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INTRODUCTION 

Linolenic acid (18:3n-3) is an essential fatty acid (EFA) in 

that it must be supplied in the diet. Tinoco et al. (1971) questioned 

the essentiality of linolenic acid for normal growth and reproduc

tion in rats. Results from later studies suggest a dietary role for 

linolenic acid (Rivers and Davidson, 1973). Weanling mice from dams 

fed a safflower seed oil (linolenate poor) diet weighed 17% less and 

their metabolic rate was increased over mice from females fed a diet 

supplemented with soya bean and linseed oil (linolenate rich). Also, 

Fiennes et al. (1973) reported that capuchin monkeys which were fed 

diets containing adequate amounts of linoleic acid, but were deficient 

in linolenic acid, showed classical symptoms of essential fatty acid 

deficiency as were described by Holman (1968). 

A possible functional role for dietary linolenic acid in devel

opment has been suggested by Lamptey and Walker (1976). Female rats 

were placed on linolenate poor diets (10% safflower oil) or linole

nate rich diets (10% soybean oil). Measurement of physical develop

ment, onset of reflexogenic responses, or onset of neuromotor coordi

nation was not influenced by the nature of the dietary fat. In mature 

progeny weaned to the diet of the dam, testing of discrimination 

learning in a Y-maze showed animals fed the soybean oil diet performed 

in a superior manner to those fed safflower oil. 

Benolken et al. (1973) demonstrated that the fatty acid compo

sition of rat photoreceptor membranes was altered by dietary 

1 



manipulation. A decrease in the concentration of docosahexaenoic 

* acid (22:6n-3), the major metabolic product of linolenic acid in 

brain, from 45 mole% to 19 mole% of ethanolamine phosphoglyceride 

2 

fatty acids, was seen in second generation rats raised on a fat free 

diet. The fat free diet of the females was supplemented with 0.85% 

linoleat·e to facilitate breeding and lactation, and the pups were 

weaned to a completely fat free diet. In addition, a functional 

alteration was also observed in the component of the electroretino-

gram which is generated by the photoreceptors. 

Bernsohn and Stephanides (1967) postulated a dietary deficiency 

of linolenic acid as a possible contributing factor to the onset of 

Multiple Sclerosis. 

It was reported that rats on EFA deficient diets were more 

susceptible to Experimental Allergic Encephalomyelitis than controls 

(Clausen and Moller, 1967). Polyunsaturated fatty acids have also 

been reported to inhibit lymphocyte transformations and cell mediated 

response (Mertin and Hughes, 1975; Mertin, 1976). In these latter 

instances the specific roles, if any, for particular fatty acids were 

not described. Perhaps future studies will elucidate specific roles 

for linolenic acid and its metabolites by utilizing experimental 

design which will separate the roles played by the linolenic acid 

family of fatty acids from that of the linoleic acid (18:2n-6) family 

of fatty acids. 

*Fatty acid nomenclature - number of carbon atoms in fatty acid chain: 
number of double bonds n-position of first double bond numbering 
from the methyl terminal of the fatty acid. 
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Docosahaenoic acid is particularly concentrated in nervous 

tissue. Brain lipid and fatty acid composition has been extensively 

reported in humans (O'Brien and Sampson, 1965; Svennerholm, 1968; 

Rouser and Yamamoto, 1969; and Sun, 1973), in rats (Biran and Bartley, 

1961; and Kishimoto et al. 1969), and in mice (Sun and Horrocks, 

1968; Sun and Yau, 1976a; and Sun and Horrocks, 1970). Linolenic 

acid, itself, is found in very low concentrations in brain. However, 

22:6n-3 is a major fatty acid of the ethanolamine and serine phospho

glycerides of whole brain gray matter, microsomes from gray matter 

and white matter, and synaptic endings. In contrast, there are only 

very small amounts of 22:6n-3 in the choline phosphoglycerides of 

the aforementioned fractions or in any of the phosphoglycerides of 

myelin. This pattern is also seen in the ethanolamine, serine, and 

choline phosphoglycerides of retina (Anderson, 1970). 

Unquestionably, long chain polyunsaturated fatty acids have a 

role in normal functioning of cell membranes and their considerable 

concentrations in excitable tissue point up the possibility of a 

specialized function in the central nervous system. While the metabo

lism of linoleic acid (18:2n-6) an essential fatty acid, has been 

described in the literature in considerable detail, the metabolism 

of linolenic acid has been largely neglected, possibly because the 

essentiality of linolenic acid has been questioned, though evidence 

to the contrary exists. Thus it appeared of interest to examine the 

metabolic transformations which linolenic acid undergoes in the brain 

during critical periods of development. At 21 days of age a rapid 



accretion of membrane lipid is occurring in rat brain. It was also 

of interest to examine the metabolism of linolenic acid in brain of 

rats which were born of dams deprived of essential fatty acids in 

their diets. A special requirement for essential fatty acids in 

general and linolenic acid in particular during development might 

manifest itself in an altered pattern of metabolism of linolenic 

acid. This was our interest, to examine the metabolism of linolenic 

acid in the developing brain of normal and essential fatty acid de

prived rats. 

\ 
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LITERATURE REVIEW 

MEMBRANE STRUCTURE AND FUNCTION: Presumably the function of 22: 6n-3 

in membrane phospholipids is related to its structure. The 22-carbon 

chain contains six methylene interrupted double bonds all of which 

are in the cis configuration. The unsaturation of fatty acids of 

membrane phospholipids is the major determinant of membrane fluidity. 

The current concept of membrane structure is that membranes 

are composed of a fluid lipid bilayer which forms a matrix for vari

ous protein components which are associated with the lipid surface, 

are imbedded to varying degrees in the lipid matrix, or extend en

tirely through it. This is the fluid-mosiac model of Singer and 

Nicolson (1972). The proteins in membranes are classified as periph

eral (extrinsic), integral (intrinsic), or as a third intermediate 

fraction based on their solubility properties (Singer, 1974; Steck 

and Yu, 1973). Peripheral proteins can be dissociated from the 

membrane by mild treatment, e.g. use of solutions of high ionic 

strength and metal chelating agents. Integral proteins require 

hydrophobic bond breaking reagents such as detergents or organic 

solvents. The intermediate class of protein is removed by protein 

perturbants such as sodium hydroxide or lithium diiodosalicylate 

without disrupting the membrane core. Both the protein and lipid 

components of the membrane are relatively free to diffuse laterally 

in the plane of the membrane. Transverse diffusion (flip flop) of 

5 
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lipid molecules from one half of the bilayer to the other has also 

been observed. The latter appears to be a relatively slow process 

(Cherry, 1976). There are some areas of the membrane that have a 

highly organized structure such as synapses and gap junctions. It 

is suggested that in these structures the proteins themselves form a 

highly ordered matrix with specific protein-protein interactions 

while lipids might exist in the interstices (Singer, 1974). 

A more elaborate model of membrane structure was introduced by 

Bretscher (1972). Experiments using a reagent which was specific for 

labelling the amino group of ehtanolamine or serine phosphoglycerides 

demonstrated that few lipid amino groups were labelled on intact red 

blood cells, but instead labelling was more effective when red blood 

cells were lysed and the red blood cell membranes (ghosts) were ex

posed to the reagent; presumably both sides of the membrane are 

accessible to the reagent. A second set of experiments utilizing a 

phospholipase relied on the fact that in ruminants there is very 

little phosphatidylcholine in the erythrocyte membrane, but instead 

the difference is made up with sphingomyelin. There was very little 

phospholipase activity noted when intact sheep erythrocytes were 

treated compared to when ghosts were presented to the enzyme. As a 

consequence of these experiments, Bretscher (1972) postulated that 

the structure of the lipid bilayer from erythrocytes, and other bio

logical membranes as well, contained phosphatidylcholine and sphingo

myelin on the external surface and phosphatidylserine and phospha

tidylethanolamine on the internal surface. 
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Using an approach based on the solid angles formed by lipid 

molecules, Israelachvilli and Mitchell (1975} attempted to explain 

the lipid packing the membrane. Their calculations indicate that 

phosphatidylcholine (PC), phosphatidylserine (PS), and probably 

spingomyelin (SPH) are tapered lipids, ie., their surface head group 

areas are greater than their non-polar end areas. On the other hand, 

cholesterol and possibly phosphatidylethanolamine (PE) are frayed, 

ie., the non-polar end areas are greater than the surface head group 

areas. This may explain why cholesterol is found with phosphatidyl-

choline and sphingomyelin on the exterior surface of the bilayer 

while phosphatidyethanolamine, phosphatidylserine, and phosphatidyl-

inositol (fi) are found on the interior surface of the bilayer of 

plasma membrane (Emmelot and Van Hoeven, 1975). To avoid packing 

strains the ~rayed and tapered lipids should be found together. 

Having reviewed the basic lipid structure of biomembranes, we 

can now look at the question of fluidity, which, as was said before, 

is determined to a great extent by the nature of the fatty acyl 

groups of the phospholipids. The more unsaturated the fatty acid 

composition, the more fluid the membrane will be. Cholesterol in 

the membrane can have a dual effect. Below the transition tempera-

ture (T : the temperature where fatty acid chains "melt" and display 
c 

rapid random motion} cholesterol will fluidize the membrane, while 

above the transition temperature cholesterol tends to inhibit fatty 

acid chain motion. Hence cholesterol confers upon the membrane an 

intermediate degree of fluidity. One example of this is the myelin 
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membrane for which no lipid thermal transitions are observed (Chapman, 

1975). Thermal transitions are the result of heat absorption on 

melting of the fatty acyl chains in the membrane core. The interpre

tation for this result is that the cholesterol maintains the myelin 

in an intermediate state of fluidity at all temperatures. At body 

temperature, in the absence of cholesterol, myelin lipids can crys

tallize. 

Chapman (1975) also discusses the possibility of phase separa

tions of lipids in the membrane resulting in areas of the membrane 

being in the gel state while other areas are fluid. This has pos

sible relevance to membrane functions such as transport mechanisms 

or regulation of membrane bound enzymes (Coleman, 1973; Farias et al. 

1975). 

The concept that there is an asymmetric distribution of phospho

lipids in membranes leads to the possibility of an asymmetry of flu

idity of the membrane bilayers (Chapman, 1975; Emmelot and Van Hoeven, 

1975). The fluidity of the inner lipid bilayer would be assured since 

the ethanolamine, serine, and inositol phosphoglycerides are the most 

unsaturated. Cholesterol has been suggested to be associated with 

the outer leaflet of lipid, and would impact fluidity to the fatty 

acids of sphingomyelin and phosphatidylcholine which are considerably 

less saturated than those of PE, PS, and PI (Emmelot and Van Hoeven, 

1975). Indeed, an inverse relationship was demonstrated between the 

degree of unsaturation of fatty acids and the cholesterol content of 

the plasma membrane, the two factors possibly functioning to control 

the proper range of fluidity. 



9 

This concept opens up new avenues of approach for the study of 

enzyme mechanisms and regulation. Some vectorial enzymes such as 

(Na+ + K+) ATPase and the hormone activated adenyl cyclase span the 

entire membrane. They can be reactivated from delipidated membrane 

by phosphatidylserine or phosphatidylinositol in_particular (Coleman, 

1973). At a finer level of control, Farias et al. (1975) showed 

that the cooperativity (as measured by the Hill coefficient) of some 

membrane bound enzymes eg., (Na+ + K+) ATPase and Acetylcholines-

terase, was correlated with the fluidity of the membrane structure. 

It was suggested that the intact membrane structure itself could well 

be one of the modifying factors. 

FATTY ACID METABOLISM: The stoichiometry of fatty acid synthesis 

is as follows: 

0 0 
II II + 

CH3-C-SCoA + n HOOC-CH2-C-SCoA + 2n NADPH + 2n H 

+ CH3-(CH2) 2n-COOH + (n+l)CoA + 2n NADP + n C02 + (n-1) H2o. 

This reaction has been demonstrated in the brain (Brady, 1960). Palmi-

tate (16:0) is the major product of the reaction noted above and for 

which n = 7. 

Acetyl CoA can be derived from 8-oxidation of fatty acids, 

from the oxidative decarboxylation of pyruvate produced by glycolysis, 

~nd from the metabolism of certain amino acids. Malonyl CoA is 

formed by the action of acetyl CoA carboxylase (acetyl CoA ligase 

(ADP), EC 6.4.1.2). 
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Nicotinamide adenine dinucleotide phosphate (reduced), NADPH, 

which provides the necessary reducing equivalents can arise from the 

oxidation of D-glucose 6-phosphate in the hexose monophosphate shunt, 

or via the combined effort of cytoplasmic malate dehydrogenase 

(L-malate:NAD-oxidoreductase EC 1.1.1.37) and malic enzyme (L-malate: 

NADP-oxidoreductase (decarboxylating) EC 1.1.1.40) (Porter et al. 

1971). Lowenstein (1961) has also reported an extramitochondrial 

source of isocitrate dehydrogenase (L -isocitrate:NADP-oxidoreductase 
s 

(decarboxylating) EC 1.1.1.42) in rat liver which he suggests is a 

source of NADPH. 

Enzymes for the hexose monophosphate shunt are present in rat 

brain (Glock and McLean, 1954), though the catabolism of glucose via 

this pathway has been reported to be low (DiPietro and Weinhouse, 

1959; Bloom, 1955; O'Neill et al 1965). In addition, the levels of 

NADPH and NADP+ was reported to be low while the ratio of NADPH/NADP+ 

was greater than one (Glock and McLean, 1955). This further points 

to a low level of activity. Hostetler et al. (1970) estimated the 

maximum contribution of the pentose shunt to glucose metabolism at 

5-8% in perfused monkey brain. Appel and Parrot (1970) reported 

that synaptosomes isolated from rat cerebral cortex showed pentose 

shunt activity. They suggested a possible role for the NADPH in 

maintaining the integrity of the synaptic membrane. In a develop-

mental study, Baquer et al. (1973) reported an increase in glycolytic 

enzymes in rat brain, while the pentose shunt enzymes remained rela-

tively constant. Hence, it is still unclear what role the hexose 
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monophosphate shunt plays in brain during lipogenesis. Baquer (1973) 

+ reported on the developmental profiles of the NADP dependent malic 

enzyme and isocitrate dehydrogenase from the soluble fraction of 

brain homogenate. The activity of the isocitrate dehydrogenase most 

closely parallels that of fatty acid synthetase which declines with 

development. It is likely that some interplay of these three pathways 

provide the necessary NADPH reducing equivalents for fatty acid bio-

synthesis in brain. 

Two enzyme systems are responsible for de novo fatty acid 

synthesis: acetyl CoA carboxylase and the fatty acid synthetase 

complex (FAS), both of which are located in the cytoplasm of the cell. 

Acetyl CoA carboxylase is a biotin containing enzyme which catalyzes 

the following reaction sequence: 

1) Enzyme+ ATP + HC0
3

- ---...;>~ Enzyme -co2 + ADP + Pi 

0 0 
II II 

2) Enzyme-co2 + H3C-C-SCoA --...;)~Enzyme + HOOC-CH2-C-SCoA 

overall: 
~ Mg++ ~ 

Enzyme + ATP + HCo3- + H3C-C-SCoA~Enzyme + ADP + Pi + HOOC-CH2-C-SCoA 

Acetyl CoA carboxylase was initially characterized by Waite and Wakil 

(1962). The enzyme was purified from chicken liver. It was stimulated 

by citrate, isocitrate, and other Krebs' cycle intermediates. Gross 

and Warshaw (1974) have reported on acetyl CoA carboxylase activity 

in developing rat brain in vitro. The enzyme was maximally activated 

in the presence of Mg++ and citrate, and was markedly inhibited by 
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palmityl-CoA. The activity of the enzyme was maximal during the 

fetal period to 14 days post-natal. It decreased to about 50% of its 

maximum value in the adult. 

All the acetyl CoA carboxylases studied have been shown to con-

tain definable subunits (Volpe and Vagelos, 1976). The enzyme com-

plex of E. Coli is readily dissociated into active subunits, three 

proteins in all. Biotin carboxylase catalyzes the carboxylation of 

the second protein, Biotin carboxyl carrier protein. The third pro-

tein, the transcarboxylase, catalyzes the reversible transfer of co2 

from the biotin-co2 complex to acetyl-CoA forming in the process 

malonyl-GoA. 

Fatty acid synthetase catalyzes the condensation of seven moles 

of malonyl-GoA with one mole of acetyl-CoA to form one mole of palmi-

tic acid. The enzyme complex isolated from pigeon liver was initially 

chara,cter~zed by Bressler and Wakil (1961). In a series of papers, 

the binding sites of acetyl-CoA and malonyl-GoA to the synthetase 

(Phillips et al. 1970), the binding of intermediates to the synthe

tase (Nixon et al. 197o) and a mechanism for fatty acid synthesis 

(Phillips et al. 1970) were described. Briefly, there are three 

binding sites: 1) 4'-phosphopantetheine site, 2) a site probably 

containing cysteine, and 3) a hydroxyl site in which either serine 

or threonine is responsible for binding. It is proposed that acetyl

GoA is initially bound to the hydroxyl site. By a series of nucleo-

philic displacements the acetyl moiety is transferred first to the 

4'-phosphopantetheine site and then to the cysteine site, being 
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bound to these groups by a thioester bond. Malonyl-CoA can then 

bind to the hydroxyl site and be transferred to the 4'-phosphopante

theine site. Further reactions occur on the 4'-phosphopantetheine 

site. It was postulated that binding of acetyl-CoA in some way 

altered the synthetase so that thereafter malonyl-CoA would be 

preferentially bound. The residues condense with loss of co
2 

from 

the malonyl moiety. The resulting 8-ketoacyl-4'-phosphopantetheine

Enzyme is reduced by NADPH to the 8-hydroxyacyl-4'-pantetheine-Enzyme 

which is then dehydrated to the a,8 unsaturated acyl-4'-phosphopante

theine-Enzyme. This is then reduced by a second molecule of NADPH. 

The acyl moiety is transferred back to the cysteine residue enabling 

another molecule of malonyl-CoA to bind to the 4'-phosphopantetheine 

site thus initiating a new cycle of reactions. The synthetase complex 

has a deacylase activity which shows specificity for acyl chain 

lengths of sixteen and eighteen carbons (Dorsey, 1968). The free 

fatty acid is released. 

Volpe and Kishimoto (1972) reported the developmental pattern 

of fatty acid synthetase from the brain and liver. In brain, the 

synthetase activity was greatest during the fetal period falling off 

gradually after birth. This was in stark contrast to the liver 

enzyme which had low activity during fetal development and the suck

ling period, but showed a striking increase in activity at weaning. 

The brain enzyme was more refractory to changes of diet and hormonal 

influence than was the liver enzyme. 

Studies regarding the regulatory mechanisms for acetyl CoA 
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carboxylase and fatty acid synthetase are equivocal. Bortz and Lynen 

(1963) demonstrated the inhibition of a purified preparation of Acetyl 

CoA carboxylase from rat liver by long chain acyl-CoA derivatives. 

Gross and Warshaw (1974) reported a severe decrease in the activity 

of acetyl-CoA carboxylase and fatty acid synthetase in brain with 

increasing concentrations of palmityl-CoA. Jacobs and Majerus (1973) 

employing cultured human fibroblasts found that while palmitic acid 

or palmityl-CoA, complexed to albumin, did inhibit acetyl CoA carboxy

lase, the concentrations of the long chain acyl compounds remained 

unchanged. Citrate levels also remained unchanged. The authors 

didn't rule out the possibility that localized concentration changes 

could occur in the cells. Dorsey and Porter (1968) suggest that the 

inhibition of fatty acid synthetase is due to an irreversible deter

gent effect, and is observed, most likely, only in vitro. More 

recently, Flick and Bloch (1975) described the reversible inhibition 

of fatty acid synthetase from M. smegmatis. Palmityl-CoA dissociated 

the complex into inactive subunits. The binding could be prevented 

or reversed by fatty acyl-CoA complexing agents which occur in the 

organism. This system could operate as a negative feedback control 

of fatty acid synthetase. 

A role for malonyl-CoA, the product of acetyl CoA carboxylase, 

in fatty acid synthesis has been proposed by Guynn et al. (1972). By 

studying the levels of various intracellular metabolites under dif

ferent dietary conditions they demonstrated that with the exception 

of starved or fat-fed rats the availability of malonyl-CoA for fatty 

acid synthesis is rate limiting. They also suggested that acetyl 
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CoA carboxylase is regulated on a short term basis by long chain 

acyl-CoA. Malonyl-CoA has been reported to inhibit fatty acid syn

thetase, an effect which can be reversed by fructose 1,6-diphosphate 

(Plate et al. 1968). Wakil et al. (1966) have also reported the 

stimulation of fatty acid synthesis from acetyl-CoA and malonyl-CoA 

in crude extracts from pigeon live! by phosphorylated sugars. These 

results have been questioned, however (Gross and Warshaw, 1974). 

It has been suggested that short term control over fatty acid 

synthesis may be mediated by a phosphorylation-dephosphorylation 

cycle of acetyl-CoA carboxylase (Inoue and Lowenstein, 1972; Carlson 

and Kim, 1973), as mediated by cyclic 3',5'-AMP (Bricker and Levy, 

1972). 

Adaptive changes in enzyme synthesis and degradation are likely 

to play a regulatory role in the long term control of fatty acid 

synthesis. Volpe et al. (1973) reported that changes in fatty acid 

synthetase activity in development of both brain and liver were due 

to changes in enzyme content. Responses to starvation and fat-free 

feeding in the liver enzyme were also shown to be due to enzyme con

tent. Nakanishi and Numa (1970) reported that changes in the activi

ty of acetyl CoA carboxylase from rat liver were due to changing 

quantities of carboxylase protein under varying dietary and hormonal 

conditions. These responses in enzyme content were also demonstrated 

by Volpe and Marasa (1975) in C6 glial cells grown in culture by 

varying the lipid content of the media, and in isolated liver cells 

from rat (Lakshmanan et al. 1975). Other reports indicate that these 

enzymes respond to dietary and hormonal influences, and that these 
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responses may vary between organs with the activity of the brain 

enzymes being relatively unaffected (Yolpe and Kishimoto, 1972; Gross 

et al. 1975; Volpe and Vagelos, 1974}. 

The regulation of fatty acid synthesis has recently been re

viewed by Volpe and Vagelos (1976}. They indicate that control of 

acetyl CoA carboxylase while undergoing both short and long term 

control may be the rate limiting enzyme in short term control of 

fatty acid synthesis. Alternatively, they suggest that fatty acid 

synthetase is responsible for long term control. 

The major product of the reaction sequence described above is 

palmitic acid (16:0) with lesser amounts of stearic acid (18:0) and 

myristic acid (14:0) being formed. The longer chain polyunsaturated 

fatty acids which are major components of tissue lipids are the re

sult of the ~longation and desaturation of fatty acids which are 

formed de ~ or are derived from dietary sources. Amongst those 

derived from dietary sources are the essential fatty acids linoleic, 

linolenic, and arachidonic. 

Fatty acid elongation had been initially described in rat liver 

mitochondria (Wakil et al. 1960; Harlan and Wakil, 1962) and micro

somes (Lorch et al. 1963). The reaction sequence involves a reversal 

of the three steps of B-oxidation with the last step, the reduction 

of the a,B-unsaturated acyl-CoA carried out by a new enzyme, enoyl 

CoA reductase (Seubert and Podack, 1973). The enzymes catalyzing 

the first three steps, if not those for B-oxidation, are equivalent. 

~Unlike de novo fatty acid synthesis where the acyl chain is bound 
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to the fatty acid synthetase complex, the form of the substrate for 

elongation is the acyl-CoA. The cycle adds a two carbon fragment to 

the existing acyl-CoA. 

The enoyl-CoA reductase of microsomes and mitochondria from rat 

liver were separated and characterized by Podack and Seubart (1972). 

The enzymes showed different chain length specificities. The micro

somal enoyl-CoA reductase showed maximal activity with hexenoyl-CoA 

as the substrate while the enzyme from mitochondria was more active 

with decenoyl-CoA. It appears that the microsomal chain elongation 

system shows a preference for unsaturated long-chain fatty acids 

which are present under physiological conditions (Seubert and Podack, 

1973; Podack, 1971). Their results indicate that acyl carbon chains 

greater than c
6 

are inhibitory. The physiological significance of 

this is that the polyunsaturated fatty acids such as linoleic, lino

lenic, and in particular -linolenic (18:3n-6) with their chains 

"kinked" by the cis double bonds can approximate the structure of 

hexenoyl-CoA from the carboxyl end to the first double bond. This 

suggests that these fatty acids would be preferentially elongated 

by this system. This is an important physiological result. It 

appears that the microsomal chain elongation system is involved in 

biosynthetic reactions to form long-chain polyunsaturated fatty acids. 

The mitochondrial system seems to play an altogether different 

role. Hinsch and Seubert (1975} demonstrated that both NADPH and 

NADH were required for optimal mitochondrial chain elongation activity 

in rat liver and pig-kidney cortex. Decenoyl-CoA (rat liver) or 
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octanoyl-CoA (pig-kidney cortex) showed optimal rates of elongation 

while the rates for palmityl-CoA or stearyl-CoA were greatly depressed. 

In addition, the CoA derivatives of linoleic and linolenic acids 

showed minimal activity. Thus the authors concluded that chain 

elongation of the polyunsaturated fatty acids is not a physiological 

function of the mitochondrial elongation system. They attributed 

experimental discrepancies in previous work to either contamination 

of mitochondrial fractions with microsomes or to the use of NADH as 

a hydrogen atom donor and the subsequent extraction of the 3-hydroxy 

fatty acid intermediate which accumulates when NADPH is not employed 

in the medium (Wakil, 1961; Barron, 1966; Quagliarello et al. 1968; 

Colli et al. 1969; Boone and Wakil, 1970; Mooney and Barron, 1970). 

Several functions have been postulated for the mitochondrial 

chain elongation system (Whereat, 1971; Hinsch and Seubert, 1975; 

Seubert and ~odack, 1973). In rat heart mitochondria conditions 

+ which caused an increase in the ratio of NADH/NAD such as cytochrome 

chain inhibition or hypoxia caused increased synthesis of fatty acids, 

and in the process released NAD+ which was available to generate ATP 

through substrate level phosphorylation. In this way the potential 

energy from substrate oxidation is retained in the fatty acids which 

can later be utilized. In addition, this system provides a means to 

shuttle reducing equivalents from the cell cytoplasm into the mito-

chondria. The NADH formed in the cytoplasm can be shuttled into the 

mitochondria via fatty acid synthesis at the outer mitochondrial 

membrane followed by transfer of the fatty acid into the mitochondria 

where the fatty acid can subsequently be oxidized to acetate and 
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NADH. The heart elongation system is unique in that it requires 

solely NADH as the pyridine nucleotide cofactor. In rat liver both 

NADH and NADPH are required for optimal activity. In the liver high 

ratios of NADH/NAD+ are not stimulatory indicating a different con-

trol mechanism may be at work. The system in liver could serve to 

transfer reducing equivalents from NADPH to the respiratory chain. 

+ The NADP could then be utilized in the oxidative deamination of 

glutamate which, in the liver, is NADP+ dependent. The a-keto gluta-

rate thus produced is then available for transamination reactions to 

facilitate the flow of carbon atoms from amino acids to glucose 

(Tager and Papa, 1965). 

The elongation systems of brain microsomes and mitochondria 

have been characterized by Aeberhard and Menkes (1968). They reported 

that malonyl-GoA was the donor of 2-carbon units in microsomes while 

either malonyl-GoA or acetyl-GoA could be utilized by mitochondria. 

The microsomal elongation system showed no preference for NADPH or 

NADH as a source of reducing equivalents, but NADH was preferred in 

the mitochondrial system. ATP was required for both. The microsomal 

system incorporated radioactivity into 18:0 (33%) and into 22:4 + 

22:6 (60%). The percentages indicated are percentages of total 

radioactivity. The mitochondrial system synthesized 20:1 (38%), 

18:0 (18%), and 22:4 + 22:6 (about 20%). The maximal activity in 

young rats was at 15-16 days of age, coincident with the period of 

rapid myelination in rat brain (Aeberhard et al. 1969}. The micro-

somal system demonstrated increased production of saturated fatty 



p 

20 

acids at 15-16 days of age while polyunsaturated fatty acid synthesis 

was relatively unchanged. 

Boone and Wakil (1970) showed that rat brain mitochondria could 

elongate behenyl-CoA (22:0) and erucyl-CoA (22:1) to lignoceric acid 

(24:0) and nervonic acid (24:1) respectively. Both of these C-24 

fatty acids are found in high concentrations in the sphingolipids of 

white matter and myelin. Hinsch and Seubert (1975) have suggested 

the mitochondrial preparations of the above authors may have been 

contaminated by microsomes. 

Yatsu and Moss (1971) studied a mitochondrial elongation system 

for fatty acids during development in rat brain. In agreement with 

Aeberhard et al. (1969) they found maximal incorporation of acetate 

at 15 days of age into the 22:4 fatty acid. They also found a three-

fold increase in 20:1 which the other authors didn't find. They 

suggested that the 20:1 could be a precursor of nervonic acid. 

Fatty acid chain elongation has also been demonstrated using 

[l-14c] Malonyl-CoA in the synaptosomes isolated from brain (Koeppen 

et al. 1973). Docosatetraenoic acid (22:4n-6) contained the most 

radioactivity. The fatty acid label appeared primarily in the cho-

line phosphoglycerides. About 80% of the radioactivity was found 

associated with the intraterminal mitochondrial fraction while 20% 

was in the synaptosomal membrane. Synaptic vesicles weren't labeled. 

To further complicate the picture, it has been suggested that 

multiple elongation systems exist in the microsomal fraction of brain 

(Goldberg et al. 1973) and liver (Sprecher, 1974). --
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In addition to chain elongation reactions, fatty acids also 

undergo desaturation reactions to form double bonds in the carbon 

chain. The oxidative desaturation of fatty acids has been reviewed 

by Brenner (1974). 

Stritmayer et al. (1974) have reported the purification and 

properties of the stearyl desaturase from rat liver (a ~ 9 desaturase: 

18:0 ~9-18:1). (~indicates the position of the first double bond 

numbering from the carboxyl end of the fatty acid molecule). It is 

a single polypeptide, 53,000 daltons, containing 62% non-polar amino 

acid residues, and one atom of non-heme iron. Desaturase activity 

requires NADH although NADPH can be employed, molecular oxygen, stearyl-

CoA, lipid, cytochrome b5 reductase (EC 1.6.2.2; NADH:ferricytochrome 

b5 oxidoreductase), cytochrome b5 , and desaturase. The cytochrome b
5 

is the direct electron donor to the desaturase which uses iron in the 

oxidation-reduction process. Jones et al. (1969) first demonstrated 

the lipid requirement for the desaturation of stearyl-CoA by hen 

liver microsomes. Oshino and Sato (1972) demonstrated the desaturase 

activity of rat liver could be modified by diet. Brenner and Peluffo 

(1969) have demonstrated that the desaturation of linoleic acid to 

y~linolenic acid is dependent on molecular oxygen and is inhibited by 

cyanide. It was concluded that a similar electron transport chain 

functions with the different desaturases (Brenner, 1974). Recently, 

Catala et al. (1975) separated a protein factor which could be ex-

tracted from microsomes by low ionic strength solutions. This factor 

was needed for full activity of both the 69 desaturase and the ~ 6 
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desaturase of their system. It, in itself, had no desaturase activity •. 

The ~9 desaturase activity was initially described in rat liver 

homogenate and microsomes by Marsh and James (1962). This work was 

corroborated by Holloway et al. (1963) who also described the con

version of palmitic acid to plamitoleic acid (16:0~~9-16:1). In 

addition they reported a ~6 desaturase activity (~9-18:1~~6,9-18:2). 

They also reported their preparations would not convert oleic acid 

to linoleic acid (~9-18:1~~9,12-18:2). This inability of mammalian 

systems to desaturate fatty acids_beyond the ~9 carbon is the reason 

why linoleic, linolenic, and arachidonic acids must be supplied in 

the diet. 

A number of factors are involved in regulating_the ~9 desatu

rase. The activity of the enzyme is depressed by starvation (Elovson, 

1965; DeTomas et al. 1975). Refeeding of a control diet stimulates 

~9 desaturase activity to about three times that of control, while 

refeeding a high carbohydrate diet stimulates desaturase activity 

about five times that of control. The animals in this study were 

fasted 48 hours and then refed the various diets for a period of 24 

hours. This effect of refeeding has been observed by others (Oshino 

and Sato, 1972; Inkpen et al. 1969). Refeeding a high protein diet 

to rats which had been starved for 48 hours brought the ~9 desaturase 

activity back to control values (DeTomas et al. 1975). Mercuri et 

al. (1974) reported that dietary fructose, glycerol, or saturated 

fatty acids (16:0 and 18:0) stimulated the ~9 desaturase activity. 

They suggest this stimulation is due to adaptive synthesis of the ~9 
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desaturase effected by the exogenous fatty acids or the endogenous 

fatty acids formed de ~· It was observed that the three test diets 

3 stimulated incorporation of H-acetate into fatty acids. Glucose has 

also been reported to stimulate the ~9 desaturase activity converting 

stearic acid to oleic acid (Brenner, 1974). A stimulation of activity 

five times above control values were observed in rats that had been 

starved 48 hours and then refed a high glucose diet (Inkpen et al. 

1969). Rats fed a fat-free diet have 2.5 times greater desaturase 

activity than rats fed a control diet (Paulsrud et al. 1970). 

The ~9 desaturase activity was also found to be depressed in 

alloxan-diabetic rats (Gellhorn and Benjamin, 1964; DeTomas et al. 

1973). It was reported that the difficulty was corrected by insulin 

administration. 

Studies have been reported on the inhibition of ~9 desaturation 

by other fatty acyl-CoA molecules. Brenner and Peluffo (1966) re-

ported that the ~9 desaturation of stearyl-CoA or of palmityl-CoA was 

unaffected by other fatty acids, including 20:4n-6 and 18:2n-6. In 

contrast to this, Ullman and Sprecher (1971) demonstrated that 18:2n-6, 

20:3n-6, and 20:4n-6 all inhibited the desaturation of stearic acid. 

They suggested that the discrepancy in the results could be explained 

by the level of substrate used by Brenner and Peluffo being less than 

required for maximal conversion by their system. 

The ~9 desaturations of stearyl-CoA and palmityl-CoA have been 

described in brain slices (~eng and Debuch, 1975), homogenate (Cook 

and Spence, 1973a; b; 1974) and brain microsomes (Pullarkat and Reha, 

1975). The brain and liver enzymes showed developmental differences 
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Cook and Spence, 1973b). The desaturase activity of 10 day old brain 

from rat was greater than that in liver. Brain desaturase activity 

was maximal during fetal life declining after birth to about 10% of 

the maximal values in the adult. In contrast, the liver enzyme 

activity was low during fetal life and the suckling period, but it 

increased dramatically at weaning. This pattern is similar to that 

found for fatty acid synthetase by Volpe and Kishimoto (1972). 

Stearyl-CoA desaturase from rat brain microsomes was studied 

by Pullarkat and Reha (1975). The specific activity of the enzyme 

decreased to one third of its value at 8 days by 60 days, but the 

total activity per brain remained constant. The regional distribu

tion pattern showed activity was in the order midbrain)medulla ob

longata)cerebral hemispheres)cerebellum with the midbrain activity 

being about twice that in the cerebellum. The same developmental 

patterns in brain and liver were also observed by Seng and Debuch 

(1975). 

Cook and Spence (1973b) reported that rats fasted for sixty 

hours had virtually no 69 desaturase activity in the liver homogenate 

of the adult rat, while in ten day old rats it was markedly decreased. 

Sixty hours of fasting only slightly decreased the 69 desaturase 

activity of rat brain homogenate from 10 day old rat and adult. Re

feeding the control diet for 48 hours stimulated desaturase activity 

particularly in the livers of adult animals. Results for brain from 

10 day old and adult rat, and for liver of the 10 day old rat were 

varied. High concentrations of fatty acid were found to be inhibi

tory (Cook and Spence, 1973a). 
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In addition to the ~9 desaturase, there is also a ~6 desaturase 

which introduces a double bond between carbons 6 and 7 of the fatty 

acyl-CoA chain. This is the first metabolic step for the conversion 

of oleic, linoleic, and linolenic acids to their longer chain poly

unsaturated metabolic products. Evidence has been presented which 

suggests the ~9 and ~6 desaturases are different enzymes (Brenner 

and Peluffo, 1966; Inkpen et al. 1969). This notion evolved from the 

observations that the desaturase activity of the two positions re

sponded in different ways to different dietary challenges. The ~6 

desaturase is considered the principal regulatory step in the bio

synthesis of long chain polyunsaturated fatty acids in rat liver 

microsomes (Brenner, 1974). 

A number of interactions between fatty acids have been reported. 

Brenner and Peluffo (1966) reported that saturated fatty acids 16:0 

and 18:0 had'no effect on the desaturase, while oleic, linoleic, and 

linolenic acids showed competitive inhibition, the order of inhibition 

being linolenic acid)linoleic acid)oleic acid. Additionally, the 

percent conversion of substrate to product increased with increasing 

unsaturation. Brenner (1971) demonstrated that elaidic acid (trans 

~9-18:1) and all trans linoleic acid weren't desaturated by this 

system. 

The conversion of linoleic acid to y-linolenic acid was stimu

lated by arachidonic acid (Nervi et al. 1968). The authors hypothe

sized that arachidonic acid competes with linoleic acid for esterifi

cation into lipids hence freeing more linoleyl-CoA for the desatura

tion reaction. They suggested this to be a possible means of regula-
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tion. A later report from the same laboratory (~renner et al. 1969) 

indicated that arachidonyl-CoA competitively inhibits the desatura-

tion of linoleyl-CoA to y-linolenyl-CoA. They also showed that the 

desaturation was also inhibited by a-linolenyl-CoA (18:3n-3) and by 

the product, Y-linolenyl-CoA. It thus appears that product inhibi-

tion may play a role in regulation of the desaturase. 

The desaturated product of Y-linolenyl-CoA, 8,11,14-eicosatrie-

noic acid (20:3n-6) also inhibits the desaturation of linoleic acid 

(Brenner, 1969). He also reported that increasing the substrate 

concentration also inhibited the desaturation. The end product of 

linolenic acid metabolism, 4,7,10,13,16,19-docosahexaenoic acid 

(22:6n-3) has been shown to inhibit the desaturation of linoleic 

acid to y-linolenic acid and of a-linolenic acid to ~6,9,12,15-

octadecatetraenoic acid (18:4n-3)(Brenner and Peluffo, 1967). Thus 

the possibility of a negative feedback mechanism for the regulation 

of the desaturase exists. Actis et al. (1970) demonstrated the inhi-

bition of linoleic acid and a-linolenic acid desaturation by ~4,7,10, 

13,16-docosapentaenoic acid (22:5n-6) and ~7,10,13,16,19-docosahexa-

enoic acid (22:6n-3). Both desaturation reactions were inhibited by 

22:5n-6 and 22:6n-3, but the 22:6n-3 inhibited the desaturation of 

a-linolenic acid to a greater extent that did the 22:5n-6. 

Brenner and Peluffo (1969) studied the effect of 18 carbon 

fatty acids on the desaturation of linoleic acid to y-linolenic. 

They found that all cis-linoleic acid, all trans-linoleic acid, Y-

linolenic acid, a-linolenic acid, oleic acid, petroselinic acid 
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(cis ~6-octadecenoic acid), vaccenic ac~d (~is All-octadecenoic acid), 

and elaidic acid (trans ~9-octadecenoic acid} all were inhibitory. 

To summarize then, possible mechanisms for the short term con-

trol of the ~6 desaturase activity have been proposed. They are 

substrate and product inhibition, inhibition by intermediates in the 

metabolic pathway of polyunsaturated fatty acids, feedback inhibition 

by the end products of metabolism, and competition between the de-

saturation reaction and the transacylation of fatty acids into glycero-

lipids. In addition, long term regulation of the desaturase may be 

regulated via dietary control and hormonal influences (Brenner, 1974). 

A ~5 desaturase has been described in the microsomal fraction 

from rat liver (Brenner, 1969; Peluffo et al. 1970). The percent 

conversion of substrate 8,11,14-eicosatrienoic acid (~5 desaturation) 

to product was greater than that for linoleic acid by the A6 desatu-

rase. Inhibition studies by Ullman and Sprecher (1971) suggest the 

possibility that the ~5 desaturase is different from the ~6 desatu-

rase. This possibility was also suggested by the data of Castuma et 

al. (1972). 

The ~4 desaturase for fatty acids of 22 carbons appears to 

function since radioactive 22:5n-6 can be isolated after in vivo 

injection of (14c) linoleate into testicles of rats. However, the 

direct conversion of 22:4n-6----~>~22:5n-6 was not observed in vitro 

in desaturating microsomal systems from liver and testicles of rat 

(Ayala et al. 1973). 

The initial elongation of linoleic, linolenic, or oleic acid 

and the subsequent desaturation would require the presence of a ~8 
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desaturase. This enzyme is absent from liver (Sprecher and Lee, 

1975) and brain (Dhopeshwarkar and Subramanian, 1976a;b), and hence 

these alternate pathways are not operational. A general scheme for 

the elongation and desaturation of fatty acids is presented in Fig 1. 

PHOSPHOLIPID METABOLISM: 

The major brain phospholipids (including their plasmalogen 

forms) are phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

and phosphatidylserine (PS), with lesser amounts of phosphatidyl

inositol (PE), sphingomyelin, and small amounts of lysophosphatides, 

phosphatidic acid, cardiolipin, and the di- and tri-phosphoinositides. 

Phosphatidic acid (1,2-diacyl-sn-glycero 3-phosphate), a key 

intermediate in phospholipid biosynthesis can arise in situ in a 

number of ways. There is the two step acylation of sn-glycero 3-

phosphate (Husbands and Lands, 1970; Martensson and Kanfer, 1968). 

A glycerol kinase and dihydroxyacetone kinase activity has recently 

been reported in the brain (Jenkins and Hajra, 1976). Lapetina and 

Hawthorne (1971) have reported a diglyceride kinase activity in 

brain. Monoglycerides have been shown to be phosphorylated to lyso

phosphatidic acid (Pieringer and Hokin, 1962a), and the lysophospha

tidic acid subsequently acylated to phosphatidic acid (Pieringer and 

Hokin, 1962b; Webster, 1965). 

It has been suggested that dihydroxyacetone phosphate (DHAP) 

can be converted to phosphatidic acid (Agranoff and Hajra, 1971). 

Hajra and Agranoff (1968) reported the enzymatic reduction of acyl 

DHAP by guinea pig mitochondria utilizing NADPH as a cofactor. These 
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Linolenic Acid Series (n-3) 

~6 des + Mal CoA ~5 des +Mal CoA 
18:3 > 18:4 ---~> 20:4 > 20:5 
69,12,15 66,9,12,15 68265,8,11,14,17 

22:5 22:6 
7,10,13,17,19 ~4,7,10,13,16,19 

t 
22:4 
~10,13,16,19 

"' 20:3-----~22:3 
~11,14,17 ~13,16,19 

FIG. 1: J1etabo1ic Pathways for the (n-31, (n-6), 
and (n-9} Fatty Acid Families. 
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results were disputed by Okuyama and Lands (1970). It was shown 

later (Manning and Brindley, 1972) that a tritium (3H) isotope effect 

was responsible for the results of Okuyama and Lands (1970). Manning 

and Brindley (1972) estimated that as much as 50% of the glycerolipid 

backbone arises via DHAP. Recently Pollack et al. (1975) demonstrated 

that the DHAP pathway was active in addition to the acylation of 

glycero 3-phosphate in cultured fibroblasts. 

The acylation reactions involved in the formation of phospha

tidic acid have been investigated. Particular attention has been 

paid to their specificity since tissue glycerolipids display an 

asymetrical distribution of their fatty acyl groups. 

The work of Yamashita and Numa (1972) and Yamashita et al. 

(1972) demonstrate that there are two different enzymatic acylating 

activities in rat liver microsomes. One catalyzes the formation of 

1-acyl-sn-glycero 3-phosphate from sn-glycero 3-phosphate and palmi

tyl-CoA while the second enzyme catalyzes the formation of phospa

tidic acid. Specificities for either enzyme weren't clearly shown. 

This lack of specificity was also reported by Sanchez de Jiminez and 

Cleland (1969), Tarnai and Lands (1974), and Okuyama and Lands (1972). 

Furthermore, no preference for saturated acyl-CoA was shown in the 

acylation of 2-acyl-sn-glycero 3-phosphate which occurs at 1/10 to 

1/5 the rate of the acylation of the 1-acyl isomer (Okuyama et al. 

(1971). Yamashita et al. (1973) did report a specificity for mono 

and dienoic fatty acyl-CoA by the 1-acyl glycerophosphate acyltrans

ferase and for saturated fatty acyl-CoA by the 2-acyl glycerophosphate 

acyltransferase in rat liver microsomes. This result supported the 



conclusions of Possmayer et al. (J969). 

A mitochondrial acylation system was described for which 1-

palmityl-sn-glycero 3-phosphate was the major product Daae (1972). 

Monroy et al. (1972) described an acyl transferase system from the 

outer mitochondrial membrane of rat liver whose products were mono 
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and diacyl glycerophosphate. Palmitic acid was found esterified 

exclusively to the one position whereas linoleyl-CoA competed effec-

tively with palmityl-CoA in the acylation of 1-palmityl-sn-glycero 

3-phosphate. Monroy et al. (1973) reported the partial purification 

of a substrate and position specific acyl-CoA: sn-glycero 3-phosphate 

acyltransferase from rat liver mitochondria. All the sn-glycero 3-

phosphate acylated in the presence of palmityl-CoA was identified as 

the 1-acyl isomer. 

Intact tissue studies demonstrated a fair degree of selectivity 

for the transferase reaction. In contrast to the relatively unspecific 

acylations in their rat liver microsomal preparations, Hill et al. 

(1968) reported that rat liver slices showed a high degree of speci

ficity. Over 75% of the phosphatidic acid produced was of the monoene 

and diene type with saturated fatty acids at position one and the un

saturated fatty acids at position two. Akesson et al. (1970a) demon

strated that after (3H) glycerol was injected intraportally, most of 

the radioactivity was present in the saturated-monoene and saturated-

diene fractions. Additionally, after the intraportal injection of 

(9,10-3H2) palmitic acid (Akesson et al. 1970b) or of (1-14
c) linoleic 

acid (Akesson, 1970) the palmitic acid radioactivity was found almost 
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exclusively at the one position while linoleic acid radioactivity was 

found almost exclusively at the two position. Baker and Thompson 

(1972) demonstrated selectivity in the incorporation of fatty acids 

into phosphatidic acid in the brain. In general, saturates were 

incorporated into position one, arachidonic acid into position two, 

and oleic and linoleic were about ·equally divided between the two 

positions. It appears possible that some control mechanism present 

in intact tissue is made inoperable in cell free preparations. Cyti

dine nucleotides have been suggested to play a regulatory role 

(Possmayer and Mudd, 1971; Possmayer et al. (1973). 

Phosphatidic acid can be hydrolyzed by phosphatidate phospho

hydrolase (~C 3.1.3.4) to sn-1,2-diacylglycerol and inorganic phos

phate. Phosphatidic acid and the 1,2-diacylglycerol are precursors 

for triglyceride and glycerophosphatide biosynthesis. The enzyme 

has been studied in brain (McCaman et al. (1965). It appears there 

is no selectivity toward the acyl groups by the hydrolase (Akesson 

~ al. 1970; Hill et al. 1968). 

The resultant 1,2-diglyceride can react with cytidine diphospho 

(CDP) choline or CDP-ethanolamine to form the major phospholipids. 

Studies on the CDP-choline: 1,2-diglyceride choline phosphotrans

ferase (EC 2.7.8.2) by McCaman and Cook (1966) and the CDP-ethanola

mine: 1,2-diglyceride ethanolaminephosphotransferase (EC 2.7.8.1) by 

Ansell and Metcalfe (1971) have been reported. In vitro studies 

with rat liver microsomes indicate there is no specificity for the 

enzyme with regards to the fatty acyl portion of the 1,2-diglyceride 
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(DeKruyf et al. 1970; Mudd et al. 1969), except possibly for the 

ethanolamine phosphotransferase which shows a slight preference for 

hexaenoic species of diglyceride (Ranoh, 1970). In vivo studies 

indicate that specificity for the fatty acids of the diglyceride could 

be exerted at the level of the phosphotransferase reaction (Sundler, 

1973; Holub and Kuksis, 1971; Arvidson, 1968). 

The biosynthesis of phosphatidylserine in animal tissues appears 

to occur via a Ca++ stimulated, energy independent base exchange pro-

cess only (Porcellati et al. 1971}. By this process serine, choline, 

and ethanolamine may be incorporated into phospholipids by exchange 

of the base portion of the molecule. There is no net synthesis of 

phospholipid by this process. The system has been reported to be 

active in brain, particularly in the microsomal fraction (Porcellati 

et al. 1971; Kanfer, 1972; Gaiti et al. 1974). The solubilization 

and properties of an enzyme from rat brain catalyzing the base ex-

change reaction was reported by Saito and Kanfer (1973). They re-

ported that ethanolamine phosphoglycerides when added to the incuba-

tion medium were more stimulatory than either serine or choline phos-

phoglycerides. Dioleyoyl EPG was more stimulatory than the distearoyl 

species. This effect was also seen in the liver. The incorporation 

of choline into phosphatidylcholine subspecies (Bjerve, 1971) and 

ethanolamine into phosphatidylethanolamine subspecies (Bjerve, 1973) 

was greater for unsaturated species, in particular, the hexaenoic 

subspecies. Studies in the liver concluded that the base exchange 

reaction was relatively unimportant for the synthesis of phosphatidyl-
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choline or phosphatidylethanolamine (Nagley and Hallinan, 1968; 

Salerno and Beeler, 1973). Bjerve (1973) estimated that the comple

ment of phosphatidylserine in the liver could in total be accounted 

for by the base exchange reaction. 

The inositol phosphoglycerides are formed via a CDP-diglyceride 

intermediate which then reacts with inositol (Possmayer and Strick

land, 1967; Benjamins and Agranoff, 1969; Bishop and Strickland, 1970). 

It was observed that the CDP-diglycerides with unsaturated fatty 

acids were preferred in the transferase reaction. It might be men

tioned in passing that the majority of the phosphatidylinositol mole

cules have stearic acid esterified in the one position and arachidonic 

acid esterified in the two position. 

Plasmalogens, primarily the ethanolamine and serine species, 

are found in the brain with particular enrichment in the myelin frac

tions (O'Brien and Sampson, 1965; Sun and Horrocks, 1968). Struc

turally they differ from other phospholipids in that they have an 

alkenyl ether linkage at the one position. On acid hydrolysis the 

ether link is broken and the aldehyde is released. The fatty alde

hydes of the ethanolamine and serine plasmalogens are primarily the 

16 carbon and the 18 carbon saturated or monounsaturated species. 

The metabolism of plasmalogens has been extensively reviewed by 

Horrocks (1972). 

The enzymatic synthesis of sphingomyelin from CDP-choline and 

N-acylsphingosine was demonstrated by Sribney and Kennedy (1958). 

Sphingolipid metabolism has been thoroughly reviewed (Morell and 
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Brown, 1972; Stoffell, 1973). Sphingomyelin contains primarily satu

rated and monounsaturated fatty acids with a considerable amount of 

the a-hydroxy fatty acids. This fraction contains a very small 

amount of the polyunsaturated fatty acids. 

The fatty acyl portions of intact phospholipid molecules can be 

tailored by deacylation-reacylation cycles. The enzymatic acylation 

of lysolecithin was first demonstrated by Lands (1960). Esterifica

tion of saturated fatty acids at the one position and unsaturated 

fatty acids at the two position was preferred for the acylation of 

both acyl glycerophosphorylcholine (Lands and Merkl, 1963) and acyl 

glycerophosphorylethanolamine (Merkl and Lands, 1963). Experiments 

conducted with cis and trans isomers indicated that acyl transfer 

to the one position is sensitive to configurational differences while 

acyl transfe! to the two position is not, but instead prefers ~ bonds 

at positions ~9, ~12, and ~5 (Okuyama et al. 1972). 

It was reported that stearate and arachidonate were incorporated 

into phosphatidylcholine of liver in vivo (Elovson, 1965) and in 

vitro (Van Golde et al. 1969) via acylation of endogenous lysolecithins, 

while 1-palmityl-2-oleyoyl and 1-palmityl-2-linoleyl-phosphatidyl

cholines were synthesized via the CDP-choline pathway in vivo (Arvid

son, 1968; Trewhella and Collins, 1969). Yamashita et al. (1973) 

reported that their partially purified 1-acylglycerophosphorylcholine 

acyltransferase is highly specific for arachidonyl-CoA. 

Hexaenoic species of phosphatidyl choline appear to arise from 

the N-methylation of hexaenoic species of phosphatidyl ethanolamine 
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(Rytter et al. 1968; Arvidson, 1968). Lyman et al. (1975) reported 

that the relative affinities for the incorporation of labeled methyl 

groups into phosphatidylcholine subspecies was of the order 22:6 > 

20:4>18:2. This N-methylation reaction is thought not to occur in 

brain (Ansell and Spanner, 1971) though recently limited activity has 

been reported (Morganstern and Abdel-Latif, 1974). 

In contrast to phosphatidylcholine, the hexaenoic species of 

phosphatidylethanolamine are formed via de ~ synthesis utilyzing 

CDP-ethanolamine (Kanoh et al. 1969: Arvidson, 1968; Akesson et al. 

1970b; Vereyken et al. 1972), while the acylation-deacylation cycle 

is responsible for forming the arachidonic acid containing species 

of PE (Van Golde et al. 1969; Kanoh, 1969; Vereyken, 1969; De Tomas 

and Brenner, 1970). Baker and Thompson (1972) suggest that in brain, 

arachidonic acid appeared to be esterified via acyltransferase reac

tions while stearate was incorporated probably by both acyltransferase 

and de ~ synthesis. 

ISOLATED CELLS: In the past ten years a number of methods have been 

published for the bulk isolation of brain cells (Satake and Abe, 

1966; Rose, 1967; Blomstrand and Hamberger, 1969; Fewster et al. 

1967; Sellinger et al. 1971; Norton and Poduslo, 1970; Poduslo and 

Norton, 1972). The morphology of the isolated cells obtained from 

the method of Norton and Poduslo (1970) and Poduslo and Norton (1972) 

has been described (Raine et al. 1971; Trapp et al. 1975) though 

extensive morphological investigation has been hindered due to the 

fragile nature of the cells following the isolation procedures. 
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Metabolic studies have been carried out on these cells both 

in vitro and in vivo. Protein synthesis appears to be more active 

in the neuronal fraction than in the glia (Blomstrand and Hamberger, 

1969; 1970; Rose, 1968; Rose and Sinha, 1974; Blomstrand et al. 1975). 

As might be expected, RNA metabolism was reported to be more active 

in the neuronal fraction compared to glia (Flangas and Bowman, 1970; 

Jarlstedt and Hamberger, 1971; and Yanagihara, 1974). 

Lipid metabolism has also been investigated in vitro and in 

vivo. Sterol formation from mevalonate, acetate, and glucose in 11 

day old rats was greater in the glial fraction than the neurons 

(Jones et al. 1971; 1975). The synthesis of monogalactosyl diglyce-

ride was greater in the oligodendroglia compared to the neuronal soma 

and astroglia (Deshmukh, 1974). Kohlschutter and Hershkowitz (1973) 

reported that sulfatide synthesis measured by the incorporation of 

35so
4 

in neurons isolated from the brains of "jimpy" mice was only 

14% of control values in vivo and 24% of controls in vitro. Benja-

mins et al. (1974) reported that cerebroside sulfotransferase activity 

was enriched in white matter and in the oligodendroglial fraction 

from calf brain compared to the grey matter and neuronal fraction. 

The incorporation of (3-14
c) serine into gangliosides was greater 

in the neuronal fraction of 11 day old rat than in the glia (Jones 

et al. 1972). The base exchange reaction has been reported active 

in the isolated cells (Raghavan et al. 1972; Goracci et al. 1973). 

Fatty acid incorporation into the isolated cells has been investi-

gated (Cohen, PhD thesis, Loyola University of Chicago, Ill.). The 
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synthesis of phosphatidylethanolamine and ethanolamine plasmalogen 

has been studied in vitro and in vivo (Goracci et al. 1975; Binaglia 

~ al. 1974; Roberti et al. 1975). It appears the neurons are more 

active than the glia. 32 Freysz et al. (1969) using P reported that 

the rate of turnover of neuronal phospholipids was greater than that 

of glial phospholipids. The order of individual phosphatides was 

PI>PC, PE, PS. 

Interpretation of results must be undertaken with some caution. 

For in vitro metabolic studies, the cells are traumatized consider-

ably during the isolation procedure, and sometimes are exposed to 

proteolytic enzymes which could effect their activity (Cohen and 

Bernsohn, 1974; Guarnieri et al. 1976). 
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MATER~LS AND XETHODS 

Animals: Sprague-Dawley rats of either sex were purchased from 

Locke-Erikson Laboratories (Melrose Park, Ill.). For experiments in

volving rats on essential fatty acid deficient diets, timed pregnant 

female rats were purchased, and were maintained on "Fat Free" Test 

Diet (ICN Nutritional Biochemicals, Cleveland, Ohio) from the lOth 

day of pregnancy. The composition of this diet which was formulated 

per Wooley and Sebrell (1945) is given in Fig. 2. Only pups from 

litters of 9-11 animals were used. In studies involving rats on the 

fat free regimem, pups were taken from the dams at 21 days of age for 

injection, and were then returned to metabolic cages where they were 

given the fat free diet and water ad libitum until the time of sacri

fice. All other animals were maintained on a standard laboratory 

rat chow diet. For whole brain studies, at least four rats were in

jected for each determination. For studies involving subcellular 

fractions 3 brains were pooled for each determination. The number 

of determinations to obtain the final values are given in the approp

riate tables. 

Preparation of tracer and injection: Linolenic acid (l-14
c) 

(specific activity 60 mCi/mmol) was purchased from Amersham Searle 

(Arlington Heights, Ill.). Purity was assessed at close to 100% by 

gas liquid chromatography. Linolenic acid was prepared as the potas

sium salt, and was suspended in a 10% solution of bovine serum albumin 
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COMPOSITION 

"Vitamin Free" Casein 

Alphacel "Cellulose" 

Sucrose 

Salt Mixture U.S.P. XIV 

Plus the following Vitamin Supplements: 

21.10% 

16.45% 

58.45% 

4.00% 

Grams per 100 lbs. 

Choline Chloride 

Nicotinic Acid 

Inositol 

Vitamin A Concentrate 

(200,000 units per gram) 

Vitamin D Concentrate 

(400,000 units per gram) 

Alpha Tocopherol 

Menadione 

Thiamine Hydrochloride 

Pyridoxine Hydrochloride 

Riboflavin 

Calcium Pantothenate 

Fig. 2 

272.500 

27.250 

13.750 

4.500 

3.000 

10.225 

0.1025 

1.000 

1.000 

1.000 

2.050 

40 
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by sonication. For experiments involving whole brain and isolated 

brain cell fractions, each rat received 0.75~Ci of (l-14
c) linolenate 

in a total volume of 15~1 intracerebrally. For experiments involving 

preparation of subcellular fractions, each rat received l.O~Ci of 

14 (1- C) linolenate in a total volume of 15~1 intracerebrally. Except 

for 14 day old animals, the injections were carried out under light 

ethyl ether anesthesia. Rats up to 28 days of age were injected 

directly through the skull. For 90 day old and 140 day old animals, 

an incision was made in the scalp, and after clearing Nway muscle, 

the bone was partially drilled through with a small dental burr prior 

to injection. After injection the hole was closed with bone wax, 

and the incision was closed with wound clips. This manner of injec

tion distributed c14c) radioactivity over the surface of the brain. 

In some studies there appeared to be a slight gradient of increasing 

radioactivity from front to back. This possibly was the result of 

cerebrospinal fluid flow. Slight variations in the injection site 

did not seem to alter the radioactivity distribution. When the injec-

tion drew a large quantity of blood or if the needle was disturbed 

during injection by head movement the rat was discarded. This was 

a rare occurrence. At selected times after injection the rats were 

sacrificed by decapitation. The forebrain minus the cerebellum was 

rapidly removed, and placed in ice cold saline (0.9%, w/w) for whole 

brain studies, 0.32M-sucrose for preparation of subcellular fractions, 

or Hexose-albumin, phosphate (HAP) buffer for the preparation of 

isolated cells. 
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Preparation of subcellular fractions: Subcellular fractions 

were prepared according to the procedure of Sun and Horrocks (1973), 

as amended by Sun, Winniczek, Go, and Sheng (1975). A brief scheme 

is outlined below: 

Three rat brains were pooled and homogenized in 0.32M-sucrose, pH 7.4 

cell• debris 
(discard) 

pellet 1 
(Save for synaptosome and myelin} 

+ 

1 

crude microsome pellet 
(disperse in water) 

llOS,OOOxg 30 min 

microsome pellet 

800 xg 10 min 

t' 
supernatant 

13,500xg 15 min 

supernatant 

~,OOOxg 60 

+ 
cytosol 
(discard) 

min 
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Pellet 1 

disperse in 0.32M-sucrose and layer 
on 0.8M-sucrose 

40,000xg 30 min 
\lt 
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pellet 

a discontinuous gradient 
of !.2M-sucrose and 0.8M-~

isperse 
ayer on 
omposed 
ucrose 

in 0.32M-sucrose and ~ 

! 40,000xg 30 min 

0.8M/1.2M interface 
rremoved by syringe and dilute~ 
~th ice cold 0.9% NaCl J 

floating layer 

~
smotically shocked in 10-20 J 

volumes of ice cold deionized 
water for lhr to 2hr, and then 

ayered on 0.8M-sucrose 

l 40,000xg 15 min 

nerve endings + mitochondria 
(synaptosomes) 

l 40,000xg 30 min 

layer floating on 0.8M
sucrose 

~iluted with ice cold deionizedl 

lliater l J 
40,000xg 15 min 

purified myelin 

Preparation of isolated brain cell types: All buffers were 

0 prepared fresh the night before the experiment, chilled to 0-4 C, 

and adjusted to pH 6.0 before use. The hexose-albumin-phosphate 

(HAP) buffer consisted of 5% (w/v) glucose, 5% (w/v) fructose, and 

1% bovine serum albumin (Cohn fraction V; Sigma Chemical Co., St. 

Louis, Mo.). The solutions for the density gradients were prepared 

from HAP and 2M-sucrose made up in HAP, mixed in the proper proper-

tions. Trypsin was obtained from ICN Nutritional Biochemicals 

(Cleveland, Ohio)(twice crystallized, salt free, from beef pancreas). 

Nylon bolting cloth (153 mesh) and stainless steel screen (200 mesh) 

were obtained from Tobler, Ernst, and Traber (DesPlaines, Ill.). 
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Calf serum (fetal, lyophilized) was obtained from Calbiochem (La 

Jolla, Calif.). 1.7 grams of powder is used for 50ml water, the pH 

being adjusted to 6.0. Fractions enriched in neuronal and astroglial 

cells were prepared by the method of Norton and Poduslo (1970). Six 

rat brains were minced finely by scalpel, and were incubated for one 

hour at 37°C with shaking in 0.5%(w/v) trypsin made up in HAP. 

Trypsinization presumably acts to disrupt the intercellular matrix 

allowing for more facile tissue disruption during the meshing steps. 

The trypsin solution was filtered prior to use, and was adjusted to 

pH 6.0. After incubation, 0.2 volumes of calf serum is added to the 

mince, and the flask is chilled. The mince is washed twice with HAP 

to remove trypsin, and then it is placed in 0.85M-sucrose for 10 min 

prior to meshing. The tissue is first passed through the nylon 

bolting clot~ which is held in place in a Millipore filter funnel 

(No. XXZ0-047-20). The tissue is prodded through with a glass stir

ring rod, without suction, and with the aid of 0.85M-sucrose. The 

suspension is then passed through the stainless steel screen a number 

of times in order to break up any clumping of tissue. 

The cell suspension is layered over a discontinuous sucrose 

gradient consisting of 2M-, 1.55M-, 1.35M- (5ml each), and 0.9M

(10ml) steps. The tubes are centrifuged at 3300xg for 10 min in a 

SB-110 rotor in an IEC model B-60 ultracentrifuge. The crude myelin 

band floating on the 0.85M-sucrose is removed and saved for determi

nation of the dilution factor (see below). The neuronal band at the 

1.55M/2.0M interface and the crude astroglial fraction at the 0.9M/ 
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!.35M interface are removed. The astroglial fraction is slowly di-

luted at 1/lOth its volume per minute with HAP, and then is relayered 

on a second discontinuous sucrose gradient consisting of 1.45M- and 

0.9M-sucrose steps of 5 m1 each. The tubes are centrifuged at 3300xg 

for 20 min and the purified astroglia band is removed from the 9.9M/ 

1.45M interface. 

Due to the small numbers of oligodendroglia in rat brain, calf 

brain white matter has been employed as a carrier for these cells. 

Oligodendroglia cell soma are prepared by the method of Poduslo and 

Norton (1972). Freshly removed calf brain was obtained at a local 

abattoir, and was transported on ice to the lab. The cell isolation 

usually began within 90 min of death. White matter {40gm) was dis-

sected from the corpus callosum and centrum semiovale and was minced 

finely with a scalpel. Six whole brains minus cerebelli, previously 

injected, were minced in with the calf white matter, except where 

otherwise stated when white matter was first dissected from whole 

rat brain. 0 The mince was incubated for 60 min at 37 C with shaking 

in O.l%(w/v) trypsin made up in HAP, filtered, and adjusted to pH 

6.0. The trypsin was neutralized by adding 0.2 volumes of calf serum 

after incubating, and the flask was chilled. The mince was washed 

twice with HAP to remove trypsin, set in 0.85M-sucrose for 10 min, 

and meshed as described previously, except in this case a slight 

suction was employed. The white matter suspension was layered on a 

discontinuous sucrose gradient consisting of 1.55M (5ml), 1.45M (8ml), 

and 0.9M (5ml) steps, and was centrifuged at 3300xg for 10 min. The 
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mixed rat + calf myelin fraction floating on the 0.8SM-sucrose was 

removed for determination of the dilution factor (see below). The 

mixed rat + calf oligondendroglia fraction was removed from the 1.4SM/ 

!.SSM interface by syringe. 

All the purified cell fractions were diluted slowly with HAP, 

and were pelleted by centrifugation at 630xg in a Sorvall refrige

rated centrifuge. The rat myelin fraction and the mixed rat + calf 

myelin fraction were water shocked in 10-20 volumes of ice cold de

ionized water for at least 30 min. These two fractions were then 

centrifiged at 12,000xg in a SW2S.l rotor in a Beckman Spinco Model 

L ultracentrifuge. 

The dilution factor referred to above is used to calculate the 

specific activity of the rat oligondendroglia. It is applied to the 

mixed rat + calf oligondendroglia to correct the obtained specific 

activity for.the dilution by cold oligodendroglia from the calf white 

matter. Briefly, the dilution factor is determined by the degree of 

dilution of radioactive rat myelin by cold, that is, non radioactive 

calf myelin. 

specific activity rat myelin 
= dilution factor -------------------------------------------------

specific activity mixed rat + calf myelin 

(specific activity of mixed rat + calf oligondendroglia x dilution 

factor = true specific activity of rat oligodendroglia. 

The validity of this factor rests on the assumptions that the dilu

tion of radioactive rat myelin by calf myelin and radioactive rat 

oligodendrocytes by calf oligodendrocytes is the same. We have 
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routinely obtained values between 30 and 40 for the dilution factor. 

Even if the initial assumption were wrong by a factor of 2, the calcu-

lated specific activities of the oligodendroglia would still be con-

siderably greater than that found for the neuronal or astroglial 

fractions. The magnitude is what one would expect of the estimation 

by Norton and Poduslo (1973) that 25% of rat brain is white matter. 

This would yield the following calculation: 

50g calf white matter + 1.25g/rat brain x 6 rat brain + 4.0 

(the proportion of gray matter/white matter in rat brain) = 27. 

Lipid extraction and fractionation: Tissue samples were lyo-

philized and subsequently extracted with CHC1
3

/cH
3

0H (2/l,v/v) (Folch 

et al. 1957). 0.9% NaCl (w/v) was added to bring the aequeous val-

ume to 20%. After the phases separated, the upper phase was removed 

by suction, and the lower phase was washed twice with Folch's thea-

retical upper phase to remove any water soluble contaminants remain-

ing in it. The lower phase was brought to dryness by vacuum distil-

lation. A nitrogen atmosphere was maintained at all times. The 

lipid residue was dissolved in a small volume of CHC13 for silicic 

acid chromatography. 

Silicic acid chromatography was performed as described by 

Rouser et al. (1967). Lipid was applied to the silicic acid column 

(lx5cm) (Bio Rad BioSil A 100-200 mesh), elution was performed by 

the sequential addition of CHC13 150ml, acetone 300ml, CH
3

0H 150ml, 

eluted neutral lipids, and acetone the glycolipids. The methanol 

fraction containing the phosphatides was adjusted to 25ml, and 
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aliquots were taken for determination of radioactivity and phosphorus. 

Suitable aliquots from the neutral lipid fraction and the glycolipid 

fraction were taken for determination of radioactivity. 

Thin layer chromatography: Thin layer chromatography was per-

formed essentially by the method of Skipski et al. (1964). Forty 

grams of Silica Gel H (without Caso4 binder) (Brinkman Instruments, 

DesPlaines, Ill.) were slurried with 95ml lmM-Na2co3 to prepare four 

plates (200mmx200mm). The slurry was spread using a Desaga applica-

tor adjusted for a gel thickness of 600mm. Phospholipid samples in 

CHC13 were streaked with the aid of a 25ul Hamilton syringe. The 

developing solvent system consisted of CHC13/cH30H/CH3COOH/H2o (25/ 

15/5/3, by volume). Lipid bands were detected with iodine vapor, 

identified by comparison with known standards, and the appropriate 

areas were scraped from the plates into 15ml conical glass test tubes. 

Lipid was recovered from the silica gel by elution with 7ml of CHC13/ 

CH
3

0H (1/l,v/v), followed by two elutions with 7ml of methanol. 

Suitable aliquots of the eluate were removed for determination of 

radioactivity and phosphorus. 

' Preparation of fatty acid methyl esters: Methanolysis of the 

phospholipid fraction was performed by the method of Morrison and 

Smith (1964), with BF3-cH33oH (14% w/v) which was purchased from 

Applied Science Laboratories Inc. (State College, Pennsylvania). 

Briefly, the phospholipid fractions were evaporated to dryness under 

a stream of nitrogen, and three ml of the esterifying reagent was 

added, the reaction vessel being glass culture tubes fitted with a 
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Teflon lined screw top. The tubes were placed in boiling water bath 

for 5 min, cooled, and after adding 5ml of hexane, were set in the 

boiling water bath for an additional 5 min. The tubes were again 

cooled, and saturated NaCl solution was added to effect phase separa-

tion. The upper hexane layer was removed and the lower aequeous 

layer was reextracted twice with hexane. The hexane solution con-

taining the fatty acid methyl esters was stored under nitrogen with 

0 a drying agent, anhydrous Na2so4 , added at -20 C until needed. 

Gas liquid chromatography: GLC of the fatty acid methyl esters 

was performed on a Varian Aerograph model 90-P gas chromatograph 

equipped with a thermal conductivity detector. The column packing 

consisted of 10% Hi-Eff lBP (diethylene glycol succinate) by weight 

on Gas-Chrom P (80/100 mesh) (Applied Science Laboratories Inc.). 

Helium (high purity, 99.995%) was employed as the carrier gas. Peaks 

were identified by comparison of retention times with those of known 

standards. The gas chromatograph was equipped with a Packard Tri 

Carb Gas Chromatography fraction collector, model 850 (Packard Instru-

ment Company, LaGrange, Ill.)(Karmen, Giuffrida, and Bowman, 1962). 

The fatty acid methyl esters were collected on glass wool (Pyrex 

brand, fine grade, Corning Glass Works, Corning, New York) which was 

inserted into glass cartridges (Tri-Carb cartridges No. 6001039, 

Packard Instrument Company Inc.) (Bennett and Coon, 1966). Recovery 

of radioactivity applied to the column was essentially 100%. A typi-

cal fatty acid methyl ester tracing is included in the appendix. 
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Determination of radioactivity and phosphorus: Radioactivity 

is expressed as disintegrations per minute (dpm). It was determined 

in a Mark II Liquid Scintillation System model 6847 (Nuclear-Chicago, 

DesPlaines, Ill.). Quench was determined utilizing the external 

standard ratios method with 133Ba as the external gamma source. 

Samples were prepared by evaporating the appropriate aliquots of 

lipid solution to dryness in the scintillation vials, and redissolving 

the lipid material in lSml of scintillation fluid. The scintillation 

fluid contained Packard Permablend II (98% diphenyloxazoyl (PPO) -

2% 1,4-bis-2-(5-phenyloxazoyl)-benzene (POPOP)) in toluene (Sgm/liter). 

Phosphorus was determined by the method of Bartlett (1959). 

This involves digestion of the organic material with H2so4 , the de

velopment of an absorbing molybdate-inorganic Phosphorus complex, 

and spectrophotometric determination of absorbance at 800nm. 



RESULTS 

· Table 1 shows the percent distribution of radioactivity among 

the brain lipid classes. At 5 min, 64% of the lipid radioactivity 

is associated with the neutral lipid fraction while 31% is associated 

with phospholipid fraction in EFA .deprived rats. In the control 

rats, 61% and 34% of the radioactivity is found in these respective 

fractions. Between 5 min and 30 min an inversion occurs. At 30 min 

the neutral lipid fraction contains 24% of the radioactivity compared 

to 72% in the phospholipid fraction of deprived animals. This com

pares with 26% and 69% of radioactivity in the respective fractions 

of controls. At later time points deprived rats attain a maximum of 

92% of radioactivity in their phospholipid fraction while the per

cent of radioactivity in the neutral lipid fraction decreases to 

5.5%. At later time points between 85% and 88% of radioactivity is 

associated with the phospholipid fraction of control rats while 

radioactivity in the neutral lipid fraction decreases to between 7% 

and 10%. The glycolipid fraction from both EFA deprived and control 

rats contains only about 2% to 5% of the lipid radioactivity. In 

general, at all time points, except 5 min, the percent of radioac

tivity in the phospholipid fraction is greater for deprived animals 

compared to controls, while the percent distribution of radioactivity 

in the neutral lipid and glycolipid fractions is less in deprived 

animals compared to controls. 
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Table 1. 

Percent distribution of radioactivity in lipid fractions from whole brain after the 
administration of [l-14c] linolenate to essential fatty acid deprived and control rats. 

Time 

5 min. 

30 min. 

60 min. 

4 hr. 

12 hr. 

24 hr. 

36 hr. 

72 hr. 

-
21 day 
at the 

Percent Distribution ± S.E. 

Neutral liEid GlycoliEid PhosEholiEid 
Control EFA Deprived Control EFA Deprived Control EFA Deprived 

61.0±0.47 64.1±1.15 5.1±0.41 5.2±0.00 33.9±0.83 31.1±0. 74* 

25.5±0.98 24. 4±1. 68 5.3±0.14 3.7±0.18:t: 69.0±0.98 71. 8±1. 84 

22.5±0.47 15.5±0.50:t: 4.6±0.16 3.2±0.40* 72.3±0.79 81. 4±0.45:t: 

13.0±0.80 9.2±0.23t 4.6±0.29 3.1±0.19t 82.4±0.89 87.9±0.5"2t 

8.5±0.57 5.4±0.08t 3.0±0.09 3.0±0.31 88.5±0.57 91.4±0.51 t 

10.6±0.60 5.6±0.12:t 5.2±0.39 2.5±0.07t 84.1±0.92 91. 9±0.15:t 

7.7±0.28 5.4±0.46t 4.5±0.42 2.8±0.35* 88.1±0. 66 91. 8±0. 78t 

10.2±0.93 5.6±0.llt 4.5±0.64 2.1±0.08* 84.9±0.55 92.3±0.19:t 

old rats were injected with 0.75 ~Ci of [l-14c] linolenate intracerebrally and were sacrificed 
indicated times. Each value represents the mean of 3 or 4 determinations. 

The significance of the difference between the means of deprived and control values is shown by: 
*P<0.05, tP<O.Ol, and :t:P<O.OOl. 

V1 
N 

1 
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Table 2 shows the specific activity of whole brain phospholipids 

from EFA deprived and control animals. Maximum incorporation in both 

was at 30 min after injection. ~t 72 hr the specific activity of the 

phospholipids from the deprived animals decreased to 40% of the value 

at 30 min, while for control animals the specific activity decreased 

to 37% of the value at 30 min. The ratio of specific activity values 

for deprived and control animals is also shown in Table 2. At all 

time points the specific activity of the phospholipids of deprived 

animals is greater than for controls. 

Table 3 shows a developmental study of the specific activity 

of brain phospholipids following injection of (l-14
c) linolenate into 

EFA deprived and control rats. The greatest specific activity was 

seen in 10 day old deprived and controls. The specific activity of 

both groups decreased with development. The specific activity of 

phospholipids from EFA deprived animals at 21 days of age was 42% 

of that at 10 days, while at 120 days it was 35% of the day 10 value. 

In control rats the phospholipid specific activity at 21 days of age 

was 16% of that at 10 days, while at 120 days the value was 11% of 

that at 10 days. Except for 10 days, the incorporation of linolenate 

into whole brain phospholipids was greate~ for deprived than control 

animals. It should be noted that the ratio of specific activities 

of deprived to control is 2.04 at 21 days of age, and that it in

creases to 2.63 in 120 day old rats. 

Table 4 shows the specific activity of the individual phospha

tides obtained from whole brain phospholipid. In general, the phos-
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Table 2. 

Specific activitr4of whole brain phospholids after 
administration of [1- C] linolenate to essential fatty acid 

deprived and normal control rats. 
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Time of Sacrifice SEecific Activit~ ± S.E.M* EFA Ratio DeErived 
After Injection EFA Deprived Control Control 

5 min. 1775±153(3)t 1086±46(3) § 1.63 

30 min. 3143±253(3) 1571±347(3)::1; 2.00 

60 min. 2197+106(3) 1039±258(3)§ 2.11 

4 hrs. 1073+475(4) 651±143(3) 1.65 

12 hrs. 2163±277(6) 497±144(4)§ 4.35 

24 hrs. 1238±176(7) 538±149 (3 ):t 2.30 

36 hrs. 1743±159(8) 875±177(4)§ 1. 99 

72 hrs. 1249±91(3) 580±133(4)§ 2.15 

21 day old rats received 0.75 ~Ci of [l-14c] linolenate intracere
brally. Lipids were extracted, phospholipids fractionated, and 
specific activity determined as stated in the Methods section. 

*Specific activity expressed as d.p.m./~M phospholipid P. 

tNumber in parentheses indicates number of individual determinations. 

The significance of the difference between the means of deprived and 
normal control values is shown by: :tP<O.OS and §P<O.Ol. 
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Table 3. 

Specific activity ~£ whole brain phospholipid after the 
administration of [1- C] linolenate to essential fatty acid 

deprived and control rats of varying ages. 
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SEecific Activity ± S.E.M* EFA Ratio DeErived 
Age (days) EFA DeErived .Control Control 

10 5186±781 6432±133 0.81 

15 4189±480 3375±830 1.24 

21 2197±106 1039±258t 2.04 

120 1791±544 682±42 2.63 

Each rat received 0.75 ~Ci of [l-14c] linolenate intracerebrally and 
was sacrificed one hour after injection. For 10, 15 and 21 days of 
age each value is the mean of 3 determinations, while the values at 
120 days are the means of 2 determinations. 

*Specific activity expressed as d.p.m./~M Phospholipid P. 

tP<O.Ol 
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Table 4. 

Specific activity of individual phosphatides from whole brain 
of essential fatty acid EFA deprived and control rats following 

administration of [l-14c] linolenate intracer~brally. 

Specific Activity (d.p.m./~M Phospholipid P) ± S.E.M. 

PC PS +PI PE* 
Time Control DeE rived Control DeErived Control DeE rived 

5 min. 1380±280 2650±230t 770±60 1480±160:1; 480±140 745±100 

30 min. 2200±470 4390±270:1; 1000±200 2700±35§ 580±200 1640±80:1; 

60 min. 3900±600 3720±170 1300±640 1920±75 1680±180 1600±150 

4 hrs. 820±170 1320±580 370±80 430±250 360±80 860±400 

12 hrs. 700±140 2050±400 230±43 1840±350t 310±63 2500±500t 

24 hrs. 690±180 1160±190 460±80 1200±170t 520±140 1770±270t 

36 hrs. 850±120 1390±110t 650±60 1710±170:1; 820±140 2320±210§ 

72 hrs. 7i0±250 890±100 890±380 1480±110 1460±440 1830±200 

21 day old rats were injected with 0.75 ~Ci of [l-14c] linolenate 
intracerebrally and sacrificed at the indicated times. Each value 
is the mean of 3 or 4 determinations, except for deprived animals 
sacrificed at 12, 24 and 36 hours where 8 determinations were em
ployed. 

*Includes the plasmalogen form. 

The significance of the difference between the means of deprived and 
control values is shown by: tP<O.OS, :I;P<O.Ol and §P<O.OOl. 
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phatides isolated from brain of EFA deprived animals showed a greater 

specific activity than those from brain of control animals throughout 

the time interval studied. Initial incorporation at 30 min and 60 

min was considerable in all three fractions. Following this initial 

incorporation, the activities of all three fractions decreased. While 

the specific activity of PC remained low at later time points, that 

of PS+PI and PE increased, the PE fraction of both EFA deprived and 

control animals reaching its maximum activity then. These trends are 

seen in both deprived and control animals also. 

The interrelationships of PC, PS+PI, and PE are illustrated in 

Figures 3-5. Fig. 3 depicts the ratio of specific activities of PE 

to PC from EFA deprived and control brain. At early time points in 

both deprived and control animals the PC fraction is more active 

than PE. With increasing time after injection, the PE becomes more 

active relative to PC. In deprived animals PE becomes more active 

than PC between 4 hr and 12 hr after injection. PE ultimately be

comes 2.2 times more active at 72 hr. The increase in activity of 

PE relative to PC is less rapid in the controls. The activity of 

PE surpasses that of PC between 24 gr and 36 hr. A table with the 

ratio data is provided in Appendix A. Fig. 4 shows the ratio of 

specific activities of PS+PI to PC. An initial dip in the curves 

for both EFA deprived and control animals is followed by a steady 

increase out to 72 hr, indicating that in both cases PS+PI is be

coming more active relative to PC. At early time points PC is more 

active relative to PS+PI in both deficient and control. With 
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increasing time a reciprocal relation holds. The PS+PI of deprived 

animals becomes more active than PC between 24 hr and 36 hr. At 72 

hr the activity of the PS+PI is about 1.8 times that of PC. In con

trols the time of crossover is again delayed. In controls the PS+PI 

becomes more active than PC between 36 hr and 72 hr. At 72 hr, the 

activity of PS+PI is about 1.3 times that of PC. Fig. 5 depicts the 

ratio of specific activities of PE to PS. Up to 36 hours the curves 

from deprived and control rats are comparable. The large difference 

at 72 hours is probably due to variability in determining the specific 

activity at this time point. 

The percent distribution of radioactivity in the various fatty 

acids from whole brain phospholipids is shown in Table 2A (1-4) in 

Appendix A. Some results are presented here. Table 5 shows the per

cent distribution of radioactivity in the saturates, monounsaturates, 

and polyunsaturates from whole brain phospholipid. At all time 

points studied the polyunsaturated fatty acid (PUFA) fraction con

tained the majority of the radioactivity followed by the saturated 

fatty acid fraction. The monounsaturated fatty acids contained the 

least amount of radioactivity. In general, the fatty acids from 

deprived animals showed a greater proportion of radioactivity pres

ent in the PUFA fraction compared to controls. In contrast, a 

greater percentage of the radioactivity was found in the saturates 

and monounsaturates of the controls as compared to the deprived. 

This trend was particularly marked for palmitic acid (16:0). In 

control animals there was a steadily increasing percentage of 
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Table 5. 

Percent distribution of radioactivity in fatty acids from whole 
brain phospholipids of essential fa£~Y acid deprived and control 

rats following administration of [1- C] linolenate intracerebrally. 

% Distribution of Radioactivity § 

Saturates* Monounsaturatest Pollunsaturates:f: 
Time Control Deprived Control Deprived Control Deprived 

5 min 5.0 2.9 1.6 0.5 12.2 14.3 

30 min. 9.4 5.4 2.4 1.0 19.9 35.6 

60 min. 10.9 7.0 2.5 2.0 21.7 33.1 

4 hrs. 15.4 10.0 3.2 2.4 29.0 44.8 

12 hrs. 27.6 9.0 2.9 2.8 41.2 51.8 

24 hrs. 20.5 8.2 4.9 3.2 41.2 64.1 

36 hrs. 22.5 8.6 6.0 3.0 48.7 68.3 

72 hrs. 22.3 10.8 7.0 4.4 46.8 67.7 

21 day old rats were injected with 0.75 llCi of [l-14C] linolenate 
intracerebrally, and were sacrificed at the indicated time points. 

* 14:0, 16:0, 18:0 

t 16:1, 18:1 

:t: n-3 family: (20:4n-3+20:5n-3+22:3n-9), 22:5n-3, 22:6n-3 

§ n- family fatty acids and minor fatty acids were not included in 
the totals, but % distribution calculations took their contribu
tion into consideration. 
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radioactivity found in 16:0 with time. At 72 hr 14% of the radio

activity of the total fatty acid fraction was found in 16:0. In 

deprived animals, however, the proportion of radioactivity found in 

16:0 leveled off rapidly after the injection with only about 6.5% 

being found in 16:0 at 72 hrs. It should be added that the source 

of radioactivity found in the saturates, monounsaturates, and some 

(n-6) family polyunsaturates is radioactive acetate derived from 

the oxidation of radioactive (n-3) fatty acids. The ratio of per

cent distribution of radioactivity is shown in Table 6. The most 

consistent difference is seen in the ratio of 18:3n-3/[20:4n-3 + 

20:5n-3 + 22:3n-9] which is lower at all time points in deprived 

animals relative to controls. This indicates a greater percentage 

of radioactivity is converted to the C-20 acids from 18:3n-3 in 

deprived rats. Less dramatic differences are seen for the ratio of 

the [20:4n-3 + 20:5n-3 + 22:3n-9]/22:5n-3 though they are marginally 

significant at 30 min, 24 hrs, and 36 hrs. Similarly, the ratio of 

22:5n-3/22:6n-3 is significantly different only at 30 min and 24 hrs. 

Table 7 shows the specific activity of the phospholipids of 

subcellular fractions derived from whole brain. The microsome and 

synaptosome fractions showed the greatest activity at early time 

points, and both decreased with time. The myelin fraction, on the 

other hand, showed low activity initially, but with increasing time 

it became more active till it was comparable in activity to the 

microsome and synaptosome fractions. 



Table 6. 

Ratio of percent distribution of radioactivity in fatty acids 
of the n-~ series following administration of 

[1-1 C] linolenate intracerebrally. 

Ratios of Percent Distribution 

18:3n-3 
20:4n-3 + 20:5n-3 

+ 22:3n-9 

20:4n-3 + 20:5n-3 
+ 22:3n-9 

22:5n-3 

22:5n-3 
22:6n-3 
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Time Control Deprived ~C~o~n~t~r~o~l--~D~e~p~r~i~v~e~d Control Deprived 

5 min. 6.35 5.90 5.92 7.00 1. 79 2.43 

30 min. 3.20 1.94 3.19 3.00* 2.27 4.16* 

60 min. 3.12 1.66t 2.27 1.83 2.43 2.78 

4 hrs. 1.89 0.94* 1.23 1.18 2.08 2.08 

12 hrs. 0.85 0.34* 0.72 0.69 1.79 1.75 

24 hrs. 0.-75 0.20:1: 0.55 0.67* 1.11 0.81* 

36 hrs. 0.49 0.22t 0.43 0.52* 0.95 0.98 

72 hrs. 0.37 0.28 0.59 0.36 0.56 0.55 

21 day old rats were injected with 0.75 ~Ci of [l-14c] linolenate 
intracerebrally and were sacrificed at the indicated times. The 
significance of the difference between the means of deprived and 
control values is shown by: *P<0.05, tP<O.Ol and :f:P<O.OOl. 
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Table 7. 

Specific activity of phospholipids of subcellular fractions 
derived f4om brain following administration 

of [1- C] linolenate intracerebrally. 

Specific Activity (d.p.m./~M Phospholipid P) ± S.E.M. 

Time Microsome Synaptosome Myelin 

5 min. 935±243 932±155 278±21.0 

30 min. 1405±198 1138±226 380±352 

60 min. 854±120 572±105 162±33.0 

4 hrs. 837±64.0 710±64.0 217±8.0 

12 hrs. 716±76.0 505±15.0 209±8.0 

24 hrs. 933±159 418±120 918±32.0 

36 hrs. 505±245 392±2. 8 448±44.0 

48 hrs. 873±79.0 498±183 780±88.0 

72 hrs •• 501±171 307±146 659±134 

96 hrs. 653±16.0 431±266 315±155 

21 days old rats were injected with 1.0 ~Ci of [l-14c] linolenate 
intracerebrally and sacrificed at the indicated times. Three rat 
brains were pooled for each determination. The values given 
represent the mean of 2 or 3 determinations. 
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Tables 8-10 show the specific activity of the individual phos

phatides derived from the microsome~ synaptosome~ and myelin frac

tions. Table 8 shows the specific activity of phosphatidylcholine. 

The activity of PC~ at early time points~ is greater in the microsome 

and synaptosome fractions as compared to myelin. With time~ the 

specific activity of the PC in the former two fractions decreases 

to about 25% of its value at 30 min while the activity of myelin PC 

slowly increases to values comparable to those of microsomal and 

synaptosomal PC. 

Table 9 shows the specific activity of the phosphatidylserine 

+ phosphatidylinositol fraction. The activity of PS+PI remains rela

tively constant from 60 min to 72 hr in both microsomes and synapto

somes. Initially the PS+PI of microsomes and synaptosomes is more 

active than that of myelin~ which reaches comparable values at 48 and 

72 hr. 

Table 10 considers the specific activity of PE from the three 

subcellular fractions. The activity of microsomal PE tends to in

crease during the time interval studied. That from synaptosomes 

remains relatively constant after 30 min. The PE fraction from 

myelin shows the most dramatic change. From initially low values 

it gradually increases with time until its activity surpasses that 

of PE from synaptosomes and is comparable to that of PE from the 

microsomes. 

In Figures 6-8 the ratios of specific activities of the indi

vidual phosphatides from microsomes~ synaptosomes, and myelin 
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Table 8. 

Specific activity of phosphatidyl choline (PC) from subcellular 
fractions ~£ rat brain following administration 

of [1- C] linolenate intracerebrally. 

Specific Activity* ± S.E.M. 

Time Microsomes Synaptosomes Myelin 

5 min. 1280±380 1000±182 258±2 

30 min. 2040±168 1323±45 666 

60 min. 1152±90 717±90 299±2 

4 hrs. 971±59 851±185 233±11 

12 hrs. 763±74 610±71 210±66 

24 hrs. 845±40 418±106 

36 hrs. 534±86 396±6 245±32 

48 hrs. 687±86 440±112 442±59 

72 hrs. 492±3 280±39 402±10 

96 hrs. 481±135 384±260 150±9 

21 day old rats were injected with 1.0 ~Ci [l-14c] linolenate intra
cerebrally, and were sacrificed at the indicated times. Each value 
is the mean of 2 or 3 determinations, except that for myelin at 
30 min., which is a single determination. 

* Specific activity expressed as dpm/~M phospholipid P. 
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Table 9. 

Specific activity of phosphatidyl serine + phosphatidyl inositol 
(PS + PI) from subcelluli4 fractions of rat brain following 

administration of [1- C] linolinate intracerebrally. 

Specific Activity* ± S.E.M. 

Time Micro somes Synaptosomes Myelin 

5 min. 762±291 776±446 166±60 

30 min. 1128±53 766 219 

60 min. 615±21 400 52±26 

4 hrs. 405±40 384 121±2 

12 hrs. 425±82 288±18 109±12 

24 hrs. 634±47 306±46 

36 hrs. 367±47 241±27 265±139 

48 hrs. 675±112 355±178 586±148 

72 hrs. 384±157 173±54 521±210 

96 hrs. 655±17 331±91 240±38 

21 day old rats were injected intracerebrally with 1.0 ~Ci of [l-14c] 
linolenate and were sacrificed at the indicated times. Each value is 
the mean of 2 or 3 determinations except where no value is given for 
S.E.M., which is a single determination. 

* Specific activity expressed as dpm/~M phospholipid P. 
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Table 10. 

Specific activity of phosphatidyl ethanolamine* (PE) from subcellular 
fractions of l~t brain following the administration of 

[1- C] lino1enate intracerebra1ly. 

Specific Activity ± S.E.M.t 

Time Micro somes Synaptosomes Myelin 

5 min. 322±124 432±40 64±23 

30 min. 854±274 659±211 462 

60 min. 440±115 293±28 95±10 

4 hrs. 652±148 413±112 189±23 

12 hrs. 565±28 364±68 173±13 

24 hrs. 667±216 360±132 

36 hrs. 408±1 334±48 396±53 

48 hrs. 909±198 488±319 826±36 

72 hrs. 684±184 208±36 795±48 

96 hrs. 786±54 365±250 205±28 

21 day old rats were injected with 1.0 ~Ci of [l-14
c] linolenate 

intracerebrally and were sacrificed at the indicated times. Each 
is the mean of 2 or 3 determinations except where no value is given 
for S.E.M., which is a single determination. 

*Includes plasmalogen form 

tExpressed ad dpm/~M phospholipid P. 
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respectively are given. Tables of ratios are presented in Tables 3A, 

4A, and SA in Appendix A. In microsomes the specific activity of PC 

relative to PE and PS+PI is greater at early time points. With in

creasing time the specific activities of PE and PS+PI become greater 

and eventually surpass that of PC, PE doing so before PS+PI. In the 

synaptosome fraction, the same trends are observed (Fig. 7). Though 

PC is more active relative to PE and PS+PI at early time points, both 

PE and PS+PI activity increases with time relative to PC, and at 96 

hr the ratio of specific activity in all cases is about 1.0. Figure 

8 depicts the specific activity ratios of myelin phosphatides. Again, 

somewhat similar trends compared to the other subcellular fractions 

are observed. PC is more active relative to PE and PS+PI at early 

time points. After 60 min the activities of PE and PS+PI increase 

relative to that of PC, and the activity of PE surpasses that of PC 

between 12 hr and 36 hr, while the activity of PS+PI surpasses that 

of PC around 36 hr. 

The incorporation of linolenate into isolated brain cell frac

tions has also been studied. Table 11 shows, developmentally, the 

specific activity of the phospholipids derived from neuronal-, astra

glial-, and oligodendroglial-enriched fractions from rat brain. For 

all age groups studied, the specific activity of the oligodendroglial

enriched fraction far surpassed that of either the astroglia or neu

ronal fraction, and though it decreased with age, it remained sub

stantially active even in 140 day old animals. The astroglia frac

tion is more active than the neuronal fraction in rats 14 and 21 
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Age 

14 

21 

28 

90 

140 
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Table 11. 

Specific activity of phospholipids from neuronal-, astroglial-, 
and oligodendroglia! enriched fractions isolated from rat brain 

following intracerebral injection of [l-14c] linolenate. 

Specific Activity* ± S.E.M 

(days) Neuron Astroglial Oligodendroglia! 

2067±538(4)t 3012±749(4) 172,200±8560(2) 

1432±106(2) 1873±222(2) 106,800±49,500(2) 

4012±561(2) 2352±332(2) 124,700±71,400(2) 

2778(1) 1025(1) 59,600(1) 

2165±853(2) 733(1) 43,400±48,400(2) 

Rats of varying ages received 0.75 ~Ci of [l-14c] linolenate intra
cerebrally, and were sacrificed after 1 hour. 

*Specific activity expressed as dpm/~M phospholipid P. 

tNumber of individual determinations. 
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days of age. Between 21 and 28 days of age the activity of the neu

ronal fraction increases, and becomes greater than that of the astro

glia, remaining so throughout the other age groups studied. 

Tables 12-14 show the percent distribution of the radioactivity 

in the individual lipid classes of the three cell types. The percent 

distribution of the lipid classes appears to be relatively constant 

with increasing age in all three cell types. In neurons, about 86% 

of the radioactivity one hour after injection is in the phospholipid 

fraction compared to about 13% in the neutral lipids. There is some 

difference noted in the astroglial lipids. After a one hour pulse, 

about 79% of radioactivity is in the phospholipid fraction while 

about 20% is associated with neutral lipids. The radioactivity dis

tribution in the oligodendroglial lipids tends toward values inter

mediate to the other two fractions. About 81% of the lipid radio

activity is in the phospholipids, and about 16% of radioactivity is 

in the neutral lipids. The glycolipid fraction from the three cell 

types contained no more than 1%-2% of the lipid radioactivity at any 

of the ages studied. The glycolipid fraction from the oligodendro

glia showed a tendency to higher radioactivity compared to the neu

ronal and astroglial fractions. 
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Table 12. 

Percent distribution of radioactivity in the individual lipid classes 
of the neuronal-, enriched fraction from rat brain following 

administration of [l-14c] linolenate intracerebrally. 

Percent Distribution of Radioactivity ± S.E. 

Age (days) Neutral Lipid Glycolipid Phospholipid 

14 13.0±0.88(3)* 0.9±0.13(4) 86.2±0.87(3) 

21 12. 7±1. 20(2) 1.5±0.35(2) 85.9±0.85(2) 

28 13.1±1. 77(2) 1. 7±0.21(2) 86.1±2.69(2) 

90 13.5(1) 1.0(1) 85.5(1) 

140 14.0±3.82(2) 2.2(1) 84.9±2.19(2) 

Rats of varying ages received 0.75 vCi of [l-14c] linolenate intra
cerebrally; and were sacrificed 1 hour after injection. 

*Number of determinations 



, 
f 

77 

Table 13. 

Percent distribution of radioactivity in the individual lipid classes 
of the astroglial-enriched fraction from rat brain following 

administration of [l-14c] linolenate intracerebrally. 

Percent Distribution 0f Radioactivity ± S.E. 

Age (days) Neutral Lipid Glycolipid Phospholipid 

14 22.1±1.03(3)* 0.6±0.075(4) 77. 4±1. 07 (3) 

21 19.0±0.71(2) 1. 3±0. 21(2) 79. 3±1. 63 (2) 

28 15.6±3.58(3) 0.9±0.32(3) 83.4±3.68(3) 

90 21. 4(1) 1. 5(1) 77.1(1) 

140 21. 2(1) 78.8(1) 

Rats of varying ages were injected with 0.75 ~Ci of [l-14c] linolenate 
intracerebrally, and were sacrificed after 1 hour. 

*Number of determinations 
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Table 14. 

Percent distribution of radioactivity in the individual lipid classes 
of the oligodendroglial-enriched fraction from rat brain 

following administration of [l-14c] linolenate intracerebrally. 

Percent Distribution of Radioactivity ± S.E. 

Age (days) Neutral Lipid Glycolipid Phospholipid 

14 18.8±5.51(2)* 1. 0±0 • 35 ( 2) 77.9±8.70(2) 

21 15.1(1) 3.7(1) 81.1(1) 

28 16. 0±0. 71 (2) 1. 8±1.13 (2) 82.2±0.42(2) 

90 18.0(1) 2.0(1) 80.0(1) 

140 15.3±2.76(2) 2.9(1) 84.0±1. 70(2) 

Rats of varying ages were injected with 0.75 ~Ci of [l-14c] linolenate 
intracerebrally, and were sacrificed after 1 hour. 

*Number of determinations. 



DISCUSSION 

Fatty acids can arise in the brain by three mechanisms: Syn-

thesis de novo (Brady, 1960), direct uptake from the vascular com-

partment (Dhopeshwarkar and Mead, 1973), and through the elongation 

and desa.turation of the intermediate length fatty acids arising by 

the first two options (Aeberhard and Menkes, 1968). The third route 

is required for the biosynthesis of the long chain polyunsaturated 

fatty acids of the (n-3) and (n-6) families which are found in large 

quantities in brain phospholipids which are important membrane con-

stituents. 

In studying the dynamic metabolism of biological compounds two 

major consideration come to mind. First, metabolic studies are being 

carried out more and more with compounds that have radioactive atoms 

incorporated into them. Amongst the more common isotopes employed 

14c 3H and 32P. are , , It is important to know precisely which atom 

of a compound is labelled, and the metabolic fate of that atom. 

Long half lives (t
112

) for phospholipids from rat cerebral cortex of 

about 38 days using c14
c) acetate compared to 5.1 days using (3

H) 

glycerol (Lapetina et al. 1969) could be explained by the loss of 

3H in the metabolism of glycerol and its subsequent equilibration 

with total body water which effectively removes the isotope from the 

14 
system. This in contrast to a constant recycling of the ( C) ace-

tate into the acetate pool following lipid catabolism. 

79 
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The second consideration is the route of administration of the 

radioactive compound. Often employed routes include oral administra

tion, intraperitoneal injection, intracarotid injection, and intra

cerebral injection. Intracerebral injection seems to be the method 

of choice in the study of cerebral metabolism since it allows the 

brain to directly metabolize the compound free from the contributions 

of other tissues, particularly the liver, and it allows a much higher 

percentage of the administered dose to get into the brain. A draw

back to its use is that it is a non-physiological way to introduce 

the compound being studied into the brain. With these considerations 

in mind, the study of linolenic acid metabolism in brain was under

taken. 

Linolenic acid was found to be rapidly incorporated into the 

brain lipids_of 21 day old control and essential fatty acid (EFA) 

deprived rats. Control rats incorporated about 8.4% of the adminis

tered dose while deficient rats incorporated about 16.3% of the dose. 

These results are comparable to those reported by Yau and Sun (1973; 

1974) for (14c) oleic acid and arachidonic acid. 

At five minutes after injection the neutral lipids retained the 

greatest proportion of the radioactivity (61-64%) in both deficient 

and control animals (Table 1). Between 5 min and 30 min an almost 

complete inversion occurred. At 30 min almost 70% of the radioactiv

ity was found in the phospholipid fraction of both groups. This 

pattern of radioactivity partition with increasing time following 

intracerebral injection was reported by Sun and Horrocks (1971) for 



(14
c) oleic acid, and by Yau and Sun (1974) for (14

c) arachidonic 

acid. Similar results were seen in cultured cells from cerebral 

hemispheres of rat embryos utilizing (14c) stearic acid (Yavin and 

Menkes, 1973), and following intraventricular injection of (14c) 

acetate (Bonser and Lunt, 1976). 
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In general, at all time points the phospholipids from deficient 

rats contain a greater percentage of radioactivity compared to con-

trols while the neutral and glycolipid fractions from deficient rats 

contain a lesser proportion of radioactivity than the respective 

fractions from control rats. Though these differences (Table 1) are 

in most cases statistically significant, whether the actual differ-

ences are physiologically significant is not clear. It seems that 

the factors involved in transferring radioactivity from the neutral 

lipid fraction to the phospholipid fraction is operating at near 

maximal levels in the normal 21 day old rat brain. The increase in 

the percent of radioactivity in the phospholipids may be due to in

creased activity of the acylation-deacylation cycle (Lands, 1960) in 

EFA deficient rats. An increased activity of acylation of phospho-

lipids has been suggested by DeTomas and Mercuri (1973) after injec

tion of (3H) glycerol and (14c) linoleic acid into EFA deficient and 

control rats. 

Data on the metabolism of fatty acids in the brains of EFA 

deficient animals in general, and of linolenic acid in particular is 

sparse. Lyles et al. (1975) studied the uptake of (3H) oleic acid 

or of (3H) arachidonic acid by brain in EFA deficient and control 
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rats that were 45 days of age. The fatty acids were administered by 

stomach tube and values were obtained over a time course of 24 hr. 

They reported that the plateau values for oleic acid and arachidonic 

acid taken up into the total brain lipids of deficient rats was 1.5 

and 1.7 times that of the respective values in controls. Their cal

culations suggested that the deficiency state did not alter the rate 

of uptake of fatty acids into the brain. They postulated that the 

flux of fatty acid out of the brain is reduced in EFA deficiency. A 

decreased efflux was observed for docosahexaenoic acid (22:6n-3) in 

brain polar lipids by Dhopeshwarkar and Subramanian (1975a) following 

intraperitoneal injection of (14
c) linolenic acid. 

The data of Dhopeshwarkar and Subramanian (1975a) are difficult 

to interpret in terms of the actual metabolism of linolenic acid by 

the brain. Results obtained following intraperitoneal injection of 

(14
c) linolenic acid must include the considerable metabolism of 

linolenic acid in the liver. This is evidenced by their data which 

show that at early time points (8hr and 48hr) brain palmitate had 

the highest specific activity. The relative carboxyl activity indi

cated that it had been formed by de novo synthesis from radioactive 

acetate derived from linolenic acid. That linolenic acid is taken 

up by the liver after oral administration was demonstrated by Sinclair 

(1975). In the same paper it was shown that 22:6n-3 was taken up by 

liver following oral administration, and that the subsequent uptake 

of both fatty acids by the brain was the order 22:6n-3>18:3n-3. The 

data we present in Table 2A (1-4) indicates there is a rapid conver-



sion of 18:3n-3 to 22:6n-3 in brain. The time course of labelling 

of 22:6n-3 of brain polar lipids (Dhopeshwarkar and Subramanian, 

1975a) shows a rise in activity between 8hr and 48hr followed by 

a decrease between 48 hr and 15 days. It subsequently declines 

slowly from 15 days to 45 days. This pattern suggests that 18:3n-3 

is being metabolized to 22:6n-3 in the liver, and that the 22:6n-3 

is being supplied to the brain via the bloodstream. 

Lyles et al. (1975) have suggested a decreased efflux of 

arachidonic acid from brain occurs during EFA deficiency. Our re-

sults do not indicate that there is a sparing effect on brain fatty 

acids. Maximum incorporation of c14 into brain phospholipids was 

seen at 30 min (Table 2). At 72 hr the specific activity of the 

phospholipids decreased to 40% and 37% of the maximal values in the 
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deprived and_control animals respectively. This is not to say there 

isn't a sparing effect on the fatty acids in the brain during the 

deficiency. The data for the phospholipid fraction indicates there 

might be a slight retention of radioactivity during deficiency. The 

duration of our experiments is 72 hr. At this time point the radio-

activity is still increasing in the 22:6n-3 fraction. The loss of 

radioactivity at this early stage might obscure a sparing effect on 

22:6n-3 which could become evident at longer time intervals. Dhopesh-

warkar and Subramanian (1975b) follow linolenate incorporation out 

to 45 days. 

Lyles et al. (1975) utilize animals that have been on an essent---
ial fatty acid deficient dietary regimem from 5 days pre-natal until 
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they were used in the experiment at 45 days of age. In our experi

mental procedure dams were placed on the EFA deficient diet from the 

lOth day of pregnancy, and the pups were taken from their mothers at 

21 days of age for injection. Those that weren't immediately sacri

ficed were placed on the EFA deficient diet. The maximum time inter

val any pup would be on this diet then, was 72 hr. Hence, the degree 

of deficiency induced in this case may be a factor. In addition, 

these authors employ arachidonic acid, the major metabolic product of 

linoleic acid metabolism, while we are using linolenic acid, the 

initial precursor of all the (n-3) family of long chain polyunsatu

rated fatty acids. It is possible that during the process of elonga

tion and desaturation of linolenic acid to docosahexaenoic acid the 

linolenic acid and its intermediate metabolites are esterified to 

various lipids and unesterified from them several times thus making 

them more frequently exposed to degradative reactions. In contrast, 

arachidonic acid once esterified may be spared. 

In spite of the fact that no sparing effect is observed, the 

radioactivity content in lipids from deficient animals is always 

about twice that found in controls. The effect is not entirely due 

to an increased esterification of fatty acid to phospholipid which 

Dhopeshwarkar and Subramanian (1975a) suggest could protect these 

fatty acids from catabolism since this increased incorporation was 

found at 5 min after injection at which time about 2/3 of the radio

activity of both deficient and control rats is associated with the 

neutral lipid fraction. Since between 5 min and 30 min there is a 
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rapid shift in radioactivity from the neutral lipid fraction to the 

phospholipid fraction, it appears that some component of the neutral 

lipid fraction acts in a storage capacity for fatty acids prior to 

esterification into phospholipids. This pool is present in normal 

rats and it seems to be expanded in deficient rats. Since the neutral 

lipids were not subfractionated, it is not possible from our work to 

state the nature of the pool. Other workers have reported that fol

lowing the intracerebral injection of labelled fatty acids the tri

glyceride fraction of neutral lipids becomes labelled rapidly and to 

an appreciable extent (Sun and Horrocks, 1971; Yau and Sun, 1973; 

1974). This has also been observed in cultured cells dissociated 

from rat cerebrum (Yavin and Menkes, 1973; 1974a) and in the proto

zoan, Tetrahyema pyriformis (Borowitz and Blum, 1975). Yavin and 

Menkes (J973) have suggested that triglycerides act in brain tissue 

as a reservoir for fatty acids. Borowitz and Blum (1976) have sug

gested that the triglyceride in Tetrahymena pyriformis is not cata

bolized during times of energy need, but instead, when phospholipid 

synthesis is required. Elsbach and Farrow (1969) suggested that 

triglyceride in granulocytes could serve as a reservoir of fatty 

acids that may be used, during phagocytosis, for increased phospho

lipid synthesis rather than as an energy source. 

Increased levels of brain triglycerides have been observed 

in some pathological conditions. Davison and Wajda (1962) reported 

an increased level of triglyceride in brains from multiple sclerosis 

patients. An increase in triglyceride levels was found by Wood and 
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Dawson (1974) in sciatic nerve undergoing Wallerian degeneration. 

Increased triglyceride levels have also been reported in several 

intracranial tumors (Smith and White, 1968). An increased activity 

was observed for phospholipid synthesizing enzymes in peripheral 

nerve undergoing Wallerian degeneration (McCaman et al. 1965; 

McCaman and Cook, 1966). An increased activity of phosphatidic acid 

phosphatase was reported by McCaman et al. (1965) and an increased 

activity of choline phosphokinase and phosphorylcholine: 1,2-digly

ceride choline phosphotransferase by McCaman and Cook, 1966). 

The above results could possibly be construed to suggest that 

a triglyceride pool exists in the brain which serves to provide, in 

some way, precursors for phospholipid synthesis. This notion is 

consistent with the fatty acid profile for brain triglycerides which 

was reported by Sun (1970). A high content of 18:1 (28%) and 22:6n-3 

(10%) was present. A similar compositional pattern was reported for 

triglycerides isolated from cultured cells from rat cerebral cortex 

by Yavin and Menkes (1973). 

Data for the distribution of radioactivity in fatty acids 

demonstrate that linolenic acid undergoes rapid metabolism in brain 

of both control and deficient rats. It is seen that the polyunsatu

rated fatty acids contain the greatest percentage of radioactivity 

at all time points measured. This is somewhat at odds with the 

results of Strouve-Vallet and Pasquad (1971) who report that the 

desaturation of linoleic acid to -linolenic acid is occurring at 

only trace levels at 11 days of age in vitro. They report that the 
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activity in liver is however, unchanged with development. It seems 

unlikely that the brain would lose the ability to synthesize long 

chain polyunsaturated fatty acids at a time when brain growth is still 

occurring to a considerable extent. 

In general, the fatty acid radioactivity patterns show about a 

50% decrease in proportion of radioactivity associated with the satu

rated fatty acids of deficient rats compared to controls at 72 hr. 

A decrease, though not as great, is also seen in the monounsaturated 

fatty acids. As would necessarily follow, a greater proportion of 

radioactivity is found in the polyunsaturated fatty acids of deficient 

animals (68%) compared to controls (47%) at 72 hr. Since the radio-

activity associated with the saturates and monounsaturates is derived 

from (14c)-acetate following degradation of linolenic acid, it appears 

that the rate of degradation of linolenic acid and its metabolites 

may in some way be affected by the deficiency state. 

Linolenic acid can be catabolized by 8-oxidation in the mito

chrondrial compartment. Access to the mitochondrial compartment 

doesn't seem to be a factor. Christophersen and Bremer (1972) showed 

linolenylcarnitine was almost 70% as effective as palmitylcarnitine 

as a substrate for Palmityl-CoA: carnitine 0-palmityltransferase in 

vitro. The effect of the deficiency state on this enzyme is unknown. 

Once the polyunsaturated fatty acids are exposed to the oxidizing 

enzymes in the mitochondria it appears that there is no sparing of 

them with a preference of the enzymes for saturated or monounsatu

rated fatty acids (Brown and Tappe!, 1959; Mead, 1968). 
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Coniglio et al. (1964) reported a sparing of arachidonic acid --
(20:4n-6) in EFA deficient rats following oral administration of 

14 ethyl arachidonate (1- C). Coots (1965) reported a sparing of 

arachidonic acid relative to linoleic acid following administration 

14 of both of the ( C) fatty acids. The explanation put forth was that 

the sparing effect was due to the rapid incorporation of arachidonic 

acid into tissue phospholipids. This is reasonable in light of our 

results. The incorporation of radioactivity into palmitate is slight-

ly lower in deficient rats relative to controls from 5 min to 60 min. 

After 60 min the radioactivity in the control animals increases at 

a steady rate, though not as rapidly as between 5 min and 60 min, out 

to 72 hr. In the deficient rats after 60 min the radioactivity in 

palmitate remains relatively constant out to 72 hr. This corresponds 

to a period where a greater proportion of the (14c) is associated 

with the longer chain polyunsaturated fatty acids. 

Looking more closely at the data, at 4 hr after injection 

82.4% of lipid radioactivity is associated with the phospholipid 

fraction of control rats while 29% of the fatty acid radioactivity 

is associated with the longer chain polyunsaturated fatty acids 

(20:4n-3 + 22:3n-9), 22:5n-3, and 22:6n-3. At 60 min after injection 

81.4% of the total lipid radioactivity is associated with the phos-

pholipid fraction while 32% of the fatty acid radioactivity is assoc-

iated with the longer chain polyunsaturates. If one then considers 

the increased proportion of radioactivity in the saturated and mono-

unsaturated fatty acids from 4hr and 60 min in the control and defic-
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ient rats respectively and compares these values with those observed 

at 72 hr, it is evident that there is an increase of 10.7% for these 

fatty acids in control rats in contrast to an increase of only 6.2% 

deficient rats. 

A number of possible explanations arise. One explanation might 

be that there is a larger pool of acetate present in the brains of 

deficient rats compared to controls which dilutes the radioactive 

acetate derived from P-oxidation of linolenate. That such an in-

creased pool exists is not known, but it seems unlikely. One piece 

of data reported here argues against it. In EFA deficiency there is 

an unusual response of docosapentaenoic acid (22:5n-6). While other 

(n-6) fatty acids decrease in deficienty, the 22:5n-6 level increases 

(Sun et al. 1974; White et al. 1971). There is a slight but detect-

able increase in the radioactivity associated with the 22:5n-6 in 

deficient animals while all the other (n-6) fatty acids show a de-

crease in the incorporation of radioactivity compared to controls. 

At this state of deficiency there is very little change in the fatty 

acid profiles in rat brain, and there is no detectable change in the 

level of 22:5n-6. If one assumes that the turnover of 22:5n-6 is 

the same in deficient and controls then dilution of radioactive ace-

tate by a larger acetate pool in deficient rat brain would tend to 

yield a value lower than control for the radioactivity proportion in 

22:5n-6. 

14 A second explanation could be that the ( C)-acetate is being 

used preferentially to elongate the already radioactive polyunsatu-
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rated fatty acids in deficient animals. That such a separate pool 

would exist is unlikely. 

Rats on a EFA deficient dietary regimen have been shown to 

have a higher basal metabolic rate (Wesson and Burr, 1931; Burr and 

Beber, 1937). The cause of this is possibly due to hyperthyroidism, 

but this still remains unclear (Holman, 1968). The possibility 

14 arises that more ( C)-acetate is employed for metabolic needs and 

hence is unavailable for fatty acid synthesis in the deficient pups. 

This appears unlikely for a number of reasons. In these studies 

adult mice are used which have been on deficient diets for extended 

periods of time while our rats are weanlings, and have had extremely 

limited exposure to the deficient diet. Also the metabolic rates 

reported above were the basal metabolic rats for the whole animal 

which might v~ry easily not reflect the metabolic rate of the brain. 

In these animals the respiratory quotient, RQ (the ratio of co2 ex

creted to the o2 taken up), is greater than 1.0. This indicates 

that fat is being formed from ingested carbohydrate. Hence it appears 

that a sufficient supply of carbohydrate is supplied in the diet to 

satisfy energy needs. One last note, if the increased basal meta-

bolic rate is indeed caused by hyperthyroidism, it has been shown 

that some of the lipid synthetic enzymes of brain are resistent to 

certain dietary and hormonal alteration including hyperthyroidism 

(Volpe and Kishimoto, 1972). 

A possible reason is that differences in the fat content of 

the EFA deficient and control diets is responsible. Lynn and Brown 
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(1959) showed that rats on diets containing either 20% lard or 20% 

corn oil showed an increased oxidation of fatty acids relative to 

rats on a control diet (2% fat). Again, the age of the animals used 

is different from ours, these being adult rats. Also 20% is a very 

high content of fat and it may be inducing other changes in situ. 

Newborn rats have a considerable store of triglycerides in their 

livers (Sinclair, 1974). Galli et al. (1975) have showed that (n-6) 

polyunsaturates in liver are not depleted in rat pups fed an EFA 

deficient diet until about 40 days after birth. It seems then that 

in spite of the fact that the dams were maintained as indicated 

previously on a fat-free diet and the pups, when necessary, after 

injection, the fat stores in the body appear adequate for the short 

duration that the fat-free diet is employed. 

Finally, a decrease in the degradation of fatty acids during 

deficiency could also account for the decreased availability of (14c)-

acetate for fatty acid synthesis. This could come about in two ways. 

First, the enzyme activities are diminished during deficiency. The 

opposite effect seems to be true. Mead et al. (1956) placed mice on 

a deficient diet for three months and then fed them (14
c) stearate, 

oleate, and linoleate. In 6hrs 20-30% of the fatty acids had been 

oxidized. However, stearate and linoleate were oxidized to a greater 

extent by deficient rats compared to controls, while the reverse was 

true for oleate. 

The fatty acids might be protected from exposure to catabolic 

enzymes. In experiments referred to before (~oniglio et al. 1964; 

Ill' 
I 

'I 
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Coots, 1965) an apparent sparing effect was seen for arachidonic acid, 

and this was attributed to its incorporation into phospholipids of 

the tissues. This conclusion is not unreasonable, and most likely 

it is a factor. From our data, however, it appears that there is a 

sparing effect present in the EFA deprived pups which is not present, 

or not present to the same extent, in control pups. By inference 

from the data on initial uptake at 5 min, it is suggested that this 

sparing mechanism resides in the domain of the neutral lipid fraction, 

possibly being localized in the triglyceride fraction of the neutral 

lipids. A hypothetical sparing mechanism might be as follows: Acyla

tion of polyunsaturated fatty acids to triglyceride present in mem

brane fractions, perhaps concentrated in the proximity of the enzymes 

for elongation and desaturation of fatty acids, protects these fatty 

acids by making them less readily available for catabolic reactions. 

The triglycerides would also act as a reservoir for fatty acids, a 

function previously suggested (Yavin and Menkes, 1973; Borowitz and 

Blum, 1976). As a general mechanism the reservoir would increase 

during times when lipid is being deposited rapidly, or when, for 

example, membrane degeneration might signal for an increased syn

thetic effort to replace the membrane which was being lost. 

The metabolic sequence which linolenic acid undergoes was pre

sented in the introduction (Fig 1). Fig 9,10 show the percent dis

tribution of fatty acid radioactivity in control and deficient ani

mals. Radioactivity is rapidly transferred from 18:3n-3 to the C-20 

(n-3) family fatty acids. The distribution curves are qualitatively 
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similar in both EFA deprived and control rats. There is a rapid 

increase in the radioactivity of the C-20 fatty acids which then 

remains constant followed by a slower increase in the radioactivity 

in the 22:5n-3 and 22:6n-3 fatty acids. In general, the fatty acids 

from deficients have a greater proportion of radioactivity relative 

to controls. A qualitatively similar pattern of radioactivity 

incorporation was reported in cultured cells from rat cerebrum after 

incorporation of (14
c) linolenate (Yavin and Menkes, 1974a). 

Product-precursor ratios of the percent distributions is given 

in Table 6. These indicate that the desaturation of 18:3n-3 by the 

~6 desaturase and possibly the desaturation of 20:5n-3 by the ~5 

desaturase are the steps affected by the dietary regimen. A decrease 

in the ratio, as is seen for deficient animals, indicates a more 

rapid transfer of radioactivity from precursor to product. This is 

most evident for the 66 desaturation. A slight decrease is also seen 

for the transfer of radioactivity from the C-20 fatty acids to 22:5n-3 

in the deficient rats, the ~5 desaturation. This latter desaturation 

might respond to a longer state of deficiency. Castuma et al. (1972) 

reported that a fat-free diet increases the ~6 desaturase activity in 

rat liver microsomes while the ~5 desaturase is unaffected. These 

results are consistent with Brenner (1974) that polyunsaturated fatty 

acid metabolism is regulated at the level of the ~6 and ~5 desatu-

rases. 

A question that presents itself, is, what is responsible for 

the enzyme response? Only minor changes are noted in the lipid and 
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fatty acid compositions of pups from dams fed an EFA deficient regi

men which was continued for the pups at weaning even at 30 days of 

age (Galli et al. 1971). Paulsrud et al. (1970) report that the ~9 

desaturase activity from rat liver microsomes of EFA deficient rats 

was 2.5 times that from control microsomes. This activity was ele

vated, and it remained at a constant level whether the rats were on 

the EFA deficient diet 7 days or 18 months. The lipid and fatty 

acid compositions wouldn't change appreciably in 7 days. In addition, 

if rats on the deficient diet were then starved, the ~9 desaturase 

activity decreased below that of controls. These results suggest 

that the desaturase activity responds rapidly to dietary factors. 

Dietary factors can alter the other desaturase activities (Brenner, 

1974). 

That there is a rapid response to the deficiency is illustrated 

in Table 3. This shows that the incorporation of (n-3) fatty acids 

is enhanced in rats on a fat-free diet. Maximum incorporation into 

both groups occurred early in life, at 10 days of age. At 21 days 

of age the pups on the fat-free dietary regimen were incorporating 

twice the radioactivity into brain phospholipids with respect to 

controls. At 120 days of age rats on the deficient diet were incorpo

rating 2.6 times the radioactivity compared to controls. 

From the data of Sinclair and Crawford (1972) it is estimated 

that almost 3/4 of the brain's complement of 20:4n-6 and 22:6n-3 was 

laid down between conception and weaning, the period when the rat 

pups were dependent on maternal nutrition. Alling et al. (1974) 



,.... 

97 

and Sinclair and Crawford (1973) have suggested that placing female 

rats on a fat-free diet during pregnancy does not insure that the 

pups are deficient since depot stores of essential fatty acids in 

the dam are slowly released. Depletion of liver stores of 20:4n-6 

was shown to take 10 weeks in adult rats maintained on an EFA defic-

ient diet (Sinclair and Collins, 1968). Rat pups are born with a 

high concentration of polyenoic fatty acids in their livers (Sinclair 

and Crawford, 1973) which increases during the suckling period. 

Additionally, Galli and Spagnuolo (1974) maintained female rats on 

diets with varying contents of linoleic acid and linolenic acid be

ginning 10 days before mating. It was found that while the poly

unsaturated fatty acids of milk triglycerides varied with the dietary 

composition, the milk phospholipids tended to accumulate these fatty 

acids when the maternal diets were deficient in them. 

It appears then, at least for the fetal and newborn rat pup, 

that two reservoirs of polyunsaturated fatty acids has been provided 

to insure an adequate supply during the period of rapid lipid deposi

tion in brain ie., fetal storage primarily in the liver during gesta

tion, and during the suckling period from maternal milk (Crawford, 

1976). 

Crawford (1976), using guinea pig, examined the transfer of 

(14c) linoleic, linolenic, and arachidonic acids from maternal 

liver to the fetal brain. A "biomagnification" process was reported 

for linoleic and linolenic acids ie., increasing proportions of 

radioactivity were found in long chain polyunsaturated fatty acids 



98 

through the progression maternal liver<placenta<fetal liver<fetal 

brain. Arachidonic acid studies indicated it was taken up 10 times 

more actively than linoleic acid. They concluded that in addition to 

the maternal stores or the fetal stores of long chain polyunsaturated 

fatty acids, the fetal guinea pig was able to actively metabolize 

precursor linoleic and linolenic acids to their respective end products. 

This appears to be the level that the dietary influences are working 

at. That the increases in the metabolic activity that we've pre

sented are of such a magnitude at a very early age reinforces the 

notion that long chain polyunsaturated fatty acids are required by 

cerebral lipids to insure the proper structural and functional integ

rity of the nervous system during development, and that any threat 

to the supply of long chain polyunsaturated or their precursors in 

brain results in a rapid response by the brain to counteract it. 

The labelling pattern of the individual phospholipid species 

reflects this rapid response by the brain in deficient rats. The 

general pattern observed for the three fractions, phosphatidyl choline 

(PC), phosphatidyl ethanolamine (PE) (includes plasmalogen form), 

and phosphatidyl serine + phosphatidyl inositol (PS + PI) is as 

follows: PC is more active than PE or (PS +PI) at early time points. 

This reflects probably two factors. First, the enzyme systems forming 

PC de ~are more active than those forming PE; the enzyme system 

forming PS must rely on existing phospholipids so radioactivity in

corporation will be slower. A preference for mono and dienoic species 

of diglyceride is shown for incorporation into PC (Kanoh, 1969; 
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Trewhella and Collins, 1969) while the hexaenoic fatty acid species 

of diglyceride are preferred for incorporation into PE (Kanoh, 1969; 

Kanoh, 1970; Trewhella and Collins, 1969). PSis formed by base 

exchange with existing phospholipjds. The time course of labelling 

does not distinguish whether serine is preferentially exchanged with 

PC or PE, except that its latent increase in specific activity fol

lowing the latent increase in specific activity of the. PE fraction 

suggests there might be a preferential exchange of serine with exist

ing molecules of PE. The PS fraction of brain gray matter contains 

a substantial amount of polyunsaturated fatty acids, and hence it 

might be expected that incorporation of serine into phospholipids 

might show a preference for the more highly unsaturated PE molecules. 

With increasing time the PE and (PS + PI) fractions become 

more active than PC. The PE and (PS + PI) become more active than 

PC at earlier times in the EFA deprived animals relative to the con

trols. PE becomes more active than PC before (PS + PI) does in both 

groups of rats. This seems to reflect the increased proportion of 

radioactivity in the long chain polyunsaturated fatty acids at earl

ier times after injection in deficient rats compared to controls. PE 

becomes more active than PC in deficient rats when between 44.8% and 

51.8% of the fatty acid radioactivity is associated with the long 

chain polyunsaturates (4-12 hours) while PE becomes more active than 

PC in control rats at around 36 hr when 48.7% of the radioactivity is 

associated with the long chain polyunsaturates. Similarly, the 

(PS + PI) from brain of EFA deprived rats becomes about as active as 
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PC around 12 hr when 51.8% of the fatty acid radioactivity is assoc

iated with the long chain polyunsaturates while in controls (PS + PI) 

surpasses the activity of PC between 36 and 72 hours when between 

47-49% of the fatty acid radioactivity is associated with the long 

chain polyunsaturates. A similar metabolic pattern was reported by 

Yavin and Menkes (1974a) in cultured cells from rat cerebrum. These 

findings are consistent with the accepted fact that ethanolamine and 

serine phosphoglycerides contain the majority of the long chain poly-

unsaturated fatty acids in the brain. 

The incorporation of (l-14
c) linolenic acid into the subcellular 

fractions of brain was studied in the 21 day old rat. Substantial 

radioactivity is incorporated into the phospholipids of microsomes, 

synaptosomes, and myelin even at 5 min after injection, the specific 

activity of the microsomes and synaptosomes being about 5-6 times 

that of myelin with regards to the phospholipids. That both micro-

somes and synaptosomes are actively labelled very early indicates 

that synaptosomes are able to actively incorporate radioactivity 

derived from linolenic acid into phospholipids, though this does not 

rule out a rapid exchange process or axoplasmic transport which 

couldn't be distinguished by the time intervals studied. A similar 

rapid incorporation of radioactivity into the synaptosome fraction 

was reported by Sun and Yau (1976b) following the intracerebral 

injection of <_
14

c) oleic and arachidonic acids. Lapetina et al. 

(1969b) reported that following subarachnoidal injection of (
32

P) 

orthophosphate incorporation of the isotope into brain subcellular 
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fractions including microsomes and synaptosomes occurred at the same 

rate. Miller and Dawson (1972a) report that the synaptic endings 

from guinea pig brain are capable of phospholipid synthesis, a capac

ity they suggest is associated with the intraterminal smooth endo

plasmic reticulum and synaptic vesicles. In addition, the acylation 

and deacylation of phospholipids of the synaptic membranes could be 

modulated by neurotransmitters (Gullis and Rowe, 1975a;b). 

Over the course of the experiment radioactivity declines in 

the microsomes and synaptosomes while that in myelin increases. It 

should be noted that myelin deposition is actively occurring at this 

time and that no attempt is made to correct the myelin specific 

activity for dilution by new myelin. Hence the myelin specific ac

tivities are probably lower limits of the true specific activity. 

A possible explanation for these data is that the endoplasmic reticu

lum is synthesizing phospholipid which is somehow transported to the 

myelin fraction possibly via a transport lipoprotein similar to that 

described for sulfatide transport by Pleasure and Prockop (1972). 

That the synaptosome fraction is losing radioactivity in a parallel 

manner to the microsomes could suggest the possibility of a transport 

of radioactivity from the endoplasmic reticulum to the synaptic termi

nal possibly by a slow exchange process as described by Miller and 

Dawson (1972b). However, Abdel-Latif and Smith (1970) have reported 

that the turnover rate of microsomes and synaptosomes was equivalent, 

as measured following the incorporation of three different lipid 

precursors into the phospholipids of these subcellular fractions. 
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If the turnover is equivalent, and if the endoplasmic reticulum is 

synthesizing phospholipids for the myelin and possibly other cellular 

structures, then an independent synthetic activity might be postu

lated to exist in the synaptic endings in order to make up for the 

difference. This is supported by the turnover studies of phospha

tidylcholine in rat cerebral cortex membranes following the intra

ventricular injection of (Me-14c) choline by Lapetina et al. (1970) 

which indicate that if anything, the turnover of the microsomal PC 

is slower than that of nerve terminal components. 

The phosphatidylcholine specific activity of both synaptosomes 

and microsomes is about 5-6 times that of myelin (Table 8) at five 

minutes after injection. While the specific activity in the former 

two fractions declines with time, that of myelin increases to a 

limited extent. Such a pattern is compatible with the slow transfer 

of radioactivity from the endoplasmic reticulum to myelin while 

synaptic terminals can readily incorporate fatty acids into phospha~ 

tidylcholine possibly via an acylation deacylation cycle. The actual 

subsynaptic fractions labeled, and the degree of labelling are not 

known. The rapid incorporation of fatty acids into PC has been demon-

strated by Koeppen et al. (1973) in isolated synaptic membranes 

following incubation with (14
c) malonyl-GoA. 

The pattern of radioactivity incorporated into the phosphatidyl-

ethanolamine is different from what might be expected. Similar to 

the pattern of incorporation seen in whole brain studies, the specific 

activity of PE is low at early time intervals after injection, and 
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at greater time intervals after injection increases in both the micro

somes and the myelin. Again, as in whole brain, this is consistent 

with the transfer of fatty acids from PC to PE as the elongation and 

desaturation reactions proceed, and the transfer then of phospholipid 

synthesized in the endoplasmic reticulum to the myelin. An inter

esting result is that unlike whole' brain, there is no increase in the 

specific activity of synaptosomal PE, but rather the specific activity 

of PE remains relatively constant throughout the duration of the 

experiment. Since the PC fraction from synaptosomes was about 3 times 

as active as PE, and the synaptosome fraction isolated by this pro

cedure has about equivalent amounts of PC and PE (including plasma

logen) as determined by lipid phosphorus (Sun and Horrocks, 1973), it 

would be expected that as the fatty acid from PC were desaturated 

and elongated the PE would become more active, as is seen for whole 

brain. It is unlikely that an increase in the specific activity of 

PE would be obscured by the variability of the data. The relatively 

constant specific activity for PE argues for a steady state turnover 

of the PE at the nerve terminal. 

That the specific activity of PE doesn't increase suggests 

the possibility that the synaptic terminal has only a limited ability 

to carry out lipid metabolism ie., the metabolic transformations of 

linolenic acid to its long chain polyunsaturated products, at least, 

may not be in its repertoire. Koeppen et al. (1973) reported that 

isolated synaptosomes could not synthesize fatty acids de ~ from 

Malonyl-CoA, but could elongate 20:4n-6 to 22:4n-6 which was 
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incorporated into phospholipids with 70% of the radioactivity assoc

iated with phosphatidylcholine. Over 80% of the total radioactivity 

was associated with the synaptosomal mitochondria while about 20% 

was associated with the synaptic membrane. This elongation system 

could be similar to that described by Seubert and Podack (1973) and 

hence, the desaturation and possibly the elongation of fatty acids 

for incorporation into structural lipids may not take place. If 

this be the case, the long chain polyunsaturated fatty acids charac

teristic of the synaptosomes (Kishimoto et al. 1969) must be derived 

from direct uptake from the extracellular space which is unlikely 

due to their very low concentration, or through the transfer of lipid 

from membranes with the synthetic capacity, namely the endoplasmic 

reticulum possibly by lateral diffusion of phospholipids through the 

membrane structure due to a gradient effect, or possibly via axoplas

mic flow as suggested by Miani (1963). 

This data for PE is supported in part by the data for (PS +PI). 

The (PS + PI) of the synaptosome fraction as the PE did not show an 

increase in specific activity over the duration of the experiment. 

The microsomal fraction itself was relatively constant as regards 

specific activity of (PS +PI). The reason that the microsomal 

fraction is relatively in a steady state of turnover is not clear, 

but it may be that the (PS + PI) is being rapidly transported from 

the endoplasmic reticulum. The heterogeneity of the microsomal 

fraction may be a factor and the exact nature of the precursor lipid 

which reacts with serine in the base exchange is unknown. The 
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labelling pattern of the synaptosomal (PS + PI) suggests that the 

long chain polyunsaturates are not available for incorporation into 

(PS + PI) or PE as they are in whole brain. That the synaptosomal 

(PS + PI) activity paralleled that of the microsomal (PS + PI) might 

be construed as evidence to support the transport of lipid from the 

endoplasmic reticulum to the synaptic ending. A complicating factor 

in this situation is the fact that PS and PI co-chromatograph in 

our thin layer chromatographic system. Sun and Horrocks (1973) re

ported that the inositol phospholipid could make up about one third 

of the combined (PS + PI) fraction as measured by lipid phosphorus. 

While the serine phosphoglyceride is rich in 22:6n-3 the inositol 

phosphoglyceride is primarily the species with stearic acid esteri

fied to the one position, and arachidonic acid esterified to the two 

position. In addition the inositol phosphoglycerides have been 

implicated in the process of nerve transmission. Hence there may be 

a number of different metabolic events occurring and attempts to 

elucidate them must come. It should be concluded here that the data 

concerning (PS + PI) while supporting that for PE in the synaptosomes 

should not be weighed too heavily at this time. It might be pointed 

out that the data for the synaptosome fraction does not rule out the 

possibility that there is a rapid loss of the incorporated radio

activity from the PE and the (PS + PI) so that the incorporation of 

long chain polyunsaturated fatty acids into these fractions in the 

synaptosomes is evenly balanced by the loss from the compartment. 

It seems unlikely though that the loss of radioactivity from the 
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phosphatidy1choline does not show up somewhere. It appears that 

there is no recycling of the radioactivity in this circumstance, 

and that it is just lost from the compartment. 

To summarize, somewhat, two processes seem to be occurring. 

Initially lllicrosomes and synaptosomes, particularly the PC fraction, . 
are rapid1y labelled. The decrease in the specific activity of PC 

in the nerve terminals without a concomitant rise in the specific 

activity of PE and (PS + PI) suggests the possibility that the de-

saturation and possibly the elongation of the fatty acids derived 

from the injected linolenic acid does not occur since it appears 

that the incorporation, in this case, of radioactivity into PE and 

(PS + PI) is dependent on the formation of long chain polyunsaturated 

fatty acids. This is also reported by Yavin and Menkes (1974). 

Hence, the £~tty acid released from the phosphatidylcholine may be 

oxidized by intraterminal mitochondria, or just simply lost from the 

nerve terlllinal compartment. On the other hand, it appears that there 

is a continual exchange of phospholipid between the endoplasmic 

reticulum and the myelin compartment, and possibly between the endo-

plasmic reticulum and the nerve terminal also. 

Possible roles for phospholipids and fatty acids have been 

postulated in the events occurring during nerve transmission (Yagihara 

~ al. 1973; Hawthorne and Bleasdale, 1975; Gullis and Rowe, 1975a). 

This is a factor which might complicate the interpretation of experi-

mental results in the nerve terminal. 
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We have looked at the incorporation of linolenic acid at the 

cellular level also. It was shown that (1-14
c) linolenic acid was 

incorporated to the greatest extent into the phospholipid of the 

oligodendroglia! enriched fraction as compared to the neuronal and 

astroglial enriched fractions. These data are presented in Table 11. 

The olig"Odendroglial cells are responsible for the formation of mye

lin and its maintenance. It was estimated that 3.5 mg of myelin are 

synthesized per day per brain in the 20 day old rat (Norton and 

Poduslo, 1973). Based on their calculations for the number of oligo

dendroglia! cells present in rat brain white matter these authors 

estimated that each oligodendroglia! cell synthesized greater than 

three times its weight per day of myelin. Hence the vastly greater 

incorporation of linolenic acid into oligodendroglia! phospholipids 

is not surprising. 

The specific activity of the astroglial fraction is greater 

than that of the neuronal fraction at 14 and 21 days. The neuronal 

fraction becomes more active than the astroglial fraction between 21 

and 28 days and remains elevated in the oldest animal used, 120 days. 

This could reflect changes associated with the maturation of the 

brain (Wells and Dittmer, 1967), and increased neuronal activity. 

Astroglial activity decreases with age, it being greatest 

during the period when rapid lipid deposition was occurring. In 

addition the neutral lipid fraction has associated with it almost 

twice the proportion of radioactivity that the neuronal fraction has. 

It is conceivable, as was discussed earlier, that the radioactivity 



108 

could, in the main, be associated with the triglyceride fraction. If 

so, it would support the notion that the astroglial cell could func

tion, in part, in a support capacity for other components of the 

nervous system. 
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Table lA. 

The incorporation of [l-14c] linolenate into individual phosphatides of 
essential fatty acid deprived and control rats: Ratios of phosphatide specific activities. 

Phosphatide Ratios 

PE/ 

PE/PC PS+PI PS/PC 

Time Control Deprived Control Deprived Control Deprived 

5 min. 0.28±0.015 0.30±0.008 0.68±0.070 0.52±0.002* 0.47±0.005 0.62±0.040* 

30 min. 0.32±0.018 0.37±0.005* 0.73±0.017 0.62±0.007t 0.44±0.016 0.59±0.039t 

60 min. 0.41±0.007 0.42±0.022 1. 51±0. 247 0.90±0.073* 0.43±0.123 0.52±0.014 

4 hrs. 0.44±0.013 0.66±0.016:1: 1.14±0.064 1.23±0.029 0.35±0.021 0.52±0.027t 

12 hrs. 0.63±0.058 1.21±0.058:1; 1. 37±0.157 1.34±0.078 0.43±0.049 0.91±0.031:1: 

24 hrs. 0.76±0.038 1. 54±0. 041:1: 1.12±0.115 1. 46±0. 03 7t 0.62±0.019 1. 06±0. 03 7:1: 

36 hrs. 1.15±0.007 1. 67±0. 057:1; 1.35±0.023 1. 37±0. 051 0.82±0.029 1. 22±0. 046:1: 

72 hrs. 2.26±0.415 2.20±0.127 2.13±0. 647 1.19±0.071 1.28±0.073 1.90±0.057t 

21 day old rats were injected with 0.75 ~Ci of [l-14c] linolenate intracerabrally and were sacrificed 
at the indicated time intervals. Each value is the mean of 3 or 4 determinations, except for 12 hrs., 
24 hrs. and 36 hrs. deprived values, which are the means of 8 determinations. 

The significance of the difference between the means of deprived and control values is shown by: 
*P<0.05, tP<O.Ol and :j;P<O.OOl. 

1-' 
(,.) 
(,.) 



Time 

5 min. 

30 min. 

60 min. 

4 hrs. 

12 hrs. 

24 hrs. 

36 hrs. 

72 hrs. 

Table 2A (1). 

Percent distribution of radioactivity in fatty acids of whole brain 
phospholipids from essential fatty acid deprive14and control rats following 

intracerebral administration of [1- C] linolenate. 

Fatty Acid Percent Distribution ± S.E.M. 

14:0 16:0 16:1 18:0 

Control De:erived Control De:erived Control De:erived Control 

0.8±0.11 0.2±0.09t 2.8±0.19 2.2±0.19* 0.7±0.07 0.2+0.04t 1.4±0.04 

0.5±0.15 0.2±0.07 7.4±0.56 4.5±0.80* 0.9±0.29 0.4±0.07 1.5±0.32 

0.7±0.18 0.3±0.11 8.2±0.85 5.5±0.19* 1.1±0.04 0.7±0.32 2.0±0.20 

1. 2±0. 31 1. 3±0. 40 11. 7±0.41 7.2±0.62:1: 1.1±0.11 0.8±0.39 2.5±0.15 

o. 6±0. 04 0.4±0.04* 13.3±0.76 6.2±0.55:1: 0.6±0.08 0.6±0.06 3.7±0.35 

0.5±0.07 0.8±0.32 14.9±0.57 4.6±0.08:1: 0.8±0.00 1.1±0.27 5.1±0.15 

0.8±0.15 0.6±0.16 16.2±0.16 5.6±0.04:1: 1.0±0.26 0.8±0.29 5.5±0.15 

1. 6±0.43 0.8±0.07 13. 9±1. 32 6.4±0.08:1: 1. 5±0. 07 1.0±0.15* 6.8±0.43 

De:erived 

0.5±0.06:1: 

0.7±0.00 

1.2±0.15* 

1. 5±0.26* 

2.4±0.llt 

2.8±0.26:1: 

2.4±0.08:1: 

3.6±0.12:1: 

21 day old rats were injected with 0.75 ~Ci of [l-14c] linolenate intracerebrally and were sacrificed at 
the indicated times. Each value represents the mean of 3 or 4 determinations. 
The significance of the difference between the means of deprived and control animals is given by: 
*P<0.05, tP<O.Ol and :i:P<O.OOl. 

...... 
w 
~ 



Table 2A(2). 

18:3n-6 18:3n-3 
18:1 18:2n-6 + 20:0 + 20:1 

Time Control Deprived Control Deprived Control Deprived Control Deprived 

5 min. 0.9±0.04 0.3±0.06:1: 1. 3±0. 24 0.2±0.05t 2.9±0.43 2.1±0.29 59.7±0.96 70 .1±1. 2t 

30 min. 1.5±0.39 0.6±0.08 0.7±0.22 0.2±0.04 4.0±0.35 0.1±0.04:1: 43.9±5.15 49. 0±1. 91 

60 min. 1.4±0.22 1. 3±0. 30 0.8±0.17 0.4+0.23 1.9±0.25 2.1±0.59 41. 8±1.96 31. 6±3. 6* 

4 hrs. 2.1±0.14 1. 6±0. 33 1.1±0.04 0.9±0.30 1. 2±0. 29 3.47±0.29t 24.9±0.68 18. 7±1. 23t 

12 hrs. 2.3±0.11 2.2±0.45 0.7±0.10 0.7±0.25 1. 5±0. 53 2.0±0.36 11.0±1.17 6.4±0.32* 

24 hrs. 4.1±0.15 2.1±0.49* 1. 5±0. 29 1. 3±0. 29 1.0±0.23 1.7±0.12* 6.9±0.07 3.0±0.18:1: 

36 hrs. 5.0±0.21 2.2±0.37:1: 1. 4±0 .17 0.5±0.18t 1. 2±0. 25 1. 5±0.11 4.1±0.50 3.1±0.29 

72 hrs. 5.5±0.43 3.4±0.07t 1.4±0.04 0.9±0.04:1: 1.4±0.16 1.3±0.07 3.0±0.18 2.1±0.15t 

21 day old rats were injected with 0.75 ~Ci of [l-14c] linolenate intracerebrally and were sacrificed 
at the indicated times. Each value represents the mean of 3 or 4 determinations. 

The significance of the difference between the means of deprived and control animals is given by: 
*P<O.OS, tP<O.Ol and :I:P<O.OOl. 
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Table 2A(3). 

20:3n-3 20:4n-3+20:5n-3 
+20:4n-6 +22:3n-9 22:4n-6 22:5n-6 . 

Time Control DeErived Control DeE rived Control DeErived Control DeErived 

5 min. 5.1±0.59 4.2±0.46 9.4±1.06 11. 9±0. 76 1.1±0.13 0.4±0.08t 1.0±0.04 0.5±0.07 

30 min. 7.3±0.93 7.0±0.58 13. 7±1. 64 25.2±0.92t 1.0±0.14 0.8±0.14 1. 0±0. 26 1.1±0.06 

60 min. 9.3±0.78 8.4±2.0 13.4±0.45 19.0±3.4 1.1±0.04 2.0±0.39* 1. 2±0. 04 1. 6±0. 50 

4 hrs. 13.8±5.1 9.8±0.63t 13.2±0.36 19.9±0.76t 1.7±0.05 1.1±0.29* 1. 5±0.12 2.0±0.33 

12 hrs. 18.4±2.35 9.1±1. 04t 13.0±0.95 18.8±0.35t 1.9±0.04 1.3±0.10t 1.7±0.18 2.4±0.08t 

24 hrs. 14.1±1. 57 9.1±0.70* 9. 2±0. 27 14.8±0.08t 1. 5±0. 29 1.6±0.26 1. 7±0 .00 2.3±0.24 

36 hrs. 8. 4±0.15 6.9±0.23t 8.4±0.49 14.0±1.10t 1. 6±0.04 1. 3±0.19 1.6±0.16 2.4±0.15t 

72 hrs. 5.2±0.57 3.7±0.19* 8.1±1.11 7.6±0.28 2.1±0.29 1.4±0.12* 1.8±0.33 1. 7±0.11 

21 day old rats were injected with 0. 75 llCi of [l-14
c] linolenate intracerebrally and were sacrific.ed at 

the indicated times. Each value represents the mean of 3 or 4 determinations. 

The significance of the difference between the means of deprived and control animals is given by: 
*P<0.05, tP<O.Ol and tP<O.OOl. 
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Table 2A(4). 

22:5n-3 22:6n-3 
Time Control Deprived Control Deprived 

5 min. 1.8±0.15 1.7±0.11 1.0±0. 23 0.7±0.04 

30 min. 4.3±0.39 8.4±0.11:1; 1. 9±0. 25 2.0±0.11 

60 min. 5.9±0.40 10 .4±1. 7* 2.4±0.19 3.7±0.41* 

4 hrs. 10.7±0.50 16.8±2.30* 5.1±0.25 8.1±0.53t 

12 hrs. 18.1±1.24 27.2±0.46t 10.1±0.55 15.5±0.39:1: 

24 hrs. 16.8±0.39 22.0±0.90:1: 15.2±0.48 27 .3±1.92t 

36 hrs. 19.7±0.93 26. 9±1.2lt 20.6±0.99 27 .4±1.40t 

72 hrs. 13.8±0.43 21. 2±1.15t 24.9±2.35 38.9±0.64:1: 

21 day old rats were injected with 0.75 ~Ci of [l-14c] lino.lenate intracerebrally and were sacrificed 
at the indicated times. Each value represents the mean of 3 or 4 determinations. 

The significance of the difference between the means of deprived and control animals is given by: 
*P<0.05, tP<O.Ol and :I:P<O.OOl. 
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Table 3A. 

Ratio of specific activities of individual phosphatides 
derived from the microsome fraction of whole rat brain. 

Ratio ± S.E.M. 

Time PE/PC PE/PS+PI PS+PI/PC 

5 min. 0.25±0.023 0.42±0.001 0.59±0.051 

30 min. 0.42±0.100 0.75±0.207 0.56±0.019 

60 min. 0.38±0.070 0.72±0.210 0.54±0.060 

4 hrs. 0.68±0.194 1. 64±0. 530 0.42±0.016 

12 hrs. 0.74±0.036 1.36±0. 325 0.57±0.163 

24 hrs. 0.82±0.019 1. 29±0.071 0.75±0.055 

36 hrs. 0.88±0.089 1. 29±0. 085 0.78±0.022 

48 hrs. 1. 32±0.120 1. 34±0. 071 0.99±0.024 

72 hrs. 1.06±0.088 1. 40±0. 039 0.74±0.046 

96 hrs. 1.10±0.165 1.23±0.014 1.05±0. 200 

138 

21 day old rats were injected with 1.0 ~Ci of [l-14c] linolenate intra-

cerebrally, and were sacrificed at the indicated times. Each value 

represents the mean of 2 or 3 determinations. Each determination is 

derived from three rat brains which were pooled for the subcellular 

fractionation. 
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Table 4A. 

Ratio of specific activities of individual phosphatides 
derived from the snyaptosome fraction of whole rat brain. 

Ratio ± S .E.M. 

Time PE/PC PE/PS+PI PS+PI/PC 

5 min. 0.44±0.039 o;46±0.057 0.95±0.032 

30 min. 0.50±0.177 0.66 0.57 

60 min. 0.41±0.012 0.72±0.086 0.47±0.067 

4 hrs. 0.48±0.028 1.28 0.39 

12 hrs. 0.59±0.042 1.26±0.156 0.47±0.025 

24 hrs. 0.85±0.100 1. 20±0. 256 0. 74±0. 077 

36 hrs. 0.85±0.135 1.41±0.361 0.61±0.057 

48 hrs. 1.10±0.461 1.30±0.240 0.78±0.204 

72 hrs. 0.74±0.026 1. 20±0.177 0.61±0.110 

96 hrs. 0.95±0.006 1.00±0.468 1.02±0.457 

21 day old rats were injected with 1.0 ~Ci of [l-14c] linolenate, 

intracerebral1y, and were sacrificed at the indicated times. Three 

rat brains were pooled for each determination, and each value repre-

sents the mean of 2 or 3 determinations, except where no value for 

S.E.M. is shown, which are single determinations. 



Table SA. 

Ratio of specific activities of individual phosphatides derived 
from the myelin fraction of whole rat brain. 

Ratio ± S.E.M. 

Time PE/PC RE/PS +PI PS +PI/PC 

5 min. 0.25±0.088 0.44±0.300 0.64±0.240 

30 min. 0.69 2.11 0.33 

60 min. 0.32±0.037 2.17±1. 31 0.17±0. 086 

4 hrs. 0.81±0.060 1. 57±0. 205 0.52±0.030 

12 hrs. 0.88±0.339 1. 61±0. 297 0.54±0.110 

24 hrs. 

36 hrs. 1. 62±0. 007 1. 67±0. 672 1. 06±0.430 

48 hrs. 1. 88±0.170 1.45±0.304 1.32±0.163 

72 hrs. 1. 98±0 .170 1. 65±0. 573 1. 30±0. 559 

96 hrs. 1.36±0.113 1.07±0.014 1.80±0.085 

140 

21 day old rats were injected with 1.0 ~Ci of [l-14c] linolenate intra-

cerebrally, and were sacrificed at the indicated times. Three rat 

brains were pooled for each determination, and each value represents 

the mean of 2 or 3 determinations, except where no value for S.E.M. is 

shown, which are single determinations. 
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