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CHAPTER I 

INTRODUCTION 

This dissertation is concerned with the establishment of an accurate and 

clinically useful method for the determination of aluminum in biological samples, 

and the application of the method to the study of the element's metabolism in 

humans. The problem is of interest in that it is daimed that aluminum is a factor 

in the progressive encephalopathy seen in some patients on maintenance 

hemodialysis. Also, there is a need to establish the role of aluminum-containing 

antacids in phosphate utilization. 

Because of its ubiquitous distribution, aluminum enters people's lives 

daily in many forms from a variety of sources (1). In most cases this is 

adventitious, but in a few instances its introduction is for specific purposes. The 

most common route of designed aluminum intake in man occurs through the use of 

antacids (2), but the metal has generally been considered to be non-essential, non

toxic, and not absorbed through the gut (3). Small amounts are present in many 

foodstuffs. 

A procedure for the analysis of aluminum in biological specimens, which 

requires no sample preparation for serum and urine, is sensitive to the appropriate 

levels, and is relatively simple and rapid to perform, is described, using graphite 

furnace atomic absorption spectrophotometry. The samples are pipetted to the 

interior of a graphite tube, where the~ are sequentially dried, charred, and 

atomized. Precautions for sample handling are discussed, and instrument settings 

are defined. Statistical analyses of the precision and accuracy of the method are 
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presented, as are analyses of the effects of salts, protein content of serum, and 

specific gravity of urine. Reference values for serum and urine are established 

for persons not consuming aluminum-containing antacids. 

Metabolic balances are presented to evaluate the fate of ingested 

aluminum under normal dietary conditions, and while supplementary aluminum

containing antacids are given. The aluminum content of the diets, drinking water, 

medications, and complete urine and stool collections, as well as the plasma at 

various intervals, is included for several patients, during both control periods and 

antacid supplementation. 

In the special case of chronic renal failure patients maintained on hemo

dialysis, large amounts of aluminum-containing compounds are consumed in an 

attempt to limit the absorption and prevent the accumulation of phosphate (4). 

Serum aluminum levels in these patients, and the effects of hemodialysis and 

other allied treatments on these levels, are reported. Recent work suggests that 

aluminum may accumulate in toxic amounts in the brain (5), and it is highly 

suspect in the etiology of "dialysis dementia." 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

A. Aluminum and its Determination. 

In spite of the fact that aluminum is the most abundant metallic element 

in natural waters and the third most abundant element in the earth's crust, 

biological systems have evolved containing only trace levels of this metal. There 

is no evidence that aluminum has an essential biological function, or is required 

for life (6). This may be related to its abundance, in that, a deficiency, if 

possible, would be extremely rare. Two short reviews of aluminum's role in human 

nutrition have appeared (7, 8). Sorenson et al. (1) have published an extensive 

survey of 818 references covering the biology, toxicology, and uses of aluminum. 

Many analytical methods have been used to measure aluminum. The 

procedures include: colorimetry, utilizing aluminon (9), Eriochrome Cyanine R 

(10), Alizarin Red S (11), and hematoxylin (12); fluorimetry, utilizing morin (13, 14) 

and exine sulfonic acid (15); titrimetry (16, 17); emission spectrography (18, 19); 

paper chromatography (20); ion-specific electrodes (21, 22); neutron activation 

analysis (23-26); x-ray fluorescence (27); polarography (28); gas chromatography 

(29, 30); and several types of atomic absorption and emission. This last category 

includes: the carbon cup (31); flame atomic emission (32, 33); atomic emission 

with a graphite furnace (34); flame atomic absorption (35); and atomic absorption 

with a graphite furnace {36-39). Many of these methods have been applied to 

biological samples, but the results show tremendous variation (1), and more than 

3 



4 

one investigator has commented that normal aluminum concentrations were too 

low to be estimated accurately. 

The development of flameJess atomic absorption instrumentation, par

ticularly the graphite furnace, has provided the means for quantitating those 

elements whose biological concentrations were previously beyond the detection 

limits of conventional atomic absorption spectrophotometers. The graphite 

furnace is adaptable for all matrices, and for many elements provides the best 

detection limits (40). The advantages for biological samples include the small 

sample size requirement, ability to use samples with no prior preparation, and its 

use of temperature stages, which permits the pyrolyzation of organic components 

before atomization (41). Several papers have been published regarding the 

theoretical factors governing atomization with a graphite furnace (42-44). 
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B. Uses of Aluminum in Medications and its Effects on Various Biological 
Systems. 

Aluminum-containing antacids are widely used in medicinal preparations, 

available without prescription, and their actions have been the subject of many 

investigations. The effects of these and related drugs have been reviewed by 

Morrissey and Barreras (45). In general, these compounds are more effective when 

administered as liquid suspensions, rather than in solid (tablet) form (46). The 

most common form of aluminum in these preparations is the hydroxide, and its use 

in the management of peptic ulcer began in 1924-. In 1943, Kirsner (47) evaluated 

aluminum phosphate and aluminum hydroxide in peptic ulcer treatment, and found 

no alteration of acid-base balance or electrolyte levels by these two "nonabsorb-

able compounds." 

Another major use of aluminum antacids is as phosphate binding agents, 

particularly in renal failure. Aluminum oxide (48) and dihydroxyhydroxodiaquo- 6 

- glucono calcium aluminate (calcium glucaldrate) (49) have been proposed as 

effective agents, also. 

Aluminum also finds uses as adjuvants for vaccines and toxoids (50) and 

in penicillin preparations. Other therapeutic uses of aluminum compounds include: 

the treatment of hyperkalemia in renal failure (51), metastatic calcinosis cutis 

(52), and choleraic bile-salt diarrhea (53); the management of renal phosphatic 

calculi (54); and the improvement of metabolic renal acidosis (55). 

McCaffrey and Lilly (56) suggest that complications of aluminum-

containing antacid therapy are insignificant, and consist primarily of constipation, 

although they do advise caution in patients with existing bone disease. However, 

these medications may not be as innocuous, as was once believed. Due to their 
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constlpatory nature, intestinal obstruction and perforation have been reported (57-

60). On the other hand, Arora et al. (61) have reported four deaths, due to an 

inability to tolerate aluminum hydroxide gel with consequent calcific cardiomy

opathy in renal failure. 

Several studies have focused on the interactions between aluminum 

compounds, particularly antacids, and other drugs in combination therapy. The 

results show: an increased absorption for pseudoephedrine (62); a decreased 

absorption for ethambutol (63), isoniazid (64), propranolol (65), digoxin (66), sulfa

diazine (67), and quinine (67); and no effect on cimetidine (68) or iron (69). In the 

cases of a decreased absorption of a drug given with an aluminum compound, the 

consensus is that the decrease is due to delayed gastric emptying. 

Aluminum chlorhydrate and zirconium aluminum glycine complex are the 

active ingredients of most antiperspirants, and aluminum chloride hexahydrate 

solution has been reported to be the treatment of choice for axillary hyperhidrosis 

(70). Since Turk and Parker (71) showed granuloma formation after intradermal 

injection of these compounds, much research has been done to determine the 

extent of their toxicity. The above compounds were found to be hemolytic and 

damaging to macrophages and fibroblasts, in vitro (72), but were not found to be 

granulomagenic on intratracheal inoculation (73), although there was a dose

related acute inflammatory respiratory bronchiolitis. 

Aluminum levels have been reported in association with various disease 

states, including: decreases in blood and increases in urine with rheumotoid 

arthritis (74 ), increases in plasma with chronic pneumonia (75), increases in the 

lung with silicosis (76), and accumulations in lymph nodes in non-filarial 

elephantiasis (77). 
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Many metabolic effects of aluminum have been noted in the literature, 

including: decreased blood and tissue iron (78), cytochrome oxidase activity in 

liver, kidney, heart, muscle, brain, and spleen (79), and blood glycogen levels (80), 

but increased blood sugar levels (80), in rats and rabbits injected subcutaneously 

with aluminum sulfate. Aluminum was found to induce experimental porphyria in 

rats (81), which the authors concluded was caused by aluminum entering the 

hepatocyte nucleus and there combining with the DNA. Aluminum salts depressed 

acetylcholinesterase activity in cultured neuroblastoma cells (82), and a complex 

of aluminum and alginic acid produced a hypocholesterolemic effect (83), by 

binding bile acids and increasing their excretion. Hematological effects reported 

after occupational exposure to aluminum by workers in aluminum-producing plants 

include decreased hemoglobin and erythrocyte count and increased leucocyte 

count (84). Increased prothrombin time in workers producing alumina (85), and 

accelerated coagulation in a patient given intravenous kaolin (86) have been 

reported. 

Physiological effects reported for aluminum include: the relaxing effect 

of aluminum chloride on gastric smooth muscle (87), the increase in lower 

esophageal sphincter tone by aluminum hydroxide (88), the increase in fluoride 

uptake by molars with topical aluminum chloride (89), and skeletal defects and 

growth retardation in the offspring of rats treated with intraperitoneal aluminum 

chloride (90). 
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C. Dialysis Dementia. 

In 1942, Kopeloff et al. (91) produced convulsive seizures in monkeys by 

the application of alumina cream to cortical motor areas. Since then the 

application of aluminum compounds to the brain in several species has become the 

standard approach to the production of experimental convulsions and epileptic 

seizures (92 - 100). These papers detail the histology and pathology of the lesions 

produced and the behavioral modifications caused by the neuronal degeneration. 

Clinical symptoms of this encephalopathy include paresis, ataxia, muscular 

hypertonia, and grand mal epileptic convulsions. Blinova et al. (101) cite the direct 

action of aluminum on the neurons' metabolism as the cause of the epilepsy. De 

Boni et al. (102) advanced this research by inducing neurofibrillary degeneration in 

rabbits with subcutaneous injections of aluminum lactate or tartrate. From this 

work the authors conclude that systemic aluminum is able to cross the intact 

blood-brain barrier and produce results identical to those from direct cortical 

application. 

In recent years much discussion has centered around the retention and 

toxicity of aluminum from the antacids consumed by patients with renal failure, 

and primarily those on maintenance hemodialysis. Some investigators have 

claimed that there is no systemic toxicity from aluminum antacids (2, 4, 45, 103), 

while others insist that it is harmful (104-5), and suggest that its use be 

discontinued pending further studies (106). Elevated serum aluminum levels have 

been reported in renal failure patients (107-8). 

Increasing the significance of this debate was the recognition of a 

syndrome of progressive dementia (109-10), leading to seizures and death in some 

patients undergoing maintenance hemodialysis. The clinical symptoms included: 
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language disorders, characterized by slow speech with stuttering progressing to 

mutism; loss of coordinated movements, associated with myoclonus and seizures; 

dementia, characterized by confusion, disorientation, and impairment of memory; 

and behavioral disturbances, manifested as agitation, delirium, paranoia, and 

hallucinations. Electroencephalograms in affected patients showed distinctive and 

similar, but undefinable, abnormalities, including generalized slowing, bisynchron

ous delta waves, and epileptic-type spikes, while the post-mortem neuropathologi

cal examinations were unremarkable. 

Many diverse causes for the progressive dialytic encephalopathy have 

been proposed, including: tin toxicity (109); deficiencies of rubidium (111), dopamine 

(112), and asparagine (113); and a uremic encephalopathy in slow-motion Oil!-). No 

substantiating evidence has been found for these mechanisms. However, it has 

been reported that brain aluminum concentrations are higher in patients dying 

with dialysis dementia than in controls and non-dialyzed uremics (5, 115), with grey 

matter containing three times more aluminum than white matter. In an extensive 

trace metal survey, Tipton and Cook (116) found by emission spectroscopy that the 

bcx:!y tissues having the highest concentrations of aluminum were lung, omentum, 

and skin. The concentration in the lung varied directly with the age of the 

subject, which the authors conclude was environmental contamination. The lowest 

aluminum concentration was found in brain tissue. 

One factor which hemodialysis patients have in common is the 

consumption of large amounts of aluminum-containing antacids to prevent the 

accumulation of phosphate. They are also dialyzed on a regular basis against a 

solution, the composition of which varies, as does the purity of the water used in 

its preparation. Some treatment centers have used tap water in which aluminum 

had been utilized in purification, others deionized water. Another controversy 

which exists in the literature is the source of the aluminum, if indeed this is 
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producing the toxic effects. Some investigators argue that the absorption of 

aluminum in the gut is too small, and that the intravenous administration of 

aluminum contaminating the dialysate is at fault (115, 117-19). In support of this 

view is the report by Alfrey et al. (109) that the EEG tracings worsened after 

dialysis. On the other hand, the syndrome has occurred in treatment centers using 

deionized water to prepare the dialysate (120), and it has been hypothesized that 

an altered intestinal permeability exists in uremia. 

There have been only two reports of reversals of the encephalopathy, one 

by discontinuing the aluminum antacids (121), and the other by a successful 

transplantation (122). 

Several editorial reviews have been published concerning dialysis 

dementia (123-5). 

Two other reports exist of an encephalopathy associated with aluminum 

resulting in death. A 49 year old man, who worked in an aluminum powder 

factory, developed aluminum fibrosis of the lung, and an encephalopathy 

resembling that seen in dialysis patients (126). The second case of mental 

deterioration was in a 27 year old man with no history of exposure to aluminum, 

but with deposits of the metal found in the brain at autopsy 027). 

Abno_rmally high concentrations of aluminum in the brains of patients 

dying with Alzheimer's disease, a progressive dementia of unknown etiology 

occurring after the age of 40, have been found by some workers (128-9). This has 

been refuted by others (130), who were unable to demonstrate a significant 

difference in aluminum concentration between normal and Alzheimer brains. 

Further, it has been pointed out that the lesion in Alzheimer's disease is different 

from that produced experimentally in animals by aluminum compounds (131). 



CHAPTER III 

MATERIALS AND METHODS (132) 

A. Equipment. 

The primary instrumentation for the aluminum determinations consisted 

of a Perkin-Elmer system (Norwalk, CT, 06852), including the Model 306 atomic 

absorption spectrophotometer, equipped with the Model HGA-2000 graphite 

furnace, a deuterium arc background correction system, the Model 56 chart 

recorder, the Model PRS-7 A printer interface and sequencer, an Intensitron 

aluminum hollow cathode lamp, and standard graphite tubes and cones. A voltage 

stabilizer (Raytheon Manufacturing Company, Model VR3) was used between the 

current source and the spectrophotometer, background corrector, and chart 

recorder. Air was used as the purge gas for the deuterium arc background 

corrector with a Carborundum Fulflo Filter (Model B3A) in the line. High purity 

argon (99.995%) was used as the purge gas for the graphite furnace. 

11 
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B. Instrumental Parameters. 

1. The voltage stabilizer output was set to 115 volts with a voltmeter, and 

this smoothed out any fluctuations in line voltage, which would have 

interfered with the absorption signals. In addition, all connections were 

grounded. 

2. The argon gas flow was adjusted to 1.1 liter/minute, 3.5 units on the 

furnace controller unit. Argon proved to be the purge gas of choice for 

the determination of aluminum, as it gave expected increase in 

sensitivity over that observed for nitrogen (133). The absorbance signals 

were 4.25 times greater with argon than with nitrogen. 

3. The automatic gas flow interrupt was activated, so that the atom cloud 

remained in the light beam longer. 

4. The water for cooling the furnace ran at a rate of 2.7 liter/minute. 

5. The hollow cathode beam and the deuterium arc beam were balanced in 

intensity at a gain setting of midline on the energy meter. Because of 

the much greater intensity of the aluminum lamp compared to the 

deuterium lamp, the current to the former was reduced to accomplish 

the matching. 

6. The signal peak mode was selected at slit width setting 114, providing a 

spectral band width of 0.7 nm. 

7. The monochromator was tuned to the peak of the emission line of the 

aluminum hollow cathode lamp at .309.3 nm. 

8. A graphite tube was inserted into the furnace and aligned using a glass 

rod with well-fired ends to prevent damage. The aluminum rod included 

with the instrument was not used. The tubes were aligned so that the 
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sample hole was centered in the injection port. This allowed for the 

easiest introduction of the samples. The graphite tubes were noted to be 

asymmetric with respect to the placement of the gas inlet holes around 

the sample hole, but tube insertion either way produced the same 

absorption signal. The tubes could be placed so that the gas inlet holes 

were either in a horizontal or a vertical plane. Carbon residue from 

serum and plasma samples seemed more prone to accumulate, when the 

tubes were placed with the holes in the vertical position, probably due to 

the cooling effect of the purge gas. Consequently, the tubes were always 

placed with the holes in the horizontal position. The sample hole of the 

standard tubes was found to be too small to allow for reproducible 

placement of serum and urine samples. The samples tended to cover the 

opening, and to be pulled out of the tube, upon withdrawal of the 

micropipettor tip used for sample delivery. Carefully increasing the size 

of the sample hole from its original 2.08 mm to 2.78 mm with a drill bit 

solved the problem. This allowed repetitive placement of the entire 

sample at a single site on the floor of the tube with no sample loss. New 

tubes were conditioned by heating them to a temperature of 2600 °C, 

until the absorbance returned to the baseline on the chart recorder. 

9. A deuterium arc background corrector was used for all measurements 

with the air flow for purging set at 3 units on the power supply 

flowmeter. 

10. The chart recorder was operated in the automatic mode with the pen 

actuator leads shorted, so that the pen responded at all times, but the 

chart only began to move during the final seconds of the charring stage. 

This allowed observation of the absorbance reading throughout the entire 
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program without recording all stages. The recorder was zeroed to the 

chart baseline with both the recorder zero and the spectrophotometer 

auto-zero plus peak-start combination. The recorder was operated in the 

servo position at a speed of 10 mm/minute, and usually at 10 mV. 

11. The printer-sequencer was connected to its own power source to 

eliminate the drain that occurred when the unit was activated, which 

interfered with small absorption signals. 

These instrument settings are summarized in Table 1. 



Table 1: Summary of Instrument Parameters. 

Atomic Absorption Spectrophotometer 

Aluminum hollow cathode lamp current: 10 rna 

Wavelength setting: 309.3 nm 

Filter: out 

Emission chopper: off 

Phase: normal 

Signal: peak 

Gain: set to midline on energy meter 

Slit: 0.7 nm (/14) 

Function: absorption 

Range: uv 

Curve correction onset: 0 

Curve correction magnitude: 0 

Concentration: 0 

Decimal point: off 

Mode: absorption 

Graphite Furnace Programmer 

Argon gas flowmeter: 3.5 units (l.lliter/min) 

Recorder: automatic 

Gas interrupt: automatic 

15 



Deuterium Arc Background Corrector 

Air Flowmeter: 4 units 

16 

Reference energy: set to exceed Allamp intensity by 1 unit on the energy meter 

Chart Recorder 

Power: servo 

Polarity: + 

Chart speed: 10 mm/min 

Range: 10 m V full-scale 

Accessories 

Voltage stabilizer: output set to 115 V 

Water flow rate: 2.7 liter/min 

Graphite tube sample hole: increased to 2.78 mm 
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C. Sample Delivery. 

Oxford pipettors were employed to deliver samples to the interior of the 

graphite tube. Some of the attendant tips were found to be irregularly 

contaminated with aluminum. This contamination could not be removed by 

washing with nitric acid, and Karin et al. (134) reported that aluminum could not 

be leached from the plastic matrix by acid washing. The tips were washed for 75 

minutes with continuous stirring in a solution of 6 g of Na2EDT A per liter. They 

were rinsed with two changes of water and stirred for 60 minutes in a large 

volume of water. The tips were air dried and stored in the container in which they 

had been washed. Aluminum could not be detected when the tips were used to add 

pure water to the furnace. 

The pipettor was used in the "to deliver" mode and the tip was replaced 

for each new sample. Blotting of the tips was avoided to eliminate contamination 

by the lint of the tissues. To prevent sample from clinging to the outside of the 

tip during pickup, the sample tube was tilted, so that the tip was minimally 

immersed. 

The actual sample deli very was accomplished by inserting the tip into the 

graphite tube sample hole until it just touched the lower section of the opposite 

side. When the sample was expelled while in contact with the tube, it formed a 

reproducible droplet at the point of contact, and due to the increased size of the 

sample hole, was not distorted upon withdrawal of the tip. 

To determine the optimal sample volume, an aqueous standard was 

introduced into the graphite tube with pipettors delivering different sample 

volumes. Figure 1 shows that absorbance increased linearly to a sample volume of 

25 pl, which volume was used for most analyses. 
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Figure 1: Curve obtained using pipettors of various volumes. 
A standard aluminum sulfate solution, 100 ug of AI per liter, 
was used. 
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D. Graphite Furnace Programs. 

1. Drying. Drying parameters for the furnace program were determined 

by directly observing the sample within the graphite tube. With a 25jl1 volume a 

temperature of 100 °C for 60 seconds was sufficient to dry aqueous and urine 

samples. Any further increase in the drying temperature caused the aqueous and 

urine samples to splatter through the tube. However, this temperature was found 

to be too low for serum and plasma. For thorough drying of serum and plasma a 

0 temperature of 350 C for 60 seconds was necessary. If the sample was not 

completely dried when the charring stage began, a portion of it was blown to the 

end or out of the tube, due to the sudden increase in temperature and the argon 

gas flow. 

After the analysis of serum or plasma specimens at the lower tempera-

ture, some carbon residue remained inside the graphite tube. If the residue was 

not removed, it interfered with subsequent analyses, as shown in Figure 2. This 

interference was caused by physical blockage of the light beams by the residue, 

and not by carry-over to the next determination. Adequate drying reduced this 

problem to a minimum. The residue was removed by loosening it with a quartz rod 

with well-fired ends, and blowing it from the tube with a 1 oz. rubber bulb. No 

contamination from this procedure was observed in subsequent determinations, as 

checked by blank firings. Drying serum or plasma at either temperature gave the 

same absorbance values, when proper care was used to see that the graphite tube 

was clear after each firing, and that no losses had occurred when using the lower 

temperature. 

2. Atomizing. With 25 jll aqueous aluminum standard, the absorbance 

increased linearly to an atomizing temperature of 2600 °C (Figure 3). Beyond this 



Figure 2: 
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Chart recorder tracing demonstrating the need for removal of the 

residue from the graphite tube between analyses of serum and 

plasma. During five consecutive analyses of a sample, the residue 

was not removed until after the fourth determination. This was 

especially necessary if drying was at 100 °C. 
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Figure 3: Optimal atomization temperature. The aluminum sulfate standard 

had a concentration of 150 ug of Al per liter. 



22 

temperature, the rate of absorbance increase was less, so that 2600 °C was chosen 

as optimal. 

The minimum atomizing time at 2600 °C needed for the absorbance to 

return to the baseline and avoid carry-over was 12 s. This time also was adequate 

for serum and urine samples. 

3. Charring. To optimize the charring conditions, the minimum 

temperature and time to eliminate non-specific background absorption were 

determined at 307 nm, a non-absorbing wavelength for aluminum. As shown in 

Figure 4, when charring 25 !Jl samples for 60 s, the minimum charring temperature 

is 1300 °C and is the same for both serum and urine. The minimum charring time 

for 25 J-11 samples of serum and urine at 1300 °C is 60 s, as illustrated in Figure 5. 

The optimal charring temperature for 25 J-11 samples of serum and urine 

as determined at the primary wavelength for aluminum, 309.3 nm, is shown in 

Figure 6. It is 1500 °C. 

A summary of the furnace programs is presented in Table 2. 
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Table 2: Summary of Graphite Furnace Programs. 

Drying stage: serum - 60 s at 350 °C 

urine and aqueous - 60 s at 100 °C 

Charring stage: 60 sat 1500 °C 

Atomizing stage: 12 sat 2600 °C 
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E. Standards and Reagents. 

Standard aluminum stock solutions were prepared in several ways and 

compared. They were stored in polyethylene bottles at 4 °C. 

1. From salts. Solutions of AliS04)3·18 H20 were found more stable 

than those of K2Al2(so4\:24 H20. For a concentration of 1 mg Alper liter, 12.26 

mg Al2(so4)fl8 H20 was dissolved to make lliter of solution. This concentration 

sufficed to make acidification for stability unnecessary, eliminating one source of 

contamination. Dilutions for use were prepared daily from the stock. 

2. Aluminum metal. Aluminum foil of a 99.997% purity (Alfa Division, 

Ventron Corporation, Danvers, MA, 01923) was weighed on a Cahn electrobalance 

(Model 4400) and 1.921 mg dissolved in 5.6 ml concentrated H2so4• Solution was 

facilitated by the addition of 6 drops 30% H2o2• The final solution contained 

0.9605 mg of aluminum and 0.09 mol of H2so4 per liter. To show contamination 

did not result from the glassware or reagents, a blank acid solution was first 

prepared and assayed, and the standard prepared in the same 2 liter volumetric 

flask. 

A standard was also prepared from the foil with HCl, which required 

gentle heating to affect solution. The final concentration was 1.0155 mg of Al and 

0.04 mol of HCl per liter. 

3. Commercial Standard. A solution of Al2(so4)3, containing 1000 ppm 

AI, was obtained from Alfa Division, Ventron Corporation, Danvers, MA, 01923. 

The water was purified by reverse osmosis and passed through a mixed

bed resin exchanger (Continental Water, Melrose Park, IL, 60160). It was run for a 

few minutes before collection, and the metal could not be detected in it. 
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A gelatin multicomponent trace element reference material (TEG-50-B) 

was purchased from Eastman Kodak Company (Rochester, NY, 14650, Cat. No. 

15087) for use as a control in the aluminum analyses. 245 mg was dissolved in 

about 150 ml water, with gentle heating, and this was diluted to 250 ml in a 

volumetric flask. The solution then contained 0. 98 g gelatin per liter. 



29 

F. Subjects. 

1. Reference Studies. The only criterion used for including samples to 

determine reference values for serum and urine was that the donor was not using 

aluminum-containing antacids. 

2. Metabolic Studies. These studies were carried out in cooperation with 

the Metabolic Research Unit of Hines V .A. Hospital. The patients on this ward 

were volunteers admitted for evaluation and observation of various medical 

problems. They were required to be fully ambulatory, free of severe gastro

intestinal and renal impairment, and not taking medications, which were not part 

of the study protocol. Generally, the hospital stay was a lengthy one, as the 

Metabolic Year ran from September through July each year. There was continual 

nursing care and daily physician visits. 

The patients were carefully instructed as to the strict regulations which 

of necessity were required for the intake of food and fluid and the complete uri · ·. 

and stool collections. The Metabolic Unit maintained its own dietary kitchen, and 

the patients were allowed to eat only that food which was specially prepared for 

them. Due to the nature of metabolic studies, the diets were constant and had 

little variety, but individual tastes were considered whenever possible, using the 

food items of the constant diets. 

Timetables were established for each patient as to administration of the 

drugs under investigation, in this case aluminum-containing antacids, and for 

adequate control periods before or after such administration, or both. 

These studies were performed under strictly controlled conditions (135), 

beginning with the establishment of an isolated, self-sufficient hospital ward, in 

which the temperature and humidity remained at a constant level. This ensured 
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that losses of electrolytes, minerals, and water via the skin related to urine 

volume and body weight changes were minimized. In this regard, physical exercise 

was standardized and limited to prevent losses through perspiration. Total fluid 

intake and drinking water volume, after being individualized, were kept constant 

throughout the studies. 

3. Dialysis Studies. These studies were carried out with the cooperation 

of the Renal Dialysis Unit of Hines V .A. Hospital. The patients in the 

hemodialysis studies were selected at random, but were all on a schedule of four 

or five hours of maintenance hemodialysis three times weekly. The patients in the 

hemofiltration studies were selected because of intractable hypertension or large 

weight gain due to fluid retention. 
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G. Collection of Specimens. 

1. Blood. Many systems for obtaining specimens by venipuncture were 

tested for their possible contribution to aluminum contamination. The best results 

were obtained with a Monoject (Sherwood Medical Company, St. Louis, MO, 63105) 

3 ml disposable syringe (Cat. No. 158150) and a Monoject 20 G x 1Y2
11 

disposable 

needle (Cat. No. 250). The following technique was employed (136): after blood 

collection, "air is drawn into the syringe, clearing the needle and connector, until 

the plunger is within about 5 mm from the end, allowing for its easy removal 

later. The needle is capped, and the specimen is permitted to clot in the syringe 

with the needle up (Figure 7, A). The needle is then removed and replaced with a 

serum-bottle stopper of the sleeve type (B), which has been modified (C). The unit 

is inverted, and the plunger is carefully removed (D). The specimen is then 

centrifuged (E), and the serum is used directly or decanted into a previously 

prepared plastic tube." Freedom from contamination was verified with blank 

solutions. 

Several types of Vacutainer brand evacuated blood collection tubes 

(Becton-Dickinson, Rutherford, NJ, 07070) were tested for suitability. Certain 

lots of tubes with no additives (Cat. Nos. 4736 and 4504) were found to be free of 

detectable aluminum, but other batches were found to have aluminum. 

Plasma was obtained by transferring the whole blood to previously 

prepared tubes containing 18 J11 of 30% sodium citrate per milliliter of whole blood 

and centrifuging. The sodium citrate was free of detectable aluminum. Serum 

and plasma were stored frozen at -7 °C until analyzed. 

All glassware and containers used were tested for possible contamina

tion. Except for the preparation of standards and stool ashes, all laboratory ware 
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Figure 7: Various stages in the collection of a blood sample to minimize 

aluminum contamination (136). 

32 



33 

used was plastic, chiefly polypropylene. Glassware was prepared by soaking it in a 

solution containing 3 mol HCI/L for one hour, followed by copious rinsing with 

aluminum-free deionized water. This included 100 ml beakers for ashing of stool 

samples, and volumetric flasks for dilution of stool ashes and preparation of 

standards. The plastic ware was prepared initially in the same manner, and once 

free of contamination, the same containers were rinsed well and reused. Regular 

washing with nitric acid showed no advantage, because of its aluminum content 

(137). In consideration of the extremely low levels of aluminum encountered in the 

biological samples, addition of reagents and transferring from container to 

container was avoided whenever possible. 

It had been reported that Parafilm (American Can Company, Greenwich, 

CT, 06830) was a source of contamination in some chemical studies (138). This 

material was tested, and no contamination was observed. Therefore, all sample 

tubes were covered with Parafilm until analyzed. 

Another source of contamination was sweat from the hands, which is rich 

in trace metals (139}; thus, handling of all associated materials was kept to a 

minimum. 

Blood was drawn from the dialysis patients by puncture of the sleeve on 

the arterial line of the dialysis tubing with the Monoject unit. 

2. Urine. Urine specimens were obtained as 24 hour collections in 

previously prepared containers without preservative. The volume and specific 

gravity were recorded for each. For the metabolic balance studies the complete 

daily urine collections were pooled to obtain six-day pools, by mixing 1% of each 

day's volume. The patients voided into individual stainless steel urinals, and after 
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the volume was measured, the specimens were stored in polypropylene jugs in a 

refrigerator until pooled. Urine specimens, including pools, were refrigerated at 

4 °C until analyzed. 

3. Stool. Stool samples for the metabolic balance studies were collected 

in individual polypropylene beakers inserted into a commode-chair. Each 

collection was homogenized, and 50% by weight of each was mixed to produce the 

pool for that metabolic period, unless the patient was constipated, in which case 

the entire collection was used. 

Stool periods were demarcated by the use of markers, carmine and 

charcoal, administered in capsule form. A marker was taken with breakfast at the 

beginning of each six-day metabolic period, alternating between 310 mg carmine 

and 320 mg charcoal. The appearance of a marker in the stool indicated the 

beginning of the collection for that metabolic period, which continued until the 

next marker appeared. In other words, the passing of the second marker heralded 

the start of the next period. The length of each period (6 days) and the number of 

periods studied (8-23) were chosen to eliminate the irregularities of stool passage, 

especially in older, constipation-prone patients. 

4. Food. The diets for the metabolic balance studies were constant and 

known, and consisted of two low calcium (200 mg) menus, served on alternate 

days. The food was purchased in large quantities from the same lots to eliminate 

variation in preparation. All foods were weighed, and all fluids were measured. 

An homogenate was prepared of both menus, mixing together foods and fluids 

exactly as served. 
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5. Dialysate and Hemofiltrate. Entire dialysates were collected from 

the dialyzer unit drain tube into a specially washed 32 gallon polyethylene bin 

(Cole-Parmer, Chicago, IL, 60648, Cat. No. 6742). Entire hemofiltrates were 

collected, under vacuum, from the membrane into a specially washed 20 liter 

Pyrex bottle, equipped with specially washed tubing and connections. Aliquots of 

these fluids were taken after thorough mixing. 
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H. Preparation of Specimens. 

1. ·stool and Food. Five grams of the stool pool homogenates or diet 

homogenates was weighed in duplicate into 100 ml glass beakers, which had been 

specially prepared, and marked with a heat-resistant china marker. These were 

dried overnight in an oven at 110 °C. It was important that the samples be 

thoroughly dried, so that no losses occurred in the muffle furnace. The samples 

were then ashed in a muffle furnace overnight at 550 °C. After cooling, 

approximately 5 ml of 3 mol H2Solt per liter was added to each, and these were 

heated on a hot plate until they just began to boil. The samples were allowed to 

cool, quantitatively transferred to specially washed 100 ml volumetric flasks, and 

diluted with water. After mixing, the solutions were transferred to specially 

prepared polypropylene bottles. These samples were stored at room temperature 

until analyzed. 

2. Other Samples. All other types of samples (serum, plasma, urine, 

dialysate, and hemofiltrate) were analyzed with no preparation. 



CHAPTER IV 

RESULTS 

A. Methodology (132). 

A comparison of the three aluminum sulfate standards gave identical 

response. When using 25 !Jl of standard, the sensitivity, as defined by the quantity 

of aluminum needed to produce a 196 absorption, was 30 pg (1.11 pmol). With a 25 f.ll 

sample, this required a concentration of aluminum of 1.2 J.lg/liter (44.5 nmol/liter). 

The gelatin control material was certified by the manufacturer to 

contain 60 + 3(SO) J.lg Al/g. Analysis of this material with each batch of samples 

produced a value of 58 + 3(SO) j..lg Al/g (N=19), for a coefficient of variation of 

5.296. 

The within-day precision for 10 consecutive analyses of a serum sample, 

containing 48 }lg Al/L, gave a coefficient of variation of 2. 9%. Results obtained 

for 16 samples by the method of additions and from standard curves did not differ 

.significantly (mean difference = 2.11 (less than twice the sensitivity).:!::. 4.76 (SO) J.lg 

Al/L, or 78 + 177 (SO) nmol Al/L; Table 3). These samples ranged in concentration 

from 13.3 J.lg Al/L (0.49 !Jmol Al/L) to 137.3 l-Jg Al/L (5.09 1-1mol Al/L). The 

recovery of aluminum added to 10 samples of serum, ranging in concentration from 

4.2 to 136.4 pg Al/L (0.16 to 5.06 l-Jmol Al/L), was 101.3 .:!::. 7.2 (SO)% (Table 4). The 

interday variation of the method was determined by analyzing 15 sera on separate 

days (Table 5). These samples were stored frozen at -7 °C and ranged from 12.1 to 

131.1 pg Al/L (0.45 to 4.86 pmol Al/L). The mean difference between the two 

groups of data was 2.56 .:!::. 5.46 (SO) pg Al/L (95.0 .:!::. 202.5 (SD) nmol Al/L). No 
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Table 3. COMPARISON OF RESULTS OBTAINED BY METHOD OF ADDITIONS 
& STANDARD CURVES. 

Sample No. Method of Additions Standard Curves Difference* 

(l-Jg Al/L) (l-Jg A1/L) (!Jg AI/L) 

1 68.6 79.0 -10.4 

2 51.5 52.8 -1.3 

3 32.8 35.9 -3.1 

4 13.3 11.8 +1.5 

5 34.3 30.9 +3.4 

6 137.3 136.4 +0.9 

7 120.5 126.2 -5.7 

8 99.3 108.9 -9.6 

9 111.3 111.5 -0.2 

10 38.8 37.2 +1.6 

11 54.3 60.4 -6.1 

12 17.8 15.7 +2.1 

13 43.0 49.5 -6.5 

14 33.2 36.4 -3.2 

15 27.0 30.6 -3.6 

16 23.0 16.5 +6.5 

* Method of additions minus standard curves 

N = 16 Mean .±.standard deviation = 2.11 .±. 4.76 l-Jg Al/L 
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Table 4. RECOVERY ANALYSIS FOR ALUMINUM METHOD. 

Concentration of Concentration of 

Sample No. Al Before Addition Addition AI After Addition Recovery 

(}-lg/liter) (f-lg Al/liter) (J.lg/liter) (%) 

1 136.4 50 187.8 102.8 

2 126.2 50 180.7 109.0 

3 111.5 50 163.8 104.6 

4 36.4 30 67.6 104.0 

5 4.2 50 49.6 90.8 

6 36.4 50 89.1 105.4 

7 53.2 50 97.6 88.8 

8 35.5 25 62.6 108.4 

9 52.8 50 108.9 104.4 

10 55.0 20 74.0 95.0 

Mean + standard deviation = 101.3 + 7. 2% 
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Table 5. ANALYSIS OF INTERDAY VARIATION FOR ALUMINUM METHOD 

Sample No. lst Analysis 2nd Analysis Difference (2nd-1st) 

(~g/liter) (~g/liter) (~g/liter) 

1 34.7 33.3 -1.4 

2 27.4 26.4 -1.0 

3 37.1 39.5 2.4 

4 25.8 25.6 -0.2 

5 16.1 16.3 0.2 

6 26.2 28.3 2.1 

7 19.8 20.5 0.7 

8 26.6 24.0 -2.6 

9 18.5 24.0 5.5 

10 46.0 41.9 -4.1 

11 12.1 13.6 1.5 

12 29.8 30.6 0.8 

13 120.5 131.1 10.6 

14 81.8 88.9 7.1 

15 70.9 87.7 16.8 

Mean 2:. standard deviation = 2.56 2:. 5.46 ~g/liter 

t-test (paired observations) = 1.816 P > 0.05 
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significant statistical difference between these two groups was found, as the t-

test for paired observations produced a ~ > 0.05. 

To test for effects of matrix upon the aluminum analyses, standards in 

serum, urine, and water, covering a wide range of concentration, were analyzed 

(Figure 8). The method of additions established the concentration of the original 

serum and urine samples, after which aqueous aluminum sulfate standards were 

added to increase the concentrations. The difference between the serum and 

urine lines was not of statistical significance, and pooling the results produced a 

line with slope = 2.37 x 10-3 and y-intercept = 11.70 x 10-3 absorbance units. This 

line differed significantly from the water line with !: < 0.01. Comparing the 

pooled serum and urine line with the regression forced through the origin, that is, 

a line with slope = 2.48 x 10-3, yielded no significant difference, !: was only 

slightly less than 0.1. No statistical difference was observed in the comparison of 

the water line with the regression forced through the origin, which had a slope = 

2.9 x 10-3• The correlation coefficients of all lines were significant at the 0.1% 

level. From this it was determined that standards should be made in a matrix 

corresponding to the samples to be analyzed. 

A study was made of the possible cause of the lower absorbance values 

for standards in serum and urine than those in aqueous solutions of aluminum 

sulfate. It 'was found, as has been determined by other workers (140), that 

aluminum chloride standards gave lower absorbance values than those prepared 

from the sulfate. However, some investigators (33, 141-2) have based their results 

on standards prepared as the chloride. Since AlC1 3 sublimes at 178 °C, and since 

chloride is the predominant anion in serum and urine, lower absorbance values for 

these matrices would be expected. It was found that the addition of NaCl to any 

of the samples lowered the absorbance observed, while the addition of sulfate 
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enhanced the absorbance. Krishnan et al. (143) had reported no effect for chloride 

and an enhancement effect of 25% for sodium, but this was in the nitrous 

oxide/acetylene flame. 

Initial experiments indicated that the addition of 13 mg Na2so4 per ml 

serum gave maximal enhancement (Figure 9). Other compounds had a similar 

effect, most notably glucose, but Na
2
so

4 
was found to be most convenient. 

Addition of sodium sulfate had no effect on standards prepared as aluminum 

sulfate, but the lower values observed with aluminum chloride standards were 

increased to those observed for aluminum sulfate standards by the addition of 

sodium sulfate. A small correction was necessary for the aluminum content of the 

sodium sulfate. 

At this point, it was necessary to decide if it were essential to add 

sulfate to all samples. It would be advantageous if such an addition were not 

required. The concentration of aluminum in a serum pool was determined by the 

method of additions using either aluminum chloride or aluminum sulfate standard, 

and in the presence and absence of added sodium sulfate. The results are shown in 

Table 6, where the slopes of the lines and the calculated aluminum concentrations 

are given. When aluminum chloride was used in the method of additions, the value 

for the calculated aluminum content of the serum in the presence of Na2so4 was 

significantly higher, but not so high as obtained with the aluminum sulfate 

standard. When sodium sulfate was added to the set prepared with added 

aluminum sulfate, higher absorbances were indeed obtained, but the slope of the 

method-of-additions line was also increased, so that the calculated aluminum 

concentration of the serum was the same. This suggested that the same analytical 

values can be obtained with and without the addition of sodium sulfate, provided 

the correct calibration line is used (Figure 10). 
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Table 6. EFFECT OF Na2So 
4 

ON ALUMINUM ASSAY OF SERUM 

METHOD OF ADDITIONS IN THE ABSENCE AND PRESENCE OF Na2so4 

Na2so4 Addition Standard as Chloride Standard as Sulfate 

(13mg/ml serum) 

slope x 103 }Jg Al/L 3 slope x 10 jlg Al/L 

No 2.65 73.2 2.76 87.6 

Yes 2.85 80.4 3.32 86.3 
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C?mparison of aluminum standard curves in several different matrices. 
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To further determine the need for the addition of sodium sulfate, 15 

serum (Table 7) and 25 urine (Table 8) specimens were analyzed with and without 

the addition of 13 mg of Na2so
4 

per ml (92 mmol/li ter). Calculations were made 

from the corresponding standard curves. In both cases the difference in 

concentration due to the sodium sulfate was insignificant, ~ > 0.05. The function 

-; 2-of the sulfate is probably to lower the mol ratio Cl so4 , to prevent the 

sublimation of AlC1
3

• It may also furnish oxygen for the formation of aluminum 

oxide, as suggested by Campbell and Ottaway (144). 

To study the effect of serum and urine components on the analytical 

results, a pool of each was assayed for aluminum by the method of additions. An 

aluminum sulfate standard of the same concentration was used to dilute each. 

The protein concentration, as determined by the Biuret method, had no significant 

effect on the aluminum concentration, as shown in Figure 11. The coefficient of 

variation of the absorbance values was 3.4 %. 

When the spectrophotometer response was compared with the specific 

gravity of the urine dilution, Figure 12, the coefficient of variation of the 

absorbance was 3.2%. Thus the concentration is not considered to have had a 

significant effect on the results. 

The reference value for 24 sera by the method described is 27 .±. 9 (SD) J-Ig 

Al/liter (range = 12 - 46), or 1.00 .±. 0.33 J-Imol Al/liter (range = 0.045 .±. 1.71) (Table 

9). The only criterion used for including samples was that the donor was not using 

aluminum-containing antacids. The range of values is lower than found by many 

investigators (Table 10), and this is thought to be due to the elimination of many 

techniques and reagents which act as sources of coratamination. For this sample 

size, sex and age did not contribute significantly. 
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Table 7. SERUM ALUMINUM WITH AND WITHOUT ADDED Na2so4 

Sample No. J.lg Al/liter jJg Al/liter 
without Na2so4 with 13 mg 

Na2so4/ml serum 

1 50.4 42.7 

2 17 .o 20.6 

3 24.9 28.4 

4 10.1 16.5 

5 21.7 25.6 

6 9.0 16.1 

7 9.0 16.9 

8 110.1 124.8 

9 47.5 53.6 

10 22.8 26.3 

11 35.9 33.5 

12 29.4 23.1 

13 16.4 21.8 

14 15.4 11.8 

15 49.7 51.8 

td = 1.947 p > 0.05 
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Table 8. URINARY ALUMINUM WITH AND WITHOUT ADDED Na2so4 

Sample No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

IJg Al/liter 
without Na2so4 

td = 0. 7347 

20.0 
91.7 
8.3 

71.3 
99.3 
34.3 
33.5 
23.9 
57.1 
18.4 
97.7 
20.9 
£?0.6 
11.1 
10.5 
7.3 

69.2 
19.0 
37.0 
11.3 
31.5 
9.3 
9.5 
7.2 
9.8 

J.lg Al/liter with 
13 mg Na2so4/ml urine 

p > 0.4 

20.3 
89.2 

8.6 
72.0 
98.4 
31.3 
34.0 
24.6 
59.4 
16.8 

100.9 
21.6 
38.7 
12.7 
11.7 
7.6 

70.8 
20.2 
39.3 
11.8 
32.7 
5.6 

10.2 
4.6 

13.8 
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Graph demonstrating the effect of protein content on serum aluminum 
determinations. Total protein determined by the Biuret method. 
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Graph demonstrating the effect of specific gravity on urinary aluminum 
determinations. Specific gravity determined from refractive index. 
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Table 9. REFERENCE VALUES FOR SERUM ALUMINUM: 

Specimen No. tJg Al/L Sex Age (yrs) 

1 32.4 M 65 
2 34.7 M 27 
3 27.4 F 30 
4 37.1 M 22 
5 25.8 F 24 
6 16.1 M 25 
7 26.2 F 37 
8 19.8 M 25 
9 26.6 M 26 

10 18.5 M 28 
11 46.0 M 30 
12 12.1 F 26 
13 29.8 F 22 
14 26.0 F 41 
15 22.7 F 29 
16 20.1 M 23 
17 29.6 F 25 
18 39.5 M 50 
19 22.6 F 27 
20 36.0 M 28 
21 16.3 M 26 
22 40.7 M 25 
23 24.9 M 26 
24 13.5 M 42 

Mean~ Standard Deviation = 26.9 ~ 9.0 tJg Al/liter 

Sex shows no significance - !: > 0.3 

Age shows no significance - !: > 0.2 
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Table 10: SERUM OR PLASMA ALUMINUM- REPORTED VALUES 

(Numbers in parentheses indicate number of people tested) 

Method l-Jg/1iter Reference 

Spectrographic 240 + 120 (30) 145 

450 + 20 (122) 146 

551 + 172 (63) 18 

Atomic absorption 37 + 25 (29) 147 

24 + 5 (20) 148 -
340 + 190 (21) 85 

240 + 55 ( 5) 107 

27 + 9 (24) This work -

Neutron Activation 1460 + 261 ( 5) 107 

72+ 70 (10) 149 -
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In the analysis of urine from 11 normal males not receiving aluminum

containing antacids, the excretion was 45 .:!:: 32 (SD) pg Al/24 h (range = 6- 92), or 

1.67 2:1.19 pmol Al/24h (range = 0.22- 3.41) (Table 11). 
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Table II. URINARY ALUMINUI'..t LEVELS- NORMALS 

Specimen No. f.lg Al/li ter 24h volume (ml) )Jg Al/24h 

1 21 2,912 61 

2 27 3,460 92 

3 2 4,012 8 

4 27 3,270 89 

5 3 4,284 14 

6 2 3,270 6 

7 6 3,462 22 

8 13 4,600 60 

9 8 3,412 26 

10 28 1,580 45 

11 22 3,180 69 

Mean + Standard Deviation = 45 + 32 flg Al/24h - -
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B. Metabolic Balance of Aluminum. 

Tables 12 through 17 show the aluminum balances for the 6 male patients 

studied. Parts "a" of the tables display the total aluminum intakes, urine, stool, 

and plasma aluminum levels, and the overall aluminum balances. Parts "b" give 

factors used in calculating the balances, including the total aluminum contents of 

all medications given, the urine volumes, and the stool weights. The study lengths 

ranged from 7 to 23 six-day periods. 

The medications which were found to contain aluminum included: the 

carmine and charcoal stool markers, the calcium gluconate, and the zinc sulfate 

(Table 18). Carmine is the aluminum lake of carminic acid. The source of the 

aluminum in the calcium and zinc supplements is not known, but it most likely 

enters as a contaminant of the talc used to keep the preparations dry. 

Fluctuations in the total aluminum intake were generally due to different 

combinations and dosages of these medications. 

Subject 1 had 4 initial control periods with a normal calcium intake, 

followed by 3 periods of the same regimen plus 30 ml TID Amphojel. This 69 year 

old patient's major medical problem was chronic renal failure. There was a minor 

negative balance initially, probably owing to the prior history of the patient. 

During the periods with Amphojel, there was a large positive balance. The plasma 

levels showed only slight increases during these periods, with all values remaining 

within the reference range. 

Subject 2 was 42 years old and had osteoporosis. When the study began, 

he was on a low calcium diet with 800 mg P/ day and 30 ml TID Mylanta. The 

phosphorus was increased to 1200, then to 1600 mg/day, when the Mylanta was 

increased to 30 ml QID. The final periods reverted to 800 mg P/ day without 

Mylanta. There were substantial positive balances during the three period groups 
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Table 12a. Subject 1. 

Aluminum Balance2 mg/day 

Study Condition Period a be 
Intake ' Urine Stool Balance Plasma 

(}Jg/L) 

800 mg Ca 1 5.42 0.078 20.22 -14.88 
2 4.77 0.111 79.69 -75.03 
3 4.12 0.056 9.36 -5.30 
4 5.42 0.146 8.66 -3.39 36 

Average 4.93 0.098 29.48 -24.65 

800 mg Ca + 5d 1909 0.405 1237 +672 44 
Amphojel 6 1911 0.223 2130 -219 

7 1909 0.218 1623 +286 47 

Average 1910 0.282 1663 +246 

aEach period of 6 days duration, except for Period 2, which was 12 days. 

bDiet aluminum constant at 1.86 mg/day. 

cDrinking water aluminum constant at 0.348 mg/day. 

dTransition period from low to high aluminum intake. 



I 

Study Condition 

800 mg Ca 

Average 

800 mg Ca + 
Amphojel 

Average 

Table 12b. Subject 1. 

Aluminum Balance Factors 

Perioda 
---

1 
2 
3 
4 

5 
6 
7 

Medications 
(mg Al/day) 

3.21 
2.56 
1.91 
3.21 

2.72 

1907 
1909 
1907 

1908 

Urine Volume 
(ml/day) 

3212 
3319 
3290 
3240 

3265 

3360 
3390 
3362 

3371 

aEach period of 6 days duration, except for Period 2, which was 12 days. 

Stool Wt. 
(gJday) 

381 
371 
254 
369 

344 

381 
468 
332 

394 
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Table 13a. Subject 2. 

Aluminum Balance, mg/day 

Study Condition Period a 

200 mg Ca + 1 
800 mg P + 2 
Mylanta 3 

4 
5 

Average 

200 mg Ca + 6 
1200 mg P + 7 
Mylanta 8 

9 

Average 

200 mg Ca + 10 
1600 mg P + increased 11 
Mylanta 

Average 

200 mg Ca + 
800 mg P 

Average 

12 
13 
14 

15d 
16d 
17 
18 
19 

be 
Intake ' 

1249 
1250 
1249 
1250 
1249 

1249 

1250 
1249 
1250 
1249 

1250 

1527 
1664 
1665 
1664 
1665 

1637 

2.82 
4.12 
2.82 
4.12 
2.82 

3.34 

aEach period was of 6 days duration. 

bDiet aluminum constant at 2.45 mg/day •. 

Urine 

0.478 
0.397 
0.290 
0.226 
0.301 

0.338 

0.243 
0.243 
0.194 
0.236 

0.229 

0.306 
0.228 
0.192 
0.210 
0.214 

0.230 

0.112 
0.206 
0.215 
0.232 
0.234 

0.200 

cDrinking water aluminum constant at 0.348 mg/day. 

dTransition period from high to low aluminum intake. 

Stool 

1003 
870 
987 
982 

1113 

991 

1076 
970 

1336 
1250 

1158 

1699 
1126 
1226 
1421 
1461 

1387 

18.35 
22.43 
6.05 
6.52 
6.16 

11.90 
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Balance Plasma 
(pg/L) 

+246 
+380 
+262 
+268 
+136 

+258 

+174 
+279 

-86.40 
-1.24 

+91.34 

-172 
+538 
+439 
+243 
+204 29 

+250 

-15.64 22 
-18.52 
-3.45 
-2.64 
-3.58 

-8.77 



Study Condition 

200 mg Ca + 
800 mg P + 
Mylanta 

Average 

200 mg Ca + 
1200 mg P + 
Mylanta 

Average 

200 mg Ca + 
1600 mg P +increased 
Mylanta 

Average 

200 mg Ca + 
800 mg P 

Average 

Table 13b. Subject 2. 

Aluminum Balance Factors 

Perioda Medications Urine Volume 
(mg Al/day) (ml/day) 

1 1246 3584 
2 1247 3420 
3 1246 3779 
4 1247 3752 
5 1246 3431 

1246 3593 

6 1247 3761 
7 1246 3519 
8 1247 3355 
9 1246 3712 

124-7 3587 

10 1524 4049 
11 1661 3369 
12 1662 3541 
13 1661 3755 
14 1662 3637 

1634 3670 

15 0.02 3387 
16 1.32 3311 
17 0.02 3319 
18 1.32 3517 
19 0.02 3544 

0.54 3416 

aEach period was of 6 days duration. 

60 

Stool Wt. 
(g/day) 

707 
617 
700 
696 
789 

702 

644 
579 
675 
634 

633 

719 
598 
654 
634 
651 

651 

532 
645 
567 
633 
578 

591 
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Table 14a. Subject 3. 

Aluminum Balance2 mg/day 

Study Condition Period a be 
Intake ' 

800 mg Ca 1 5.80 
2 4.50 
3 5.80 
4 4.50 
5 5.80 

Average 5.15 

800 mg Ca + 6d 1081 
Maalox 7 1082 

8 1081 
9 1082 

10 1081 

Average 1081 

800 mg Ca lle 5.80 
12 4.50 
13 5.80 
14 4.50 
15 5.80 

Average 5.28 

aEach period was of 6 days duration. 

bDiet aluminum constant at 2.45 mg/day. 

Urine 

0.046 
0.061 
0.054 
0.032 
0.060 

0.051 

0.181 
0.165 
0.151 
0.182 
0.188 

0.173 

0.078 
0.041 
0.051 
0.050 
0.047 

0.053 

cDrinking water aluminum constant at 0.348 mg/day. 

dTransition period from low to high aluminum intake. 

eTransition period from high to low aluminum intake. 

Stool 

8.42 
8.38 
8.29 
9.27 

54.42 

8.59 

933 
1147 

781 
974 

1128 

993 

27.85 
8.13 
6.75 
7.62 
5.60 

11.19 

61 

Balance Plasma 
(J.Ig/L) 

-2.67 39 
-3.94 
-2.54 
-4.80 

-48.68 

-3.49 

+148 
-65.37 

+300 
+108 99 

-47.39 103 

+88.65 

-22.13 
-3.67 
-1.00 
-3.17 125 
+0.15 

-5.96 
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Table 14-b. Subject 3. 

Aluminum Balance Factors 

Study Condition Perioda iv1edications Urine Volume Stool Wt. 
----

(mg Al/day) (ml/day) Gil day) 

I 800 mg Ca 1 3.00 3627 293 

I 2 1.70 3679 253 
3 3.00 3652 266 

I 4- 1.70 3534- 284-
5 3.00 3389 332 

I Average 2.4-8 3576 286 

t 

I 800 mg Ca + 6 1078 3395 4-73 

' 
Maalox 7 1079 3307 502 

8 1078 34-05 4-70 

' 9 1079 34-4 5 552 
10 1078 3283 559 

Average 1078 3367 511 

' 800 mg Ca 11 3.00 354-3 303 

I 
12 1.70 34-85 366 
13 3.00 3534- 328 
14- 1.70 3530 34-7 

' 
15 3.00 34-20 332 

t Average 2.4-8 3502 335 

I 
t aEach period Was of 6 days duration. 

I 



Table l5a. Subject 4. 

Aluminum Balance, mg/da~ 

Study Condition Perioda be 
Intake ' Urine 

200 mg Ca 1 2.76 0.054 
2 4.06 0.084 
3 2.76 0.073 
4 4.06 0.066 
5 2.76 0.051 

Average 3.28 0.066 

800 mg Ca 6 5.74 0.033 
7 4.44 0.033 
8 5.74 0.021 
9 4.44 0.031 

10 5.74 0.048 

Average 5.22 0.033 

800 mg Ca + lld 1081 0.195 
Maalox 12 1082 0.255 

13 1081 0.184 
14 1082 0.248 

Average 1082 0.221 

800 mg Ca 15 4.44 0.053 
16 5.74 0.058 
17 4.44 0.096 
18 5.74 0.111 

Average 5.09 0.080 

aEach period of 6 days duration. 

bDiet aluminum constant at 2.45 mg/day. 

cDrinking water aluminum constant at 0.290 mg/day. 

dTransition period from low to high aluminum intake. 

Stool 

3.13 
3.05 
4.70 
4.90 
3.70 

3.90 

3.15 
3.55 
6.06 
3.89 
7.95 

4.92 

645 
1350 
843 
469 

827 

3.99 
7.13 
4.30 
5.57 

5.25 
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Balance Plasma 
(Jlg/L) 

-0.42 27 
+0.93 
-2.01 10 
-0.91 
-0.99 

-0.68 

+2.56 42 
+0.86 
-0.34 
+0.52 
-2.26 

+0.27 

+436 
-268 
+238 
+613 117 

+255 

+0.40 
-1.45 
+0.05 
+0.06 77 

-0.24 



Study Condition 

200 mg Ca 

Average 

800 mg Ca 

Average 

800 mg Ca + 
Maalox 

Average 

800 mg Ca 

Average 

Table 15b. Subject 4. 

Aluminum Balance Factors 

Perioda 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 

15 
16 
17 
18 

Medications 
(mg Al/day) 

0.02 
1.32 
0.02 
1.32 
0.02 

0.54 

3.00 
1.70 
3.00 
1.70 
3.00 

2.48 

1078 
1079 
1078 
1079 

1079 

1.70 
3.00 
1.70 
3.00 

2.35 

Urine Volume 
(ml/day) 

3315 
3174 
3230 
3290 
3242 

3250 

2972 
3118 
2932 
3002 
2880 

2981 

2732 
2610 
2662 
2702 

2677 

2864 
2760 
2859 
2728 

2803 

aEach period of 6 days duration. 
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Stool Wt. 
(gJday) 

198 
219 
200 
231 
189 

207 

180 
192 
196 
176 
230 

195 

453 
520 
436 
541 

488 

211 
241 
240 
199 

223 
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Table 16a. Subject 5. 

Aluminum Balance2 mg/da}::: 

Study Condition Perioda be 
Intake ' 

800 mg Ca 1 4.19 
2 2.89 
3 4.19 
4 2.89 
5 4.19 

Average 3.67 

800 mg Ca + 6d 1079 
Maalox 7 1081 

8 1079 
9 1081 

10 1079 

Average 1080 

800 mg Ca lle 4.19 
12 2.89 
13 4.19 
14 2.89 
15 4.19 

Average 3.54 

aEach period was of 6 days duration. 

bDiet aluminum constant at 2.45 mg/day. 

Urine 

0.076 
0.038 
0.029 
0.039 
0.059 

0.048 

0.120 
0.151 
0.131 
0.148 
0.143 

0.139 

0.120 
0.037 
0.069 
0.056 
0.140 

0.076 

cDrinking water aluminum constant at 0.418 mg/day. 

dTransition period from low to high aluminum intake. 

eTransition period from high to low aluminum intake. 

Stool 

5.94 
6.67 
9.57 

10.47 
4.90 

7.51 

866 
1114 
1047 
1184 
1072 

1057 

132 
15.01 
16.59 
12.76 
11.52 

13.97 
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Balance Plasma 
(pg/L) 

-1.83 48 
-3.82 
-5.41 
-7.62 
-0.77 

-3.89 

+213 
-33.28 
+31.74 

-103 94 
+6.73 93 

+23.04 

-127 
-12.16 
-12.47 
-9.93 
-7.48 71 

-10.51 
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Table 1Gb. Subject 5. 

Aluminum Balance Factors 

Perloda Medications Urine Volume Stool \Vt. 
(mg Al/day) (ml/day) (iyday) 

Study Condition 

800 mg Ca 1 1.32 3988 519 
2 0.02 4032 5'+7 
3 1.32 3989 653 
'+ 0.02 3975 648 
5 1.32 3837 526 

Average 0.80 396'+ 579 

800 mg Ca + 6 1076 3815 59'+ 
Maalox 7 1078 3802 545 

8 1076 3813 506 
9 1078 3806 587 

10 1076 373'+ 492 

Average 1077 3794 545 

800 mg Ca 11 1.32 3846 '+01 
12 0.02 3984 514 
13 1.32 3834 553 
14 0.02 3797 442 
15 1.32 3784 595 

Average 0.80 3849 ' 50! 

aEach period was of 6 days duration. 
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Table 17a. Subject 6. 

Aluminum Balance, mg/day 

Study Condition Period a be Urine Stool Balance Plasma Intake ' 
(pg/L) 

200 mg Ca + 1 4.18 0.047 8.79 -4.66 
ZnS04 

2 2.82 0.047 8.25 -5.48 
3 4.12 0.059 10.46 -6.40 
4 2.82 0.087 9.41 -6.68 
5 4.12 0.083 9.81 -5.77 
6 2.82 0.101 7.10 -4.38 
7 4.12 0.046 6.85 -2.78 43 

Average 3.57 0.067 8.67 -5.16 

200 mg Ca + 8d 4347 0.503 2488 +1858 60 
ZnS04 + 9 2719 0.203 2662 +56.53 89 
Amphojel & Maalox 10 2718 0.162 3031 -313 

11 2719 0.127 2307 +412 
12 2718 0.157 3006 -288 
13 2719 0.206 2365 +354 86 
14 2718 0.209 2276 +442 
15 2719 0.217 3008 -289 
16 2718 0.221 2460 +258 

Average 2899 0.223 2623 +277 

200 mg Ca + 17 2719 0.226 2117 +602 
Amphojel & Maalox 18 2718 0.237 2621 +96.50 

19 2719 0.210 2979 -260 
20 2718 0.221 2074 +644 
21 2719 0.159 2235 +484 82 

Average 2719 0.211 2405 +313 

200 mg Ca + 22 4605 0.193 5335 -730 81 
increased Amphojel 23 4606 0.190 4735 -129 78 
& Maalox 

Average 4606 0.192 5035 -430 

aEach period of 6 days duration, except for Periods 8 and 9, which were 4 and 
b8 days, respectively. 

Diet aluminum constant at 2.45 mg/day. 
cDr inking water aluminum constantat 0.284 mg/day, except in Period I, when 
jt was 0.344 mg/day. 
Transition period from low to high aluminum intake. 
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Table 17b. Subject 6. 

Aluminum Balance Factors 

Study Condition Period a Medications Urine Volume Stool Wt. 
(mg Al/day) (ml/day) (gJ/day) 

200 mg Ca + 1 1.38 2802 457 
ZnS04 2 0.09 2620 345 

3 1.38 2527 436 
4 0.09 2851 391 
5 1.38 2797 412 
6 0.09 2562 389 
7 1.38 2619 433 

Average 0.83 2683 409 

200 mg Ca + 8 4344 2800 825 
Znso4 + 9 2716 2749 568 
Amphojel & Maalox 10 2715 2872 629 

11 2716 2934 485 
12 2715 2695 506 
13 2716 2845 531 
14 2715 2902 548 
15 2716 2862 644 
16 2715 2892 520 

Average 2896 2839 584 

200 mg Ca + 17 2716 2782 387 
Amphojel & Maalox 18 2715 2845 344 

19 2716 2832 455 
20 2715 2820 345 
21 2716 2867 350 

Average 2716 2829 376 

200 mg Ca + 22 4602 2853 509 
increased Amphojel & 23 4603 2894 481 
Maalox 

Average 4603 2874 495 

aEach period of 6 days duration, except for Periods 8 and 9, which were 4 and 
8 days, respectively. 



f 
69 

Table 18. Aluminum Content of Medications Used 

in Balance Studies. 

Medication Source How SuEelied Al Content 

Amphojel Wyeth Laboratories Liquid 21.2 mg/ml 

Calcium gluconate Parke-Davis 1 g tablets 210 pg/tablet 

Carmine marker HVAH Pharmacy 567 mg capsule 7.9 mg/capsule* 

Charcoal marker HV AH Pharmacy 259 mg capsule 64.7 pg/capsule* 

Maalox Rorer, Inc. Liquid 12.0 mg/ml 

Mylanta Stuart Pharmaceuticals Liquid 13.8 mg/ml 

Zinc sulfate Pharmex 200 mg tablets 32.4 pg/tablet 

*Includes gelatin capsule. 
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with Mylanta. This was followed by two periods of further aluminum excretion in 

the stool, then very small negative balances. The plasma levels were within the 

reference range. 

Subject 3 was 54 years old and had osteoporosis and cerebellar 

degeneration. He was maintained on an 800 mg Ca/day regimen, which consisted 

of 5 initial control periods, 5 periods with Maalox 30 ml TID, and 5 periods after 

antacid supplementation. He had a small negative balance during the control 

periods, followed by a positive balance during Maalox ingestion. Period 5 was 

omitted from the average values, because of the anomalous stool value, probably 

due to contamination during collection. In the post-antacid periods, period 11 

shows a residual excretion, followed by a return to baseline levels. The plasma 

level, while initially normal, rose to over twice the upper limit of normal, and this 

concentration persisted into the post-antacid periods. There was a significant 

increase in stool weight during Maalox ingestion, related to the diarrhea-producing 

magnesium component. An immediate return to control stool weights was seen 

after discontinuation of the medication. 

Subject 4 was 71 years old and had osteoporosis. His regimen began with 

a low calcium diet, which was then increased to 800 mg/ day. This level was 

maintained during Maalox administration (30 ml TID), and during the post-antacid 

periods. The balances during the control periods were essentially zero, but during 

Maalox supplementation a large positive balance resulted. An immediate 

restoration of baseline levels was observed during the post-antacid periods. The 

plasma values were within the reference range during the control periods, but rose 

to over double the upper limit of normal when Maalox was added. Twenty-four 

days after withdrawal from antacids, a moderate decrease was observed. The 

same effect of Maalox on stool weight as in subject 3 was observed. 
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Subject 5 was 50 years of age and had a history of osteoporosis and 

alcoholism. There were 5 periods of Maalox consumption (30 ml TID) in his 

protocol between two groups of 5 control periods each before and after antacid 

usc. The calcium intake was 800 mg/day throughout the study, and this was taken 

as the lactate, which was found to be free of detectable aluminum. There was a 

small negative balance during the pre-antacid periods, followed by a modest 

positive balance through the periods with Maalox. A gradual return to baseline 

balance levels was observed after discontinuation of the antacid. Period 11 was 

omitted from the average values, because of the exceptionally high stool 

aluminum value, which may have been residual excretion. The plasma aluminum 

level was initially slightly above the upper limit of normal, and more than doubled 

during antacid addition. During the fifth period after cessation of Maalox, a 25% 

reduction was noted. 

Subject 6 was 58 years old and had a history of tumoral calcinosis. This 

patient received a low calcium diet throughout, and zinc sulfate supplementation, 

during the first 16 periods. A combination of antacids (Amphogel + Maalox) was 

given in varying dosages in periods 8 through 23. There was a small negative 

aluminum balance initially, followed by large positive balances during antacid 

intake, except for the last group of two periods. The stool weights show diarrhea 

at the beginning of antacid therapy, which was stabilized by adjusting the mixture 

of the two antacids. Later in the study, periods 20 and 21, constipation developed, 

which was relieved by another dosage change, that brought out the residual 

aluminum in the stool; hence, the large negative balances for the final two 

periods. The plasma aluminum level was within the reference range before the 

antacids were given, but once therapy was instituted plasma aluminum doubled 

and remained fairly constant throughout the study. 
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In general, the increases in the urine aluminum levels were similar in all 

the subjects, being approximately tripled during antacid supplementation. The 

highest level observed was 0.503 mg/day in subject 6. The urine volumes showed 

no significant changes with the study conditions. 
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C. Aluminum in Maintenance Hemodialysis Patients. 

Blood was drawn from 21 male patients undergoing maintenance hemo-

dialysis, both before and after treatment, on recirculating single pass dialyzers 

equipped with cellophane coils. The results are shown in Table 19, where the 

subjects are listed in ascending order of the predialysis serum aluminum level. 

The values ranged from 27 to 254- )Jg Al/liter (1.00 to 9.4-2 J.Imol/liter). Only one 

patient had serum aluminum levels within the reference range both before and 

after dialysis, and the highest level observed was 5.5 times the upper limit of 

normal. Eleven patients had lower serum aluminum levels after dialysis, and 10 

patients had higher levels after treatment. For this group of patients there was 

no statistical difference in serum aluminum values before and after hemodialysis, 

~ > 0.3. The patients ranged in age from 37 to 68 years, and the period of time on 

dialysis from 1 to 14-1 months. The serum creatinine at the time of this study 

ranged from 9.1 to 24-.8 mg/dl, and there was great diversity in the underlying 

renal disease. None of these factors contributed significantly to the results of 

this study. AU 21 patients were taking varying amounts of Amphojel. 

In 3 male patients undergoing hemodialysis, as above, samples of the 

dialysate were obtained before and after treatment, in addition to the blood 

samples. These aluminum levels are shown in Table 20. The dialysate was a 

hypotonic solution of NaCl, KCl, MgC1 2, CaC1 2, and NaC2H3o2, and its aluminum 

content varied with the lots of the salts used. The solution contained 236 

mOsmol/kg water. Patients 1 and 2 showed an increase in serum aluminum 

following dialysis, and patient 3 showed a decrease. The dialysates of patients I 

and 2 decreased in aluminum content after dialysis to approximately the same 

level, while the aluminum in the dialysate of patient 3 increased. All three 

patients were taking varying amounts of Amphojel. 

I 

1:1:. 
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Table 19. Serum Aluminum Levels Before And After Hemodialysis. 

Patient Serum Al-Eredialz:sis Serum Al-Eostdialysis Difference 
(jlg/li ter) (jlg/liter) (pg/liter) 

1 30 27 -3 

2 41 50 +9 

3 47 69 +22 

4 54 41 -13 

5 56 46 -10 

6 60 58 -2 

7 68 52 -16 

8 69 73 +4 

9 73 103 +30 

10 74 76 +2 

11 98 88 -10 

12 99 111 +12 

13 101 72 -29 

14 101 98 -3 

15 108 105 -3 

16 111 129 +18 

17 113 147 +34 

18 140 143 +3 

19 156 205 +49 

20 193 186 -7 

21 254 250 -4 

N=21 11 decreased I 10 increased after dialysis 



Table 20. Serum and Dialysate Aluminum Levels. 

Patient Serum Al erediallsis Ser1.1m Al eostdiallsis Diallsate Al eredial;tsis Dialysate Al postdial;tsis 
(}Jg/liter) ~~J,g/liter) (pg/liter) (!Jg/liter) 

1 111 129 14-1 33 

2 113 14-7 14-1 27 

3 37 27 4- 25 
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In one male patient with intractable hypertension and edema undergoing 

hemofil tration without replacement (dry-suction) after conventional dialysis, 

blood samples were taken pre- and post-dialysis, and post-hemofiltration, for 

analysis of aluminum and protein content. The hemofiltration system employed a 

negative pressure parallel flow membrane with a vacuum of approximately 300 

mm Hg, depending on the patient's blood pressure. The results in Table 21 reflect 

analyses performed on samples from consecutive treatments two days apart. On 

day 2 of the study the hemofiltration was discontinued after 4-0 minutes because 

of hypotension 010/70 mm Hg), anct approximately 300 ml Ringer's lactate was 

administered. Following conventional dialysis there were small increases in the 

serum aluminum, but this was due to a concentration effect, as reflected by the 

increased protein content and the constant aluminum to protein ratio, and not to a 

net gain of aluminum. Following hemofiltration, the protein content increased 

further, as approximately one liter of fluid was removed on each day. However, 

the aluminum content showed an actual loss, as evidenced by the decreased 

aluminum to protein ratios. These ratios were fairly constant from one treatment 

to the next; and, in addition, the serum aluminum level, after dropping to 114- from 

140 pg/liter, had returned to 138 pg/liter by the next treatment day. This patient 

was taking AfT1phojel 30 ml QID. 



Table 21. Changes in Aluminum Content of Serum During Treatment. 

Conditions J.lg Al/liter Total Protein, g/dl pg Al/g Protein 

Predialysis 140 7.21 1.94 
Day 1 Post 3 hours hemodialysis 143 7.39 1.94 

Post 1 hour dry-suction 114 7.57 1.51 

Predialysis 138 7.39 1.87 
Day 2 Post 3 hours hemodialysis 148 7.81 1.90 

Post 40 min dry-suction 121 8.34 1.45 



CHAPTER V 

DISCUSSION 

Campbell and Ottaway (144) point out the importance of the anion 

component of the standard solution. Many papers dealing with atomic absorption 

spectrophotometry with a graphite tube do not indicate the anion composition 

(39). Although AlC1
3 

is known to sublime at 178 °C some workers (141) have used 

this salt as the standard. Independent of the anion, the furnace conditions are 

such that all compounds are converted to Al
2
o

3 
before the atomizing temperature 

is reached (133, 144). It then is questionable if some A1Cl
3 

vaporizes before being 

converted to the oxide. That this happens is suggested by the lower absorbance 

values obtained with standards in hydrochloric acid compared to those in sulfuric 

acid. This is of special concern for biological materials that are high in chloride. 

Absorption of such materials can be increased by the addition of sodium sulfate to 

change the proportion of anion present as the chloride. That this is not necessary 

in practice was found when serum and urine were analyzed in the presence and 

absence of added sodium sulfate. Since the same results were obtained in both 

cases, it was elected not to add the sulfate, and thereby avoid a source of 

contamination. 

A variety of programs have been used for the graphite furnace. 

Agreement as to the charring and atomizing temperatures and times is uniform. 

Drying of aqueous standards and urine requires a temperature near 100 °C, but if 

serum is dried at this temperature, the charring leaves a mound of carbon at the 

sample site which interferes with subsequent measurements, unless it is removed. 

Fuchs et al. 047) avoided this by first drying for 60 s at 100 °C and then for 60 s at 

78 
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300 °C. By observing the sample during the drying and charring stages, it was 

found that drying serum at 350 °C thoroughly dried the sample and permitted 

reproducible results. Early in the drying, the sample bubbled a little, it then 

formed a small mound and started to decompose. By the time the charring step 

was reached, the residue was flat in the graphite tube, and the carbon combusted 

completely. An occasional sample of serum would leave non-combustible carbon 

in the tube, so that it is advisable for the operator to observe the inside of the 

tube before adding a new sample of serum. 

The method described offers advantages over existing techniques for the 

quantitation of aluminum in serum and urine. It is adequately sensitive and, as it 

requires no additional reagents, it is less prone to contamination. The sensitivity 

is greater than that reported by Blotcky et al. (137) for the analysis of aluminum in 

urine by neutron activation. 

This allows for use of a very small, unadulterated sample, eliminating 

many contamination-prone steps. Once the instrument has been adjusted to the 

appropriate parameters, the analysis itself is exceedingly simple to perform and 

produces results rapidly. Perhaps the most appealing factor is that it is readily 

adapted to routine clinical use. Whereas, most clinical laboratories have no 

access to the instrumentation required for such techniques as neutron activation 

analysis, they do have atomic absorption equipment available. 

There are two reports of short-term net aluminum absorption studies in 

man in the literature. The first (14-9) was done in patients with chronic renal 

failure, and the aluminum absorption was reported to be 100-568 mg/day during 

administration of aluminum antacids. In this study urine and stool aluminum were 

determined in perchloric acid digests with the nitrous oxide-acetylene flame. In 

addition, sodium chloride was added to all samples. These results may be low, due 
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to insufficient sensitivity of the method, as the authors related an inability to 

detect aluminum in unconcentrated urine samples. They found an increase in 

plasma aluminum during aluminum hydroxide administration of 13 pg/liter by 

neutron activation. The second study (150) was in "normal subjects" and in 

patients with chronic renal failure, but the subjects were not age-matched. The 

average age of the control group was 25 years, while the two patients with renal 

failure were 55 and 64 years of age. The methods used were the same as in the 

first study cited, and again the authors were unable to detect aluminum in the 

urine, so that this variable was excluded from the balances. In the control group 

the maximum absorption of aluminum was 97 mg/day, while one renal failure 

patient absorbed slightly less than this, and the 55 year-old 2.5 times as much. 

The aluminum intake was 2400 mg/day. These investigators concluded that during 

aluminum hydroxide administration normal persons absorb less aluminum than 

patients with renal failure, and may absorb none at all. They suggested that there 

may be an abnormality in the gut wall in these patients, making it more permeable 

to aluminum. 

In our project many more metabolic periods were studied to provide a 

clearer picture of the fate of ingested aluminum. During antacid administration 

aluminum balances ranged from 23 to 313 mg/day, which is higher than reported by 

the study cited above (150). Aluminum was detectable in every urine sample, but 

did not contribute significantly during the periods of antacid supplementation. 

This supports the view of Szczekocki and Chmielewski (151), that the kidneys play 

only a small role in aluminum excretion, and that the main route of elimination is 

the alimentary tract. This is in contrast to the opinion of Recker et al. (152), who 

stated that the kidneys can effectively remove absorbed aluminum. 

Plasma aluminum levels approximately doubled during antacid adminis

tration in every subject. The values for the aluminum content of the diets 
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averaged just over 2 mg/day, which is lower than that reported by the groups of 

researchers, whose results were summarized by Sorenson et al. (1), except for the 

studies by White and by Cormican. The finding of small negative aluminum 

balances during the control periods is consistent with the work of others (153-4). 

The prolonged absorption of these levels of aluminum in our studies, up to 0.3 

g/day, must lead to deposition in some body store, and Recker et al. (152) have 

given evidence that the target organ is bone. The average aluminum excretion 

above baseline values after discontinuation of the antacids was 3.20 mg/day. 

As stated previously, the role of the aluminum antacids in renal failure is 

to limit the accumulation of phosphate, and the mechanism by which this occurs 

was the subject of the work done in 1941 by Freeman and Freeman (155). They 

could not decide whether phosphate was reduced only by a decreased absorption, 

or whether there was also some removal of phosphate from the tissues by 

aluminum hydroxide. Fauley et al. (156) found that both mechanisms occurred in 

the intestine. In addition, aluminum phosphate can deposit in the tissues (157). 

Spencer et al. (158) found, using metabolic balance studies, that these antacids 

not only inhibit phosphorus absorption, but also increase the urinary and stool 

excretion of calcium. This loss of calcium via the intestine can lead to uremic 

bone disease, as can the phosphorus depletion. Too little control of serum 

phosphate can produce uremic osteodystrophy, while overcontrol can result in 

osteomalacia. Many reports have been published in this area (159-166). The 

hyperparathyroidism produced by the reduced clearance of phosphorus has been 

examined recently for the role it plays in aggravating the uremic bone disease 

(52), and because of the indications that hyperparathyroidism may promote an 

increased absorption of aluminum (167). Goldsmith and Johnson (168) have 

published a dialysis program, the goal of which is to monitor and control serum 

calcium and phosphorus through antacid therapy and dialysate composition. 
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Berlyne et al. (107, 169) have stated that there is no risk of aluminum 

toxicity in hemodialysis patients, because it is dialyzed out. The work presented 

here shows that dialysis has no effect on serum aluminum levels. To be removed 

by dialysis, a compound must display little tissue and protein binding, have a low 

molecular weight, and be primarily excreted by glomerular filtration (170). A 

major portion of serum aluminum has been found to be protein-bound (171). Our 

work tends to substantiate this claim, in that the aluminum was not dialyzable, 

and only a small amount could be removed by hemofiltration. DeBoni et al. (102) 

have proposed that there may be carrier molecules in blood for aluminum, as there 

are for other metals, and that if these become saturated, whether through 

antacids or dialysate, the aluminum may attach to another constituent that 

readily crosses the blood-brain barrier. Further aluminum load could then 

precipitate the metal into the neurons. That this may occur is evidenced by the 

plasma levels obtained in our metabolic balance studies, particularly in subject 6, 

which reached a plateau, and did not increase further with additional aluminum 

absorption. 

The studies in which the dialysates were collected point to the fact that 

the contaminating aluminum content of these solutions may be infused into a 

patient, where presumably it is rendered non-dialyzable by binding to protein. The 

hemofiltration studies show that at least a portion of the aluminum is filtrable, 

and that through meticulous attention to the aluminum concentration of the 

dialysate before treatment this fraction may be dialyzable, as in patient 3 in 

Table 20. The data from these studies and from the metabolic balance studies 

demonstrate, though, that there are two sources contributing to aluminum loading 

in these patients, namely aluminum-containing antacids and aluminum in the 

dialysate. Whatever the source, the mounting circumstantial evidence strongly 

favors aluminum as the causative agent of dialysis dementia. 
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CHAPTER VI 

SUMMARY 

Aluminum, generally considered non-essential and non-toxic, may accum-

ulate in toxic amounts in the brain in cases of chronic renal failure. The 

literature, relating to the determination of aluminum, its uses in medications, 

effects on various biological systems, and role in neurological disorders, is 

reviewed. 

A procedure is described for the analysis of aluminum in biological 

samples, that requires no sample preparation for serum and urine, and is sensitive 

at the appropriate concentrations by atomic absorption spectrophotometry with a 

graphite furnace. Samples are pipetted into the interior of a graphite tube, where 

they are sequentially dried, charred, and atomized. Precautions for sample 

handling are discussed, and instrument settings are defined. Precision and 

accuracy of the method are evaluated, as are the effects of salts, protein content 

of serum, and specific gravity of urine. Serum (N=24) and urine (N=ll) of persons 

not consuming aluminum-containing antacids contains 27 + 9 (SD) Jlg Al/liter and 

45 2:. 32 (SD) pg Al/24h, respectively. 

Metabolic balance studies are presented for patients given aluminum

containing antacids under strictly controlled conditions. The aluminum contents 

of the diets, drinking water, and medications are compared to those of complete 

urine and stool collections. During control periods small negative balances were 

obtained, while during antacid supplementation large positive balances occur, 

ranging from 23 to 313 mg Al/day. Plasma levels during the various study 
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conditions showed a marked increase to a plateau while aluminum antacids were 

given and a gradual decline after withdrawal of the medications. 

Hemodialysis had no effect on serum aluminum levels, which ranged from 

27 to 254 pg Al/liter. Hemoflltration was found to remove a portion of the serum 

aluminum, but the majority remained bound to a non-filtrable component. 

Aluminum in the dialysate was also found to contribute to aluminum loading in 

these patients. These results are evaluated in light of present knowledge con

cerning dialysis dementia. 
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