and quinpirole enhance D3R 

expression and decrease expression of D2Rs in the VP (Stanwood et al., 2000b).  

Tonically released DA may allow these changes in D2/D3R to have a functional 
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consequence; however, our data suggest that any functional changes that may occur with 

the changes in expression of D2/D3Rs appear to be offset by additional compensatory 

mechanisms that allow the VP to maintain a steady baseline firing profile. 

 

PPX induced both enhancements and suppressions in the firing rate of VP neurons 

In control rats, systemic injections of PPX altered VP neuronal firing in 

approximately 50% of the neurons tested with similar proportions of rate enhancements 

and rate suppression measured.  As PPX is given systemically in these studies, the final 

measured response of VP neuronal firing is likely be influenced by direct and indirect 

circuit related effects as well as pre and postsynaptically-mediated effects.  Data collected 

by Piercey and colleagues with intact rats give us some indication of how the brain 

regions within the relevant circuitry under study are influenced by systemic PPX (Piercey 

et al., 1996).  PPX inhibits activity of most midbrain neurons (Piercey et al., 1996), while 

PPX enhances neuronal activity in the caudate nucleus (Piercey et al., 1997).  PPX is 

reported to predominantly inhibit neurons in the NA, but rate-enhancements as well as no 

effect on firing rate occurred (Piercey, 1998).  There are, however, many unknowns 

regarding the influence of PPX on brain regions that express D2/D3Rs and that send 

direct projections to the VP.  These include the AMG, STN and PFC, all of which send 

glutamate projects to the VP (Delgado-Martinez and Vives, 1993; Fuller et al., 1987; 

Groenewegen and Berendse, 1990; Turner et al., 2001; Mitrovic and Napier, 1998; 

Napier and Mitrovic, 1999; Bouthenet et al., 1991; Flores et al., 1999; Loiseau and 

Millan, 2009).   
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Data collected by Napier and colleagues also provides information about the 

consequences of exogenous and endogenous DA as well as the effects of D2R 

stimulation in the VP and the related circuitry.  For example, microiontophoretically 

applied DA directly into the vicinity of VP neurons increases and decreases VP neuronal 

firing rate, with a larger proportion of neurons showing a rate suppression (Napier et al., 

1991; Maslowski-Cobuzzi and Napier, 1994).  Stimulation of the VTA or SN evokes a 

response from almost all VP neurons tested; rate enhancements are seen but there is 

double the number of rate suppressions (Maslowski-Cobuzzi and Napier, 1994).  These 

firing rate alterations have been attributed to activation of both D1R and D2Rs located 

within the VP.  Local application of D1R agonists decrease firing rates, while D2R 

agonists increase firing rates in VP neurons (Napier and Maslowski, 1994).  When these 

agonists are delivered systemically the opposite effects are seen.  That is, D1R agonists 

increase VP neuronal firing rate; whereas D2R agonists produce rate decreases 

(Maslowski and Napier, 1991; Napier, 1992; Heidenreich et al., 2004; Heidenreich et al., 

1995).  These results indicate that VP neuronal activity is influenced by direct and 

indirect circuit related effects.  DA also acts a modulator within the VP.  For example, 

electrical stimulation of the VTA attenuates glutamate-evoked VP responses induced by 

AMG stimulation (Maslowski-Cobuzzi and Napier, 1994).  Also, co-iontophoresis of DA 

with either glutamate or GABA substantially alters both GABA and glutamate evoked 

responses in the VP, with attenuation of the evoked response occurring most often 

(Johnson and Napier, 1997).  Based on the information that we do know, we can start to 

see the complexities of how systemic PPX, by acting on D2R and D3Rs, might alter 

neuronal firing in this circuitry and ultimately change the firing rate of VP neurons.  
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Given that the VP expresses both D2 and D3Rs, and it receives excitatory and inhibitory 

inputs from both midbrain dopaminergic neurons and other dopaminergic receptive brain 

region, it is not surprising that PPX induces a both firing rate enhancements and 

suppression VP neurons.   

Given that PPX-induced responses in the current study were evaluated at doses 

that are reported to be acting at both D2/D3R, it might be expected that the PPX-induced 

responses would be similar to results found using D2-like receptor agonists.  Our findings 

demonstrated that the absolute ED50 for PPX was between 150-200µg/kg; Emax was 

approximately 75% of baseline.  This is in contrast to systemically administered 

quinpirole, a D2-like family receptor agonist, which has slight preference for the D3R 

over the D2R, (Pugsley et al., 1995; Chio et al., 1994; Sautel et al., 1995) although some 

studies suggest that it is nonselective between D2 and D3Rs (Mierau et al., 1995).  

Quinpirole has been shown to alter VP firing in 88% (45 of the 51) neurons tested; 

attenuation of the firing rate was predominately observed (Maslowski and Napier, 1991).  

The ED50 for quinpirole was 7.6µg/kg; Emax was approximately 60% of baseline 

(Maslowski and Napier, 1991).  The larger abundance of D2R as compared to D3Rs 

within the VP and the related circuitry can explain the increased number of responders as 

well as the increased potency of quinpirole.  The increased proportion of rate 

enhancements seen with PPX as compared to quinpirole may be the result of direct 

activation of D2/D3Rs in the VP as the Napier laboratory has demonstrated that 

microiontophoretic application of D2Rs agonists within the vicinity of individual 

recorded VP neurons results in firing rate enhancements (Napier and Maslowski, 1994).  

Compared to quinpirole, PPX may be slightly more selective for the D3R over the D2R 
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(Mierau et al., 1995; Collins et al., 2007), thus differences in effects of these two agonists 

on VP neuronal firing rate may be due to differential activation of D3R in the circuitry.       

 

D3Rs are involved in PPX-induced changes in VP neuronal firing rate.   

We used PG01037, one of the most D3R preferring antagonists available to date, 

to determine if D3Rs are involved in the PPX-induced changes in VP neuronal firing rate.  

This antagonist is 133x’s more selective for the D3R over the D2R (Grundt et al., 2005), 

and has been shown in vivo to be D3R selective at 32 and 56mg/kg sc (Collins et al., 

2005).  Furthermore, when the dose range of 3-32mg/kg PG01037 was tested for effects 

on reward mediated behaviors, 10mg/kg ip and 32mg/kg sc were shown to attenuate 

motivation and reward seeking behaviors (Orio et al., 2010; Higley et al., 2011).  Using 

this same dose range in our current studies, we found that the lowest dose of PG01037 

(3mg/kg, iv) was able to antagonize and reverse the rate altering effects of 300µg/kg       

(-)PPX to baseline (i.e., pre-agonist treatment) levels.  The 10mg/kg dose did not 

attenuate the firing rate any further.  As mentioned in the results section, there were cases 

in which neurons demonstrated a response to PG01037 that would indicate the antagonist 

is acting on endogenously activated receptors (i.e., (i) a case in which 300ug/kg (-)PPX 

had no effect of firing rate, but PG01037 did, and (ii) when PG01037 induced a change in 

firing rate that reversed the effects seen following PPX but also further altered the firing 

rate so that is was different from baseline levels).  Additionally we collected pilot data on 

the ability of PG01037 to antagonize the effects of a cumulative dose of 3mg/kg (-)PPX.  

These experiments were conducted in rats used in the current study, including those with 

6-OHDA-induced lesions to DLS (n=12), 6-OHDA-induced lesions to MFB (n=3), and 
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rats chronically treated with PPX (n=15).  Together with the 17 intact rats that received a 

single dose 300ug/kg (-)PPX, 56% of neurons tested with 3mg/kg PG01037 provide 

evidence that PG01037 is blocking the effects of a PPX, while 33% of the neurons tested 

provide evidence that PG01037 is acting on endogenously activated D2/D3Rs.  The 

remaining 11% of neurons tested did not demonstrate an effect of 3mg/kg PG01037.  

These data indicate that in a majority of the neurons tested, the PG01037-induced effects 

are likely antagonizing PPX-induced effects.  This is demonstrated in the directionality of 

PG01037-induced effects and also the ability to reverse firing rate back to baseline (i.e., 

pre-PPX) firing rate.  However, there were clearly examples in which this was not the 

case, and occasionally, PG01037 appeared to be influencing endogenous DA-induced 

effects.  Indeed, endogenous DA is released in the VP (Gong et al., 1998; Lavin and 

Grace, 1998; Sizemore et al., 2000; Maslowski-Cobuzzi and Napier, 1994; Napier et al., 

1991), as well as other brain regions that may influence the firing rate outcome of VP 

neurons (i.e., PFC, AMG, NA; Bortolozzi et al., 2007; Volonte et al., 1995; Oshibuchi et 

al., 2009).  Therefore, caution should be taken when interpreting PG01037-induced 

effects on PPX-induced changes in VP neuronal firing rate.   

Unexpectantly, many rats died within minutes of an iv injection of 30mg/kg 

PG01037.  There have been no reported rodent deaths with the use of higher doses of this 

antagonist when given ip or sc.  Thus, it may be the sudden and excessive blockade of 

D3Rs in the periphery that underlies the mortality seen in our studies.  DA plays many 

roles including regulation of blood pressure (Zhang et al., 2011).  D3R activation can 

alter sympathetic tone by inducing both vasoconstriction and vasodilation (for review see 

(Zeng et al., 2007); therefore, PG01037 may have led to a sudden change in the 
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vasculature which might have caused heart failure (D3Rs in the kidneys function to 

increase urinary sodium excretion but this would not acutely effect blood pressure).  

Given the robust effects of the lowest dose of PG01037 to attenuate and in many cases 

reverse the effect of 300µg/kg (-)PPX, this may indicate these agonist effects are driven 

mainly by the D3Rs with little effect of PPX on D2R activation.  In support of this 

conclusion, a pharmacologic magnetic resonance imaging study demonstrated that 

PG01037 at 2mg/kg iv increases regional cerebral blood volume in areas with the highest 

concentration of D3Rs (i.e., Islets of Calleja and the shell of the NA), while smaller 

changes in blood volume were seen in the caudate-putamen, a brain region that expresses 

less D3Rs but more D2Rs (Grundt et al., 2007).   

 

Bilateral 6-OHDA-induced lesion to the DLS do not alter efficacy nor potency of PPX; 

however rats with a unilateral 6-OHDA-induced lesion to the MFB tended to 

demonstrate enhanced potency of PPX, with no effect on efficacy   

We hypothesized that 6-OHDA-induced lesions to the MFB or to the DLS would 

alter the response of VP neurons to PPX and this would be reflected in a change in 

efficacy and potency of PPX.  However, the data indicated a trend for enhanced potency 

of PPX in the 6-OHDA-MFB group.  Given the changes in expression level of D2Rs and 

D3Rs reported to occur following a MFB lesion, this potential increased potency may be 

a consequence of the increased expression of D2Rs within the circuitry and unlikely a 

result of an increased number of D3Rs.  This is supported by our findings that VP 

neurons in rats with 6-OHDA-induced lesions were significantly more sensitive (i.e., 

more likely to demonstrate a change in firing rate) to the larger more D2/D3R selective 
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doses of PPX compared to lower D3R selective doses.  Despite these receptor 

adaptations, our findings suggest that such compensatory mechanisms do not alter the 

efficacy or potency of PPX to induce changes in VP neuronal firing.   

Bilateral 6-OHDA-induced lesions to DLS produce partial and discrete 

destruction of some nigral neurons that occur in this lesion (Blandini et al., 2007).  Such 

destruction is likely to lead to loss of D2/D3 autoreceptors.  Our findings suggest that 

such compensatory mechanisms do not alter the efficacy or potency of PPX to induce 

changes in VP neuronal firing.   

 

Chronic treatment with PPX enhanced the potency but did not affect the efficacy of 

PPX 

We hypothesized chronic treatment with PPX would alter the response of VP 

neurons to PPX and this would be reflected in a change in efficacy and potency of PPX.  

Our data demonstrate that chronic treatment with PPX did not influence the efficacy of 

PPX as there was no change in Emax as compared to the non-treated control group.  

However, potency of PPX was enhanced.   

A change in the number of receptors can influence the potency of a drug (Kramer 

et al., 2011).  If spare receptors (i.e., a receptor reserve that is not required for generating 

a maximal response) are present, a change in receptor number may not alter the maximal 

effect, but could still affect the potency, which is what we saw in the current study.  

Alternatively, a change in potency can also be reflected in a change in efficiency of the 

receptor coupling to its associated G-protein or efficiency of the second messenger 

system.  D2Rs, as well as D3Rs, are coupled to the Gi/o protein and inhibit the formation 
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of the second messenger cyclic adenosine monophosphate (cAMP) by inhibiting adenylyl 

cyclase (Spano et al., 1978; Kebabian and Calne, 1979).  The literature provides us 

evidence that D3R expression should increase in some regions of the brain following 

chronic treatment of a D3R-preferring agonist (Maj et al., 2000; Tokunaga et al., 2012; 

Stanwood et al., 2000b).  Thus, if a receptor reserve exists for the population of neurons 

responsible for the effects of PPX on VP neuronal activity, the increase in D3R 

expression would not affect efficacy but could enhanced the potency of PPX.  

Additionally, it has been reported that mice chronically treated with PPX (1mg/kg sc) 

have superactivation of adenylyl cyclase in the NA (Maggio et al., 2009).  Thus, the 

enhanced efficiency of the second messenger system in the NA maybe one mechanism by 

which the potency of PPX to induced a change in VP neuronal firing rates was enhanced 

in the current study. 

 

Functional implications for enhanced potency of PPX in rats chronically treated with 

PPX 

Although acute administration of PPX can alter aspects of decision making 

(Pizzagalli et al., 2008; Riba et al., 2008), it is likely that chronic treatment with the drug 

is necessary for ICDs to develop.  Preclinical studies report different outcomes when 

comparing chronic vs. acute administration of PPX.  For example, electrophysiology 

studies demonstrate differential changes in the mean firing rate as well as the burst firing 

activity of VTA dopaminergic neurons following a two day treatment with 1mg/kg PPX 

compared to a 14 day treatment (Chernoloz et al., 2009).  Our lab previously reported a 

larger increase in risk-taking behavior following a 14 day chronic PPX treatment regimen 
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compared to a single injection (Rokosik and Napier, 2012).  In the current study we used 

the same chronic PPX treatment and withdrawal time period as used in our prior work to 

determine if PPX-induced changes in VP neuronal firing are altered under such 

conditions.  Our data reveal this treatment regimen enhanced the potency of PPX.  

Moreover our data suggest the enhanced potency may be reflected in an increased 

sensitivity of the circuitry to alter VP neuronal activity via activation of D3R in 

particular.  Collectively, these data suggest a possible link between firing activity in VP 

and the enhanced risk-taking behavior observed in rats treated chronically with PPX.   

One mechanism by which PPX may be inducing ICDs is by enhancing the 

motivational salience of cues associated with rewards.  Animal studies show that 0.3 and 

1.0 mg/kg PPX enhances salience of cues previously associated with cocaine (Collins et 

al., 2011).  In addition, the Napier laboratory demonstrated that 2mg/kg (±)PPX induces a 

conditioned place preference indicating that the environmental cues associated with the 

rewarding effects of PPX gain salience and thus motivate the rat to seek them out (Riddle 

et al., 2012).  In the current study, we demonstrated that these same doses of PPX alter 

VP neuronal firing rate.  Studies show that firing rate of VP neurons is altered by rewards 

and their learned incentive cues (Tindell et al., 2004) and that VP neuronal firing rate 

encodes predictive and motivational information about rewards (Tindell et al., 2005).  

Moreover, in both human and rodent studies, the VP is activated by reward cues in 

(Tindell et al., 2009; Mahler and Aston-Jones, 2012; Tsurugizawa et al., 2012; Childress 

et al., 2008).  A neuroimaging study detected a positive correlation between activation of 

the VP following appetizing food cues and ‘reward drive’ (Beaver et al., 2006).  

Activation of the VP was also detected during a human functional MRI study in which 
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there was increased motivational behavior in response to cues that predicted the potential 

gain of a large quantity of money (Pessiglione et al., 2007).  Given these findings, we 

propose that the VP plays a role in mediating PPX-induced responses such that in the 

presence of PPX, the VP neuronal activity may show enhanced firing rates to reward-

related cues, leading to greater salience attributed to the cues.   

Another mechanism by which PPX may be inducing ICDs is by altering 

reinforcement learning (Pizzagalli et al., 2008; Riba et al., 2008; Cools et al., 2006; Abler 

et al., 2009), such that behavioral flexibility and response inhibition are compromised 

leading to perseveration on a no longer rewarding activity.  The VP is in a position to 

influence reinforcement learning and behavioral flexibility via its influence on tonic DA 

release from the VTA to the NA (Floresco et al., 2003).  Behavioral flexibility, or the 

ability to switch between tasks when rewarding outcomes are altered, is driven in part by 

projections from the PFC to the NA (Goto and Grace, 2005; Block et al., 2007).  This 

cortical input is modulated by D2R activation by tonic DA release from the VTA, such 

that reduction in tonic D2R stimulation is essential to allow for task switching (Goto and 

Grace, 2005).  Indeed it has been shown that VP activation facilitates PFC-evoked 

responses in the NA (Goto and Grace, 2005).  Thus, it is possible that PPX-induced 

suppression of VP firing rate could disinhibit VTA neurons resulting in more 

spontaneously firing neurons and thus enhanced dopaminergic tone in the NA.  This may 

explain why individuals with PPX-induced ICDS continue to engage in behaviors despite 

negative consequences. 

Tonic levels of DA are also proposed to increase under conditions of uncertainty.  

For example, when the probability of receiving a reward is either 100% or 0%, there is no 
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uncertainty.  However, at 50% probability, uncertainty is at its highest.  Schultz and 

colleagues have demonstrated a positive correlation between uncertainty and sustained 

increase in activation of midbrain neurons that occurs from the onset of a predictive cue 

to the expected time of reward (Fiorillo et al., 2003).  The authors concluded that 

uncertainty itself contributes to the dopaminergic reward properties of gambling, which 

may explain why pathological gamblers continue in to engage in gambling activities 

despite losses.  Assuming that VTA neurons contribute to this phenomenon, we suggest 

PPX-induced suppression of VP firing rate may allow for an even larger dopaminergic 

tone under conditions of uncertainty, thus propagating the motivation to gamble.  

Moreover, this effect will be enhanced in patients chronically medicated with PPX. 

 

Summary and conclusions 

The findings from intact rats in the current study established that (i) doses of PPX 

that increase reward motivated behavior engaged VP neurons (ii) at least at the dose of 

300µg/kg, D3Rs mediated the ability of PPX to alter VP neuronal firing and iii) a chronic 

PPX treatment dosing protocol that increases risky behaviors also increased the potency 

of PPX to alter VP neuronal firing.  We propose that one mechanism by which PPX may 

influence decision making in individuals with ICDs is through an increase in limbic 

D3Rs expression that, when activated by PPX, alters VP neuronal function.  Activation of 

the VP leads to enhanced salience of reward-related cues and disruption in reinforcement 

learning.  Although our findings indirectly support a role for the VP as well as D3Rs in 

the ability of PPX to enhance cue-induced reward seeking behaviors and well as 

gambling-like behaviors, they do provide support for this testable hypothesis.  Thus, to 
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directly investigate the involvement of the VP in these behaviors, future site injection 

studies can ascertain if activation/inactivation of receptors in the VP is sufficient and/or 

necessary for these outcomes by using paradigms such as probability discounting and 

progressive ratio studies.  To directly test the involvement of D3Rs, systemic injections 

and/or site injection studies can utilize the various D3R-preferring agonists and 

antagonists in these behavioral paradigms.  Unfortunately, selective D3R compounds are 

still unavailable, making it difficult to tease apart the true involvement of D2R and D3Rs.  

Nevertheless, any advancement towards elucidating the neuropharmacology behind PPX-

induced ICDS will be important for future development of medication that are beneficial 

for motor impairments in PD, but are devoid of the potential of inducing ICDs. 
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Table 4. Action potential characteristics from initially negative biphasic and initially 

positive triphasic baseline recordings in the VP; comparisons among the various control 

and treatment conditions. 

 

 

 

 

 

 

 

 

 

 

Non-treated control column includes those rats that were tested in (-)PPX dose response 

evaluations and tested with a single dose of (-)PPX.  Combined control group column 

includes all non-treated control rats and vehicle-DLS controls. 

Green coded columns were compared (i.e. vehicle-DLS and 6-OHDA -DLS and              

6-OHDA-MFB treatment groups) in a one way ANOVA.  For biphasic amplitude, there 

was a treatment group effect, A  F(2)=3.5, p=0.03.  Post hoc Newman Keuls * p<0.05, 

compared with vehicle-DLS.  ANOVAs revealed no difference between treatment groups 

for  biphasic duration (F(2)=0.7, p=0.5), triphasic amplitude (F(2)=0.6, p=0.55), nor 

triphasic duration (F(2)=0.3, p=0.73).   
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Blue coded columns were compared (i.e., non-treated and (±)PPX chronically treated 

treatment groups) in a t-test.  There was no difference between treatment groups for 

biphasic amplitude, (t(44)=1.9, p=0.06), biphasic duration (t(45)=0.89, p=0.37) nor triphasic 

duration (t(23)=0.66, p=0.5).  b  There was a difference in triphasic amplitude #(t(22)=2.6  

#p=0.01). 

In the combined control groups, biphasic and triphasic action potential characteristics 

were compared using a t-test. There was a difference in amplitude (t(64)=6.6  ^p< 0.001) 

and duration (t(66)=2.9  ^^p=0.004). 

Action potential calibrations: horizontal bar = 1ms; vertical bar for biphasic action 

potential, 100µV; vertical bar for triphasic action potential, 125 µV. 
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Table 5.  Spiking characteristics from initially negative biphasic and initially positive 

triphasic baseline recordings in the VP; comparisons among the various control and 

treatment conditions. 

 

 

 

 

Non-treated control column includes those rats that were tested in (-)PPX dose response 

evaluations and tested with a single dose of (-)PPX.  Combined control group column 

includes all non-treated control rats and vehicle-DLS controls. 

Green coded columns were compared (i.e. vehicle-DLS and 6-OHDA -DLS and 6-

OHDA-MFB treatment groups) in a one way ANOVA.  There was no difference between 

treatment groups for biphasic rate (F(2)=1.7, p=0.19),  biphasic ISI (F(2)=1.25, p=0.07), 

triphasic rate (F(2)=1.6, p=0.21), nor triphasic ISI (F(2)=0.58, p=0.57).   

Blue coded columns were compared (i.e., non-treated and (±)PPX chronically treated 

treatment groups) in a t-test.  There was no difference between treatment groups for 
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biphasic rate (t(48)=1.3, p=0.19), biphasic ISI (t(40)=0.25, p=0.8) triphasic rate (t(22)=0.44, 

p=0.66), nor triphasic ISI (t(15)=0.38, p=0.7).   

In the combined control groups, biphasic and triphasic spiking characteristics were 

compared using a t-test. There was no difference in rate (t(68)=0.87,  p< 0.38) nor ISI 

(t(48)=1.2 , p=0.24). 

Action potential calibrations: horizontal bar = 1ms; vertical bar for biphasic action 

potential, 100µV; vertical bar for triphasic action potential, 125 µV. 
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Table 6.  Summary of neuronal responses to systemic injection of 300µg/kg (-)PPX 

given either as a cumulative divided dose or a single dose. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chi-square analysis of the distribution of responses following the administration of acute 

(-)PPX either as a cumulative divided dose or as a single dose indicated that the number 

of cells that  had an increase, decrease, or no response  was not significantly different 

(χ2
(2)=3.87; p =0.14).  Furthermore, a t-test revealed that the magnitude of response for 

VP neurons that demonstrated a rate increase or rate decrease was not significantly 

different between the two dosing protocols (Increase: t(26)= 1.3, P = 0.21) (Decrease: t(25)= 

0.3, p = 0.79).  Data for the magnitude of response are presented as the mean ± SEM. 
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Table 7.  Summary of neuronal responses to systemic injection of 300µg/kg (-)PPX in 

vehicle-DLS, 6OHDA-DLS and 6OHDA-MFB treated rats. 

 

 

 
 
 
 
 
 
 
 
 
 
 

Using the drug administration protocol shown in Fig. 3, a drug-induced response was 

considered to have occurred if firing rate changed from baseline by at least 20% during 

two applications of the agonist with the inclusion of the 300µg/kg dose. Biphasic 

responses met the criteria for both an increase and decrease (and vice versa) in activity 

during the course of the dosing protocol.  Chi-square analysis of the distribution of 

neurons sensitive to acute (-)PPX in the three treatment groups indicated no significant 

difference in the number of cells that fell in to these two categories (χ2
(2)=3.5; p =0.17). 

Chi-square analysis of the distribution of responses following the administration of acute 

(-)PPX in the three treatment groups indicated that the number of cells that  had an 

increase, decrease, biphasic  or no response  was not significant (χ2(6)=7.8; p =0.25). 

Thus, treatment with 6-OHDA did not alter the neurons ability to respond to acute (-)PPX 

administration, nor the response distribution. 
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Table 8.  Summary of neuronal responses to systemic injection of 300µg/kg (-)PPX in 

non-treated and chronic (±)PPX treated rats. 

. 

 

 

 

 

 

 

 

Refer to table 6 for explanation of categories.  Chi-square analysis of the distribution of 

responses following the administration of acute (-)PPX in the two groups indicated that 

the number of cells that fell into these two categories were not statistically different 

(χ2
(1)=5.9; p =0.44).  Chi-square analysis of the distribution of responses following the 

administration of acute (-)PPX in the two condition groups indicated that the number of 

cells that  had an increase, decrease or biphasic  or no response  was not significant 

(χ2
(3)=4.24; p =0.24).  Thus, chronic treatment with (±)PPX did not alter the neurons 

ability to respond to acute (-)PPX administration, nor did it alter the response distribution 

to acute (-)PPX administration. 
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A.                                                    B. 

 
 

 

 

 

 

Figure 18. Validation of 6-OHDA-induced lesions.  Photomicrographs showing 

representative immunohistochemistry staining for tyrosine hydroxylase (TH) in coronal 

sections of the striatum (~1.0mm anterior to bregma) following 6-OHDA or vehicle 

infusions.  (A) A unilateral injection of 6-OHDA into the medial forebrain bundle 

reduced TH-like staining in the entire striatum of the hemisphere (right) compared to the 

vehicle treated side (left), twenty-five days following the injection surgery.  For 

electrophysiological experiments, recording were only conducted on the lesion side of the 

brain.  (B) Bilateral injections of 6-OHDA into the dorsolateral striatum reduced staining 

in a discrete area of the striatum twenty-one days following the injection surgery (shown 

is a unilateral section).  The photomicrograph is representative of the lesion extent and 

location.   
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Figure 19.  Illustration of placement of recording sites in the VP.  Recordings were made 

in both hemispheres, but they are collapsed into one hemisphere for illustration purposes.  

Recording cites (circles) are illustrated on six neuroanatomical plates modified from 

Paxinos and Watson (1998).  ac, anterior commissure; HDB, horizontal limb of the 

diagonal band; STR, striatum; VP, ventral pallidum. 
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Figure 20.  Cumulative rate histogram illustrating no change in VP neuronal firing rate 

(i.e., spikes per second) following multiple injections of saline vehicle.  Following a five 

minute stable baseline recording, nine saline (sal) injections, given at a volume of 0.8µl 

each, were administered intravenously in approximately two minute intervals.   
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Figure 21.  Cumulative rate histogram illustrating stability of a (-)PPX-induced change 

in VP neuronal firing rate (i.e., spikes per second) over time as well as lack of effect of 

multiple PG01037 vehicle (PG veh) injections on this agonist-induced response.  

Following a five minute stable baseline recording, saline (sal) was injected, two minutes 

later a single injection of 300µg/kg (-)PPX was administered and the firing rate was 

recorded for 15 minutes.  This was followed by three intravenous injections of the 

PG01037 vehicle , which were administered in five minute intervals.  All injection 

volumes were 0.8µl. 
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Figure 22.  Cumulative rate histogram illustrating a (-)PPX-induced suppression of VP 

neuronal firing rate (i.e., spikes per second).  Following a five minute stable baseline 

recording, saline (sal) was injected, two minutes later cumulative doses of (-)PPX were 

administered at two minute intervals.   
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Figure 23.  Effects of 6-OHDA-induced lesions on the (-)PPX-induced changes in firing 

rate of VP neurons.  Data were transformed into percent of the absolute change from 

baseline firing.  Neurons were included in this analysis only if the goodness-of-fit (r2) for 

a third order polynomial of their drug-response relationship was equal to or greater than 

0.7.  (A) Population average dose-response curves for VP neurons that demonstrated a 

change in firing rate in response to multiple iv injections of (-)PPX.  Neurons were 

included in this analysis only if the goodness-of-fit (r2) for a third order polynomial of 

their drug-response relationship was equal to or greater than 0.7.  Emax and ED50 were 

determined from the individual dose-response curves and then averaged (see Materials 

and Methods) and differences between treatment groups (TX GR) were analyzed with a 

one way ANOVA.  (B) Emax was not significantly different between neurons in the three 

treatment groups (F(27)=0.23, p= 0.79).  (C) For ED50 there was a significant effect of 

treatment group (F(27)=4.0, p= 0.03).  Newman-Keuls post hoc analysis revealed no 

difference between the vehicle-DLS group and neither the 6-OHDA-DLS nor the           

6-OHDA-MFB group; however there was a difference between the two 6-OHDA treated 

groups (p<0.05).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



162 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24.  Sensitivity of VP neuronal firing to (-)PPX in vehicle-DLS, 6OHDA-DLS 

and 6OHDA-MFB treated rats.  At each dose of (-)PPX, the ability for the agonist to 

change the firing rate of neurons was evaluated.  A change in firing rate was considered 

to have occurred if there was a 20% change from baseline at that particular dose as well 

as at the following dose. Chi-square analysis of the distribution of percent of neurons that 

showed a response for each dose revealed a significant difference between groups in the 

two highest doses only (* p≤ 0.02).  This indicates that a significantly higher percent of 

VP neurons in rats with a MFB 6-OHDA- treatment were sensitive to the highest doses of 

(-)PPX tested. 
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Figure 25.  Effects of chronic (±)PPX treatment on the (-)PPX-induced changes in firing 

rate of VP neurons.  Data were transformed as a percent of the absolute change from 

baseline firing.  Neurons were included in this analysis only if the goodness-of-fit (r2) for 

a third order polynomial of their drug-response relationship was equal to or greater than 

0.7.  (A) Population average dose-response curves for VP neurons that demonstrated a 

change in firing rate in response to multiple iv injections of (-)PPX.  Neurons were 

included in this analysis only if the goodness-of-fit (r2) for a third order polynomial of 

their drug-response relationship was equal to or greater than 0.7.  Emax and ED50 were 

determined from the individual dose-response curves and then averaged (see Materials 

and Methods) and differences between treatment groups (TX GR) were analyzed with a 

one way ANOVA.  (B) Emax was not significantly different between the two groups (t(26) 

=0.49, p= 0.62).  (C) For ED50 there was a significant difference between the two groups 

(t(24)= 2.32, * p=0.03).   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



165 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26.  Sensitivity of VP neuronal firing to acute (-)PPX (iv) in non-treated and 

(±)PPX (ip) chronically treated rats.  At each dose of (-)PPX, the ability for the agonist to 

change the firing rate of neurons was evaluated.  A change in firing rate was considered 

to have occurred if there was a 20% change from baseline at that particular dose as well 

as the following dose. Chi-square analysis of the distribution of percent of neurons that 

showed a response for each dose revealed no significant difference for any dose (p>0.2 

for all doses).  However, there was a trend for neurons in the (±)PPX chronically treated 

group to be more sensitive to lower doses of (-)PPX tested. 
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Figure 27.  Cumulative rate histogram illustrating a (-)PPX-induced enhancement of VP 

neuronal firing rate (i.e., spikes per second) followed by antagonism of this response by 

PG01037.  Following a five minute stable baseline recording, saline (sal) was injected, 

two minutes later a single injection of 300µg/kg (-)PPX was administered.  This was 

followed two minutes later with an injection of 3mg/kg PG01037, firing rate was 

recorded for five minutes.   
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Figure 28.  PG01037 reversed the (-)PPX-induced suppression of VP neuronal firing.  

For this group of neurons (n=10), the firing rate (spikes per second) was determined 

during baseline (BL) conditions, following administration 300µg/kg (-)PPX and 

subsequently following 3mg/kg PG01037.  Compared to BL, 300µg/kg (-)PPX decreased 

the firing rate of VP neurons.  This response was reversed by 3mg/kg PG01037.  Data 

were analyzed with a one-way rmANOVA followed by a post hoc Newman–Keuls,        

*p <0.05 compared to Bl, #p<0.05 compared to (-)PPX.  Shown are the mean + SEM. 
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CHAPTER VI 

 GENERAL DISCUSSION: THE INFLUENCE OF PRAMIPEXOLE  
ON VENTRAL PALLIDAL ACTIVITY AND IMPULSIVE BEHAVIOR 

 

ICDs induced by PPX are a serious side effect in treated PD patients (Weintraub 

et al., 2010).  Animal models to study these effects will provide an invaluable means to 

study the underlying mechanisms driving PPX-induced ICDs and to use for medication 

development.  Towards that end, the purpose of the first part of this dissertation project 

was to develop an animal model to study the effects of acute and chronic PPX on 

probability discounting, which is a measure of risk-taking, one aspect of ICDs.  To 

determine if a PD-like brain state alters PPX-induced outcomes, we tested rats with 

dorsolateral striatal (DLS) lesions of dopaminergic terminals.  Our studies revealed that 

acutely administered (±)PPX, in a moderately high dose of 2mg/kg, increases risk-taking.  

In both PD-like rats and controls, chronic treatment further augments this outcome.  

Thus, these studies revealed that a moderately high dose of PPX was able to induce 

probability discounting in PD-like rats and controls (Rokosik and Napier, 2012).    

 ICDs, such as gambling, are reward-based behaviors.  Individuals with ICDs have 

a heightened motivation to engage in these behaviors.  One mechanism by which PPX 

may alter the motivational state of an individual is by enhancing the salience of cues 

associated with the reward.  Woods and colleagues reported that PPX increases the  
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reinforcing effects of cocaine-predicting cues, suggesting that PPX enhances the positive 

salience of the cues (Collins et al., 2011).  Our laboratory revealed that PPX supports 

reward-mediated associative learning by inducing a conditioned place preference (Riddle 

et al., 2012).  These two studies support the idea that PPX influences associative learning 

processes, including those that are used to atribute reward-related significance to 

previously neutral cues. 

 We are interested in the neurocircuitry underlying the ability of PPX to influence 

motivation and associative learning.  Associative learning, as measured in place 

preference paradigms is regulated by several brain regions, including the VP (Dallimore 

et al., 2006; Mickiewicz et al., 2009; Gong et al., 1996).  We contend that the VP may 

play a role in mediating aspects of PPX-induced ICDs.  The following converging 

evidence from recent animal studies supports this: (i) Rewards and their predictive cues 

are represented in a firing rate code by neurons within the VP (Tindell et al., 2004).   

(ii) VP neural activity integrates predictive, incentive and reward value information 

(Tindell et al., 2005).  (iii) VP neuronal activity encodes expected reward values 

(Tachibana and Hikosaka, 2012).  (iv) VP neuronal activity is altered by both systemic 

(Maslowski and Napier, 1991; Napier, 1992; Heidenreich et al., 2004) and local 

application of DA and D2/D3R agonists (Napier and Maslowski, 1994; Napier et al., 

1991; Maslowski-Cobuzzi and Napier, 1994). (v) Intra-VP injection of DA, or D1/D2R 

agonists alter behaviors in rats (Napier and Chrobak, 1992; Gong et al., 1996).  

Collectively these studies suggest that PPX may influence the activity of the VP and this 

may contribute to the PPX-induced alterations in the salience of reward-related cues.  
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 People treated acutely or chronically with PPX demonstrate alterations in variety 

of impulsive behaviors (Pizzagalli et al., 2008; Riba et al., 2008; Housden et al., 2010; 

Voon et al., 2011a).  Therefore, we investigated the ability of acutely administered and 

chronically administered (i.e., two weeks) PPX to alter VP neuronal firing rate using 

doses known to alter impulsive and other reward-related behaviors in rodents.  As PPX is 

a D3R-preferring agonist and D3Rs within the limbic system drive reward-seeking 

behaviors, we also investigated the contribution of D3Rs in these PPX-induced 

alterations of VP neuronal firing rate.  The data from these studies indicated that acute 

administration of PPX altered the firing rate of VP neurons.  A D3R preferring antagonist 

was able to antagonize most of the VP neuronal firing rate alterations induced with 

300µg/kg (-)PPX, which suggest that D3Rs activated by PPX is sufficient to alter the 

neuronal firing of VP neurons.  In rats chronically treated with PPX, the potency of PPX 

to induce changes in VP neuronal firing rates was enhanced.  Other laboratories have 

demonstrated that rats treated for 14 days with PPX (either using 0.3 or 1mg/kg, 

administered once daily) show increase expression of D3Rs in the NA (Maj et al., 2000; 

Tokunaga et al., 2012).  We suspect that the enhanced expression of D3Rs in the NA and 

possibly other regions that express moderate to high levels of D3R (including the VP) 

may be an important mechanism underlying the enhanced potency seen in rats 

chronically treated with PPX. Chronic DA deafferentation can also alter expression of D2 

and D3Rs.  Drug naïve PD patients and rats with a 6-OHDA-induced lesion to the MFB 

show a decrease in D3R expression and an increase in D2R expression in the ventral 

striatum (Boileau et al., 2009; Bordet et al., 1997; Stanwood et al., 2000a; Levesque et 

al., 1995).  The VP is altered in after 6-OHDA-induce DA deafferentation to the 
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ascending dopaminergic projections (Turner et al., 2002).   In the studies conducted in 

this dissertation, we found near complete lesions of the ascending dopaminergic 

projections nor did discrete lesions of the DLS alter PPX-induced effects on VP neuronal 

firing rate.  Thus, it does not appear that the neuroadaptations that occur following a 6-

OHDA-induced late stage nor a 6-OHDA-induced early stage model of PD affects the 

ability of PPX to alter VP neuronal firing rate. 

 In summary, our behavioral studies indicate acutely administered PPX increases 

risk-taking behavior and chronic treatment further augments this outcome.  A PD-like 

brain state does not appear to alter the ability of PPX to alter risk-taking behavior.  In a 

step towards elucidating the neurocircuitry involved in PPX-induced risk-taking, we 

demonstrated the ability of PPX to alter firing activity of neurons in the VP, a brain 

region that codes for motivational aspects of rewards.  A PD-like brain state did not affect 

these PPX-induced effects.  We found the same chronic PPX treatment that enhanced 

risk-taking also enhanced the potency of PPX to alter VP neuronal firing rate.  Given 

these findings, we propose that the VP may play a role in PPX-induced impulsivity.   

 

Potential mechanisms underlying PPX-induced increases in risk-taking as measured 

in a probability discounting task 

In this dissertation, we demonstrate that PPX can enhance risk-taking as measured 

in a probability discounting task (Rokosik and Napier, 2012).  I propose that these effects 

can be due to the ability of PPX to alter at least two types of reinforcement learning that 

occur in this task.  The first type of learning involves the generation of reward predictions 

errors.  The second type of learning involves reversal learning.   
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As described in the Introduction, generation of reward prediction errors is a 

process by which an individual learns about the expectations of rewards.  Positive 

unpredictable outcomes can generate seeking behavior, while negative outcomes, such as 

omission of rewards, can generate inhibition of behavior.  Midbrain DA neurons can fire 

in different patterns to generate teaching signals (i.e. reward prediction errors) about 

positive and negative outcomes (Montague et al., 1996; Schultz et al., 1997; Pagnoni et 

al., 2002; Pessiglione et al., 2006; Cohen et al., 2012; Enomoto et al., 2011).  For 

example, some of these neurons will fire in a phasic pattern when an unpredicted reward 

is encountered (i.e., a positive reward prediction error; Hollerman et al., 1998; Waelti et 

al., 2001).  On the other hand, some of these neurons will show a transient depression in 

baseline rate of activity (thought to be a pause in the spontaneous ‘tonic’ firing (Grace 

and Bunney 1984)), when an expected reward is not delivered (Schultz, 2002; Bayer et 

al., 2007; Tobler et al., 2003).  The different firing patterns and subsequent patterns of 

DA release differentially activate D1-like and D2-life family of receptors.  Tonic and 

phasic release of DA is thought to act on D2R and D1Rs, respectively (Grace, 1991).   

Learning about the occurrence of rewards and thus generating reward prediction 

errors is fundamental to a probability discounting task.  For example, during this task 

phasic activation of midbrain DA neurons are predicted to signal changes in probability, 

such that anticipation of stimuli with larger reward probability elicits larger DA bursts, 

while anticipation for stimuli with smaller reward probability elicits smaller DA bursts 

(Fiorillo et al., 2003).  Moreover, it is predicted that sustained activation of midbrain DA 

neurons, thought to provide a tonic DA release, will occur with uncertainty (Fiorillo et 

al., 2003).  During the probability discounting, we randomized changes in the probability 

http://www.ncbi.nlm.nih.gov/pubmed?term=Enomoto%20K%5BAuthor%5D&cauthor=true&cauthor_uid=21896766
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of delivery of the large reinforce, thus learning is ongoing as conditions are constantly 

changing due to the changes in probability and certainty.   

 Phasic and tonic patterns of DA release and subsequent receptor activation are 

thought to be able to alter reward-mediated behavior by at least two ways.  First, Frank 

and colleagues (2008) propose a model that incorporates the indirect and direct pathways 

of the basal ganglia (see Fig. 1).  They propose phasic SNpc DA release following 

unexpected rewards activates the direct pathway (i.e., ‘Go’ pathway) by stimulating 

D1Rs, and thus leading to behavioral activation.  Omission of rewards reduces the tonic 

DA levels that reduce stimulation of D2Rs in the indirect pathway (i.e., ‘No-Go’ 

pathway), and thus leading to suppression of behavior.   

A second way in which patterns of DA release from VTA neurons can alter 

behavioral activation is via activation of D1 and D2R in the NA.  The NA is involved in 

behavioral activation to rewards and reward-related cues (for review see (Nicola, 2007).  

This type of behavioral activation ties into the second type of learning that PPX may be 

affecting in the probability discounting task, which is reversal learning.  Reversal 

learning incorporates behavioral flexibility so that an individual can inhibit a behavior 

that is no longer reinforcing and switch to a different behavior.  The NA receives 

converging inputs from limbic and cortical regions (Groenewegen et al., 1999; French 

and Totterdell, 2002; French and Totterdell 2003; O’Donnell and Grace, 1995).  These 

inputs will influence either behavioral activation or behavioral inhibition, respectively.   

Limbic regions such as the hippocampus and amygdala carry information regarding 

contextual and emotional information about the rewards (Everitt et al., 1999; Tabuchi et 

al., 2000), whereas the PFC monitors of choice information to adjust behavior in response 
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to a decision (Rogers et al., 2004; Marsh et al., 2007).  By integrating the information 

from limbic and cortical inputs, the NA can relay this information to the VP and then to 

the motor outputs (see Fig. 3).    

DA input from the VTA can modulate the type of information processed by the 

NA.  For example, D2R stimulation in the NA attenuates the input from the mPFC to NA 

(O’Donnell and Grace, 1994; West and Grace 2002; Goto and Grace, 2005).   Moreover, 

it was demonstrated that D2R stimulation is driven specifically by tonic DA release from 

the VTA.  Conversely, phasic DA release and D1R stimulation increases the input from 

the hippocampus (Goto and Grace, 2005).  Dopaminergic modulation NA transmission 

has behavioral consequences.  Using a reversal learning task, Grace and colleagues 

(2005) found that D1R-mediated hippocampal input to the NA was critical for acquiring 

the task but D2R-mediated PFC input to the NA was critical for actually reversing a 

learned behavior.  The authors found an increase or decrease in tonic D2R activation 

produced a suppression or facilitation of PFC input, respectively.  In other words, a 

decrease in tonic D2R activation, which allowed PFC input to be processed by the NA 

was necessary for behavioral inhibition and subsequent reversal learning by the animals.  

Collectively these studies highlight the integrative nature of accumbal influences in 

behavior selection and how DA can modulate the information processed in the NA, and 

thus influence behavior.  

Our behavioral results show that during baseline probability discounting (i.e., pre-

PPX) rats prefer a small certain reward as the probability of delivery of the large 

reinforcer decreases.  It is likely that the negative outcomes (i.e., selection of the risky 

lever with no rewarding outcome) during the low probabilities generate a negative reward 
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prediction error.  Therefore, a pause in tonic DA release from the SN would occur, 

reducing stimulation of D2Rs and generating a ‘No-Go’signal.  Additionally, a pause in 

tonic DA release from the VTA would lead to a decrease in tonic DA stimulation of 

D2Rs in the NA, which would facilitate the PFC input to the NA and guide behavior to 

disengage from the no-longer rewarding situation.    

Following administration of PPX, rats demonstrate an increase in risk-taking, 

such that even when the probability of delivery for the large reinforcer is low, rats 

continue to prefer that lever (Rokosik and Napier, 2012).  I suspect that PPX may have 

blocked the ‘DA dip’ learning signal so that the probability of obtaining the reward was 

no longer a factor and/or the ability to disengage in risky lever selection was 

compromised due to suppression of PFC input to the NA.  Frank and colleagues have 

hypothesized that D2R stimulation would impair the teaching signal propagated by DA 

dips (Frank and O'reilly, 2006; Frank and Hutchison, 2009).   Indeed they demonstrated 

that carriers of the C957T polymorphism within the D2R gene, which is associated with 

increased striatal D2R density displayed deficits in learning from negative outcomes 

(Frank et al., 2007a).  Work by Floresco and colleagues has also demonstrate that 

increases in D2R activity in the NA via microinjections of quinpirole causes a general 

impairment in reversal learning, which they related to attenuation of PFC input to the NA 

(Haluk and Floresco, 2009).   

Several humans studies suggest that PPX can disrupt learning from negative 

outcomes when tested in probabilistic choice tests (i.e., when a reward is expected but not 

delivered) (Pizzagalli et al., 2008; Riba et al., 2008; Abler et al., 2009; Cools et al., 2006; 

Bodi et al., 2009).  Evidence for PPX-induced alterations in reward learning was 
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demonstrated in a study by van Eimeren and colleagues who assessed the OFC (van 

Eimeren et al., 2009), a region of the PFC that is particularly necessary for learning from 

unexpected outcomes (Takahashi et al., 2009).  They found that dopaminergic stimulation 

with PPX increased OFC activity during negative reward predictions, thus preventing 

decreases in DA transmission that occur with negative feedback.  The authors suggest 

that pathological gambling may be associated with an impaired capacity of the OFC to 

guide behavior when faced with negative consequences (van Eimeren et al., 2009).   

Collectively, our data, along with reports from human and animal studies strongly 

suggest that PPX is interfering with the ability to learn from negative outcomes.    This 

likely reflects the ability of PPX, by activating D2-like family of receptors, to impair 

reward prediction errors as well as behavioral flexibility.   

 

Acute effects of PPX: setting the stage for development of ICDs 

Experimental tasks, such as the probability discounting paradigm, is useful for 

determining the effects of PPX on reward-related learning in both humans and laboratory 

animals.  However, ICDs are complex and while the development of these disorders may 

start with aberrant reward learning, other factors must also be propagating these 

behavioral addictions.  For example, a study by Abler and colleagues (2009) found that 

patients treated chronically with DA agonists, including PPX, demonstrated increases in 

fMRI signaling in the ventral striatum during trials in which expected rewards were 

omitted.  However, they noted that none of the patients developed an ICD (Abler et al., 

2009).  This outcome underscores the fact that reductions in discounting or risky 
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behaviors is not equivalent to developing an ICD per se but likely represents a particular 

aspect of these complicated disorders.   

Initial administration of PPX may be setting the stage for reward seeking 

behaviors.  For example, PPX activates autoreceptors of the midbrain neurons.  In rats, 

acute or short term treatment of PPX (2-day continuous release of 1mg/kg/day) decreases 

spontaneous firing of midbrain neurons (Chernoloz et al., 2009; Piercey et al., 1996).  

This could explain a report by Riba and colleagues (2008), in which they reported 

hypoactivation of the striatum in healthy individuals given an acute dose of PPX.  These 

findings are line with the “reward deficiency syndrome” suggested by Blum and 

colleagues (1995) to explain addictions.  It is thought that individuals with such a 

syndrome have a below normal level of dopaminergic stimulation and engage in activities 

that can boost DA in the mesolimbic system (Blum et al., 1995).  While drug addicts take 

their drug of choice to boost DA levels, pathological gamblers engage in risky behaviors 

with unpredictable wins that can lead to brief increases in DA due to increase DA burst 

activity (Hollerman et al., 1998;Waelti et al., 2001) or engage in activities with 

uncertainty which can briefly elevate tonic levels of DA (Fiorillo et al., 2003).  In the 

case of DA agonist-induced ICDs, one possible explanation for the initial appearance of 

ICDs may be due to the agonist inducing a reward deficiency syndrome in so much as 

initial treatment with PPX induces hypoactivation of reward circuits.  

 

A role for the VP in PPX-induced alterations in reinforcement learning 

I contend that the VP plays a role in mediating aspects of PPX-induced alterations 

in reward based behaviors, in part by affecting reinforcement learning.  For example, 
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GABAergic transmission from the VP directly regulates population activity in the VTA, 

such that the VP can hold the dopaminergic neurons in an inactive state (Floresco et al., 

2003).  This places the VP in position to influence reward prediction errors.  Our studies 

demonstrated that PPX, given acutely, and in a range of behaviorally relevant doses, can 

alter the firing rate of VP neurons; PPX-induced rate increases and decreases were 

observed.  The ability of PPX to alter VP firing rate may be a mechanism by which PPX 

interferes with reward prediction errors.  For example, the ability of PPX to enhance 

firing rates of VP neurons may inhibit VTA neurons from being able to respond to 

unpredictable rewards.  Indeed phasic DA firing occurs only in those neurons that are 

spontaneously active (Floresco et al., 2003).  On the other hand, PPX-induced 

suppression of VP neurons may disinhibit more VTA neurons leading to an increase in 

striatal DA efflux, which represents the tonic level of DA.  This outcome has been shown 

to occur following inactivation of the VP (Floresco et al., 2003).  In this situation, 

enhanced tonic DA levels may interfere with the ability of the brain to process reward 

omissions.   

Tonic levels of DA are also proposed to increase under conditions of uncertainty.  

Schultz and colleagues have demonstrated a positive correlation between uncertainty and 

sustained increase in activation of midbrain neurons that occurs from the onset of a 

predictive cue to the expected time of reward (Fiorillo et al., 2003).  The authors 

concluded that uncertainty itself contributes to the dopaminergic reward properties of 

gambling, which may explain why pathological gamblers continue in to engage in 

gambling activities despite losses.  Assuming that VTA neurons contribute to this 

phenomenon, we suggest that PPX-induced suppression of VP firing rate may allow for 
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an even larger dopaminergic tone under conditions of uncertainty, thus propagating the 

motivation to gamble.  

The VP is in a position to also influence behavioral flexibility and reversal 

learning via its influence on tonic DA release from the VTA to the NA (Floresco et al., 

2003).  For example, it has been shown that VP activation facilitates PFC-evoked 

responses in the NA (Goto and Grace, 2005).  Thus, it is possible that PPX-induced 

suppression of VP firing rate could disinhibit VTA neurons resulting in more 

spontaneously firing neurons and thus enhanced dopaminergic tone in the NA.  The 

combination of enhanced dopaminergic tone which would preferentially be activating the 

D2Rs, as well as the presence of PPX activating D2Rswould suppress PFC-evoked 

responses in the NA, thus compromising self-control.  

The VP, via its connections to motor output structures such as the PPN (Tsai et 

al., 1989) and SNpr (Maurice et al., 1997) can influence locomotor activity (Napier and 

Chrobak, 1992) (see Fig 4).  The VP receives a dense GABAergic input from the NA 

(Nauta et al., 1978) thus creating a pathway for limbic-motor integration (Mogenson et 

al., 1980).  Given this point of integration, modification of reward-mediated locomotion 

is likely to occur, in part, via this VP-NA pathway.  Dopaminergic inputs, particularly 

from the VTA, can influence the NA-VP pathway.  Both the NA (Phillipson and 

Griffiths, 1985) and the VP (Klitenick et al., 1992) receive direct dopaminergic input 

from the VTA.  Given the presence of D2-like receptors in all three brain regions 

(i.e.,VTA, NA and VP), it is possible that PPX has the potential to alter this circuitry and 

thus alter reward-mediated locomotion particularly when detection of reward prediction 

errors occurs. 
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Predicting the influence of PPX on the VTA-NA-VP pathway and subsequent 

changes in locomotor activity, all in the context of reward-motivated behavior, requires 

an understanding of how DA and dopaminergic agonists acting upon receptors in the 

VTA, NA and VP alter behavior.  For example, DA injected directly into the NA 

(Pijnenberg and van Rossum, 1973; Gong et al., 1999) or the VP (Klitenick et al., 1992) 

increases locomotion.  In the NA, this effect is due to activation of D1- like and D2-like 

receptors (Gong et al., 1999).  In the VP this DA-induced locomotion appears to be 

driven by D1-like receptors and not by activation of D2-like receptors. When injected 

directly into the VP, quinpirole, a D2R-preferring agonist, attenuates locomotion and 

SKF38393, a D1R-preferring agonist increases locomotion (Gong et al., 1999).   

 The exact underlying mechanism by which DA-induced locomotion occurs in the 

NA-VP pathway is unknown, but it is undoubtedly complex.  Electrophysiological and 

behavioral studies reveal that DA in the NA can decrease the GABAergic drive to the 

VP, leading to a disinhibition of VP neuronal activity and consequently increases in 

reward-mediated behavioral activity (Salamone, 1992; Mogenson and Nielsen, 1983; 

Yang and Mogenson, 1989).  Increase in VP activity would result in more GABA 

released into motor outputs structures, such as the SNr.  There is a link between enhanced 

motor activity and GABA in the SNr.  For example, infusions of GABAA agonist 

muscimol into the SNr increases locomotion (Trevitt et al., 2002).  In addition, 

extracellular GABA increases in the SNr during lever pressing tasks (Correa et al., 2003). 

Electrophysiological studies demonstrate that electrical stimulation of VTA 

neurons can indirectly increase VP neuronal activity via the NA (Yang and Mogenson, 

1989; Yim and Mogenson, 1983), whereas stimulation of VTA neurons can directly 
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evoke (as indicated by short latency responses) a decrease VP neuronal activity (although 

increases are also detected; Maslowski-Cobuzzi and Napier, 1994; Mitrovic and Napier, 

2002).  When injected directly into the VP, D1R agonist-induced increases in locomotion 

appear to be the result of decreases in VP neuronal firing rates.  Napier and colleagues 

demonstrated that local injections of SKF38393 in the VP produce mostly rate decreases 

in VP neuronal activity whereas quinpirole, an agonist that decreases locomotion when 

injected directly into the VP, produces mostly increases (Napier and Maslowski-Cobuzzi, 

1994).  Collectively, the above studies suggest that changes in locomotion are not easily 

predicted by general increases or decrease in VP neuronal activity. 

 To add to the complexity of DA-induced effects on the NA-VA pathway, there is 

evidence that the effects of locally applied DA agonists into the NA and the subsequent 

effect on firing rates in the VP (as described above) may be different when the DA 

agonists are systemically administered.  For example, evidence suggests that when D1-

like or D2-like agonists are systemically injected, the ability of these agonists to induce 

chances in VP firing rate are not necessarily mediated by the NA.   Napier reported that 

inactivation of the NA with local injection of lidocaine did not influence the firing rate of 

VP neurons in response to systemic injection of SKF38393, quinpirole or apomorphine (a 

mixed D1/D2R agonist; Napier, 1992).  As these electrophysiological studies were 

conducted in anesthetized rats, it is of interest to determine if similar results are observed 

in awake-behaving rats, particularly when reward based learning is occurring.   

 Electrophysiological studies reveal that systemically administered PPX is able to 

alter the firing rate of the NA, VP and VTA; studies involving local injection of PPX into 

these three regions are lacking.  PPX is reported to predominantly inhibit neurons in the 
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NA, but rate-enhancements as well as no effect on firing rate occurred (Piercey, 1998).   

Our electrophysiological studies indicate that PPX produces equal numbers of rate 

increases and decreases in approximately half the VP neurons tested.  Acute 

administration of PPX inhibits activity of most VTA neurons (Piercey et al., 1996; 

Chernoloz et al., 2009), however Chernoloz and colleagues found that D2-like 

autoreceptors are desensitized following two weeks of repeated PPX treatment 

(Chernoloz et al., 2009).  Given the ability of PPX to influence each of these three brain 

regions, it is not surprising that PPX can also alter motor activity.  

 Rodent behavioral studies commonly report an inverted “U-shaped” effect on 

systemically delivered PPX-induced changes in locomotion.  When placed in open field 

locomotor boxes and tested at least 1hr after injection, rats demonstrate hypo-locomotion 

at lower PPX doses and hyper-locomotion at higher PPX doses (Lagos et al., 1998; Maj 

et al., 1997; Chang et al., 2011).  Regardless of the dose, if locomotion is measured 

within the first 30 min hypo-locomotion is commonly observed (Kitagawa et al., 2009; 

Lagos et al., 1998; Svensson et al., 1994; Chang et al., 2011).  When rats are performing 

operant tasks, published data indicate that PPX, in general, does not impair locomotion, 

in so much as the rats can perform the operant task (Rokosik and Napier, 2011; Engeln et 

al., 2012; Collins et al., 2011a; Johnson et al., 2011).  However, there were cases in our 

probability discounting studies, particularly in the sham controls, in which acute 

administration of PPX did appear to impair motor function.  Why motor impairments are 

expressed in some rats, but not others is not understood, but the Napier lab is continuing 

to investigate this matter.  Tolerance does seem to develop to the motoric effects of acute 

PPX.  We have verified that after six treatments, the motor function of rats was 
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indistinguishable from that observed during pretreatment baseline, and the rats were able 

to obtain reinforceres (i.e., electrical brain stimulation) that often superseded baseline 

(Rokosik and Napier, 2012). 

 Collectively, data described above indicate that DA, acting on D1-like and D2-

like receptors in the VTA-NA-VP pathway influences reward-motivated locomotion; 

however although PPX can influence general motor activity, studies have not clearly 

addressed the ability of PPX to influence reward-mediated motor activity.  Below are my 

predictions on the influence that PPX will have on the VTA-NA-VP pathway and 

subsequent changes in locomotor activity that may occur, particularly when detection of 

reward prediction errors occurs. 

First, in the simplest context, reward-mediated behaviors should be accompanied 

by the motivation to obtain the reward, thus DA is predicted to be released from the 

VTA.  DA released into the NA and VP should drive locomotor activity (Pijnenberg and 

van Rossum, 1973; Gong et al., 1999; Klitenick et al., 1992).  However, in the presence 

of PPX, VTA autoreceptor activation would be predicted to attenuate the amount of DA 

being released.  Interestingly, microdialysis studies reveal that DA release in the striatum 

is not altered during the first two hours following 0.03 or 0.5mg/kg PPX (Lagos et al., 

1998).  Piercey and colleagues (1996) demonstrated that the firing rate of VTA neurons 

was attenuated by approximately 50% of baseline following 0.03 mg/kg PPX (iv); 

0.3mg/kg PPX attenuated firing rate by 80% of baseline.  PPX at a dose of 0.5mg/kg was 

not tested, but given the dose-related response, it is predicted to nearly silence the 

neurons.  It is predicted then that higher doses of PPX would likely decrease release of 

DA from VTA neurons, thus decreasing locomotor-inducing effects (Lagos et al., 1998; 
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Maj et al., 1997; Chang et al., 2011).  This attenuation may be overcome by PPX 

activating postsynaptic D2-like receptors in the NA that should promote locomotion.  

PPX activating postsynaptic D2-like receptors in the VP may attenuate this predicted 

outcome of enhanced locomotion, since intra-VP injections of D2-like receptor agonists 

like quinpirole decreases locomotion (Gong et al., 1999).  However, the NA has a higher 

expression of D3Rs compared to the VP (Bouthenet et al., 1991; Diaz et al., 1995; 

Sokoloff et al., 1990) and our electrophysiological studies along with data from the 

Piercey lab (Piercey et al., 1996) indicate that more NA neurons respond to PPX 

compared to the VP, I predict that in the presence of higher doses of PPX, and in 

response to the detection of a reward, locomotor activity will be increased. 

In situations where there is a positive reward prediction error, the unpredicted 

reward would be expected to result in phasic release of DA into the NA and the VP.  This 

will disinhibit accumbal GABAergic activity in the VP leading to increase VP neuronal 

activity and generation of locomotor activity (Salamone, 1992; Mogenson and Nielsen, 

1983; Yang and Mogenson, 1989).  DA released into the VP would lead to both 

decreases in firing rates via activation of D1Rs, and increases in firing rates in VP 

neurons, via activation of D2Rs (Napier and Maslowski, 1994).  The net effect of DA 

released into the VP would be generation of locomotor activity (Klitenick et al., 1992).  

However, it is predicted that PPX would i) activate midbrain dopaminergic autoreceptors 

and decrease the number of neurons able to generate phasic bursts in response the 

unpredictable reward, thus attenuating locomotion, ii) activate postsynaptic D2-like 

receptors in the NA which would enhance locomotion, and iii) activate postsynaptic D2-

like receptors in the VP which would attenuate locomotion.  In this situation, it is 
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possible that an enhancement in locomotor activity would occur but it may not be specific 

to the unpredicted reward.  Thus, reinforcement learning may be compromised.  

Following chronic PPX, VTA dopaminergic autoreceptors are desensitized (Chernoloz et 

al., 2009) and therefore, I predict there may be enhanced activation of behavior in 

response to unpredicted rewards and potentially enhanced reinforcement learning.   

In situations where a negative prediction error occurs, the transient decrease in 

DA release, followed by subsequent decrease in tonic DA receptor activation in the NA 

would increase the release of GABA into the VP.  This inhibition of VP neuronal 

function could disengage reward-mediated locomotion.  Results from our 

electrophysiology data suggest that D2/D3Rs are tonically active in the VP; the influence 

of this on locomotion is unknown.  It is possible that it aids to inhibit locomotor activity, 

if so, a negative prediction error may disinhibit this brake on motor activity.  

Nevertheless, in the presence of PPX, it is predicted that PPX would activate postsynaptic 

D2-like receptors in the NA to increase locomotion but also activate postsynaptic D2-like 

receptors in the VP to decrease locomotion (Gong et al., 1999).  In this situation, the 

reward-related dip in NA and VP DA would be blocked by PPX.  The continual 

stimulation of D2-like receptors in the NA by PPX would be expected to disinhibit VP 

neuronal activity, although studies in anesthetized rats suggest this may not occur 

(Napier, 1992).  Following chronic PPX, the accumbal DA dip would still go undetected 

and reward-seeking behavior would persist.   

In summary, PPX is expected to enhance locomotor activity generated by the 

VTA-NA-VP-motor output circuit during positive prediction errors.  PPX is also 
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expected to interfere with learning about reward omissions.  Thus, the seeking of rewards 

would continue even when the rewards are no longer predictable.   

 

Chronic effects of PPX: sensitizing the limbic system 

Although acute administration of PPX can alter decision making in many 

individuals tested in laboratory conditions (Ye et al., 2011; Bodi et al., 2009; Riba et al., 

2008; Pizzagalli et al., 2008), only a small (but significant) group of PD patients develop 

complex ICDs while chronically being treated with PPX.  As ICDs develop after 

continued medication use, adaptations within the system are engaged and thus, other 

mechanism must be driving ICDs.  Converging evidence does suggest that PPX can 

sensitize the mesolimbic system.  For example, studies show that compared to PD 

patients without ICDs, patients with medication-induced ICDs have a larger release of 

ventral striatal DA during a gambling task (Steeves et al., 2009) or upon presentation of 

reward related cue (O'Sullivan et al., 2011).  Enhancement of DA release in the ventral 

striatum has been associated with enhanced salience of drugs (Berke and Hyman, 2000).  

Sensitization of the mesolimbic pathway is thought to motivate seeking behavior for the 

drugs and their associated cues (Robinson and Berridge, 2000).  Moreover, a novelty-

seeking personality has been linked with increased vulnerability to sensitization to 

psychostimulant-induced DA release in the ventral striatum (Boileau et al., 2006).  A 

study by Bodi and colleagues suggests that PPX increases novelty seeking in PD patients.  

They found that novelty seeking was low in PD patients before initiation of PPX and 

three month later it was significantly increased (Bodi et al., 2009).  Collectively, these 
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findings support the possibility that PPX is driving ICDs by sensitizing the mesolimbic 

reward system and thus enhancing the motivation to seek out rewards. 

 

A role for the VP in PPX-induced ICDs 

Our data show that chronic treatment with PPX influences probabilistic learning 

in a discounting task such that rats are more risky compared to acute administration 

(Rokosik and Napier, 2012).  We also demonstrated this same dosing regimen enhanced 

the potency of PPX to alter VP neuronal firing rate.  Studies by Berridge and colleagues 

have shown that when the mesolimbic system is sensitized, VP neuronal firing 

computations shift in a manner that amplifies incentive salience coding of reward-related 

cues (Tindell et al., 2005).  In rats, PPX enhances the salience of cocaine-associated cues 

(Collins et al., 2011).  The motivation to seek out rewards has been related to enhanced 

salience of rewards and their cues (Robinson and Berridge, 2003).  PPX also induces a 

conditioned place preference indicating that the environmental cues associated with the 

rewarding effects of PPX gained salience and thus motivated the rat to seek them out 

(Riddle et al., 2012).  We propose that the VP plays a role in mediating these PPX-

induced responses such that in the presence of PPX, the VP neuronal activity attributes 

greater salience to the cues, and in turn motivates the individual to seek out the reward.   

Enhanced salience of reward-related cues may also be driven from information 

processed by other limbic structures.  In cases of PPX-induced suppression of VP 

neuronal activity, more VTA dopaminergic neurons would be spontaneously firing, and 

thus will be able to respond to rewards and their reward-related cues.  This would lead to 

greater phasic release of DA in the NA which would enhance the incentive salience of the 
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rewards and cues.  Moreover, phasic DA release acting on D1R would facilitate 

hippocampal inputs to the NA allowing the conditioned environmental cues to drive the 

motivation of the individual.  The VP also projects to several limbic brain regions that 

mediated impulsivity (see Fig. 3 and 4), including that AMG, NA, PFC, STN and PPN.  

Therefore the ability of PPX to alter VP neuronal activity will lead to alterations by 

which these regions integrate reward-related information.   

Part of the mechanism by which PPX can influence motivational salience of 

rewards and reward-related cues is via the activation of D3Rs.  Involvement of D3Rs in 

reward-seeking behavior has been established in animal studies.  These experiments 

demonstrate that antagonism of D3Rs attenuate actions of several abused drugs in various 

rodent models of drug addiction (for review, see (Heidbreder and Newman, 2010), 

including drug- cue- and stress-induced reinstatement (Xi and Gardner, 2007; Vengeliene 

et al., 2006; Xi et al., 2006; Gilbert et al., 2005; Xi et al., 2004).  A recent clinical study 

reported that pathological gamblers were found to have a positive correlation between 

D3R levels and gambling severity and impulsiveness (Boileau et al., 2012).  In our 

studies, we found that D3Rs activated by PPX are sufficient to alter the neuronal firing of 

VP neurons.  We propose the mechanism by which chronic PPX treatment can enhance 

the ability of PPX to alter VP firing rate involves an upregulation of D3R function that 

drives reward-seeking behavior.   

 

The PD brain state as a vulnerability to develop ICDs 

There are several reported vulnerabilities found in the subpopulation of PD 

patients that develop PPX-induced ICDs.  These include male sex, younger age, younger 
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age at PD onset, a pre-PD history of ICD(s), personal or family history of substance 

abuse, gambling problems, and impulsive personality traits (Voon et al., 2007; Weintraub 

et al., 2010).  However, few laboratories have addressed the possibility of a PD-like brain 

state as a vulnerability factor.  Prevalence studies report approximately 14% of PD 

patients develop ICDs (Weintraub et al., 2010).  This is in contrast to approximately 5% 

of RLS patients (Voon et al., 2011b).  However, it should be noted that epidemiological 

studies in RLS patients is have not been as extensive as those conducted in the PD 

population.  We explored the differences between PD-like rats and controls in this 

dissertation.   

 In our behavioral studies, we found that, at least at the 2mg/kg dose of (±)PPX 

tested,  partial striatal lesions targeted to the DLS do not influence the ability of PPX to 

enhance probability discounting.  As smaller doses of PPX can influence discounting 

behavior (Madden et al., 2010), future studies should repeat these experiments with 

smaller doses of PPX to determine if PD-like rats are more sensitive PPX-induced 

increases in probability discounting.   

In our electrophysiological studies, this same 6-OHDA-induced DLS lesion had 

no influence on PPX-induced alterations in VP neuronal firing rates.  However, there was 

evidence for a trend in enhanced potency of acute (-)PPX in rats with a more complete 

lesion to the ascending dopaminergic pathway that included the SN/VTA.  I propose that 

the relevance of this latter finding may lie in the ability of PPX to effectively treat 

depression in patients with PD (Seppi et al., 2011) rather than influence impulsivity.  A 

role for the VP in depressive–like behaviors is emerging.  For example, learned 



190 
 
helplessness, anhedonia (Skirzewski et al., 2011), and effort related behaviors (Farrar et 

al., 2008) have been linked to the VP.  

Two other studies have investigated the ability of the PD-like brain state to alter 

rewarding behavioral outcomes associated with PPX administration.  Both studies 

focused on the intrinsic rewarding properties of PPX and used rat models of early stage 

PD.  The Napier lab recently demonstrated that PPX can induce a conditioned place 

preference in rats with partial striatal lesions targeted to the DLS as well as vehicle-DLS 

treated control rats; however, a higher dose of PPX was needed to induce a place 

preference in control rats compared to PD-like rats (Riddle et al., 2012).  On the other 

hand, Engeln and colleagues found no differences in the ability of PD-like rats and 

controls to self-administered PPX (Engeln et al., 2012). Clearly, further studies are 

necessary to assess the PD-like brain state in animal models.  Investigation should 

include assessments with a range of PPX doses and as well as other models of PD.  It also 

appears important to differentiate behavioral outcomes based on instrumental learning 

and associative learning. 

 Considering only 14% of PD patients develop DA agonist-induced ICDs, this 

suggests a general PD-like brain state may not be a vulnerability factor.  The PD-like 

brain state is not homogenous across patients; thus, if there is a PD-brain state 

vulnerability, it may lie in the type of lesion expressed (i.e., location, extent, etc).  

Rabinak and Nirenberg, 2010 found that PD patients with ICDs had lower unified 

Parkinson’s disease rating scale motor scores than those without ICDs (disease duration 

and total DA replacement therapy use were similar).  The authors suggest that patients 

with ICDs may have a more preserved nigrostriatal dopaminergic function (Rabinak and 
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Nirenberg, 2010).  To further investigate this, clinical investigations into the similarities 

of the pathological brain state of those that develop ICDs vs. those that do not would help 

to elucidate what aspects of PD-like brain state renders them more sensitive.   

Another factor that may play a role in the susceptibility of ICDs is the expression 

of D2/D3Rs.  For example, lower baseline levels of ventral striatal D2Rs were found in 

PD patients with pathological gambling compared to control patients (Steeves et al., 

2009).  Studies in rats (Dalley et al., 2007), primates (Nader et al., 2002; Nader et al., 

2006), and humans (Volkow et al., 2002; Volkow et al., 1999) suggest this is an 

underlying vulnerability to addiction.  Genotypes associated with reduced D2Rs in the 

striatum (Hirvonen et al., 2004) are associated with a reduction in learning from negative 

consequences (Frank et al., 2007; Frank and Hutchison, 2009; Klein et al., 2007).  In PD, 

there are alterations that occur with D2 and D3Rs, such that the degeneration of the 

ascending dopaminergic system induces adaptations leading to an increase in D2Rs and a 

decrease D3Rs (Rinne et al., 1990; Brooks et al., 1992; Ryoo et al., 1998; Boileau et al., 

2009; Graham et al., 1990).  Preclinical studies support this (Bordet et al., 1997; 

Stanwood et al., 2000a).  Such receptor profiles would indicate non-impulsive personality 

traits which, in general, are reported in PD patients (Menza et al., 1993;Bodi et al., 2009).  

However, studies suggest that chronic treatment with dopaminergic drugs produces an 

upregulation of D3Rs and a downregulation of D2Rs.  Indeed, human PET studies have 

revealed an upregulation of striatal D2R in non-treated PD patients; this upregulation 

persisted while patients received no antiparkinsonian medication (Rinne et al., 1990); 

however, there was a relative downregulation of D2Rs in patients on medication 

(Antonini et al., 1997).  In rodents with a unilateral MFB lesion, D3Rs decrease in the 
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NA 21 days after the lesion while subsequent L-DOPA administration enhances 

expression above baseline levels (Bordet et al., 1997).  Thus, differences in the adaptation 

processes that occur with D2Rs and D3Rs before and after DA medication may confer 

differences in the vulnerability to engage in behavioral addictions.   

 

Summary and Conclusions  

In conclusion, this dissertation significantly contributes to the field of DA agonist-

induced ICDs by developing a preclinical model of PPX-induced risk-taking that can be 

used to advance our knowledge of the neuropsychopharmacology underlying this 

phenomenon.  Our novel probability discounting paradigm was successful in modeling 

the clinical scenario in which PPX enhances risk-taking in both healthy controls and PD 

patients.  Importantly, we demonstrated predictive validity with our model as rats 

displayed more risky behaviors after both acute and chronic PPX treatment, this outcome 

ceased shortly after PPX treatment was discontinued, and risk-taking was reinstated after 

treatment re-initiation.  There are several important applications of this behavioral 

paradigm.  For example, understanding the contribution of D2/D3Rs in PPX-induced 

impulsivity is critical for future development of compounds therapeutic for movement 

disorders but devoid of inducing impulsive behaviors.  Thus, future studies can elucidate 

the underlying pharmacology of PPX-induced risk-taking by using D2R- and D3R- 

selective antagonists in our paradigm.  In addition, the most effective way to currently 

manage DA agonist-induced ICDs is to lower the dose or switch to an alternative therapy, 

both of which may be less effective in treating the targeted neuropathological symptoms.  

Our behavioral protocol can be used as a tool to screen new DA agonists for their 
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potential to induce impulsivity and also be used to screen potential therapies for gambling 

disorders and other behavioral addictions.  The behavioral protocols also have the 

potential to be modified for the study of other aspects of impulsivity including to 

impulsive choice.  In the second part of this dissertation, our electrophysiology data 

suggest that the VP may be a prominent player in the circuitry responsible for driving 

impulsivity.  Using the ICSS-meditated probability discounting paradigm, future studies 

can elucidate the role of the VP in PPX-induced risky behavior by determining if the VP 

is necessary or sufficient for this outcome.  Based on our electrophysiology data, we 

propose that one mechanism by which PPX may influence decision making in individuals 

with ICDs is via an increase in limbic D3Rs that, when activated by PPX, alters VP 

neuronal function.  In the presence of reward-related cues, the sensitized response of VP 

neurons attributes greater salience to these cues.  This drives the motivation to engage in 

the behavioral addictions.  Moreover, in the case of pathological gambling, patients that 

are on their PPX medication will continue to show lack of self-control and engage in 

behaviors that are risky and uncertain because the prospect of winning, rather than the 

fact that negative outcomes are accumulating, is driving their decision-making process.   
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