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ABSTRACT 

The cellular restriction factor TRIM5α inhibits infection by numerous retroviruses 

in a species specific manner. TRIM5α protein from rhesus macaques (rhTRIM5α) and a 

related protein TRIM-Cyp from Owl monkeys restrict infection by HIV-1 while human 

TRIM5α (huTRIM5α) restricts infection by N-tropic murine leukemia virus (N-MLV) 

but not HIV-1. Several models have been proposed for retroviral restriction by TRIM5 

proteins (TRIM5α and TRIMCyp). These models collectively suggest that TRIM5 

proteins mediate restriction by recognizing specific determinants in the viral capsid and 

directly binding the capsid. Following binding, the TRIM5 proteins self-associate into 

large assemblies around the viral capsid, which leads to either abortive disassembly of the 

viral capsid via a poorly understood mechanism that is sensitive to proteasome inhibitors 

and/or activation of innate immune signaling pathways. This study focuses on the initial 

step in restriction that is assembly of TRIM5α around the HIV-1 capsid. TRIM5α is 

known to form assemblies in the cytoplasm of the cell, termed as cytoplasmic bodies. We 

show that the ability of rhTRIM5α to assemble into cytoplasmic bodies is required for 

HIV-1 restriction and the L2 region has determinants that govern rhTRIM5α assembly. 

Additionally, the L2 variants that have a higher tendency to assemble into cytoplasmic 

bodies, exhibit increased HIV-1 restriction ability. This suggests that the tendency of 

rhTRIM5α to assemble directly correlates with its HIV-1 restriction ability. We also 

show that the L2 region of rhTRIM5α has a propensity to form α-helices that facilitate 



 

xiv 
 

rhTRIM5α assembly, most likely, by mediating protein-protein interactions. This α-

helical conformation of the L2 region seems to be stabilized in L2 variants that exhibit 

increased tendency to assemble but not in the variants that fail to assemble. Lastly, the L2 

region forms α-helices in a concentration dependent manner and possibly acts as a 

molecular switch in the assembly of rhTRIM5α. 
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CHAPTER I 

INTRODUCTION 

Acquired Immunodeficiency Syndrome (AIDS) is a disease of the human immune 

system and is accompanied by a profound decrease in the number of circulating CD4+ T 

cells. AIDS is characterized by an increased susceptibility of patients to infection with 

opportunistic pathogens including bacteria, viruses, fungi and other parasites, that are 

otherwise evaded by the immune system. AIDS was first described in 1981 by the 

Centers for Disease Control (CDC), following a high incidence of unusual opportunistic 

infections and rare malignancies among the homosexual population. Two years later in 

1983, the etiological agent responsible for AIDS was discovered, a lentivirus now known 

as Human Immunodeficiency Virus type I (HIV-1) [5]. Ever since the discovery of HIV-

1 the reasons for its sudden emergence, spread and pathogenicity have been under 

investigation. In 1986, HIV-2 which is morphologically similar to HIV-1 was reported to 

cause AIDS in infected individuals in Western Africa. It was later found that HIV-2 was 

more closely related to the primate lentivirus, Simian Immunodeficiency Virus (SIV) that 

caused AIDS like disease in captive macaques, than to HIV-1 (Reviewed in [7]. The 

discovery of several similar lentiviruses in other primates and an extensive study of their 

phylogenetic lineage provided the first evidence that the emergence of AIDS in humans 

and macaques was a result of cross-species infections with lentiviruses from different  



2 

  

primate species (Reviewed in [7]. Eventually, it became clear that HIV-1 and HIV-2 had 

arisen in humans as a result of the zoonotic transfers of viruses that infect primates in 

Africa [8]. HIV-1 infection involves three main stages: primary infection, clinical latency 

and AIDS as described below and reviewed in [9].  

Stages of HIV-1 Infection 

Primary Infection 

Primary infection with HIV-1 is associated with an acute mononucleosis-like or 

influenza-like clinical syndrome which appears 3-6 weeks after infection. The common 

symptoms include fever, swelling of the lymph nodes, throat inflammation and rash, 

which overlap with a number of diseases. Hence, these symptoms usually go 

unrecognized as the signs of HIV-1 infection. The severity and persistence of these 

symptoms vary. During this phase there is a burst of viral replication and increased viral 

load can be detected in peripheral blood and cell-free plasma about 3 weeks after 

infection. This is accompanied by significant decline in levels of circulating CD4+ T 

lymphocytes in the first 2-8 weeks following infection. These levels may recover, 

although not completely, as the patient enters the next stage of the disease, which is 

clinical latency.  
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Clinical Latency 

The acute phase is followed by an asymptomatic phase called clinical latency. 

Without treatment this phase can last on an average for about 8-10 years with very few, 

clinical manifestations, if any, and this period varies from individual to individual. 

During this phase there is a steady decline in CD4+ T lymphocytes. Although this phase 

is known as clinical latency some amount of viral replication does occur, as virus can be 

detected in the peripheral blood of infected individuals. This suggests that the term 

“clinical latency” applies only to the lack of symptoms during this phase and does not 

mean viral latency.  

Clinically Apparent Disease or AIDS 

This phase sets in when the CD4+ T cell levels in the peripheral blood drop below 

500 cells/uL followed by appearance of first symptoms. Once the levels of CD4+ T cells 

falls below 200 cells/uL, the patients become more and more susceptible to infections by 

opportunistic pathogens as well as rare malignancies. The decline in CD4+ T 

lymphocytes continues until virtually all cells are lost. 

HIV-1 comprises of four distinct lineages namely, M, N, O and P, which are a 

result of independent cross-species transmission events. Group M is the pandemic form 

of HIV-1 and is responsible for infection of millions of people worldwide. Groups O, N 

and P are much less prevalent as compared to group M and are mostly restricted to 
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Cameroon, Gabon and neighboring countries (Reviewed in [7]. Currently, HIV-1 along 

with HIV-2, which is relatively less widespread, is responsible for infection of over 30 

million people world-wide. According to the World Health Organization (WHO) report 

(http://www.who.int/hiv/data/en/), approximately 34 million people were living with 

HIV-1 infection, about 2.5 million new infections were recorded and there were about 1.7 

million AIDS related deaths in 2011. In the last three decades, since its discovery, 

scientists have extensively studied the HIV-1 genome, the encoded proteins, their 

structure and function in the viral replicative cycle. These studies have provided scientists 

the necessary knowledge and tools to develop powerful antiviral drugs that counteract 

HIV-1 infection [1].Within five years after the discovery of HIV-1 the first anti-HIV-1 

drug, AZT, became available for treatment and since then several effective combinations 

of anti-viral drugs have been used to treat patients. The currently available highly active 

antiretroviral therapy (HAART) involves treatment of patients with at least three active 

antiretroviral mediations (ARVs). Although the number of AIDS-related deaths has 

greatly reduced after the development of these antiretroviral drugs, HIV-1 infection still 

remains a worldwide pandemic. Apart from a small effect observed in one vaccination 

trial [10], currently there is no vaccine approved for HIV-1. These statistics of global 

AIDS epidemic clearly point to an urgent need for improvement in antiviral therapy as 

well as ready access, worldwide,   to the drugs that are currently available.  

 

http://www.who.int/hiv/data/en/
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HIV-1 Structure and Genomic Organization 

HIV-1 is a Lentivirus that belongs to the Retroviridae family and primarily infects 

cells of the immune system including CD4+ T cells and macrophages. HIV-1 particles 

are roughly spherical and have a diameter of 100 to 120nm [11, 12]. They are surrounded 

by a lipoprotein membrane, which is derived from the host cell during budding of a 

progeny viral particle at the plasma membrane (Figure 1A). The viral genome is 

composed of two copies of positive sense single-stranded RNA (~10 kb) and encodes 

nine open reading frames (ORFs) (Figure 1B). Three of these ORFs encode the group 

specific antigen (Gag), Polymerase (Pol) and Envelope (Env) polyproteins which are 

eventually cleaved by the viral protease into smaller proteins (Figure 1B). The three Pol 

proteins, protease (PR), reverse transcriptase (RT) and integrase (IN) are enclosed in the 

virion and are critical for early events in infection. The two Env proteins derived from the 

160kDa precursor glycoprotein, gp160, are the surface glycoprotein (SU, gp120) and the 

transmembrane protein (TM, gp41) which are embedded in the viral membrane (Figure 

1A). These glycoproteins form heterodimers and are arranged as spikes or tripod-like 

structures in the viral membrane (Reviewed in [13]) (Figure 1A). Each heterodimer 

consists of a trimer of gp120, which forms the head, and a trimer of gp41, which forms 

the stem of the spike. The products of the Gag polyprotein are matrix (MA, p17), capsid 

(CA, p24), Nucleocapsid (NC) and p6 which make up the viral core. MA is present just 

below the viral membrane and forms the inner shell of the virion (Figure 1A) [11, 12]. 
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The CA or p24 protein forms hexamers and pentamers which assemble into an 

asymmetrical closed shell known as the viral capsid (Figure 1A). The capsid resembles a 

fullerene cone [14] consisting of approximately 1500 copies of the capsid protein 

(reviewed in [15]). Approximately 250 hexamers and exactly 12 pentamers, seven at the 

broad end and five at the narrow end, need to be assembled to form a closed fullerene 

cone [16]. The capsid surrounds the viral ribonucleoprotein complex which comprises the 

viral RNA genome along with viral proteins such as NC, PR, RT, and IN [11, 12]. 

Additionally, viral accessory proteins such as Vif, Vpr and Nef are found in the viral 

particle. All the viral proteins enclosed in the viral particle are required for the early steps 

of viral infection. Several host proteins including actin, cyclophilin A and RNA-binding 

proteins have also been shown to be associated with virions and facilitate viral infection 

(Reviewed in [17]).   

Figure 1B shows the HIV-1 genome with ORFs encoding various viral proteins. 

The full-length viral mRNA is translated to produce the Gag and Pol precursor proteins, 

which are further cleaved by the viral PR. Further splicing events give rise to several sub-

genomic RNA molecules that are translated to other viral proteins [11, 12]. The HIV-1 

genome also encodes regulatory and accessory proteins such as Tat, Rev, Vif, Vpr, Vpu 

and Nef. Tat, a transactivating protein interacts with the RNA loop structure in the 3’ 

LTR known as Tat response element (TRE), along with other cellular proteins and 

induces the expression of Tat, Nef and Rev [11, 12]. Rev, another viral regulatory protein 
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interacts with the Rev-response element (RRE) present in the viral Env mRNA along 

with other cellular proteins and allows the export of unspliced viral mRNA from the 

nucleus to the cytoplasm [9, 11]. This allows the translation of the unspliced viral mRNA 

transcripts that are needed for production of progeny virions. Nef or negativity factor has 

a variety of potential roles including cell activation, enhanced infectivity and signal 

transduction [9, 11]. Other HIV-1 accessory proteins, Vif, Vpr and Vpu, are involved in 

viral assembly, budding and viral infectivity. The Vif protein is also involved in 

countering the HIV-1 inhibitory role of the cellular protein APOBEC3G, as discussed 

below [18, 19].  
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Figure 1: Representation of the HIV-1 structure and genome. A) A mature 

HIV-1 virion. The virions are roughly spherical and surrounded by a lipoprotein 

membrane. The envelope glycoproteins are embedded in the viral membrane. The 

viral RT, IN and PR enzymes along with the viral RNA genome are packaged in a 

inside a conical capsid composed of the p24 or CA proteins. The matrix forms the 

inner shell of the virion. B) Genomic organization of HIV-1. The RNA genome is 

flanked by long terminal repeats (LTRs) that mediate viral integration and 

regulation of the viral genome. The 3 main ORFs are the gag, pol and env that 

encode the polyproteins Gag, Pol and Env respectively. These polyproteins are 

further cleaved by the viral PR to generate structural proteins, viral enzymes and 

envelope proteins, respectively. The Tat, Rev and Nef mRNAs are a result of 

splicing of the viral transcripts and hence these genes are split in the genome. The 

HIV-1 genome also encodes several accessory proteins such as Vif, Vpr, Vpu and 

Nef.  
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HIV-1 Life Cycle 

HIV-1 predominantly infects cells of the immune system. CD4+ T cells are the 

major targets for HIV-1 infection as they express high levels of CD4, the primary HIV-1 

receptor, on their surface [20-22]. Other immune cells such as macrophages also express 

the CD4 receptor and co-receptors for HIV-1 and can serve as targets for HIV-1 infection 

(Reviewed in [23]). The HIV-1 life cycle can be divided into two phases: an early phase 

and a late phase (Reviewed in [24]) . 

Early Phase of HIV-1 life cycle 

The early phase of infection refers to steps 1 through 5 shown in Figure 2. The 

early phase begins when an HIV-1 particle binds a host cell following the interaction 

between the viral envelope glycoprotein gp120 and the cell surface CD4 receptor (Figure 

2, step 1) (Reviewed in [24] and [13]). This interaction exposes a binding site for the co-

receptor, typically CC-Chemokine receptor 5 (CCR5). Following binding to the co-

receptor, the fusion peptide at the amino terminus of gp41 is inserted into the host cell 

membrane causing significant conformational changes in gp41, which ultimately result in 

the fusion of the viral and target cell membranes (Figure 2, step 2). The attachment and 

fusion steps of the HIV-1 life cycle serve as targets for a number of antiviral agents such 

as attachment inhibitors, CCR5 antagonists and fusion inhibitors discussed ahead. The 

viral core, i.e. the conical capsid containing the ribonucleoprotein (RNP) complex, is then  
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Figure 2: Schematic overview of the HIV-1 replicative cycle. The HIV-1 life 

cycle can be divided into two phases: early phase (steps 1-5) and late phase 

(steps 6-12). 1) The infection begins with the binding of the envelope 

glycoprotein gp120 to the cell surface CD4 receptor and the membrane spanning 

co-receptor (for example, CCR5). 2) This leads to fusion of the viral and cell 

membranes and entry of the viral core into the cytoplasm of the cell. 3) Partial 

uncoating of the viral capsid facilitates reverse transcription which yields the 

preintegration complex (PIC). 4) The PIC is actively imported into the cell 

nucleus with the help of nuclear import machinery of the cell. 5) The viral IN 

that is associated with the PIC along with the cellular protein LEDGF facilitates 

the integration of the viral DNA into the host cell genome, also known as the 

provirus. 6) Transcription of the provirus leads to production of mRNAs of 

various lengths, 7) the larger of which are exported from the nucleus. 8) The 

genome length mRNA serves as the template for translation 9) The RNA along 

with the viral proteins is then assembled into immature viral particles. 10) The 

ESCRT machinery facilitates viral budding at the plasma membrane. 11) Release 

of the viral particles from the host cell is accompanied or immediately followed 

by maturation, mediated by the viral PR, generating an infectious viral particle.    
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released into the cytoplasm of the host cell. The viral capsid then begins to disassemble, a 

process termed as uncoating, and the viral RNA genome is reverse transcribed by the 

viral RT to yield a double stranded DNA molecule also known as the pre-integration 

complex (PIC) (Figure 2, step 3). A number of viral proteins have been shown to be 

associated with the HIV-1 PIC including NC, MA, RT, IN and Vpr [25-28]. These 

studies also suggested that little or no CA was present in the HIV-1 PICs. However, it 

was later demonstrated that the HIV-1 CA protein is the main viral determinant required 

for nuclear import of PICs [29], suggesting a possible link between the processes of 

uncoating and nuclear import. However, the kinetics and the exact mechanism of 

uncoating have been unclear. A recent study by the Hope laboratory used a novel assay to 

determine the kinetics of uncoating and showed that the viral capsid starts uncoating 

within 1 hr following fusion [30]. Moreover, the process of reverse transcription appears 

to be tied to uncoating as indicated by the delay observed in uncoating upon treatment 

with the RT inhibitor nevirapine. Several cellular proteins have also been shown to 

interact with the PIC, which possibly facilitate proper integration of the provirus [31, 32].  

The PIC is then actively translocated to the host cell nucleus through the nuclear 

pore complex (NPC) (Figure 2, step 4). Several cellular proteins involved in nuclear 

import including the nucleoporins Nup153 and Nup358/RanBP2 and the transportin 

TNPO3 have been shown to interact with the HIV-1 capsid and mediate HIV-1 nuclear 

import [33-36]. The next step is integration of the viral DNA into the host genome, which 
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is mediated by the viral IN (Figure 2, step 5). The cellular protein lens epithelium-derived 

growth factor (LEDGF) has been shown to facilitate this process [37, 38]. This step ends 

the early phase of the viral life cycle. Several cellular proteins such as Tripartite Motif-

containing protein 5 (TRIM5) are known to inhibit this phase of the viral life cycle as 

discussed below.  

Late phase of HIV-1 life cycle 

The late phase of HIV-1 life cycle begins with transcription of the integrated viral 

DNA (Figure 2, step 6) (Reviewed in [13]). The viral transactivator protein Tat is 

required for efficient transcription of the integrated proviral DNA. The cellular positive 

transcription elongation factor P-TEFb and RNA Pol II are recruited by Tat to the viral 

trans-activation response (TAR) element to facilitate transcription elongation. Viral 

mRNAs are produced as a result of several alternative splicing events. The smaller 

mRNAs are exported out of the nucleus by CRM-1 mediated nuclear export while export 

of the larger unspliced mRNAs requires the viral protein Rev (Figure 2, step 7). Rev 

binds the Rev-response element (RRE), which lies within the env mRNA coding region, 

along with CRM-1. The viral mRNAs are then translated to produce viral proteins 

(Figure 2, step 8). These viral proteins along with the genome-length RNA assemble into 

progeny viral particles at the plasma membrane (Figure 2, step 9). The progeny virions 

are then released from the host cell by a process known as budding, processes facilitated 

by the cellular endosomal sorting complex required for transport (ESCRT) and ALIX 



13 

 

proteins (Figure 2, steps 10 and 11). Following budding from the cell membrane the 

virions undergo maturation mediated by the viral PR resulting in the generation of 

infectious viral particles (Figure 2, step 12). This process occurs concomitantly or 

immediately after viral release and involves PR mediated proteolysis of the Gag and Gag-

Pol polyproteins to yield the MA, CA and NC, and the PR, RT and IN enzymes. Cryo-

electron tomography studies have also shown that the Gag proteins undergo several 

structural rearrangements within immature virions during the maturation step resulting in 

the formation of infectious viral particles. Several steps in the HIV-1 replicative cycle can 

serve as targets for antiretroviral intervention as discussed below.  

Potential targets for antiretroviral intervention 

In the late 1980s and early 1990s, very few antiretroviral drugs existed for treatment of 

HIV-1. The treatment was mainly targeted towards management of AIDS-related illness 

and involved treatment of patients for common opportunistic infections. The first enzyme 

inhibitor Zidovudine or 3’-azido-3’-deoxythymidine (AZT), which targets the HIV-1 RT, 

was made available for use by the Food and Drug Administration (FDA) in 1987. Since 

then the development of inhibitors that specifically target HIV-1 enzymes such as reverse 

transcriptase (RT) and protease (PR), which are critical for HIV-1 replication, have 

revolutionized the treatment of HIV-1 infection (Reviewed in [39]). Initially, anti-HIV-1 

drugs were given as monotherapy which later evolved to include a combination or 

cocktail of two or more antiretroviral agents (ARVs). Combination therapy greatly 
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enhanced the efficacy of HIV-1 treatment. The highly active antiretroviral therapy 

(HAART), which involves the use of a cocktail of at least three ARVs, has been 

instrumental in reducing the overall morbidity associated with HIV-1 infection Reviewed 

in [39]). The HIV-1 life cycle provides a number of potential targets for therapeutic 

intervention however, only a few of them have been exploited so far. Currently, about 

thirty drugs that target four major steps in the HIV-1 replication cycle can be used for 

treatment of HIV-1 infected individuals (Reveiwed in [13, 39]). These drugs can be 

divided into various classes based on their molecular targets and mechanism of action 

and are currently a part of HAART. Nucleoside/nucleotide reverse transcriptase 

inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs) target 

the HIV-1 RT that is required early in the viral life cycle whereas protease inhibitors 

(PIs) target the HIV-1 PR that is required during late infection. Entry or fusion inhibitors 

block viral entry into target cells by inhibiting the viral envelope protein gp120 and the 

co-receptor CCR5. Some entry inhibitors target the HIV-1 transmembrane envelope 

protein gp41 and block the formation of the gp41 six-helix bundle, which is required for 

fusion of the viral and cellular membranes. The only integrase strand transfer inhibitor 

currently available, raltegravir, blocks the integration of viral DNA into the host cell 

genome by inhibiting the strand transfer activity of the HIV-1 IN. The HAART regimen 

typically involves the use of two NRTIs along with an NNRTI or a PI or another NRTI 

abacavir (Ziagen). The mechanism of action of some of these inhibitors and their 

respective molecular targets are discussed below (Figure 3).  
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Figure 3: Potential targets for antiretroviral intervention. Several steps in the 

HIV-1 replicative cycle can serve as potential targets for antiviral intervention. 

The sites of action of clinical inhibitors are shown in grey boxes and those of host 

cell restriction factors are shown in black boxes. NRTIs – Nucleoside/Nucleotide 

reverse transcriptase inhibitors; NNRTIs – Non-nucleoside reverse transcriptase 

inhibitors; INSTIs – Integrase strand transfer inhibitors.  
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Entry and Fusion Inhibitors  

Entry and fusion inhibitors prevent viral entry into target cells by inhibiting the 

interaction of the HIV-1 envelope glycoproteins gp120 and gp41 with the cell surface 

receptor CD4. High-resolution crystallography of engineered HIV-1 glycoprotein 

constructs has shown that the core gp120structure is highly flexible, which allows it to 

undergo extreme conformational changes following CD4 binding while remaining 

attached to gp41. Additionally, CD4 binds gp120 in a hydrophobic cavity and 

development of small molecule inhibitors that mimic this interaction can have great 

potential in antiretroviral therapy (Reviewed in [13]). BMS-378806 is one such molecule 

that binds in the CD4 binding pocket of gp120 which results in a conformation change of 

gp120 such that it can no longer bind to the CD4 receptor. Another study used an anti-

CD4 monoclonal antibody TNX-355, that inhibits the interaction of CD4 with gp120 

without affecting the immunological function of CD4. Although these small molecule 

inhibitors have shown some clinical potential they have not been approved for use in 

humans (Reviewed in [39]). Wu et al. used a structure-based approach to redesign the 

surface of gp120 and using this construct as bait, B cells clones from AIDS patients that 

produced antibodies against gp120 were generated. These antibodies possess remarkably 

broad neutralizing activity [40, 41]. Further structural analysis revealed that these 

antibodies neutralize HIV-1 by engaging the CD4-binding site. Additionally, small 

peptides generated from the N- or C-terminal sequences of gp41 that inhibit membrane 
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fusion by disrupting six-helix bundle formation are being used as antiviral agents. 

Fuzeon, a peptide based on the C-terminal sequence of gp41, was approved for patient 

use in 2003 however, the virus develops resistance to this drug relatively easily. Another 

set of inhibitors known as D-peptides based on  the N-terminal gp41 helical structure are 

also act as potent inhibitors and might overcome some of the limitations of Fuzeon 

(Reviewed in [13]).  

Reverse Transcriptase Inhibitors (RTIs)  

There are two classes of RTIs namely, nucleoside/nucleotide and non-nucleoside 

RT inhibitors (NRTIs and NNRTIs) that inhibit DNA polymerization and are the main 

components of HAART (Reviewed in [13]). NRTIs lack the 3’-hydroxyl group required 

for the incorporation of subsequent nucleotides by the RT during reverse transcription 

and thus act as chain terminators by getting incorporated into the viral DNA that is being 

synthesized. However, the virus can easily acquire mutations that make it resistant to 

RTIs. For example, a single mutation in the RT of Met184 to a Val or Ile can prevent the 

incorporation of NRTIs such as 2’,3’-dideoxy-3’-thiacytidine (3TC) in place of dNTPs. 

In case of AZT, the mutant RT has developed a way to excise the incorporated drug from 

the primer strand. NNRTIs on the other hand act as allosteric inhibitors that induce the 

formation of a flexible binding pocket by causing large conformational changes in the 

active site of RT. The displacement of the primer grip or the 3 stranded β-sheets which 



18 

 

consist of the catalytic triad (Asp110, Asp185 and Asp186) most likely forms the basis of 

NNRTI inhibition.  

Integrase Strand Transfer Inhibitors (INIs) 

Several small molecule inhibitors that inhibit DNA strand transfer activity of the 

viral IN (INSTIs) are being developed. Raltegravir (Merck) is one such clinically 

approved INSTI. INSTIs have a broad anti-retroviral activity (Reviewed in [13]). All 

INSTIs possess two moieties – 1) co-planar heteroatoms (usually three oxygen atoms) 

that chelate the metal ions in the active site of IN and 2) halogenated benzyl groups that 

interact with the penultimate viral DNA G-C base pair and the residues Pro145-Gln146 in 

the HIV-1 IN. This ejects the viral 3’-deoxyAdenine (which is the DNA strand transfer 

nucleophile) from the active site of the IN. INSTIs also compete with the target DNA for 

the active site of IN thus disrupting the binding of IN to the target DNA. Lentiviruses 

such as HIV-1 require the cellular chromatin binding protein LEDGF for integration and 

hence favor integration within active genes. A novel class of IN inhibitors, termed 

LEDGINs, are known to mimic the interaction between IN and LEDGF in silico and 

inhibit their interaction in vitro (Reviewed in [13].  

Protease Inhibitors (PIs) 

The development of PR inhibitors greatly benefited from structure-based 

approaches as the structure of full-length PR had been solved long before the first PI was 
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developed (Reviewed in [13]). The currently used PIs bind to the active site of the HIV-1 

PR and act as competitive inhibitors. These PIs were designed so that they specifically 

bound in the substrate binding pocket of the viral PR and contacted only those residues 

that are required for PR function. In such a scenario resistance mutations in the PR would 

be unfavorable for the virus as they would disrupt the activity of the enzyme. Some of the 

recently developed PR inhibitors indeed exhibit marginally improved binding profiles to 

drug resistant PR as compared to wild-type PR in vitro. Further studies are underway to 

increase the binding efficiency of these inhibitors to resistant PR.  

HAART greatly suppresses HIV-1 replication thus reducing the HIV-1 viral load 

in the blood plasma below detection levels. This in turn helps replenish the levels of 

circulating CD4+ T-lymphocytes. When only one of the HIV-1 proteins is targeted, the 

virus can easily acquire mutations making it resistant to the drug. However, the use of a 

combination of drugs that specifically target multiple HIV-1 proteins stalls the virus from 

rapidly acquiring drug resistant mutations. Although HAART greatly delays the 

progression of AIDS and reduces the viral load in the blood stream, taking the patients 

off the therapy usually leads to rise in the viral load. Hence, there is a need for novel and 

effective antiretroviral intervention strategies.  

In the past decade the focus of HIV-1 related research has shifted to 

understanding the role of host proteins in HIV-1 infection, both as facilitators and 

inhibitors. These studies involved the identification of cellular proteins that directly 
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interact with various components of the virus, such as cyclophlin A and LEDGF [38, 42]. 

Several groups have also used genome-wide RNA interference (RNAi) screens to 

identify cellular proteins that regulate HIV-1 infection [43-47]. A number of cellular 

proteins, termed “restriction factors”, that naturally possess the ability to inhibit HIV-1 

infection have also been identified [18, 48-52]. The interplay of these host factors with 

components of HIV-1 can be exploited to develop novel treatment strategies against HIV-

1.  

Cellular Restriction Factors that target HIV-1  

The initial evidence that host cells express inhibitors of retroviral replication 

originated from studies conducted in the 1960s when the Friend virus susceptibility factor 

1(Fv1) was discovered. Fv1 dictates the susceptibility of mice to two different strains of 

murine leukemia virus (Reviewed in [53]). Subsequently, retroviral restriction activities 

similar to that of Fv1 were discovered in other mammalian species, including humans, 

suggesting that the ability to restrict retroviruses was not unique to mice. In humans Ref1 

(Restriction factor 1) was identified as the factor that inhibited infection by N-tropic 

murine leukemia virus (N-MLV). Using mutagenesis studies it was shown that the same 

viral capsid had determinants that conferred susceptibility of N-MLV to both,  Fv1 and 

Ref1 (Reviewed in [53]. Since then several studies have identified cellular proteins that 

provide “intrinsic immunity” against retroviruses, including the lentivirus HIV-1, by 

targeting various steps in the viral life cycle. These “restriction factors” include proteins 
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such as APOBEC3G, SAMHD1, Tetherin and the Tripartite Motif-containing proteins 5 

(TRIM5) (Reviewed in [4]). Figure 3 summarizes the steps in the HIV-1 life cycle that 

are targeted by these restriction factors. While some restriction factors cause 

hypermutation of the viral genome (APOBEC3 family proteins) , others disrupt the viral 

capsid by directly associating with and forming large assemblies around the viral capsid 

soon after its entry into the cell cytoplasm, thus inhibiting subsequent steps in infection  

(TRIM5α). Tetherin inhibits the release of infectious progeny virions from infected cells 

by physically tethering them to the plasma membrane. SAMHD1 plays an indirect role in 

viral inhibition by depleting intracellular pools of deoxynucleotide triphosphates thus 

inhibiting reverse transcription.  

Identification of these restriction factors involved the use of two main 

experimental strategies (Reviewed in [54]). One strategy involved the use of gene arrays 

or cDNA subtraction, to identify genes that were exclusively expressed in cells that were 

resistant to viral infection but not in those that were susceptible. In this method, first the 

candidate genes that could be potentially involved in viral restriction are shortlisted based 

on specific criteria such as interferon responsiveness etc. and further validated by 

ectopically expressing them in susceptible cells. If a candidate gene is required for viral 

restriction then ectopically expressing it in susceptible cells should make them resistant to 

viral infection. This strategy was used in the discovery of the restriction factors 

APOBEC3G [18] and Tetherin [50]. The second experimental strategy, which led to the 
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discovery of rhesus macaque TRIM5α [48], involved the expression of a cDNA library 

derived from resistant cells into susceptible cells and screening for cells that had acquired 

restrictive properties. The cDNA conferring viral resistance was then isolated from these 

cells. While on one hand the host has evolved to inhibit HIV-1 infection by expressing 

restriction factors, the virus has developed ways to antagonize the activity of these 

proteins. The steps in the HIV-1 life cycle that are targeted by these proteins and the viral 

proteins that antagonize the activity of these restriction factors are discussed below and 

shown in figure 4. 

APOBEC3G  

For several years it was known that HIV-1 requires its accessory protein Vif to 

replicate in certain human cell types (termed as non-permissive cells) but not in others 

(termed as permissive cells). In 2002, Sheehy et al. discovered that the non-permissive 

cells express a protein known as the Apolipoprotein B mRNA-editing enzyme, catalytic 

polypeptide-like 3G (APOBEC3G or A3G) that inhibits replication of HIV-1 and other 

retroviruses in these cells, but only in the absence of Vif [18]. Vif inhibits the antiviral 

activity of A3G by binding to it and targeting it for degradation [19]. A3G is an enzyme 

encoded by the APOBEC3G gene in humans and belongs to the APOBEC family of 

proteins. A3G gets incorporated into budding vial particles and is then transferred to the 

next target cell where it can exert its anti-viral effects at multiple stages of the viral life 

cycle (Reviewed in [54, 55]). A3G is a cytidine deaminase that converts nascent cytidines  
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Figure 4: Overview of the cellular restriction factors that target HIV-1 and 

their viral antagonists. The mechanism by which the restriction factors 

APOBEC3G, SamHD1, Tetherin and TRIM5a target various steps in the HIV-1 life 

cycle is depicted. The viral accessory proteins that counteract the antiretroviral 

function of these restriction factors are shown. Inset – The process of APOBEC3G 

mediated hypermutation of the HIV-1 genome. Reprinted with permission from [4] 
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in the viral DNA to Uracils (dC -> dU) during viral DNA minus strand synthesis [56, 57]. 

So when the plus strand of the viral DNA is synthesized adenosines get incorporated 

instead of guanines, thus resulting in G-to-A mutations in the viral DNA resulting in 

hypermutation of the viral genome [58-61]. A3G can also hinder the movement of RT 

along the RNA template during elongation by directly binding to the viral RNA in a 

cytidine deaminase activity-independent manner [62]. Additionally, there are also reports 

suggesting that A3G might interfere with integration of the viral DNA into the host 

genome (Reviewed in [55]). 

SAMHD1 

The Sterile Alpha Motif- and HD-domain containing protein 1 (SAMHD1) is a 

72kDa protein that inhibits replication of HV-1 and SIV in macrophages [51, 52]. 

SAMHD1 is a triphosphohydrolase that depletes the intracellular pool of nucleotides, 

thus inhibiting reverse transcription of the viral genome [63]. SAMHD1 consists of an N-

terminal SAM domain, which typically mediates protein-protein interactions as well as 

RNA binding ability and a C-terminal HD domain that is conserved in metalloproteases 

possessing phophohydrolytic activity (Reviewed in [4]). dGTP is known to activate the 

triphosphohydrolase activity of SAMHD1, which leads to the hydrolysis of  

deoxynucleoside triphosphates (dNTPs) to yield deoxynucleosides and inorganic 

triphosphate, as well as mediate SAMHD1 dimerization ([64, 65] and reviewed in [4]). 

While dGTP particularly acts as an activator and substrate of this triphosphohydrolase 



25 

 

and is also known to mediate dimerization of SAMHD1, other dNTPs are also substrates 

of this enzyme (Reviewed in [4]). The accessory proteins Vpx and Vpr of HIV-2 and SIV 

from macaques (SIVmac), and African green monkeys (SIVagm) respectively are known 

to counteract SAMHD1-mediated HIV-1 restriction  by targeting it for proteasomal 

degradation [51, 66-68]. Although HIV-1 does not seem to express any protein that 

counteracts SAMHD1 activity, HIV-1 RT has acquired the ability to function at lower 

concentrations of dNTPs. It has been demonstrated that HIV-1 RTs can efficiently carry 

out reverse transcription in terminally differentiated macrophages (non-dividing cells) 

that contain much lower concentrations of dNTPs as compared to actively dividing CD4+ 

T cells [69].  Additionally, increasing dNTP levels in cells relieves SAMHD1-mediated 

restriction of RT.  

Tetherin  

Tetherin, also known as CD317, BST-2 or HM1.24, is a ~20kDa interferon 

inducible, type II transmembrane protein which is mainly localized to and shuttles 

between the trans-Golgi network (TGN) and the plasma membrane (Reviewed in [4]). It 

has a short cytoplasmic N-terminal domain and an extracellular α-helical domain that is 

flanked by two membrane anchors. At its C-terminus tetherin has a 

glycosylphosphatidylinositol (GPI) anchor. Tetherin inhibits the release of nascent but 

mature HIV-1 particles by trapping them at the surface of infected cells thus inhibiting 

further transmission of the virus [50, 70]. One study used an engineered protein 
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comprised of domains that resembled in structure, but had no sequence homology to the 

domains found in tetherin and tested its antiviral potential [71]. They found that this 

protein also inhibited viral release at the cell surface suggesting that tetherin does not 

recognize specific residues in the viral particle and mediates its activity independent of 

other cellular proteins. More recent studies have demonstrated that tetherin accumulates 

at the sites of viral budding on the cell surface and gets incorporated into the membrane 

of the budding viral particles [71-73]. The HIV-1 accessory protein Vpu has been shown 

to interact with tetherin and antagonize its antiviral activity [74-76]. Several studies have 

shown that Vpu inhibits tetherin by increasing its endocytosis, thus downregulating it 

from the cell surface and eventually leading to its lysosomal degradation [74, 77-79]. The 

increase in ubiquitination and recruitment of the ESCRT pathway of tetherin mediated by 

Vpu also seem to inhibit its antiviral activity [80, 81]. A recent study demonstrated the 

role of tetherin in the induction of innate immune signaling by acting as a viral sensor 

[82]. This study showed that following restriction of viral release, tetherin dimers cluster 

and recruit a signaling complex that includes TRAF6, and potentially TRAF2 and Ubc13. 

This results in activation of TAK1and NFκB, and increased expression of 

proinflammatory genes in the infected cells. Additionally, the restricted virions are then 

targeted for endosomal degradation where the viral components are recognized by pattern 

recognition receptors (PRRs) such as Toll-like receptors (TLRs) which in turn induces 

IRF-mediated activation of type I IFN responses.  
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TRIM5α 

TRIM5α is a ~55kDa interferon inducible protein that belongs to the Tripartite 

Motif (TRIM) family of proteins [83]. TRIM5α restricts retroviruses in a post-entry and 

species specific manner [48] by directly binding to the viral capsid soon after it enters the 

cell cytoplasm. This leads to disruption of the viral capsid before reverse transcription 

can occur thus preventing further infection by the virus [48]. TRIM5α is characterized by 

the presence of the really interesting new gene (RING) domain, B-Box2 and Coiled-coil 

domains, that are conserved among all TRIM family proteins, at its N-terminus [83]. 

Each of these domains has been shown to be required for TRIM5α-mediated HIV-1 

restriction. The RING domain is required for TRIM5α auto-ubiquitination [84] and RING 

domain mutants exhibit reduced HIV-1 restriction activity [85]. The coiled-coil and B-

Box2 domains mediate TRIM5α dimerization and higher-order multimerization 

respectively [86-91], and are required for efficient capsid binding and retroviral 

restriction by TRIM5α [85, 89, 90, 92].  

At its C-terminus TRIM5α has a B30.2/SPRY domain which directly binds the retroviral 

capsid. The SPRY domain has been under strong selective pressure and has regions that 

are highly variable among primate species [93, 94]. This domain contains the 

determinants that govern the recognition of a wide variety of retroviral capsids by 

TRIM5α [95-100]. In Owl monkeys and certain old world monkeys the SPRY domain 

has been functionally replaced by a cyclophilin A (CypA) domain, as a result of two 
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independent retrotransposition events [49, 101, 102]. The resulting TRIM-Cyp protein 

also potently restricts HIV-1 infection by directly binding to and disrupting the retroviral 

capsid before reverse transcription can occur [49, 92, 103-105]. Although it is known that 

direct interaction of the TRIM5 proteins with the retroviral capsid is required for 

restriction subsequent events and the mechanistic details of the restriction process are 

poorly understood. However, based on several biochemical and structural studies, a 

number of models for TRIM5-mediated retroviral restriction have been proposed. It has 

been demonstrated that viral restriction occurs minutes after it interacts with TRIM5 

proteins [106, 107] most likely due to TRIM5-mediated disruption of the viral capsid 

[105, 108]. However, the TRIM-mediated block to RT, but not viral infection, can be 

relieved by inhibition of the proteasome using MG132 [109], suggesting the presence of a 

proteasome dependent step in the restriction process. Additionally, TRIM5α has been 

shown to associate with components of the proteasome both in the presence and absence 

of restriction sensitive virus [110, 111]. However, TRIM5-mediated ubiquitination or 

proteasomal degradation of the viral components has not been observed; although 

TRIM5α is known to undergo proteasomal degradation in the presence of restriction 

sensitive virus [112]. Intriguingly, Ganser-Pornillos et al. recently demonstrated that 

recombinant rhTRIM5α, in which the TRIM5α RING domain has been replaced by that 

of TRIM21), forms a hexameric lattice that is complementary to that formed by purified 

HIV-1 capsid protein [113]. The formation of TRIM5α hexameric lattices was greatly 

enhanced in the presence of assembled HIV-1 capsid. B-Box2-mediated higher-order 
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multimerization of TRIM5α was required for formation of these lattices [113]. This again 

suggests that self-association of TRIM5α plays an important role in retroviral restriction 

most likely by increasing the avidity of TRIM5-capsid interaction. Moreover, a dual role 

for TRIM5α as a restriction factor and an intracellular PRR has been suggested [114]. 

Pertel et al. showed that TRIM5α induces the production of unanchored K63-linked 

polyubiquitin chains that are recognized by TAB2. This leads to TAB2 multimerization 

and ultimately TAK1 activation and downstream signaling pathways. Formation of these 

K63 ubiquitin chains was enhanced in the presence of viral capsid. This suggests that 

TRIM5α-mediated HIV-1 restriction is a complex process involving multiple phases. The 

initial phase involves recognition and binding of the retroviral capsid, followed by 

disruption and/or degradation of the capsid, possibly via the proteasome. The second 

phase of restriction involves activation of innate immune signaling pathways ultimately 

resulting in an antiviral state in the cell. Thus, TRIM5α plays a direct and indirect role in 

retroviral restriction. The proposed models for TRIM5-mediated retroviral restriction are 

discussed below.  

The Tripartite Motif (TRIM) family proteins 

Tripartite Motif (TRIM) proteins are found in most multi-cellular organisms [83]. 

Humans have over 70 known TRIMs [119-123], mice express over 60 and flies express 

approximately 10-20 TRIMs suggesting their widespread expression across various 

species [83]. TRIM family proteins are involved in a number of different cellular 
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processes including cell proliferation, differentiation, development, oncogenesis, 

apoptosis, innate immune signaling and viral restriction [120]. Most TRIM proteins act as 

E3 ligases for ubiquitin (Ub), small ubiquitin-like modifier (SUMO) and the Interferon-

stimulated proteins of 15kDa (ISG15) and their role in the induction of innate immune 

signaling pathways and viral restriction is extensively being studied [120]. In their recent 

study, Versteeg et al. tested the ability of 75 known human TRIM proteins to induce 

innate immune signaling and found that almost half of these TRIM proteins were able to 

positively regulate signaling [117].  

 

Domain Structure and Classification of TRIM proteins 

The Tripartite Motif - Almost all TRIM proteins are defined by the presence of 

the Tripartite Motif also known as the RBCC motif that comprises a RING domain, one 

or two B-Box domains and a coiled-coil domain [83, 119, 122]. Figure 5 shows the 

domain organization of all TRIM proteins. The RING domain is present at the N-

terminus of most TRIM proteins and has conserved cysteine and histidine residues that 

co-ordinate two zinc atoms [124, 125]. This domain confers E3 ubiquitin ligase and in 

some cases SUMO E3 ligase activity to TRIM proteins [126, 127]. The B-Box domains, 

that are structurally related to RING fingers [128], are also zinc binding domains and are 

exclusively found in TRIM proteins [120, 122]. Although the biological function of B-
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Box domains is not clearly understood, these domains are known to promote protein-

protein interactions thus resulting in protein multimerization, at least in some TRIMs. 

Moreover, B-Box domain mutations are associated with developmental abnormalities and 

abrogation of viral restriction by some TRIM proteins [85, 89, 90, 129]. The coiled-coil 

domain is predicted to be predominantly α-helical and is found in many proteins [130]. 

This domain mediates protein-protein interactions, mainly homo-interactions and hetero-

interactions, and is required for the formation of TRIM dimers which form the building 

blocks of the higher-order multimers formed by most TRIM proteins [83].  

 C-terminal domains – TRIM proteins can be divided into eleven sub-groups 

based on their C-terminal domains [83, 121, 123, 131]. Since, the RBCC motif of TRIM 

proteins is highly conserved , the functional diversity of TRIM proteins, for most part, 

can be attributed to their C-terminal domains [3]. The most common C-terminal domain 

expressed by TRIM proteins is the PRY/SPRY domain, also known as the B30.2 domain 

which is involved in protein-protein interactions (Figure 5; [83, 121-123]). Other 

domains that can be present at the C-terminal end of TRIM proteins include the COS, 

fibronectin type-3 (FN3) domain, the 6-bladed β-propeller domain present in Ncl-1, 

HT2A, Lin-41 proteins (NHL)-repeats domain, and the plant homeodomain (PHD)-

BROMO domain which is involved in chromatin binding, meprin and TRAF homology 

(MATH), ADP ribosylation factor-like (ARF) domainfilamin type Ig (FIL) (Figure 5; 
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[83, 121-123]). The C-terminal domains of TRIM proteins and their putative functions 

are listed below. 
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TRIM proteins as E3 ligases 

Ubiquitination is a type of post-translational protein modification in which either 

single or multiple ubiquitin (Ub) chains are covalently attached to specific lysine (Lys) 

 

 

Figure 5: Schematic representation of TRIM family proteins. A) Domains 

present at the N-terminal region of TRIM proteins. Most TRIM proteins express 

the RING domain (R), B-Boxes (BB1 and BB2) and a coiled-coil domain (CC). 

B) C-terminal domains expressed by various TRIM proteins and the different 

subgroups are shown. ARF, ADP ribosylation factor-like; BR, bromodomain; 

COS, C-terminal subgroup one signature; FIL, filamin-type immunoglobulin; 

FN3, fibronectin type 3; MATH, meprin and tumor-necrosis factor receptor-

associated factor homology; PHD, plant homeodomain; TM, transmembrane. 

Reprinted with permission from [3].  
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residues of a target protein [132]. It is a multi-step process involving a Ub activating 

enzyme (E1), a Ub conjugating enzyme (E2) and a Ub ligase (E3) [132]. E1 activates Ub 

and forms an E1-Ub thioester intermediate which is then transferred to the active cysteine 

of E2. The ubiquitin ligase E3 then directly interacts with E2 and the target protein and 

facilitates the transfer of Ub to a specific Lys residue of the target protein (Reviewed in 

[120]. Depending on the length of the Ub chains attached, ubiquitination plays a role in a 

number of cellular processes. For example, mono- and di-Ubiquitination are usually 

associated with exocytosis and endosomal sorting whereas poly-ubiquitination usually 

targets proteins for proteasomal degradation (Reveiwed in [120]. Similarly, the Lys of the 

Ub moiety used for isopeptide bond formation (such as K48, K63 and so on), also 

dictates the outcome of the ubiquitination process (Reviewed in [120].  

More recent studies are focused on understanding the role of TRIM proteins as E3 

Ub ligases. E3 ligases can be divided into three classes based on their catalytic domains 

that mediate Ub transfer. These are HECT (Homologous to E6AP carboxy terminus), U-

box and RING finger E3s [120]. TRIM proteins are characterized by the presence of 

RING finger domains at their N-terminus and act as putative E3 Ub ligases [120]. TRIM 

proteins mainly mediate two forms of ubiquitination reactions namely, Lys48 

ubiquitination which targets proteins for proteasomal degradation, and the Lys63 

ubiquitination which is involved in a variety of processes including NFkB signaling, 
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DNA repair, and lysosomal targeting. 

 

 

 

Figure 6: The ubiquitin pathway. A) Schematic representation of the 

ubiquitination process. The three enzyme required for substrate ubiquitination: 

ubiquitin-activating (E1), ubiquitin-conjugating (E2) and ubiquitin-protein ligase 

(E3) enzymes are shown. The RING and HECT family E3 ligases are the two major 

classes of E3 ligases. B) Schematic representation of the different types of Ub 

modifications. The functional roles of these modifications are listed. The question 

mark indicates that the functions of branched chains are largely unknown. 

Reprinted with permission. 
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A recent screen showed that TRIM proteins interact with Ub-conjugating E2 

enzymes or UBE2s and generally prefer the D and E classes of UBE2s [126]. This study 

also demonstrated that the specific E3 activity of these TRIM proteins depends on the 

specific E2 enzyme they interact with. Some TRIM proteins that have been previously 

shown to possess E3 ligase activity include TRIM23/ARD1, TRIM11, TRIM18/Mid1, 

TRIM21/Ro52, TRIM25/Efp, TRIM32 and TRIM5α (Reviewed in [120]). This E3 ligase 

activity of TRIM proteins has been shown to be associated with their biological function. 

For example, TRIM25/Efp has been shown to regulate the protein levels of the cell cycle 

inhibitor, 14-3-3σ by targeting it for proteasomal degradation [133]. Pertel et al. have that 

the E3 ligase activity of TRIM5 proteins plays a role in the production of unanchored 

K63 poly-Ub chains which further activate TGF-β-activated kinase 1 (TAK1)-mediated 

activation of AP-1 and NF-κB signaling [114]. This activity of TRIM5α was shown to be 

enhanced in the presence of the HIV-1 CA. In addition to acting as putative E3 Ub 

ligases TRIM proteins have also been implicated in other Ub-like modification processes 

such as SUMOylation and ISGylation. SUMOylation involves the transfer of the small 

ubiquitin like modifier (SUMO) and ISGylation involves the transfer of the interferon-

induced 15-kDa protein (ISG15) to substrate proteins. Recently, several TRIM proteins 

have been shown to function as SUMO E3 ligases including TRIM1, 19, 22, 27, 32 and 

36). Additionally, three SUMO interacting motifs (SIMs) were identified in TRIM5α that 

are important for its antiretroviral activity [134, 135]. TRIM25, on the other hand, has 
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been shown to mediate ISGylation of 14-3-3σ as well as undergo auto-ISGylation [136, 

137].  

Self-association of TRIM proteins and its biological significance 

Most TRIM family proteins are known to self-associate and form lower and 

higher-order multimers that localize to different cellular compartments [83]. Most of 

them localize to discrete structures or assemblies in the cytoplasm or the nucleus. 

Cytoplasmic TRIMs usually form filaments or ribbon-like structures or in some cases 

localize to punctate assemblies termed as “cytoplasmic bodies” as seen in case of 

TRIM5α. Nuclear TRIMs usually form punctate assemblies termed as “nuclear bodies” 

[83]. A classic example of TRIM that localizes to nuclear bodies is TRIM19 or PML. 

Some TRIM proteins that express the BROMO domain localize to specific regions of the 

chromatin [83]. In most cases the coiled-coil domain seems to be required for the 

formation of these assemblies and disruption of the coiled-coil domain often results in a 

diffuse localization of these proteins [83]. Coiled-coil domains are found in many cellular 

proteins and can be identified by the presence of the characteristic heptad repeats 

(abcdefg)n, where typically a and d are hydrophobic amino acids and e and g are 

polar/charged amino acids [138]. Coiled-coil domains are predicted to form amphipathic 

α-helices and mediate homo-multimerization of proteins [138]. In the case of TRIM5α 

and TRIM72/MG53 the coiled-coil domain is required for formation of protein dimers 

[71, 83, 86, 87]. The B-Box2 domain has also been implicated in mediating the self-
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association of TRIM proteins and has been shown to be required for higher-order 

multimerization in the case of TRIM5α [85, 89-91]. Dimerization and higher-order 

multimerization have been shown to be critical to the biological function of TRIM 

proteins. For example, in case of TRIM72/MG53, which nucleates the assembly of cell 

membrane repair machinery, homodimerization mediated by the leucine zipper motifs in 

the coiled-coil domain is essential for TRIM72-mediated cell membrane repair [139, 

140]. Similarly, coiled-coil mediated dimerization and B-Box2 mediated higher-order 

ultimerization have been shown to be required for retroviral restriction by TRIM5α [85, 

86, 89, 90, 113, 129, 141, 142]. The role of self-association in TRIM5-mediated retroviral 

restriction is the main focus of this dissertation and will be discussed in more detail in 

section 1.4.2.  

Role of TRIM proteins in innate immune signaling and viral restriction 

A number of TRIM proteins have been shown to possess antiviral activity [114, 

129, 143-146]). In one study 36 human and 19 mouse TRIM proteins were screened for 

their ability to act as anti-viral factors. Of the 55 TRIMs screened, approximately 20 

TRIMs inhibited various stages of the viral life cycle indicating the antiviral potential of 

these proteins [144]. Some TRIM proteins are capable of restricting multiple viruses for 

example; TRIM22 restricts HIV-1 replication by inhibiting LRT-mediated transcription, 

EMCV by degrading 3C protease and hepatitis B by inhibiting RNA synthesis [147, 148]. 

Similarly, TRIM5α restricts a wide spectrum of retroviruses. The C-terminal SPRY 
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domain has determinants that govern the species specific recognition of retroviruses by 

TRIM5α [94-96, 98-100, 149].  TRIM21 inhibits Adenovirus infection by acting as an 

intracellular IgG receptor [150, 151]. It was recently demonstrated that TRIM21 binds 

IgG-coated Adenoviral particles in cells and targets the virus-IgG complex for 

proteasomal degradation thus neutralizing the virus [151].  

Additionally, the ability of TRIM proteins to initiate signaling cascades has also 

been implicated in viral restriction. It was recently demonstrated that about half of the 75 

known TRIMs can activate innate immune responses and this ability of TRIM proteins 

has been linked to their antiviral potential [117, 144, 146]. For example, McEwan et al. 

recently showed that recognition of antibodies by TRIM21 in cells induces the formation 

of K63-liked polyubiquitin chains which stimulates the activation of NF-κB, AP-1 and 

IRF3, 5 and 7 signaling pathways ultimately resulting in an anti-viral state in the cells 

[152]. This study also showed that TRIM21-mediated recognition of IgG could be 

stimulated by infecting the cells with both, DNA and RNA viruses as well as by 

intracellular bacteria suggesting that activation of innate immune signaling pathways by 

TRIM21 is independent of specific PAMPs. Similarly other TRIMs have also been 

shown to modulate intracellular signaling pathways including TLR4 [153], RIG-I [154, 

155], NF-κB [114, 156], and IRF [157-159] signaling. A recent study by the Luban 

laboratory provided evidence for the role of TRIM5 proteins as PRRs in the recognition 

of the retroviral capsid lattice [114]. This study showed that TRIM5 proteins induce 
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innate immune signaling by activation of NF-κB and AP-1 signaling pathways. TRIM5 

interacts with TAK-1 as well as the E2 enzyme UBC13/UEV1A and induces the 

production of unanchored K63 polyubiquitin chains which further activate TAK1 

resulting in downstream NF-κB and AP-1 signaling. The UBC13/UEV1A dependent E3 

Ub ligase activity of TRIM5 is further enhanced upon recognition of a restriction 

sensitive virus.  

TRIM5 proteins (TRIM5α and TRIM-Cyp) 

In 2004, using a genetic screen, Stremlau et al., identified TRIM5α as the protein 

responsible for inhibiting HIV-1 infection in rhesus macaques [48]. Owl monkeys, a New 

World monkey species, express a restriction factor similar to TRIM5α which also 

restricts HIV-1 infection [49]. Since then TRIM5 proteins (TRIM5α and TRIM-Cyp) 

have been shown to restrict a variety of retroviruses in humans [97, 160], other primate 

species [101, 103, 160-164], cattle [165, 166], and non-primates [167, 168]. TRIM5 

proteins restrict retroviruses in a species-specific manner. For example, rhesus macaque 

TRIM5α (rhTRIM5α) potently restricts infection by HIV-1but does not restrict SIVmac 

[48]. Human TRIM5α (huTRIM5α) restricts infection by other retroviruses such as N-

tropic murine leukemia virus (N-MLV) and Equine Infectious Anemia Virus  (EIAV), 

but not HIV-1 and B-tropic murine leukemia virus (B-MLV) [160, 169-171] . The viral 

determinants responsible for the susceptibility of retroviruses to TRIM5-mediated 

restriction have been mapped to the viral capsid (CA) protein [172, 173]. In case of 
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TRIM5α, the determinants in the C-terminal B30.2/SPRY domain are known to govern 

the ability of these proteins to specifically recognize and bind retroviral capsids [94-100, 

149, 174]. TRIM5 proteins block retroviral replication soon after the viral core enters the 

cell cytoplasm [107], thus preventing accumulation of reverse transcripts in turn inhibited 

further infection [48, 108, 175, 176].  

TRIM5 proteins: Domains and their Function 

TRIM5 proteins contain the N-terminal RING, B-Box2 and Coiled-coil domains 

that are characteristic of all TRIM family proteins [83]. The RING domain has a putative 

E3 ubiquitin ligase activity that is required for TRIM5α autoubiquitination [84] and HIV-

1 restriction [84, 141, 142, 162, 177, 178]. Deletion of the RING domain or mutation of 

the two conserved Cysteine residues, that are required for zinc binding and proper folding 

of the RING domain, as well as mutation of residues that lie in the E2 binding interface, 

results in reduced auto-ubiquitination and HIV-1 restriction abilities of TRIM5α [84, 85, 

177]. The coiled-coil domain is required for dimerization [83, 86, 87, 97] and a surface-

patch in the B-box2 domain mediates higher-order multimerization of TRIM5α [89, 90]. 

Both dimerization and higher-order multimerization of TRIM5α have been shown to be 

important for efficient capsid binding and restriction [86, 87, 89, 90, 97, 104, 141, 142, 

179, 180].  
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The primary transcript of TRIM5 undergoes differential splicing to give rise to 

several isoforms of the protein. The α isoform of TRIM5, which is the largest isoform, 

conatins a C-terminal B30.2/SPRY domain in addition to the RBCC motif [83]. The 

SPRY domain plays a critical role in TRIM5-mediated retroviral restriction by 

recognizing specific determinants in the retroviral capsid and directly binding the capsid 

[48]. In some cases, most notably that of Owl monkeys, the SPRY domain has been 

functionally replaced by the retrotransposition of Cyclophilin A (CypA) into the TRIM5 

locus [49, 101, 161, 163, 181, 182]. The resulting TRIM-Cyp protein also exhibits potent 

antiretroviral activity against HIV-1 [49, 101]. 

Capsid recognition and species specific retroviral restriction 

It is well established that as soon as the retroviral capsid enters the cell cytoplasm, 

TRIM5α directly binds the capsid by recognizing specific capsid determinants. Several 

groups have demonstrated that the determinants that govern recognition of the retroviral 

capsid lie within the SPRY domain of TRIM5α. This domain comprises three variable 

loops that have evolved to recognize specific determinants in the retroviral capsid [94, 

96, 99, 100] thus resulting in the species-specific retroviral restriction. This can be best 

explained by the fact that while rhTRIM5α potently restrict HIV-1, human TRIM5α 

(huTRIM5α) only weakly interferes with HIV-1 infection. Interestingly, replacing a 

single amino acid in the SPRY domain of huTRIM5α confers HIV-1 restriction ability to 

a level that is similar to that of rhTRIM5α (R332P) [174]. It is important to note that the 
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regions and amino acids that are responsible for specificity of retroviral restriction have 

been subjected to strong selective pressure during primate evolution [94]. In agreement of 

this notion, in more than one instance, the SPRY domain of TRIM5α has been 

functionally replaced by the cellular cyclophilin A (Cyp A) gene in various monkey 

species [49, 101, 161]. Similar to the SPRY domain, CypA binds the HIV-1 capsid alone 

or in the context of the TRIM-Cyp protein. Although the determinants that mediate the 

interaction between TRIM5 proteins and the viral capsid have been identified for some 

time, studying this interaction using biochemical techniques has been a challenge. One 

reason for this is the fact that TRIM5 proteins recognize and bind the viral capsid only in 

the context of an intact core. Although, interaction of TRIM5α with capsid monomers has 

been detected this interaction is very weak [183]. The most direct evidence for this comes 

from a study by the Aiken laboratory, which showed that viral cores that are unstable or 

not fully processed do not saturate TRIM5-mediated restriction unlike mature and hyper-

stable cores. The second challenge to the study of TRIM5-virus interaction is the 

instability of the viral cores isolated from an active infection. However, one study 

demonstrated an interaction between the huTRIM5α and detergent-stripped N-MLV 

virions [184]. The development of biochemical techniques allowing the assembly of 

purified recombinant viral cores in the recent years has provided major insight into the 

mechanism of TRIM5-virus interactions. Using in vitro assembled recombinant HIV-1 

capsid-nucleocapsid (CA-NC) proteins or CA tubular assemblies it was shown that both 

rhTRIM5α and TRIM-Cyp efficiently bind these assembled viral cores. huTRIM5α on 
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the other hand only weakly binds assembled HIV capsids. Taken together, these data 

suggest that TRIM5 proteins recognize determinants that are exposed only in the context 

of an intact, mature viral core. This interaction is mediated by the C-terminal SPRY 

domain in case of TRIM5α and the CypA domain in case of TRIM-Cyp. Although the C-

terminal domains are absolutely required for the initial interaction with the viral capsid, 

self-association of TRIM5α plays an important role in capsid binding, as described 

below.   

Self-Association of TRIM5α and Cytoplasmic Body formation 

Protein self-association can be defined as the selective and non-covalent 

interaction between two or more domains of the same protein. TRIM5α is known to self-

associate to form dimers and higher-order multimers [86, 87, 141]. In cells, TRIM5α self-

association induces the formation of cytoplasmic assemblies known  “cytoplasmic 

bodies”. TRIM5αhas been shown to exchange rapidly between cytoplasmic bodies and a 

diffuse pool of cytoplasmic TRIM5α [185].  

The biological significance of cytoplasmic bodies in TRIM5-mediated retroviral 

restriction has been controversial as two studies demonstrated that pre-existing 

cytoplasmic bodies are not required for HIV-1 restriction [107, 186]. One study found 

that treatment of cells expressing TRIM5α with geldanamycin, a heat shock protein 90 

(Hsp 90) inhibitor, prevented the formation of TRIM5α cytoplasmic bodies [186]. This 
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treatment however, did not affect the ability of these cells to restrict HIV-1 infection. In 

the second study, a cell line stably expressing relatively low levels of TRIM-Cyp did not 

localize to cytoplasmic bodies but was still able to restrict HIV-1 infection [107]. Further 

treatment of these cells with sodium butyrate resulted in up to a 10-fold increase in 

TRIM-Cyp levels and in turn increased localization of TRIM-Cyp to cytoplasmic bodies. 

However, the localization of TRIM-Cyp to cytoplasmic bodies in these cells did not 

dramatically increase HIV-1 restriction. Although these studies examined cytoplasmic 

body formation prior to infection they did not determine if cytoplasmic bodies formed 

during restriction. These studies therefore demonstrated that pre-existing cytoplasmic 

bodies, i.e. the cytoplasmic bodies formed in the absence of virus, are not relevant for 

HIV-1 restriction.  

Alternatively, Campbell et al. have previously shown that TRIM5α cytoplasmic 

bodies are dynamic structures that turn over rapidly and traffic through the cell by 

travelling on the microtubule network [185]. Infection of cells stably expressing 

rhTRIM5α with fluorescently labeled HIV-1 showed a dynamic interaction of the virions 

with TRIM5α cytoplasmic bodies [106]. Treatment of these cells with the proteasome 

inhibitor MG132 prior to infection resulted in accumulation of the virions within large 

rhTRIM5α cytoplasmic bodies. Live cell imaging also showed de novo formation of 

rhTRIM5α cytoplasmic bodies around individual virions and minutes within this 

interaction occurred the fluorescent signal of the virus was lost [106]. These studies 
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suggest that TRIM5α cytoplasmic bodies that are formed in the presence of restriction 

sensitive virus could be important for viral restriction. Collectively, these studies point 

towards a possibility that although pre-existing cytoplasmic bodies are not required for 

restriction, the ability of TRIM5α to form these bodies following viral infection could be 

important for the restriction process by mediating interaction of TRIM5α with the viral 

capsid. Self-association of TRIM5α proteins involves multiple steps involving 

dimerization, higher-order multimerization and assembly and each of these steps is 

essential for efficient capsid binding and restriction by TRIM5 proteins [86, 87, 113, 141, 

142]. 

Low-Order Multimerization: Dimerization - The coiled-coil domain plays a 

critical role in dimerization of most TRIM proteins [83] including TRIM5α and TRIM-

Cyp [87, 104]. TRIM5α was initially reported to form trimers [87]. However, subsequent 

studies have demonstrated that this was an erroneous conclusion owing to an 

electrophoretic mobility of the glutaraldehyde crosslinked dimer that is inconsistent with 

its actual molecular weight. More recent studies using a recombinant TRIM5α protein, in 

which the TRIM5α RING domain has been replaced by the TRIM21 RING domain 

(TRIM5α-21R), suggest that the dimer is the predominant form of the protein [141, 142]. 

While dimeric TRIM5α-21R binds in vitro assembled HIV-1 capsid, the monomeric form 

of the protein does not [113]. Moreover, disruption of TRIM5α dimerization by partial or 
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complete deletion of the coiled-coil domain results in loss of capsid binding and 

restriction by TRIM5α [86].  

Higher-Order Multimerization - TRIM5 protein dimers have been shown to 

further self-associate into higher-order multimers that can be visualized by SDS-PAGE 

following biochemical cross-linking of cellular proteins with reagents such as ethylene 

glycol-bis(succinimidyl succinate) (EGS) or glutaraldehyde [86-88]. The B-Box2 domain 

and the L2 region, which connects the coiled-coil and C-terminal SPRY or CypA 

domains, has been shown to mediate the higher-order multimerization of TRIM proteins 

[85, 89, 90, 129]. The B-Box2 domain of TRIM5 proteins has two conserved cysteines at 

positions 96 and 97 and a histidine at position 100 which are required for zinc binding 

and proper folding of this domain [187]. Replacement of these residues with alanine, 

C96A and C97A/H100A, results in abrogation of TRIM-Cyp-mediated and TRIM5α-

mediated HIV-1 restriction, respectively [85, 92]. Li et al. showed that alteration of 

certain residues within the B-Box2 domain reduce the HIV-1 capsid biding ability of 

rhTRIM5α, thus resulting in reduced ability of the protein to restrict the virus [129]. This 

suggests that alteration in the B-Box2 domain possibly affect the orientation or the 

conformation of the SPRY domain in turn affecting capsid binding. However, mutation 

of the same residues within the B-Box2 domain of TRIM-Cyp had no effect on HIV-1 

capsid binding or restriction by TRIM-Cyp. It is known that Cyp A has a higher affinity 

for the HIV-1 capsid as compared to the SPRY domain. Hence, it is possible that binding 
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of TRIM-Cyp to the capsid via the Cyp A domain is sufficient for restriction. However, 

in case of TRIM5α since the SPRY domain has a relatively low affinity for the capsid, 

the B-Box2 domain is required to increase the avidity of TRIM5α-capsid binding. In fact, 

Li et al. demonstrated that the B-Box2 facilitates cooperative binding to the retroviral 

capsid by mediating higher-order multimerization of TRIM5α [90]. Using nuclear 

magnetic resonance (NMR), Diaz-Griffero et al. discovered a hydrophobic patch of 

residues on the surface of the B-Box2 domain which when altered results in abrogation of 

TRIM5-mediated HIV-1 restriction [89]. Mutation of a flanking arginine at position 121 

also had a similar effect on restriction. In each case the loss of restriction ability of these 

mutants could be correlated to their inability to self-associate into higher order multimers 

as well as their reduced binding affinity for the viral capsid. A recent study aimed at 

determining the TRIM5α domains that are required for self-association, showed that 

while the coiled-coil and B-Box2 domains are required for self-association of TRIM5α, 

the RING domain possibly contributes to the efficiency of this self-association further 

enhancing capsid binding and restriction [91]. This study also showed that coiled-coil 

mediated dimerization is required for higher-order multimerization of TRIM5α. 

Additionally, a region of the protein immediately downstream of the coiled-coil domain, 

known as Linker 2 (L2), also facilitates the efficiency of higher-order multimerization of 

TRIM5α however the SPRY domain does not play a role in this process.   
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Assembly - While the coiled-coil and B-Box2 domains mediate low and higher-

order multimerization of TRIM5α, the formation of cytoplasmic bodies and the regions of 

the protein that are required for formation of these assemblies have not been determined. 

Furthermore, the functional significance of TRIM5α cytoplasmic bodies is yet to be 

characterized. A recent study by Ganser-Pornillos et al. provides a significant insight into 

the mechanism of TRIM5α-mediated HIV-1 restriction and the role for TRIM5α 

assembly in the restriction process [113]. Using negative-stain electron microscopy of 

purified TRIM5α-21R, a recombinant TRIM5α protein, spontaneous assembly of this 

protein into two-dimensional hexagonal arrays was observed. They also showed that 

dimerization and higher-order multimerization of TRIM5α-21R mediated by the coiled-

coil and B-Box2 domains respectively were required for the formation of these 

assemblies. Formation of TRIM5α-21R hexameric assemblies was further enhanced in 

the presence of assembled HIV-1 capsids, although they were not absolutely required for 

this process. Based on the size and dimensions of the viral capsid and TRIM5α-21R 

assemblies and previous studies involving TRIM5α self-association, they proposed a 

model for self-assembly of TRIM5α around an intact viral core. This self-assembly most 

like involves multiple steps including coiled-coil mediated dimerization, B-Box2 

mediates higher-order self-association and finally assembly of the protein into large 

hexameric lattices around the viral core. This model also proposes that the B-Box2 

domain mediates higher-order multimerization generates a trimeric interface of TRIM5α 

dimers which facilitates the tripodial extensions required for the formation of a hexameric 
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lattice. Berthoux group had previously shown that both TRIM5α and TRIM-Cyp form 

dimers, trimers, hexamers and more complex multimers in mammalian cells 

[88].Assuming the B-Box2 domain facilitates the formation of the tripodial extensions, as 

the model suggests, this could explain the apparent hexamers observed by the Berthoux 

group [88, 113]. 

Proposed Models of TRIM5-mediated retroviral restriction 

The regions mediating the binding and assembly of TRIM5 proteins to the retroviral 

capsid are well defined by several groups. Additionally, it has been demonstrated that 

following this interaction viral infection is inhibited before the virus can reverse 

transcribe its genome. However, the mechanistic details of the restriction process remain 

unclear. Several models have been proposed to explain TRIM5-mediated retroviral 

restriction as described below. 

Accelerated Uncoating 

Uncoating can be defined as the loss of the p24 capsid protein from the viral 

ribonucleoprotein complex. The accelerated uncoating model proposed by the Sodroski 

laboratory, suggests that TRIM5α binds and induces accelerated uncoating of the 

retroviral capsid so that subsequent steps in infection are inhibited. This model is 

supported by data from the “fate of capsid” assay. This assay attempts to measure the 

total amount of intact capsids in cells expressing TRIM5α following infection. Typically, 
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lysates of infected cells expressing TRIM5α are centrifuged through a sucrose cushion 

and the amount of CA in the supernatant (dissociated or uncoated cores) and pellet (intact 

cores) fractions is determined. These studies show that TRIM5α mediates loss of the 

intact pelletable capsid while the total amount of capsid in the sample remains unaffected. 

This suggests that rhTRIM5α promotes the rapid and pre-mature dissociation of the viral 

capsid without promoting degradation of the cytosolic capsid protein. However, whether 

this TRIM5-mediated “accelerated uncoating” shares similarities to the natural uncoating 

of the viral core remains unclear. In their recent study by the Bieniasz laboratory made 

use of a biochemical assay to determine the fate of various components of the retroviral 

core when the infection was carried out in the presence and absence of TRIM5 proteins 

[105]. Following synchronized infection of cells VSV-g-pseudotyped retroviruses such as 

MLV and HIV-1, the cytosolic proteins were fractionated on linear gradients and the 

fates of viral core components including capsid, integrase, viral genomic RNA and RT 

products were monitored. They found that in the absence of TRIM5 proteins the 

retroviral core components formed large complexes. However, upon huTRIM5α-

mediated restriction of MLV infection the integrase and RT products could not be 

detected while the capsid and the viral genomic RNA were both solubilized. Similar loss 

of integrase and RT products as well as the viral RNA was observed upon restriction of 

HIV-1 by rhTRIM5α and TRIM-Cyp. Additionally, as previously demonstrated by 

inhibition of the proteasome blocked these consequences of TRIM5-mediated restriction 

without affecting viral restriction. Thus this study shows the consequences of TRIM5-
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mediated restriction on retroviral components and suggests that the proteasomes are 

required for disruption of the viral core by TRIM5 proteins. This data contradicts the 

model proposed by the Gallay laboratory suggesting that capsid degradation occurs in a 

proteasome independent manner but is in concordance with the Two-Step model of 

restriction proposed by the Hope laboratory as discussed below.  

Proteasome Independent Capsid Degradation 

The Gallay laboratory demonstrated that in cells expressing rhTRIM5α there was 

a specific loss of the cytosolic HIV-1 capsid [188]. Separation of the cytosolic and 

vesicular fractions of cells expressing rhTRIM5α after infection with HIV-1 showed that 

rhTRIM5α induced the degradation of the viral capsid without affecting other 

components of the viral ribonuceloprotein complex. Additionally, proteasome inhibition 

did not affect rhTRIM5α-mediated degradation of the capsid. Thus, this model suggests 

that rapid removal of the viral capsid from the viral ribonucleoprotein compex prevents 

subsequent steps in the infection pathway.  

Two-Step Mechanism of Restriction 

This model was proposed by the Hope laboratory and suggests that TRIM5-

mediated retroviral restriction occurs in two distinct phases (Figure 7). The first step is 

sufficient to inhibit retroviral infection and involves the binding of the retroviral capsid 

by TRIM5α or TRIM-Cyp via the SPRY or CypA domain respectively. The second step  
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Figure 7: Two-step model of TRIM5α-mediated HIV-1 restriction as described 

by [2] .  1) TRIM5 proteins recognize determinants in the HIV-1 capsid soon after 

its entry in the cell cytoplasm. 2) In the absence of MG132 the viral core is 

degraded in a proteasome dependent manner. 3) Upon inhibition of proteasomes 

using MG132, the core stabilizes and viral cDNA reverse transcribes. This results 

in the production of an integration-competent PIC intermediate whose nuclear 

localization remains impaired analogous to Fv1restriction. Reprinted with 

permission from [2].  
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involves proteasome-dependent abortive disassembly of the bound virion, which is 

induced by the TRIM5 proteins. The data supporting this model comes from a studies 

conducted by the Hope laboratory which showed that proteasome inhibition relieves 

TRIM5α-mediated block to reverse transcription while not affecting the ability of the 

protein to restrict infection [2, 109]. In collaboration with the Engelman laboratory they 

also showed that inhibition of the proteasome allows RT to complete in restricted cells 

and these viral ribonucleoprotein complexes are capable of undergoing integration in 

vitro. This suggests that in vivo, the viral preintegration complexes that are produced 

upon proteasome inhibition, although intact, are unable to translocate to the nucleus to 

complete the integration step due to an interaction with TRIM5 proteins. This notion is 

supported by the observation that inhibition of the proteasome leads to the accumulation 

of fluorescently labeled HIV-1 virions within enlarged TRIM5α cytoplasmic bodies 

[106]. Additionally, the Aiken laboratory has shown that addition of restriction sensitive 

virus to cells results in proteasome-mediated degradation of TRIM5α [112]. Indeed, using 

fluorescent microscopy and biochemical assays at least two groups have observed 

recruitment of proteasomal subunits to TRIM5α cytoplasmic bodies in the absence and 

presence of restriction sensitive virus [110, 111]. However, the exact mechanism 

underlying this process remains unclear.  

TRIM5α: Restriction factor and a Pathogen Recognition Receptor (PRR) 
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Previous studies have shown that TRIM5α is an IFN inducible protein and can 

elicit an NF-κB response [131, 189]. The Luban laboratory recently studied the role of 

TRIM5α as a component of the innate immune system [114]. This study demonstrated 

that TRIM5 plays a multifunctional role as a capsid-specific restriction factor, as 

described previously, and as a pathogen recognition receptor (PRR) resulting in the 

activation of inflammatory genes. Based on this and previous studies the authors propose 

a model that suggests that TRIM5 specifically recognizes and multimerizes around the 

incoming retroviral core and induces the production of unanchored K63 polyubiquitin 

chains. These K63 polyUb chains then activate TAK1 and the transcription of 

inflammatory genes most likely through multimerization of the TAK1 associated Ub-

binding protein TAB2 [190]. The E3 Ub ligase activity of TRIM5 is enhanced in the 

presence of a restriction sensitive hexameric capsid lattice. The spontaneous assembly of 

TRIM5 into hexagonal lattices has been shown to be enhanced in the presence of 

hexameric capsid lattices [113]. Moreover, the cellular factors that are required for 

activation of the E3 Ub ligase activity of TRIM5 and the activation of its inflammatory 

activity namely, UBC13/UEV1A and TAK1, also enhance TRIM5-mediated retroviral 

restriction. This suggests that the two functions of TRIM5 as a restriction factor and as a 

component of the immune system are mechanistically linked. However, the downstream 

substrates of TAK1 that could potentially be required for TRIM5-mediated restriction are 

unknown. Although these above mentioned models suggest different mechanisms of 

TRIM function, they are not mutually exclusive as described in figure 8.  
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Figure 8: Current model for TRIM5α-mediated retroviral restriction as 

described by Jeremy Luban [1] & Jaya Sastri and Edward M. Campbell [6].  

Following entry of the retroviral core (pink) in the host cell cytoplasm TRIM5 

dimers directly bind the retroviral capsid by recognizing specific determinants in 

the viral capsid. Following binding, TRIM5 dimers multimerize and assemble into 

a hexameric lattice surrounding the viral core. Given the specificity of the SPRY 

domain for the viral capsid proteins it is possible that multiple TRIM5 lattices 

assemble around a single virion. A single TRIM5 lattice (green) is shown for 

clarity. This in turn increases the E3 ubiquitin ligase activity of TRIM5. Depending 

upon its proximity to specific E2 enzymes, TRIM5 will undergo autoubiquitination 

and engage the proteasome and/or it will activate the TAK1 kinase and downstream 

signaling molecules. Proteasomal degradation of TRIM5 proteins, triggers the 

‘‘abortive disassembly’’ of the viral core in turn blocking revrese transcription. 

This results in dissociation but not degradation of the capsid proteins keeping the 

cytosolic capsid levels unchanged. Increase in avidity of TRIM5-capsid binding, 

following TRIM5 assembly is critical for these processes. Reprinted with 

modification from [6] 
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CHAPTER II 

MATERIALS AND METHODS 

Recombinant DNA constructs 

The wild-type rhTRIM5α plasmid was a kind gift from Dr. Joseph Sodroski 

(Harvard school of Public Health). To generate the HA-tagged rhTRIM5α construct and 

the L2 variants SmaI and EcoRI restriction sites were inserted flanking rhTRIm5α using 

the primers GCCTGGCATTATGCCCAG and AGCTTGCCAAACCTAC. Polymerase 

chain reaction (PCR) was performed and the PCR product was digested with SmaI and 

EcoRI and inserted into the EXN retroviral vector, also digested with SmaI and EcoRI. 

The EXN plasmid was generously provided by the lab of Dr. Greg Towers (Royal Free 

and University College, London). This EXN vector was used to derive the YXN 

retroviral vector, which was generated by PCR amplification of the Yellow fluorescent 

protein (YFP) coding region of the YFP-N1 (Clontech) plasmid, using the primers 

TGGATGAACTATACAAGTGGATCCGGCCG and 

CGGCCGGATCCACTTGTATAGTTCATCCA. The PCR amplified YFP fragment was 

then digested with AgeI and BsrGI and inserted into the similarly digested EXN plasmid. 

To facilitate easier subsequent cloning, the BamHI site of wt rhTRIM5α was disrupted by 
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SOEing PCR using the interior primers CCCCAGTATCCAAGCACTTTT and 

AGTGCTTGGATACTGGGGGTATGT and exterior primers 

GCGGCGGGATCCATGGCTTCTGGAATCCT and 

GGCCGGCTCGAGTCAAGAGCTTGGTGAGC. These primers introduced a silent 

mutation in the wt rhTRIM5α open reading frame that eliminated the BamHI. This PCR 

product was then digested with BamHI and XhoI and inserted into the similarly digested 

YXN plasmid. Alanine mutations were introduced into wt rhTRIM5α or rhTRIM5α 

lacking a BamHI site using SOEing PCR. YFP- and HA-tagged triple alanine mutants of 

huTRIM5α and Owl monkey TRIM-Cyp were cloned in a similar manner. Similarly, the 

CC-L2 and L2 fragments of wt rhTRIM5α and its L2 variants were cloned into a pET-

15b vector containing a 6X His-tag, generously provided by Dr. Christopher M. Wiethoff 

(Loyola University Chicago), using the NdeI and BamHI restriction sites so that upon 

translation the peptide would have an N-terminal 6X His-tag.  

Cell culture, Virus/Vector production, Stable cell lines 

HeLa and 293T cells were cultured in complete DMEM containing 10% fetal 

bovine serum, penicillin (final concentration 100 U/ml), and streptomycin (final 

concentration 100 μg/ml). VSV-g pseudotyped HIV-1 reporter virus was produced by 

transfecting 293T cells in a 15 cm plate using Polyethylenimine (PEI) (Polysciences) 

transfection [191] along with 10 μg of pVSVG and 15 μg of the proviral construct R7Δ 

Env-GFP in which the Nef gene has been replaced with GFP. Virus and vector were 
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harvested 48 hrs post transfection by filtering the culture media from the transfected cells 

through a 0.45 um filter (Millipore). Virus infectivity was assessed by infecting 

equivalent numbers of cells in a 24 well plate for 14 hrs, after which virus was removed, 

normal medium was added and GFP expression was determined 48-72 hrs post infection 

using FACS Canto II flow cytometer (Becton Dickinson). Vector expressing YFP- or 

HA-tagged wt or L2 variant TRIM5 proteins was made in a similar way by transfecting 

293T cells in a 60 mm dish using PEI along with 1 μg of the plasmid of interest, 1 μg of 

VSV-g and 1 μg of pCig-B. Vector was harvested 48 hrs post transfection, filtered 

through the 0.45 μm filter and either frozen at -80
o
C or used to transduce HeLa cells. To 

make stable cell lines HeLa cells were plated at 50% confluency and transduced with the 

respective vectors for 14 hrs, after which the vector was replaced with regular DMEM 

and 48 hrs post transduction media containing G418 drug at a concentration of 400 

μg/mL of DMEM was added to the cells. The expression of polyclonal or single colony 

clones were screened by immunofluorescence to ensure all cells expressed the transduced 

protein. Such cell lines were then analyzed by western blot analysis, and the clones 

expressing comparable amounts of protein were chosen for subsequent analysis. 

Infectivity assay  

Equivalent numbers (0.75×10
5
) of HeLa cells stably expressing epitope-tagged wt 

or L2 variants of TRIM5 proteins plated in a 24-well plate were infected with VSV-g 

pseudotyped GFP reporter HIV-1 (R7ΔEnvGFP) for 14 h, after which the virus was 
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removed and regular DMEM was added to the cells. Percentage of GFP positive cells 

was determined 48 hpi using a FACS Canto II flow cytometer (Becton Dickinson). For 

N- and B-MLV infections, CrFK cells were used. For TRIM-Cyp the infection was 

performed in the presence or absence of the drug cyclosporine A.  

Immunofluorescence 

HeLa cells stably expressing epitope-tagged TRIM5 proteins were plated on 

fibronectin-treated coverslips, allowed to adhere and fixed for 5 min. with 3.7% 

formaldehyde (Polysciences) in 0.1 M PIPES, pH 6.8 [piperazine-N, N'-bis(2-

ethanesulfonic acid)] (Sigma). Cells were stained with DAPI and TexasRed Phalloidin in 

1X Phosphate Buffered Saline (0.0067M PO4; Hyclone) containing 0.1% Triton X-100 

(Sigma) and 0.01% NaN3. Cells expressing HA-tagged proteins were stained with 

monoclonal antibody against HA followed by staining with FITC-conjugated donkey 

anti-mouse IgG (Jackson ImmunoResearch) in blocking solution containing 10% NDS, 

0.01% NaN3, 0.1% Triton X-100. Images were collected with a DeltaVision microscope 

(Applied Precision) equipped with a digital camera (CoolSNAP HQ; Photometrics), 

using a 1.4-numerical aperture 100× objective lens, and were deconvolved with 

SoftWoRx deconvolution software (Applied Precision). 

Image Analysis 

Z-stack images of each cell line were acquired using identical acquisition parameters. 
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The coverslips were coded such that the individual acquiring the images did not know the 

identity of the cell lines. Deconvolved images were analyzed for YFP-rhTRIM5 

cytoplasmic bodies and cortical actin, stained with TexasRed Phalloidin, using the 

Surface Finder function of the Imaris software package (Bitplane). Surfaces for 

cytoplasmic bodies in all samples analyzed were identified using defined fluorescence 

intensity and size criteria (Volume=above 0.03 or 0.066 μm
3
 depending on the 

experiment).  

 

45 individual images of cells expressing YFP-rhTRIM5 (WT and L2 mutants) were 

obtained and deconvolved. To calculate the relative expression of YFP-labeled 

rhTRIM5 proteins in each cell a 3D surface was created overlapping a single cell using 

the surface finder function of Imaris. The sum intensity in the FITC channel, 

corresponding to the total YFP fluorescence in that cell, and the surface volume, 

corresponding to the cell volume, were determined. The relative YFP-rhTRIM5 protein 

expression in each cell was then calculated by dividing the sum intensity in the FITC 

channel with the total surface volume. Additionally, untransduced HeLa cells were fixed 

and stained in a similar manner, Z-stack images were acquired and the relative protein 

expression was calculated as described above and averaged (n=15). This number was 

then subtracted from the relative protein expression value calculated for each cell to 

eliminate the background fluorescence. The number of cytoplasmic bodies in each cell 
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was determined and normalized by the relative protein expression in that cell. The data 

were plotted in Prism (Graphpad Software Inc) for statistical analysis. Dunnett's Multiple 

Comparison test was used to determine the statistical significance of the differences 

between cell lines.   

Western blotting  

Whole cell lysates were prepared by lysing cells with NP-40 lysis buffer (100 mM 

Tris pH 8.0, 1% NP-40, 150 mM NaCl) containing protease inhibitor cocktail (Roche) for 

15 min on ice. Coomassie Plus Bradford Assay (Thermo scientific) or Absorbance at 

280nm was used to determine total protein concentration. 2× SDS sample buffer was 

added to the cell lysates and the samples were boiled for 5-10 min at 100 °C. Equal 

amount of protein was loaded onto a 10% polyacrylamide gel for SDS-polyacrylamide 

gel electrophoresis (SDS-PAGE). The proteins were separated at 200V for 30-40 min. 

After separation, the proteins were transferred to nitrocellulose membrane at 100V for 1 

hr and detected by incubation with anti-GFP (Covance) or anti-HA (clone 3F10) 

conjugated to Horseradish Peroxidase (HRP) (Roche). Secondary antibodies conjugated 

to HRP (Thermo Scientific) were used where necessary and antibody complexes were 

detected using SuperSignal™ West Femto Chemilluminescent Substrate (Thermo 

Scientific). For 6X His-tagged purified proteins an HRP-conjugated mouse anti-his 

antibody generously provided by Dr. Thomas Gallagher (Loyola University Chicago) 
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was used. Chemiluminescence was detected using the UVP EC3™ Imaging System 

(UVP LLC) or the Biorad ChemiDoc
TM

 Imaging System.  

Coomassie Staining 

Protein samples from bacterial cell lysates or purified proteins were prepared by 

adding 2X (25mL 4X Tris. Cl/SDS, pH 6.8, 20% Glycerol, 4% SDS, 0.2% v/v β-

mercaptoethanol and 0.001% w/v bromophenol blue in Milli Q) or 6X (7mL 4X 

Tris.Cl/SDS, pH6.8, 30% glyverol, 10% SDS, 5% β-mercaptoethanol and 0.012% 

bromophenol blue in Milli Q water) SDS Sample buffer and boiled for 5-10 min. at 

100
o
C. The protein samples were separated on 10%, 13%, or 16.5% polyacrylamide gels 

at 100V for ~50min. The gels were then fixed in a collidal coomassie fixative (45% 

methanol and 1% acetic acid in Milli Q water) for at least 1 hr and stained for at least 2 

hrs with Coomassie stain (170g ammonium sulfate, 1g Coomassie G250, 0.5% acetic 

acid and 34% methanol in 1 lt. of Milli Q water). Stained gels were washed with 

deionized water to remove excess stain and the gels were imaged using the Biorad 

ChemiDoc
TM

 MP Imaging System. 

Glutaraldehyde Crosslinking assay  

Glutaraldehyde crosslinking assays were performed as previously described [85]. 

Briefly, cell lysates were incubated on ice for 30 min and centrifuged at 3000 rpm for 1 

min to remove cell debris. The clarified lysates were divided into 20 μL aliquots and 
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incubated with 0, 1, 2 and 4 mM glutaraldehyde for 5 min at room temperature. 

Similarly, purified peptides were incubated with 0, 0.5, 1, 2 mM glutaraldehyde. The 

glutaraldehyde was saturated by adding 1 M glycine. 2× or 6X SDS sample buffer was 

added and the samples were boiled for 5-10 min. at 100 °C. The samples were then 

subjected to SDS-PAGE using 4%–15% Tris–HCl gradient gels (Ready Gels, BioRad) 

and subsequent Western Blot analysis or Coomassie staining. 

Protein turnover assay 

Cell lines stably expressing epitope-tagged wt rhTRIM5α or the L2 variants were 

treated with cyclohexamide (20 μg/mL) and cells were harvested every hour for up to 4 

hrs following cyclohexamide addition. Coomassie Plus Bradford Assay (Thermo 

scientific) was used to determine total protein concentration. Equivalent amounts of 

protein from individual samples were subjected to SDS-PAGE and the YFP-TRIM5α 

protein was detected by western blot.  

Protein expression and Induction 

BL21(DE3) cells (having the T7 promoter expression system) were transformed 

with pET-15b constructs containing the CC-L2 or L2 only fragments of wt rhTRIM5α or 

the L2 variants, spread onto LB-Amp plates and allowed to grow overnight at 37
o
C. A 

single colony from each plate was inoculated in LB broth (1/20
th

 volume of the larger 

culture) containing 100μg/mL Carbenicillin (Invitrogen) and the cultures were allowed to 
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grow overnight at 37oC. These starter cultures were transferred to 500mL LB containing 

100μg/mL Carbenicillin and were grown in a 37oC shaker till the cultures reached an 

OD600 of 0.6. A small aliquot was collected as the uninduced sample. 1mM Isopropyl β-

D-1-thiogalactopyranoside (IPTG) (Invitrogen) was added and the cultures were induced 

for an additional 3-5 hours at 37oC. Following induction a small aliquot of each culture 

was collected and centrifuged at 4000 rpm (centrifuge/rotor) for 20 min. Similarly, the 

larger induced cultures were centrifuged at 5500 rpm (centrifuge/rotor) for 20 min. The 

bacterial pellets were either frozen at -20oC or were used for protein purification. To test 

the level of protein induction and solubility of the induced proteins, the smaller aliquots 

of cells collected before and after induction were resuspended in 1M Tris, pH 8.0 

containing the protease inhibitor cocktail (PIC) (Roche) and a small aliquot was collected 

as the “whole cell lysate” (wcl) fraction. Cells were then sonicated and the lysates were 

centrifuged at 13,000 rpm at 4oC for 30 min. Following centrifugation the supernatant 

(sup) and pellet fractions were separated and prepped for SDS-PAGE analysis by 

resuspending the pellets in 8M Urea solution and adding 2X and 6X SDS sample buffers 

to the pellet and sup fractions respectively. The samples were boiled at 100oC for 10 min. 

and analyzed by SDS-PAGE by western blot analysis and Coomassie staining as 

described above.  
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Protein Purification 

Depending on the presence of the induced proteins in the sup or pellet fractions 

the following protocols were followed for the purification process. All steps were carried 

out on ice or under cold conditions. 

Purification of soluble proteins 

Frozen bacterial pellets were resuspended on ice in 10-12 mL of lysis buffer 

(50mM Na2HPO4, 500mM NaCl, 10mM Imidazole, 1% Triton X-100, 0.5 mg/mL 

Lysozyme (Invitrogen)) containing PIC. The lysates were centrifuged at 13,000 rpm at 

4
o
C for 30 min. The sup was incubated with 600 µL of Talon metal affinity resin slurry 

for 1-2 hrs at 4
o
C with gentle mixing to allow binding of the His-tagged protein to the 

cobalt resin. The mixture was then passed through a 2 mL TALON disposable gravity 

column twice. The flow through was discarded and the column was washed with 10X 

volume of the resin bed volume of wash buffer (40mM Tris, 300mM NaCl, pH 8.0). The 

His-tagged proteins were eluted from the column using the elution buffer (50mM 

Na2HPO4, 500mM NaCl,150mM Imidazole). Six 300 µL fractions were collected. 

Protein concentrations were determined by measuring Absorbance at 280nm. The 

purified proteins were flash frozen using dry ice or liquid nitrogen and stored at -80
o
C.  
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Purification of Insoluble proteins 

Frozen bacterial pellets were resuspended on ice in 10-12 mL of lysis buffer 

containing PIC as mentioned above. The cells were then sonicated and the lysates were 

centrifuged at 13,000 rpm at 4
o
C for 30 min. The sup was discarded and the pellet was 

washed with lysis buffer containing PIC to remove cell debris and other impurities 

centrifuged at 13,000 rpm for 10 min at 4
o
C. This step was repeated 3 more times. The 

pellet was washed once with wash buffer 1 (50mM Na2HPO4, 500mM NaCl, 10mM 

Imidazole) containing PIC and centrifuged at 13,000 rpm for 10 min at 4
o
C. The pellets 

were then resuspended in a buffer containing 40mM Tris, 150mM NaCl, 8M Urea, pH 

8.0. 500 µL of Talon metal affinity resin (Clontech) slurry was added to the resuspended 

pellet and the mixture was incubated at 4
o
C for 1-2 hrs with gentle mixing to facilitate 

binding of the His-tagged proteins to the cobalt resin. The mixture was passed through a 

2 mL TALON disposable gravity column (Contech) twice. The flow through was 

discarded and the resin was washed with 10X volume of the resin bed volume of wash 

buffer 2 (40mM Tris, 300mM NaCl, 8M Urea, pH 8.0). The 6X His-tagged proteins were 

eluted from the column using the elution buffer (40mM Tris, 150mM NaCl, 8M Urea, 

10mM Imidaole). Six 300 µL fractions were collected for each peptide. Protein 

concentrations were determined by measuring Absorbance at 280nm. The proteins were 

flash frozen using dry ice or liquid nitrogen and stored at -80
o
C.  
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Dialysis and Concentration of Purified Proteins 

The proteins purified using the protocol for insoluble proteins, were further 

processed in the following manner. 2-3 protein fractions were pooled, depending on the 

purity of each fraction, and diluted to a concentration of 100µg/mL. The peptides were 

added to appropriate volume of chilled dialysis buffer while it is stirring to avoid protein 

aggregation. The diluted peptides were then injected into Slide-A-lyzer dialysis cassettes 

(10,000 MWCO or 3,500 MWCO) (Thermo Scientific) and dialyzed in 2 liters of dialysis 

buffer overnight at 4
o
C on a stir plate with gentle stirring. The dialyzed peptides were 

then concentrated using Centrifugal filter units (10,000 MWCO or 3,500 MWCO) 

(Millipore) following the company instructions. The concentrated peptides were flash-

frozen using dry ice or liquid nitrogen and stored at -80
o
C or used for further analysis. 

CD Spectroscopy 

UV spectra (190 – 260nm) of the purified CC-L2, or synthetic L2 peptides were measured by 

CD spectroscopy using a JASCO J-810 Circular Dichroism Spectrometer. CD spectroscopy 

for the L2 peptides was performed in the presence and absence of 10% TFE. Spectra were 

collected in triplicate in 1mm path length cuvettes at 20ºC and the resulting scans were 

averaged, and the buffer signal was subtracted. The specific ellipticities for each peptide 

spectra were calculated and computation of relative amount of helix was performed using 

ContinLL. 
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In vitro Capsid Binding Assay 

293T cells were plated at 65% confluency and transfected with 3μg of HA-tagged wt 

rhTRIM5α or the L2 variant described. 14 hours post-transfection, the cells were 

collected and incubated with 750μL of lysis buffer ((10 mM Tris-HCl pH 8.0, 10 mM 

KCl, 1 mM EDTA)) on ice for 15 minutes. Cells were then sonicated and the lysates were 

centrifuges at 14,000xg for 30 minutes 200 μL of the clarified lysate was then incubated 

with 1M NaCl and either 20mM Tris, pH 8.0 or 2.5 uL of in vitro assembled HIV-1 

capsid tubular assemblies (generously provided by Dr. Owen Pornillos, University of 

Virginia) at room temperature for 1 hour with gentle mixing every 10 minutes. A 15 μL 

aliquot was collected for wcl and the remaining reaction was loaded onto a 65% sucrose 

cushion and centrifugred at 25,300 rpm at 4º C for 1 hour. 50μL of the sample remaning 

on top of the cushion was collected as sup and 2X SDS sample buffer was added. The 

sucrose in the tube was emptied and the pellet was resuspended in 1X SDS sample buffer. 

The samples were analyzed by SDS-PAGE and western blotting.  

 



70 

CHAPTER III 

HYPOTHESIS AND SPECIFIC AIMS 

TRIM5 proteins (TRIM5α and TRIM-Cyp) are known to self-associate into 

dimmers, higher-order multimers and form large assemblies in the cell cytoplasm, termed 

as “cytoplasmic bodies” [48, 185]. The functional significance of TRIM5α cytoplasmic 

bodies in HIV-1 restriction has been controversial as two studies have demonstrated that 

preexisting TRIM5α cytoplasmic bodies are not required for HIV-1 restriction [107, 186]. 

Alternatively, it has previously been observed that upon infection of cells expressing 

rhTRIM5α with fluorescently labeled HIV-1, the viral particles accumulate within 

rhTRIM5α cytoplasmic bodies [106]. Moreover, using live-cell imaging, the de novo 

formation of rhTRIM5α cytoplasmic bodies around individual virions has been observed 

[106]. Moreover, rhTRIM5α dimerization and higher-order multimerization, mediated by 

the coiled-coil [83, 87, 89, 97, 104] and B-Box2 domains [85, 89, 90, 129] respectively, 

are essential for viral capsid binding and restriction [89, 104, 141, 142, 179]. These 

studies suggest that TRIM5α self-association facilitates binding of rhTRIM5α to the 

HIV-1 capsid possibly by increasing the avidity of this interaction. However, the 

mechanism by which TRIM5α self-associates into cytoplasmic bodies and their 

functional significance in HIV-1 restriction is poorly understood. Hence, we sought to 
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identify the regions of rhTRIM5α that are required for cytoplasmic body formation. Once 

these regions were identified we could then mutate them and ask if they are required for 

HIV-1 restriction.  

In order to identify the regions of rhTRIM5α required for its assembly into 

cytoplasmic bodies we generated C-terminal truncation mutants of GFP-labeled 

rhTRIM5α (Figure 1A). These rhTRIM5α mutants were then transiently transfected into 

HeLa cells and their sub-cellular localization was observed by fluorescent microscopy. 

We found that the mutants lacking the residues 263-278, that lie within the L2 region of 

rhTRIM5α, did not form cytoplasmic bodies and exhibited a diffuse localization in cells 

(Figure 1A and 1B). However, mutants that contained these residues formed punctate 

assemblies in the cytoplasm (Figure 1A and 1B). This suggests that the stretch of 15 

residues, 263-278, that lies within the Linker 2 (L2) region has determinants that are 

required for rhTRIM5α cytoplasmic body formation. Hence we hypothesized that “The 

ability of rhTRIM5α to assemble into cytoplasmic bodies is governed by determinants 

in the L2 region and is required for its ability to restrict HIV-1 infection”. This 

dissertation focuses on understanding the mechanism underlying the assembly of TRIM5 

proteins and its role in TRIM5-mediated retroviral restriction. The following specific 

aims were designed to test the above mentioned hypothesis.  
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Specific Aims 1  

Determine if the Linker 2 (L2)-mediated assembly of rhTRIM5α governs HIV-1 

restriction. 

Identify specific residues within the L2 region that are required for rhTRIM5α 

cytoplasmic body formation and HIV-1 restriction 

Determine if the tendency to assemble into cytoplasmic bodies correlates with the HIV-1 

restriction ability of rhTRIM5α 

Determine if mutations in the L2 region affect the ability of rhTRIM5α to bind assembled 

HIV-1 capsid 

Identify the amino acid residues or secondary structural motifs of L2 that mediate 

rhTRIM5α assembly around the HIV-1 core.  

Identify specific residues within the L2 region that are required for assembly and HIV-1 

restriction 

Identify the secondary structural motifs associated with the L2 region using CD 

Spectroscopy 

Determine if secondary structure can be induced in the L2 region in a concentration 

dependent manner thus acting as a molecular switch in HIV-1 restriction 
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Determine if the role of L2 in mediating viral restriction is conserved across species  

Determine if the L2 region of HuTRIM5α governs assembly and N-MLV restriction and 

identify the residues are required for these activities 

Determine if the L2 region of TRIM-Cyp governs assembly and HIV-1 restriction and 

identify the residues that are required for these activities 
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Figure 9:  The L2 region has determinants that are required for rhTRIM5α 

cytoplasmic body formation. A) Domain structure of rhTRIM5α. Numbers outline 

the different domains of the protein. WT and the various C-terminal truncation 

mutants are shown. B) HeLa cells were transiently transfected with GFP-labeled wt 

rhTRIM5α or the truncation mutants. Cells were allowed to adhere to fibronectin 

treated coverslips, fixed and imaged using a fluorescent microscopy.  
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CHAPTER IV 

RESULTS 

The Linker 2 (L2) region has determinants that govern rhTRIM5α assembly and 

HIV-1 restriction 

This aim tests the hypothesis that the ability of rhTRIM5α to form cytoplasmic 

bodies is required for HIV-1 restriction. Additionally, this aim focuses on identifying the 

residues within the L2 region that govern the ability of rhTRI5α to form cytoplasmic 

bodies. 

Two discrete stretches of residues within the L2 region are required for 

rhTRIM5α cytoplasmic body formation and HIV-1 restriction 

Our preliminary data suggested that the 15 amino acid stretch (AA 263-278) that 

lies within the L2 region is required for rhTRIM5α cytoplasmic body formation.  In order 

to identify the specific residues that are required for rhTRIM5α cytoplasmic body 

formation we performed triple alanine mutagenesis to generate L2 variants in which 

stretches of three residues within the stretch 263-278 were replaced with alanine (Figure 

10A). We reasoned that if we could identify the L2 variants of rhTRIM5α that failed to 

localize to cytoplasmic bodies, we could test their ability to restrict HIV-1 infection. The 
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wild type (wt) and the triple alanine L2 variants were cloned into a retroviral vector 

expressing a yellow fluorescent protein (YFP) tag in order to generate N-terminal YFP-

fusion forms of these proteins. These proteins were then stably expressed in HeLa cells 

and the cell lines expressing comparable amounts of protein were chosen for subsequent 

experiments. We first determined the effect of these triple alanine mutations on the ability 

of rhTRIM5α cytoplasmic body formation, in the context of the full-length protein. The 

sub-cellular localization of YFP-labeled wt rhTRIM5α and the L2 variants was 

determined by fluorescent microscopy (Figure 10B). We observed that YFP-labeled wt 

rhTRIM5α formed cytoplasmic bodies as previously described [185] (Figure 10B). Triple 

alanine mutagenesis of two stretches of residues within the L2 region, induced a diffuse 

localization in cells expressing these L2 mutants and had very few cytoplasmic bodies, if 

any (KPK266AAA (KPK) and RRV275-277AAA (RRV). Conversely, alanine 

mutagenesis of the residues between the two stretches above (TFH269-271AAA (TFH) 

and HKN271-273AAA (HKN)) generated mutants which retained the ability to form 

cytoplasmic bodies (Figure 10B).  

We next tested the ability of these L2 mutants to restrict HIV-1 infection. 

Equivalent numbers of HeLa cells stably expressing YFP-labeled wt or L2 variant 

rhTRIM5α proteins were infected with serial dilutions of HIV-1 expressing GFP 

following infection (HIV-1 GFP reporter virus) [48, 192]. The percentage of GFP  

 



77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10A-C: L2-mediated assembly of rhTRIM5α is required for HIV-1 restriction. 

A) Residues 263-278 within the L2 region of rhTRIM5α are shown. Residues highlighted in 

black and dark grey were replaced by alanine. B) HeLa cells stably transduced with YFP-

labeled wt rhTRIM5α or the indicated L2 variants were allowed to adhere to fibronectin 

treated coverslips, fixed and 20 Z-stack images were acquired using a DeltaVision 

fluorescent microscope. Representative deconvolved images are shown. C) Equivalent 

numbers of the stable cells were plates in a 24-well plate and infected with serial dilutions 

of VSV-g pesudotyped HIV-1 expressing GFP for 14hrs. Cells were harvested 48 hpi and 

the percentage of GFP positive cells was determined by Flow Cytometry. Results are 

representative of 3 independent experiments.  
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positive cells was determined by FACS analysis 48 hpi. Our results show that cells 

expressing the KPK and RRV mutants that did not form cytoplasmic bodies, were unable 

to restrict HIV-1 infection and were as infected as the untransduced control HeLa cells 

(Figure 10C). The TFH and HKN mutants on the other hand that retained the ability to 

form cytoplasmic bodies, were able to restrict HIV-1 infection at least up to the levels of 

wt rhTRIM5α (Figure 10C). This suggests that although preexisting cytoplasmic bodies 

are not required for HIV-1 restriction as previously suggested, the ability of rhTRIM5α to 

assemble into cytoplasmic bodies in the presence of restriction sensitive virus is essential 

for its anti-retroviral activity. Additionally, two discrete stretches of residues within the 

L2 region are required for rhTRIM5α cytoplasmic body formation and HIV-1 restriction. 

Similar results were observed with cells stable expressing HA-tagged wt and L2 variant 

rhTRIM5α proteins (Figure 10D and E).  
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Figure 10D-E: L2-mediated assembly of rhTRIM5α is required for HIV-1 

restriction. D) HeLa cells stably transduced with HA-labeled wt rhTRIM5α or the 

indicated L2 variants were allowed to adhere to fibronectin treated coverslips, fixed 

and 20 Z-stack images were acquired using a DeltaVision fluorescent microscope. 

Representative deconvolved images are shown. E) Equivalent numbers of the stable 

cells were plates in a 24-well plate and infected with serial dilutions of VSV-g 

pesudotyped HIV-1 expressing GFP for 14hrs. Cells were harvested 48 hpi and the 

percentage of GFP positive cells was determined by Flow Cytometry. Results are 

representative of 3 independent experiments.  
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Proteasome inhibition does not affect the ability of rhTRIM5α L2 variants to 

restrict HIV-1 infection 

Wu et al. demonstrated that treatment of rhTRIM5α expressing cells with the 

proteasome inhibitor MG132 results in accumulation of rhTRIM5α into cytoplasmic 

bodies that are larger than those observed in untreated cells [109]. This study also showed 

that inhibition of proteasome function using MG132 relieves rhTRIM5α-mediated block 

to reverse transcription without affecting viral restriction [109]. We therefore tested the 

effect of MG132 treatment on the cytoplasmic body formation and HIV-1 restriction 

abilities of the L2 variants. HeLa cells stably expressing YFP-labeled wt and L2 variant 

rhTRIM5α proteins were treated with MG132 (1ug/mL) for 5 hrs and their sub-cellular 

localization was observed by fluorescent microscopy. Cells expressing wt rhTRIM5α 

upon treatment with MG132 had larger cytoplasmic bodies as compared to untreated cells 

(Figure 11A) as previously described [109]. Interestingly, all the L2 mutants tested, 

including the diffuse mutants KPK and RRV, localized to large cytoplasmic bodies 

following MG132 treatment (Figure 11A). Since the KPK and RRV diffuse mutants 

formed cytoplasmic bodies in the presence of MG132 we asked if they could restrict 

HIV-1 infection under these conditions. Equivalent number of cells were pre-treated with 

MG132 for 5 hours and then infected with serial dilutions of the HIV-1 GFP reporter 

virus for 5 hours in the presence of MG132. The percentage of GFP positive cells was 

determined by FACS analysis 48 hpi. WT rhTRIM5α restricted HIV-1 infection both in 
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the presence and absence of MG132 (Figure 11B), as previously described [109]. The 

RRV mutant was unable to restrict viral infection upon MG132 treatment in spite of 

localizing to cytoplasmic bodies (Figure 11B). The KPK mutant exhibited partial 

restriction of the virus when treated with MG132 (Figure 11B). MG132 treatment did not 

affect the ability of the TFH and HKN L2 variants to restrict HIV-1 (Figure 11B). This 

suggests that inhibition of the proteasome does not influence the ability of the rhTRIM5α 

L2 variants to restrict HIV-1 infection. The large cytoplasmic bodies observed upon 

MG132 treatment most likely do not participate in the restriction process. This is 

consistent with the hypothesis that it is not the preexisting cytoplasmic bodies but the 

ability of rhTRIM5α to form cytoplasmic bodies is essential for HIV-1 restriction.   
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Figure 11: Proteasome inhibition does not affect the ability of rhTRIM5α L2 

variants to restrict HIV-1 infection. A) HeLa cells stably expressing YFP-labeled 

wt rhTRIM5α or the L2 variants were allowed to adhere to fibronectin treated 

coverslips and treated with MG132 (1ug/mL ) for 5 hrs. The cells were then fixed and 

imaged as described above. B) Equivalent numbers of cells were plated in a 24-well 

plate and pre-treated for 5 hrs with MG132 (1ug/mL). The cells were then infected 

for an additional 5 hrs in the presence of MG132 after which the virus was replaced 

with DMEM. 48 hpi cells were harvested and the percentage of GFP+ cells was 

determined by flow cytometry. Data is representative of 2 independent experiments. 
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L2 mutations that disrupt cytoplasmic body formation do not interfere with 

rhTRIM5α dimerization and higher-order multimerization 

We next assessed if the mutations that we introduced in the L2 region were 

grossly affecting the conformation or folding of rhTRIM5α. Previous studies have 

observed lower and higher-order multimers of rhTRIM5α on denaturing polyacrylamide 

gels by biochemically crosslinking cellular proteins with Ethylene glycol 

bis(succinimidylsuccinate) EGS or glutaraldehyde [85, 87, 141, 142]. In order to test the 

ability of the L2 variants to multimerize we performed biochemical crosslinking of the 

L2 variants with increasing concentrations of glutaraldehyde. Lysates of HeLa cells 

stably expressing YFP-labeled wt rhTRIM5α or the L2 variants were treated with 

increasing concentrations of glutaraldehyde and the crosslinked proteins were separated 

on denaturing polyacrylamide gels and analyzed by western blotting. All the L2 mutants 

including the diffuse KPK and RRV mutants formed formed multimers at higher 

concentrations of glutaraldehyde (appear as a smear on a 4-15% gradient SDS-PAGE gel) 

(Figure 12). We observed a band around 150kDa (dimer) and a second, more prominent 

band around 250kDa (higher-order multimer) (Figure 12).  This result suggests that the 

triple alanine mutations introduced in the L2 region do not affect the ability of rhTRIM5α 

to form dimers and higher-order multimers. However, this gel does not allow for a 

stronger conclusion because it is known that crosslinked TRIM5 migrates with an 

electrophoretic mobility inconsistent with the molecular weight of the cross linked  
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Figure 12: Mutation of residues in the L2 region does not disrupt rhTRIM5α 

dimerization and higher-order multimerization. Equivalent numbers of HeLa 

cells stably expressing YFP-labeled wt rhTRIM5α or the L2 variants were lysed 

and the lysates were centrifuged at 3000 rpm for 1 min. at 4
o
C. Clarified lysates 

were treated with 0, 1, 2 or 4 mM glutaraldehyde for 5 min. at room temperature. 

The glutaraldehyde was then saturated by adding 1M Glycine. The samples were 

then analyzed by western blotting. The sizes of the monomer (75kDa) and the 

different oligomeric species observed are indicated. Results are representative of 3 

independent experiments.  
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species [86, 87]. Similar results were observed using HA-tagged wt and L2 variant 

rhTRIM5α proteins by our collaborator Dr. Diaz-Griffero, suggesting that the multimeric 

species observed on crosslinking is not specific for one type of epitope tag. 

L2 mutations that do not disrupt cytoplasmic body formation seem to 

enhance rhTRIM5α assembly 

In order to quantitatively compare the ability of the L2 variants to form 

cytoplasmic bodies to that of wt rhTRIM5α we acquired 20 Z-stack images of each cell 

line using fluorescence microscopy. Cells stably expressing YFP-labeled rhTRIM5α 

proteins were used for this analysis as the YFP fluorescent tag made imaging and 

cytoplasmic body quantification easier. We next used our image analysis software Imaris, 

to identify cytoplasmic bodies in each cell using fixed fluorescence and volume 

definitions. This allowed us to quantify the number of cytoplasmic bodies present in each 

cell for each cell line in an unbiased and automated manner. In agreement with the 

immunofluorescence data our automated image analysis showed that cells expressing the 

RRV mutant had no cytoplasmic bodies (Figure 13A). The KPK mutant had very few 

cytoplasmic bodies per cell as compared to the wt protein however; this mutant showed a 

statistically significant increase in body formation as compared to the RRV mutant 

(p<0.0001). This suggests that while the KPK mutant appears to have a reduced ability to 

assemble into cytoplasmic bodies it retains a higher ability to form bodies than the RRV 

mutant. Cells expressing the TFH and HKN mutants seemed to have more cytoplasmic 
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bodies per cell as compared to those expressing wt rhTRIM5α (Figure 13A). One 

explanation for the increase in the number of cytoplasmic bodies observed in cells 

expressing the TFH and HKN mutants could be that these mutants were expressed at a 

higher level as compared to wt rhTRIM5α. The second possibility could be that the TFH 

and HKN mutants were more stable and were being turned over at a slower rate than wt 

rhTRIM5α. The KPK and RRV diffuse mutants on the other hand were possibly less 

stable and being turned over faster than the wt protein. 

Cytoplasmic body formation by the L2 mutants does not correlate with their 

turnover rate in cells 

We first tested if the differences in the localization of the L2 mutants correlated 

with their relative stability in cells by analyzing the ability of these mutants to turnover in 

cells following cyclohexamide treatment. Cyclohexamide inhibits protein synthesis by 

blocking translation elongation hence, if cytoplasmic body localization of the L2 mutants 

correlates with their altered stability in cells, then we would expect the KPK and RRV 

diffuse mutants to be turned over faster than and the TFH and HKN mutants would be 

turned over at the same rate as wt rhTRIM5α. However, we observed that rate of turnover 

of the RRV (diffuse) and TFH (forms cytoplasmic bodies) mutants was reduced as 

compared to wt rhTRIM5α while that of the KPK (diffuse) and HKN (forms bodies)  
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Figure 13: The increased ability of the L2 variants to assemble into 

cytoplasmic bodies does not correlate with their turnover. A) Quantification of 

the number of cytoplasmic bodies formed by wt rhTRIM5α and the L2 variants. 20 

Z-stack images of HeLa cells stably expressing YFP-labeled wt rhTRIM5α or the 

L2 variants were acquired using identical parameters, deconvolved and analyzed 

using Imaris image analysis software. Fixed fluorescent intensity and size criteria 

were applied to all images to determine the total number of cytoplasmic bodies per 

cell. The average number of cytoplasmic bodies per cell in all 20 images is plotted 

for each cell line. Error bars represent the SEM. B) Representative western blot 

showing steady-state protein levels of the YFP-labeled wt and L2 variant TRIM5α 

proteins. HeLa cells stably expressing the indicated proteins were lysed and the cell 

lysates were analyzed by SDS-PAGE. WT and mutant TRIM5α proteins were 

detected by western blotting with a monoclonal mouse anti-GFP antibody. Actin 

was used as a loading control. C) HeLa cells stably expressing YFP-labeled wt and 

L2 variants rhTRIM5α proteins were treated with cyclohexamide for the indicated 

time period after which the cells were lysed, and YFP-expression was analyzed by 

western blotting. Samples were normalized to include an identical amount of total 

protein. D) Densitometric analysis of the samples shown on the top panel. Results 

are representative of 3 independent experiments. 
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mutants was similar to wt rhTRIM5α (Figure 13C and D). Thus, while one diffuse mutant 

and one mutant that formed bodies exhibited slower turnover kinetics, the other mutants 

seemed to turnover at the same rate as the wt protein. This indicates that the cytoplasmic 

body localization of the rhTRIM5α L2 mutants does not depend on their turnover rate in 

cells. 

The tendency of rhTRIM5α to assemble into cytoplasmic bodies directly 

correlates with its HIV-1 restriction ability 

We next determined the steady-state expression levels of the wt and L2 variant 

rhTRIM5α proteins by western blotting and found that all the L2 variants were expressed 

at slightly higher levels as compared to wt rhTRIM5α (Figure 13B). Additionally, during 

our image analysis we noticed heterogeneity in cytoplasmic body formation within each 

cell line. Typically, cells expressing more protein would have more cytoplasmic bodies as 

compared to those with lower protein expression. This suggested that formation of 

cytoplasmic bodies by rhTRIM5α was dependent on two main factors namely, 1) the 

ability of the protein to form cytoplasmic bodies and 2) intracellular protein expression.  

As shown in figure 10, the ability of rhTRIM5α to form cytoplasmic bodies is 

governed by determinants in the L2 region (Figure 10B) and is critical for HIV-1 

restriction (Figure 10C). However, the variability in expression levels observed between 

cells was background noise in our assay. In order to eliminate this background noise and 
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to confirm that the increased ability of the TFH and HKN mutants to assemble was not 

due to their higher expression in cells, we calculated the relative intracellular protein 

expression of wt and mutant rhTRIM5α proteins in each cell. Western blot analysis 

measures the total protein expression of an entire population of cells. Hence, using 

fluorescent microscopy and our image analysis software we developed a new method to 

measure protein expression in each cell. Briefly, cells expressing YFP-labeled 

rhTRIM5α, wt and L2 variants, were allowed to adhere to fibronectin treated coverslips, 

fixed and stained for cortical actin using TexasRed Phalloidin. Z-stack images were 

acquired for each cell line as described earlier and deconvolved images were analyzed 

using Imaris. We constructed 3D surfaces around individual cells by utilizing the actin 

staining and determined the total YFP fluorescence within each cell (Figure 14A). The 

total YFP fluorescence corresponds to the total YFP-rhTRIM5α protein in that cell. We 

also measured the volume of that surface which corresponds to the volume of that cell. 

The relative intracellular protein expression was calculated by dividing the total YFP-

fluorescence value by the cell volume (see Equation). The total number of cytoplasmic 

bodies per cell was also quantified as described in figure 13A. The total number of 

cytoplasmic bodies per cell was normalized to the relative protein expression for each 

cell line. Our results show that at similar relative expression levels the TFH and HKN 

mutants exhibit a significantly higher tendency to assemble into cytoplasmic bodies as 

compared to wt rhTRIM5α (p<0.001) (Figure 14B).  
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Since the ability of rhTRIM5α to form cytoplasmic bodies is required for HIV-1 

restriction (Figure 10C) we hypothesized that the TFH and HKN mutants, that have a 

higher tendency to assemble into cytoplasmic bodies, would exhibit increased HIV-1 

restriction ability as compared to rhTRIM5α. To test this hypothesis we generated seven 

different cell lines stably expressing either YFP-labeled wt rhTRIM5α or the TFH or 

HKN L2 variants and infected them with increasing titers of the HIV-1 GFP reporter 

virus. An average of all seven cell lines is shown in Figure 14C. We observed that cells 

expressing the TFH and HKN mutants were significantly less infected as compared to 

those expressing wt rhTRIM5α (Figure 14C). This suggests that the tendency of 

rhTRIM5α to assemble into cytoplasmic bodies directly correlates with its ability to 

restrict HIV-1 infection, at least in the context of the TFH and HKN L2 variants.  
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Figure 14: The tendency of rhTRIM5α to assemble directly correlates with its 

ability to restrict HIV-1. A) Quantification of the number of rhTRIM5α 

cytoplasmic bodies per cell normalized to its relative expression. HeLa cells stably 

expressing YFP-labeled rhTRIM5α (WT, TFH or HKN) were allowed to adhere to 

fibronectin treated coverslips, fixed and stained for cortical actin using TexasRed 

Phalloidin to visualize the cell periphery. Z-stack images were acquired for each 

cell line (n=45/cellline) as described before and deconvolved images were 

analyzed using Imaris. Using fixed intensity of TRITC and size criteria a 3D 

surface was constructed around an individual cell (lower panel). For each surface 

the sum intensity in the FITC channel and volume were measured. The relative 

YFP-rhTRIM5α concentration in each cell was calculated by dividing the sum YFP 

intensity by the volume. In the same manner untransduced HeLa cells were stained 

with TexasRed Phalloidin and 15 Z-stack images were acquired and analyzed. The 

relative YFP expression for each cell was calculated and the average was 

subtracted from the relative rhTRIM5α concentration of each cell. B) The total 

number of cytoplasmic bodies per cell was determined as described before. The 

graph shows the number of cytoplasmic bodies per cell normalized by the relative 

protein expression for the indicated proteins. C) HeLa cells stably expressing the 

indicated YFP-rhTRIM5α proteins were infected with increasing titers of the HIV-

1 GFP reporter virus as described before.  
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Mutations in the L2 region do not affect the ability of rhTRIM5α to bind in 

vitro assembled HIV-1 CA complexes.  

The binding of rhTRIM5α to HIV-1 cores has been previously demonstrated 

using cell lysates or purified recombinant rhTRIM5α proteins and in vitro assembled 

HIV-1 CA and CA-NC complexes [15, 86, 89, 92, 193]. We used in vitro assembled 

tubular assemblies of purified recombinant HIV-1 capsid protein to test if the ability of 

rhTRIM5α to assemble into cytoplasmic bodies influences its ability to bind the HIV-1 

capsid. Stremlau et al. previously demonstrated that rhTRIM5α-bound HIV-1 capsid can 

be pelleted through a 70% sucrose cushion following ultracentrifugation [108]. We used 

a similar assay to test if the ability of the rhTRIM5α L2 mutants to bind in vitro 

assembled the HIV-1 capsid. HA-tagged wt and L2 variant rhTRIM5α proteins incubated 

with the HIV-1 tubular assemblies were centrifuged through a 65% sucrose cushion. The 

amount of rhTRIM5α proteins that reached the bottom of tube in the presence and 

absence of the HIV-1 capsid following the centrifugation was analyzed by western 

blotting. Our results show that HA-tagged wt rhTRIM5α was detected in the pellet 

fraction collected from beneath the sucrose cushion only in the presence of HIV-1 capsid 

(Figure 15), as described by previous studies. The L2 mutants that retain the ability to 

form cytoplasmic assemblies (TFH and HKN) were also present in the pellet fraction in 

the presence of capsid (Figure 15). Surprisingly, the RRV mutant, that does not form 

assemblies was also detected in the pellet fraction (Figure 15), suggesting that mutations 
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in the L2 region that disrupt the ability of rhTRIM5α to assemble into cytoplasmic bodies 

do not affect its ability to bind the HIV-1 capsid. This suggests that the L2 region is 

required but not sufficient for the formation of rhTRIM5α assemblies around the HIV-1 

core.  

 

 

 

 

 

 

 

 

 

 

  



    94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: L2 mutations that enhance rhTRIM5α assembly and HIV-1 

restriction do not affect the ability of rhTRIM5α to bind in vitro assembled 

HIV-1 capsids. In vitro TRIM5α binding to HIV-1 CA. CAwas assembled in vitro 

and mixed with lysates from 293T cells transfected with the relevant HA-TRIM5α-

expressing plasmid constructs. Capsids were separated from soluble proteins by 

ultracentrifugation through a sucrose cushion and analyzed by Western blotting 

using CA and HA antibodies (pellet). A fraction of the pre-centrifugation mix was 

analyzed by Western blot for CA content (input). 
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CHAPTER V 

The L2 region has secondary structural motifs that mediate rhTRIM5α assembly 

around the HIV-1 core 

In order to further characterize the role of the L2 region in mediating rhTRIM5α 

assembly and HIV-1 restriction we generated triple alanine mutants of the entire L2 

region (residues 234-278) and tested the effect of these mutations on rhTRIM5α 

assembly and HIV-1.  

Two additional stretches of residues within the L2 region seem to facilitate 

rhTRIM5α assembly and HIV-1 restriction 

In addition to the KPK and RRV regions we found two other stretches of residues which 

when substituted with alanine (RLQ240-242AAA and LQG249-251AAA) seemed to 

partially disrupt the ability of rhTRIM5α to form cytoplasmic bodies. While the RLQ and 

LQG L2 variants formed cytoplasmic bodies, their ability to do so was reduced as 

compared to wt rhTRIM5α (Figure 16A). The other variants tested formed cytoplasmic 

bodies at levels similar to wt rhTRIM5α. These cells were infected with serial dilutions of 

the GFP reporter virus and the percentage of GFP positive cells was determined 48 hpi as 

described earlier. As expected, cells expressing the RLQ and LQG L2 variants exhibited 

abrogated HIV-1 restriction ability as compared to wt rhTRIM5α (Figure 16B). The L2  
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Figure 16: Identification of residues within the L2 region that partially disrupt 

rhTRIM5a assembly and HIV-1 restriction. A) Triple alanine mutagenesis of 

residues 234-251 of the L2 region. HeLa cells stably expressing YFP-labeled the 

indicated L2 variants were allowed to adhere to fibronectin treated coverslips, fixed 

and 20 Z-stack images were acquired using a DeltaVision fluorescent microscope. 

Representative deconvolved images are shown. B) Equivalent numbers of the stable 

cells were plated in a 24-well plate and infected with serial dilutions of VSV-g 

pesudotyped HIV-1 GFP reporter virus for 14hrs. Cells were harvested 48 hpi and 

the percentage of GFP positive cells was determined by Flow Cytometry. Results 

are representative of 3 independent experiments. 
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variants that retained the ability to form cytoplasmic bodies, restricted HIV-1 infection 

(Figure 16B).  

Single residue substitutions within the L2 region do not affect the assembly 

or HIV-1 restriction abilities of rhTRIM5α 

In order to identify the specific residues that govern rhTRIM5α assembly we 

replaced individual residues within the L2 region with alanine and determined the ability 

of these L2 variants to assemble into cytoplasmic bodies. HeLa cells stably expressing 

YFP-labeled single residue substitutions of the L2 region were generated and their sub-

cellular localization was observed by fluorescence microscopy as described earlier. 

Surprisingly, none of the single residue substitutions tested affected the ability of 

rhTRIM5α to form cytoplasmic bodies (Figure 17A). Moreover, when these cells were 

infected with serial dilutions of the HIV-1 GFP reporter virus, none of the mutations 

seemed to affect the ability of rhTRIM5α to restrict HIV-1 infection (Figure 17B). 

However, as described earlier, mutation of stretches of three residues within the L2 

region resulted in either a complete or partial loss of rhTRIM5α assembly and HIV-

1restriction (RLQ, LQG, KPK and RRV variants) or in some cases enhanced these 

abilities (TFH and HKN variants) of the protein.   

Based on these data we hypothesized that the L2 region has secondary structural 

motifs that are required for rhTRIM5α assembly by mediating protein-protein 

interactions. Mutation of stretches of three residues either disrupts or stabilizes these 

motifs. This in turn results in the loss or enhancement of the tendency of rhTRIM5α to  
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Figure 17: Substitution of individual residues within the L2 region with 

alanine does not disrupt rhTRIM5a assembly or HIV-1 restriction. A) 

Determination of sub-cellular localization of the single alanine variants of 

rhTRIM5a. HeLa cells stably expressing YFP-labeled wt or the indicated L2 

variants were allowed to adhere to fibronectin treated coverslips, fixed and 20 

Z-stack images were acquired using a DeltaVision fluorescent microscope. 

Representative deconvolved images are shown. B) Determination of the ability 

of single alanine L2 variants of rhTRIM5a to restrict HIV-1 infection. 

Equivalent numbers of the stable cells were plated in a 24-well plate and 

infected with serial dilutions of VSV-g pesudotyped HIV-1 GFP reporter virus 

for 14hrs. Cells were harvested 48 hpi and the percentage of GFP positive cells 

was determined by Flow Cytometry. Results are representative of 3 independent 

experiments. C) Helical wheel depiction of residues 263-285 of rhTRIM5α L2 

region. Positively and negatively charged residues are shown in black and light 

grey respectively, nonpolar residues are shown in dark grey and polar, 

uncharged residues are shown in white. Data representative of 3 independent 

experiments. 
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form assemblies. Depiction of residues of the L2 region in the form of a helical wheel 

diagram shows two interfaces, one predominantly consisting of positively and negatively 

charged residues and the second consisting of uncharged polar and non-polar residues 

(Figure 17C). However, based on solely the primary amino acid sequence of the L2 

region a secondary structure cannot be predicted for this region. 

The CCL2 region of rhTRIM5α has a predominantly α-helical conformation 

We next used CD Spectroscopy to analyze the structure of the CC-L2 and L2 

regions of rhTRIM5α.  We generated 6X His-tagged constructs of the CCL2 fragment 

(AA 134-296) of wt rhTRIM5α or its L2 variants. These constructs were transformed into 

bacterial cells, the protein was induced using IPTG and individual proteins were affinity 

purified. We then used Circular Dichroism (CD) Spectroscopy to determine the 

secondary structure of these peptides. Our results show that all the CCL2 peptides, wt and 

the L2 variants had a predominantly α-helical conformation. Interestingly, the CCL2 

peptides harboring the TFH and HKN mutations had a higher α-helical content (TFH 

81%; HKN 88%) as compared to the wt peptide (74%) (Figure18). The minima at 222nm 

and 208nm are characteristic of proteins with α-helical conformation. On the other hand, 

the CCL2 peptide harboring the RRV mutation had a lower α-helical content (61%) as 

compared to the wt peptide (74%) (Figure18). It is interesting to note that the RRV CCL2 

peptide is about 61% α-helical. Since the coiled-coil domain, which is predominantly α-

helical, makes up ~63% of the entire CCL2 peptide we can assume that the coiled-coil 

domain alone is responsible for the α-helical conformation of the RRV CCL2 peptide.  
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The L2 region undergoes a coil-to-helix transition in the presence of 2,2,2-

trifluoroethanol (TFE) 

We next determined the secondary structure of the L2 region alone (AA 234-296) 

of rhTRIM5α. We acquired synthetic peptides, wt and those containing the TFH, HKN 

and RRV mutations, from Bio-synthesis, Inc. and analyzed them by CD Spectroscopy. In 

 

 

 

Figure 18: The CC-L2 peptide of rhTRIM5α has an a-helical conformation. A) 

CD Spectroscopic analysis of purified CC-L2 peptides of rhTRIM5α. 6X His-

tagged CC-L2 peptides of the wt and L2 variant rhTRIM5α proteins were expressed 

in BL21 cells and affinity purified using Talon cobalt resin. The purified peptides 

were analyzed by CD Spectroscopy at 20
o
C and the spectra were normalized by the 

peptide concentrations. B) The total helix content for each peptide was calculated 

using ContinLL. Data representative of 3 independent experiments. 
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the absence of TFE each of the L2 peptides generated CD spectra that are characteristic 

of partially unstructured proteins (minima at 222nm and 205nm) (Figure 19A). However, 

in the presence of 10% TFE each of the L2 peptides generated minima at 222nm and 

208nm characteristic of proteins with a predominantly α-helical conformation (Figure 

19B). These results suggest that the L2 region has a propensity to form α-helices. These 

helices are stabilized in the presence of 10% TFE. In the context of the full-length 

protein, the α-helical conformation of the L2 region is most likely stabilized by the 

coiled-coil domain.  

The L2 region forms α-helices in a concentration dependent manner 

A recent study demonstrated that SP1, a small spacer present between the CA and 

NC in HIV-1 Gag, that is required for Gag assembly undergoes a conformation change to 

form an α-helix in the presence of TFE [194]. They saw a similar coil-to helix transition 

when high peptide concentrations were used, suggesting that SP1 assumes α-helical 

conformation in a concentration dependent manner thus acting as a molecular switch in 

Gag assembly. Since TRIM5α forms cytoplasmic bodies in a concentration dependent 

manner we asked if this increased ability to assemble at higher protein concentrations 

was due to stabilization of α-helical conformation of the L2 region. In order to test if the 

L2 region formed α-helices in a concentration dependent manner, analyzed two different 

concentrations of the wt L2 peptide (1mg/mL and 100ug/mL) by CD spectroscopy in the 

presence of increasing amounts of TFE. We reasoned that if peptide concentration 

influenced the α-helical conformation of the L2 region then the requirement of TFE for  
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induction of α-helices would be reduced at higher concentrations of the peptide. As 

shown in figure 20, we determined the secondary structure of the wt L2 peptide in the 

presence of 0, 5, 6, 7, 8, 9, and 10% TFE. We found that in the absence of TFE the 

1mg/mL peptide was about 15% α-helical. When the peptide was diluted 10-fold the α- 

 

 

 

Figure 19: The L2 peptide of rhTRIM5a undergoes a coil-to-helix transition in 

the presence of 10%TFE . A) CD Spectra of synthetic L2 peptides of rhTRIM5. 

The L2 peptides of wt and L2 variants of rhTRIM5a were resuspended in 

appropriate buffer and analyzed by CD Spectroscopy at 20
o
C. The spectra were 

normalized by the peptide concentrations. B) 10% TFE was added to each peptide 

immediately before analysis. The spectra were normalized by the peptide 

concentrations. Data representative of 2 different experiments. 
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helicity was only ~8%. Similarly, when increasing amounts of TFE were added the 

1mg/mL peptide was consistently more α-helical as compared to the 100ug/mL peptide. 

This suggests that peptide concentration does play a role in the induction of α-helical 

conformation of the L2 region. In a cell a local increase in rhTRIM5α concentration 

would be observed when the protein multimerizes and assembles around the HIV-1 core.  

 

 

 

Figure 20: Concentration dependent changes in secondary structure of wt 

rhTRIM5α L2 peptide. WT L2 peptide at 1mg/mL and 100ug/mL concentration 

were analyzed by CD Spectroscopy in the presence of the indicated amounts of 

TFE. CD spectra were acquired in triplicates at 20
o
C and normalized by peptide 

concentration. The total amount of helix was calculated using ContinLL. Data 

representative of 2 independent experiments 
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CHAPTER VI 

The role of Linker 2 region in TRIM5α-mediated retroviral restriction is conserved 

across species 

Other TRIM5 proteins such as huTRIM5α and Owl monkey TRIM-Cyp are also 

known to localize to cytoplasmic bodies. However, the functional significance of these 

cytoplasmic bodies in retroviral restriction by these TRIM5 proteins is unknown. We 

asked if the L2 region of huTRIM5α and TRIM-Cyp mediate retroviral restriction. An 

alignment of the L2 regions of huTRIM5α and TRIM-Cyp with that of rhTRIM5α shows 

that these regions share a high sequence similarity (Figure 21).  

The L2 region of huTRIM5α has determinants that are required for 

restriction of N-MLV infection 

Human TRIM5α potently restricts N-MLV but not B-MLV infection. To test if 

the L2 region is required for huTRIM5α-mediated N-MLV restriction we generated triple 

alanine mutants of residues in the L2 region. We first mutated the residues corresponding 

to the KPK, TFH, HKN and RRV stretches in the rhTRIM5α L2 region (Figure 22A). 

Crandell-Rees Feline Kidney (CrFK) cells, that lack intrinsic immunity to a number of 

retroviruses, were used to stably express YFP-labeled wt huTRIM5α and the L2 variants 
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as described for rhTRIM5α. We next infected equivalent number of cells stably 

expressing YFP-labeled wt and mutant huTRIM5α proteins with serial dilutions of VSV-

g pseudotyped N-MLV expressing GFP upon infection (N-MLV GFP reporter virus). The 

cells were also infected with B-MLV GFP reporter virus as a control. Cells expressing 

YFP-labeled huTRIM5α restricted N-MLV infection (Figure 22B). Cells expressing the 

RRV mutant on the other hand were unable to restrict N-MLV infection and level of 

infection in these cells was similar to that observed in case of the control CrFK cells 

(Figure 22B). Interestingly, this stretch of residues (RRV) is conserved between TRIM5α 

proteins from rhesus macaques and humans (Figure 22A). The other L2 variants tested  

 

 

 

 

Figure 21: Representation of the domain organization of TRIM5 proteins. The 

N and C-terminal domains of rhesus TRIM5a, human TRIM5a and Owl monkey 

TRIM-Cyp are shown. Numbers indicate the starting and ending residues of each 

domain.  
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were able to restrict N-MLV infection at levels similar to wt huTRIM5α. Neither wt nor 

the L2 mutants restricted B-MLV infection (Figure 22C). Overall, these results suggest 

that the L2 region plays a role in huTRIM5α-mediated retroviral restriction. The 

determinants that govern this ability are conserved between humans and rhesus 

macaques.  

 

 

 

Figure 22: The role of L2 region in retroviral restriction is conserved between 

rhesus and huTRIM5a proteins. A) Alignment of residues 263-278 of rhTRIM5a 

and the corresponding huTRIM5a residues is shown. Dots indicate same amino 

acid as in rhTRIM5a. B and C) CrFK cells stably expressing YFP-labeled wt and 

L2 variants of huTRIM5a were infected with serial dilutions of VSV-g 

pseudotyped  (B) N-MLV and (C) B-MLV GFP reporter viruses for 14 hrs. Cells 

were harvested 48 hpi and percentage of GFP positive cells was determined by 

flow cytometry. Results are representative of 3 independent experiments.  
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The L2 region is not required for TRIM-Cyp mediated HIV-1 restriction 

In order to test if the L2 region of TRIM-Cyp mediates HIV-1 restriction we 

generated epitope-tagged triple alanine mutants of residues in the L2 region (Figure 23A) 

and stably expressed them in HeLa cells. The ability of these L2 variants to restrict HIV-

1 infection in the presence and absence of cyclosporine A (CsA) was determined as 

described for TRIM5α. CsA prevents the interaction of TRM-Cyp with the HIV-1 capsid 

thus relieving TRIM-Cyp meditated restriction. Equivalent number of cells expressing 

YFP-labeled wt TRIM-Cyp or the L2 variants was infected with serial dilutions of the 

VSV-g pseudotyped HIV-1 GFP reporter virus in the presence and absence of CsA. Our 

results show that none of L2 mutations affected the ability of TRIM-Cyp to restrict HIV-

1 infection (Figure 23B), suggesting that the L2 region of TRIM-Cyp is not required for 

HIV-1 restriction. None of the TRIM-Cyp proteins restricted HIV-1 infection in the 

presence of CsA similar to the wt protein (Figure 23C). Similar observation was made by 

Li et al. using B-Box2 variants. They showed that the B-Box2 residues that are required 

for rhTRIM5α-mediated HIV-1 restriction do not play a role in TRIM-Cyp mediated 

HIV-1 restriction [90]. This could be explained by the relatively higher affinity of CypA 

for the HIV-1 capsid as compared to the SPRY domain. Since the SPRY domain of 

rhTRIM5α has a lower affinity for the HIV-1 capsid, the B-Box2 domain and L2 region  
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increase the overall avidity of the rhTRIM5α-capsid interaction by facilitating higher-

order multimerization and assembly of rhTRIM5α respectively, around the viral core. 

Conversely, since the affinity of TRIM-Cyp to the HIV-1 capsid is higher the B-Box2 

and L2 regions are dispensable for capsid binding. 

 

 

 

Figure 23: The L2 region does not facilitate TRIM-Cyp mediated HIV-1 

restriction. A) Alignment of residues 263-278 of rhTRIM5a and the corresponding 

TRIM-Cyp residues is shown. Dots indicate same amino acid as in rhTRIM5a. B 

and C) HeLa cells stably expressing YFP-labeled wt and L2 variants of TRIM-Cyp 

were infected with serial dilutions of VSV-g pseudotyped HIV-1 GFP reporter 

viruses for 14 hrs. in the (B) absence or (C) presence of cyclosporin A  (CsA). Cells 

were harvested 48 hpi and percentage of GFP positive cells was determined by flow 

cytometry. Results are representative of 3 independent experiments.  
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CHAPTER VII 

DISCUSSION 

Summary 

This study examined the role of the Linker 2 (L2) region in retroviral restriction 

by facilitating the assembly of TRIM5 proteins. We show that the ability of rhTRIM5α to 

assemble into cytoplasmic bodies is required for HIV-1 restriction. Using triple alanine 

mutagenesis we have found determinants in the L2 region that govern rhTRIM5α 

assembly. While some mutations disrupt rhTRIM5α assembly into cytoplasmic bodies 

(KPK and RRV), others enhance cytoplasmic body formation (TFH and HKN). 

Moreover, the L2 variants with a higher tendency to assemble into cytoplasmic bodies, 

exhibit increased HIV-1 restriction ability. This suggests that the tendency of rhTRIM5α 

to form assemblies correlates directly with its anti-HIV-1 activity. This study also 

provides evidence for the presence of secondary structural motifs in the L2 region of 

rhTRIM5α. Using CD spectroscopy we show that the CC-L2 peptide of rhTRIM5α has a 

predominantly α-helical conformation. Moreover, this α-helical conformation seems to be 

stabilized in CC-L2 peptides carrying L2 mutations that increase rhTRIM5α assembly, 

but not in those carrying mutations that disrupt assembly. The L2 peptide by itself seems 

to be partially unstructured however it undergoes a coil-to-helix transition in the presence 

of TFE. This suggests that the L2 region has a propensity to form α-helices and its α-
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helical conformation is stabilized in the presence of TFE. In the context of a full-length 

protein, the α-helical conformation of the L2 region is most likely stabilized by the 

coiled-coil region. Our results also indicate that the L2 region forms α-helices in a 

concentration dependent manner. This suggests that it is possible that the L2 region, 

which is capable of assuming alternative conformations, acts as a switch and undergoes a 

coil-to-helix transition when rhTRIM5α multimerizes. The presence of secondary 

structural motifs within the L2 region has not been reported prior to this study and this 

finding can provide an insight into the mechanism of rhTRIM5α assembly around the 

HIV-1 core, which is one of the initial steps in the HIV-1 restriction process. 

The L2-mediated ability of rhTRIM5α to assemble into cytoplasmic bodies is 

required for HIV-1 restriction 

The role of TRIM5 cytoplasmic bodies has been controversial as two studies 

previously demonstrated that pre-existing TRIM5 cytoplasmic bodies are not required for 

HIV-1 restriction [107, 186]. These studies involved either disruption of rhTRIM5α 

cytoplasmic bodies following geldanamycin treatment or increased recruitment of TRIM-

Cyp to cytoplasmic bodies following treatment with sodium butyrate and testing the 

effect of these treatments on HIV-1 restriction. However, the formation of TRIM5 

cytoplasmic bodies in the presence of restriction sensitive virus was not tested in these 

studies. Conversely, our triple alanine mutagenesis data shows that the L2 variants that 

fail to assemble into cytoplasmic bodies also fail to restrict HIV-1 infection, while those 

that retain the ability to form cytoplasmic body formation restrict HIV-1at least up to WT 

levels (Figure 10). Moreover, Campbell et al. have previously demonstrated that 



111 
 

 

following infection, fluorescently labeled HIV-1 particles accumulate within rhTRIM5α 

cytoplasmic bodies [106] and de novo formation of rhTRIM5α cytoplasmic bodies 

around individual virions has also been observed. Based on these data we can speculate 

that if rhTRIM5α cytoplasmic body formation in geladanamycin treated cells was 

measured following HIV-1 infection we would observe an increase in the number of 

cytoplasmic bodies as compared to the untreated cells. Thus, while the triple alanine 

mutagenesis data clearly shows a correlation between cytoplasmic body formation and 

HIV-1 restriction we do not believe that the pre-existing cytoplasmic bodies play a role in 

the restriction process. Although these studies seem controversial, collectively they 

suggest that although pre-existing cytoplasmic bodies are not required for HIV-1 

restriction, the ability to form these assemblies is essential for restriction.  

This idea is also supported by the observation that although the KPK and RRV 

diffuse L2 mutants form assemblies upon treatment with MG132 they fail to restrict HIV-

1 infection (Figure 11). Moreover, we have generated a cell line that expresses lower 

levels of rhTRIM5α and in turn has very few cytoplasmic bodies. Following infection 

with HIV-1 we observe an increase in the number of rhTRIM5α cytoplasmic bodies in 

these cells (data not shown). Moreover, Campbell et al. have also shown that in cells 

rhTRIM5α exists in two populations, 1) cytoplasmic assemblies and, 2) a fraction that is 

diffusely localized throughout the cell and TRIM5α shuttles between these two 

populations with rapid kinetics [185]. So it is possible that rhTRIM5α dimers recognize 

the incoming HIV-1 capsid cores and recruit more rhTRIM5α dimers which undergo a 
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series of self-association events ultimately leading to the formation of large assemblies 

around the viral core.  

The L2 region mediates the final step in rhTRIM5α self-association: 

Assembly  

It is known that the coiled-coil and B-Box2 domains mediate TRIM5α 

dimerization and higher-order multimerization [85-87, 89, 90, 141]. B-Box2 deletion 

mutants of TRIM5α retain the ability to form dimers [87], suggesting that coiled-coil 

mediated dimerization preceded B-Box2 mediated higher-order multimerization. These 

TRIM5 multimers can be analyzed by biochemical crosslinking of cellular lysates with 

EGS or glutaraldehyde [85-87, 104]. Biochemical crosslinking of the L2 variants with 

increasing concentrations of glutaraldehyde showed that all the L2 variants tested could 

be crosslinked to dimers, irrespective of their ability to form cytoplasmic bodies (Figure 

12). At higher concentrations of glutaraldehyde all the L2 variants, including the diffuse 

KPK and RRV variants, formed higher-order multimers. This suggests that mutation of 

residues in the L2 region does not disrupt the function of the coiled-coil and B-Box2 

domains in mediating lower- and higher-order multimerization of TRIM5α, respectively. 

These results also suggest that the L2 region facilitates the assembly of rhTRIM5α 

higher-order multimers. These assemblies are manifested as cytoplasmic bodies, 

microscopically. Collectively, results from the crosslinking studies suggest that the self-

association of rhTRIM5α is a multi-step process. The first step is dimerization which is 

mediated by the coiled-coil domain. Next, the B-Box2 domain facilitates the higher-order 
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multimerization of rhTRIM5α dimers and finally, the L2 region mediates the assembly of 

these multimers into larger cytoplasmic bodies. 

In 2011, a study by Ganser-Pornillos et al. provided significant insight into the 

mechanism of rhTRIM5α assembly around the HIV-1 caspid [195]. Using negative-stain 

electron microscopy they showed that purified, recombinant rhTRIM5α (TRIM5α-21R) 

assembles into two-dimensional hexagonal arrays. Formation of these assemblies requires 

protein dimerization and higher-order multimerization, and is enhanced in the presence of 

assembled HIV-1 capsid. This study also proposed a model for TRIM5α assembly around 

the viral core by taking into account the size and dimensions of the viral and TRIM5α 

assemblies. In this model the coiled-coil, B-Box2 and L2 regions are shown to facilitate 

TRIM5α assembly around the viral core. The coiled-coil domain is shown to mediate 

formation of TRIM5α dimers. The B-Box2 domain is shown to mediate the formation of 

a trimeric interface of TRIM5α dimers thus generating tripodial protein extensions that 

are required for the formation of a hexameric lattice. Interestingly, in this model the L2 

region has been shown to mediate protein-protein interactions between opposing 

TRIM5α dimers, allowing the B-Box2 domains to align on both sides of each segment of 

the hexameric lattice and facilitating the formation of hexameric assemblies. 

Another possibility is that the L2 region does not mediate the interaction between 

opposing TRIM5α dimers but instead helps orient the B-Box2 and SPRY domains in 

such a manner that is most favorable for the formation of hexagonal assemblies of 

rhTRIM5α. However, a better knowledge of the structural arrangement of the L2 region 

in the context of dimeric and multimeric TRIM5α is critical to understand the exact 
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mechanism by which TRIM5α assembles around the viral core. Nevertheless, it seems 

most likely that TRIM5α binds the viral capsid as a dimer. Following this binding the L2 

region undergoes a coil-helix transition which results in the orientation of the B-Box2 

domains that is most favorable for the formation of assemblies of TRIM5α. Formation of 

a hexagonal lattice of TRIM5α around the viral core in this manner may exert mechanical 

stress on the capsid in turn resulting in abortive disassembly of the capsid.  

 Another possibility is that the L2 region mediates the interaction of TRIM5α with 

one or more cellular proteins that facilitates the formation of TRIM5α assemblies. 

Moreover, the L2 region has a number or charged residues that potentially participate in 

these intra- or inter-molecular interactions. Further characterization of the L2 region is 

required to fully understand the mechanistic basis of these interactions. 

The tendency of rhTRIM5α to assemble correlates with its ability to restrict 

HIV-1 infection  

Comparison of the tendency of the wt, and the TFH and HKN variant rhTRIM5α 

proteins to assemble, at similar protein expression levels, showed that cells expressing the 

TFH and HKN L2 variants had more cytoplasmic bodies as compared to those expressing 

wt rhTRIM5α (Figure 13A). However, this increase was not due to their delayed turnover 

as compared to the wt protein (Figure 13C and D). Assuming the L2 region plays a role 

in protein-protein interactions, it is possible that substitution of the TFH and HKN 

residues with alanine results in a conformation change in the L2 region that stabilizes 

these interactions in turn increasing the tendency of these proteins to form assemblies. 

Next, since we observe a correlation between cytoplasmic body formation and HIV-1 
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restriction we wondered if these L2 variants, that have a higher tendency to assemble, 

would exhibit increased HIV-1 restriction ability. Indeed, when cells expressing these 

proteins were treated with increasing titers of the HIV-1 GFP reporter virus we found that 

cells expressing the TFH ad HKN variants had significantly less infected as compared to 

those expressing wt rhTRIM5α (Figure 14C). This suggests that the tendency of 

rhTRIM5α to assemble into cytoplasmic bodies directly correlates with its ability to 

restrict HIV-1 infection. It would be interesting to test if replacing the L2 region of 

huTRIM5α with that of rhTRIM5α, particularly comprising the TFH and HKN mutations 

would increase its ability to restrict HIV-1 infection.  

The role of L2 region in retroviral restriction is conserved between rhesus 

and human TRIM5α proteins 

We next tested if the L2 regions of other TRIM5 proteins, huTRIM5α and TRIM-

Cyp, are required for their antiretroviral activity. We performed triple alanine 

mutagenesis of the residues in the L2 regions of huTRIM5α and TRIM-Cyp proteins 

corresponding to their rhTRIM5α counterparts and tested their ability to restrict N-MLV 

and HIV-1 restriction, respectively. We found a stretch of three in the L2 region of 

huTRIM5α that are required for N-MLV restriction, suggesting that the role of L2 region 

in mediating retroviral restriction is conserved across species. Interestingly, these 

determinants are conserved between human and rhTRIM5α proteins. In case of TRIM-

Cyp, mutation of residues in the L2 region did not abrogate HIV-1 restriction, suggesting 

that residues in the L2 region do not facilitate TRIM-Cyp mediated HIV-1 restriction. 

Similar results were obtained by the Sodroski laboratory in a study focused on 
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understanding the role of B-Box2 domain in TRIM5α multimerization. They found that 

the B-Box2 residues that are required for HIV-1 restriction by rhTRIM5α are not required 

for TRIM-Cyp mediated HIV-1 restriction [90]. This can be explained by the difference 

in the binding affinities of the CypA and SPRY domains for the HIV-1 capsid. CypA has 

a relatively high affinity for the HIV-1 capsid as compared to the SPRY domain. Hence, 

in case of TRIM5α the B-Box2 domain and L2 region are required to promote 

cooperative binding to the HIV-1 capsid by mediating TRIM5α self-association. In case 

of TRIM-Cyp, however, since the affinity of the CypA-capsid interaction is relatively 

high the B-Box2 domain and L2 region are dispensable for capsid binding.   

The L2 region of rhTRIM5α has secondary structural motifs that are 

required for assembly 

In order to further characterize the role of the L2 region in rhTRIM5α assembly 

and to identify specific residues that are involved in this process we performed single 

residue substitutions. To our surprise, none of the mutations affected thTRIM5α assembly 

or HIV-1 infection (Figure 17A and B). However, mutation of three residues resulted in 

either loss of or in some cases enhancement of the ability of rhTRIM5α to assemble 

(Figure 10). This suggested that the L2 region possibly has secondary structural motifs 

that are either disrupted or stabilized upon mutation of three or more residues. To test this 
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hypothesis we determined the secondary structure of the CC-L2 and L2 peptides of 

rhTRIM5α by CD spectroscopy. Our results show that the CC-L2 peptide of rhTRIM5α 

has α-helical conformation. Importantly, the TFH and HKN CC-L2 peptides have a 

higher helical content and the RRV CC-L2 peptide has a lower helical content as 

compared to wt CC-L2 (Figure 18). This result taken together with the results from the 

cytoplasmic body quantification study suggest that the α-helices present in the L2 region 

mediate rhTRIM5α assembly. These α-helices are possibly stabilized in the TFH and 

HKN mutants resulting in increased assembly. Since the CC-L2 peptide comprising the 

RRV mutation does form α-helices, albeit to a lesser extent (~61%) than that of wt 

(~74%), it is unlikely that the RRV mutation completely destabilizes the α-helix in the L2 

region. It is important to note however, that the coiled-coil domain occupies about 62% 

of the entire CC-L2 peptide and has been predicted to be predominantly α-helical. Hence, 

it is reasonable to speculate that in case of RRV, the coiled-coil domain contributes 

almost entirely to the α-helical conformation of the CC-L2 peptide. Comparing the total 

helical content of the CC-only peptide to that of the RRV CC-L2 peptide at an equivalent 

concentration will provide further evidence for this hypothesis.  

CD spectroscopic analysis of synthetic wt and mutant L2 peptides showed that the 

L2 region of rhTRIM5α is partially unstructured (Figure 19A), but undergoes a coil-to-

helix transition upon addition of 10% TFE (Figure 19B). This suggests that the L2 region 

has a propensity to form α-helices and is capable of assuming alternative conformations. 

We also tested if the L2 region could assume a helical conformation in a concentration 

dependent manner by determining the secondary structure of two different concentrations 
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of the wt L2 peptide in the presence of increasing amounts of TFE. This study showed 

that at a given amount of TFE, the peptide at a higher concentration was more helical as 

compared to that at a relatively lower concentration (Figure 20). This suggests that the L2 

region possibly has a potential to undergo a conformation change, most likely from 

partially unstructured to helical, at higher peptide concentrations.  

Based on these data we can propose a model for the role of L2 region in 

rhTRIM5α assembly. In a TRIM5α dimer the L2 region is most likely partially 

unstructured. Formation of higher-order multimers by the B-Box2 domain brings the L2 

regions of individual TRIM5α dimers in close proximity thus inducing a conformation 

change in the L2 region and stabilizing its α-helical conformation. The α-helices in the 

L2 region can then facilitate TRIM5α assembly by mediating protein-protein interactions. 

The formation of these is enhanced in the presence of a restriction sensitive capsid, as 

clearly demonstrated by Ganser-Pornillos et al. using purified recombinant TRIM5α 

protein [113]. In light of this finding we observe that the L2 region forms α-helices in a 

concentration dependent manner. Thus, based on this and previous studies we 

hypothesize that assembly of rhTRIM5α around the HIV-1 capsid involves the following 

steps: 1) binding of rhTRIM5α dimers via the SPRY domain, 2) followed by B-Box2 

mediated higher-order multimerization, 3) stabilization of the α-helical conformation of 

the L2 region mediating protein-protein interactions between TRIM5 dimers, as 

suggested by Ganser-Pornillos et al. [113], and finally assembly. Another possibility is 

that the 2 regions mediate the interaction between three sets of dimers giving rise to 

three-fold symmetry, as suggested by Li et al. [91]. Alternatively, the L2 region mediates 
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the interaction of TRIM5α with other cellular protein(s). However, more studies are 

needed to test these models to completely understand the mechanism by which the L2 

region participates in protein-protein interactions and assembly of rhTRIM5α.  
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