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ABSTRACT 

 

 With increasing life expectancy, women are now living upwards of 50 years 

without circulating estrogens, therefore, it is essential to investigate how the brain 

is changed by estrogen deprivation and also how aging influences these changes.  

The Women’s Health Initiative (WHI) study spurred rigorous debate regarding 

estrogen therapy for postmenopausal women due to dichotomous effects of 

estrogens in menopausal and post-menopausal women.  Meta-analyses of the WHI 

study revealed that after circulating estrogens are depleted for many years re-

exposure may cause aberrant, negative health effects, indicating that there is an age-

related ‘switch’ in estrogen signaling around menopause. These age-related effects 

of HT expose a gap in scientific knowledge as to how estrogen receptors, ERα and 

ERβ signal when the body is deprived of estrogen and under the natural context of 

aging.  ERβ regulates a number of genes governing grievous symptoms menopausal 

symptoms such as anxiety, depression, and cognitive decline.  Further, alternative 

splice variants derived from ERβ do not bind estrogens as well as ER 1, and 

importantly, ERβ splice variants increase in the brain with age.  I hypothesized that 

altered splice variant signaling contributes to a switch in estrogen signaling around 

the time of menopause.  Herein, I demonstrate that human ER  splice variants are 

constitutively active transcription factors, supporting my hypothesis. I also describe 
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another contribution to ERβ functions in the brain resulting from age and E2-

dependent changes in protein:protein interactions with ERβ.  This dissertation 

reveals 1) the varied transcriptional effects of ERβ alternative splice variants, 2) 

identification of novel ERβ protein interaction partners, 3) how these interactions 

and the expression of these proteins change as a factor of age and 4) the effects of 

changes in these interactions on gene transcription which could be part of the 

switch in molecular signaling of estrogens at the time of menopause. 
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CHAPTER I 

STATEMENT OF THE PROBLEM 

 

With perpetual advances in medical research throughout the last century, the 

average life expectancy for women in the United States has increased ~62% (from 

51 to 81 years of age, 1910 -2010) and continues to climb.  This phenomenon is 

creating a large population of elderly people and an unprecedented set of issues for 

geriatric care.  Adding to this problem, the age at which women experience 

reproductive senescence is not increasing at the rate of life expectancy, creating a 

group of women that will spend one-third of their life in a post-menopausal state 

without high circulating levels of ovarian hormones. 

 The actions of ovarian hormones, thought to be primarily important for 

reproductive processes, are often overlooked in the aged population.  However, the 

primary circulating estrogen, 17β-estradiol (E2) has wide-spread effects on 

homeostasis, stress responses, bone regeneration, neuroprotection, cognition, 

cardiovascular disease and immune responses – all of which are concerns especially 

for aging women.  Therefore the WHI conducted a large-scale, 15 year study that 

was aimed at directly investigating the impact of ovarian hormone replacement on a 

variety of health issues.  The study was suspended prematurely in 2002, due to 
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negative health consequences that were arising as a direct result of the study.  

Participants that received combined treatment of conjugated equine estrogens (CEE, 

a mixture of estrogenic compounds) plus medroxyprogesterone acetate (MPA) 

experienced the most detrimental effects, however the CEE alone group experienced 

increased risk for stroke and blood clots, and no difference in myocardial infarction, 

colorectal cancer and breast cancer risk (Rossouw et al., 2007; Rapp et al., 2003).  

The only positive effect of estrogens in this study was a reduced risk for bone 

fracture.  These results came as a complete surprise to the medical and basic science 

communities, and were soon dissected to understand the discrepancies between 

previous studies and the newest and largest study to evaluate hormone therapy.   

Arguably, the greatest discovery from post-study analyses was a 

dichotomous effect of aging and/or length of estrogen deprivation. WHI participants 

were on average 63 years of age, approximately 10 years past the menopausal 

transition, with about 20% of participants over the age of 70.  Secondary analysis of 

the data from this study suggests that early intervention is critical to the benefits of 

estrogen therapy (ET) as participants who were between 50-59 had a reduced 

absolute risk of coronary heart disease (CHD), stroke and total mortality compared 

to older postmenopausal participant (Rossouw et al., 2007; Rapp et al., 2003).  

Finally, the Kronos Longevity Research Institute (KLRI) conducted a 4 year double 

blind placebo-based study that evaluated the effects of early ET for peri-menopausal 

women on cardiovascular disease, cognition and mood.  In October of 2012, The 
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Kronos Early Estrogen Prevention Study (KEEPS) published positive results with 

regard to mood and CHD, supporting post-study WHI results inferring that ET is 

effective when began early on in the menopausal transition.  Cumulatively, the data 

from the WHI and KEEPS studies identify a very important period of time for which 

ET can be beneficial, otherwise known as the ‘timing hypothesis’.   

One issue that these data cannot address is the factor of aging.  It remains 

unclear if advanced age and/or the length of E2 deprivation is causing dichotomous 

effects of HT. In either case, the wealth of clinical data suggest a ‘switch’ in the 

molecular mechanisms by which estrogen signaling takes effect, but the basic 

science data on this subject are lacking.  This dissertation is aimed at understanding 

some of the molecular mechanisms regulating estrogen receptor beta (ERβ) signaling 

in an aged, estrogen-deprived neuroenvironment to further our knowledge on the 

effects of HT in the growing population of women living without ovarian hormones.
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CHAPTER II  

ESTROGEN SIGNALING AND THE AGING BRAIN: CONTEXT-DEPENDENT 
CONSIDERATIONS FOR POSTMENOPAUSAL HORMONE THERAPY 

(MOTT, NN ET AL., ISRN ENDOCRINOLOGY, JUL 7;2013:814690)                                                                                             
 

Literature Review 

According to the CDC (2008), the average lifespan for women in the US was ~81 

years of age.  While the average lifespan has been steadily increasing over the past 

century (~48 years in 1900), the average age at which reproductive senescence, 

menopause, occurs has remained relatively constant at approximately 51 years of 

age (Bengtsson et al., 1979; Singh et al., 2002).  Including the prepubescent years, 

this leaves women living about half of their lives without high levels of circulating 

ovarian hormones.   The two primary ovarian hormones are E2) and progesterone, 

both of which are required for female reproduction.  Many positive anecdotal 

experiences are reported during times in the reproductive cycle when E2 is high, 

sparking further investigation into the role of E2 in various non-reproductive 

processes, including those pertaining to cognition and mood.  The vast majority of 

basic science studies have described positive effects of E2 on cognitive processes at a 

molecular level, and importantly, older postmenopausal females, exhibit significant 

deficits when performing tasks that require proper cognitive function including use 

of working memory, attentional processing, and executive function  
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(Verhaeghen and Cerella, 2002; Wroolie et al.; Sherwin, 1994a; Sherwin, 1996; 

Sherwin, 1994b; Phillips and Sherwin, 1992).  The natural aging process is 

coincident with menopause, which confounds studies attempting to differentiate 

between the molecular mechanisms specific to menopause versus aging. Therefore, 

studies examining the physiological and molecular functions of estrogen receptors 

during periods of estrogen deprivation with respect to natural aging are requisite to 

understanding how reintroducing estrogens in aged postmenopausal women will 

affect neurological processes. In spite of the wealth of studies investigating the 

effects of HT on relevant health concerns, there are still very few conclusive 

arguments for or against HT to ameliorate neurological issues.   Moreover, it is very 

likely that the actions of estrogens regulate opposing processes depending upon 

brain region and genetic composition of neurons involved, creating complex issues 

regarding the lack of specificity of E2 treatment.  Nevertheless, some insight into 

general functions of E2 in the brain can be gleaned from existing data that 

demonstrate 1) there is a critical window of time surrounding menopause for which 

HT can be beneficial, suggesting aging is an important factor, 2) progestins are not 

likely to be beneficial for cognitive and affective neurological issues, and 3) the type 

of estrogen used may be crucial.  Given these important conclusions this review will 

focus on the molecular mechanisms of E2 signaling, with specific attention to the 

role of estrogen receptor β (ERβ) in the brain, and how variables that might 

contribute to these signaling patterns can be altered by age.    
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The menopausal transition: E2 decline and health concerns 

Menopause is defined by the Mayo clinic as “the permanent end of 

menstruation and fertility, occurring 12 months after your last menstrual period.”  

Menopause is marked by a reduced oocyte number attributable to progressive 

atresia of ovarian follicles, and declining circulating levels of E2 and progestins.  The 

peri-menopausal transition is typically 4-8 years, during which, most women 

experience symptoms including, hot flushes, night sweats, mood swings, sleep 

disturbances, vaginal dryness and atrophy, urinary incontinence, most of which are 

alleviated by hormone (E2) replacement therapy (HT/ET).  Until recently, a great 

deal of evidence suggested that estrogens have positive effects on cognition, 

neuroprotection, memory, anxiety, depression, bone and cardiovascular health 

(Lindsay et al., 1976; Rossouw et al., 2007; Zhang et al.; Sherwin, 1994a; Krezel et 

al., 2001; Ostlund et al., 2003).    

The paramount studies to present negative consequences of HT were the 

Women’s Health Initiative (WHI), and ancillary studies including the Women’s 

Health Initiative Study on Cognitive Aging (WHISCA) and the Women’s Health 

Initiative Memory Study (WHIMS). Data from these studies showed that a 

combination therapy of conjugated equine estrogen/medroxyprogesterone acetate 

(CEE/MPA) increased risk for mild cognitive impairment and  decreased global 

cognitive functioning, but CEE alone did not have any significant effect on cognitive 

functioning (Shumaker et al., 2003; Shumaker et al., 2004; Rapp et al., 2003).  Post-
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study analyses have revealed many confounding factors in the WHI studies ranging 

from the choice of a reference group (previous HT users) to the age of participants 

and the choice of ET used (CEE) (Henderson et al., 2005; Garbe and Suissa, 2004; 

Wroolie et al.), as well as the use of MPA, which has been shown to have adverse 

effects on memory after one dose in adulthood (Braden et al.).   While the WHI 

studies showed negative or neutral effects of ET, many other basic science and 

observational studies have shown just the opposite.  The Kronos Early Estrogen 

Prevention Study (KEEPS) recently announced findings that suggested E2 therapy 

had a positive effect on mood and memory.   Participants receiving CEE showed 

significant improvement in symptoms of depression, anxiety and a trend toward 

reduced feelings of anger/hostility.  Importantly, CEE treatment or  Premarin® 

(Wyeth-Ayerst, Philadephia, PA) is a mixture of several estrogenic  compounds, but 

primarily estrone sulfate and ring B unsaturated estrogens such as equilin and 

equilinen, which can differentially activate ER isoforms as compared to E2 alone 

(Bhavnani et al., 2008) Participants receiving CEE self-reported a trend toward 

better recall of printed materials as compared to placebo, and  women using 

transdermal E2 tended to report fewer memory-related complaints.   Another study 

performed a meta-analysis of 36 randomized HT clinical trials (RCT) focusing on 

cognition (Hogervorst and Bandelow).  The length of treatment, type of memory, 

variety of hormone, and age of the participant were all variables that drastically 

altered the outcomes of each trial.  Results from the meta-analysis indicated that 
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verbal memory was most often affected by HT, and younger women tended to have 

a better outcome in this category.  There was also a trend toward worse outcomes 

on memory tests in patients treated with CEE treatment alone compared to those 

treated with biologically identical E2. Moreover, treatment with estrogens alone (i.e. 

absent co-treatment with progestins) were overall associated with positive results 

on memory tests.   In conclusion, data from these clinical trials have revealed the 

importance of using bioidentical hormones for HT and that downstream signaling 

processes for memory and mood can be affected by the choice of estrogen and/or 

combination of hormones used as therapeutics.   

Estrogen receptor signaling 

 Estrogen signaling is mediated primarily through two receptors (ERα and 

ERβ).  ERs are class I members of the nuclear hormone superfamily of receptors, 

deemed as a ligand inducible transcription factors (Mangelsdorf et al., 1995).  

Classically, ERs were thought to be localized in the cytoplasm bound to intracellular 

chaperone proteins until induced by ligand to translocate to the nucleus, according 

to the two-step hypothesis coined by Elwood Jensen (Jensen et al., 1968).   Following 

ligand binding, ERs undergo a conformational change that allows for dimerization, 

translocation to the nucleus and DNA binding or association with other 

transcription factors to regulate gene transcription; however, we now know that ER 

signaling is not as dogmatic as previously thought.   
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For example, ERs are involved in other ‘non-genomic’ molecular functions 

including RNA processing, second-messenger signaling cascades and rapid dendritic 

spine formation in neurons.  Of particular importance in the brain, the discovery of 

rapid signaling processes implicates E2 as a neuromodulator, however local 

synthesis of E2 has been the subject of fervent debate.  While it is likely there is de 

novo synthesis of E2 within the parenchyma, due to technical challenges, the exact 

levels and changes with age and circulating hormones have yet to be identified 

(Naftolin et al., 1996; Roselli et al., 1998). It is also difficult to determine how local 

E2 may affect ER action.  Most reports suggest an implicit role for local E2 at the 

synapse and membrane (Balthazart and Ball, 2006), but whether nuclear/genomic 

activities of ERs are affected has yet to be established.  Recent data from our 

laboratory demonstrate that E2 can alter miRNA expression (Pak et al.), and others 

have shown that ERα can associate with miRNA processing enzymes such as Drosha 

(Yamagata et al., 2009).   Data from our laboratory (unpublished observations) and 

others have shown that ERs are involved in alternative splicing processes, and one 

study has demonstrated direct interaction of phosphorylated ERα with splicing 

factor (SF)3a p120 that potentiates alternative splicing through EGF/ E2 crosstalk 

(Masuhiro et al., 2005).  These relatively novel ER functions may be explained by 

examining well-studied components of classic NR signaling such as the structural 

properties of the receptors.   
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Structural contributions to ER activity 

Class I nuclear receptors (NRs) including ERα and ERβ have a characteristic 

structure comprised of five functional domains labeled A-E, and a sixth domain (F) 

unique to ERs (Fig. 1).  The A/B domain contains an activator function-1 (AF-1) like 

domain that allows for associations with coregulatory proteins and other 

transcription factors.   Notably, the A/B domain is the least conserved domain 

between ERα and ERβ (17% homology), and may be responsible for the observed 

ligand-independent actions of ERβ (Tremblay et al., 1999a). The C domain, is a DNA 

binding domain that allows the receptor to bind a specific DNA sequence called an 

Estrogen Response Element (ERE) to regulate transcription of genes containing this 

sequence within their promoter region.  Two zinc fingers forming a helix-loop-helix 

structure allow for appropriate spacing (3 nucleotides) between an inverted 

hexameric palindromic repeat that is described as the canonical ERE.  The exact 

nucleotide sequence of hormone response elements can vary and in part, dictate the 

affinity a NR has to regulate a particular gene (Meijsing et al., 2009).  The D domain 

is a hinge-like region that allows the receptor to undergo a conformational change 

once activated and also contains a nuclear localization sequence.  The best-studied 

region of ERs is the E domain, also referred to as the ligand binding domain (LBD).  

Characterization using x-ray crystallography has shown that the LBD consists of 12 

ordered alpha helices that are essential for conferring ligand specificity (Bourguet et 

al., 2000).  The orientation of helix 12 is critical to the conformation NRs adopt once 
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bound to a particular type of ligand, and ultimately influence the ability of the 

receptor to bind other proteins and activate gene transcription.  Helix 12 contains 

the core residues of the activator function 2 (AF-2) domain, a short amphipathic 

conserved alpha helix that interacts with coregulatory proteins through an LxxLL 

motif.  Adjacent to the AF-2/E domain is the less characterized F domain that is 

unique to ERs.  ERα has a larger F domain than ERβ, and the two receptors only 

share about 18% homology within this region.  ERα dimerization and interactions 

with coregulators are altered when the F domain is deleted or modified, 

demonstrating that the F domain is a relevant structure for ERα transcriptional 

regulation, but a clear role for this domain for ERβ has yet to be determined (Koide 

et al., 2007; Skafar and Koide, 2006).  Importantly, naturally occurring human ERβ 

splice variants have altered E and F domains, which can affect hormone 

responsiveness in tissues that express these variants. 

While the overall sequence homology between ERα and ERβ is greater than 

60%, the specific gene targets of each receptor appear to be vastly different.  For 

example, a variety of cancer cell models have identified an anti-apoptotic, 

proliferative role for ERα, whereas ERβ tends to promote apoptosis and regulate 

anti-proliferative genes (Chang et al., 2006; Zhu et al., 2004; Petersen et al., 1998; 

Helguero et al., 2005).  It is well known that ERα and ERβ are readily able to form 

heterodimers when expressed in the same cell, adding another layer of complexity 

to the regulation of estrogen responsive genes.  ERα  and ERβ both bind EREs, but 
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the affinity for one receptor or the other can depend highly on the specificity of the 

DNA sequence being regulated and the ligands present (Kulakosky et al., 2002; 

Grober et al.; Vivar et al.).  Therefore, it is important to consider the overlap in ERα 

and ERβ preferred response elements when both receptors are expressed in the 

same system.   
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Figure 1.  Representative image of domains within human and rat ERβ splice 
variants.  Human ERβ splice variants (A) contain truncations and changes in amino 
acid sequence in the C-terminus E and F domains.  Rat ERβ splice variants (B) 
contain an 18 amino acid insert in the LBD/E domain and/or exon 3/4 exclusions in 
the DNA binding domain. 
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Expression of ERs in the brain: A complex story 

 The principal determinant of E2 action is the expression of ERα, ERβ, their 

alternatively spliced variants, or some combination of each, which is cell-type 

specific even within distinct brain nuclei.  ER expression has been studied 

extensively, yet there are few definitive statements that can be made about the 

regulation of ERβ expression.  It can be noted that ER expression profiles can vary 

throughout the life span, in particular when there are dramatic changes in 

circulating hormone levels, such as puberty and menopause (Fig. 2).  Not only can 

ER expression vary dependent upon sex, age and E2 treatment, but these factors can 

also direct subcellular localization, which ultimately dictates ER functions.  

Accordingly, contextual studies that map the exact cellular expression patterns of 

each receptor and their splice variants are a critical first step in creating a 

comprehensive examination of E2 -regulated processes in any system. 

 The female vertebrate reproductive organs tend to be dominated by the 

expression of ERα, whereas ERβ is expressed largely in non-reproductive tissues.  

ERβ was first cloned from prostate tissue (Kuiper et al., 1996), and has since been 

shown to have the highest levels of expression in the central nervous system and 

cardiovascular tissue, as well as lung, kidney, colorectal tissue, mammary tissue and 

the immune system (Kuiper et al., 1997).  Consequently, some of the most 

prominent phenotypic problems observed in mice lacking a functional ESR2 gene 

(βERKO mice) are neurological deficits.  By contrast, ERα knockout mice have no 
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gross brain-related phenotypes, but exhibit decreased E2-mediated neuroprotection 

following an ischemic event (Dubal et al., 2001).  Overall, the phenotypes observed 

in ERα- and ERβ-null mouse models suggest that ERβ is potentially more important 

for mediating non-reproductive E2-governed processes than ERα. 

 

 

 

  

 

  

Figure 2.  Timeline showing factors affecting ER gene expression throughout 
the female life span. Brain ER gene expression patterns are altered with age, sex 
and exposure to circulating hormone.  Circulating hormones fluctuate with age, 
most dramatically at the time of puberty and menopause thereby contributing to 
changes in ER gene expression.  Additionally, alternative splicing increases with age, 
thus potentially diversifying the ER gene expression profile. 
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ERα and ERβ are coexpressed in some regions of the hypothalamus, such as the 

medial amygdala (MeA), bed nucleus of the stria terminalis (BNST) and the 

periaqueductal grey area.  However, ERα is predominant in hypothalamic nuclei that 

control reproduction, sexual behavior and appetite (e.g., arcuate (ARC), medial 

preoptic (MPoA), ventromedial(VM)) but ERβ is the predominant isoform in the  

non-reproductive associated nuclei (e.g., paraventricular (PVN), supraoptic (SON) 

and suprachiasmatic (SCN)) as well as the hippocampus, dorsal raphe nuclei, cortex 

and cerebellum (Shughrue et al., 1998; Shughrue et al., 1997).  In the hippocampus, 

mRNA and protein for both ERs have been detected and are well established as 

mediating both genomic and non-genomic processes (Milner et al., 2001; Milner et 

al., 2008; Milner et al., 2005).  Nuclear and extranuclear ERβ mRNA and 

immunoreactivity (IR) have been detected in principal cells as well as in many other 

nuclei of cells within the ventral CA2/3 (Milner et al., 2001; Shughrue et al., 1997).  

Although not as prevalent as ERβ, ERα has also been detected in the hippocampus, 

primarily within GABAergic interneurons (Milner et al., 2001; Milner et al., 2005). 

 ER expression is also often found to be sexually dimorphic. As one would 

expect, many regions of the hypothalamus exhibit a great deal of sexual dimorphism 

due in part to differences in sexual behavior and regulation of gonadotrophic 

hormones, but regions such as the BNST also display some sex-related differences in 

ER expression.  For example, ERα in the BNST can be induced in somatostatin 

positive neurons of male, but not female, rats (Herbison and Theodosis, 1993).  ERs 
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have also been shown to be sexually dimorphic in the developing rodent 

hippocampus, but not in adults (Kalita et al., 2005; Ivanova and Beyer, 2000). 

However one report identified ERβ mRNA in the adult female, but not male, rhesus 

macaque basal ganglia and hippocampus (Pau et al., 1998).  Importantly, a lack 

sexually dimorphic regional ER expression does not preclude differential responses 

to estrogens, as other effector molecules can alter estrogen-responsive processes. 

 Expression of ERs can vary not only with chromosomal sex, but also in 

response to the hormonal milieu.  For instance, it is well accepted that ERα 

expression is autoregulated by E2, primarily through proteosomal degradation, 

(Wijayaratne and McDonnell, 2001) but also perhaps on a transcriptional level by 

E2-bound ERβ (Bartella et al.).  The ERβ gene (ESR2) promoter region has not been 

extensively characterized, but it has been shown to contain E2 responsive cis 

sequence binding sites for Oct-1 and Sp-1, which interact with ERs via trans  factors 

suggesting a molecular mechanism for E2- mediated autoregulation of its receptor.  

There is also an Alu  repeat sequence that may contain an ERE that could act as an 

ER-dependent enhancer (Li et al., 2000).  Conversely, in vitro and in vivo studies 

investigating the effects of E2 on ERβ expression have yielded inconsistent 

conclusions depending upon cell type, animal species and age.  For instance, in the 

T47D human breast cancer cell line E2 upregulated ERβ (Vladusic et al., 2000).  

However, ERβ expression was decreased by E2 in mammary glands of lactating mice 

that co-express ERα (Hatsumi and Yamamuro, 2006).   ERβ was also decreased in 
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the PVN of rats subjected to OVX + E2 (Patisaul et al., 1999). Thus, it appears that E2 

may regulate ERα and ERβ, however this effect is highly dependent upon cell-type, 

and possibly the co-expression of other ERs. 

 In addition to sex and E2, aging also appears to dictate ER expression.  

Overall, decreased nuclear E2 binding  has been reported in the hypothalamus and 

anterior pituitary of aged female rats compared to young, but the change in E2 

binding was not necessarily attributed to a decrease in total ER expression (Brown 

et al., 1990; Rubin et al., 1986), suggesting a shift in the ratio of ERs and/or 

subcellular localization.  While overall nuclear E2 binding within the hypothalamus 

may decrease with age, changes to ER expression patterns with age remain 

contentious.  In general it appears that age alone does not eliminate ERα expression 

in the brain, but regional specificity and E2 availability may be important factors 

(Funabashi et al., 2000; Wilson et al., 2002) and an increase in ESR promoter 

methylation has been correlated with age in other systems  (Post et al., 1999; Issa et 

al., 1994).   One study reported varied middle age-specific reduction in 

hypothalamic ER with E2 treatment (Funabashi and Kimura, 1994), yet another 

study showed that E2 decreased hypothalamic ER expression significantly in all ages 

tested (3, 11, and 20 month)(Miller et al., 1994).   Specific to ERα, work by 

Chakraborty and colleagues determined immunoreactive cell numbers did not 

always change following OVX and E2 replacement, rather their study revealed that 

with advanced age (24-26 months compared to 3-4 and 10-12 months) the number 
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of ERα positive cells was increased or stayed the same in different hypothalamic 

nuclei (Chakraborty et al., 2003a).  Moreover, in the hippocampus, ERα was 

decreased after long term estrogen deprivation (LTED, 10 weeks), regardless of E2 

replacement following LTED, but E2 deprivation had no effect on ERβ (Zhang et al.).  

The same report demonstrated decreased levels of ERβ in very old rats (24 month 

females compared to 3 month diestrus females).  In general, most reports suggest 

that ERβ expression with age is either decreased or neutral, but like ERα may be 

highly region-specific.   A decrease in cortical ERβ expression with age is supported 

by evidence showing a corresponding increase in CpG methylation of the ESR2 

promoter in middle aged (9-12 month) rats (Westberry et al.).  Other reports 

describe decreases in ERβ protein and message in some areas but not in others 

(Wilson et al., 2002; Chakraborty et al., 2003b).   Taken together, there are a number 

of reports attempting to identify the parameters that control ER expression such as 

age, sex and response to E2, however with such vast deviations in expression with 

cell type there is still much to be learned about expression of these receptors, 

especially in brain regions controlling non-reproductive behaviors. 

ERβ alternative splice variants 

 Based upon the highly variable reports that differ in sex and age of animals as 

well exposure to hormone it may be possible that these studies are unknowingly 

detecting changes in splice variant expression, which could change E2 

responsiveness as well as downstream gene regulation.  Not only can ERs 
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heterodimerize to regulate gene transcription, but there are a number of 

alternatively spliced variants of each receptor that are endogenously expressed and 

potentially contribute to the diverse tissue specific actions of E2.  Alternative 

splicing of ERs alters inherent signaling properties of the receptor including ligand 

and DNA binding affinity, nuclear localization and dimerization, depending on 

where the alternative splice site is encoded.   A number of ER splice variant 

transcripts and other proteins have been identified in demented human brains, 

breast and prostate, and in some reports, an increase in alternative splicing is 

correlated with pathology (Poola et al., 2000; Ishunina and Swaab, 2009; Ishunina 

and Swaab, 2008; Ishunina et al., 2000; Ishunina et al., 2007). Also interesting, age 

alone may increase alternative splicing of some gene products (Tollervey et al.).  The 

identified ERβ human splice variants are truncated at the C-terminus of the receptor 

(Figure 1A), however experimental evidence suggests  that the C-terminus of the 

receptor is not required for ERβ-mediated transcription, especially with regard to 

the identified human splice variants (Mott and Pak).  Unlike the human splice 

variants, rodent ERβ splice variants identified to date been shown to have either an 

exon inclusion in the ligand binding domain, creating (rERβ2), or an exon deletion in 

the DNA binding domain rERβ1Δ3,  rERβ1Δ4 or both rERβ2Δ3 and rERβ2Δ4 (Figure 

1B) (Petersen et al., 1998; Inoue et al., 1996; Skipper et al., 1993).  Exon inclusion 

(rERβ2 variants) has been shown to produce a protein that binds E2 with a 35-fold 

decrease in affinity.  In contrast, ERs with exon 3 and 4 deletions are unable to bind 
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DNA, but can still mediate transcription through protein:protein interactions with 

other transcription factors such as AP-1, and bind E2 as well as rERβ1 (Petersen et 

al., 1998; Price et al., 2000). Importantly, the transcriptional functions of rERβ1 are 

significantly altered when co-expressed with other splice variants, likely due to a 

weaker interaction with coactivator proteins (Chu and Fuller, 1997; Lu et al., 1998).  

Despite lower E2 binding and/or lack of DNA binding, the rodent and human splice 

variants retain a constitutive ligand-independent transcriptional function, at both 

basic and complex promoters (Pak et al., 2006; Pak et al., 2007; Mott and Pak), 

suggesting that these splice variants have an important endogenous biological 

function.  Indeed, unliganded or apo-ERβ1 has been reported to bind to and regulate 

a subset of genes distinct from those regulated by ERβ1 when bound to E2 (Vivar et 

al.).  Conversely, the human splice variants do not bind ligand with great affinity 

(Leung et al., 2006), and might therefore only regulate the class of genes that 

unliganded ERβ target.   

The downstream target genes of ERβ splice variants might be an important 

consideration at the time of menopause, as ER expression profiles and alternative 

splicing tend to change with age (Tollervey et al.).  One recent report demonstrated 

an increase in ERβ2 expression in the hippocampus of 9-month old, middle aged 

rats following short-term (6 days) E2 deprivation that was significantly decreased 

compared to the sham group after E2 administration (Wang et al.).   Importantly, E2 

replacement no longer affected ERβ2 expression in the hippocampus after LTED 
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(180 days).  That study also reported a decrease in hippocampal neurogenesis and 

increased floating behavior in a forced swim test, thereby functionally correlating 

increased ERβ2 with mood regulation and potentially cognition. Thus, the 

expression and functions of ERβ splice variants are absolutely critical to understand 

the effects of estrogen particularly at times of sustained E2 deprivation with regard 

to cognition and affect. While ERβ2 expression has been assessed in the young male 

rat brain (Chung et al., 2007), and other variants have been described in some brain 

regions (Price et al., 2000; Price et al., 2001),  there is a general lack of data on most 

ERβ splice variants, especially in aged female brains.  

Some of the splice variants identified to date have been characterized as 

dominant negative receptors, serving to inhibit activation of the full length receptor 

(Wang and Miksicek, 1991), however most identified variants do not bind ligand 

with the same affinity and have the potential to differentially regulate target genes.  

While several splice variants for ERβ have been identified in many model systems 

including mouse (Kuppers and Beyer, 1999), rat (Shughrue et al., 1998; Shughrue et 

al., 1997) and monkey (Gundlah et al., 2000), there is a general lack of comparative 

studies on expression and functionality of human ERβ variants, especially in 

neuronal systems.  Further, changing expression levels of one or more alternatively 

spliced variants during a period of E2 deprivation may drastically change general 

receptivity and downstream functions of E2. 
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Novel protein:protein interactions for E2-mediated nuclear processes 

Protein:protein interactions are an essential relay in the regulation of 

dynamic cellular processes.  Immediately following translation, ERs typically 

associate with a chaperone protein to ensure proper folding, protect from 

degradation and assist the ER in becoming poised to accept ligand.  Once bound to 

ligand, ERs can dimerize and act as transcription factors to mediate gene regulation 

or associate with membrane proteins to initiate a signaling cascade.  When acting as 

transcription factors, ERs associate with a number of coregulatory proteins that 

assist in activating or repressing E2 -regulated genes. Coregulatory interactions are 

more characterized for ERα than ERβ, and importantly, less clear is how ERβ 

mediates ligand-independent transcription.  In addition to the well-established ER 

interaction partners, many novel interacting proteins have not yet been 

characterized and could be critical for nuclear processes not limited to gene 

transcription. 

HSPs and Chaperone proteins 

According to the classical two-step hypothesis inactive steroid hormone 

responsive nuclear receptors are constantly accompanied and protected from 

degradation by a number of chaperone proteins, typically members of the heat 

shock protein (HSP) family.  This receptor:chaperone complex has been studied 

extensively, and while the idea of a protective role for chaperones stands, this 

complex performs other functions.  For instance, HSP:ER complexes can serve to 
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pre-activate a hormone receptor by forcing a conformational change in ER such that 

it is able to bind its cognate hormone.  The initial HSP complex consists of the ER, 

HSP70, HSP70-interacting protein (HiP) as well as other accessory and scaffolding 

proteins (Morishima et al., 2000).  HSP90 is recruited to the complex, and HSP70 

dissociates, creating the mature HSP:ER complex (Dittmar and Pratt, 1997).  HSP90 

induces a conformational change in the nuclear receptor and the ER is released from 

the complex, ready to dimerize and bind DNA or other transcription factors to 

regulate gene transcription. However, some studies suggest that HSPs could have a 

broader and more critical role than originally thought.  For example, in Drosophila 

HSPs are required for DNA binding, and in some instances may regulate NR action 

(Kang et al., 1999).  Interestingly, aging alters HSP70 in a cell-type specific manner, 

and E2 increases HSP70 levels in female hypothalamus (Olazabal et al., 1992).  

Therefore, changes in chaperone levels with age or E2, could potentially alter the 

activational state of ERs. 

Transcriptional proteins and ERs 

The process of transcribing DNA into RNA is a systematic process that 

involves multi-protein complexes binding to DNA, modifying histone marks and 

initiating RNA synthesis.  ERα, but not ERβ, has been shown to directly interact with 

TFIIB, IIE, IIF and TIID proteins that initiate transcription (Sabbah et al., 1998; Wu 

et al., 1999).  However, experimental evidence from co-immunoprecipitation studies 

has demonstrated interactions between ERβ coregulatory proteins as well as other 
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transcription factors.  Coregulatory proteins are transcriptional accessory proteins 

that enhance or repress transcription of target genes.  In general, coactivators 

enhance, whereas corepressors block gene transcription.  However, recent data 

suggest that seemingly non-transcriptional proteins may have context-dependent 

coregulatory functions.  Importantly, certain coregulators can also be governed by 

age and E2   (Ghosh and Thakur, 2008; Frasor et al., 2003; Frasor et al., 2005), thus 

recent discoveries imply that ER-mediated gene regulation is not as well understood 

as previously thought. 

The best studied and well-established group of coregulatory proteins that 

selectively associate with NRs is the steroid receptor coactivator (SRC/p160) family.  

The SRC family is composed of three members, SRC-1, SRC-2 and SRC-3, all of which 

contain canonical LxxLL motifs known as the nuclear receptor (NR) box.  This motif 

interacts with AF-2 domains in ERβ, as well as other NR family members such as 

glucocorticoid receptor (GR), progesterone receptor (PR), thyroid hormone 

receptor (TR) and ERα (McKenna and O'Malley, 2002).  SRC members have intrinsic 

histone acetyltransferase activity (HAT, DNA activating) and interact with CREB 

binding protein (CBP) (Yao et al., 1996).  CBP/p300 proteins are also coactivators 

that have intrinsic HAT activity and can recruit ASC-2 and other known coregulatory 

proteins (Hanstein et al., 1996).  Confirmed coregulatory interaction partners for 

several NRs that do not belong to the SRC family include estrogen receptor 

association protein (ERAP 140) (Halachmi et al., 1994), nuclear corepressor (NCoR) 
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(Horlein et al., 1995), silencing-mediator of retinoic acid and thyroid hormone 

receptor (SMRT) (Chen and Evans, 1995) and many others.  As is the case with our 

understanding of ERβ interactions with basic transcriptional machinery, studies 

investigating ERβ:coregulator interactions are sparse which may be due to uniquely 

challenging issues associated with ERβ, such as a lack of high fidelity biochemical 

tools, complicated structural properties, and or pleotropic physiological actions that 

are specific to ERβ. 

In 2010, Bert O’Malley and colleagues directed a high throughput study (not 

including ERβ) aimed at compiling a database for the endogenous coregulator pool 

“nuclear receptor complexome” (Malovannaya et al.).  In this study, a number of 

novel protein interactions were identified, and studies such as these are identifying 

proteins as ‘coregulators’ that had been previously thought to serve completely 

different functions.  One group of relatively novel coregulatory proteins are the E3 

ubiquitin-protein ligases such as E6-associated proteins (E6-AP) (Nawaz et al., 

1999) .  While these proteins were thought to serve primarily as ubiquitin 

conjugating enzymes, they have recently been highlighted as transcriptional 

enhancers of NR-mediated activity independent of ligase function. Similarly, a group 

of E3-ligases that conjugate small ubuquitin like modifier (SUMO) proteins to a 

target protein called PIAS are also now considered NR coregulators and utilize a 

typical LxxLL motif.  In one study, a decrease in ER expression following LTED or 

with advanced age coincided with an increase in ER association with an E3-
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ubiquitin ligase, CHIP (Zhang et al.).  Together, these newly described roles for HSPs 

and E3 ligases raise novel questions about estrogen signaling, such as when is an 

E3-ligase:ER complex targeted for transcriptional regulation versus degradation? 

Also, when are HSPs merely performing a chaperone/protective function versus 

directing transcriptional processes? Future efforts aimed at elucidating the 

complexity of age-related changes in receptor structure and recruitment of 

coregulatory proteins could provide important insight into these seemingly 

paradoxical findings. 

Nuclear actin: setting the stage 

Coregulatory interactions may be poised upon a bed of nuclear actin, which 

has recently been identified as a dynamic molecular stage for which many nuclear 

processes are performed such as transcription, chromatin remodeling, mRNA 

processing and nuclear import/export. The general events that initiate transcription 

are well established; however the process by which all of the molecular components 

are temporally layered into a complex is still unclear. Nuclear actin is essential in 

forming the pre-initiation complex on a promoter, elongation and RNP organization, 

as well as remodeling of chromatin (Zheng et al., 2009; Hofmann et al., 2004; 

Tokunaga et al., 2006), and as mentioned previously, ERs are also key factors in 

these processes. In one study, ERα and β-actin were co-immunoprecipitated on the 

E2 responsive pS2/TFF1 promoter, indicating that ER and nuclear actin may work in 

concert to regulate transcriptional processes under control of estrogens (Metivier et 
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al., 2003).  An actin binding protein gelsolin, caps actin filament ends and also has 

been shown to be a NR coactivator (Shao et al.; Nishimura et al., 2003).  Gelsolin 

may assist in actin polymerization, allowing transcriptional machinery to be 

brought in proximity of target genes, however it remains unclear how gelsolin 

enhances AR/ER transcriptional activity.   

 Actin is also commonly associated with ubiquitous multifunctional RNA 

binding proteins such as heterologous nuclear riboproteins (HnRNPs), which also 

associate with ERs (Nalvarte et al.). HnRNPs associate within the matrix of nuclear 

actin, accompany transcripts out of the nucleus, participate in alternative splicing 

and can modulate transcription (Miau et al., 1998).   Phosphorylated HnRNP K has 

been shown to mediate translation of specific mRNAs (Ostareck-Lederer et al., 

2002), and HnRNP H is involved in splicing and mRNA polyadenylation (Bagga et al., 

1998; Markovtsov et al., 2000).  In the past, the association of NRs with HnRNPs was 

thought to be non-specific due to the ubiquitous nature of these proteins, but recent 

studies are no longer ruling out an important interaction between NRs and HnRNPs 

that may assist in transcription and/or splicing (Jung et al., 2005; Hong et al., 2002). 

Some data demonstrate a dynamic interaction between ERα and HnRNPs and 

furthermore, that E2 might regulate expression of members of the HnRNP family 

(Shao et al., 2012).  As noted previously, age-related increases in splicing could lead 

to aberrant signaling, not only for E2-mediated processes, but for cellular processes 

in general. 
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 Nuclear ER interaction partners have historically been a distinct class of 

nuclear receptor coregulators that seemed to solely assist ERs in gene transcription; 

however the number of interaction partners for ERs is increasing.  Further 

investigation into ERβ-associated proteins is required, as far as NRs are concerned; 

data specific to ERβ are inadequate to make broad conclusions.  Moreover, 

posttranslational modifications to coregulatory proteins, ERs or changes in their 

expression patterns due to age or sustained estrogen deprivation could all 

contribute to an altered microenvironment, setting the stage for atypical estrogen 

signaling upon therapeutic reinstatement of hormones (Fig. 3).  
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Figure 3.  Age and hormonal milieu exponentially increase the potential 
diversity of estrogen receptor signaling leading to context dependent gene 
regulation.  Age and E2 influence ER gene expression, alternative splicing, 
coregulatory protein expression and interaction, which ultimately direct ER-target 
gene transcription. 
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Post-translational modifications of ERβ 

 Apart from hormone binding and protein induced structural changes, fine 

tuning of ER activation and can be achieved through a variety post-translational 

modifications (PTMs) to the receptors including phosphorylation, ubiquitination, 

sumoylation, acetlyation, methylation, palmitoylation and so on.  Among PTMs, 

phosphorylation of ERβ is the most thoroughly studied, yet many putative sites have 

not been empirically tested and the exact molecular consequences of this 

modification have not been fully elucidated.  Even less is known about other 

modifications to ERβ, and the influence of menopause and aging on ERβ.  Most of the 

pioneering work ERβ PTMs comes from A. Tremblay’s group and, presents a strong 

argument that relatively small modifications can completely change the 

functionality of the receptor within a given cellular context, which could present a 

mechanism for alterations in ERβ function in the midst of estrogen deprivation. 

 Phosphorylation is the best studied modification to ERs and is known to alter 

ERα transcriptional functions by modulating ligand/DNA binding, protein:protein 

interactions, and receptor stability.  However, posttranslational modifications of 

ERβ are severely understudied.  To date phosphorylation sites on the rodent ERβ 

are only putative homologous sites derived from mouse and human ERβ, and only 

one site on hERβ1 has been empirically examined.  Murine ERβ serine106 mediates 

ligand-independent transcriptional activity initiated through signaling of stromal 

cell-derived factor 1 (SDF-1) (Sauve et al., 2009) or EGF.  Also, phosphorylation of 
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both serine106 and serine124  induce ligand-independent recruitment of SRC-1, 

ubiquitination and degradation (Tremblay et al., 1998; Picard et al., 2008; Tremblay 

et al., 1999a; Tremblay and Giguere, 2001); however once again, yet to be 

determined is the signal following phosphorylation that determines whether the 

receptor will be degraded or sent to regulate gene transcription.  Most identified 

ERβ phosphorylation sites are located in the N-terminus or hinge region of the 

receptor, however point mutations to the C-terminus of ERα and ERβ can induce a 

constitutive transcriptional active state (Tremblay et al., 1998).  There is even less 

known about phosphorylation of alternatively spliced variants of ERβ.  The lack of 

data in this area underscores the importance of investigating phosphorylation of not 

only full-length ERβ, but also expressed splice variants, and the role of kinases with 

age and E2 availability.    

 Data from our lab and others have recently identified another modification to 

ERβ, conjugation of a small ubiquitin-like modifier (SUMO-1) (Picard et al.).  

SUMOylation regulates activities including nuclear translocation and protein:protein 

interactions.  Nuclear steroid hormone receptors, including ERβ (Tirard et al., 2007; 

Sentis et al., 2005; Poukka et al., 2000; Picard et al.; Le Drean et al., 2002; Duma et 

al., 2006; Daniel et al., 2007) are all acceptors of SUMOylation in presence and 

absence of hormones.  For example, in the absence of progestins SUMO-1 

conjugation to the progesterone receptor (PR) abolished ligand-independent 

transcription of target genes (Daniel and Lange, 2009).  The family of small 
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ubiquitin-like modifiers (SUMO) is a group of proteins that can be attached 

covalently to a lysine residue through a series of  ligase reactions catalyzed first by a 

SUMO activating enzyme, E1, then a SUMO-specific conjugating enzyme, E2 (i.e. 

Ubc9) and finally a SUMO-ligating enzyme, E3 (i.e., PIAS). SUMOylation is best 

known for modifying a protein to alter protein:protein interactions in a rapid and 

dynamic fashion.  For transcription factors, SUMOylation is often indicative of 

transcriptional repression, however it can enhance the transcriptional activities of 

some factors, such as ERα (Sentis et al., 2005).  Interestingly, SUMO and SUMO-

related proteins appear to be decreased in the brain with age, which could have 

serious implications for ER-mediated gene regulation.   

 While there is some evidence regarding hormone-induced PTMs, there are 

very few studies that examine changes in PTMS with age especially regarding ERβ, 

which has only been shown to be substrate for phosphorylation, ubiquitin, sumo 

and palmityol groups in very limited contexts (Pedram et al., 2007). Further, the 

undertaking of integrating hormone binding, PTMs, protein:protein interaction and 

downstream functional activities is astounding, but must be addressed to fully 

understand ER signaling. 

Estrogens and cognition  

 Most empirical and observational data give merit to the idea that estrogens 

have a positive effect on cognitive processes, increased spine densities (Woolley and 

McEwen, 1992; Woolley et al., 1996), enhanced synaptic plasticity (Woolley, 1998; 
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Srivastava et al., 2008; Ogiue-Ikeda et al., 2008) and improved memory (Sandstrom 

and Williams, 2004; Hogervorst et al., 2000), however  the  receptor(s) and 

mechanisms that regulate these processes remain unclear. There are a myriad of 

behavioral studies suggesting that E2 enhances prefrontal cortex (PFC) and 

hippocampal-dependent tasks.  For example, long term E2 deprivation diminished 

aged female rhesus macaques’ performance in a delayed response task, a PFC 

dependent task (Bailey et al.).  E2 also enhanced object recognition under a number 

of different paradigms (Walf et al., 2006; Luine et al., 2003; Fan et al.), and there are 

also multiple lines of evidence supporting E2-mediated neuroprotection which may 

be important for cognition, especially after stroke (Dubal and Wise, 2001; Yang et 

al., 2000; Simpkins et al., 1997; Shi et al., 1998) .  

 Pharmacological targeting of the receptors with ER selective ligands has been 

a standard method for investigating the behavioral, physiological and cellular 

actions of E2 mediated distinctly through ERα and/or ERβ, however valuable insight 

has also come from the ERβ-null (βERKO) mice.  βERKO mice have significantly 

fewer neurons in the cortex, hypothalamus, amygdala and ventral tegmental area 

compared to WT.  They also exhibit neuronal shrinkage and hyperproliferation of 

glia by 3 months of age, as well as have high levels of apoE and apoE-dependent 

deposition of amyloid plaques throughout the CNS by 12 months of age (Zhang et al., 

2004).  These mice also demonstrate spatial learning deficits in the Morris water 

maze (Rissman et al., 2002) and a decrease in hippocampal- and amygdala-
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dependent memory in a fear conditioning paradigm that is accompanied by 

decreased synaptic plasticity in hippocampal slice preparations (Day et al., 2005).  

The critical role of ERβ in higher level brain functions has been deduced from these 

studies and others, warranting a full investigation of the wide-spread molecular 

actions of E2 known contribute to cellular processes on at least two levels: at the 

synapse and on the genome.   

Long term potentiation (LTP) is an important component of learning and 

memory.  It represents an increase in synaptic transmission and plasticity that 

underlies cognitive behaviors, and is readily altered by E2 in many circumstances.  

In fact, application of an aromatase inhibitor eliminates CA1 LTP generated by theta 

burst stimulation in intact female, but not male or OVX rats, posing a potentially 

serious concern for women using aromatase inhibitors for therapeutic treatment of 

breast cancer (Vierk et al.).  E2 can also enhance or suppress long term depression 

(LTD), reducing synaptic transmission, which may be dependent upon the specific 

receptors involved.  In aged male CA1 cells, E2 decreased LTD (Vouimba et al., 

2000), however E2 enhanced LTP in the cerebellum where ERβ is the predominately 

expressed cognate receptor (Andreescu et al., 2007).  However to date, there is little 

data on the mechanisms by which ERβ regulates these processes. 

Estrogens and mood regulation  

A range of behavioral experiments indicate that E2 modulation of stress, 

mood and affect is a complex story, with considerable conflicting data that may, as 
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in other processes, be explained in part by distinct roles for ERα and ERβ.  

Anecdotally, many women report mood fluctuations as corresponding to changes in 

circulating estrogen levels, such as what occurs during the menstrual cycle, peri-

puberty, postpartum, and peri/post-menopause. Incidence of anxiety and 

depression are observed at peri-menopause and when hormone levels are 

fluctuating (Gonda et al., 2008; Freeman, 2003).  However, E2 can also exhibit 

anxiogenic properties, and often anxiety and depression present in a comorbid 

fashion, especially in women (Lund et al., 2005; Breslau et al., 1995).  Interestingly, 

after the age of 55, bouts of depression and anxiety appear to decrease in women 

(Bebbington et al., 1998).  As previously mentioned, peri-menopausal women 

receiving CEE in the  KEEPs study reported an improvement in mood, and the 

primary actions of CEE tend to be mediated through ERβ (Bhavnani et al., 2008).  A 

plethora of behavioral studies have mounted in response to observational reports, 

and at first glance it appears that ERβ has an anxiolytic and antidepressive role, 

however there is still an immense void to be filled with respect to biochemical and 

molecular mechanisms of ERβ and affective disorders.  Elucidating the precise 

molecular mechanisms that require ERβ in plasticity and neurotransmitter 

processing in brain regions regulating these behaviors will help clarify the role of E2 

in stress and mood related processes. 

Contemporary hypotheses concerning the onset of affective disorders 

revolve around perturbations to the central processing of environmental stress.  
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The hypothalamic-pituitary-adrenal (HPA) axis is the 3-tiered hierarchical biological 

system that mediates physical or psychological response to stressors. The primary 

steroid regulating the HPA axis is cortisol/corticosterone (humans/rats, CORT), a 

glucocorticoid receptor (GR) ligand that is produced from the adrenals to exert 

negative feedback upon the HPA system to effectively modulate response to 

stressors.  The central hypothalamic HPA structure, the PVN produces two 

neuropeptides, corticotropin releasing hormone (CRH) and arginine vasopressin 

(AVP), to activate the HPA axis.  CRH and AVP synergistically stimulate release of 

adrenocorticotropic hormone (ACTH) from the anterior pituitary, which acts on the 

adrenal cortex to produce CORT.  CORT binds GR and negatively regulates CRH and 

AVP expression and release through classical negative feedback mechanisms 

(Aguilera et al., 1983; Papadimitriou and Priftis, 2009).  ERβ is the main ER 

expressed in the PVN (Suzuki and Handa, 2004; Miller et al., 2004; Lund et al., 2005; 

Isgor et al., 2003), and regulation of AVP is an interesting example of how ER action 

can vary.  AVP expression fluctuates during the menstrual cycle and is usually 

highest when E2 is low.  In fact, oral contraceptives appear to decrease AVP 

expression, and E2 is thought to inhibit AVP in the human SON (Forsling et al., 2003).  

In the rodent system ERβ and its splice variants activate the rodent AVP promoter 

independent of ligand (Pak et al., 2007), however the human promoter is repressed 

by ERβ and splice variants.  This discrepancy between the human and rat was 

mediated by an AP-1 response element on the human AVP promoter that is not 
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present in the rat.  Importantly, ERβ acted similarly in the two systems when the 

AP-1 sequence was deleted from the human promoter, underscoring the striking 

alterations small changes in DNA sequence can invoke in E2 signaling pathways and 

the importance of understanding the experimental context from which such 

conclusions are based (Mott and Pak).   On the contrary, rat and human CRH 

expression was increased in response to E2 in rodent, monkey, and human 

hypothalamus, but inhibited in the placenta (Lalmansingh and Uht, 2008; Roy et al., 

1999; Ni et al., 2002; Vamvakopoulos and Chrousos, 1993).  

In addition to AVP and CRH, glutamatergic and GABAergic projects from 

regions like the BNST, AMY, PFC and hippocampus all express ERβ (Shughrue et al., 

1998; Shughrue et al., 1997) and are likely targets for E2 to exert effects on the HPA 

axis.  Moreover, decreased ERβ mRNA in postmortem locus coeruleus has been 

found to correlate with suicide (Ostlund et al., 2003) and even more recently, ERβ-

mediated hippocampal nitric oxide levels have been implicated in affective 

behaviors in females, but not males (Hu et al.). Neurotransmitter release from these 

regions influences mood, affect and stress responses, and E2 increases the rate of 

monoamine oxidase degradation and serotonin transport which enhances serotonin 

at the synapse; E2 also increases serotonin receptor expression (Summer and Fink, 

1995; Smith et al., 2004).  Dopamine and serotonin (Imwalle et al., 2005)are 

diminished in the BNST, POA, and hippocampus and caudate putamen (dopamine) 

of βERKO mice (Imwalle et al., 2005) further implicating an important role for ERβ 



39 

 

 

 

in the regulation of emotion and mood.  βERKO mice also display serious 

morphological and functional abnormalities in the brain that correlate to increased 

depression and anxiety (Tomihara et al., 2009; Walf et al., 2009; Walf et al., 2008a; 

Walf et al., 2008b; Krezel et al., 2001).  In addition to βERKO studies, administration 

of ERβ selective agonists (diarlyproprionitrol, DPN) decrease both stress markers 

and anxiety-related behaviors in rats (Lund et al., 2005).  In fact, there have been 

several studies implicating ERβ and its variants in affective behaviors, but the 

molecular mechanisms remain poorly understood.  

 

Summary 

 Estrogen receptor-mediated signaling in the brain regulates neurological 

processes many of which translate to cognitive and affective behavioral outputs.   

When estrogen is declining and becomes replete, as in menopause, a number of 

neurophysiological changes occur, producing some unwanted changes.  The most 

common and logical remedy is replacement of bioidentical hormone, E2, however 

this treatment can be problematic dependent upon the length of time a woman has 

been in a postmenopausal, estrogen-deprived state.  This suggests that there is a 

molecular switch in estrogen-mediated signaling that may allow for drastic change 

in ER signaling, not to mention the interaction of E2 signaling components and the 

natural aging process.  These changes are likely to include alterations to receptor 

profiles including expression of alternatively spliced variants that respond 
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differently to E2, changes in the cellular microenvironment that can alter the 

protein:protein associations which ultimately leads to changes in ER-mediated gene 

transcription, and synaptic transmission.  ERβ in particular is widely expressed and 

implicated positively in the regulation of memory and mood fluctuations, two of the 

most commonly reported neurological issues in postmenopausal women.  It is 

important to understand the actions of ERβ in the areas regulating these processes 

to identify what, when, how and for whom hormone therapy may be a useful 

treatment to rectify cognitive and affective issues. 

 

Hypothesis and Aims 

During menopause, aging and deprivation of 17β-estradiol (E2) induce 

changes in gene transcription by influencing the actions of estrogen receptors alpha 

and beta (ERα and ERβ).  Through molecular interactions with effector proteins ERβ 

modulates processes (i.e., transcription of target genes such as AVP) that lead to 

changes in stress response, mood, and memory that can be manifested throughout 

menopause.  Little is known about how ERβ functions in an aged microenvironment 

devoid of E2, but alternatively spliced variants that do not respond to E2, but are 

constitutively active, have been shown to increase under these circumstances. 

Therefore, I hypothesized that both molecular interactions and inherent factors in 

the splice variants of estrogen receptor beta (ERβ) contribute to changes in ERβ 
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function as a result of the aging process and in the absence or reinstatement of E2.  

Thus, I have developed the following two aims to test my hypothesis: 

Aim 1:  Identify the contribution of C-terminal truncations of human (h)ERβ 

splice variants to ligand-independent regulation of promoter activity of the 

full-length receptors in neuronal cells. 

 There are several identified alternative ERβ  splice variants in mouse, rat and 

human tissues, however the sequence homology between variants in different 

species is not well conserved.  Our laboratory and others have confirmed the ligand-

independent transcriptional actions of rat ERβ1 and  several of the rat alternative 

splice variants, however, to date there have been no reports of human ERβ1 or any 

alternative splice variants thereof exhibiting ligand-independent activity on target 

genes.  The mechanisms by which constitutive, ligand-independent transcriptional 

activity occurs is postulated to by influenced by MAPK signaling, and there are 

consensus sequences for p38 phosphorylation present on the human receptors. 

There is also a lack of data with regard to brain region specific expression of ERβ1 

splice variants.  I therefore sought to answer the following questions: 

1) Are hERβ splice variants differentially expressed in the brain regions of 

aged patients that control affective processes such as the amygdala? 

2) Do all of the identified hERβ splice variants retain DNA binding activity? 
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3) Can hERβ splice variants modulate promoter activity of mediated by basic 

cis-acting elements such as an ERE or AP-1 site independent of ligand or 

in response to agonists/antagonists? 

4) Do hERβ splice variants modulate the hAVP promoter in the same fashion 

as the rodent ERβ splice variants, and do they respond to ligand? 

5) What elements on the hAVP promoter contribute to ERβ splice variant 

gene repression? 

6) Could p38 play a role in mechanism of hERβ splice variant-mediated 

ligand-independent activity? 

 

Overall, data from this aim identified that several splice variant transcripts 

are differentially expressed in the amygdala, and within the same patient, splice 

variant expression can vary depending upon the region of the amygdala.    I also 

used an electrophoretic shift assay to determine that each of the splice variants bind 

a consensus ERE in vitro.  Then, by employing the use of luciferase-fused promoter 

constructs, I was able to determine that each splice variant transactivates and 

represses ERE- and AP-1 mediated promoter constructs respectively.  Each hERβ 

splice variant can also repress the hAVP promoter, independent of the presence of 

E2, agonist or antagonist.  I also found that hERβ splice variant-mediated activity on 

the hAVP promoter was elicited through an AP-1 site.  Finally, I showed that p38 
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inhibition can block hERβ splice variant mediated AP-1 and hAVP repression in 

neuronal cells and that estradiol can potentiate AP-1 activity when p38 is inhibited. 

Aim 2: Determine the accompaniment of molecular proteins associated with 

hERβ in young and aged animals upon a brief E2 withdrawal and replacement. 

Transcriptional regulation by ERβ requires a cohort of regulatory proteins.  

Protein associations with ERβ depend upon the status of the receptor regarding 

ligand binding and post-translational modifications that could alter the charge or 

structure of the receptor.  Ligand-independent transcriptional activity mediated by 

ERβ is not well understood, nor are the protein:protein interactions required to 

achieve this function.  Thus, with this aim I attempted to answer the following 

questions: 

 1) What proteins comprise the cohort of non-DNA bound nuclear proteins 

 that associate with ERβ? 

 2) Is there a specific subset of nuclear proteins that differentially 

 interact with ERβ following E2 replacement and does age change which  

 proteins prefer to associate with ERβ upon? 

 3) Does age alone alter the interactions between ERβ and its interaction 

 partners in the absence of E2?  

 3) Do the expression levels of identified interaction partners change with 

 age and E2, contributing to changes in their interaction with ERβ? 
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 From this aim I was able to identify a subset of non-DNA bound ERβ 

associated proteins.  Using quantitative 2-Dimensional-Differential Electrophoresis 

(2D-DIGE), I was able to determine that a subset of ERβ-associated proteins were 

differentially associated with ERβ dependent upon age and E2.  This list includes 

heat shock protein 70 (HSP70), annexins I and V (ANXAI and ANXAV), heteronuclear 

riboprotein H (HnRNP H), gelsolin (GELS), α-enolase (ENO1), valosin containing 

protein (VCP), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). (For a 

complete list of proteins identified see Tables 1 and 2).  Overall, data from this aim 

suggests that age and E2 can significantly alter protein associations with ERβ and 

that some inherent changes in ERβ, rather than expression of the interaction 

partners is a major factor in the changes of these interactions with age and E2 

reinstatement after a brief period of hormone deprivation.
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CHAPTER III 
 

C-TERMINAL-INDEPENDENT STRUCTURAL REQUIREMENTS FOR HUMAN 
ESTROGEN RECEPTOR BETA (ERβ) TRANSCRIPTIONAL REGULATION IN 

NEURONAL CELLS  
(MOTT NN. ET AL., J. NEUROENDOCRINOLOGY, 2012 OCT:24 (10):1311-21) 

 

Introduction 

Estrogen receptors (ERs) are critical regulators of many processes involved 

in functions of the central nervous system, including homeostasis, reproduction, 

memory, anxiety and synaptic plasticity ((Lund et al., 2005; Geary et al., 2001; 

McEwen et al., 1975; Ogawa et al., 1998; Sherwin, 1994a; Krezel et al., 2001; Weiser 

et al., 2008). The actions of estrogens are mediated primarily by high affinity ERα 

and ERβ, both of which belong to the nuclear receptor superfamily. Similar to the 

case in rodents, the human full-length ERβ (hERβ1) is the most recently identified 

ER.  At least three alternatively spliced variants of hERβ are present in the human 

brain, although the exact expression patterns and precise actions of these receptor 

splice variants remain largely unknown (Leung et al., 2006; Moore et al., 1998).  

However, the naturally occurring variations in ERβ structure have the capacity to 

provide important clues about the functional significance of the receptor domains, 

ultimately giving insight into the mechanisms regulating receptor action in various 

tissue-specific microenvironments. The physiological importance of these variants 

has been recently highlighted in a study showing the elevated expression of a 



46 

 

 

 

dominant negative rat ERβ2, which is structurally distinct from human ERβ2, 

diminished the effectiveness of hormone therapy following ovariectomy in rats 

(Wang et al.). On a molecular level, previous studies from our laboratory have 

demonstrated that the rat ERβ splice variants constitutively activated a variety of 

minimal and complex promoters in neuronal cells, and this activation was not 

dependent on the presence of ligands [17β-estradiol (E2), growth factors, etc.]; 

however, no such phenomenon has been reported for the human ERβ splice 

variants. Importantly, the rodent ERβ splice variants are substantively different in 

structure from the human specific splice variants raising the question of relevance 

and translatability from the rodent studies to human health.  

The structural differences in human ERβ splice variants suggest the 

intriguing possibility that these receptors could have specific functions that are not 

dependent on the presence of ligands, or that they are resistant to normal ligand 

effects, which could have detrimental consequences for therapeutic hormone 

treatment strategies if these variants are highly expressed during menopause or in 

disease states. The human ERβ variants identified to date contain variable length 

deletions and substitutions in exon 8 (e.g. hERβ1, hERβ2, hERβ4 and hERβ5) (Fig. 

4A), resulting in serially truncated receptor proteins at the C-terminus (Moore et al., 

1998).  The C-terminus of ERβ houses the ligand binding domain, a domain that is 

absolutely required for ligand-induced actions of the receptor. Notably, the hERβ 

splice variants lack varying portions of the E and F domains, which alter their innate 
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functional properties and ability to bind ligand.  Specifically, truncations to this 

region render hERβ2 unable to bind E2, whereas hERβ4 and hERβ5 have a very low 

affinity for E2, such that binding would occur only in conditions with 

supraphysiological levels of E2 (Leung et al., 2006). 

Amino acids encoded in the E domain (ligand binding domain; LBD) form a 

secondary structure consisting of 12 α-helices. These helices are considered 

essential for ligand binding and associations with coregulatory proteins. Indeed, 

helices 3, 5, and 12 are arranged in a pattern that forms a ‘hydrophobic pocket’ 

called the activation function-2 (AF-2) region. Upon ligand binding, the LBD 

undergoes a conformational change that results in a positional shift of helix 12, 

which alters the opening of the pocket; however, only hERβ1 has the necessary 

coding region for the normal configuration of this helix. Helix 12 of hERβ2 is 

encoded such that it is positioned in antagonism to ligand (Fig. 4B) and hERβs 4 and 

5 do not contain this sequence (Leung et al., 2006). Upon ligand binding, this region 

can interact with the common nuclear box consensus LxxLL motifs that are 

contained in nuclear receptor coregulatory proteins such as steroid coactivator-1 

(SRC-1) (11–13). In addition to ligand binding, the E ⁄ F domains of ERα contain the 

interface for receptor dimerization and possibly other regions important for the 

binding of coregulatory proteins (Peters and Khan, 1999). 

 Unique from all other steroid hormone receptors, only ERs contain an F 

domain that, for ERβ, consists of approximately 30 amino acids at the extreme end 
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of the C-terminus. Little is known about the functional significance of the F domain 

on ERβ, although recent studies suggest that the F domain may be important for 

transcriptional activation of ERα. For example, mutations to the F domain of ERβ 

enhanced dimerization, possibly by unmasking the dimerization interface of the E 

domain (Yang et al., 2008). Importantly, one study showed that specific amino acid 

sequences in this region alter the transcriptional responsiveness of ERα in the 

presence of a typical ER agonist such as E2 or an antagonist, such as tamoxifen or 

fulvestrant (ICI 182 780) (Koide et al., 2007).  This change in transcriptional 

responsiveness may be related to the ability of the F domain to associate with 

coregulators. For example, alterations to the F domain of ERα also lead to increased 

associations with coactivators, and ultimately enhanced transcriptional activity in 

yeast (Yang et al., 2008). The present study provides the first examination of 

transcriptional actions mediated by human ERβ splice variants in neuronal cells. 

Specifically, I hypothesized that the E and F domains were important for conferring 

ligand-dependent (rather than ligand-independent or constitutive) activity when 

regulating minimal promoters with an estrogen response element (ERE) or 

activator protein-1 (AP-1) enhancer site, and that these effects may be a result of 

endogenous kinase activity.  Taken together, our results demonstrate that the 

previously observed constitutive activity of ERβ in neuronal cells is conserved 

between rodents and humans. Moreover, the constitutive activity is regulated 

independent of the C-termini truncations deleting the AF-2 region and F domain of 
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the receptor and alternative splice variants. These data highlight the possibility that 

the ERβ splice variants play an important functional role in the brain especially 

when E2 becomes replete, as is the case at menopause. 

 

 

 

 

 
 
Figure 4. Schematic representation of specific human estrogen receptor 
(hERβ) splice variants. (A) Identified receptors are encoded by identical A-D 
domains.  Alternative splice sites in the E domain produce splice variants with 
altered C-termini E and F domains. (B) Amino acid sequence of C-termini of hERβ 
splice variants. Bold letters represent amino acids comprising helix 11. Underlined 
amino acids are representative of helix 12 in ERβ1 and its corresponding sequence 
alignment with hERβ2. 
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Results 

hERβ splice variants are expressed in human amygdala 

 Expression of the human ERβ splice variants have not been well explored, 

particularly in the brain.  Existing reports show low levels of transcripts from whole 

brain homogenate, which does not give an accurate picture of heterogeneity in the 

brain, not only amongst different brain regions, but within subnuclei of those 

regions.  To determine whether hERβ splice variants were expressed in specific 

brain regions relevant to affective issues and cognition, 3 human amygdala were 

obtained through the Netherlands brain bank (Female, non-demented: ages 77, 84 

and 85).  At least three distinct regions of the each were obtained from 2mm 

microdissected punches.  Specific primers for the hERβ 2 and 5 were designed small 

unique regions of the C-termini of each receptor (See Methods for primer 

sequences).  hERβ2 was shown to be expressed in 2 of the three patient samples 

obtained, but differentially so within each distinctly punched region (Fig. 5).  hERβ4 

appeared to be ubiquitously expressed in all of the  subjects and within each region, 

however, the hERβ4 primers were also specific for hERβ1 and therefore require 

subtractive methods to determine the actual levels of expression for each sample.  

hERβ5, similar to hERβ2 was differentially expressed in each patient and between 

regions in the amygdala of each patient. 
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Figure 5. Expression of hERβ splice variants in human brain tissue. Unique 
primers targeted against the C-terminus of each receptor were designed to amplify 
respective mRNA transcripts from human amygdala.  Samples were derived from 
non-demented human female brains (Ages Subject 067: 77, Subject 023: 85, Subject 
934:84) 
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hERβ splice variants bind a consensus ERE in the absence of ligand 

The classical model of ER action requires that the receptor first bind to a 

ligand or undergo an activational event before it is capable of binding to DNA at an 

ERE. This model contrasts with previous data from our laboratory and others 

showing that rodent ERβ1 and ERβ2, and human ERβ1, bind an ERE consensus 

sequence in the absence of ligand (Pak et al., 2005).  Notwithstanding these previous 

binding 

studies, it was unknown whether human-specific ERβ2, ERβ4 or ERβ5 had the 

ability to bind a consensus ERE in the absence of ligand. Therefore, EMSAs were 

performed to determine whether hERβ1, hERβ2, hERβ4 and hERβ5 could bind a 

consensus ERE sequence in the absence of E2 and also to determine whether the 

presence of E2 altered DNA binding. The results obtained showed that all human 

ERβ splice variants caused a strong shift of ERE-P32 oligos, demonstrating the 

ability of all human-specific splice variants to bind an ERE in both the presence and 

absence of E2 (Fig. 6A). Similar to the rodent splice variants reported previously, 

there were no significant differences between vehicle and E2 treated lysates that 

contained hERβ1, hERβ2, hERβ4 or hERβ5 (Fig. 6B).  

 



53 

 

 

 

 

Figure 6. Ligand-independent DNA binding activity of human estrogen 
receptor (hER)β1, hERβ2, hERβ4 and hERβ5. (A) In-vitro translated hERβ splice 
variant proteins were incubated with 0.01% EtOH (Vehicle, lanes 3–6) or 100 nM 
17β-estradiol (E2) (lanes 7–10) for 18 h at 4 ⁰C before incubation with 0.2 pM 
32PATP labeled vitellogenin consensus estrogen response element (ERE) 
oligonucleotide. The binding product was resolved on a 6% DNA retardation gel for 
35 min at 200 V. Gels were subsequently dried and exposed to autoradiography. To 
determine DNA binding specificity, unlabeled oligonucleotide was added in 1000-
fold excess of 32P-ERE (lane 1).  A scrambled ERE sequence was used as a negative 
control (lane 2). (B) Densitometric quantification of gel bands. Data are shown as 
the mean SD. 
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 These results suggest that the presence of E2 does not enhance, nor is it 

required, for hERβ1, hERβ2, hERβ4 or hERβ5 to bind an ERE, which is consistent 

with their reported inability to bind E2 with high affinity. A scrambled sequence ERE 

oligo and competition with 1000-fold excess unlabelled ERE effectively 

demonstrated specific DNA binding to an ERE for hERβ1 (Fig. 6A, lanes 1, 2) and 

each of the splice variants (data not shown). In control experiments, none of the 

splice variants caused a shift in EMSAs using a SP-1- P32 oligo, indicating the 

selectivity of these splice variants for the ERE oligo (data not shown). 

Apo-hERβ splice variants activate ERE -and AP-1-mediated promoter activity 

Liganded ER-mediated activation or repression of promoter activity is accomplished 

through direct DNA binding at an ERE site when the receptor is in the cis-acting 

conformation, or in the trans-acting conformation through protein:protein tethering 

at alternative regulatory transcription sites, such as an AP-1 site. To test the 

transcriptional activation of ERE- or AP-1- mediated promoters by human-specific 

ERβ splice variants, I co-transfected hippocampal-derived HT-22 neuronal cells with 

a 2xERE-tk-luciferase reporter construct or an AP-1-tk-luciferase reporter 

construct, and varying concentrations of expression vectors containing full-length 

hERβ1,hERβ2, hERβ4 or hERβ5 (Figs. 7 and 8).  All hERβ splice variant expression 

vectors significantly increased basal ERE-tk-luc activity in the absence of ligand (Fig. 

7). Furthermore, I found that there were no significant differences between the 
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increasing concentrations of expression vectors, with the exception of hERβ2, 

because the lowest dose did not cause a statistically significant increase in promoter 

activity at an ERE.  

 

  
 

Figure 7. Apo-human estrogen receptor (hERβ) splice variants on estrogen 
response element (ERE)-mediated promoter activity. HT-22 cells were 
transiently transfected with 0.15ug ERE-luciferase reporter construct and 
increasing amounts of plasmid expression vectors containing hERβ1 (A), hERβ2 (B), 
hERβ4 (C) or hERβ5 (D). Data represent the percentage change in relative light units 
compared to empty vector controls. *P < 0.05: statistically significant differences 
from empty vector control. 
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Notably, with the exception of hERβ2, all of the other hERβ splice variants 

increased ERE-tk-luciferase activity with concentrations as low as 0.0375 μg/well 

and maintained consistent activation at all doses, demonstrating the ability of these 

ERβ splice variants to constitutively activate ERE-mediated promoter activity. ER-

mediated regulation of promoters through an AP-1 site requires protein 

associations with members of the Jun and Fos family of proteins. Therefore, AP-1-

mediated promoter regulation can be highly complex and variable depending upon 

the cellular context. For example, rodent ERβ has been shown to have both 

activational and repressive actions on AP-1-mediated promoter activity (26, 27). In 

these experiments, I examined transcriptional activity of the human-specific ERβ 

splice variants on AP-1-mediated promoter activity in hippocampal HT-22 neuronal 

cells. Our results showed that hERβ1, hERβ2, hERβ4 and hERβ5 significantly 

repressed basal AP-1 mediated promoter activity (Fig. 8) in a constitutive manner. 

Unlike our observations using the ERE-tk-luc reporter construct, there were 

significant differences between the highest and two lowest concentrations of ERβ1 

plasmid and the highest and lowest plasmid concentrations of ERβ5 (Fig. 8).  
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Figure 8. Apo-human estrogen receptor (hER)β splice variants on activator 
protein-1 (AP-1)-mediated promoter activity. HT-22 cells were transiently 
transfected with 0.15μg of AP-1-luciferase reporter construct and increasing 
amounts of expression vectors containing hERβ1(A), hERβ2 (B), hERβ4 (C) and 
hERβ5 (D).  Data represent the percentage change in relative light units compared 
to empty vector controls. * Denotes statistically significant differences from empty 
vector control (P < 0.05). # Denotes statistical significance between groups. 
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ERβ agonists and antagonists do not alter hERβ splice variant constitutive regulation 

of ERE- and AP-1-mediated promoters 

 Human-specific ERβ2, ERβ4 and ERβ5 have very limited binding affinity for 

E2, despite the fact that ERs are classified as ligand activated nuclear receptors. 

Therefore, to determine whether the inherent structural differences in the C-

terminus of the human specific ERβ splice variants alter the ability of agonists or 

antagonists to activate ERE- or AP-1-mediated promoter activity, I assessed ERE- 

and AP-1-tk-luciferase activity in the presence of E2 and 3β-diol (an ERβ-selective 

agonist), or the ER antagonist ICI182 780. Consistent with experiments shown in 

Figures 7 and 8, the presence of hERβ splice variants alone caused a statistically 

significant constitutive increase in ERE-mediated promoter activity (Fig. 9A, black 

bars).  Conversely, a significant constitutive hERβ mediated repression was 

observed for all of the splice variants on AP-1-mediated promoter activity (Fig. 9B, 

black bars).  As expected, E2 further potentiated the constitutive hERβ1-mediated 

effects at an ERE, but not AP-1 site, whereas the ER antagonist, ICI 182 780 

abolished the constitutive hERβ1-mediated response at both an ERE and AP-1 site 

(Fig.9).  The presence agonist or antagonist, did not alter the constitutive effects of 

hERβ2, hERβ4 or hERβ5 on ERE- or AP-1-mediated promoter activity (Fig. 9). 

Moreover, the selective ERβ agonist 3β-diol did not further potentiate the 

constitutive effects of hERβs on ERE- and AP-1 mediated promoter activity (Fig. 9). 
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These results suggest that the presence of ligand does not alter the constitutive 

activity of the human ERβ splice variants at these promoter elements in neurons.  
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Figure 9. Effects of 17β-estradiol (E2), 5α-androstane-3β, 17β-diol (3β-diol) 
and ICI 182 780 on human estrogen receptor (hER)β splice variant-mediated 
estrogen response element (ERE) and activator protein-1 (AP-1) promoter 
activity. HT-22 cells were transiently transfected with 0.15μg of (A) 2x-ERE- or (B) 
AP-1-luciferase reporter constructs and 0.15μg of expression vectors containing 
hERβ1, hERβ2, hERβ4 or hERβ5. Twenty-four hours post transfection, cells were 
treated with vehicle (0.001% EtOH), 100nM of E2, 3β-diol or ICI 182 780 for 12 h. 
Data represent the percentage change in relative light units compared to empty 
vector controls. *P < 0.05: statistically significant differences from empty vector, 
vehicle-treated control. 
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hERβ-mediated repression of hAVP promoter is dependent upon AP-1 and p38 activity 

Arginine vasopressin (AVP) regulates a number of neurological processes, 

and it is well established that E2 and ERs alters vasopressinergic systems (De Vries 

et al., 1994; Han and De Vries, 2003; Brot et al., 1993; Ebner et al., 1999).  Previous 

data from our laboratory and others, demonstrated that rodent ERβ induced a 

robust ligand-independent increase of the rodent AVP promoter (Shapiro et al., 

2000; Pak et al., 2007). Furthermore, we determined that the region on the rodent 

AVP promoter important for rodent ERβ1-mediated constitutive activation was a 

non-ERE or AP-1 site between -1.3/-740 kb upstream of the transcription start site. 

We co-transfected the hAVP-luciferase reporter construct with the individual hERβ 

splice variants into human neuroblastoma-derived SK-N-SH cells and measured 

luciferase activity.  All human-specific ERβ splice variants significantly repressed 

hAVP promoter activity in a constitutive manner, which, for hERβ1-mediated 

repression, was blocked by ICI 182, 780 (Fig. 10).  All other splice variants/ligand 

combinations did not alter the constitutive repression of hAVP promoter activity.  
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Figure 10.  Effects of 17β-estradiol (E2), 5α-androstane-3β, 17β-diol (3β-diol) 
and ICI 182 780 on human estrogen receptor (hERβ) splice variant-mediated 
arginine vasopressin (AVP) promoter activity before and after deletion of an 
activator protein-1 (AP-1) site.   SK-N-SH cells were transiently transfected with 

0.15μg of (A) human AVP (hAVP)-luciferase or (B) hAVPᅀ611 – 604-luciferase 

reporter constructs and 0.15μg of expression vectors containing hERβ1, hERβ2, 
hERβ4 or hERβ5. Twenty-four hours post transfection, cells were treated with 
vehicle (0.001% EtOH), 100 nM E2, 3β-diol or ICI 182 780 for 12 h. Data represent 
the percentage change in relative light units compared to empty vector, vehicle-
treated controls. *P < 0.05: statistically significant differences from control. 
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 The results from the complex hAVP promoter were strikingly similar to the 

results obtained using the AP-1 minimal promoter construct shown in Fig. 10B. 

Therefore, I hypothesized that the primary element regulating this portion of the 

hAVP promoter activity would be an AP-1 site. Indeed, examination of the hAVP 

promoter sequence showed the presence of an imperfect AP-1 site located 611 bp 

upstream from the transcription start site. To examine whether the constitutive 

repression in hAVP promoter activity was a result of this imperfect AP-1 site, I used 

site-directed mutagenesis to create a mutant promoter construct lacking the 

imperfect AP-1 site (hAVPΔAP-1) and then subjected the hAVPΔAP-1 to the same 

reporter gene analysis described in Fig. 10A.  Site-directed mutagenesis of the 

imperfect AP-1 site eliminated the constitutive repression of transcriptional activity 

that was detected for the full-length hAVP promoter in the presence of hERβ1, 

hERβ2, hERβ4 or hERβ5, and also allowed for significant activation of the AVP 

promoter by hERβ1, hERβ4 and hERβ5 (Fig. 10B). The presence of agonists, E2 or 

3β-diol had no affect hAVPΔAP-1 promoter activity mediated by any of the hERβ 

splice variants compared to vehicle-treated controls. However, unlike our previous 

results obtained using the minimal promoters, the antagonist ICI182 780 was 

unable to reduce the constitutive activation of hERβ1-mediated hAVPΔAP-1 activity 

back to baseline levels. 
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Figure 11. Role of phosphoinositide 3-kinase (PI3K) and p38 kinase inhibition 
on human estrogen receptor (hER) β1-mediated repression of activator 
protein-1 (AP-1) promoter activity. HT-22 cells were transiently transfected with 
0.15μg of AP-1-luciferase reporter construct and 0.15µg of an expression vector 
containing hERβ1. Twenty-four hours post transfection, cells were treated with 
vehicle (0.001% EtOH), 100 nM 17β-estradiol (E2), or (A) 10 lM LY294002, or (B) 10 
lM SB202190 and 100 nM ICI 182 780 for 12 h. Data represent the percentage 
change in relative light units compared to empty vector, vehicle-treated controls. *P 
< 0.05: statistically significant differences from control. 
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The mechanisms by which hER  acts as a constitutive transcription factor 

remain unclear, however phosphorylation of the receptor has been implicated as a 

potential signal to activate constitutive function.  Specifically, p38, members of the 

MAP kinase family, have been identified as potential regulators of N-terminal 

phosphorylation of hER  (Picard et al., 2008). We tested the effects of endogenous 

kinase activity on constitutive actions of hER 1 using specific kinase inhibitors. A 

blockade of p38 activity using the kinase inhibitor, SB202190, restored hER 1- 

mediated AP-1 repression to baseline levels similar to treatment with ICI 182 780 

(Fig. 11B).  Notably, concomittant administration of the p38 kinase inhibitor and E2 

not only restored baseline promoter activity, but also enhanced AP-1-mediated 

promoter activity (Fig.11B). 

Next, I tested whether inhibition of p38 kinase activity would block the 

constitutive repression observed by all of the hERβ splice variants on hAVP 

promoter activity. Our results showed that inhibition of p38 kinase blocked the 

repression of hAVP activity mediated by both hERβ1 and hERβ2, but not by hERβ4 

or hERβ5 (Fig. 12B). Similar to the results observed with p38 kinase inhibition at 

the AP-1 site, when the kinase inhibitor was administered concomitant with E2, the 

promoter activity was significantly increased above baseline (Fig. 12B).  I also tested 

whether inhibition of another signaling pathway, AKT ⁄ PI3K, would abolish hERβ-

mediated constitutive activity. Notably, PI3K has not been previously implicated in 

mediating hERβ transcriptional activation. Using the PI3K inhibitor LY294002, I 
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found no effect of PI3K inhibition on hERβ-mediated activity of either promoter 

(Figs 11A and 12A), suggesting that this pathway is not involved in the constitutive 

activation of hERβ. 

 

 

Figure 12A. Phosphoinositide 3-kinase (PI3K) inhibition on human estrogen 
receptor beta (hERβ) splice variant-mediated repression of human AVP 
(hAVP) promoter activity. SK-N-SH cells were transiently transfected with 0.15µg 
of hAVP-luciferase reporter construct and 0.15µg of an expression vector containing 
hERβ1, hERβ2, hERβ4 or hERβ5. Twenty-four hours post transfection, cells were 
treated with vehicle (0.001% EtOH) or 100 nM 17β-estradiol (E2), (A) 10µM LY 
294002 or (B) 10µM SB202190 and 100 nM ICI 182 780 for 12 h. Data represent the 
percentage change in relative light units compared to empty vector, vehicle-treated 
controls. *P < 0.05 denotes statistically significant differences from control. 
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 Figure 12B. p38 kinase inhibition on human estrogen receptor beta (hERβ) 
splice variant-mediated repression of human AVP (hAVP) promoter activity. 
SK-N-SH cells were transiently transfected with 0.15µg of hAVP-luciferase reporter 
construct and 0.15µg of an expression vector containing hERβ1, hERβ2, hERβ4 or 
hERβ5. Twenty-four hours post transfection, cells were treated with vehicle 
(0.001% EtOH) or 100 nM 17β-estradiol (E2), (A) 10µM LY 294002 or (B) 10µM 
SB202190 and 100 nM ICI 182 780 for 12 h. Data represent the percentage change 
in relative light units compared to empty vector, vehicle-treated controls. *P < 0.05 
denotes statistically significant differences from control. 
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Discussion 

 The key novel findings obtained in the present study demonstrate that 

human-specific ERβ splice variants are not only expressed in human amygdale but 

exhibit marked constitutive activity in neuronal cells at both minimal and complex 

promoters, which can be blocked by inhibition of endogenous p38 kinase activity, 

raising the possibility that these splice variant receptors are important mediators of 

centrally-regulated processes in the presence and absence of cognate ligands. Our 

studies demonstrate that the human-specific ERβ splice variants are largely 

unresponsive to ligand and induce modest, yet significant constitutive increases in 

ERE-mediated promoter activity, and robust decreases in AP-1-mediated promoter 

activity. Although the changes in ERE-mediated promoter activity were modest, 

these fine-tuned changes could have important biological consequences. Taken 

together, these data contribute to our overall understanding of ER splice variants in 

neuronal cells. 

I have presented strong evidence that the human-specific ERβ splice variants 

bind DNA at a canonical ERE sequence, and modulate transcription in a ligand-

independent manner at both ERE- and AP-1- mediated minimal promoters. 

Treatment with E2 and 3β-diol did not significantly enhance the constitutive effects 

of hERβ1 on ERE- or AP-1-mediated promoter activity; however, the antagonist 

ICI 182 780 abolished all ERβ1-mediated constitutive activity. Previous ligand 

binding analyses have shown that both rodent and human ERβ splice variants have 
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a decreased ability to bind ligands compared to full-length hERβ1 (Peng et al., 2003; 

Leung et al., 2006). Indeed, ligands, whether agonist or antagonist, had no effect on 

ERE- or AP-1-mediated promoter activity via the splice variants hERβ2, hERβ4 and 

hERβ5, which is consistent with their reported inability to bind ligand (Leung et al., 

2006). Interestingly, the results shown in Figures 7 and 8 demonstrate a trend 

toward a dose-responsive effect of receptor concentration on promoter activity, 

which may be significant in brain regions where varying proportions of particular 

splice variants are expressed. The results from the present study suggest that 

further investigation of these splice variants is warranted, particularly concerning 

coexpression of the splice variants. These data indicate that hERβ splice variants are 

transcriptional active, and therefore could be physiologically relevant in neuronal 

cells despite fluctuations in steroid hormone levels. 

The human ERβ splice variants in the present study are truncated at the C-

terminus, which is useful for studying one of the two functional activation regions 

(AF-1 compared to AF-2) because there is a natural disruption in the AF-2 region of 

the splice variants. Our laboratory and others have shown that both human and 

rodent ERβ display constitutive activation (in the complete absence of growth 

factors or other nontraditional ligands) in many different promoter contexts and cell 

systems (Tremblay et al., 1999a; Tremblay et al., 1998; Tremblay et al., 1999b; 

Tremblay and Giguere, 2001; Pak et al., 2006; Pak et al., 2007; Pak et al., 2009; Pak 

et al., 2005). These studies describe ligand-independent activation events (e.g. 
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phosphorylation and coactivator recruitment to murine and human ERβ) occurring 

primarily at the N-terminal AF-1 domain, whereas ligand-dependent activation 

occurs at the C-terminal AF-2 domain.  I also propose that the N-termini of hERβs 

may function in concert with other activational events originating from domains A–

D that depend upon the cellular context to facilitate a basal level of transcription. In 

congruence with published reports of other ERs, I hypothesized that p38-mediated 

phosphorylation of N-terminal serines (S87 and recently S105) could be an 

activating signal for the constitutive action of hERβs. With this in mind, p38 and 

PI3K activity was inhibited prior to measuring the effects on hERβ-mediated 

repression of AP-1 and hAVP promoter activity. Consistent with the literature p38, 

and not PI3K, inhibition blocked the activity of hERβ1 and, representing a novel 

finding, p38 inhibition blocked the dominant negative actions of hERβ2 on a 

complex promoter. However, p38 inhibition did not block the repressive actions of 

hERβ4 and 5. It is possible that p38 may phosphorylate a portion of the missing C-

termini of hERβ4 and 5; however, there are no p38 consensus sequences present on 

this portion of the receptor to support this prediction. A more likely explanation for 

the inability of p38 kinase inhibition to restore promoter activity would be that a 

misfolding of hERβ4 and 5 occurs as a result of these variants lacking of a large 

region encoding the E and F domains. It is possible that this region is important for 

allowing a favorable conformation that results in the ability for the receptor to be 

constitutively active at certain promoters. Also, the presence of E2 enhanced the 
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hERβ1-mediated activation of both AP-1 and hAVP promoters when administered 

with SB 202190. This may reflect an alternate mechanism for transcriptional 

activation of hERβ1 when estrogens are present. Although I report that p38 

inhibition blocks the repressive effects of hERβ1 and 2, I cannot determine from 

these studies whether this effect is the result of the direct phosphorylation of the 

receptors. Overall, the conclusions drawn from the present study exclude only the 

possibility that the C-terminus (part of the E and all of the F) domains are required 

for constitutive activity of the receptor in neuronal cells, and that p38 kinase 

inhibition blocks the repressive actions of hERβ1 and 2. It stands to reason that 

there are multiple mechanisms working in concert to support the constitutive 

activity of ERβ, including posttranslational receptor modifications, cell-type and 

response element specific associations with coregulators, and even allosteric 

modulation through DNA : receptor interactions. 

The complexity of AVP gene regulation by ERs is most apparent in 

physiological studies where the actions of ERs have been shown to be both 

anxiogenic and anxiolytic in vivo (Lund et al., 2005).  The findings of the present 

studies revealed that, unlike the rodent ERβ splice variants, which increased AVP 

promoter activity in the absence of ligand, the human-specific ERβ splice variants 

uniformly decreased human AVP promoter activity. The human and rodent AVP 

promoters are highly homologous in the 1000-bp region proximal to the 

transcription start site, with the exception of an imperfect AP-1 site located 611 bp 
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upstream of the hAVP transcriptional start site, which is absent in the rodent 

promoter. Deletion of this site resulted in significant activation of promoter activity 

mediated by hERβ1, hERβ4 and hERβ5, mimicking our previous findings in the 

rodent system. Conversely, hERβ2 displayed a trend towards activation of this 

promoter, although the differences were not significant from control. Antagonism 

with ICI 182 780 did not block hERβ1- mediated ligand-independent activation of 

hAVP when the AP-1 site was removed. This lack of antagonism suggests that ligand 

independent activation of the hAVPΔAP-1 promoter may be quite different from 

traditional ERE-mediated promoter activation, where ICI 182 780 blocks activation 

by hERβ1. These data imply that unique regulatory elements may exist in the 

proximal rodent and human AVP promoters that could conserve some aspects of 

hERβ-mediated AVP promoter activity in the absence of AP-1-mediated activity.   

Indeed, the region responsible for ligand-independent activation by ERβ in both the 

rodent and human promoters did not contain classical ERE or AP-1 sequences.  

Overall, the results of the present study provide insight into the structural 

requirements for ERβ-mediated constitutive activity, which appear to be 

independent of the C-terminal domains. I also confirmed the lack of splice variant-

mediated constitutive effects on various promoters. Taken together, these data 

contribute significantly to the growing body of information detailing the molecular 

mechanisms of estrogens receptor signaling. Importantly, these studies 
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demonstrate the novel potential for human ERβ to mediate transcriptional 

activation of a variety of genes in the absence of ligand in the brain. 
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CHAPTER IV 

AGE ALTERS THE DYNAMICS OF  ERβ PROTEIN:PROTEIN ITNERACTIONS IN THE 
VENTRAL HIPPOCAMPUS DEPENDENT UPON 17β-ESTRADIOL 

(MOTT NN ET AL., MOL CELL PROTEOMICS.2014 JAN 5) 
 

 
 
Introduction 

 
 The neuroprotective and beneficial effects of estrogens in the brain have 

been reported for decades, yet recent evidence from clinical trials suggested that the 

benefits of estrogens in postmenopausal women might not outweigh the risks.  

Specifically, the risk of cardiovascular disease and invasive breast cancer was 

significantly increased in postmenopausal women given hormone therapy (HT) as 

part of the largest clinical trial performed to date (Women’s Health Initiative (WHI).  

These results sharply contradicted substantial evidence from numerous studies in 

animal models, prompting a re-evaluation of the data from the WHI studies.  Later it 

was determined that factors contributing to the observed detrimental effects of HT 

in the WHI study included advanced age, the types of synthetic estrogens and 

progestins used in the study, and perhaps most importantly, the number of years 

post-menopause prior to the initiation of HT.  However, more than 10 years after 

these studies concluded there is little to no mechanistic explanation for how aging 

contributes to a change in estrogen signaling.  One possibility is that there is an age 

related change in the way the brain receives and responds to estrogens; however 
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the mechanisms by which this could occur are unclear.  I hypothesized that there 

are intrinsic changes in the function of ERβ in the brain with advanced age, and ERβ 

in particular, has been shown to be a critical regulator of many neurobiological 

functions.  An important component of ERβ signaling is that it requires associations 

with a cohort of intracellular regulatory protein partners.  Therefore, one likely 

possibility is that the protein:protein interactions required for ERβ signaling are 

altered with age and estrogen bioavailability. 

 Traditional functions of ERs depend heavily upon dynamic interactions with 

transcription factors and coregulatory proteins that influence ER-mediated gene 

expression.  Previous studies have shown that ERβ can associate with traditional 

coregulators in the brain such as steroid coactivator-1 (SRC-1) and estrogen 

receptor associated protein (ERAP) 140 (Greco et al., 2001; Paramanik and Thakur, 

2010; Shao et al., 2002) ,  and that these associations are modified by multiple 

factors including age.  One study demonstrated a decreased association between 

ERAP 140 and ERβ in the aged hippocampus, despite an overall increase in ERAP 

140 expression (Paramanik and Thakur, 2010).  These results raise the interesting 

possibility that age causes intrinsic changes in the functional properties of ERβ, 

which alters its ability to interact with other proteins irrespective of protein 

availability.   Also gelsolin (GELS) and GAPDH, proteins that have often been 

considered artifacts when observed in nuclei, are actually proteins shown to 

activate nuclear receptors such as androgen receptor (AR) (Nishimura et al., 2003; 
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Harada et al., 2007).  Similarly, an actin binding protein in the same family as GELS, 

Flightless I, has also been deemed a nuclear receptor coactivator for ER-mediated 

gene expression (Lee et al., 2004).   

 The neuroprotective effects of estrogens are particularly important for post-

menopausal women in brain regions such as the hippocampus; a brain area that is 

functionally subdivided into ventral and dorsal regions. The ventral hippocampus, 

forged by connections to the hypothalamus and amygdala, modulates affective 

processes such as responses to stress and emotion, whereas the dorsal 

hipopcampus is important for mediating cognitive functions, especially memory 

(Fan et al.; Fanselow and Dong, 2010; Hampson et al., 1999).  Importantly, estrogens 

regulate both cognitive and emotional processes, and ERβ may be of particular 

importance in postmenopausal women for mediating the effects of fluctuating E2.   

As the predominant estrogen receptor in the hippocampus, ERβ is largely 

responsible for a number of neurobiological functions ranging from gene 

transcription to synaptic transmission.  Indeed, transcriptional regulation is the 

conventional mechanism of action for ERβ-mediated processes; however evidence 

suggests that ERs have a much broader physiological role and can interact with 

proteins that regulate alternative splicing and mRNA processing, as well as a 

number of cytoplasmic signaling events  (Nalvarte et al.; Masuhiro et al., 2005; 

Ambrosino et al.). Therefore, the actions of estrogens and their receptors may 

extend to more cellular processes than previously recognized.  



77 

 

 

 

  Our aim in these studies was to quantitatively assess age-related changes in 

cellular proteins that associate with ERβ in the hippocampus using young (3 mo. 

old) and aged (18 mo. old) female rats.  I also quantified how E2 affected these 

protein:protein interactions at each age in order to better understand a potential 

mechanism for the differential effects of HT that have been observed in 

postmenopausal women.  I specifically focused on proteins that associated with ERβ 

in the absence of DNA binding as an indicator of how age and/or E2 affects non-

conventional ERβ signaling pathways.  Our approach was novel in that all 

experiments were performed in vivo in an out bred strain of rats using highly 

sensitive 2D-difference gel electrophoresis (2D-DIGE) coupled with liquid 

chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-

MS/MS) to both quantify and identify novel ERβ:protein interactions.  Our results 

demonstrated that E2 altered the association of ERβ with number of previously 

unidentified coregulatory proteins depending on age.  Some of these novel proteins 

included actin binding proteins, mRNA alternative splicing proteins, and 

multifunctional metabolic proteins.  Together, the work presented here sheds light 

on two important and very novel findings that further our understanding of the 

molecular and physiological functions of ERβ in the brain by 1) identifying novel 

ERβ:protein interactions that could delineate previously unknown roles for ERβ, 

and 2) by demonstrating how age and E2 alters these protein interactions in vivo. 
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Results 

Global quantification of ERβ protein associations as a function of age and E2 

 To determine whether protein:protein interactions with ERβ are altered by 

age and E2 in vivo, female Fisher344 rats (3 mo (N = 40)- and 18-mo (N= 39)) were 

bilaterally ovariectomized (OVX) and allowed to recover post-OVX for 7 days.   After 

7 days post-OVX the animals received once/day subcutaneous injections of 2.5ug/kg 

E2 or safflower oil (vehicle) for 3 consecutive days.  Animals were sacrificed by rapid 

decapitation 24 hours after the last injection and trunk blood and brains were 

collected further analysis (Fig. 13).   Circulating E2 was measured by using an 

enzyme-linked immunoassay system (EIA, Cayman Chemical).  The limit of detection 

for the assay was 6.6 pg/ml. Levels of plasma E2, for young treated animals were 

determined to be  53.67 (SEM+/- 7.24) pg/ml and 50.56 (SEM+/- 8.78) pg/ml in 

aged animals, within the physiological range for post-menopausal patients receiving 

hormone replacement therapy (17-75pg/ml) (Schmidt et al., 1994), but E2 levels in 

vehicle treated animals were not detectable (Fig. 14). 
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 Figure 13.  Hormone treatment paradigm.  Female Fisher 344 rats (3-mo (N = 

40) and 18-mo (N= 39)) were bilaterally ovariectomized (OVX).   After 7 days post-
OVX the animals received once/day subcutaneous injections of 2.5ug/kg 17β-
estradiol or safflower oil (vehicle) for 3 consecutive days.  Animals were sacrificed 
by rapid decapitation 24 hours after the last injection and trunk blood and brains 
were collected further analysis. 
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Figure 14.  Serum E2 levels from young and aged animals following treatment 
paradigm.  Circulating 17β-estradiol was measured by using an enzyme-linked 
immunoassay system (EIA, Cayman Chemical).  Trunk blood was collected in tubes 
coated with 20-50 units of porcine heparin (Sigma) per ml of blood collected.  Blood 
was then centrifuged at 4000 x g for 7 minutes and plasma was removed subjected 
to immunoassay per manufacturer's instructions. The limit of detection for the assay 
was 6.6 pg/ml.   
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To examine the molecular weights of the proteins co-immunoprecipitated with ERβ, 

surface-enhanced laser desorption ionization time-of-flight (SELDI-tof) mass 

analysis was performed rather than a 1 dimensional molecular weight gel to make 

best use of scarce samples obtained in vivo.  In general it was determined that 1-D 

analysis of the samples for molecular weight using a gel or mass spectrometry alone 

was insufficient to examine the array of proteins in the samples (Fig. 15).  

 

 

 

 

 

Figure 15. Representative SELDI-tof mass analysis of proteins co-
immunoprecipitated with ERβ in the ventral hippocampus.  Following co-
immunoprecipitation of ERβ and associated proteins, samples (aged E2-treated, AE 
shown) were subjected to SELDI-tof mass analysis using an assortment of standard 
peptides as a molecular weight marker (MWM). 
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Global quantification of ERβ protein associations as a function of age and E2 

 To determine changes in protein ‘spots’ co-immunoprecipitated with ERβ 

from the ventral hippocampus, proteins were subjected to 2D-DIGE and the protein 

spot patterns were analyzed using DeCyder software (GE Healthcare) described in 

more detail in Figure 16.  Briefly, Cy5 and pooled internal standards from each 

experimental group were labeled with Cy3.  Cy3 and Cy5 labeled proteins were 

resolved first on a 3-11NL Immobiline isoelectric focusing gel (GE Healthcare) and 

then resolved for molecular weight on a 12% SDS-PAGE gel.  Gel plugs representing 

spots of interest were excised from preparative gels and subjected to LC-ESI-MS/MS 

for peptide identification (Fig. 16). 
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Figure 16. Proteomic experimental design.  The ventral hippocampus was 
microdissected and snap frozen (-80⁰C).  Nuclear proteins were isolated and 
subjected to co-immunoprecipitation of ERβ (or crosslinked prior with DTBP).  After 
preparing samples for 2D-electrophoresis, experimental samples were labeled with 
Cy Dyes (standard Cy3, experimental Cy5) and subjected to isoelectric focusing and 
subsequent separation of proteins based on molecular weight.  Finally, spots of 
interest were excised from a preparative gel and subjected to LC-ESI-MS/MS and 
peptide fingerprinting for identification. 
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 Overall, there were a total of 19 protein spots that were significantly altered 

with E2 between all young and aged replicates examined (19/741), equivalent to 

2.56% of total protein spots examined in this paradigm (Fig. 17).  I was able to 

identify 17 of the 19 proteins interacting with ERβ that were significantly altered by 

E2, dependent upon age (Fig. 18). Notably, E2 treatment significantly altered ERβ 

association with all 19 protein spots in the young animals, yet only 5 of the 19 spots 

were changed in aged animals.  Quantification of individual gels demonstrated that 

E2 treatment significantly increased the log standard abundance of 7 protein spots, 

and decreased the log standard abundance of 12 protein spots in young animals 

(young vehicle: (YV) to young E2: (YE), Table 1, Fig. 17A).  By stark contrast, E2 

treatment increased only 3 spots in aged animals and decreased just 2 spots (aged 

vehicle: (AV) to aged E2: (AE), Table 1, Fig.17B).  Interestingly, E2 treatment in aged 

animals failed to significantly alter the log standard abundance of the majority of 

proteins that were co-immunoprecipitated with ERβ.  
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Figure 17A.  Representative analytical gel images of 3 month old vehicle and 
E2 treated samples and overall number of protein spots altered by E2 
treatment.  Pie chart represents the total number of protein spots that were 
significantly changed from vehicle to estradiol groups.  Total number of protein 
spots calculated from all confirmed and matched spots in BVA module.  
Increased/decreased spots correspond to protein spots that displayed a 
significantly increased/decreased standard abundance compared to vehicle 
treatment, indicating and increase in association with ERβ. (n=3, 1-way ANOVA 
p<0.05) 
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Figure 17B.  Representative analytical gel images of 18 month old vehicle and 
E2 treated samples and overall number of protein spots altered by E2 

treatment.  Pie chart represents the total number of protein spots that were 
significantly changed from vehicle to estradiol groups.  Total number of protein 
spots calculated from all confirmed and matched spots in BVA module.  Increased 
(green)/decreased (red) spots correspond to protein spots that displayed a 
significantly increased/decreased standard abundance compared to vehicle 
treatment, indicating and increase in association with ERβ. (n=3, 1-way ANOVA 
p<0.05) 

365

23



87 

 

 

 

 

                                              

Figure 18. Representative 2D-gel image for identified proteins co-
immunoprecipitated with ERβ in the ventral hippocampus that were altered 
by age or E2 treatment.  Representative 2D-image of Cy labeled proteins (indicated 
by BVA no.) co-immunoprecipitated with ERβ that were significantly altered by age 
or E2 treatment with from rat ventral hippocampus (N=3, 1-way ANOVA, p<0.05). 
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Table 1. Identified proteins altered by age and E2. ↑ ↓ indicate statistically 
significant changes in log standard abundance (1-way ANOVA, p>0.05)  
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 Due to the nature of quantitative 2D-DIGE experiments using scarce samples 

from in vivo experiments, only 2 groups can be reliably compared in any given gel 

(i.e, YV vs. YE), therefore I performed a second set of experiments comparing 

vehicle-only treated samples in young and aged animals. This analysis was 

performed to establish whether aging alone, in the absence of E2, altered the 

baseline of the identified protein interactions.  From the 19 proteins significantly 

altered by E2 treatment in young and/or aged animals, only 1 (BVA Spot #295 

(GAPDH spot A), data not shown) was significantly changed by age alone.  The log 

standard abundance of BVA spot #295 GAPDH Spot A was significantly decreased in 

aged vehicle treated animals compared to young, suggesting that the baseline 

interaction between ERβ and GAPDH may decrease with age, regardless of E2 

bioavailablity.  As previously mentioned, only 2.56% of all the proteins that co-

immunoprecipitated with ERβ in this paradigm were altered by age and E2 

treatment. Unaltered proteins fell into the same functional categories as those that 

were changed including chaperone proteins, structural proteins, coactivators, 

DNA/RNA binding proteins and multifunctional proteins (Table 2 Fig. 18B.).  



90 

 

 

 

 
Table 2.  Identified proteins unaltered by age and E

2
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Peptide fingerprinting and analysis of ERβ associated proteins.  
 

 In humans, E2 administration has dichotomous effects dependent upon age 

and/or menopausal status; however there is little biochemical evidence to explain 

this phenomenon.  Our results showed that E2 treatment differentially altered ERβ 

associated proteins in young, compared to aged animals, providing evidence for a 

putative mechanism for the age-dependent effects of E2.  I identified several clusters 

of protein spots based on their shared isoelectric point, molecular weight, and 

migration pattern (Fig. 19).  Some spot clusters were pooled into a single sample for 

peptide fingerprinting using LC-ESI-MS/MS, and the proteins with the highest 

PEAKS score (>60), matching molecular weight and isoelectric range were identified 

as representing the entire cluster.   These results were confirmed by subjecting 

replicate spots within a cluster for peptide identification.  Finally, these clusters 

have been functionally grouped into those that had an overall increase and those 

that had an overall decrease in log standard abundance following E2 treatment in 

young animals.  
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Figure 19: Representative 2D-gel image for identified protein clusters co-
immunoprecipitated with ERβ in the ventral hippocampus.  Representative 2D-
image of Cy-labeled proteins co-immunoprecipitated with ERβ identified by tandem 
mass spectrometry (PEAKS score >60) from rat ventral hippocampus.   
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Spot clusters that increased in E2-treated young animals.  

 Annexin V (ANXAV) was identified as the most highly abundant protein in a 

cluster of 3 spots that changed following E2 treatment. Further, E2 treatment had 

quantitatively distinct effects on the log standard abundance of each spot within this 

cluster.  For instance, each spot increased following E2 treatment in young animals 

(Table 1: BVA spot #288 (spot A), 304 (spot B), and 343 (spot C); Fig. 20).  However, 

E2 treatment in aged animals increased the log standard abundance of spot A, 

decreased spot B, and had no significant effect on spot C (Table 1, Fig. 20).  

Moreover, BVA Spot No. 288, identified in a cluster of spots as Annexin V, was the 

only protein spot that E2 similarly affected (increased) in both young and old 

animals. 
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Figure 20A.   DeCyder topographical, gel image analysis and average log 
standard abundance of annexin V (ANXAV) in response to E2 in young and 
aged animals.  For each panel from top left to right: 3 month: YV representative 
topography, YE representative topography, YV representative gel image, YE 
representative gel image; 18 month: AV representative topography, AE 
representative topography, AV representative gel image, AE representative gel 
image.  
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Figure 20B.   DeCyder topographical, gel image analysis and average log 
standard abundance of annexin V (ANXAV) in response to E2 in young and aged 
animals.  For each panel from top left to right: 3 month: YV representative 
topography, YE representative topography, YV representative gel image, YE 
representative gel image; 18 month: AV representative topography, AE 
representative topography, AV representative gel image, AE representative gel 
image. Graphs represent log transformed average abundance normalized to internal 
standard and matched to master gel.  (Top 3-mo., Bottom, 18-mo.) Average 
calculated from 3 independent experiments with a biological variance of 4 pooled 
animals/experiment.  (N=3, BV=15) * denotes significance from vehicle p<0.05. 
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Similar to the ANXAV cluster, E2 treatment significantly increased ERβ 

association with all 4 spots identified as HnRNP H in young animals (Table 1: BVA 

spot #195 (spot A), #224 (spot B), #186 (spot C), #200 (spot D); Fig. 21).  By 

contrast, E2 treatment did not increase any of these spots in the aged animals, as 

spot C was significantly decreased and the other 3 were unaffected (Table 1, Fig. 

21).  

 Young animals treated with E2 had a significant increase in 2 spots identified 

as a cluster of gelsolin proteins (GELS, Table 1: BVA #52 (spot A), BVA #54 (spot B); 

Fig. 22), yet E2 had no effect in aged animals. Notably, in this cluster GELS was the 

only predominant peptide match in the group of spots selected that corresponded to 

its approximate isoelectric point and size.  Moreover, this spot cluster was split into 

three samples and GELS was the only protein identified and it was observed in all 3 

samples (Spot 52, 54 and 56 (not significantly changed by E2)), despite a PEAKS 

score lower than 60 (Pick Spot No. 5, PEAKS score of 49.5).   

 Similar to the results from GELS, log standard abundance of annexin 1 

(ANXA1, Table 1: BVA #225, Fig. 23) was significantly increased by E2 in young 

animals but was not significantly altered by E2 in aged animals.  Taken together, 

these data suggest that E2 may enhance some ERβ:protein interactions in young 

animals but has an opposite or little effect on the same interaction in older animals 
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Figure 21A.   DeCyder topographical, gel image analysis and average log 
standard abundance of heteronuclear riboprotein H (HnRNP H) in response to 
E2 in young and aged animals.  For each panel from top left to right: 3 month: YV 
representative topography, YE representative topography, YV representative gel 
image, YE representative gel image; 18 month: AV representative topography, AE 
representative topography, AV representative gel image, AE representative gel 
image.  
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Figure 21B.   DeCyder topographical, gel image analysis and average log 
standard abundance of heteronuclear riboprotein H (HnRNPH) in response to 
E2 in young and aged animals.  For each panel from top left to right: 3 month: YV 
representative topography, YE representative topography, YV representative gel 
image, YE representative gel image; 18 month: AV representative topography, AE 
representative topography, AV representative gel image, AE representative gel 
image.  
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Figure 21C.   DeCyder topographical, gel image analysis and average log  
standard abundance of heteronuclear riboprotein H (HnRNPH) in response to 
E2 in young and aged animals.  Graphs represent log transformed average 
abundance normalized to internal standard and matched to master gel.  (Top 3-mo., 
Bottom, 18-mo.) Average calculated from 3 independent experiments with a 
biological variance of 4 pooled animals/experiment.  (N=3, BV=15) * denotes 
significance from vehicle p<0.05.  
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Figure 22A.   DeCyder topographical, gel image analysis and average log  
standard abundance of gelsolin (GELS) in response to E2 in young and aged 
animals.  For each panel from top left to right: 3 month: YV representative 
topography, YE representative topography, YV representative gel image, YE 
representative gel image; 18 month: AV representative topography, AE 
representative topography, AV representative gel image, AE representative gel 
image.  
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Figure 22B.   DeCyder topographical, gel image analysis and average log 
standard abundance of gelsolin (GELS) in response to E2 in young and aged 
animals Graphs represent log transformed average abundance normalized to 
internal standard and matched to master gel.  (Top 3-mo., Bottom, 18-mo.) Average 
calculated from 3 independent experiments with a biological variance of 4 pooled 
animals/experiment.  (N=3, BV=15) * denotes significance from vehicle p<0.05. 
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Figure 23.  DeCyder topographical, gel image analysis and average log 
standard abundance of annexin 1(ANXA1) in response to E2 in young and aged 
animals.  For each panel from top left to right: 3 month: YV representative 
topography, YE representative topography, YV representative gel image, YE 
representative gel image; 18 month: AV representative topography, AE 
representative topography, AV representative gel image, AE representative gel 
image. Graphs represent log transformed average abundance normalized to internal 
standard and matched to master gel.  (Top 3-mo., Bottom, 18-mo.) Average 
calculated from 3 independent experiments with a biological variance of 4 pooled 
animals/experiment.  (N=3, BV=15) * denotes significance from vehicle p<0.05. 
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Spot clusters that decreased in E2-treated young animals.  

 In addition to E2-induced increases in ERβ protein associations, there were 

also proteins that showed a significantly decreased log standard abundance with 

ERβ following E2 treatment. For example, BVA spot #141 (HSP70 spot A), #145 

(HSP70 spot B) and #193 (HSP70 spot C) (Table 1; Fig. 24), corresponding to the 

spot cluster identified as HSP70, were all significantly decreased with E2 treatment 

in young animals, yet the opposite effect was observed in aged animals for spot C, 

which was significantly increased (Fig. 24). HSP70 spots A and B remained 

unchanged following E2 treatment in aged animals.  Exhibiting a similar pattern, the 

BVA spot identified as α-enolase (ENO1, Table 1: BVA #218) was also significantly 

decreased with ERβ in response to E2 treatment in young animals, and like HSP70 

appeared to associate more readily with ERβ in aged animals treated with E2 (Table 

1, Fig. 25).  
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Figure 24A.   DeCyder topographical, gel image analysis and average log 
standard abundance of heat shock protein 70 (HSP70) in response to E2 in 
young and aged animals.  For each panel from top left to right: 3 month: YV 
representative topography, YE representative topography, YV representative gel 
image, YE representative gel image; 18 month: AV representative topography, AE 
representative topography, AV representative gel image, AE representative gel 
image. Graphs represent log transformed average abundance normalized to internal 
standard and matched to master gel.  (Top 3-mo., Bottom, 18-mo.) Average 
calculated from 3 independent experiments with a biological variance of 4 pooled 
animals/experiment.  (N=3, BV=15) * denotes significance from vehicle p<0.05. 
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  Figure 24B.   DeCyder topographical, gel image analysis and average log 
standard abundance of heat shock protein 70 (HSP70) in response to E2 in 
young and aged animals.  For each panel from top left to right: 3 month: YV 
representative topography, YE representative topography, YV representative gel 
image, YE representative gel image; 18 month: AV representative topography, AE 
representative topography, AV representative gel image, AE representative gel 
image. Graphs represent log transformed average abundance normalized to internal 
standard and matched to master gel.  (Top 3-mo., Bottom, 18-mo.) Average 
calculated from 3 independent experiments with a biological variance of 4 pooled 
animals/experiment.  (N=3, BV=15) * denotes significance from vehicle p<0.05. 
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Figure 25.   DeCyder topographical, gel image analysis and average log 
standard abundance of α-enolase (ENO1) in response to E2 in young and aged 
animals.  For each panel from top left to right: 3 month: YV representative 
topography, YE representative topography, YV representative gel image, YE 
representative gel image; 18 month: AV representative topography, AE 
representative topography, AV representative gel image, AE representative gel 
image. Graphs represent log transformed average abundance normalized to internal 
standard and matched to master gel.  (Top 3-mo., Bottom, 18-mo.) Average 
calculated from 3 independent experiments with a biological variance of 4 pooled 
animals/experiment.  (N=3, BV=15) * denotes significance from vehicle p<0.05. 
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 The commonly considered housekeeping protein-deemed coactivator of AR, 

glyceraldehyde-3-phosphate (GAPDH) was also found to be associated with ERβ in 

both young and aged animals.   E2 treatment significantly decreased GAPDH in 

young, but not aged animals (Table, 1, Fig. 26).   Alternatively, BVA spot #12, found 

in the group of spots identified as Valosin containing protein (VCP/p97) was 

significantly decreased with E2 treatment in the young animals, and also tended to 

decrease with E2 treatment in the aged animals (Table 1, Fig. 27).  In order to 

further validate the quantitative changes observed using 2D-DIGE and DeCyder 

analysis, I performed western blot analysis on ERβ co-immunoprecipitated samples 

used for 2D-DIGE.  As expected, VCP was decreased with E2 in young animals, with a 

tendency to decrease with E2 treatment in aged animals (Fig. 28), confirming the 

sensitivity and accuracy of the 2D-DIGE system when employed with LC-ESI-MS/MS.   

 Finally, E2 treatment significantly decreased two protein spots (Table 1: BVA 

#79 and #351, Figs. 29 and 30) in young animals that were in the vicinity of the 

GELS cluster but were unable to be identified.  These same spots were not 

significantly altered by E2 in aged animals (Table 1, Figs. 29 and 30).   
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Figure 26A.   DeCyder topographical, gel image analysis and average log 
standard abundance of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
in response to E2 in young and aged animals.  For each panel from top left to 
right: 3 month: YV representative topography, YE representative topography, YV 
representative gel image, YE representative gel image; 18 month: AV representative 
topography, AE representative topography, AV representative gel image, AE 
representative gel image.  
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Figure 26B.   DeCyder topographical, gel image analysis and average log 
standard abundance of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
in response to E2 in young and aged animals.  Graphs represent log transformed 
average abundance normalized to internal standard and matched to master gel.  
(Top 3-mo., Bottom, 18-mo.) Average calculated from 3 independent experiments 
with a biological variance of 4 pooled animals/experiment.  (N=3, BV=15) * denotes 
significance from vehicle p<0.05. 
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Figure 27.   DeCyder topographical, gel image analysis and average log 
standard abundance of valosin containing protein/p97 (VCP) in response to E2 

in young and aged animals.  For each panel from top left to right: 3 month: YV 
representative topography, YE representative topography, YV representative gel 
image, YE representative gel image; 18 month: AV representative topography, AE 
representative topography, AV representative gel image, AE representative gel 
image. Graphs represent log transformed average abundance normalized to internal 
standard and matched to master gel.  (Top 3-mo., Bottom, 18-mo.) Average 
calculated from 3 independent experiments with a biological variance of 4 pooled 
animals/experiment.  (N=3, BV=15) * denotes significance from vehicle p<0.05. 
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Figure 28: Confirmation of ERβ:VCP interaction. Co-immunoprecipitated nuclear 
extracts (YV, YE, AV, AE) were subjected to western blot analysis to confirm the 
interaction between ERβ and VCP. 
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Figure 29: DeCyder topographical and gel image analysis of BVA Spot number 
79. For each panel from top left to right: 3 month: YV representative topography, YE 
representative topography, YV representative gel image, YE representative gel 
image; 18 month: AV representative topography, AE representative topography, AV 
representative gel image, AE representative gel image. Graphs represent log 
transformed average abundance normalized to internal standard and matched to 
master gel.  (Top 3-mo., Bottom, 18-mo.) Average calculated from 3 independent 
experiments with a biological variance of 4 pooled animals/experiment.  (N=3, 
BV=15) * denotes significance from vehicle p<0.05. 
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Figure 30: DeCyder topographical and gel image analysis of BVA Spot number 
351. For each panel from top left to right: 3 month: YV representative topography, 
YE representative topography, YV representative gel image, YE representative gel 
image; 18 month: AV representative topography, AE representative topography, AV 
representative gel image, AE representative gel image. Graphs represent log 
transformed average abundance normalized to internal standard and matched to 
master gel.  (Top 3-mo., Bottom, 18-mo.) Average calculated from 3 independent 
experiments with a biological variance of 4 pooled animals/experiment.  (N=3, 
BV=15) * denotes significance from vehicle p<0.05. 
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Quantification of the effects of age and E2 on protein expression  

One possible explanation for changes in protein:protein interaction could be 

that there was a corresponding change in absolute protein expression levels of the 

partners in question.  Therefore, I analyzed the subcellular expression levels of 

some of the proteins of particular interest that were identified as ERβ interacting 

proteins in the ventral hippocampus.   I selected VCP, and GAPDH for their potential 

role in apoptosis and disease, GELS and HSP70 because they are known to interact 

with ERs, ENO1 as a novel ER interaction partner and HnRNP H because of its role in 

alternative splicing, a process known to increase with aging.  Further, it is also 

possible that a change in nuclear/cytosolic shuttling could account for a change in 

protein associations; therefore the cytosolic fractions were examined as well.   

First, I analyzed the expression levels of ERβ in the ventral hippocampus.  

Several studies have reported age-related changes in ERβ expression, however the 

reports are inconsistent and dependent on brain region (Wilson et al., 2002; 

Chakraborty et al., 2003b; Gundlah et al., 2000; Sharma and Thakur, 2006; Zhang et 

al.).  Our results showed a trend toward a decrease in ERβ expression in the ventral 

hippocampus with age, but no significance statistical difference was found using a 2-

way ANOVA (Fig 31A, 31B).  HSP70 levels followed a similar pattern, but again there 

were no significant changes in HSP70 cytosolic or nuclear expression.   Interestingly, 

VCP was the only protein that showed a statistically significant increase as main 

effect of age in 18 month-old animals (Fig. 31A,B, F(1,8)=0.0237, p<0.05), however 
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there was no effect of E2 and there was no interaction.  Interestingly, this change in 

expression did not correlate with the interaction observed via 2D-DIGE between 

ERβ and VCP in aged animals, which showed a trend towards decreased association 

with ERβ (Table 1, Fig. 27).  There was also a trend toward increased ENO1 

expression in E2-treated aged animals, which corresponded to an observed increase 

in ERβ:ENO1 interaction (Figs. 25,31A, B).  GAPDH and HnRNP H expression levels 

were unchanged by age and treatment. From these data it is clear that absolute 

protein expression levels are not solely responsible for changes in ERβ:protein 

interactions in vivo. 

 

 

 



116 

 

 

 

 

Figure 31A. Nuclear and cytosolic expression analysis of ERβ-interaction 
partners.  A.  Representative immunoblots for nuclear and cytosolic ERβ, HSP70, 
GAPDH, VCP HNRNP H, ENO1 normalized to β-actin.  
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Figure 31B. Nuclear and cytosolic expression analysis of ERβ-interaction 
partners.  B. Quantified densitometric analysis of protein expression calculated 
from at least 3 independent experiments (N=3).  Letters denote significance 
between groups (2-wayANOVA, p>0.05). 
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Transcriptional effect of gelsolin knock-down on ERβ-mediated promoter activity 

Dynamic protein:protein interactions are critical for cellular functions.  In the 

nucleus, ERβ is well characterized as a transcription factor that regulates gene 

promoters by binding to specific enhancer elements.  Gelsolin has recently been 

described as a transcriptional enhancer for nuclear receptors including ERα, but not 

ERβ at an estrogen response element (ERE)-mediated minimal promoter 

(Nishimura et al., 2003).   To test the functional consequence of a disruption in 

ERβ:gelsolin interactions we used siRNA to knockdown gelsolin in a neuronal-

derived ERβ-expressing cell line.  Importantly, 100 nM gelsolin siRNA reduced beta-

actin expression; therefore a lower concentration of siRNA was used (50 nM, Fig 

12A).  Our results showed that gelsolin knockdown (50 nM) abolished ERβ-induced 

repression of an activator protein 1-mediated (AP-1) promoter (Fig. 12C), but not 

an ERE-mediated promoter.   
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 Figure 32.  Effects of siRNA knock-down of Gelsolin on ERβ-mediated AP-1 and 
ERE promoter activity. HEK293T cells were transiently transfected with 50 nM 
Gelsolin siRNA or scrambled siRNA followed by cotransfection with an expression 
vector containing rERβ1 (150 ng) and (A) 150 ng tk-ERE-Firefly-luciferase or (B) tk-
AP1-Firefly-luciferase reporter constructs plus 5 ng Renilla-luciferase control.  Data 
represent the percentage change in dual luciferase ratio of relative light units (ERE 
or AP-1:Renilla).  * denotes significance from empty vector control, p<0.05. 
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Cross linking with DTBP to obtain a chromatin bound fraction of nuclear ERβ 
 

I also chose to examine the chromatin bound fraction of ERβ being pelleted in 

the nuclear extraction step and retain more protein interactions; a number of 

Crosslinking trials were employed.  Ultimately, Crosslinking samples were 

crosslinked with dimethyl dithiobispropionimidate (DTBP), a membrane 

permeable, homobifunctional peptide cross-linker which reacts with primary 

amines of lyside residues and primary amines.  Prior to nuclear extraction, tissue 

punches were incubated with DTBP for 45 minutes, and samples were then 

processed as described previously.  Analytical gel replicates were ran followed by 

preparative gels, and then spot picking for MS/MS peptide identification was 

performed using the Ettan DIGE automated spot picker. Many proteins identified 

were typical transcriptional and coregulatory proteins that would normally be 

associated with ERβ, suggesting that while there was some success in retaining 

some potentially transient and chromatin-associated protein interactions. One 

limitation of utilizing the cross linker became evident in analysis of the images. Even 

with saturation labeling of cysteine- (verses lysine) reactive fluorescent dyes the gel 

replicates from these experiments were not highly reproducible (Supplemental 

figure). MS/MS results did not yield very high PEAKS scores, indicating the use of 

cautious interpretation of the identified peptides (See Tables 4 -19).  
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Figure 33.  Representative image of DTBP crosslinked analytical gels.    Brain 
tissue was incubated with DTBP for 45 minutes prior to nuclear extraction and co-
immunoprecipitated for ERβ and subjected to 2D-DIGE as described previously. 
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Discussion 

 These data contribute novel findings that may aid in identifying alternate 

functions for ERβ in the brain. Moreover, the evidence presented herein lends 

support for the hypothesis that there is an intrinsic change in ERβ function upon the 

reintroduction of E2 with advanced age. First, we provide evidence that shows novel 

age- and E2-dependent interactions between ERβ and VCP, HnRNPs, ENO1, GAPDH, 

ANXA1 and ANXAV. Importantly, these changes do not appear to be influenced by 

subcellular localization of these proteins or absolute protein expression levels.  

Second, we confirmed and identified several known and novel ERβ:protein 

interaction partners, and we quantified changes in these interactions as a function 

of advanced age and E2 treatment.  Finally, these studies are the first to broadly 

characterize changes in ERβ protein interactions in vivo in the ventral hippocampus 

using co-immunoprecipitation and 2D-DIGE coupled with mass spectrometry.  

 The most compelling data from this analysis is the change in dynamic E2-

induced ERβ protein associations with age.  Changes in ERβ protein:protein 

interactions supports clinical evidence for changes in estrogen signaling with age or 

E2 deprivation; however this is the first study to provide evidence for a molecular 

mechanism that predicts a change in overall ERβ function as a consequence of age.  

Importantly, only 5 of the 19 ERβ protein interactions were altered by E2 in aged 

animals, which contrasted markedly with the fact that all 19 ERβ protein 

interactions were affected in young animals.  Overall, a very small percentage 
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(2.56%) of the confirmed protein spots changed significantly with age and E2, 

attesting to the specificity of these results. These data also support the hypothesis 

that the receptivity of ERβ to E2 is drastically altered by age, since the expression 

levels of these proteins did not significantly correlate with changes in 

protein:protein interaction.  Changes in ERβ gene expression could contribute to 

altered E2 receptivity, however in our study there were no significant changes in 

ERβ protein levels with age or E2 treatment.  These results add to a compilation of 

studies that show differential effects of advanced age or E2 deprivation altered the 

gene expression of ERβ (Wilson et al., 2002; Chakraborty et al., 2003b; Gundlah et 

al., 2000; Sharma and Thakur, 2006; Zhang et al.).  In one study, E2 deprivation or 

replacement decreased ERβ expression in 24-month but 18-month old rats (Zhang 

et al.).   Other studies demonstrated E2-mediated decreases in ERβ expression, but 

these reports are variable dependent upon endpoint measured (mRNA vs. protein) 

and brain region.  Nevertheless, our results from the ventral hippocampus clearly 

demonstrate that E2 significantly alters ERβ protein:protein interactions in an age-

dependent manner regardless of ERβ protein expression levels. 

The role of E2 in neuroprotection has been under investigation for some 

time, but delineating the exact actions that lead to a protective outcome has been 

difficult.  The prevailing hypothesis in the field is one of a ‘healthy cell bias’, where 

the actions of E2 are protective prior to insult.   E2 can be pro-apoptotic or anti-

apoptotic depending upon cellular context and ER subtype.  ERβ has been 
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characterized as predominantly anti-proliferative and pro-apoptotic in cancer 

models, in contrast to the proliferative and anti-apoptotic role of ERα.  However, in 

the brain, both receptors demonstrate protection against various neurological 

insults such as ischemia and glutamate toxicity (Bryant and Dorsa, 2010; Dubal et 

al., 2006).  E2 can induce anti-apoptotic factors such as Bcl-2 (Frasor et al., 2003; 

Dubal et al., 1999; Choi et al., 2001; Bynoe et al., 2000), and overexpression of Bcl-2 

can induce nuclear localization factors such as ANXA1 (Ishido, 2005).   Here I 

identified not only an increased interaction between ANXA1 and ERβ with E2 

administration, but I also demonstrated that this interaction was no longer affected 

by E2 in aged animals.   

Similarly, I showed that ANXAV interactions with ERβ were also changed 

with age; ANXAV is often used as a marker of apoptosis, due to its binding of cytosol-

facing phosphatidyl serines in the cell membrane, however a role for nuclear 

annexins could be relevant to the neuroprotective actions of E2.  For instance, 

ANXAV can be induced to translocate to the nucleus by serum factors (Mohiti et al., 

1997), which could predict cellular senescence (Klement et al., 2012).  The samples 

that I obtained from the ventral hippocampus represent a diverse and 

heterogeneous population of cells including supporting glial cells that can senesce. 

Senescence in the brain has been postulated to contribute to pathological states 

such as Alzheimer’s disease, and E2 has been shown to protect against both 

senescence and dementia (Imanishi et al., 2005c; Imanishi et al., 2010; Imanishi et 
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al., 2005a; Imanishi et al., 2005b; Bhat et al., 2012; Raina et al., 2001).  Apart from a 

purported role in the activity of telomerase, it is not clear how E2 could protect 

against senescence, but I speculate that the interaction between ERβ and ANXAV 

could contribute to the role of E2 in senescence.  Annexins,  including annexin 11 

(ANXA11), which was associated with ERβ, but unaffected by age or E2, have been 

reported to localize to the nuclear envelope and may associate with microtubules at 

the nuclear membrane and assist in nuclear breakdown, potentially explaining the 

presence of structural proteins pulled-down in our results (Tomas and Moss, 2003).  

Interestingly, E2 can also modulate the expression of members of the annexin family 

(Kawaminami et al., 1998; Castro-Caldas et al., 2001) further supporting an 

interplay between annexins and ERs.  Taken together, these results suggest that 

protective aspects of E2 signaling could be mediated through ER:ANXA interactions 

demonstrated here and in other reports (Nalvarte et al.; Ivanova et al., 2011; Tarallo 

et al., 2011), and unique to this study there is an age-related change in some of these 

associations with ERβ.  

 Like annexins, the multifunctional protein GAPDH is not typically considered 

a nuclear protein, but these data and other studies suggest it is possible to predict 

that a there is complex relationship between GAPDH, E2 and ERs.  Our results 

showed that ERβ:GAPDH interaction decreased following E2 administration in 

young animals and was unaffected by E2 in aged animals.  Moreover, the ERβ:GAPDH 

was the only protein interaction that was altered (increased) by age alone.  Not only 
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do these data indicate that there is likely to be an increase in the amount of 

ERβ:GAPDH in aged animals, but they also demonstrate that E2 is ineffective at 

dissociating this increased interaction in aged animals.  In the initial study that 

determined GAPDH was an AR coactivator, GAPDH did not enhance the 

transcriptional activity of ERα or GR at their respective response elements (Harada 

et al., 2007), but GAPDH has a number of functions that are not well understood and 

may still bind ERβ when it is translocated to the nucleus (Sawa et al., 1997; Ishitani 

et al., 1998).   S-nitrosylation (SNO) of GAPDH initiates apoptosis by translocating to 

the nucleus and interacting with Siah1 (an E3-ubiquitin ligase), also known as BAG-

1.  BAG-1 has been shown to interact with ERα and facilitate down-regulation of ERs 

over extended periods of E2 deprivation (Zhang et al.).  Overall, the role for a nuclear 

interaction between ERβ:GAPDH is not yet clear,  but if these two proteins are 

playing a role in cell death, a change in this interaction could dysregulate the 

balance between E2 neuroprotection and apoptosis in aged animals.  

 The possibility of S-nitrosylated (SNO) GAPDH and ERβ interactions 

underscores the probability that posttranslational modifications contributed to 

changes in the observed interactions in this study and warrants further 

investigation.  Interestingly, the ERβ-selective agonist DPN induces SNO proteins as 

a cardioprotective mechanism in the heart (Lin et al., 2009).  Loss of SNO-associated 

proteins with age could ostensibly contribute a loss of cardioprotective effects of E2 

in older patients (Santhanam et al., 2010). Moreover, S-nitrosylation of interaction 
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partners mediated through ERβ could result in the characteristic ‘chain’ patterns 

observed in the 2D-DIGE experiments.  Other possible explanation for the chain 

patterns is carbamylation of proteins which can occur in urea-based buffers, or 

phosphorylation or other modifications that alter protein charge (McCarthy et al., 

2003).   Protein modifiers such as p38 and SUMO are reported to both affect ERβ 

signaling and change with age (Suh, 2001; Li et al., 2008; Akar and Feinstein, 2009), 

thus it is possible that modifications to ERβ or its interaction partners by these 

types of proteins could contribute to the observed effects.   

 Another novel finding from these results was the observed increase in 

nuclear VCP protein levels with age and the age-related changes in ERβ:VCP 

interactions.  Similar to reported interactions between ERAP140 and ERβ, there was 

a trend towards decreased VCP:ERβ interaction with age, yet VCP nuclear 

expression paradoxically increased significantly as a factor of age.  VCP is an AAA+ 

class of ATPase that has been recently implicated in diseases where polyglutamine-

mediated protein accumulation is observed (Hirabayashi et al., 2001), but the 

mechanisms involving VCP in these diseases have yet to be elucidated.  In some 

instances, VCP has been shown to interact with polyglutamine tract proteins in the 

nucleus, potentially mediating aggregation of polyglutamine aggregates 

(Hirabayashi et al., 2001). VCP can interact with nuclear receptor transcriptional 

complexes and suppress transcriptional processes (Koike et al., 2010), but the exact 

function of VCP within a non-pathological nuclear protein complex is unknown 
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(Jung et al., 2005).  While the interaction between ERβ and VCP has not been fully 

characterized, the neuroprotective role of E2 and the potential role of VCP in 

neurodegenerative diseases is an intriguing correlation that suggests changes in 

ERβ:VCP interactions with age might have significant functional consequences. 

Notably, nuclear ataxin-1, also identified as an ERβ interaction partner in this study 

has been implicated in polyglutamine-induced diseases (Klement et al., 1998), but 

this interaction was unaltered by age or E2 treatment.  Our data are consistent with 

another report that showed an interaction between VCP and ERα when ERα was 

bound to a 9xERE (Nalvarte et al.), however this is the first report demonstrating an 

age-related change between VCP and ERβ in vivo. 

 Apart from non-traditional roles for ERs, I suggest the interactions between 

ERβ and transcriptional proteins could be affected by age as well.  In this report, I 

demonstrated an age-related change in the association of the actin binding protein 

GELS and ERβ.  GELS, also a known steroid hormone coregulator, enhances ER-

mediated transcription (Nishimura et al., 2003).  As expected, E2 increased the 

ERβ:GELS interaction in young animals, however there was no significant change in 

this interaction in aged animals (Fig 3C).  This suggests that E2 may not enhance 

gene transcription in aged animals the same way as it might in young animals, a 

finding which has also been demonstrated in ER-null animals (Han et al., 2013).  

Furthermore, in this study there is evidence to suggest that the ERβ fraction isolated 

may be a part of non-DNA bound nuclear matrix associated complexes that direct 
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transcription.  I identify a clear association between ERβ is the structural protein β-

actin, which has also been demonstrated by others (Nalvarte et al.; Ivanova et al., 

2011; Tarallo et al., 2011).  β-actin was found to have an important role in the 

nucleus (Zheng et al., 2009; Huang et al., 2004; Hofmann et al., 2004), providing a 

scaffold to assist in gene regulation and association with nuclear export as 

suggested by the leucine rich nuclear export signal within β-actin and studies 

demonstrating actin-mediated nuclear export of viral RNA (Hofmann et al., 2001; 

Wada et al., 1998).  The identification of structural proteins may be through 

attachment of these proteins to ERβ involved in nuclear translocation near the 

nuclear envelope, but it is also postulated that actin and actin-binding proteins 

maneuver transcription associated proteins to position them for transcription.   

Our intentional exclusion of chromatin from the samples, and our selection of 

protein spots on the 2D-gel that were limited to those common between 3 separate 

antibodies to ERβ was a highly conservative approach. Therefore, this approach 

likely excluded a number of putative interaction partners for ERβ that I was unable 

to characterize.  Moreover, changes in individual neuronal populations (e.g., 

Pyramidal CA1, CA3, interneuron, etc.) may be obscured by examining the entire 

ventral hippocampus as I did in this study, however, the whole region was used to a) 

obtain enough protein for analytical and preparative gels, western blotting 

confirmation and expression analysis and b) gain a broad view of nuclear proteins 

associated with ERβ in vivo.   Another exclusionary factor comes from the antibody 
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selected for ERβ co-immunoprecipitation, which was selected because following 

pull-down, a conservative number of protein spots were visualized after co-IP.   I 

tested a total of three antibodies and found that the other two tested in this 

paradigm pulled down more proteins than the one I ultimately used to report these 

findings.  In general, spots that did not exhibit significant overlap between the three 

antibodies tested were excluded from analysis and identification to avoid false 

positive interactions.  However, this ultraconservative approach may have 

eliminated the discovery of additional ERβ:protein interaction partners, suggesting 

that the identified proteins in this study represent only a subset of ERβ-associated 

proteins.  It is also important to note that the interactions described in this dataset 

may be direct or indirect.  Protein interactions in the nucleus tend to be part of a 

larger complex, and based on our results some interactions may be mediated 

through proteins such as actin which was abundant in our samples and in other 

reports of a similar nature (Nalvarte et al.; Ambrosino et al.), however its abundance 

(co-immunoprecipitated with ERβ) was neither changed by age or E2 

administration.  Thus, I hypothesize that the changes in interactions between ERβ 

and known actin associated proteins such as GELS and ENO1, which has been shown 

to modulate DNA methyltransferase (Tovy et al.) could be a function of changes in 

nuclear actin structure resulting in an altered transcriptional role of ERβ. 

Other actin-bound nuclear proteins include the family of HnRNPs, which 

cooperate with actin to influence mRNA processing and splicing, and in this study I 
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demonstrated through co-immunoprecipitation, that ERβ might have a role in these 

processes.   HnRNPs are molecular determinants of all facets of mRNA processing.  

Other HnRNPs have been shown to associate with ERα, but this study is the first to 

report an interaction between ERβ and HnRNP H (McNally et al., 2006; Buratti et al., 

2004).   Recently, ERs have been shown to participate on some level, in miRNA 

processing (Pak et al.; Yamagata et al., 2009) and mRNA splicing (Masuhiro et al., 

2005), and recent evidence suggests that aging may lead to a global increase in 

alternative splicing (Tollervey et al.).  HnRNPs including HnRNP H are often 

considered negative regulators of alternative splicing.  In this report the ERβ:HnRNP 

H interaction is enhanced by E2 in young animals, but decreased or unchanged by E2 

in aged animals, suggesting in aged animals the influence of E2 over the actions of an 

ERβ:HnRNP H complex may be altered.  Further investigation into ERβ:HnRNP 

interactions could help to explain E2- and age-related changes in alternative splicing.   

  The data presented here fill a knowledge gap in the field regarding a) protein 

interactions with ERβ in the ventral hippocampus, and b) a possible mechanistic 

explanation for changes in E2-mediated processes in aged individuals. Notably, Bert 

O’Malley’s group recently identified the association of nuclear hormone receptors 

with upwards of 10,000 ‘coregulatory’ proteins, however protein interactions with 

ERβ were not examined in that particular study  and there was a lack of context as 

these experiments were performed in vitro (Malovannaya et al.).  The interactions 

with ERβ described herein represent a novel fraction of proteins that may serve to 
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supplement the existing role of ERβ in mediating gene expression and possibly 

neuroprotection in the hippocampus. All in all, these novel ERβ:protein interactions 

require further in-depth study to elucidate the complete gamut of ERβ functions, 

and moreover how these functions may change with age and hormone replacement 

is essential to determine the neurological costs and benefits of hormone therapy.
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CHAPTER V 

FINAL DISCUSSION 

 

Summary 

 The mechanisms responsible for estrogenic effects on physiological 

processes such as cognition, affect and even some aspects of homeostasis remain 

unclear.   Even still, how age and E2 deprivation alter expression patterns of ERs 

within the brain remain a mystery; however, there is some evidence that alternative 

splicing increases which may change the brain’s receptivity to hormone, as some of 

the identified splice variants of ERβ do not bind E2.  Therefore, the goals of this 

project were to examine the functions of ERβ and ERβ splice variants to determine 

how changes in expression of these receptors may alter functions such as gene 

expression and protein:protein interactions that dictate general functionality of 

ERβ.  In chapter III, the data show that hERβ splice variants are expressed in the 

aged human brain, and that the transcriptional actions of these splice variants are 

constitutive and not responsive to ligand.  In chapter IV, the data quantify novel age- 

and E2-dependent protein:protein interactions with ERβ which are influenced by 

absolute protein expression levels.  Importantly, chapters III and IV are not mutually 

exclusive as the antibody used in chapter IV does not distinguish between splice 

variants.  Therefore, the changes could be due to changes in splice variant 
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expression between young and aged animals.  Ultimately, the data obtained from 

this dissertation demonstrates novel mechanisms for age-related changes in ERβ 

function that can be applied to older postmenopausal women seeking HT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Summary of key findings 

Key Findings 

Chapter III: Characterization of hERβ splice variants 

 Human ERβ splice variants are differentially expressed in human amygdala. 

 Human ERβ splice variants bind a consensus ERE sequence in vitro 

regardless of E2 binding. 

 Human ERβ splice variants constitutively activate or repress ERE-luciferase 

and AP-1-luciferase promoter activity, respectively, in neuronal cells. 

 Repression of the human Arginine vasopressin (hAVP) promoter by human 

ERβ splice variants is mediated by an AP-1 site in the proximal  

 ( > 1000bp) promoter region. 

  Inhibition of p38, but not PI3K blocks repression of hAVP- and AP-1-

promoter activity by hERβ splice variants in neuronal cells.  Further, co-

treatment of E2 and p38 inhibitor enhances hAVP-mediated promoter 

activity.    

 ER antagonist ICI 181 780 prevents only hERβ1-mediated effects on ERE-, 

AP-1 and hAVP-driven promoters, but co-treatment with p38 inhibitor and 

ICI 181 780 also blocks hERβ2-mediated repression of the hAVP promoter.  
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Table 3. Summary of key findings 

Chapter IV: Age alters the dynamics of ERβ protein:protein interactions in 
the ventral hippocampus dependent upon  17β-estradiol 

 
  2.56% of protein interactions with ERβ (19/741) were either significantly 

increased or decreased by E2 treatment in the ventral hippocampus of 

ovariectomized rats given 2.5µg/kg E2 for 3 consecutive days.  

 Four unique protein clusters were significantly increased by E2 

administration in young but not in aged animals which included spots 

identified as ANXAI, ANXA V, HnRNP H, and GELS.  All of these proteins 

except for GELS are novel interaction partners for ERβ. 

 In a cluster of spots containing ANXAV 3 spots were increased by E2 

in young animals; in aged animals 1 spot was increased, 1 spot 

decreased and 1 spot was unaltered by E2 . 

 In a cluster of spots containing HnRNP H 4 spots were increased by 

E2 in young animals; in aged animals 1 spot was decreased, but 3 

others were unaltered by E2. 

 In a cluster of spots containing GELS 2 spots were increased by E2 in 

young animals yet both were unaltered by E2 in young animals. 

 ANXAI:ERβ was increased by E2 administration in young animals, 

but decreased by E2 in aged animals. 
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Table 3. Summary of key findings 

Chapter IV  

 The interaction between ERβ and 3 identified and 2 unidentified proteins 

was decreased significantly by E2 administration in young animals, but 

not in aged animals including HSP70, ENO1, VCP, and GAPDH. 

 In a cluster of spots containing HSP70 3 spots were decreased by 

E2 in young animals; in aged animals 1 spot was increased while 

the other 2 were unaltered by E2. 

 One spot identified as ENO1 was decreased by E2 in young animals 

but was increased by E2 in aged animals. 

 In a cluster of spots containing VCP one spot was decreased by E2 

in young animals but unaltered by E2 in aged animals. 

 In a cluster of spots containing GAPDH, 2 spots were decreased by 

E2 in young animals but unaltered by E2 in aged animals. 

 When comparing young vehicle treated samples to aged 

vehicle treated samples, the interaction between GAPDH 

and ERβ was decreased by age alone. 

 The cytosolic and nuclear expression of ERβ, HnRNP H, ENO1, GAPDH and 

HSP70 were unaffected by aged or E2 treatment, however nuclear VCP 

was increased as a main effect of age alone.  
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Final Thoughts 

Menopause and the ERβ-dominated brain  

 The data presented in Chapter 3 make significant contributions toward 

understanding the diverse actions of ERβ signaling in the brain.  Importantly, I 

present an account of human ERβ splice variant expression in the human brain, and 

the constitutive transcriptional activities of hERβ splice variants. Second, I show 

that the hERβ splice variant activities are not  governed by E2; thus, the constitutive 

transcriptional activity of ERβ splice variants may be most evident when ERα is 

inactive due to a lack of E2, for example during menopause. Ultimately, the 

expression and actions of ERβ splice variants, such as ERβ2, in the aged brain 

suggest that there may be an important role for ERβ in the brain, even in the 

absence of E2.   

 Expression of ERs is a critical component to consider when studying ET in 

the menopausal brain.  It is well established that E2 down regulates ERα, however 

the effects of E2 on ERβ expression are not as clear.  The influence of E2 over 

expression of ERβ1 has been highly controversial, but ERβ2 expression in the 

hippocampus increases dramatically with loss of ovarian hormones (Wang et al.). In 

one study, reinstatement of E2 following a short-term (6 day) E2 deprivation, caused 

a decrease in ERβ2 expression, contrary to long-term E2 deprivation (180 days) 

after which administration of E2 was unable to decrease ERβ2 levels (Zhang et al.).    

This study also demonstrated that ERβ2 expression increased between 6 and 9 
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month old cycling sham animals, suggesting that aging alone influences ERβ2 

expression.  In conjunction with studies that definitively show that ERα expression 

is decreased (Hatsumi and Yamamuro, 2006; Ellison-Zelski et al., 2009), this study 

supports the claim that the aged, post-menopausal female brain is highly regulated 

by ERβ.  Therefore, it is reasonable to speculate an increase in one or more ERβ 

splice variants would further tip the scales in favor of regulation by unliganded ERβ.  

Then, were E2 to be reinstated under these conditions, the effects of E2 would be 

very different than in a premenopausal, younger brain.  These effects could vast if 

ERβ regulated genes are being activated while ERα, which requires E2, would be 

transcriptionally inactive during a period of hypoestrogenicity.  Furthermore, E2 

does play a role in epigenetics and a long period of hypoestrogenicity could lead to 

changes in DNA methylation that could influence transcription of E2-regulated 

genes upon reinstatement (Frick et al., 2011). 

Supplements to nuclear receptor signaling are relevant during menopause 

ERs, and nuclear receptors in general, are bound by chaperone proteins prior 

to activation by ligand, or as we know now, phosphorylation. This may be important 

to estrogen receptivity in the aged brain.   Chaperone proteins protect and prepare 

ERs for activation by ligand, and can even accompany proteins into the nucleus.    

For example, chaperone protein HSP70 participates in nuclear shuttling of cargo 

proteins (Shi and Thomas, 1992).  There is no data regarding the function of 

chaperone proteins for ERβ splice variants, but since chaperones such as HSP70 and 
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HSP90 typically bind the LBD, it is unlikely that they associate in the same manner 

(Dittmar and Pratt, 1997).  In chapter IV, the interaction between HSP70 and ERβ 

decreases with E2 in young animals, as expected.  However, in aged animals, 

ERβ:HSP70 interactions are unaltered by E2 (Figure 34).  These data could suggest 

that E2 does not activate ERβ as well in aged animals, or even that there are splice 

variants within the population of   ERβ being isolated.  This could also indicate that 

ERβ:HSP70 interactions are more resistant to dissociation, but in any case, ERβ is 

more heavily associated with HSP70 in aged animals.  I found that HSP70 expression 

was not significantly altered by age or E2; however, in older animals there was a 

trend toward a decreased HSP70 in vehicle treated animals matching some reports 

that show expression of HSP70 can change with age (Sharma et al., 2010; Heydari et 

al., 1993; Pahlavani et al., 1996; Heydari et al., 1995; Heydari et al., 1996).  Also 

interesting, the localization of HSP70 in the nucleus is cell cycle dependent, with 

HSP70 accumulating during S phase (Moreau et al., 1998; Milarski and Morimoto, 

1986).  While neurons are typically quiescent, glia and other supporting cells could 

contribute to the pool of nuclear HSP70 during S phase.  Some studies even suggest 

that HSP70 has a DNA binding region that enhances ER:DNA interaction through 

DNA bending (Landel et al., 1997).  Hence, there is much left to study regarding 

classical HSP:ER interactions, with specific regard to splice variant interactions and 

how physiological processes such as menopause or aging  changes in ER expression 

or PTMs. 
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Figure 34.   Model for age and E2-dependent changes in HSP70:ERβ 
interactions.  In 3-month old animals (Young, top), the interaction between HSP70 
and ERβ is lost upon the addition of E2.  In 18-month old animals (Aged, bottom), E2  
does not alter the interaction between ERβ and HSP70.  
  



141 

 

 

 

Furthermore, a broader picture of ERβ signaling in the aged brain would take into 

consideration possible age-related changes in expression and activities of not only 

ERs but also proteins that modulate ER-mediated activity.  Here, I demonstrate how 

phosphorylation events play a critical role in ligand-independent gene transcription 

mediated by ERβ splice variants, and how inhibition of these signals can alter 

responses to ligand. In Chapter 3, the relevance of p38 as an important kinase 

signaling pathway in ERβ signaling is confirmed, adding to the work that suggests 

that p38 may be important for ligand-independent ERβ functions.  Initial reports 

demonstrate how epidermal growth factor (EGF) can initiate a signaling cascade 

that induces ER translocation to the nucleus (Lin et al., 2001), and later studies 

show that EGF signaling acts through MAPK/ERK to help ERβ recruit coregulatory 

proteins and facilitate gene transcription.  I demonstrate that p38 inhibition 

specifically can block constitutive ERβ-mediated repression of an AP-1 driven 

promoter.  It is possible that p38 may be affecting coregulatory or transcriptional 

proteins. However, there is some evidence to suggest that direct phosphorylation of 

ERβ is required for the receptor’s transcriptional activity independent of ligand due 

to a p38 consensus sequence located on the N-terminus of ERβ and some ERβ splice 

variants (human, rodent and mouse).  Interestingly, the p38 signaling can be 

influenced by E2, indicating that there may be a regulatory loop for fine-tuning 

constitutive signaling of ERβ.  
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 In chapter III, I show that p38 signaling is an important part of ERβ 

transcriptional functions, but in addition to phosphorylation, age-related changes in 

SUMO proteins and general sumoylation have been reported.  While the abundance 

of SUMO and SUMO-related proteins appears to decrease with age in the male 

mouse brain, the number of sumoylated proteins in peripheral organs increases.  

The implications of sumoylation are broad, and for ERβ, sumoylation represses 

typical transcriptional activities, contrary to the activational effect of sumoylation 

on ERα.  Changes in sumoylation of ERs with age and/or E2 deprivation could have a 

significant impact on the protein:protein interactions of these receptors.  Moreover, 

there are a number of ER PTMs that can influence receptor function (Le Romancer 

et al., 2011).  Further investigation into the role of ERβ-specific PTMs with respect 

to the aging brain and E2 is essential to fully comprehend the neurobiological 

consequences of ER signaling. 

ERβ, mood and cognition during menopause: proposed novel mechanisms involving 

neuroprotection and the stress response  

 Around the time of menopause, many women experience fluctuations in 

mood corresponding with a hormonal transition; since it is known that ER 

expression profiles change with E2 and age, ERβ splice variant expression could be a 

contributing factor to changes in mood during this time. During the menopausal 

transition brief and prolonged periods of E2 deprivation could create tumultuous 

effects of E2 resulting from changes in ER expression.  As stated previously, ERβ 
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splice variants and ERα can be regulated by E2 levels.  In particular, hippocampal 

ERβ2 expression can be significantly increased by periods of E2 deprivation, but ERα 

levels decrease during extended E2 deprivation (Zhang et al.).  Many studies suggest 

that ERβ, more than ERα, can contribute to neurogenesis, increased cognition and 

improvements in behavioral outcomes for mood (Lund et al., 2005; Imwalle et al., 

2005; Krezel et al., 2001; Walf et al., 2008b; Walf et al., 2008a; Tomihara et al., 2009; 

Day et al., 2005).  However, increased ERβ2 is correlated with learned helplessness, 

a depressive-like behavior and a decrease in neurogenesis in the hippocampus 

(Wang et al.).   Therefore, it is reasonable to hypothesize that changes in 

ERα:ERβ1:ERβ2 stoichiometry could be responsible, in part,  for mood 

dysregulation occurring at the menopausal transition. 

  Affective disorders develop from dysregulation of stress responses, resulting 

in exaggerated emotional responses, (Scott and Dinan, 1998; Pervanidou and 

Chrousos; Ikin et al.; Smith et al., 1989; Newport et al., 2003; Wood et al.; Steimer et 

al., 2007).  In this body of work I demonstrated the constitutive repressive actions of 

hERβ splice variants on the hAVP gene promoter.  AVP expression activates the HPA 

axis and stress response in conjunction with CRH, thus in the menopausal brain 

increased expression of ERβ2 could mediate constitutive repression of AVP.  Less 

AVP could contribute to a less reactive HPA axis and thus, a less anxious 

predisposition.   Importantly, in Chapter III I show that p38 activity, reported to 

increase in the aged brain, serves as a regulator for ERβ2 action on the hAVP 
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promoter; therefore, increased p38 activity in an aged brain could reinforce ERβ2-

mediated repression of hAVP expression, whereas in a younger brain ERβ2 activity 

would be tempered by decreased p38 signaling.  

 Regulation of the AVP promoter between rodent and human systems 

contrasts sharply and could have functional consequences for translating stress and 

emotion-based responses.  In the rodent system, our lab and others have shown that 

rERβ constitutively activates the AVP promoter, as do rERβ splice variants.  On the 

contrary, in Chapter III, I demonstrate constitutive repression of hAVP promoter 

activity by hERβ and hERβ splice variants.  Using site directed mutagenesis to 

remove an AP-1 site, the repression of hAVP is reversed, but like rAVP, there are no 

EREs present on the promoter sequence, and thus ERβ-mediated activation of the 

rAVP and hAVPᅀAP-1 promoters are likely to be mediated through a non-ERE ERβ-

selective response element.  Regardless of mechanism, the fact that AVP is increased 

by ERβ in a rodent system and decreased by ERβ in a human system is an important 

consideration for interpretation of studies on E2-mediated stress responses.  

Importantly, rERβ2 contains an 18 amino acid insert in the E domain that decreases 

the receptor’s affinity for E2, whereas hERβ2 has an altered F domain that occludes 

ligand binding altogether.  This is of great importance when considering the 

implications of E2 signaling when ERβ2 is more abundant than ERβ1.  

Hypothetically, were hERβ2 expressed when local synthesis of E2 was occurring, 

hERβ2 would not be responsive, but in a rodent system rERβ2 might have some 
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responsiveness to E2 production.  These data serve as an important reminder that 

the relevance of a given model system should be closely examined, and processes 

considered ‘highly conserved’ do not always translate to other species, even for 

primitive neurological processes such as emotion and stress reactivity. 

E2 can enhance neurogenesis and protect against neuronal cell death, which 

is important for both cognition and mood; however, the mechanisms by which these 

processes occur and how they change with age is still of great intrigue.  For a 

number of years one of the main purported neurological benefits of ET has been 

neuroprotection from stroke or neurological insult (Dubal et al., 2001; Yang et al., 

2000); however, the mechanisms by which this occurs remain unclear.  In models of 

middle cerebral artery occlusion (MCAO), E2 reduces the size of infarction. Roberta 

Brinton and colleagues have supported the ‘healthy cell bias’ that suggests that 

preventative E2 treatment will benefit and protect neurons as long as cells are not 

already in distress.   Results from clinical studies such the Multi-Institutional 

Research in Alzheimer’s Genetic Epidemiology (MIRAGE) and Kronos Early Estrogen 

Prevention Study (KEEPS) give merit to the healthy cell bias and that E2 may be 

neuroprotective and beneficial in younger women; however, no clear mechanisms 

have been established to support these data (Henderson et al., 2005; Brinton, 2005). 

 One possible contribution to changes in neuroprotection with menopause is 

variable expression of the ERβ splice variants.  ERs can influence anti-apoptotic and 

pro-neurogenic factors in the brain that help support neurons (Marzioni et al., 2012; 
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Choi et al., 2001; Dubal et al., 2006; Kwon and Magnuson, 2009) and relevant to this 

study, E2 has been shown to enhance the protective actions of annexins and Bcl 

signaling (Castro-Caldas et al., 2001; Nadkarni et al., 2011) through unknown 

mechanisms.   E2 can induce anti-apoptotic Bcl-2 expression  (Frasor et al., 2003; 

Dubal et al., 1999; Choi et al., 2001; Bynoe et al., 2000), and if  ERβ splice variants 

can constitutively regulate these gene promoters,  as they do for AVP, there is likely 

to be an altered effect of the expression of these genes around the time of 

menopause.  Furthermore, ERβ and ERβ splice variants require protein:protein 

interactions to exert their effects on target gene promoters and other cellular 

processes.  It is possible to determine the functional consequences of menopausal 

changes in ERβ splice variant expression by using knowledge regarding the 

structural properties of each receptor and their interaction partners.  Through gene 

regulation and other mechanisms it is very likely that ERβ splice variants contribute 

to a mechanistic explanation for changes in ER-mediated neuroprotection at the 

time of menopause.  

Correlations between changes in ERβ protein:protein interactions and changes in 

neuroprotection around the time of menopause 

In chapter IV, I identify a number of novel protein interactions with ERβ in 

the ventral hippocampus, a region important for both affect and cognition. 

Furthermore, I demonstrate that the magnitude of these interactions change with 

age in response to E2 change. Upon examination of the functions of the identified 
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ERβ protein interaction partners, I propose that a number of these interactions 

could contribute to mechanisms of neuroprotection.  Age-related changes in 

interactions between ERβ VCP, ANXAI, ANXAV, or GAPDH could all reasonably 

contribute to E2-mediated neuroprotection.  

I identify a novel interaction between ERβ and VCP, which appears in nuclear 

aggregatates in neurodegenerative diseases.  Interestingly, the ERβ:VCP interaction 

decreases with E2 in young animals,  yet VCP nuclear expression is increased by age 

alone.  This age-related increase in nuclear VCP suggests that age alone could 

increase nuclear aggregation of this protein. Further, if E2/ERβ is neuroprotective in 

young animals, one could speculate that E2 decreases aggregation of VCP in young, 

but not in aged animals, leading to an increased incidence of neurodegenerative 

disease. VCP interacts with nuclear coregulatory proteins such as BRCA and SRC-1 

(Zhang et al., 2000; Jung et al., 2005), therefore its association with these complexes 

and possibly ERβ could sequestering VCP and prevent aggregation in young animals.  

However, a lack of E2 induced association with ERβ could be one contributing factor 

to an increase in incidence of nuclear protein aggregates and neurodegenerative 

disease.   Thus, the interaction between ERβ and VCP could represent a preemptive, 

protective role for ERβ in the brain.    

  Another preventative measure to block cell death involves vigilant DNA 

repair and maintenance and could represent another role for ERβ in 

neuroprotection.  In chapter IV, I identify and quantify an interaction between ERβ 
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and ANXA1.   ANXA1 has DNA helicase activity which suggests a role for ANXA1 in 

DNA repair (Hirata and Hirata, 2002; Hirata and Hirata, 1999).  ANXA1 has been 

found in the nucleus of cancer cells, and has also been implicated in proliferation 

(Kim et al., 2003; Liu et al., 2003).  Further, another study suggests that ANXA1 has a 

role in microglial clearance of apoptotic cells.  All of these processes seem like likely 

targets for ERβ to exert effects on neuroprotection through ANXA1.  While E2 has 

been implicated in DNA repair, in one study ERα enhanced DNA repair through 

association with 3-methyladenine DNA glycosylase (Likhite et al., 2004), whereas in 

another study, ERβ when associated with insulin receptor substrate 1 (IRS-1) 

homologous recombination DNA repair was inhibited (Wilk et al., 2012; Urbanska et 

al., 2009).  Also, ERβ is typically thought to be anti-proliferative, but can contribute 

to neurogenesis.  Interestingly, ANXA1:ERβ interaction is increased by the 

administration of E2 to young animals, but in aged animals this effect is no longer 

induced by E2.  These results may be indicative of a change in the function of ERβ 

regarding DNA repair or proliferation with age, both of which are consequences of 

nuclear ANXA1 activities.  While no direct link exists apart from the interaction 

presented here, the role of ERβ:ANXA interactions could be an integral part of 

cellular maintenance, protection and perhaps even neurogenesis regulated by E2, 

and further, changes in these interactions with age could have a significant impact 

when considering HT in older patients. 
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Annexins in general have been implicated in cell death and may also interact 

with ERβ to modulate the effects of E2 on cell death.  Typically, annexins are not 

commonly thought of as nuclear proteins, but localization of annexins to the nucleus 

confers cellular senescence and cell death.  Localization of ANXAV at the nuclear 

envelope has been noted as a marker for  cellular senescence (Klement et al., 2012), 

and ANXAV is a common tool for determining cell death through its ability to bind 

cytoplasmic facing phosphatidylserines on the cellular membrane (Koopman et al., 

1994).  Membrane proteins found within or around the nucleus are, in some cases, 

internalized by mechanisms similar to that of EGFR (Lin et al., 2001).  

Internalization could provide a mechanistic explanation for how proteins like 

annexins might relocate to the nucleus.  Notably, increased tyrosine kinase activity, 

downstream of EGFR, causes nuclear localization of ANXAV to the nuclear 

membrane (Mohiti et al., 1997).  Also, ERβ is constitutively activated by increased 

EGFR activity, thus the likelihood of a nuclear interaction between ERβ and ANXAV 

would be increased in young animals based upon increased expression. E2 has been 

suggested to reduce cellular senescence through increasing telomerase expression 

and activity (Imanishi et al., 2010; Imanishi et al., 2005a; Imanishi et al., 2005b) and 

can be proliferative and anti-apoptotic or anti-proliferative and pro-apoptotic, 

dependent largely upon the actions of ERα and ERβ, respectively (Marzioni et al., 

2012; Attia and Ederveen, 2012; Dubik and Shiu, 1992).  In breast cancer, 

interestingly, long-term E2 deprivation can cause E2 to induce apoptosis (Lewis et 
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al., 2005).  The interaction between ERβ and ANXAV identified in this work could 

contribute to the mechanisms by which ERβ blocks cellular senescence.  

One completely novel ERβ-interaction partner identified in chapter IV is α-

Enolase (ENO1). ENO1 has a newfound role in the nucleus as an inhibitor of DNA 

methyltransferase (DNMT) activity and can bind DNA.  Decreased DNMT activity is 

observed in aging and senescence.  In chapter IV, the ERβ:ENO1 interaction is 

decreased by E2 in young animals and completely reversed by E2 in aged animals.  It 

is interesting to speculate that ERβ could be playing a role in cellular senescence 

with ENO1 as well. Interestingly, cytosolic and nuclear ENO1 expression trended 

toward an increase in aged animals given E2 treatment, and with significance, these 

data would correlate with an increased ERβ:ENO1 interaction with age.  

Hypothetically, E2 could be potentiating ENO1-mediated DNMT inhibition through 

ERβ – leading to cellular senescence.   ENO1 also exists as an alternatively spliced 

variant called c-myc binding protein (MBP).  Importantly, α-Enolase and not MBP 

was identified through peptide fingerprinting.  One interesting new finding is that 

ENO1 expression is greatly increased in ER+ breast carcinoma, and MBP is not.  In 

fact, increased MBP expression correlates with a better prognosis (Ray and Steele, 

1997; Contino et al., 2013; Lo Presti et al., 2010).  Taken together, while the 

functional consequences of an interaction between ERβ:ENO1 remain unknown, the 

change in this interaction would surely have opposite consequences with E2 

administration between young and aged animals.   
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  The age related changes of the ERβ:ANXAV interaction reported in this work 

are  variable and the consequences are unknown.  All of the spots identified in the 

cluster identified as ANXAV were increased by E2 in young animals.  In aged 

animals, however, one of the protein spots increased with E2, while another 

decreased with E2 treatment in aged animals, and a third spot increased with E2.  

The spot patterns (Figure 20) are suggestive of a shift in post-translational 

modifications; however, no modifications to ANXAV have been discovered.  It is 

possible that carbamylation of this protein produced protein spots that could be 

seen as artifacts, but the shift in spot pattern appears to be vertical indicating a shift 

in molecular weight, usually due to an ubiquitin modification, not carbamylation.  

Nevertheless, the relationship between ERβ and annexins remains uncharacterized, 

but could have a role in cellular senescence.  Overall, interactions between ERβ and 

nuclear annexins could work in concert toward neuroprotection.  However, this 

interaction is changed by age when E2 is administered in vivo, therefore any 

functional consequences of such an interaction would be altered as well.    

 Like annexins, GAPDH is not typically considered a nuclear protein, but it is 

possible to speculate that a nuclear interaction between ERβ and GAPDH may 

influence apoptosis and neuroprotection.   Nuclear GAPDH is usually an indicator of 

apoptosis (Ishitani et al., 1998; Sawa et al., 1997).   Further, S-nitrosylation (SNO) of 

GAPDH initiates apoptosis by translocating to the nucleus and interacting with Siah1 

(BAG-1) (Hara et al., 2005).  BAG-1 is an E3-ligase that can aid in ubiquitination and 
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ultimate proteasomal degradation of ERα (Zhang et al.).  While BAG-1 interactions 

with ERβ have not been shown, data from the cross linking studies (Appendix A, 

Table 9) supported the interaction between ERβ and a number of E3-ligases.  It is 

possible that the ERβ:GAPDH interaction occurs though one of these connections.  In 

these experiments, ERβ:GAPDH decreases with E2 administration in young animals 

and is unaffected by E2 in aged animals.  It is interesting to speculate that if the 

interaction between ERβ and GAPDH facilitates apoptosis, then E2 could regulate 

this process through ERβ in young animals.  Otherwise, an E3-ligase could target 

both proteins for degradation, and as postulated for VCP, ERβ could contribute to 

sequestering GAPDH, thus blocking its nuclear apoptotic function. Consequently, a 

loss of this E2 induced interaction could dysregulate the balance between E2 

neuroprotection and apoptosis in aged animals.   

Nuclear actin  aids traditional and non-traditional ERβ interactions that are altered 

by E2 in the aged brain 

 ERβ has been clearly defined as a transcription factor, but non-

transcriptional roles for ERβ have been the subject of debate.  However, the 

discovery of nuclear actin has been helpful in connecting alternative functions for 

nuclear receptors with their usual transcriptional roles due to the involvement of 

actin in transcription and translation.  From the studies presented in chapter IV, 

Identify a number of novel ERβ-associated proteins including nuclear actin and 

actin-associated proteins.  Thus, by examining the transcriptional functions of 
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nuclear actin and proteins that bind actin in the nucleus, I am able to speculate on 

potential novel functions for actin bound ERβ. 

Another proposed mechanism for ER-mediated neuroprotection is through 

the interaction between ERs and various actin-binding scaffolding proteins such as 

modulator of nongenomic activity of estrogen receptor (MNAR) and p130Cas, which 

facilitate E2-activated kinase cascades.  Here I report an interaction between ERβ 

and GELS, an actin-binding protein found in the nucleus.  While GELS can serve as a 

coactivator for nuclear receptors such as AR and ER, the mechanism by which this 

occurs are not known.  It has been suggested that actin and actin binding proteins 

interact with transcription factors and nuclear receptors to help create a dynamic 

stage upon which transcription can be performed (Miyamoto and Gurdon, 2012; 

Miyamoto et al., 2011b; Miyamoto et al., 2011a; Miyamoto and Gurdon, 2011).  

Actin-binding proteins such as gelsolin are proposed to assist in positioning 

transcription factors in proximity to target genes (Figure 35).  Typically, E2 

enhances an interaction between coactivator proteins and ERs, therefore it is 

possible that in young animals GELS is acting as a coactivator and preferentially 

associating with ERβ when E2 is present.  However, in aged animals, this E2-induced 

increase in association is lost, suggesting a change in the ERβ:actin dynamics and 

coactivator activity of GELS.   
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Figure 35.   Proposed model for GELS:ERβ interactions.  Gelsolin (GELS) is an 
actin (grey circles) binding protein that helps direct transcription in the nucleus.   
Changes in the interaction between GELS and ERβ with age and E2 treatment 
suggest that GELS may play a role in  E2 gene regulation.  Green box- transcription 
factors. 

 

Also commonly bound to actin are heteronuclear riboproteins (HnRNPs), 

splicing factors that may contribute to a splicing feedback loop with ERβ.  HnRNPs 

were found to be more associated with ERβ in young animals and less associated in 

aged animals in response to E2.  Regardless of nuclear or cytoplasmic localization, 

HnRNPs, utilize actin to maneuver mRNA into position for processing (Pahlich et al., 

2009).  Studies suggest that HnRNPs can block alternative splicing, and data from 
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our group and others suggests that E2 deprivation is involved in alternative splicing 

of ERβ (unpublished data, (McNally et al., 2006)) .   HnRNPs have been depicted as 

inhibitors of alternative splicing because they can enhance exon exclusion, and in 

this case E2 might no longer prevent alternative splicing through decreased 

ERβ:HnRNPH interaction in the ventral hippocampus of aged rodents.  This 

hypothesis fits with an increase in rodent ERβ2 in the hippocampus of aged animals 

subjected to estrogen deprivation, as rERβ2 contains an included exon that encodes 

its 18-amino acid insert.  Furthermore, preliminary data from our lab also supports 

a regulatory loop between ERβ-mediated splicing of its own transcript through a 

splicing factor, Nova1.  Increases in alternative splicing with age have been 

proposed to be deleterious (Tollervey et al., 2011).  Thus, a change in ERβ 

interaction with HnRNPH in aged animals could contribute to some of the negative 

neurological effects of aging and/or ET after a long period of estrogen deprivation. 

Iimplications for ERβ in the periphery 

 ERβ is most known for its roles in non-reproductive systems ranging from 

the colon to the brain.  There are cardioprotective effects of E2 in the heart, both 

anti- and pro-tumorigenic properties of E2 in various cancers, and proliferative 

effects in bone and breast to name a few.  Overall, the WHI studies gave insight into 

the role of E2 signaling during and after menopause suggesting a broad change in 

way the body receives and processes E2 after deprivation and with advanced age.  

From these studies many models have been developed and there is a wealth of 
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knowledge that could be translated and applied between the brain and peripheral 

organ systems. 

 The WHI studies demonstrated that a change in E2 signaling is not just 

apparent in the brain, but also in cardiovascular systems.  Premenopausal women 

are much less likely to experience cardiovascular disease than men, however 

postmenopausal women are not protected  (Atilla et al., 2001).   DPN, an ERβ-

selective ligand induces S-nitrosylation of proteins in the heart, hypothesized to be 

one mechanism of cardioprotection (Lin et al., 2009).  SNO-associated proteins 

decrease with age, and it has been further hypothesized that this is an important 

factor as to why postmenopausal women have a greater chance of experiencing 

cardiovascular disease than premenopausal women (Santhanam et al., 2010).  

 The WHI studies were suspended abruptly due in part, to an increase in the 

incidence of invasive breast cancer.  ERβ splice variants may be of particular 

interest in cancers in spite of a lack of evidence that implicates ERα splice variants 

in the progression of breast cancer (Madsen et al., 1995; Madsen et al., 1997),  ERβ 

promotes apoptosis and not proliferation in colon and breast carcinomas, thus the 

presence of ERβ splice variants could reasonably serve to create diversity in 

estrogenic signaling by acting as a counterbalance to ERα.  In breast cancer cells, 

unique ER splice variants have been found, suggesting again that blocking the role of 

ligand-activated ERs could allow for the expression of alternative variants that may 

possibly act independent of ligand (Poola et al., 2002).  The expression of such 
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variants would warrant deeper investigation as unliganded ERβ can regulate 

overlapping and distinct classes of genes from E2-activated ERβ (Vivar et al., 2010).  

Although no such experiment has been performed for individual ERβ splice variants, 

it is tempting to speculate, based upon data from this project, that ERβ splice 

variants are likely to regulate a set of genes that would overlap with a ligand-

independent class of ERβ1-mediated genes.   

Moreover, the therapeutic use of selective estrogen receptor modulators 

(SERMS) such as tamoxifen (TAM) has been a breakthrough for the treatment of ER 

positive (ER+) breast cancers, but ERβ splice variants may be unresponsive to these 

treatments.  It is fortunate that the expression of ERβ2 in breast cancer corresponds 

with a favorable prognosis (Sugiura et al., 2007), because there is no 

pharmacological modulator of ERβ2 activity.  To the same extent, the use of 

aromatase inhibitors would be ineffective for targeting human ERβ splice variants.  

In Chapter III, transcriptional actions of ERβ2 are not blocked by the full antagonist 

(ICI 182 780, or fulvestrant), however upon the inhibition of p38 activity, ICI blocks 

ERβ2 repression of the hAVP promoter.  This finding could translate to an important 

drug interaction with anti-estrogens  in the event that p38 inhibitors are cleared for 

therapeutic use to treat inflammatory issues such as arthritis and neuropathic pain  

(Anand et al., 2011); this finding could be critical since there is no current method 

for modulating the activity of ERβ2.  
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Importantly, anti-estrogen therapy such as TAM can be long-term, lasting up 

to 10 years, but the long-term effects of tamoxifen, especially on neurological 

processes has not been adequately addressed (Davies et al., 2012).   Reports from 

Adjuvant Tamoxifen Longer Against Shorter (ATLAS), a randomized clinical trial 

that demonstrated the benefits of longer TAM treatment, have suggested that TAM 

may have significant negative effects on memory and hippocampal volume (Eberling 

et al., 2004).  TAM is not a full ‘anti-estrogen’, since it can have agonistic effects in 

the brain, therefore the consequence of long-term TAM treatment could be very 

different from long-term ET.   It goes without saying that the effects of these 

treatments would likely depend upon the age and menopausal status of patients for 

all the reasons discussed here relevant to ER expression profiles, E2 receptivity and 

protein:protein interactions that lead to gene expression and other cellular and 

behavioral outcomes.  

 

Future Directions 

 The studies presented here represent a significant contribution to the study 

of estrogen receptor actions in the brain around the time of menopause.  Further, 

these data support the hypothesis that inherent structural and molecular 

components contribute to changes in ERβ action with age and in the absence of E2.   

While the data presented are substantive, there are many new possible lines of 

investigation brought about from this work. 
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 First, the evaluation of the constitutive actions of the human ERβ splice 

variants requires context.  Within in this body of work there is evidence for the 

expression of these splice variants in the aged human brain, however mapping of 

the human splice variants in the brains of pre-, peri- and postmenopausal women is 

a key component to understanding how ET or even anti-estrogens will be processed 

and utilized by the aged brain.  If ERβ2 is upregulated after an extended period of 

estrogen deprivation as in the rodent hippocampus (Wang et al., 2012), then one 

could expect those brain regions to be less responsive to E2.  To target those regions, 

it would be prudent to determine how the hERβ splice variant functions in neural 

contexts to determine whether allosteric modulators or other pharmacological 

agents could be useful in the place of ET.   

There is some evidence to suggest that the ERβ splice variants could interact 

with a different set of proteins.  It is also important to determine how the protein 

interaction partners of ERβ would differentially interact with alternative splice 

variants of ERβ.  One caveat to this idea is that the human ERβ splice variants, are 

dissimilar in sequence alterations.  This could create differential interactions due to 

alterations to the AF-2 domain in the human splice variants and an unmodified AF-2 

region in the rodent variants.  Limitations to this type of investigation are that 

performing this type of experiment in human tissue would be impractical and there 

are no antibodies designed specifically to the human splice variants.  However, 

experiments with the rodent ERβ2 specific antibody would be appropriate and very 
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informative.  Further, since the antibody used for the experiments described in this 

document are directed against the N-terminus, this antibody could have potentially 

included all of the rodent splice variants examined in Chapter 3.  ERβ was identified 

via western blot around an isoelectric point of 7.5-9.0, thus further investigation 

into ERβ splice variants would likely require a narrowed isoelectric focusing around 

this range.  In fact, most of the proteins identified had an isoelectric point between 

4-8.  More proteins could be identified using alternate isoelectric focusing ranges. 

 Characterizing the interactions between ERβ and proteins identified in 

Chapter 4 would be a large undertaking; however such work is critical to determine 

the relevance of changes in these interactions with age.  The interactions were 

identified as the result of co-immunoprecipitation experiments, thus any 

ERβ:protein interactions discovered could be direct or indirect.  The first step in 

characterizing these interactions would be to determine whether ERβ interacts 

directly with the protein in question.  These experiments could be performed using 

yeast-two-hybrid experiments, however using a measure of proximity (i.e., 

bioluminescence/fluorescence resonance energy transfer assays) may also be a 

useful tool as protein:protein interactions can depend upon cellular context and 

modifications to the proteins. 

Post-translational modifications such as phosphorylation of ERβ and 

associated proteins can change their inherent functionality by altering charge and 

ultimately protein:protein interactions.  Aging alters the availability of proteins such 



161 

 

 

 

as activated p38 (Li et al., 2011), and estrogen deprivation could have a combined 

effect on these processes.  It would be informative to identify the PTMs of protein 

spots that are significantly affected by age.  For example, multiple protein spots 

identified as HnRNP H, and not all spots displayed the same interaction profile with 

ERβ in response to aging and E2.  This could be indicative of modified versions of 

this protein that preferentially associate with ERβ.  On the contrary, another 

direction for this line of research could be examining how modified ERβ receptor 

protein differentially interacts with effector proteins by creating mutant proteins 

lacking phosphorylation or sumoylation sites.  Another interesting avenue of 

exploration is how S-nitrosylation (SNO) of proteins identified in Chapter 4 could 

alter their interaction with ERβ.  Further, there is evidence to suggest that changes 

in SNO proteins with age in the brain could be a result of hormone deprivation and 

replacement (Nakamura et al., 2013), therefore, interrogation of SNO proteins in the 

same paradigm could be of particular interest in neuroprotection. 

The possible extrapolations of the work done in this dissertation are vast due 

to the uncharacterized nature of a) the human ERβ splice variants, with particular 

regard to the actions of these receptors in the aged brain during and after extended 

estrogen deprivation and b) the mass proteomics experiment performed identifying 

many novel potential interaction partners for ERβ in the aged brain.   This work 

leads to more questions regarding ERβ signaling in the menopausal brain and 
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suggests that the molecular mechanisms governing these processes are complex and 

less understood than previously thought. 

 

Take Home Message 

 The work presented in this dissertation supports the idea that ERβ signaling 

is drastically altered by age and during periods of estrogen deprivation, such as 

menopause.  The function of human ERβ as a ligand-inducible transcription factor is 

dependent upon alternative splicing.  This should be taken into consideration when 

considering HT and further the use of anti-estrogen therapies or therapeutic kinase 

inhibitors should be evaluated on an individual basis.   In addition, in vivo studies of 

the rodent hippocampus suggest that some protein:protein interactions with ERβ in 

response to E2 after a brief period of E2 deprivation  are significantly changed with 

age.  This supports the idea that ERβ function, or the ERβ interaction partners 

identified are altered with age in a way that would change such an interaction.  

Taken together, the data presented here provide the initial rationale for potential 

mechanisms that lead to changes in E2 signaling during menopause (Figure 36).   

More importantly, this suggests that ET in post-menopausal women could have 

neurological effects compared to younger peri-menopausal women.   Taken 

together, the work presented in this document lends support to the hypothesis that 

there are inherent changes in ERβ function with age and in the absence of E2 that 

aberrant effects of ET resulting advanced age should be taken into consideration.   
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Figure 36.   Model for the influence of age and E2 over ER-mediated cellular 
processes.  Alternative splice variants of ERα and ERβ require various 
protein:protein interactions to regulate E2-mediated cellular responses.  Age and E2 
exposure changes interactions between ERβ and HSP70/GELS/VCP and other 
proteins which could serve as a mechanistic explanation for age-related changes in 
the molecular actions of E2. 
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CHAPTER VI 

GENERAL METHODS 

 

Chapter III 

Human tissue  

The amygdala of 3 human subjects (female) obtained through the Netherlands Brain 

Bank.  The absence of neuropathological changes was confirmed by systematic 

neuropathological investigation by a neuropathologist (Dr. W. Kamphorst, Free 

University Amsterdam).  Total RNA isolation was performed on sonicated tissue 

samples using Trizol reagent (Invitrogen Inc., Carlsbad, CA) according to the 

manufacturer’s directions. Following RNA isolation, 0.5 µg total RNA was reverse 

transcribed using the First Strand Synthesis SuperMix for qRT-PCR (Invitrogen Inc., 

Carlsbad, CA).  

 

Primer sequences 

Plasmid expression vectors (pcDNA 3.0; Invitrogen, Carlsbad, CA, USA) containing 

inserts for human ERβ1, ERβ2, ERβ4 and ERβ5 were used as previously reported: 

ER-β1 forward, 5′-GTC AGG CAT GCG AGT AAC AA-3′; ER-β1 reverse, 5′-GGG AGC 

CCT CTT TGC TTT TA-3′; ER-β2 forward, 5′-TCT CCT CCC AGC AGC AAT CC-3′; ER-β2 



165 

 

 

 

reverse, 5′-GGT CAC TGC TCC ATC GTT GC-3′; ER-β4 forward, 5′-GTG ACC GAT GCT 

TTG GTT TG-3′; ER-β4 reverse, 5′-ATC TTT CAT TGC CCA CAT GC-3′; ER-β5 forward, 

5′-GAT GCT TTG GTT TGG GTG AT-3′; ER-β5 reverse, 5′-CCT CCG TGG AGC ACA TAA 

TC-3′; GAPDH-F: 5′-TCC CTG AGC TGA ACG GGA AG-3′; GAPDH reverse, 5′-GGA GGA 

GTG GGT GTC GCT GT-3′ (University of Cincinnati, Cincinnati, OH, USA) and have 

been extensively characterized (8). 

 

Cell culture 

The cell lines used for all transient transfections were HT-22 mouse hippocampus-

derived neuronal cells (generously provided by Dr D. Schubert, Salk Institute, San 

Diego, CA, USA) or human neuroblastoma-derived SK-N-SH cells (American Type 

Culture Collection, Manassas, VA, USA). HT-22 and SK-N- SH neuronal cells were 

maintained in phenol red-free minimal essential medium (MEM) (SK-N-SH) or MEM 

with Earle’s salts, respectively. The medium contained 4.5% glucose and L-

glutamine (Invitrogen) and was supplemented with 1x non-essential amino acids, 

and 10% fetal bovine serum (FBS) or dextran charcoal-stripped FBS (Hyclone 

Laboratories, Logan, UT, USA). Cells were grown to 70% confluency and all transient 

transfection experiments were performed within ten passages. 
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Transient transfections 

HT-22 cells were plated at a density of 0.2 x 105 cells ⁄ well in 96-well plates and 

allowed to grow to 70–80% confluency until 24 h before transfection.  SK-N-SH cells 

were plated at a similar density and allowed to grow to 70–80% confluency until 48 

h before transfection. Immediately before transfection, the media was removed, and 

cells were washed once with 1x PBS. Regular media was replaced with media 

containing 10% charcoal dextran-stripped FBS to eliminate the presence of 

exogenous steroids or growth factors. Transfections were carried out using a lipid-

mediated transfection reagent in accordance with the manufacturer’s instructions 

(Fugene6; Roche Molecular Biomedical, Indianapolis, IN, USA). Cells were then 

incubated with the transfection media complex in stripped media containing the 

empty vector, hERb1, 2, 4 or 5 expression vectors for 12 h, which was then replaced 

with phenol red-free Dulbecco’s modified Eagle’s medium containing dextran 

charcoal-stripped fetal bovine serum. After a total of 24 h in stripped media, vehicle, 

hormone and ⁄ or kinase inhibitor treatments were given for an additional 12 h. The 

hormone compounds were diluted in 100% EtOH and used at a final concentration 

of 100 nM in 0.001% EtOH: E2 (Sigma-Aldrich Co. St Louis, MO, USA), 5α-

androstane-3β, 17β-diol (3β-diol) and ICI 182 780 (Steraloids, Newport, RI). The 

p38 inhibitor SB 202190 was diluted in nuclease-free water and phosphoinositide 

3-kinase (PI3K) inhibitor LY 294002 was diluted in 100% EtOH; both were used at a 

final concentration of 10 lM.  
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Reporter constructs 

The ERE-tk-luciferase reporter (generously provided by Dr P. Budworth, Case 

Western Reserve University, Cleveland, OH, USA) contains two copies of the 

vitellogenin ERE sequence coupled to the minimal tk-Firefly luciferase promoter 

and sub cloned into pGL2-Basic plasmid (Promega, Madison, WI, USA). The AP-1-tk-

Firefly luciferase promoter (generously provided by Dr C. Clay, Colorado State 

University, Fort Collins, CO, USA) contains three copies of the AP-1 sequence 

(TGACTCA) coupled to the minimal tk-Firefly luciferase promoter and sub cloned 

into pGL2-Basic plasmid. The human arginine vasopressin (AVP) promoter-Firefly 

luciferase reporter construct was purchased from Switch Gear Genomics (Menlo 

Park, CA, USA) and contains a 929-bp insert upstream from the transcription start 

site of the human AVP promoter in the pSGG_prom plasmid vector. The Renilla 

luciferase pGL4 reporter construct (Promega) was used as an internal control for 

calculating plasmid transfection efficiency. 

 

Luciferase assays 

Control reporter (Renilla luciferase) and reporter (Firefly luciferase) activity was 

measured a total of 36 h post-transfection using the Dual Luciferase Reporter Assay 

system (Promega) in accordance with the manufacturer’s instructions. Relative light 

units for each construct were measured using the Synergy HT multimode plate 

reader (BioTek Instruments Corp., Winooski, VT, USA) and represented as a ratio of 
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Firefly : Renilla. Luciferase substrates (100 ul ⁄ well) were added to cells using an 

automatic injector system. All constructs were transfected in replicates of six wells 

within each assay, and each transfection assay was repeated in a minimum of three 

independent experiments. Independent experiments were compared by calculating 

the percentage change from empty vector controls. Furthermore, each experiment 

was performed using a minimum of three different preparations for each plasmid 

reporter construct and expression vector. Differences among hormone treatment 

groups for individual receptors were analyzed by one-way ANOVA followed by 

Tukey’s honestly significant difference test. Post-hoc comparisons between control 

groups (empty-vector + vehicle; receptor + vehicle) were analyzed using Student’s t-

test. P < 0.05 was considered statistically significant. All transfection data are 

represented as the percentage change compared to vehicle-treated, promoter + 

empty vector controls. 

 

Electromobility shift assay (EMSA): 

Human ERβ expression vector plasmids (1μg each) were used to synthesize 

receptor proteins in vitro using the TnT-coupled rabbit reticulocyte lysate system 

(Promega) with T7-RNA polymerase according to manufacturer’s directions. 

Oligonucleotides: 

Double-stranded oligonucleotides containing the vitellogenin consensus ERE 

sequence were 32-P end-labeled with T4 polynucleotide kinase.  The percentage of 
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32-P incorporation was determined and labeled probes with greater than 50% 32-P 

incorporation were used for EMSAs.  

 

Gel electrophoresis 

Receptor protein lysates were incubated with 100 nM E2 or 0.001% ethanol (vehicle 

control) for 18hours before gel electrophoresis. Following ligand-binding, receptor 

lysates were incubated with 1x gel shift binding buffer [20% glycerol, 5 mM MgCl2, 

2.5 mM ethylenediaminetetraacetic acid, 2.5 mM dithiothreitol, 250 mM NaCL, 50 

mM Tris-HCL, 0.25 mg ⁄ ml poly(dI-dC)poly(dIdC)] for 10 min. Specific binding 

reactions were also incubated with 500-1000 fold excess of unlabelled ERE 

oligonucleotide. Nonspecific binding was tested using the 32P-SP1 oligonucleotide 

(data not shown). After an initial 10-min incubation, 32-P-ERE was added and 

incubated for an additional 20 min. DNA–protein complexes were resolved on a 6% 

Novex DNA retardation bis-acrylamide gel (Invitrogen) for 20 min at 250 V. Gels 

were dried on a vacuum gel dryer at 80 °C for 2 h before autoradiography. 

 

Autoradiography and analysis 

Dried gels were exposed to X-ray film (Biomax MS; Eastman Kodak Company, 

New Haven, CT, USA) for 12 h at 70°C. Gel bands were scanned and optical density 

was quantified using IMAGE J (NIH, Bethesda, MD, USA). Relative densitometry of 

replicate gels were averaged and data are reported as the mean  SD density of pixels.  
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Site-directed mutagenesis  

Site-directed mutagenesis was used to delete the putative AP-1 regulatory site from 

the human AVP promoter. The imperfect AP-1 site, TGACTCC, located –611 bp 

upstream of the transcription start site, was deleted by directing primers to the 

region (forward: 5’-CCTCTCATTCTGTGTCCCTACGACGGCGG-3’; reverse: 5’-

CCGCCGTCGTAGGGACACAGAATGAGAGG-3’) using the Quik Change XL system 

(Stratagene, La Jolla, CA, USA) in accordance with the manufacturer’s instructions. 

 

Chapter IV 

Animals 

Female Fisher 344 rats (3 mo (N = 40)- and 18-mo (N= 39)) were obtained from the 

NIH aging colony (Taconic) and allowed to acclimate for 7 days prior to treatments. 

Next, all animals were bilaterally ovariectomized (OVX) and allowed to recover 

post-OVX for 7 days.  Briefly, rats were deeply anesthetized under isofluorane gas 

and the ovary and distal end of the uterine horn were pulled from the body cavity 

through a 1cm incision made through the skin and body wall.  The horn was 

clamped with a hemostat and ligated proximal to the clamp.  The ovary and distal 

uterine horn were then removed to ensure that all potential ovarian sources of E2 

were eliminated, thereby creating a surgically-induced model of menopause.  After 7 

days post-OVX the animals received once/day subcutaneous injections of 2.5ug/kg 
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17β-estradiol or safflower oil (vehicle) for 3 consecutive days.  Animals were 

sacrificed by rapid decapitation 24 hours after the last injection and trunk blood and 

brains were collected further analysis.  

 

Estradiol enzyme-linked immunoassay 

 Circulating17β-estradiol was measured by using an enzyme-linked immunoassay 

system (EIA, Cayman Chemical).  Briefly, trunk blood was collected in tubes coated 

with 20-50 units of porcine heparin (Sigma) per ml of blood collected.  Blood was 

then centrifuged at 4000 x g for 7 minutes and plasma was removed subjected to 

immunoassay per manufacturer's instructions. The limit of detection for the assay 

was 6.6 pg/ml.  Plasma E2levels were determined to be 53.67 (SEM+/- 7.24) pg/ml 

in young animals and 50.56 (SEM+/- 8.78) pg/ml in aged animals, within the 

physiological range for post-menopausal patients receiving hormone replacement 

therapy (17-75pg/ml) (Schmidt et al., 1994). 

 

2D Sample preparation 

 Brains were rapidly frozen using isopentane and stored at −80°C until further 

processing. Briefly, frozen brains were sectioned at 200 µm on a freezing microtome 

and the ventral hippocampus was microdissected using a 0.75 mm Palkovit's brain 

punch tool (Stoelting Co., Woodale, IL). The specificity of the microdissection was 

confirmed using The Rat Brain in Stereotaxic Coordinates, Fourth Edition Atlas (G. 
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Paxinos and C. Watson) and are as follows: From bregma -4.16 - -5.80mm,  DV 6.0- 

9.0mm AP 3.0-6.0mm.  (Banasr et al., 2006).  Punches were pooled (4 

animals/sample) and placed in CERI solution of non-denaturing NE-PER Nuclear 

Protein Extraction Reagents (Thermo Scientific Pierce), supplemented with 7x 

EDTA-free Complete Mini Protease inhibitors (Roche).  Nuclei were subjected to 

lysis and insoluble material including DNA was pelleted and excluded from the 

soluble portion of the extracts.  Nuclear extracts were subjected to co-

immunoprecipitation for ERβ (Ab288, Clone 14C8, Abcam (1ug/100ug protein) 

overnight.  Subsequently, antibody and extracts were incubated with magnetic 

beads for 10 minutes at room temperature (Millipore Protein G) and after antibody 

binding, beads were washed 3x with 1X PBS prior to elution with 1.25 M Glycine.  

Two additional antibodies were tested using the same paradigm including α-ERβ 

LBD (1ug/100ug protein) (Saji et al., 2000) and H-150 (1ug/100ug protein ,  Cruz 

Biotechnology).  Protein spots that were common between all three antibodies were 

considered specific, whereas those that did not overlap were excluded from the final 

analysis.  In addition, a control rabbit-anti-IgG antibody was used under the same 

experimental paradigm to identify non-specific spot patterns.  Following co-IP, 

samples were prepared for isoelectric focusing using the 2-D Cleanup system (GE 

Healthcare).  
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CyDye labeling 

7.5μg from each sample was combined and aliquoted into an internal standard to 

correspond with each sample being compared (N=3 for each group). Each standard 

(7.5 μg) and sample (7.5 μg) was reduced using 2nmol TCEP (tris(2-

carboxyethyl)phosphine) for 1.5h at 37ºC in the dark. Then, all samples and 

standards were labeled with 4nmol Cy5 and Cy3 DIGE Fluor saturation dyes, 

respectively (GE Healthcare), for 30 minutes at 37ºC in the dark.  Saturating dyes 

are an advantage over minimal dyes due to labeling of ~ 98% of cysteine sulfhydryls  

(compared to ~6% of lysines) resulting in maximum sensitivity.  The reaction was 

stopped by adding equal volume 2x Rehydration buffer (UTC (7 M Urea, 2 M 

Thiourea, 4% w/v CHAPS) with Pharmalytes (2%v/v final) and DTT (130 mM 

final)).  

 

Isoelectric focusing & SDS-PAGE 

Each dyed sample and corresponding standard (15μg of protein: 7.5μg Cy3 labeled 

pooled internal standard and 7.5μg Cy 5 labeled experimental group) were 

incorporated into a rehydration buffer (UTC with  0.5%v/v IPG buffer 3-11NL, 

15mgl/ml Destreak Reagent) and applied to a 24cm 3-11NL Immobiline Drystrip 

and subjected to active rehydration (10h at 50V) followed by an optimized run 

program: 1) Step: 500V for 500Vh, 2) gradient: 1000V for 1000Vh 3) gradient 

8000V for 16500Vh 4) Step: 8000V for 42000Vh (75uA limit at 15ºC, 61000 total 
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Vh).  After the 1st dimension strips were equilibrated in 1% w/v DTT, 2.5%w/v 

iodacetamide and a brief 1X SDS Running buffer wash before being resolved on a 

12% SDS-PAGE at 2W/gel (limit: 500V, 40mA/gel) for 17:30h.  

 

 Imaging and analysis 

Gels were imaged on the Typhoon 9400 (Cy5: ex: 633nm em: 670nm BP 30, Cy3: ex: 

532nm em: 580nm BP 30 100pixels, 450PMT) prior to analysis with DeCyder 

Analysis software (GE).  Using Differential in-gel Analysis (DIA) each gel was 

analyzed individually for processing up to 1500 spots, using standard spot exclusion 

for the following properties: slope >1, area <200, volume <2500, peak height <16 

>10,000.  All gels were analyzed together using the Biological Variance Analysis 

(BVA) module.  

 

Spot Analysis and statistics  

The BVA module was used to compare replicate gels and perform inter-gel 

statistical analysis and will be referred to from this point forward.  The BVA module 

accounts for the spots identified and confirmed in each gel’s DIA workspace, and 

automatically selects a master gel (gel displaying the most confirmed spots) to 

match and compare each replicate gel against.  Each protein spot was matched 

individually by examining each gel, using match vectors and creating landmark spot 

affirm accurate spot matching.  Standard abundance quantifies a given protein spot 
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based upon protein spot volume, area and background.  Each spot is then 

normalized to its own internal standard and log transformed to perform statistical 

tests.  Each gel represents the pooled internal standard (equal amounts of protein 

from each experimental replicate) compared to samples from young vehicle (YV) 

treated animals, young estradiol (YE) treated animals, aged vehicle (AV) and aged E2 

(AE) treated animals.  Each gel was performed via 3 independent experiments (i.e, 

Experiment 1: YV1 v. internal standard, Experiment 2: YV2 v. internal standard, 

etc.).  Each sample (i.e., YV1, YV2, YV3) was representative of 4 pooled ventral 

hippocampus taken from different animals, thereby contributing to a biological 

variance of 12 animals/group, n =3.  Statistical significance for 2D-spot analysis was 

determined using Decyder software by calculating an average log standard 

abundance for each group being tested (i.e., YV v. YE); thereby the statistical 

significance can be determined by using 1-way ANOVA (p>0.05).  Notably, statistical 

significance was equivalent using 1-way ANOVA or student t-test.  

 

Spot picking 

After electrophoresis and analysis of analytical gels, a preparative gel representing 

~400ug of co-immunoprecipitated protein was used to pick spots for peptide 

identification via tandem mass spectrometry.  Gels were fixed and post-stained with 

Sypro Ruby and/or Coomassie G250 to visualize protein spots for excision.  While 

individual protein spots were analyzed through BVA, due to the small size of protein 
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spots, and low visibility of some post-stained spots, groups or ‘chains’ of similar 

spots were picked and pooled.  Spots from preparative gels were picked using the 

Ettan DIGE automated spot picker, and residual gel spots were excised using a 

sterile glass Pasteur pipette.  Reference markers were placed at 3.5 cm and 10 cm 

from the edge of glass plates following treatment fixative treatment with Bind Silane  

(8 % Ethanol (v/v), 0.002% Acial Acetic acid, 0.0001% Bind Silane).  Spot picking 

parameters that were customized from standard settings include:  Jazz 1.3 mm, 50ul 

aspiration volume, 51ul dispense volume. 

 

In-gel digestion of peptides 

Mass spectrometry and peptide fingerprinting analysis were performed at the 

Midwest Center for Proteomics under the direction of Dr. Marc Glucksman (Rosalind 

Franklin University Chicago Medical School).   After spot excision, proteins within 

the gel plugs were washed 2x with 1:1 v/v of 0.1 NH4HCO3 for 15 minutes.  The 

wash solution was replaced with LC/MS grade acetonitrile (ACN) to fully cover the 

gel plugs (~2x the plug volume).  Once the gel plugs aggregated ACN was replaced 

with a rehydration solution of 0.1M Nh4HCO3 for 10 minutes.  After drying the 

plugs in a vacuum centrifuged proteins were reduced with 10m< dithiothreitol 

(DTT) and alkylated with 55 mM iotacedamide in 0.1M NH4HCO3.  Following 

another wash in NH4HCO3, the peptides in the plugs were subjected to tryptic 

digest for 24 hours at 37⁰C.  Peptides were recovered by adding 10mL of 25mM 



177 

 

 

 

NH4CO3 and 5mls of 5% formic acid and CAN.  Desiccated peptides were resolved in 

a formic acid:water:ACN:trifleuroacetic acid mixture (0.1:9.5:5:0.01) (Yang et al., 

2009).  

 

Identification of proteins with LC-ESI-MS/MS 

Reconstituted peptides were separated with a reversed-phase column (C-18 

PepMap100, LC Packings/Dionex, Sunnyvale CA, USA), described previously (Yang 

et al., 2009).  The eluate was introduced onto a QSTAR XL mass spectrometer 

(Applied Biosystems and Sciex, Concord Ontario, Canada) by electrospray 

ionization.  Candidate peptides were identified via half-second MS scans (300-1500 

Thompson), collecting up to five 1.5s tandem MS scans (65-1500 Th).  Each ion was 

assigned a charge between 12-14, and the dynamic exclusion was 40.  Identification 

of proteins was completed using PEAKS software and rat databases from NCBI 

(http://www.ncbi.nlm.nih.gov/RefSeq/).  The False Discovery Rate (FDR) for the 

PEAKS program was set to 60 providing a conservative estimate of proteins 

identified within a given spot or chain of spots.  Proteins identified with a PEAKS 

score of 60 or above are listed in Table 1.  In the event that multiple proteins were 

identified for a group of spots picked, the predominant peptide match with a PEAKS 

score of 60 or above, matched for size and isoelectric point was selected.   

 

 

http://www.ncbi.nlm.nih.gov/RefSeq/
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Western blotting 

Co-immunoprecipitated proteins were obtained as described above, added to a 

denaturing 4X laemelli buffer, and boiled at 95⁰C for 5 minutes.  Samples were 

resolved on 4-20% SDS-PAGE gels (Pierce) for 1.5 hours at 90V and transferred to 

0.045µm PVDF membranes overnight at 10mA/gel.  Membranes were blocked with 

5% bovine serum albumin (BSA) for 1 hour before the addition of 1⁰antibody in 1% 

BSA and 0.01% NaN3 for 1.5 hours.  All antibodies were used at a 1:1000 dilution: 

VCP (Pierce, PA5-17486), ERβ (Santa Cruz, Sc-8974x), ENO1 (Santa Cruz, sc-15343), 

GAPDH (Santa Cruz, sc-25778) HnRNPH (Santa Cruz, sc-15387) HSP70 (GenTex, 

GTX-104126) β-actin (Cell signaling, 4970S). Blots were washed 3X with TBST for 5 

minutes prior to application of 1:4000 goat α-rabbit-HRP (1 hr.; Santa Cruz, sc-

2004).  Blots were washed 3X with TBST and imaged on the Biorad Chemidoc XRS+ 

imager using ECL Chemiluminescent substrate (Pierce).  Densitometry was 

performed using ImageLab software and statistical significance (via 2-way ANOVA 

and Tukey post-hoc analysis) was calculated using an average of 3 or more 

independent blots using samples from different animals (n=3, p>0.05).  To confirm 

the presence of ERβ on the 2D gels, samples were labeled (Cy3) and resolved and 

visualized on a 2D gel as described previously.  Then a portion of the gel narrowed 

for molecular weight and isoelectric range of ERβ (MW 55kDa, pI~8.8) was 

transferred onto a PVDF membrane.  The membrane was imaged as described 

previously, and then probed with primary α-ERβ antibody (Sc-8974x) and 
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secondary goat α-rabbit-Cy5 (GE Healthcare, PA-45011V) and imaged accordingly 

(Fig. 34). 
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Figure 37.  Identification of ERβ by 2D-DIGE and western blotting. Pooled 
nuclear extracts immunoprecipitated for ERβ were labeled (Cy3) and resolved and 
visualized on a 2D gel as described previously.  Then a portion of the gel narrowed 
for molecular weight and isoelectric range of ERβ (MW 55kDa, pI~8.8) was 
transferred onto a PVDF membrane.  The membrane was imaged and probed with 
primary α-ERβ antibody and secondary goat α-rabbit-Cy5. 
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Figure 38.  Representative image of non-specific proteins bound to rabbit IgG.  
Pooled nuclear extracts from YV, YE, AV and AE were incubated with rabbit IgG, co-
immunoprecipitated, and subjected to 2D-DIGE as described previously (Chapter VI, 
Methods). Spots identified here were visually matched with experimental groups 
and excluded from further analysis. 
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Figure 39: Representative image of proteins co-immunoprecipitated with 2 
different α-ERβ antibodies. Pooled nuclear extracts from YV, YE, AV and AE were 
incubated with α-ERβ antibodies LBD (Green) and Abcam 14C8, (Red), co-
immunoprecipitated, and subjected to 2D-DIGE as described previously (Chapter VI, 
Methods). The antibody that immunoprecipitated the least amount of spots was 
used and non-overlapping spots were excluded from analysis. 
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Table 4.  Epigenetic enzymes co-immunoprecipitated with ERβ in the ventral 
hippocampus after DTBP cross linking 
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Table 5.  Transcriptional proteins co-immunoprecipitated with ERβ in the 
ventral hippocampus after DTBP cross linking 
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Table 6.  DNA replication and repair proteins co-immunoprecipitated with 
ERβ in the ventral hippocampus after DTBP cross linking 
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Table 7.  Other DNA binding proteins co-immunoprecipitated with ERβ in the 
ventral hippocampus after DTBP cross linking 
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Table 8.   RNA binding/translational proteins co-immunoprecipitated with 
ERβ in the ventral hippocampus after DTBP cross linking 
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Table 9.   Post-translational modifying protein co-immunoprecipitated with  
ERβ in the ventral hippocampus after DTBP cross linking 
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Table 10.   Chaperone proteins co-immunoprecipitated with ERβ in the ventral 
hippocampus after DTBP cross linking 
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Table 11.  Cell signaling proteins co-immunoprecipitated with ERβ in the 
ventral hippocampus after DTBP cross linking 
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Table 12.   Kinases & Phosphatases co-immunoprecipitated with ERβ in the 
ventral hippocampus after DTBP cross linking  
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Table 13.  GTPases & related proteins co-immunoprecipitated with ERβ in the 
ventral hippocampus after DTBP cross linking 
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Table 14.  Cell cycle & cell death related proteins co-immunoprecipitated with 
ERβ  in the ventral hippocampus after DTBP cross linking 
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Table 15.  Scaffolding proteins co-immunoprecipitated with ERβ in the ventral 
hippocampus after DTBP cross linking 
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Table 15.  Scaffolding proteins co-immunoprecipitated with ERβ in the ventral 
hippocampus after DTBP cross linking 
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Table 16.  Membrane associated proteins co-immunoprecipitated with ERβ in 
the ventral hippocampus after DTBP cross linking  



[198] 

 

 

 

Table 16.  Membrane associated proteins co-immunoprecipitated with ERβ in 
the ventral hippocampus after DTBP cross linking 
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Table 17.  Metabolic proteins co-immunoprecipitated with ERβ in the ventral 
hippocampus after DTBP cross linking 
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Table 17.  Metabolic proteins co-immunoprecipitated with ERβ in the ventral 
hippocampus after DTBP cross linking 

 
Table 18.  Multifunctional proteins co-immunoprecipitated with ERβ in the 
ventral hippocampus after DTBP cross linking 
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