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INTRODUCTION 

CHAPTER I 

BACKGROUND AND 

LITERATURE REVIEW 

This dissertation reports neurochemical research designed 

to clarify the metabolism and ontogeny of three density subfrac-

tions of whole brain central nervous system (CNS) myelin, isolated 

and prepared from actively myelinating young rats. The metabolism 

and ontogeny of CNS brain myelin subfractions were studied by exam­

ining the protein and lipid metabolism of three myelin subfractions 

under a variety of experimental conditions designed to simulate 

either normal or abnormal development. Abnormal development was 

simulated by postnatal protein-calorie malnutrition and by two sepa­

rate periods of maternal ethanol consumption (defined below as "acute" 

and "chronic" periods of maternal ethanol consumption). 

This research is important for a number of reasons. These 

reasons include the unique, intrinsic properties of CNS myelin, the 

controversy currently surrounding the true significance of CNS myelin 

subfractions, and the need to determine the extent of stress-mediated 

perturbations in CNS myelin subfraction content and synthesis as a 

consequence of postnatal protein-calorie malnutrition and maternal 

ethanol consumption. Accordingly, each of these concerns will be 

discussed in light of w·hat is currently known and the specific goals 

of the present study. 
1 



CNS MYELIN PROPERTIES 

There are a number of unique and interesting porperties of my­

elin, especially CNS myelin, which account for the special attention 

given to myelination studies by basic scientists and clinicians. Anum­

ber of significant biochemical, morphological, functional, and clinical 

aspects set myelin apart as an exceptional membrane system. Biochemi­

cally, myelin has a disproportionately high lipid content. Metabolical­

ly, it has relative stability which belies the feverish metabolic activ­

ity which characterizes the cell bodies, i.e., oligodendroglia in the 

CNS, Schwann cells in the peripheral nervous system (PNS), which synthe­

size and maintain the myelin sheath and with which continuity is main­

tained. Morphologically, it is extremely highly ordered while having 

complex spatial relationships with both the cell bodies which synthesize 

and maintain it and the nerve axon segments about which it is deposited. 

Functionally, it is responsible for saltatory nerve conduction. Clini­

cally, it is the focus of serious de- and dysmyelinating diseases and is 

vulnerable to environmental, traumatic, and immunological insults, espe­

cially within the ~NS where functional recovery from myelin lesions is 

less likely than in the PNS. This cursory review of important myelin 

properties will be documented in greater detail below. 

2 

CNS myelin has a very low water content, very high lipid content, 

and an interesting array of lipids and proteins. As will become clear, 

these properties of CNS myelin contribute to its membrane-molecular 

architecture, apparent stability, and functional role. With the excep­

tion of PNS myelin, which is somewhat similar, CNS myelin is unique. 
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By indirect measurements, the water content of myelin has been 

estimated at 40 percent by weight (Finean, 1960), This was determined 

from x-ray diffraction studies of drying nerve tissue, The low water 

content of white matter (72 percent by weight) compared to that of gray 

matter (82 percent) reflects the fact that by weight white matter is 50 

percent myelin. Direct measurement of the water content of myelin is as 

yet impossible (Norton, 1976). 

By dry weight, mammalian CNS myelin is 70 to 85 percent lipid and 

15 to 30 percent protein. The three major lipids of CNS myelin by l>7eight 

distribution are cholesterol (25 to 28 percent), galactosphingolipid (27 

to 30 percent), and phospholipid (40 to 45 percent). The major two 

galactosphingolipids are cerebroside and sulfatide, comprising 23.7 and 

7.1 percent, respectively, of total lipid in rat CNS myelin. The major 

phospholipids are the ethanolamine phosphatides, comprising 16.7 percent 

of total lipid, (ethanolamine phosphatides in the plasmalogen form com­

prise 14.1 percent of total lipid), and lecithin, comprising 11.3 per­

cent of total lipid in rat CNS myelin. Minor but important phospholipids 

include the polyphosphoinositides which remain tightly bound to myelin 

proteins when lipids are not extracted with acid organic solvents. The 

brain triphosphoinositide stable to postmortem degradation is probably 

concentrated in CNS myelin and may be a myelin marker. This brain tri­

phosphoinositide is of interest since in contrast to myelin's relative 

stability it has the highest turnover rate of any brain phospholipid. 

Triphosphoinositides represent 4 to 6 percent of total myelin phosphorus, 

while diphosphoinositides represent 1 to 1.5 percent. Sphingomyelin is 

a relatively minor constituent by weight, comprising 3.2 percent of total 
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lipid in rat CNS myelin. Minor galactolipids include mono- and digalac­

tosyl diglycerides, comprising less than 1 percent by weight of total 

CNS myelin lipid. By molar ratios, the three major lipids, cholesterol, 

phospholipid, and galactolipid, are in the ratio 4:3:2, respectively, 

(Norton, 1976). CNS myelin lipids include limited amounts of ganglio­

side, as reflected by the yield of 40 to 50 ~g sialic acid per 100 mg 

myelin. Although ganglioside is more abundant in other compartments, 

it is not considered a neuronal contaminant in myelin (Norton and 

Autilio, 1966; Suzuki, Poduslo, and Poduslo, 1968). The ganglioside, 

c
7 , a unique sialosylgalactosylceramide derived from galactocerebroside, 

represents a major human CNS myelin ganglioside, and may serve as a 

myelin marker (Ledeen, Yu, and Ene, 1973; Norton, 1976). 

With the possible exception of cardiolipin, which is present in 

non-myelin CNS compartments but not in myelin, there is no lipid of CNS 

non-myelin origin or myelin origin which is not also found in the other 

compartment. While there are no myelin specific lipids per se, cerebro­

side is chiefly associated with myelin. During brain development total 

cerebroside parallels CNS myelin content (Norton, 1976). 

There are features which distinguish CNS myelin lipids from the 

corresponding lipids of the rest of the CNS. These differences concern 

primarily the nature of the associated fatty residues. A very high pro­

portion of fatty aldehydes comprise myelin fatty residues. These fatty 

aldehydes derived from the plasmalogens, phosphatidalethanolamine, and 

less so phosphatidalserine, account for one-sixth of the total glyceryl­

phosphatide fatty residues and on a mole percent basis for 12 percent of 



the total hydrolyzable fatty residues of myelin lipids. The phospho­

lipid fatty acids generally have a high oleic acid (18:1) acid content. 

and small amount of polyunsaturated fatty acids. Glycosphigolipids 

(cerebrosides and sulfatides) have unsubstituted and a-hydroxy fatty 

acids which may be saturated or monounsaturated. In contrast, sphigo­

myelin has only unsubstituted fatty acids. Sphingolipid acids are 

mainly long chain (i.e., 22 to 26 carbon atoms) with varying amounts of 

stearic acid {18:0)(Norton, 1976). 

5 

Differences are also apparent for the gangliosides. For 

example, mature rat and cow CNS myelin gangliosides have a different 

pattern than do those of human CNS gangliosides. In these non-human 

mammalian species the major monosialoganglioside, ~l' accounts for 80 

to 90 mole percent of total myelin ganglioside. Regional differences in 

lipid-protein ratios within the CNS for brain myelin are suspected but 

not well documented (Norton, 1976). 

Non-lipid components associated with CNS myelin include a limit­

ed number of enzymes, some protein classes, glycoproteins, and insignif­

icant amounts of mucopolysaccharides. There is some controversy regard­

ing whether certain of the enzymes and protein classes associated with 

CNS myelin are in tact myelin specific. 

The enzyme, 2' ,3'-cyclic nucleotide 3'-phosphohydrolase, (CNP), 

has enriched specific activity in CNS myelin, is absent from PNS myelin, 

and is generally accepted as a CNS myelin marker (Norton, 1976). Its 

activity in CNS (brain and spinal cord) parallels myelination during 

development (Kurihara and Tsukada, 1968; Olafson, Drummond, and Lee, 

1969; Kurihara, Nussbaum, and Mandel, 1970; Braun and Barchi, 1972; 
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Toews, Horrocks, and King, 1976} and low levels of the enzyme are observed 

in two murine mutants (quaking and jimpy) which are deficient in myelin 

(Kurihara eta~., 1970; Eto and Suzuki, 1973b; Matthieu, Quarles, Webstert 

Hogan, and Brady, 1974a; Matthieu, Brady, and Quarles, 1974b). Unfortu­

nately, neither its physiological substrate nor function is known. 

Another enzyme, cholesterol ester hydrolase, pH optimum 7.2, is myelin 

associated and one of three such enzymes found in whole brain. It appears 

to be myelin specific (Eto and Suzuki, 1973a). Its physiological func­

tion also is unknown. Knowing that at least two enzymes may be myelin 

specific suggests that myelin, once thought to be enzymatically inert, 

may in fact have additional enzymatic activities. Recent evidence has 

been advanced for the presence of a protein kinase capable of phosphor­

ylating myelin basic protein (Carnegie, Dunkley, Kemp, and Murray, 1974; 

Miyamoto and Kakiuchi, 1974). There are also reoorts suggesting the 

presence of the enzyme, UDP-galactose: ceramide galactosyl transferase, 

the enzyme catalyzing the final steps in cerebroside synthesis (Cos­

tantino-Ceccarini and Suzuki, 1975; Chou and Jungawala, 1976). In addi­

tion, peptidase activity has been reported, however, the evidence is 

equivocal whether this activity is truly undissociable from 1nyelin 

(Norton, 1976). 

Of the proteins associated with mammalian CNS myelin, the major 

three intrinsic proteins are proteolipid (30 to 50 percent of total myelin 

protein), basic protein {30 to 35 percent), and Wolfgram protein (a lower 

percentage). In addition, rodents have an additional smaller basic pro­

tein, and all mammals have a class of high molecular weight proteins, a 



proteolipid-type protein doublet of lower molecular weight than pro­

teolipid protein, and at least one glycoprotein. The relative amount 

7 

of high molecula~ weight protein is species dependent, comprising a high­

er percentage of total myelin protein in mouse and rat myelin compared to 

bovine and human myelin. This species variance raises doubts concern­

ing which of the high molecular weight proteins is (are) myelin spe­

cific (Norton, 1976). 

The resolution of myelin proteins solubilized in sodium dodecyl 

sulphate (SDS) and electrophoresed in polyacrylamide gels depends upon 

the molecular sieving characteristics of the gel system employed, poly­

acrylamide concentration and the degree of polymer cross linking. It 

also depends upon whether one employs stacking or resolving gels. De­

pending upon the procedure employed, one may obtain greater resolution 

for the higher molecular weight or for the lower molecular weight proteins. 

The proteolipid-like protein called DM20 by its discoverer, Agrawal 

(Agrawal, Burton, Fishman, Mitchell and Prensky, 1972) may not be well 

resolved in certain gel systems. Regardless of the particular system 

employed, the myelin proteins migrate in order of decreasing molecular 

weight in the rat as follows: high molecular weight proteins including 

the Wolfgram doublet (Wolfgram, 1966) near the bottom of the high molec­

ular weight protein bands, proteolipid protein, DM20 protein, large 

basic protein, and small basic protein. A few of the more interesting 

features of some of these proteins will be discussed below. 

Proteolipid, as its name implies, has protein and lipid charac­

teristics. Named after those who discovered and characterized it, the 
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Felch-Lees proteolipid protein is extractable from whole brain lby chloro-­

form-methanol, and once extracted, soluble in either chloroform or chlo­

roform-methanol. Its amino acid content is 40 percent polar, 60 percent 

nonpolar. The extracted protein is heterogeneous, perhaps due to sub­

unit aggregation. The major proteolipid species has a molecular weight 

of approximately 24,000 (Felch and Stoffyn, 1972). The so called DM20 

proteolipid-like protein is extracted with proteolipid protein from whole 

brain, has an apparent molecular weight of approximately 20,000~ and is 

enriched in tryptophan, cysteine, and methionine residues. PNS myelin, 

in contrast to CNS myelin, has little proteolipid protein (Norton, 1976). 

CNS myelin glycoprotein may be labelled with fucose, gluco­

samine, or N-acetylmannosamine. It migrates with high molecular weight 

proteins during SDS polyacrylamide gel electrophoresis. Its molecular 

weight appears to decrease with development (Matthieu, Brady, and 

Quarles, 1975a). Numerous studies indicate that the major glycoprotein 

in isolated myelin is truly myelin-associated (Quarles, Everly, and 

Brady, 1972, 1973a, 1973b; Druse, Brady, and Quarles, 1974; Matthieu 

~ al., 1974a; Matthieu et al., 1974b). 

Basic protein, the most well characterized CNS myelin protein, 

is most widely known for its encephalitogenic activity (Eylar, 1972; 

Kies, Martenson, and Deibler, 1972a). When injected >vith Freund's 

adjuvant into an animal it evokes a cellular antibody response result­

ing in the autoimmune experimental allergic encephalomyelitis (EAE). 

EAE resembles multiple sclerosis in that it too presents with multifocal 

inflammatory and demyelinating CNS lesions. Basic protein cannot be ex-
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tracted from whole brain by organic solvents but is soluble by action 

of chloroform-methanol (2:1) upon isolated myelin 1 It is easily ex.,. 

tracted from either myelin or whole bra:Ln by dilute acid ox- salt: solu.,­

tion, and upon extraction is water soluble, The complete primary struc~ 

ture of bovine (Eylar, 1972) and human (Carnegie, 1971; Eylar, 1972) 

basic protein is known. Bovine basic protein has an isoelectric point 

greater than pH 12, is highly unfolded, and devoid of tertiary struc­

ture. With a molecular weight of approximately 18,000, 54 percent of its 

residues are polar, 46 percent nonpolar. It is devoid of cysteine and 

has only one tryptophan residue. The additional smaller basic protein 

found in rodent CNS myelin has 40 less amino acid residues but shares 

the same N- and C-termini (Martenson, Deibler, Kies, McKneally, Shapira, 

and Kibler, 1972). P
1

, the larger of two PNS myelin basic proteins, is 

identical to CNS myelin large basic protein. The smaller PNS myelin 

basic protein, P2 , is distinct from the smaller basic protein assoc­

iated with CNS myelin of rodent origin (Brostoff, Karkhanis, Carlo, 

Reuter, and Eylar, 1975a). 

Wolfgram protein, discovered and characterized by Wolfgram 

(1966), is a class of acid soluble proteolipid proteins appearing pre­

dominantly as a doublet or triplet separable by SDS polyacrylamide gel 

electrophoresis at the lower end of the high molecular weight proteins. 

Wolfgram protein is insoluble in water and neutral chloroform-methanol. 

Fifty-three percent of its residues are polar, 47 percent nonpolar 

(Norton, 1976). Waehneldt and Neuhoff (1974) noted that the appear-

ance of Wolfgram protein in rat brain during postnatal development paral-
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leled the deposition of basic protein and proteolipid protein, an indi­

cation of the close association of Wolfgram protein with myelinogenesis. 

Current membrane-molecular models for the ultrastructural arrange­

ment of lipid and protein in CNS myelin have evolved from fundamental 

studies employing polarized light, x-ray diffraction, and electron mi­

croscopy. 

Birefringence under polarized light, an indication of long range 

order, had been observed in myelin as early as the last half of the nine­

teenth century. In 1913 Gothlin demonstrated lipid- and protein-depend­

ent birefringence, the former being predominant (Schmitt, 1959). PNS 

polarization studies by Schmitt revealed the lamellar nature of myelin. 

In their model, similar to contemporary models, lipids are arranged 

radially and proteins tangentially with respect to the myelinated axon 

(Schmitt, 1959; Davison and Peters, 1970). 

The lamellar character of myelin was further confirmed in x-ray 

diffraction studies by Schmitt and colleagues (Schmitt and Bear, 1939; 

Schmitt, Bear, and Palmer, 1941; Schmitt, 1959). They observed radial 

periodicity of 17 to 18 nm. This was significant because it was com­

patible with the dimensions requisite for two bimolecular lipid layers 

and associated protein coats in the simple Danielli and Davson (1935) 

membrane model. Further clarification of this model came from low angle 

x-ray diffraction studies by Finean (1953a, 1953b, 1960, 1961, 1965, 

1969) and Finean, Hawthorne, and Patterson (1957). Electron density 

mappings from this work showed three peaks and two troughs with a repeat 

of 18 nm. Protein and lipid polar heads account for the electron dense 
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peaks while lipid hydrocarbon tails account for the troughs. The 8 nm 

repeat distance between peaks is compatible with a single bimolecular 

lipid layer with protein coating on either side. These data were inter­

preted to represent a repeating unit of protein-lipid-protein-lipid­

protein. The model emerging so far is of two bimolecular lipid layers 

each with its own external (i.e., extracellular) protein coat and internal 

(i.e., intracellular) protein coats which have fused by close apposition 

of the internal (i.e., intracellular) protein coats of the two bimolec­

ular lipid layers. 

The early conclusions based on polarized light and x-ray diffrac­

tion studies of myelin, chiefly PNS myelin, have been confirmed by elec­

tron microscopy studies of PNS and CNS myelin (Sjostrand, 1950; 

Fernandez-Maran, 1950; Maturana, 1960; Peters, 1960a, 1960b, 196la, 196lb, 

1962, 1964a, 1964b, 1966). Myelin electron photomicrographs present al­

ternating dark and less dark lines separated by unstained zones. The 

osmophilic lines represent protein layers, the unstained region repre­

sents the lipid hydrocarbon chains. The dark and less dark lines are re­

ferred to as the major dense line and the intraperiod line, respectively. 

The intraperiod line represents the protein closely apposed to the outer 

(i.e., extracellular) surface of the original (oligo or Schwann) cell 

plasma membrane. The major dense line represents the fusion of the 

inner (i.e., intracellular) protein layer from each of the two apposed 

(oligo or Schwann) cell plasma membranes. That the intraperiod line re­

presents the outer surface of a single plasma cell membrane is confirmed 

from electron photomicrographs of PNS myelin swollen in hypotonic so-
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lution; only at this line does myelin normally split, i.e., the extra­

cellular space between adjacent myelin lamellae widens. The major 
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dense line represents the fusion of protein coats within a single 

lamella (Robertson, 1966). More recent techniques now show the 

intraperiod line as two lines, indicating that extracellular outer sides 

of each unit membrane are not fused (Norton, 1976). Electron micros­

copy determined periodicity reflects the shrinkage occurring during 

tissue preparation. The current techniques for electron microscopy 

tissue preparation with in vivo fixation now show PNS myelin period­

icity of 11.9 nm and CNS myelin periodicity of 10.7 nm (Finean, 1961; 

Karlsson, 1966; Norton, 1976). The smaller CNS myelin periodicity may 

reflect the fact that on the average, the extracellular space between 

lamellae is thinner in the CNS (Davison and Peters, 1970; Norton, 1976). 

The most recent membrane-molecular models for CNS myelin have 

modified the classical picture described above to make it fit more con­

sistently the fluid mosaic model of membrane structure. The details 

concerning this model refinement are discussed in the recent review by 

Braun (1977). 

The complex morphology of myelin in situ is a consequence of the 

complicated manner in which myelin is deposited about axons in the CNS 

by oligodendrocytes and in the PNS by Schwann cells. The manner of 

deposition is more complex for CNS myelin. 

A single oligo cell may send out as many as 30 to 50 tortuous 

pseudopod-like cytoplasmic processes, each of which is capable of invest­

ing a segment of a separate axon with 10 to 15 lamellae of compacted 
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myelin (bavison and Peters, 1970). Unlike the Schwann cell which may 

rotate about the single axon segment for which it provides a myelin 

sheath, it is impossible for a single oligo cell to rotate around 

multiple axon segments and effectively myelinate each axon segment. 

Accordingly, from all available electron photomicrographic evidence, it 

is surmised that each cytoplasmic projection of the oligo cell spirals 

internally about its respective axon segment independent of all other 

processes. \Vhile the exact mechanism eludes demonstration, there are 

cogent theories to explain the process subject to the three dimensional 

constaints present. Is is thought that a single oligo process grows 

around an axon segment in ameboid-like movement. Upon fully en­

circling the axon segment once, the opposing tongues of cytoplasm 

come into very close apposition to form an external and internal mesaxon. 

Myelin lamellae appear to form by inward spiralling of the internal 

mesaxon. During and/or following completion of several inward spiral 

rotations of the internal mesaxon, the cytoplasmic internal surfaces 

of the extended oligo plasma cell membrane within each lamella fuse 

as cytoplasm is excluded. The complete exclusion of cytoplasm and 

fusion of the apposed intracellular cytoplasmic surfaces of the extended 

oligo plasma cell membrane within each lamellae results in the structure 

which appears under electron microscopy as the major dense line. When 

the process is completed, cytoplasm has been effectively excluded from 

the entire extent of the myelin sheath except for three main regions, 

viz., the external mesaxon, the internal mesaxon, and pockets of cyto­

plasm at either longitudinal end of the sheath about a particular axon 



14 

segment, i.e., at the paranode. This is in contrast to the PNS in which 

considerable cytoplasm invests the outer lamella of myelin and is present 

in pockets throughout the sheath. In longitudinal section, CNS myelin 

shows a narrow ridge of cytoplasm on the outermost surface of the sheath. 

This represents the cytoplasmic process which still maintains continuity 

between the parent oligo cell body and the myelin sheath (Davison and 

Peters, 1970; Norton, 1976). 

The actual process is considerably more complex. While the 

sheath may indeed grow by inward spiralling of the internal mesaxon, 

growth in other directions is requisite. The sheath must be capable of 

growth within each lamella along the longitudinal axis of the axon seg­

ment. Furthermore, as the axon diameter increases the myelin sheath must 

accommodate either by slippage of lamellae or by growth internally of 

each lamella. Like the PNS, cytoplasmic continuity between cytoplasm 

within the myelin sheath and the parent oligo cell body is postulated. 

However, unequivocal demonstration has not been possible, perhaps be­

cause of the tortuous growth of oligo processes following myelination in 

the developing CNS. Like the PNS, each axon is not ensheathed for its 

whole length, but rather in segments delineated by unmyelinated gaps, 

the nodes of Ranvier. At the paranodal region, outer concentric myelin 

lamellae extend out over each other approaching the center of the node. 

The paranodal cytoplasmic pocket of each lamella is in tight apposition 

to the surface of the axon, and it is here at the paranode that each 

lamella appears to open up at the major dense line. Unlike the PNS, at 

the center of the node of Ranvier there is a gap in which the axon is 
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bare, there being neither myelin lamellae nor oligo cell cytoplasmic 

processes abutting against the axon nor a basal lamina (Davison and 

Peters, 1970; Norton, 1976). 

The high lipid content, ultrastructural arrangement of membrane 

constituents, and complex morphologic relations serve to account for 

the CNS myelin's chief function, to increase nerve conduction veloc-

ity by saltatory conduction. In an unmyelinated axon conduction veloc-

. 1 . . d b 1 1 . . (Na+, K+, Ca++) f h ity 1s 1m1te y oca 10n1c currents in and out o t e 

axon plasma cell membrane as a consequence of alternating resting and 

active membrane potentials. The high lipid content of myelin confers 

upon it an electrical resistance 10 to 20 times higher than extra-

cellular salt solutions. Those segments of axon invested by the myelin 

sheath are effectively "insulated" from local ionic currents. Were the 

entire length of the axon invested with a myelin sheath no nerve con-

duction would be possible. However, there are regular interruptions 

in the myelin sheath at the nodes of Ranvier. At the low resistance 

region of the node the bioelectrical gradient generates a current which 

acts through the extracellular salt solutions external to the myelin 

sheath to activate the axonal membrane distally at the next node of 

Ranvier. This saltatory (literally, dancing) current from node to node 

travels six times faster than local ionic current in an unmyelinated 

axon. Compared to unmyelinated axons of similar diameter, saltatory 

conduction per unit length of axon requires l/300th the sodium ion flux 

and results in a similar or greater reduction in energy requirements. 

The myelin investment about an axon also lowers its capacitance per unit 
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length, thereby further increasing conduction velocity. Saltatory con­

duction results in retarded nerve conduction velocity if the myelinated 

axon diameter is less than 1 p (Hodgkin, 1964; Norton, 1976). 

The generally relative stability of CNS myelin membrane com­

ponents belies the rapid synthetic activity during myelinogenesis. CNS 

myelin, once thought to be a relatively inert membrane system, is nm-1 

generally regarded as a relatively stable membrane in which only a few 

enzymatic activities have been demonstrated with certainty. The exact 

reasons for myelin's relative stability are unknown. Generally its mem­

brane components have a longer half-life than their counterparts in other 

CNS compartments. In contrast, rapid onset of synthetic activity char­

acterizes the oligo cell during early myelinogenesis. 

Work by Smith (1967) demonstrated that lipid precursors are in­

corporated into CNS myelin in young rats at rates comparable to incor­

poration into mitochondria. However, the varied half-lives of myelin 

lipid components are considerably greater than for their counterparts in 

mitochondria. CNS myelin lipid half-lives were reported as follows: 

phosphatidylinositol (5 weeks), lecithin (2 months), phosphatidylserine_ 

(4 months), and ethanolamine phospholipids, cholesterol, sphingomyelin, 

cerebrosides, and sulfatides (7 months to 1 year). This is in contrast 

to mitochondrial lipid half-lives ranging from 11 days (phosphatidyl­

inositol) to 59 days (cerebroside). Half-life calculations are com­

plicated by a certain amount of pool exchange and reutilization of 

certain metabolites (Norton, 1976). Half-lives of CNS myelin proteins 

are also greater than for CNS non-myelin proteins. CNS myelin basic 
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protein half-life in the rat is age dependent, Reported values 

include 14 to 21 days, 21 days, and 42 to 44 days, Proteolipid protein 

half-life is comparable to that of basic protein while that of Wolfgram 

protein is shorter. Proteolipid protein and basic protein are labelled 

more slowly than Wolfgram protein (Fischer and Morell, 1974; Norton, 

1976). 

Prior to myelination, the immature brain has relatively large 

amounts of cholesterol and phospholipids but little cerebroside and neg­

ligible enzymatic activity to synthesize cerebroside from UPD-galactose 

and ceramide. This enzymatic activity in the mouse peaks at 10 to 20 

days, correlating well with the peak myelinogenetic activity, In the 

rat the high level of myelinogenetic activity by oligo cells at 20 days 

is suggested by rough calculations by Norton (1976). By his estimates 

the 3.5 mg per day production of myelin represents an output of myelin 

per oligo cell body equivalent in weight to three times the mass of the 

oligo cell. 

In a more general sense, the time scale for CNS myelination may 

be related to chronological age, other neurodevelopmental events, and to 

systemic and regional time gradients of myelination, In the rat CNS, 

myelination is a postnatal event commencing at 10 to 12 days of age, 

Between 15 and 30 days of age there is a six-fold increase in myelin from 

approximately 4 mg at 15 days. Between 30 and 60 days there is a further 

2. 5--fold increase in myelin (Norton, 1976), Myelin deposition in the 

rat is believed to continue even beyond 425 days of age (Norton and 

Poduslo, 1973a). In the rat, the onset of CNS myelination follows close­

ly the peak of cellular proliferation seen at 10 days postnatally 
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(Norton, 1976). 

The biochemical content of CNS whole brain myelin changes with 

time (Davison and Peters, 1970; Norton, 1971; Norton and Poduslo, 

1973). During maturation myelin galactolipids increase by about 50 

percent while lecithin content decreases by approximately 50 percent. 

The limited amount of myelin desmosterol declines further. Poly­

sialogangliosides wane while the monosialoganglioside, GMl' becomes 

the predominant rat CNS myelin ganglioside. In rodents during the first 

two months the relative amount of basic protein and proteolipid pro­

tein increases while that of high molecular weight protein decreases 

(Morell, Greenfield, Costantino-Ceccarini, and Wisniewski, 1972). Gen­

erally, the PNS begins to myelinate first, followed by spinal cord, and 

finally the brain in a caudocranial temporal gradient. In general, 

myelination follmvs phylogenetic development (Yakovlev and Lecours, 

1967; Rorke and Riggs, 1969). 

The research presented in this dissertation concerns CNS myel­

ination in the rat. For purposes of reference, myelinogenesis commences 

in the human during the fifth month in utero, and peaks during the peri­

natal period. Myelinogenesis in the human continues throughout and pos­

sibly beyond the third decade of life, however, the bulk of CNS brain 

myelination is complete by the end of the second year (Norton, 1976). 

CNS MYELIN SUBFPACTIONS 

Concerning the controversy currently surrounding the true sig­

nificance of CNS myelin subfractions, suffice it to say that there exists 

a plethora of procedures for isolating and preparing CNS myelin, myelin 



subfractions, and myelin associated membrane fractions. There are 

divergent nomenclatures, criteria of purity, and experimental para­

digms for metabolic studies. A variety of interpretations have 

been advanced concerning the origin and significance of myelin sub­

fractions. Myelin subfractions may simply be operationally and 

arbitrarily defined. Alternatively, myelin subfractions could be 

merely artifacts of isolation and preparation procedures, e.g., 

owing to the complex spatial relations of the myelin sheath in 

situ, different portions of the sheath might be differentially 

vulnerable to shearing forces operative during subfractionation 

procedures. And finally, myelin subfractions may indeed be gen­

uine correlates of anatomical structures and/or biochemical ma­

turity having significance for the composition and ontogeny of 

myelin. 

Another aspect of the current myelin subfraction contro­

versy concerns the ontogenetic significance of myelin subfrac­

tions and myelin associated membrane fractions with respect to 

precursor-product relations, either between non-myelin and myelin 

compartments, or within myelin compartments. Precursor-product 

relationships are exceedingly difficult to demonstrate unequiv­

ocably. The indirect, suggestive evidences thus far pre-

sented are compatible with certain precursor-product relations; 

however, additional dataareneeded to more adequately demon­

strate the reality of these and other similar relationships. These 

matters will be documented and discussed below with respect to the 
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previously published findings of workers in the field. 

Several laboratories have described procedures for isolating 

CNS myelin, myelin subfractions, and myelin associated membrane 

fractions. (Autilio, Norton, and Terry, 1964; Cuzner and Davison, 

1968; Adams and Fox, 1969; Shapira, Binkley, Kibler and Wundram, 

1970; McMillan, Williams, Kaufman, and Day, 1972; Morell et al., 

1972; Benjamins, Miller, and McKhann, 1973; Matthieu, Quarles, Brady, 

and Webster, 1973; Norton and Poduslo, 1973b; Agrawal, Trotter, 

Burton, and Mitchell, 1974; Waehneldt and Neuhoff, 1974). CNS myelin 

is generally prepared by ultracentrifugation techniques following 

homogenization of tissue in low ionic strength sucrose solutions. 

During homogenization myelin lamellae are stripped away from the axon 

and reform as large vesicles of high lipid content. These vesicles 

have the lowest density of any CNS membrane. In the presence of high 

ionic strength sucrose solutions myelin adheres to axon fragments and 

can not be isolated free of contaminants. Ultracentrifugation of 

sucrose homogenates upon appropriate discQntinuous or continuous 

sucrose, CsCl, or sucrose-Ficoll gradients takes advantage of the 

great buoyant density of the crude myelin vesicles (Norton, 1976). 

Two main methods for CNS myelin preparation employ the prin­

ciples stated above. In the first, the tissue is differentially 

centrifuged to yield a crude mitochondrial fraction containing mito­

chondria, synaptosomes, and myelin, and a nuclear fraction. Each of 

these two fractions is resuspended in isotonic sucrose (0.3 M) and 

layered above or below 0.8 M sucrose. Upon centrifugation crude 
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myelin is recovered as interfacial material. Alternatively, whole 

tissue may be homogenized directly in isotonic sucrose and the homo­

genate layered above or below 0.85 M sucrose. Centrifugation again 

yields crude myelin as interfacial material. The purity of crude 

myelin varies with the source of the tissue and the age of the brain. 

Younger animals yield crude myelin with greater impurity, the chief 

impurities being axoplasmic and microsomal contaminants. These are 

removed by osmotic shock in distilled water by two methods. The crude 

myelin suspended in distilled water is slowly centrifuged, sediment­

ing myelin and leaving axoplasmic and microsomal material in the 

supernatant. Alternatively, crude myelin may be resuspended in iso­

tonic sucrose solutions reapplied to gradients and centrifuged re­

peatedly. Depending upon the gradient medium employed, myelin will 

band out at different densities. On a sucrose gradient myelin bands 

at a density of 1.08 g/ml, the density of 0.65 M sucrose. On CsCl 

gradients banding occurs at greater density, on sucrose-Ficoll gra­

dients at lower density (Norton, 1976). Myelin represents a con­

tinuum of densities within a defined range (Detering and Wells, 1976 ). 

Accordingly, one can operationally select specific gradient densities 

in order to isolate whole myelin or myelin subfractions of specific 

density range. 

Since procedures for isolation and subfractionation of CNS 

myelin are of necessity somewhat arbitrary, it becomes necessary to 

select appropriate criteria of purity. Criteria advanced have in­

cluded morphology as revealed by electron microscopy, the presence of 

chemical and enzymatic markers specific to myelin, the absence of 
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markers specific to non-myelin structures, and the appearance of SDS 

protein gel electrophoregrams. Isolated CNS myelin does retain its 

lamellar appearance with its fundamental protein-lipid-protein-lipid­

protein structure and a radial periodicity of approximately 12 nm when 

examined under electron microscopy. The electron photomicrographic 

fields may also be examined for obvious contamination by nuclear, 

mitochondrial, and axonal structures. Unfortunately, beyond a certain 

level of purity it is impossible to exclude contamination by small 

membrane vesicles of microsomal origin. The presence of enriched 

specific activity of CNP, a CNS myelin marker, is a powerful criter­

ion of purity. Enrichment in galactosphingolipid, especially cerebro­

side, is another useful criterion of purity. The absence of succinic 

dehydrogenase activity excludes mitochondrial contamination. The ab­

sence of Na+, K+-activated ATPase and S'nucleotidease activity and 

nucleic acid are criteria for the exclusion of contamination by plasma 

cell membrane, ribosomes, microsomes, and nuclei, Enrichment in myelin 

specific proteins, basic protein, proteolipid protein, and Wolfgram 

protein, is a further demonstration of CNS myelin purity (~orton, 

1976). 

The research reported in this dissertation was prompted in 

large measure by the interesting observations made by Matthieu et ~·~ 

(1973) and Zimmerman, Quarles, Webster, Matthieu, and Brady (1975) con­

cerning the correlation bet,.Jeen density and maturity of three density 

subfractions (Hatthieu et a~., 1973) of whole brain CNS myelin (Norton 

and Poduslo, 1973b). The CNS whole brain myelin was recovered as 
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interfacial material following ultracentrifugation (75,000 g avg., 

30 minutes) of an 0.32 M sucrose homogenate of brain tissue layered 

over 0.85 M sucrose. The CNS whole brain myelin was subsequently 

further purified by osmotic shocking (Norton and Poduslo, 1973b). 

Purified whole brain CNS myelin was subfractionated into light, 

medium, and heavy myelin (Matthieu et al., 1973). These subfractions 

were recovered as two interfacial bands and a pellet following ultra-

centrifugation (75,000 g avg., 30 minutes) of a gradient containing 

myelin suspended in 0.32 M sucrose layered over a discontinuous gra-

dient of 0.62 M and 0.70 M sucrose. It is significant that most of 

the subfractionated myelin resedimented to the same position in the 

0.32/0.62/0.70 M sucrose discontinuous gradient. Matthieu's procedure 

separates myelin subfractions on the hasis of actual differences in 

physical properties and not artifactually by aggregation phenomena 

(Matthieu et al., 1973 ; Zimmerman et al., 1975 ). 

The observations by Matthieu et al. (1973) and Zimmerman 

et al. (1975) concerning the correlation between myelin density 

and maturity are very provocative. On morphologic and biochemical 

grounds both Matthieu and Zimmerman observed that light myelin is most 

like classical mature myelin, heavy most like immature myelin, and 

medium myelin intermediate in character. These conclusions were based 

on preparations from whole brain of 16-day-old rat and from the cort-

ical region and brain stem of 40 day-old rat brain (Zimmerman ~tal., 

1975) and from whole brain of 60-day old rat (Matthieu ~ al., 1973). 

Morphologically CNS myelin subfractions from all regions and at all 

ages examined showed greater maturity in lighter subfractions. 
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Light myelin appeared compact and multilamellar. Heavy myelin appear­

ed vesicular and was enriched in single membranous structures. Medium 

myelin was intermediate in appearance. At all ages and in all regions 

examined light myelin was enriched in basic protein. Heavy myelin, 

by contrast, was enriched in high molecular weight protein. Medium 

myelin had a protein composition intermediate between light and heavy 

myelin. In 16-day-old whole brain heavy myelin had less than half the 

specific activity of CNP and less than half the total content of the 

major myelin associated glycoprotein than did either light or medium 

myelin. In preparations from 40- and 60-day-old rat brain tissue 

there was an enrichment in both CNP and the major myelin associated 

glycoprotein from light to heavy myelin. Heavy myelin from 16-day-old 

rat brain had less proteolipid protein than did light myelin while in 

60-day-old adult whole brain Matthieu observed comparable amounts of 

proteolipid protein in all three subfractions. According to Matthieu 

the good correlation between enrichment of CNP and the major myelin 

associated glycoprotein in adult heavy myelin suggests a similar locus 

for these components either in loose myelin or oligo plasma cell mem­

brane. Both agree that heavy myelin is enriched in loose uncompacted 

lamellae, oligo plasma cell membrane, and oligo plasma cell membrane. 

These membranes are thought to be in transition towards myelin of 

greater morphological and biochemical maturity. 

It is significant that at the ages examined, i.e. 16-, 40-, 

and 60-days-old, a given Matthieu CNS myelin subfraction retains 

similar morphological and biochemical properties. As any other sub­

fractionation procedure, the Matthieu procedure is arbitrary. However, 
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it is a reproducible technique and appears to be valuable in examin-

ing selected density ranges of CNS brain myelin over a wide range 

of ages. 

The morphological and biochemical properties of the Matthieu 

CNS light, medium, and heavy myelin subfractions as observed by 

Matthieu et al. (1973) and Zimmerman et al. (1975) are in general 

accord with the properties of "lighter" and "heavier" CNS myelin 

subfractions as prepared and investigated by other workers. The 

lighter subfractions of myelin typically have a high specific activ-

ity of CNP (Benjamins et al., 1973; Matthieu et al., 1973; Agrawal 

et al., 1974; Zimmerman et al., 1975), low activity of acetyl-

cholinesterase (Matthieu et al., 1973; Agrawal et al., 1974), a multi-

lamellar morphology as revealed by electron microscopy (Benjamins 

et al., 1973; Natthieu et al., 1973; Agrawal et al., 1974; Zimmerman 

et al., 1975), significant amounts of basic protein (Natthieu et al., 

1973; Agrawal et al., 1974; Waehneldt and Neuhoff, 1974; Zimmerman 

et al., 1975), and significant amounts of galactolipid (Cuzner and 

Davison, 1968; }fcMillan et al., 1972; Benjamins et al., 1973; Agrawal 

et al., 1974). The heavier subfractions characteristically are com-

posed of many single vesicular structures (Morell et al., 1972; 

Benjamins et al., 1973; Matthieu et al., 1973; Agrawal et al., 1974), 

enriched in high molecular weight proteins (Adams and Fox, 1969; Eng 

and Bignami, 1972; Morell et al., 1972; Benjamins et al., 1973; 

Matthieu et al., 1973; Agrawal et al., 1974; Zimmerman et al., 1975; 

Benjamins, Gray, and Norell, 1976a; Fujimoto, Roots, Burton, and 
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Agrawal, 1976), and enriched in phospholipid content (Cuzner and 

Davison, 1968; Mc:Hillan ~ _al., 1972~ Eenjamins ~ a,l,, 1973? Agrawal 

et al., 1974). The increase in the protein to lipid ratio observed 

by Matthieu et al. (1973) and Zimmerman et al. (1975) from light to -- --

heavy myelin, accounting in large measure for the differing sucrose 

densities at which the three Matthieu subfractions are isolated, is 

similar to that reported by Autilio ~ al. (1964) for their light 

and heavy bovine myelin. 

As Quarles (1977) indicates, there is good reason to believe 

that the Matthieu heavy myelin subfraction is enriched in myelin re-

lated membranes rather than deriving its biochemical properties by 

admixture of unrelated, non-myelin membranes. Heavy myelin, compared 

to whole myelin from which it was subfractionated and compared to light 

and medium myelin, has higher levels of CNP, the major 1.Jolfgram protein, 

and the major myelin associated glycoprotein. The significance of 

high CNP activity, Wolfgram protein content, and content of the major 

myelin associated glycoprotein as markers of myelin was alluded to 

previously. 

The current controversy concerning the true significance of 

myelin subfractions arises in large measure from the uncertainty 

regarding the ultrastructural origins of the myelin subfraction and 

related membrane fractions. It is at this point that one must apprec-

iate the incredibly complex morphological relations of the myelin 

sheath in _situ yis-~-vis the axon and the oligo extended plasma mem-

brane. In a contemporary review of this problem, Quarles (1977) 



discusses the technical problems inherent in the task of labelling, 

isolating, and characterizing discrete microenvironments within the 

oligodendrocyte-extended oligo plasma cell membrane-myelin sheath­

axon complex. U~til techniques of sufficient sophistication are 

developed, ultimate solution is not available. Pending the solution 

of this mystery, Quarles (1977) discusses the prevailing theories 

concerning the origin of myelin subfractions and related membrane 

fractions and provides cogent reasons for accepting the viewpoint 
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that myelin subfractions are indeed morphological and biochemical cor­

relates of the tissue complex i~ situ. 

The suggestion that myelin subfractions are simply operation­

ally and arbitrarily defined may be discounted easily. While dif­

ferences in lipid to protein ratio obviously contribute to the 

"arbitrary" nature of myelin subfraction selection by density grad­

ient ultracentrifugation, the arbitrary nature of such a buoyant 

density selection criterion does not obscure the fact that once se­

lected, the various density subfractions have well documented morpho­

logical and biochemical differences beyond the density factors op­

erative in their selection. 

Another prevailing explanation is that myelin subtractions 

represent regional differences~~ within the CNS. Regional dif­

ferences within the CNS are generally kno•m and acknowledged. For 

example, the ratio of basic protein to proteolipid in myelin varies 

within the brain and is higher in spinal cord (Morell, Lipkind, and 

Greenfield, 1973; Zgorzalewicz, Neuhoff, and Waehneldt, 1974; Smith 



and Sedgewick, 1975). Zimmerman et al. (1975), examining myelin 

from 40-day-old rat brain, observed a four-fold greater yield of 

myelin per g fresh weight tissue and a higher proportion of light 

myelin from brain stem compared to the cortical region. Similarly, 

Williams, Hogan and Brostoff (1976a), isolating myelin by means of 

the isosmotic procedure of McMillan et al. (1972) observed a great---
er proportion of their lightest myelin fraction regionally: cere-

brum < brain stem < spinal cord. However, Quarles (1977) proposes 

that regional differences are of only apparent significance. The 

morphology of the myelinated axon population is probably more sig-

nificant. Brain stem and spinal cord have a higher content of large 

myelinated axons, which also are myelinated earlier than those in 

other regions of the CNS and at any given age would be expected to be 

more mature. 

Since isolated light and medium myelin subfractions are en-

riched in multilamellar material, they obviously must be derived from 

classical compact myelin. The ultrastructural origin of heavy myelin 

is more obscure since the identification of isolated single membranes 
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and vesicles does not necessarily resolve the question of whether they 

represent heavier myelin per se or simply artifactual fragments of 

lighter myelin subfractions. 

A further explanation which has been advanced implies a 

certain degree of artifactual origin behind the distinction between 

the lighter subfractions and the heavy subfractions. If one assumes 

that all subfractionated myelin is derived from compact classical 
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multilamellar myelin, then one must also assume that heavy myelin 

subfractions represent small fragments of mature myelin which con-

stitute a select population of myelin membranes with unique bio-

chemical properties. Such a select population of membranes could 

include the inner or outer portion of the myelin sheath, lamellae 

which are particularly vulnerable to the shearing forces operative 

during myelin isolation and subfractionation procedures. However, 

Quarles (1977) and Matthieu et al. (1973) suggest that heavy myelin 

subfractions are also enriched in membranes transitional between the 

extended plasma membrane of oligodendroglia and multilamellar myelin. 

The explanation of Quarles (1977) and Matthieu et al. (1973) 

that heavy myelin subfractions are enriched in transitional membranes 

is supported by other investigators (Agrawal, Banik, Bone, Davison, 

Mitchell, and Spohn, 1970; Horell et al., 1972; Haehneldt and Mandel, 

1975). If this hypothesis concerning the origin of the heavy myelin 

subfractions is correct, such myelin fractions should have properties 

somewhat similar to those of oligo plasma membrane. Calf oligo plasma 

membrane has been purified and biochemically characterized by Poduslo 

(1975). Bovine oligo plasma membranes have a protein to lipid ratio 

greater than that of myelin, a large proportion of high molecular 

weight protein, a protein of the same electrophoretic mobility as 

proteolipid protein, relatively high CNP activity, and glycoproteins. 

The precise locus of each of the membranes within the continuum 

between oligo plasma cell membrane and multilamellar myelin is unknown. 
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It is reasonable, however, to assume that they would be found in the 

following loci: the inner and outer loops (i.e., the inner and outer 

mesaxon), lateral loops (i.e., paranodal membranes), and the process 

connecting oligo to the myelin sheath (Quarles, 1977). Common morpho­

logical characteristics of these loci include the presence of oligo­

dendroglial cytoplasmic pockets and an uncompacted extended oligo plas­

ma membrane presumably at some stage in the continuum. Such oligo­

dendrocyte derived membranes may be represented not only by heavy 

myelin subfractions but also by the so-called "myelin-like" fraction 

(Banik and Davison, 1969; Agrawal et al., 1970; Agrawal, Trotter, 

Mitchell, and Burton, 1973) and the so-called "floating fraction" or 

"dissociated myelin" (Norton, Poduslo, and Suzuki, 1966; Smith,l973; 

Matthieu, Zimmerman, Webster, Ulsamer, Brady, and Quarles, 1974c; 

Cammer, Rose, and Norton, 1975). 

The "myelin-like" fraction is derived from material which does 

not sediment at low g force following osmotic shock of crude myelin. 

The purity of the "myelin-like" fraction has not been established and 

its predominantly vesicular morphology is dissimilar to myelin. How­

ever, it does have some biochemical properties in common with myelin, 

e.g., relatively high CNP activity though lower than purified myelin, 

presence of high molecular weight protein, and low levels of basic 

protein, proteolipid protein, and galactocerebroside. According to 

Quarles (1977) it is probably enriched in small membranes of myelin 

membrane or other oligo plasma cell derived membranes. Similarly 

isolated material derived from supernatant material following osmot·ic 
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shock of crude myelin has been analyzed, e.g., the myelin related 

membrane fraction designed "SN-4" (Waehneldt and Mandel, 1972) and 

the CsCl gradient derived fractions designated as "lower layer'' ma-

terial (Morell et al., 1972). "t-Jaehneldt1s (1975) SN-4 fraction of 

rat origin had an enrichment in CNP activity increasing with age, 

approximately 1.5 to 2.5 fold higher than myelin. Its protein comp-

osition included Holfgram protein as the major protein, proteolipid, 

and DM20 protein, as well as periodic acid-Schiff positive protein 

(the myelin associated glycoprotein?). 

Quarles (1977) suggests that the so-called 11floating frac-

tion" represents a form of degrading myelin since it is primarily 

observed in association with specific neuropathologies, e.g., subacute 

sclerosing leukoencephalitis (Norton et al., 1966), triethyl tin-

induced demyelination (Smith, 1973), and hexachlorophene intoxi-

cation (Matthieu et al., 1974c; Cammer~ al., 1975). Smith (1973) 

suggested that it is enriched in more recently synthesized myelin 

composed of lamellae splitting off near the external mesaxon and 

paranodal cytoplasmic pockets. 

The CNS brain myelin subfraction metabolic studies to be re-

ported herein will only concern the light, medium, and heavy myelin 

subfractions as defined by the procedure of Matthieu et al. (1973) 

and characterized in non-metabolic studies by Matthieu ~t al. (1973) 

and Zimmerman et al. (1975). The foregoing extended discussion of 

what Quarles (1977) prefers to call oligodendroglia! derived mem-

brane fractions is significant, nonetheless, for two reasons. First, 



it provides a background against which results reported herein 

may be discussed and evaluated. Secondly, the oligo derived 

membrane fractions as a whole, of which Matthieu's heavy myelin 

subfraction is only a part, are of considerable interest because of 

reports presented consistent with the association of oligo derived 

membrane fractions with myelin precursor-product or apparent myelin 

precursor-product roles. Precursor roles are exceedingly difficult 

to document; however, the overall picture is supportive of and con­

sistent with important precursor-product roles for membranes in this 

population, especially the heavier myelin subfractions and the 

myelin-like membrane fraction. The preliminary data obtained thus 
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far are very suggestive. Continued effort is warranted to confirm and 

clarify the extent and significance of such precursor roles in order 

to obtain a more complete biochemical understanding of CNS brain 

myelinogenesis. 

That the heavier myelin subfractions and certain myelin 

associated membranes are involved in significant myelinogenetic pre­

cursor-product relationships is suggested by a number of metabolic 

studies (Benjamins et al., 1973; Agrawal et _al., 1974; Sabri, Tremblay, 

Banik, Scott, Gohil, and Davison, 1975; Figlewicz and Druse, 1976a, 

1976b; Benjamins et al., 1976a, Benjamins, Miller, and Morell, 1976b). 

The details of these metabolic studies will be considered during the 

discussion of the data presented in this dissertation. Only a summary 

of the conclusions of these studies is presented here. 

Benjamins et al. (1973) concluded that an early, very active 



microsomal pool of newly synthesized sulfatide was accepted by 

their rapidly turning over heaviest myelin subfraction and sub-

sequently accepted and accumulated in lighter myelin subfractions. 

Agrawal et al. (1974) concluded that their myelin-like and membrane 

fractions more rapidly incorporated [2,3-3H]tryptophan early on, 

followed by equilibration and incorporation of newly labelled protein 

into lighter myelin subractions. Sabri et al. (1975) concluded that 

r3H] lysine was more rapidly incorporated in myelin-like materia1 and 

subsequently more rapidly lost from myelin-like material than in 

purified whole myelin. Furthermore, at very young ages, 0-20 days, 

what little CNP and basic protein there was, appeared to be enriched 

in microsomal and myelin-like fractions compared to purified \vhole 

myelin. Benjamins .et al. (1976a, 1976b) concluded that selected pro-

tein and lipid precursors were incorporated into myelin density sub-

fractions in a complex manner. Phosphatidylethanolamine and its 

plasmalogen analogue and proteolipid protein appeared to enter more 

rapidly into heavier myelin subfractions~ suggestive of precursor­

product relationships between myelin associated fractions and heavier 

myelin subfractions on the one hand, and lighter myelin subfractions 

on the other hand. However, the entry of phosphatidylcmline, its 

plasmalogen analogue, cerebroside, sulfatide, galactosyl diglyc-

eride, basic protein, and Wolfgram protein appeared to enter the heavy 

and lighter myelin subfractions in an independent and simultaneous 

manner. 

Figlewicz and Druse (1976a, 1976b) studied abnormal myel~n-
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agenesis. Figlewicz and Druse (1976a) concluded that quaking mouse 

mutants could incorporate L-[4,5-3H]leucine into their heavy myelin 

subfraction more easily than into their lighter myelin subfractions 

when compared to normal litter mate controls. They suggested that the 

apparent ability to synthesize heavy myelin contrasted against the 

apparent difficulty in making lighter myelin reflects a blockage in 

the normal conversion or modification of heavy myelin requisite for 

its maturation into the lighter subfractions. Figlewicz and Druse 

(1976b) concluded from a study of abnormal myelinogenesis caused by 

pre- and postnatal protein deficiency that disproportionate amounts 

of heavy myelin were synthesized during periods of nutritional reha­

bilitation. It was this disproportionate amount of the morphologically 

and biochemically immature heavy myelin which accounted for the ob­

served final recovery of near normal amounts of total myelin protein 

in malnourished pups after rehabilitation. The work by Figlewicz and 

Druse (1976a, 1976b) is particularly pertinent to the present study 

because their metabolic studies also employed the myelin subfraction­

ation procedure described by Hatthieu et al. (1973). 

Further interest in the possible importance of the role of the 

heavier myelin subfractions in early myelinogenetic events comes from 

developmental studies of the major myelin associated glycoprotein. 

Quarles et al. (1973b) reported higher apparent molecular weight of 

this glycoprotein in immature rat whole brain myelin. The apparent 

molecular weight of this glycoprotein may be a sensitive marker of 

myelin maturity as further evidenced by the observation of a slightly 



larger glycoprotein isolated from whole brain myelin in the quaking 

murine mutant (Matthieu ~ al., 1974b), hypothyroid rats (Matthieu, 

Reier, and Sawchak, 1975a), and copper deficient rats (Zimmerman, 

Matthieu, Quarles, Brady, and Hsu, 1976). More pertinent to the 

developmental distinctions between the Matthieu light, medium, and 

heavy myelin subfractions was the observation by Zimmerman et al. 

(1975) in 16-day-old rat brain of higher apparent glycoprotein 

molecular weight in medium and heavy subfractions. 

Although Matthieu et al. (1973) and Zimmerman et al. (1975) 

have described the Matthieu myelin subfractions in considerable 
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detail, their published work did not include any reports concerning the 

metabolism of these subfractions. The protein and lipid metabolism of 

Matthieu myelin subfractions reported in this dissertation have been 

presented previously (Druse and Hofteig, 1975; Hofteig and Druse, 

1976). Additional reports of normal metabolism of the Matthieu myelin 

subfractions have not appeared in the literature. 

POSTNATAL PROTEIN-CALORIE MALNUTRITION 

The determination of the extent of stress-mediated perturba­

tions in CNS brain myelin subfractions as a consequence of post­

natal protein-calorie malnutrition and maternal ethanol consumption 

is important because serious neurological functional deficits are 

observed in similarly stressed human neonates. Such determinations 

should be able to quantitate at a more basic level the neuropath­

ological consequences of maternal malnutrition and ethanol consump-
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tion upon the neonate. Further, to the extent that these animal models 

fl)r similar kinds of stress perturb CNS myelinogenesis, it may be 

possible to gain a greater appreciation of normal myelinogenetic mech­

anisms. Numerous studies have appeared (see below) concerning the 

effects of various kinds of malnutritional stress upon CNS myelino­

genesis. However, only a limited number of such reports have actually 

considered the metabolism of myelin subfractions. 

To date, the CNS myelin subfractionation procedure of Hatthieu 

et ~1. (1973) is the only subfractionation procedure employed in meta­

bolic studies of abnormal CNS myelinogenesis (Figlewicz and Druse, 1976a, 

1976b; Hofteig, Druse, and Collins, 1976; Druse and Hofteig, 1977; 

Figlewicz, Hofteig, and Druse, 1977). It was also employed by Trapp and 

Bernsohn (1977) in a non-metabolic study of the effects of an experi­

mentally induced essential fatty acid deficiency in developing rat 

brain. 

It had been appreciated for some time that growth retardation 

due to malnutrition during critical periods of brain development in 

the human is frequently associated with irreversible deficit in higher 

mental function (Dobbing, 197la). It was also appreciated that the 

neurological effects ~f malnutrition are subject to reversal upon 

dietary supplementation provided the malnutrition stress was sufficient­

ly mild or of short duration. 

A fundamental concept which has shaped neurochemical research 

with stress during periods of CNS brain development is the vulnerable 

period hypothesis (Dobbing, 1966; Davison and Dobbing, 1966; Dobbing, 

1968; Dobbing, 1970, 1971; Adlard and Dobbing, 1971). The vulnerable 
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period hypothesis states that each particular cell line is most vul­

nerable to stress or insult during the relatively brief period of 

growth hyperplasia. The mammalian brain growth spurt during brain 

development is associated with the most rapid and profound increase in 

brain weight. Generally, it is defined by t~..ro overlapping periods, 

first, neuronal cellular proliferation, and secondly, glial cellular 

proliferation. Myelination is associated with the latter half of the 

brain growth spurt. The vulnerable period also coincides with the 

period of rapid increases in enzymatic activity. Accordingly, the clini­

cal manifestations of stress during this period may reflect perturba­

tion in neuronal population size and differentiation, glial population 

size and differentiation, enzymatic activity, relative timing of key 

events, and formation of synaptic connections, etc. 

The failure to myelinate properly may or may not be the more 

fundamental etiologic factor in the neonatal malnutrition-growth re­

tardation associated neurological dysfunction observed in malnourished 

humans. However, deficits in CNS brain whole myelin have been observed 

in experimental animal models of malnutrition. 

Malnutrition during the vulnerable period of brain development 

can result in at least a temporary deficit of CNS whole myelin during 

or following malnutrition (Benton, Moser, Dodge, and Carr, 1966; Chase, 

Dorsey, and McKhann, 1967; Fishman, Prensky, and Dodge, 1969~ Geisen 

and Haisman, 1969; Bass, Netsky, and Young, 1970; Fishman, Madyastha, 

and Prensky, 1971; Hood, 1973; Fox, Fishman, Dodge, and Prensky, 1972; 

Krigman and Hogan, 1976; Higgins, Miller, Renjamins, Krigman, and 
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Morell, 1976; Simons and Johnston, 1976). Severe and prolonged mal­

nutrition results in a persisting deficit in CNS whole myelin (Chase 

~~ al., 1967; Bass et al., 1970; Fishman et al., 1971: and Simons and 

Johnston, 1976). However, near normal levels of CNS whole brain myelin 

may be recovered if nutritional rehabilitation is begun early enough 

(Benton e~ al., 1966; Geison and Waisman, 1969). 

Interpretation of previous studies of CNS brain myelination 

and malnutrition necessitates some appreciation of the variety of types 

of nutritional stress and periods of stress employed. Early postnatal 

starvation was employed by Benton~~ al. (1966), Chase et al. (1967), 

Geison and Waisman (1969), Bass ~ al. (1970), Fishman et al. (1971), 

ltJood (1973), Wiggins, Benjamins, Krigman, and Morell (1974), Krigman 

and Hogan (1976), and ~,Jiggins e~ al. (1976). Protein deficiency during 

lactation was studied by Nakhasi, Toews, and Horrocks (1975), and during 

both gestation and lactation by Stewart, Merat, and Dickerson (1974) 

and Simons and Johnston (1976). 

Among workers in the field there is controversy concerning 

whether CNS brain whole myelin formed during nutritional stress or 

during post-stress periods of nutritional rehabilitation efforts is 

normal in composition. Fox et al. (1972) and Fishman et al. (1971) 

reported that malnourished children had decreased amounts of total 

CNS brain whole myelin, with normal lipid composition. However, 

Wiggins et al. (1974), Nakhasi et al. (1975), Wiggins et al. (1976), 

and Simons and Johnston (1976) report abnormal biochemical composi­

tion of CNS brain whole myelin isolated from malnourished and pre-



viously malnourished rats after periods of attempted nutritional 

rehabilitation. 

The research reported herein concerning the effects of post­

natal protein-calorie malnutrition upon CNS brain myelin subfraction 

protein and lipid metabolism was prompted in part by this controversy. 

Knowing that the heavier CNS brain myelin subfractions are less mature 

than lighter subfractions, one can assess the maturity of myelin 

synthesized during and following periods of malnutrition. The use of 

approrpiate isotopically labelled protein and lipid precursors permits 

assessment of synthetic rates of the various subtractions. 

CHRONIC AND ACUTE }fATERNAL ALCOHOL CONSUMPTION 
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The fetal alcohol syndrome (FAS) is now recognized as a well 

documented serious public health problem. It was clearly charac­

terized as a distinct multiple pathology syndrome in neonates directly 

associated with serious chronic maternal alcohol consumption by 

Lemoine, Harousseau, Borteyru, and Menuet (1968) in a very large retro­

spective case history analysis in France. Since that first clinical 

account, numerous clinical reports have appeared {Ulleland, 1972; 

Jones and Smith, 1973; Jones, Smith, Ulleland, and Streissguth, 

1973a; Jones, Smith, Streissguth, and Myrianthopoulos, 1974a, 1974b; 

Palmer, Ouellette, Warner, and Leichtman, 1974; Root, Reiter, Andriola~ 

and Duckett, 1975; Mulvihill and Yeager, 1976; Mulvihill, Klimas, 

Stokes, and Risemberg, 1976; Ouellette, Rosett, Rosman, and Weiner, 

1977). 
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The frequency of severe chronic alcoholism in the United States 

is conservatively estimated at 1 in 1000 to 2000 pregnancies (Jones et 

~·, 1974b; Hanson et al., 1976). It is estimated that 30 to 50 percent 

of such pregnancies will present with FAS signs (Hanson et al., 1976). 

Other complicating factors may include socio-economic status, inadequate 

access to medical care, poor nutrition, hereditary factors, etc. These 

may be excluded as major factors in as much as carefully controlled pro­

spective studies have demonstrated FAS signs independent of socio-eco­

nomic status, and even when vitamin supplementation, adequate nutrition, 

and optimal access to medical care were provided (Jones et al., 1974b; 

Hanson et al., 1976). In a typical retrospective review of 41 pregnan­

cies in a population of well documented chronic abusers of ethanol, 

Hanson et al. (1976) found a very high incidence of growth and perform­

ance abnormalities (i.e., prenatal growth deficiency, postnatal growth 

deficiency, microcephaly, developmental delay or mental deficiency, and 

fine motor dysfunction), a high incidence of craniofacial abnormalities 

(i.e., short palpebral fissures, midfacial hypoplasia, and epicanthic 

folds), moderate frequency of limb abnormalities (i.e., abnormal palmar 

creases and joint anomalies), less frequent miscellaneous abnormalities 

(i.e., cardiac defects, external genital anomalies, hemiangiomas, and 

ear anomalies), and a number of infrequent abnormalities of minor to 

major seriousness. 

The seriousness of the fetal alcohol syndrome is revealed by 

the following facts. There is a 17 percent perinatal mortality asso-



ciated with the FAS _(Jones _et al., 1974b; Hanson et al., 1976). Host 

FAS offspring are classified as small for date (Ulleland, 1972; Jones 

and Smith, 1973; Jones et al., 1973, 1974b:, Palmer et ~1., 1974; Root 

et al., 1975; Hanson et al., 1976). Nearly half of FAS neonates are 

mentally deficient (Jones et al., 1974b; Palmer et al., 1974; Hanson 

et al., 1976; Mulvihill et al., 1976; Mulvihill and Yeager, 1976) --- --

and have altered EEG patterns (Root~ al., 1975). The most serious 

aspect of the FAS is the observation that if the FAS presentations 

are serious at birth, growth and mental retardation is refractory to 

all rehabilitation efforts including "enriched:' social environment 

and nutritional supplementation, even through the age of 5 or 6 years 

of age, and presumably beyond (Jones et al., 1973; Hanson, 1976). 
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Except for the observations cited concerning mental retardation 

and altered EEG patterns, little is known about the effects of maternal 

alcohol consumption upon brain development. The mechanism of the neuro-

logical damage is unknown. Furthermore, it is still unknown whether 

ethanol itself, its major metabolite, acetaldehyde, or some other 

ethanol derived agent is responsible for the FAS. It is generally 

accepted that placental transfer of ethanol from mother to fetus occurs 

throughout the term of the pregnancy with rapid equilibration of 

maternal and fetal blood values (Dilts, 1970~ Idanpaan-Heikkila, 

Fritchie, Ho, and Mcisaac, 1972~ Akesson, 1974; Randall, 1977). 

However, acetaldehyde, does not cross the placenta in appreciable 

amounts in the near term rat apparently because of placental met-

abolism of acetaldehyde (Sippel and Kesaniemi, 1975; Kesaniemi and 



Sippel, 1975; Randall, 1977). 

The research to be reported herein concerning the effect of 

selected periods of maternal alcohol consumption upon brain myelin 

subfraction protein and lipid metabolism is prompted by the suggestion 

that abnormalities in myelinogenesis may be either causative, or 

contributory, or might be present as a reflection of more underlying 

neuronal or glial abnormalities. 
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The association of mental deficiency caused by maternal ethanol 

consumption with myelination abnormalities is an attractive hypothesis. 

Mental retardation and CNS myelin abnormalities are both seen in 

phenylketonuria (Alvord, Stevenson, Vogel, and Engle, 1950; Menkes, 

1967; Clark and Lowden, 1969) and in some children malnourished early 

in life (Fishman et al., 1969; Osofskey, 1969; Chase, Welch, Dabiere, 

Vasan, and Butterfield, 1972; Fox et al., 1972). 

SUMMARY 

The unique biochemical, morphological, and functional 

properties of CNS brain myelin have been presented, The current 

theories concerning the mechanisms of myelinogenesis by oligodendro­

glia! cells have been reviewed. The general techniques and theory 

of CNS myelin isolation and subfractionation have been discussed with 

particular reference to the techniques in current usage. The biochemi­

cal properties, including putative precursor-product relationships as 

they are currently understood, have been reviewed indetail for myelin, 

myelin subfractions, and myelin related membrane fractions. The 
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various appraisals of the significance of CNS myelin subfractions have 

been documented as has been the complexity of the task inherent in cor­

relating precisely the biochemical properties of a particular myelin re­

lated membrane fraction or myelin subfraction with its specific original 

in situ locus. The need to clarify the significance of CNS brain myelin 

subfractions has been made manifest. The interesting and useful proper­

ties of the Matthieu CNS myelin subfractions have been reviewed in de­

tail, especially their potential for further clarifying the biochemical 

mechanisms operative in normal myelinogenesis as well as the mechanisms 

operative during stress and post-stress efforts at rehabilitation. The 

association of myelination abnormalities with malnutrition associated 

mental dysfunction has been reviewed. The lack of knowledge concerning 

the mechanisms operative in the pathogenesis of FAS associated neurolog­

ical dysfunction has been reviewed, and the suggestion has been made 

that myelination abnormalities at the very least may be associated with 

the FAS. 

The research to be presented herein begins with several hypothe­

ses which are worthy of consideration and which need to be confirmed, 

clarified, tested, revised, or discarded as the case may be after having 

completed the research. The major assumption is that myelin subtractions 

are actual correlates of morphological and biochemical maturity. The 

Matthieu subtractions are considered to be particularly valuable and 

useful models especially because of the observed correlation between 

density and maturity. It is assumed that elucidation of CNS myelin sub­

fraction protein and lipid metabolism under a variety of normal and 



44 

stress conditions is a necessary task with promise of further clarify­

ing the ontogenetic significance of CNS myelin subfractions, further 

defining at a more basic level the pathogenetic mechanisms operative in 

malnutrition and maternal alcohol consumption mediated stress, and fur­

ther assessing the quantitative and qualitative effectiveness of post­

stress rehabilitation efforts following stressed myelinogenesis. 
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CHAPTER II 

't<f..ATERIALS AND METHODS 

Sprague-Dawley albino rats were purchased from Holtzman 

(Hadison, lJi.) and Locke-Erikson Laboratories (Melrose Park, Il.}. 

DIET 

Different dietary protocols were employed, i.e., normal ad 

libitum laboratory chow, and defined periods of protein-calorie mal-

nutrition and maternal ethanol consumption. Except during defined 

periods of dietary stress, all animals were given free access to 

water and standard laboratory rat chow (Purina Laboratory Chm.;r, 

Purina, St. Louis, Mo.) containing casein (27~),starch (59%), 

vegetable oil (10%),and salt mixture and vitamin fortification (4%). 

Protein-calorie malnutrition from parturit:ion to 18 days 

postpartum was accomplished by total daily chow allotment of 14 to 

16 grams chow per dam. The daily allotment of 14 to 16 grams chow 

per dam was selected empirically. This level of dietary restriction 

resulted in significant decrements in offspring body and brain weights. 

More severe dietary restriction resulted in nearly complete offspring 

mortality by the age of 12 to 18 days. Litters whose dams "1ere re-

stricted in protein-calorie intake ~.vere weaned at 29 days. Ad libi-

tum chow fed control litters were weaned at 24 to 25 days of age. At 

all times both experimental and control animals had free access to 

water. 
45 
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Naternal ethanol consumption was controlled in a Pair f,eed,~, 

ing paradigm employing the isocaloric control and alcohol diets 

described by Freund (1969) and by Lieber and DeCarli Cl974L D~ily 

and cumulative average daily volume, calorie, and alcohol consumption 

were recorded. The isocaloric control and alcohol diets were iden­

tical in vitamin, mineral,lipid, protein, and calorie content. The 

only difference between the control and alcohol diets was the iso­

caloric substitution of ethanol in the alcohol rliets for calories in 

the control diets otherwise supplied by either sucrose in the case of 

the diets described by Freund (1Q69) or maltose-dextrins in the case 

of the diets described by Lieber and DeCarli (197L:). The Freund and 

Lieber DeCarli diets are characterized in greater detail below. Basi­

cally, the Freund diet is based on Metrecal (Mead Johnson, Cincinnati, 

Oh.) with variable supplementation by sucrose and ethanol. The Lieber 

DeCarli diet, commercially available (Bio-Serv, Frenchtown, N.J.), has 

a fixed alcohol content of 6.7% (v/v) in the alcohol diet. The com­

position of the control and alcohol Lieber DeCarli liquid diets is 

described in Table I. 

'~ile the Lieber DeCarli diet was used at a fixed percent 

alcohol content, the Freund diet was used with variable concentrations 

of alcohol in the alcohol diet, i.e., 5.1, 7 .0, 9.0, and 11.0% (v/v). 

Furthermore, by using liquid Metrecal Shape (Mead Johnson), addition 

of isocaloric solutions of either 63.33% (v/v) stock solution of eth­

anol or 87.0% (v/v) stock solution of sucrose, resulted in variable 

enrichment in carbohydrate as a percent of total calories while dilut-

46 



47 

TABLE I 

Lieber DeCarli Liquid Diet ----

Substitutent Control Control Ethanol Ethanol 
Gram/Liter Percent Grams/Liter Percent 

Calories Calories 

Protein: 16.9% 16.9% 

Casein, 
vitamin free: 41.4 41.4 
L-Cystine: .5 .5 
DL-Methionine: .3 .3 

Carbohydrates 
(Non-Alcoholic): 47.5% 11.7% 

Maltose-
Dextrins: 114.0 24.4 
Dextrose Vita-
min ~1ixture: 5.0 5.0 

Carbohydrates 
(Alcoholic) o. o;~ 35.8% 

Ethanol: 50.0 

Fats: 35.6% 35.6% 

Corn Oil: 8.5 8.5 
Olive Oil: 28.4 28.4 
Ethyl Linoleate: 2.7 2.7 

Salt Mixture: 10.0 10.0 
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ing protein and fat as a percent of total calories. The composition 

of control and alcohol Freund liquid diets is described in Table II. 

Administration of these liquid diets was scheduled over two 

separate periods defined as "chronic" and "acute". During the chronic 

paradigm, female rats were maintained on either the isocaloric control 

or alcoholic diet for approximately 2 months prior to conception through 

the third day postpartum. In contrast, the acute period extended from 

the fifth day of gestation throush the third day postpartum. During 

the entire acute period, the 6.7% (v/v) alcoholic Lieber DeCarli diet 

or its isocaloric control was used. In the chronic paradigm th~ 

Metrecal based Freund diet was administered until midvmy through ges-

tation, followed by ~he Lieber T)eCarli diet through the third post-

partum day. The specific ethanol percent (v/v) content in the diet 

during that period in which the Freund diet was used was, in chrono-

logical order: one week at 5.1%, two weeks at 7.0%, one week a~ 9.0%, 

one w-eek at 11.0%, and four weeks at 7%. In both the chronic and 

acute study dams fed the alcohol diets were vlithdrawn from ethanol 

over a three day period during which withdrawal was moderated by half 

strength (3.3%, v/v) alcohol diet and free access to chow. During the 

same three day withdrawal period control dams were given free access 

to chow in addition to control liquid diet. Actual consumption of 

ethanol in the chronic and acute studies was approximately 10 g.rams 

ethanol per kilogram body weight per day. 

ISOTOPE 

3 L- [4,5-· H] leucine (47 .6 Ci/mmole) was purchased from Inter-
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TABLE II 

Freund Liquid Diet 

Diet: Alcohol Or Control Diets Isocaloric to Hetrecal -- --
Based Diet With Ethanol Concentration (v/v) Of: -----

0.0% 5.1% 7.0% 9.0% 11.0% 

Substitutent: 

Protein As Percent Of 
Total Calories: 26.3% 19.9% 18.1% 16.4% 14.9% 

Fat As Percent Of 
Total Calories: 12.4% 9.4% 8.5% 7.8% 7.0% 

Metrecal Derived Carbo-
hydrate As Percent Of 
Total Calories: 61.3% 46.5% ll2. 3% 38.3% 34.8% 

Added Ethanol Or 
Sucrose As Percent Of 
Total Calories: 0.0% 24.2% 31.1% 37.5% 43.3% 

Total Carbohydrate As 
Percent Of Total 
Calories: 61.3% 7o.n 73.4% 75.8% 78.1% 



national Chemical and Nuclear Corporation (Irvine~ Ca.). 14 D-[U- C]-

glucose (210 mCi/mmole) was purchased from Amersham/Searle (Arlington 

Heights, Il.). 

Leucine was selected as a protein precursor and glucose as 

a lipid precursor. The metabolic lability of each of these compounds 

necessitated a determination of the extent to which the leucine 3H-

14 label and the glucose C-label actually were partitioned respectively 

between protein and lipid compartments in subsequently recovered 

myelin subfraction material. 

ADMINISTRATION OF ISOTOPE 

An isotope solution containing either 150 vCi L-[4,5-3H)­

leucine (100 mCi/mmole) or both 150 vCi L-[4-5-3HJ leucine (100 mCi/ 

mmole) and 20 vCi D-[u-14cJ glucose (10 mCi/~~ole) in lO vl of 0.85% 

(w/v) NaCl was prepared. The isotopically labelled solution was ad-

ministered intracerebrally in young rats either by means of a single 

10 ~1 injection along the midline of the skull or in two divided 

injections, each 5 vl, on either side of the midline of the skull. 

Similarly injected dye solutions appeared to be concentrated intra-

ventricularly shortly after injection. Inpenetrability of the skull 

in pups greater than 50 days in age necessitated a single 10 vl 

injection intraoccipitally. Injections were made without benefit of 

stereotaxic technique. 
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SCHEDULE OF ISOTOPIC INJECTIONS AND ------ -- - ·-------~ 

SUBSEQUENT MYELIN SUBFR..J\.CTIONATION _:_ _ ___..: __ ---

Pups were injected with either the radioisotopically labelled 

protein precursor or both the radioisotopically labelled protein and 

radioisotopically labelled lipid precursors and subsequently sacri-

ficed for preparation of CNS brain myelin subfractions according to 

a schedule appropriate to the goals of each particular experimental 

sequence. 

Normal myelin subfraction protein and lipid metabolism was 

examined in young rats in a long term study extending from 18 hours 

to 85 days following administration of both the protein and lipid radio-

isotopically labelled precursors to 12-day-old pups. During the interim, 

myelin was recovered at six to seven selected ages. The long term study 

was repeated at similar ages and time intervals and with both labelled 

precursors. Normal myelin subfraction protein metabolism was also ex-

amined in young rats in a short term study at intervals of 1, 12, and 

24 hours following administration of only the radioisotopically label-

led protein precursor to 12-day-old pups. 

During each of the above normal series litter size was adjusted 

to 12 pups per litter at birth, and all litters were weaned at approxi-

mately 21 days. However, litter size was not maintained by replace-· 

ment of sacrificed pups by cold pups prior to weaning. 

Myelin subfraction protein and lipid metabolism as perturbed 

by protein-calorie malnutrition was examined 18 hours following ad-

ministration of both the radioisotopically labelled protein and lipid 



precursors to pups at 17, 24, and 52 days of age. Normal myelin 

subfraction protein and lipid metabolism was similarly studied in 

normal, ad libitum chow fed animals. Normal litter size \vas main-

tained at 10 pups. The protein-calorie malnourished litters were 

adjusted to 12 pups per litter at three days of age. 

Myelin subfraction protein and lipid metabolism as perturbed 

by maternal alcohol consumption of either chronic or acute duration 

\vas examined in 18-, 25-, and 53"-=-day-old pups follo·wing 18-hour 

pulse labelling by both the protein and lipid radioisotopically 

labelled precursors. Control, isocalorically fed pups were similar-

ly studied. In the chronic study alcohol and control litters were 

adjusted to 11 to 12 pups per litter at birth and weaned at 26 days 

of age. In the acute study, alcohol and control litters 1vere adjusted 

to 10 to 11 pups per litter at birth. 

ISOLATION OF PURIFIED 

CNS BRAIN WHOLE MYELIN 

Animals were sacrificed by decapitation. V.Thole brain \oTaS 

rapidly removed. Brains were kept at 0° C and myelin preparation 

followed immediately. Purified whole brain myelin was prepared ac-

cording to the method of Norton and Poduslo (1973b) employing ultra-

centrifugation equipment available in this laboratory. Throughout the 

procedure tissue was kept between 0 and 4° C. 

A 5% (w/v) homogenate of whole brain was prepared in 0.32 N 

sucrose in a powered tissue homogenizer (Kontes Glass Co., Vinland, 

N.J.) equipped with a tight fitting conical teflon-coated pestle until 
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the tissue was well homogenized and dispersed. One ml of this homo-

genate was reserved for subsequent analysis. The remaining 0.32 M 

sucrose homogenate was layered over 12 to 17 ml of 0.85 M sucrose. 

The 0.32 M/0.85 M sucrose gradient was centrifuged according to one 

of the following procedures similar to the procedure originally de-

scribed by Norton and Poduslo (1973b). 

1. S1.)'-25.1 rotor, 23,5')0 RPM, 40 min, (56,200 gavg. X 40 

min 2,248,000 g ·min); avg. 

2. SW-27 rotor, 22,000 RPH, 40 min, (64,100 gavg. X 40 

2,564,000 g ·min)~ avg. · 

3. S~..)'-27 rotor, 25,000 RPM, 30 min, (82,500 gavg. X 30 

min 2,475,000 g "min). avg. 

Interfacial material was recovered by Pasteur pipet and 

suspended in 38 ml of ice cold distilled water by hand homogenization 

in a Dounce homogenizer (Kontes Glass Co., Vinland, N.J.) and pellet-

ed by centrifuging for at least 30 minutes at the highest possible 

speed in either an SS-34 fixed angle rotor, 17,500 RPM (28,200 

g ), or in an S1.J'-27 rotor, 25,000 RPM (82,500 g ). Pelleted 
avg. avg. 

material was osmotically shocked in 38 ml of ice cold distilled water 

and homogenized by hand in a Dounce homogenizer. Following osmotic 

shock, material was centrifuged for at least 20 minutes at a g 
avg. 

force ranging from 13,000 to 14,000 in an SW-27 or SS-34 rotor. 

Pelleted osmotically shocked myelin was resuspended in a total 

volume of 20 ml of 0.32 H sucrose by hand homogenization in a Dounce 

homogenizer and the 0.32 M sucrose homogenate layered over 12 to 17 ml 
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of 0.85 M sucrose. The 0.32 M/0.85 M sucrose gradient was centri­

fuged as described above. Interfacial material was recovered by 

Pasteur pipet , suspended in ice cold distilled water and pelleted 

as described previously. 

MYELIN SUBFRACTIONATION 
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Purified CNS brain \vhole myelin obtained according to the 

procedure of Norton and Poduslo (1973b) was immediately subfractionated 

according to the procedure of Matthieu _et al. (1973). Whole myelin 

was resuspended in 13 ml of 0.32 N sucrose by hand homogenization in a 

Dounce homogenizer and the 0.32 M sucrose homogenate layered over 12 

ml of 0.62 M sucrose layered over 12 ml of 0.70 M sucrose. This 0.32 

M/0.62 M/0.70 M sucrose gradient was centrifuged as described prev­

iously for the 0.32 M/0.85 M sucrose gradients. Light and medium 

myelin were recovered at the 0.32 H/0.62 H sucrose and 0.62 M/0.70 H 

sucrose interfaces, respectively, while heavy myelin was removed as 

the pellet. The heavy myelin which pelleted through the 0.70 M sucrose 

layer was a component of material which had previously floated above 

the 0.85 M sucrose layer. Recovered myelin subfractions were washed 

and pelleted as described above. 

Washed, pelleted, purified myelin subfraction material was 

taken up by Pasteur pipet in a final volume of one to two ml ice­

cold distilled water and kept frozen at or below -20° C until sub­

sequent assays and analytic procedures were performed. 

In the above procedures for myelin isolation, purification, 

and subfractionation stated volumes were adjusted in accordance with 
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varied rotor capacity. All gradient centrifugations were done with 

the highest acceleration possible initially, with no braking. Pellet-

ing procedures were done with maximum initial acceleration possible 

and with modest braking as available on a specific centrifuge. 

For all myelin isolation, purification, and subfractionation 

procedures three brains from a given dietary regime at a given age 

were processed separately. The only exception was in the case of 

18-day-old protein-calorie malnourished pups for which the initial 

interfacial material from independent preparations was combined in 

pairs during subsequent steps in the procedures. 

Live body weights and fresh wet weights of brains were recorded 

for all stressed pups and their corresponding controls. 

ASSAYS AND ANALYTICAL PROCEDURES 

Aliquots of each brain homogenate and water suspension of myelin 

subfraction were reserved for liquid scintillation counting and protein 

assay. Additional aliquots were reserved for assay of CNP activity in 

both long term normal studies. Remaining aqueous suspensions of brain 

homogenate and myelin subfraction were lyophilized. Lyophilized ma-

terial in whole or in part was taken from selected representative light, 

medium, and heavy subfractions from each dietary protocol and at each 

age and committed for delipidation of protein in preparation for sub-

sequent SDS polyacrylamide gel electrophoretic characterization of 

myelin subfraction proteins. Similarly, lyophilized material from re­

presentative myelin subfractions labelled with D-[u-
14cJ glucose was 

committed for extraction of lipids and subsequent lipid analysis follow-
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ing thin layer chromatography (tlc) procedures. The specific assays 

and analytical procedures are described in detail below. 

LOWRY PROTEIN ASSAY 

Protein content of aliquots of brain homogenate, myelin sub-

fractions, and myelin subfraction protein at various stages in prep-

aration of SDS polyacrylamide gel electrophoresis was determined by 

the protein assay of Lowry, Rosebrough, Farr, and Randall (1951). 

Preparation of Solutions 

1. 1 N Sodium Hydroxide 

40 grams of NaOH was dissolved in distilled water to a volume of 

one liter. 

2. 2% (w/v) Sodium Potassium Tartarate 

10 grams of NaKC
4
H

4
o

6
.4H

2
o were dissolved in distilled water to a 

volume of 500 ml. 

3. 1% (w/v) Cupric Sulphate 

10 grams of Cuso
4 

were dissolved in distilled water to a volume 

of 1 liter. 

4. 2% (w/v) Sodium Carbonate 

10 grams of Na
2
co

3 
anhydrous were dissolved in distilled water to 

a volume of 500 ml. 

5. 1 N Phenol Reagent 

100 ml of commercially available 2 N preparation of Folin and 

Ciocalteu Phenol Reagent (Harleco, Philadelphia, Pa,) was dis-

solved in distilled water to a volume of 200 ml and refrigerated, 
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6. 0.1% (w/v) Human Serum Albumin 

3 mg of Human Serum Albumin (HSA) were dissolved in distilled 

water to a volume of 3 ml and refrigerated. 

Aqueous samples of material to be assayed in less than 60 ~1 

were added to small test tubes. To each sample was added 100 ~1 of 1 

N NaOH. Each test tube was vortexed. Following a 30 minute incubation 

at room temperature, 1 ml of a mixture of NaKTartarate-Cuso
4

-Na
2
co

3 

(0.1:0.1:10, v/v/v) prepared by addition of reagents in this order 

was added to each sample. Test tubes were vortexed and incubated at 

room temperature for 10 minutes. To each test tube was added 100 ~1 of 

1 N Pl1enol Reagent, followed by immediate vortexing of each test tube, 

and a 30 minute incubation at room temperature. In the presence of 

protein, a blue color developed. Before spectrophotometric assay, 

the blue color was clarified by extraction of any remaining lipid ma­

terial by addition of 1 ml of CHC1
3

, vortexing, and low speed centrif­

ugation in a desk top centrifuge. Any remaining lipid material was 

thereby partitioned into the lower phase material; only the upper phase 

material was assayed spectrophotometrically. The absorbance of tbe 

clarified bluish upper phase was measured spectrophotometrically 

against a reagent blank at 700 nm. A standard curve was prepared for 

each assay using 5 to 60 ~1 of a 1 vg/ul HSA standard solution. 

LIQUID SCINTILLATION COUNTING TECHNIQUES 

The radioactivity of 3H or of 3H and 14c in a number of differ-

ent kinds of preparations was measured. Regardless of the techniques 



employed to extract and solubilize the radioactivity present in 

such samples, once solubilized, all radioactivity was counted using 

a toluene soluble POPOP/POP liquid scintillation fluor system. 

Preparation of Solutions 

1. Liquid Scintillation F1uor 
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To one gallon scintillation grade Toluene (ScintillAR, Malinckrodt, 

Inc., St. Louis, Mo.), was added 200 ml Toluene, 16 grams PPO, 

(2,5-Diphenyloxazole), scintillation grade (Amersham/Searle, 

Arlington Heights, Il.), and 0.4 gram POPOP, (p-Bis[2-(5-

Phenyloxazolyl)J-benzene), scintillation grade (New England Nuclear, 

Boston, Ma.). 

Most samples were solubilized by NCS Tissue Solubilizer 

(Amersham/Searle, Arlington Heights, 11.) prior to addition of fluor, 

except for thin layer chromatography plate scrapings of separated lipid 

classes and electrophoresed sodium dodecyl sulphate polyacrylamide gel 

protein bands. The radioactivity in separated lipid bands from thin 

layer chromatograph plate scrapings was eluted with 0.5 ml benzene 

according to the procedure of Druse and Hogan (1972). Radioactivity 

in separated electrophoresed SDS polyacrylamide gel protein bands 

was eluted by digestion of gel slices in Protosol Tissue Solubilizer 

(New England Nuclear, Boston, Ma.), Protosol:water (9:1, v/v), at room 

temperature. To samples suspended in a maximum aqueous volume of 100 

~1 in a liquid scintillation counting vial was added one ml of NCS, 

100 ~1 of 0.1 N acetic acid, and 10 ml of fluor, in this order. 
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All samples were counted in a Beckman LS-250 liquid scintilla-

tion counter (Beckman Instruments, Inc., Fullerton, Ca.) in accordance 

with a counting protocol in use in this laboratory and previously 

developed before any of the within described research was begun. The 

3 
predetermined counting protocol permitted counting of H and dual label-

3 14 
led H and C samples. The following instrument settings were used for 

all counting runs: 

Liquid Scintillation Counting Settings 

1. Counting Mode: Auto + Std, (automatically counts sample and deter-

mines external standard ratio). 

2. Gain Setting: 550 divisions. 

3. External Standard Ratio Setting: 0.784. 

4. Automatic Quench Control (AQC) Setting: 800 divisions. 

5. Fixed Discriminator Channel Isosets: 
3

H below 
14c, and 

14c above 

A quench correction curve, previously determined before any of 

the within described research was begun, was used to assign counting 

efficiencies to observed external standard ratios. At the settings 

used approximately 5.0% of ~ctual 3
H activity spilled into the 

14c 

1 ·1 · 1 14 7% f h 1 
14c · · counting channe wh1 e approx1mate y . o o. t e actua act1v1ty 

spilled into the 
3

H counting channel. Observed cpm (counts per minute) 

data we~transformed to dpm (disintegrations per minute) accordingly. 
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PARTITIONING OF L-[4,5-3H]LEUCINE AND D-[u-

14
cJGLUCOSE LABEL 

BETivEEN PROTEIN AND LIPID COMPARTMENTS 
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3 u The use of dual labels, L-[4,5- H]leucine and D-[U- C]glucose, 

as precursors, respectively, for protein and lipid, necessitated a de-

termination of the extent to which each label was partitioned between 

the protein and lipid compartments. 3 Partitioning of the H label was 

determined by determining the percent of recovered 3H activity distrib-

uted between ether-ethanol (3:2, v/v) insoluble material (i.e., delip-

idated protein) and soluble material (i.e., lipid). Partitioning of 

the 
14

c label was determined by determining the percent of recovered 

14
c activity distributed between chloroform-methanol (2:1, v/v) soluble 

material (i.e., lipid) and insoluble material (i.e., protein). The two 

separate procedures for isolating material from one or the other compart-

ment was necessitated by the different solubility of proteolipid in the 

two solvent systems. Ether-ethanol (3:2, v/v) extraction leaves all pro-

tein in the insoluble material. Chloroform-methanol (2:1, v/v) extrac-

ion solubilizes all lipid as well as proteolipid bound protein. It was 

so determined that 70 percent of the total myelin recovered 3H activity 

was incorporated into the protein compartment while 30 percent of this 

activity was incorporated into the lipid compartment. (The incorpora­

tion of the leucine 3H label into myelin lipids has been reported by 

S · h 1974 ) Th 1 d 1· 14c · · · · d m1t , • e tota recovere mye 1n act1v1ty was part1t1one 

90 percent into lipid incorporation and 10 percent into protein incorpo-

ration. Accordingly, in analysing subsequent data, determination of 

corrected radioactivity expressed in terms of dpm necessitated transfor-

mation of cpm data to reflect label partitioning as well as spill be-
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tween the 
3

H and 
14c channels and counting efficiencies. The observed 

label partitioning necessitated transformation of cpm into dpm on the 

basis of spillover and counting efficiencies because all samples to be 

counted contained significant proportions of both 
3
H and 

14c in dual 
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labelled experiments with the exception of delipidated myelin protein 

prepared for electrophoresis which contained negligible 14c. According­

ly, the distribution of 
3
H amongst electrophoretically separated myelin 

proteins was nearly equivalent expressed either in terms of cpm or dpm. 

CNP ASSAY 

The activity of 2', 3'-cyclic nucleotide 3'-phosphohydrolase 

(~NP) was determined by the assay of Kurihara and Tsukada (1967). The 

assay was applied to aliquots of material taken from aliquots of homo-

genates and myelin subfractions taken from the two long term normal 

studies. The enrichment of CNP in myelin subfraction material compared 

to brain homogenate as a measure of myelin purity was of greater inter-· 

est than the distribution of the enzymatic activity between the light, 

medium, and heavy myelin subfractions during development. Since this 

enzyme activity is membrane bound, activity was uniformly assayed after 

only one freezing and thawing of the material to be assayed. Repeated 

freezing and thawing may artifactually increase enzymatic assay levels 

by release of bound enzyme. 

Preparation of Solutions 

1. 0.03 M Sodium Adenosine 2',3'-Cyclic Phosphate 

11.62 mg Na Adenosine 2',3'-Cyclic Phosphate (2',3'-cAMP)·2H20 per 

ml water, MW = 387.4 (Sigma Chemical Co., St. Louis, Mo.) 



2. 0.2 H Sodium Dibasic Phosphate- 0.1 H Citric Acid Buffer, pH 6.2 

16.9 m1 of 0.1 M Citric Acid (c
6
H

7
o

8
), (1.92 g/100 ml), was added 

to 33.1 ml of 0.2 M NaDibasicP0
4

, (5.38 g/100 ml) and the mixture 

diluted with distilled \vater to a volume of 1 liter. 

3. 1% (v/v) Triton X-100 

1 ml of Triton X-100 (Sigma Chemical Co., St. Louis, Mo.) was 

diluted with distilled water to a volume of 100 ml and the mixture 

refrigerated. 

4. Glacial Acetic Acid 

5. Isopropanol:Concentrated NH
4

0H:H20 (7:1:2, v/v/v) 

6. 0.01 N Hydrochloric Acid 

Concentrated HCl, 11.6 N, \vas diluted with distilled water 1160-

fold. 

Prior to incubation the following \vas added to test tubes at 

room temperature: 50 ~1 phosphate-citric acid buffer (pH 6.2), and 

80 ~1 distilled water. Samples whose CNP enzymatic activity was to be 

assayed were dissolved in 100 ~1 total volume of 1% (v/v) Triton X-100 

such that 20 ~1 of this stock solution of solubilized assay material 

contained approximately 5 ~g homogenate protein or 2 to 4 ~g myelin 

protein based on previous protein assay (Lowry et al., 1951) deter-

minations. Test tubes containing pre-dispensed substrate, buffer, and 
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water were placed in a 37° C shaking water bath. At regular intervals, 

20 ~1 of stock solution of solubilized enzymatic activity to be assayed 

were added to each incubated test tube. The incubation reaction was 
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timed and stopped at 20 minutes by the addition of 20 ill glacial 

acetic acid and removal of incubated test tubes to a bed of crushed 

ice. Unreacted substrate (i.e., 2',3'-cAMP) and product (i.e., 3'­

adenosine monophosphate) (3'-AMP) were separated in a subsequent paper 

chromatographic procedure. Measurement of quantity of product formed 

per unit weight of protein per unit time was determined thereafter by 

a spectrophotometric assay. 
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Paper chromatographic separation of substrate and product was 

effected by spotting m1atman paper (Whatman Ltd., England) with 20 ill 

of the incubated reaction mixture and subsequently chromatographing in 

an equilibrated tank containing isopropanol:concentrated NH
4
0H:water 

(7:1:2, v/v/v) for approximately three-and-a-half hours. Following the 

chromatographic run and drying of paper, spots indicating product 

(nearest the origin) and substrate (nearest the solvent front) were 

identified by visualization under uv light and circled. Areas of the 

paper containing product, substrate, and any comparably sized region of 

the paper below the solvent front and above the substrate (designated 

as the paper blank) were cut out, shredded, and absorbed material was 

eluted from the paper by incubation at room temperature with 4 ml of 

0.01 N HCl for 2 hours in test tubes placed in a shaker. 

The optical densities of substrate and product eluates were read 

against the paper blank at 260 nm in a spectrophotometer. Total activ­

ity of CNP expressed as ilmole product formed per hour per mg protein 

was determined according to the following calculations: 



calculation of Total and Specific Act:_~yity ~ GNP 

1. S = (Optical density of substrate) - (Optical density of paper 

blank). 

2. P = (Optical density of product) - (Optical density of paper 

blank). 

3. X = S = Optical density per ~mole product formed per 20 ~1 
1.5 
aliquot. 

64 

4. y (3) (P) (X) = ~mole product formed per 20 ~1 of assay 

per hour. 

s. z = (Y) . (mg protein present in 20 ~1 of assay) = )..tmole prod-

uct formed per hour per mg protein = specific activity. 

6. Total activity = (Z) (total mg protein) = ~mole product 

formed per hour. 

CHPLRACTERIZATION OF }ITELIN SUBFRACTION PROTEINS BY 

SDS POLYACRYLAMIDE GEL ELECTROPHORESIS 

Characterization of myelin subfraction proteins by SDS poly-

acrylamide gel electrophoresis involved a number of steps, i.e., delip-

idation of myelin subfraction protein, solubilization of protein, gel 

preparation, actual electrophoresis, fixation, staining, and destain-

ing of gels, desitometric analysis of gel scans, and recovery of radio-

activity in separated protein. 

Lyophilized myelin subfraction material was delipidated with 

diethyl ether:ethanol (3:2, v/v) according to the procedure of 

Greenfield, Norton, and Morell (1971). One ml of diethyl ether:ethanol 

(3:2, v/v) was added to a sample of lyophilized myelin subfraction 



containing 1 to 3 mg myelin protein in a test tube and vortexed. 

After centrifugation for 10 minutes at 2500 to 2000 RPM in a table 

top centrifuge the ether:ethanol supernatant was drawn off by Pasteur 

pipet and discarded. Delipidation was similarly repeated once or 

twice. Samples were dried carefully under a stream of nitrogen, and 

immediately solubilized. 

Delipidated lyophilized myelin subfraction protein was solubi­

lized according to the procedure of Quarles et al. (1973b). Protein 

to be solubilized was vortexed and macerated as necessary in solubi­

lizing solution for a minimum of 4 to 8 hours in tightly capped test 

tubes. Solubilizing solution was used in the proportions of 1 ~1 

solubilizing solution to 1 to 2 ~g protein. Solubilizing solution was 

prepared fresh monthly or more frequently. Solubilizing solution was 

2.5% (w/v) in sodium dodecyl sulphate (SDS), 1.0% (w/v) in sodium car­

bonate, and 10.0% (v/v) in S-mercaptoethanol. 

Preparation of Solubilizing Solution 

1. To 100 ml of a stoc~ solution of 5.0% (w/v) SDS (50 grams SDS per 

liter) was added 20 ml of a stock solution of 10.0% (w/v) Na2co3 

(50 grams Na2co3 per 500 ml) and 20 ml of 8-mercaptoethanol with 

dilution by distilled water to a volume of 200 ml. 

Upon completion of solubilization, solubilized protein was 

dialyzed overnight against a dialyzing solution prepared fresh. The 

dialyzing solution was 0.1% (w/v) in SDS, 0.01 M in sodium phosphate 

buffer (pH 7.2), 1.6 Min urea, and 0.05% (w/v) in dithiothreitol. 
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Sufficient dialyzing solution was prepared to provide 100 to 200 ml 

dialyzing solution per ml of solubilized protein solution. 

Preparation of Solutions 

1. 1M Phosphate Buffer, pH 7.2 (pH range 7.1 to 7.2 acceptable) 

39.0 grams Sodium Monobasic Phosphate·H
2
0 (NaH

2
Po

4
·H

2
0) and 

192.0 grams Sodium Dibasic Phosphate•7H20 (Na
2
HPo

4
·7H

2
0) were 

dissolved in distilled water to a volume of 1 liter. 

2. Dialyzing Solution 

To 20 ml of a stock solution of 5.0% (w/v) SDS was added 10 ml 

of 1 M Sodium Phosphate Buffer, 200 ml of a stock solution of 8 M 

Urea (CH
4
N

2
0) (480.5 grams Urea per liter), and 500 mg Dithio­

threitol (c
4
H

10
o

2
s

2
) with dilution by distilled water to a volume 

of 1 liter. Proportions >vere adjusted to make the minimum volume 
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necessary for total volume of solubilized protein solution current-

ly being dialyzed. 

The optimal amount of protein to be electrophoresed on a given 

gel for visualization of the stained protein and resolution of bands 

was 150 to 200 ~g. Larger amounts were electrophoresed to recover 

greater radioactivity from electrophoresed gels. SDS polyacrylamide 

gels were prepared and myelin subfraction protein electrophoresed 

according to the procedure of Druse et al. (1974). 

Preparation of Solutions 

1. Gel Solution Al 

To 8 ml of a stock solution of 5.0% (w/v) SDS was added 40 ml of 
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1M sodium Phosphate Buffer (pH 7.2) with dilution by distilled 

water to a volume of 180 ml. Solution Al was made fresh monthly. 

2. Gel Solution A2 

40 grams Acrylamide (Eastman Kodak Co., Rochester, N.Y.) and 

1.040 grams N,N'-methylenebisacrylamide (Eastman Kodak Co., 

Rochester, N.Y.) were dissolved in distilled water to a volume of 

180 ml. Solution A2 was made fresh monthly. 

3. Gel Solution B 

90 mg Ammonium Persulfate and 50 ml of N,N,N',N'-Tetramethylethyl­

enediamine (TE1'1ED) , (Eastman Kodak Co. , Rochester, N.Y.) were 

dissolved in distilled water to a volume of 10 ml. This solution 

was made fresh immediately before making gels. 

4. Electrophoresis Chamber Buffer Solution 

Buffer Solution 0.1% (w/v) in SDS and 0.1 M in Phosphate Buffer 

(pH 7.2) was made by adding 20 ml of a stock solution of 5.0% 
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(w/v) SDS to 100 ml of 1.0 M Phosphate Buffer (pH 7.2) with dilu­

tion by distilled water to a volume of 1 liter. This solution was 

made fresh in sufficient volume for adequate electrophoresis buffer~ 

ing capacity. 

Gels were prepared by quickly mixing 22.5 ml each of gel 

solutions Al and A2 with 5 ml of gel solution B. The final mixture 

was deaerated for 30 to 60 seconds. Approximately 2.5 ml of this mix­

ture was quickly and carefully pipetted into previously cleaned glass 

gel tubes (internal diameter 6 mm). Gels were immediately overlay­

ered with a few drops of water. Optimal polymerization was indicated 
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by appearance, disappearance, and reappearance of a sharp inter­

facial difference in refractive index between the gel solution and 

the overlayered water, visible -.;..;rithin 30 minutes. Polymerized gels 

of approximately 5 to 6 em in length were used within a day of prep­

aration. Dialyzed, solubilized protein in a load of 150 to 200 ~g 

protein, as determined by protein assay (Lowry et al., 1951), was 

electrophoresed in electrophoresis chambers with sufficient buffer 

present. Gels were electrophoresed usually for approximately 24 

hours. Maximum voltage never exceeded 50 volts, and maximum amp­

erage per gel never exceeded 6 to 7 ma. Bromophenol Blue was used 

as a tracking dye migrating ahead of any protein. Gel electro­

phoresis was terminated when the dye front was within 5 rom of the gel 

tube end. Gel material below the lower half of the dye was discarded 

after completion of electrophoresis. 

Gels '"ere rapidly removed from p;el tubes after incubation 
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in ice-cold water for a maximum of one hour. (jels were fixed, stained, 

and destained according to the procedure of Greenfield ~tal. (1971). 

Preparation of Solutions 

1. Fixing Solution 

Methanol:Glacial Acetic Acid:Distilled Deionized Water (45:10;45, 

v/v/v) 

2. 1.0% (w/v) Fast Green Staining Solution 

10 grams Fast Green Dye dissolved in Fixing Solution, Methanol: 

Acetic Acid:Water (45:10:45, v/v/v) to a volume of 1 liter. 

Staining solution was mixed and filtered prior to use. 



3. Destaining Solution 

Identical to Fixing Solution 

Electrophoresed gels were fixed in capped test tubes and 

gently shaken for variable periods ranging from 3 to 7 days minimum 

with frequent changes of fixing solution. Fixation was continued 

until optimum clarity of gels were observed and the appearance of 

white flocculent material was minimal. Gels were stained with 1% 

(w/v) Fast Green for 1.5 to 2.0 hours. At the end of the staining 

period gels were immediately rinsed with tap water, distilled water, 

and fixing solution. They were kept in capped test tubes and gently 

shaken in a shaker with frequent changes of fixing solutions until 

destaining was optimal. Gels were kept in fixing solution as long 

as gels were kept intact. Alternatively, gels were destained in a 

diffusion destainer. 

Relative distribution of dye binding amongst the various 

myelin subfraction proteins was quantitated by densitometric scan­

ning in a densitometer reading absorbance at 560 nm followed by 

quantification of the weight under peaks in a copy of the desito­

metric scan tracing according to the procedure of Greenfield ~ al. 

(1971). No correction was made for difference in dye binding between 

the major subfraction proteins. 

As described earlier, the radioactivity in separated myelin 

subfraction myelin protein bands from electrophoresed SDS polyacryl­

amide gels was eluted by digestion of gel slices ih Protosol:water 

(9:1, w/v). Digestion at room temperature was continued for approx-
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imately three to six days with periodic vortexing of minced gel 

slices before fluor was added to scintillation vials. 

~CTERIZATION OF MYELIN SUBFRACTION LIPIDS BY 

THIN LAYER CHROMATOGRAPHY 

Characterization of myelin subfraction lipids by thin layer 

chromatography (tlc) involved a number of steps, i.e., extraction of 

lipid, the thin layer chromatographic separation itself, visualizing 

chromatographically separated components, and recovery of radio-

activity from separated lipids. These procedures were only applied 

14 
to representative myelin subfractions labelled with DW- C]glucose. 

Lipid was extracted from lyophilized myelin subfraction 

material according to the method of Folch-Pi, Lees, and Sloane-

Stanley (1957 ). One ml of chloroform:methanol (2:1, v/v) was added 

to a sample of lyophilized myelin subfraction containing 1 to 3 mg 

protein in a test tube and vortexed. Extraction was continued for at 

least 30 minutes followed by centrifugation of test tubes at 2500 to 

3000 RPM for at least 10 minutes in a table top centrifuge. Extracted 

lipid was drawn off by Pasteur pipet . Lipid extraction was similarly 

repeated 2 to 3 times, and lipid extracts were pooled. One ml ether 

was added to the remaining insoluble material. Following similar 

extraction, vortexing, and centrifuging the ether soluble material was 

pooled with chloroform:methanol (2:1 v/v) soluble material. The in-

soluble material was discarded. The soluble material was carefully 

dried under a stream of nitrogen. Lipid was resolubilized in a known 

volume of chloroform:methanol (2:1, v/v) and kept in tightly capped 
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test tubes. 

Aliquots of extracted lipid were separated into major lipid 

classes, i.e., in order of decreasing mobility during tlc separation, 

cholesterol, cerebroside, sulfatide, and phospholipid, according to 

the procedure of O'Brien, Fillerup, and Mead (1964). Extracted lipid, 

solubilized in chloroform:methanol (2:1, v/v) was spotted on Silica-G, 

250 ~ thick tlc plates (New England Nuclear, Boston, MA.) and chromate-

graphed in an equilibrated tank containing chloroform:methanol:concen-

trated NH
4

0H (80:20:0.4, v/v/v). Either a single lane was spotted 

with each of the cerebroside and sulfatide standards (Supelco, 

Bellefonte, Pa.) or separate standard lanes were spotted with one or 

the other standard, respectively. 

Chromatographically separated lipid classes were visualized and 

tentatively identified by spraying dried plates with 2' ,7'-dichloro-

fuorescein (Supelco, Bellefonte, Pa.). Separated lipid classes were 

visualized under uv light. Plates were marked to indicate the location 

of separated lipids. Individually separated lipid classes were scraped 

from the plate into scintillation counting vials. Confirmation of the 

identity of separated lipid classes was effected by spraying the 

standard lanes with Gal's spray, Ammonium Bisulfate, 30% (w/v) 

according to the procedure of Gal (1968). The plate was charred by 

0 
incubation in an oven at 140 C for at least 30 minutes. 

The radioactivity in plate scraping was eluted with 0.5 ml of 

benzene according to the procedure of Druse and Hogan (1972) as de-

scribed previously. Following vortexing, 10 ml of fluor was added, and 



72 

samples were counted by liquid scintillation counting as previously 

described. 



CHAPTER III 

EXPERIMENTAL RESULTS 

NORMAL LONG TERM METABOLISM 

Whole brain homogenate and myelin subfraction protein and lipid 

metabolism were studied in normal Holtzman albino rats maintained on a 

normal ad libitum feeding regimen. Various parameters of protein and 

lipid metabolism were examined over the interval ranging from approxi-

mately 18 hours to approximately 90 days following intracerebral injec­

tion of both L- [4,5-3HJ leucine and D- ru-14c} glucose at 12 days of 

age. 

Over the range of age from 13 to 97 days of age while brain 

hom~genate protein increased 1.5 fold (Table III), dramatic increases 

were observed in each of the myelin subfractions (Table IV). Over this 

age range myelin accretion was approximately 18-fold for light myelin, 

44-fold for medium myelin, and 9-fold for heavy myelin. Concomitant to 

dramatic myelin subfraction protein accretion there was also observed a 

shift in distribution of total myelin protein amongst the three sub-

fractions. At the earliest age examined, 13 days, over half (53 percent) 

of total myelin protein was recovered in heavy myelin (Table IV). With 

increasing age the predominant proportion of total myelin protein was 

recoverable in light myelin. 

3 Incorporation of the H label, primarily into protein, and the 

14c label, almost exclusively into lipid, over the period of approximately 

18 hours to 90 days following intracerebral injection of 12-day-old pups 
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AGE IN DAYS: 

HOMOGENATE 
PROTEIN MG: 

NUMBER OF SAMPLES: 

TABLE III 

PROTEIN CONTENT OF BRAIN HOMOGENATES OF DEVELOPING RATS 

13 16 22 29 43 

107 + 8 106 + 12 129 + 1 188 + 20 

6 6 3 3 0 

Each value represents the mean + the standard deviation. 

64 97 

183 + 13 164 + 27 

2 2 



TABLE IV 

PROTEIN CONTENT AND DISTRIBUTION IN MYELIN SUBFRACTIONS OF DEVELOPING RATS 

AGE MG PROTEIN/BRAIN PERCENT OF TOTAL MYELIN PROTEIN NUMBER 
IN IN INDIVIDUAL SUBFRACTIONS OF 
DAYS LIGHT MEDIUM HEAVY LIGHT MEDIUM HEAVY SAMPLES 

13 0.27 + 0.06 0.10 + 0.04 0.41 + 0.23 34 13 53 6 

16 0.49 + 0.08 0.19 + 0.08 0.22 + 0.07 54 21 24 3 

22 1.48 + 0.27 0.47 + 0.07 0.08 + 0.05 69 22 9 3 

29 2.97 + 0.42 0.98 + 0.11 0.90 + 0.52 61 20 19 6 

43 6.36 + 0.66 2.30 + 0.08 2.20 + 0.33 59 21 20 3 

64 6.01 + 1.03 3.66 + 1.35 2.97 + 0.71 48 29 23 5 

97 5.04 + 0.96 4.40 + 1.11 3.77 + 1.37 38 33 28 3 

Each value represents the mean + the standard deviation. 
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resulted in patterns of incorporation different for myelin subfractions 

compared to whole brain homogenate. Over the interval 18 hours to 85 

days post injection the recovery of 3H DPM in myelin subfractions in-

creased approximately 2-fold for light myelin, 8-fold for medium myelin, 

and 5-fold for heavy myelin, whereas during the same interval the 

recovery of 
3
H DPM in whole brain homogenate decreased 94 percent 

(Table V). A somewhat similar pattern obtained when measuring 
14c DPM 

radioactivity. Over the same interval 14c DPM radioactivity increased 

approximately 2-fold for light myelin, 3- to 4-fold for medium myelin, 

and 2-fold for heavy myelin, whereas a 91 percent decrement was observed 

for whole brain homogenate (Table VI). 

Specific radioactivity is tabulated in Tables VII and VIII for 

two separate but similar long term series and also graphically pre-

sented for Series I in Figure 1. Table VII was prepared by computing 

the quotient of total 3H DPM per ~g protein for each fraction. Table 

VIII was prepared by computing the quotient of total 14c DPM per ~g 

protein for each fraction. Because approximately 70 percent of total 

recoverable myelin 3H radioactivity is found in the protein compartment, 

Table VII is an approximate measure of specific radioactivity for the 

protein compartment. Because approximately 90 percent of total re­

coverable myelin 14c activity is found in the lipid compartment, Table 

VIII is an indirect measure of specific radioactivity for the lipid 

compartment. Since by dry weight myelin is composed of approximately 

70 percent lipid and 30 percent protein the foregoing approximate meas-

ures need to be transformed into specific radioactivities per ~g protein 

or lipid. Figure 1 represents this transformation for data from Tables 



TIME 
AFTER 
INJECTION 

18 HOURS 

4 DAYS 

10 DAYS 

17 DAYS 

31 DAYS 

52 DAYS t 

85 DAYS t 

TABLE V 

METABOLISM OF [3H] LEUCINE IN MYELIN SUBFRACTIONS OF DEVELOPING RATS 

LIGHT 
MYELIN 

84 + 36 

108 + 44 

119 + 29 

160 + 5 

183 + 56 

.183 + 7 

175 + 11 

3H X 10-3 (DPM) 
MEDIUM 
MYELIN 

13 + 11 

39 + 12 

22 + 4 

31 + 6 

42 + 4 

53+ 6 

109 + 13 

HEAVY 
MYELIN 

13 + 7 

27 + 11 

9 + 1 

19 + 4 

41 + 11 

49 + 6 

68 + 3 

3H X 10-6 (DPM) 
BRAIN HOMOGENATE 

16.2 + 1.8 

13.5 + 2.3 

3.0 + 0.6 

3.4 + 0.1 

* 
1.4 + 0.2 

0.9 + 0.1 

Twelve-day-old rats were injected with [3H] leucine and sacrificed at intervals from 18 hours to 85 days 

later. Myelin was subfractionated as described in the text. Each value represents the mean of three values 

+ the standard deviation. *Indicates that no sample was available for analysis. tindicates that only two 

rats were available for analysis at ages 52 and 85 days. 



Tll1E 
AFTER 
INJECTION 

18 HOURS 

4 DAYS 

10 DAYS 

17 DAYS 

31 DAYS 

52 DAYS t 

85 DAYS t 

TABLE VI 

METABOLISM OF [14c] GLUCOSE IN MYELIN SUBFRACTIONS OF DEVELOPING RATS 

14c x 10-3 
(DPM) 

LIGHT MEDIUM HEAVY 
MYELIN MYELIN MYELIN 

13 + 5 2 + 1 2 + 0.6 

19 + 10 6 + 1 4 + 0.7 

18 + 4 5 + 4 4 + 3 

24 + 0.5 8 + 6 3 + 0.5 

29 + 8 5 + 1 4 + 1.2 

25 + 2 6 + 0.1 4 + 0.1 

18 + 2 7 + 0.8 3 + 0.1 

14c X 10-6 (DPM) 
BRAIN HOMOGENATE 

0.97 + 0.25 

0.77 + 0.18 

0.21 + 0.04 

0.36 + 0.07 

* 
0.18 + 0.01 

0.09 + 0.001 

Twelve-day-old rats were injected with [14cJ glucose and sacrificed at intervals from 18 hours to 85 days 

later. Myelin was subfractionated as described in the text. Each value represents the mean of three values 

+ the standard deviation. *Indicates that no sample was available for analysis. tindicates that only two 

rats were available for analysis at ages 52 and 85 days. 



TABLE VII 
3 
H SPECIFIC RADIOACTIVITY (DPM/~ GRAM PROTEIN) 

Age Days 
In After Light Medium Heavy Brain 

Series Days Injection Hyelin Myelin Myelin Homogenate 

l 13 l 283.7 + 82.5 69.1 t 66.1 + 29.6 148.3 + 19.5 
I 16 4 210.0 + 60.9 212.3 + 32.5 146.1 + 94.7 121.3 + 15.6 
I 22 10 78.7 + 8.2 47.6 + 8.0 51.0 + 9.7 23.6 + 5.7 
I 29 17 61.7 + 6.3 32.0 + 3.6 28.1 + 2.5 18.4 + 2.7 
I 43 31 28.0 + 8.1 18.5 + 2.3 18.2 + 3.9 * 
I 64 52 32.6 t 24.1 t 19.8 t 7.9 t 
I 97 85 32.3 t 26.7 t 23.4 t 5.9 t 

II 13 1 193.1 + 26.5 200.2 + 32.9 127.3 + 6.9 134.2 + 19.7 
II 15 3 170.1 + 32.3 1917. + 176.4 1327.4 + 742.8 * 
II 21 9 80.4 + 31.0 68.9 + 28.5 68.0 + 24.5 'lc 

II 52 40 37.5 + 14.4 22.7 + 3.6 20.8 + 4.7 10.4 + 2.4 
II 68 56 38.4 + 20.0 19.4 + 7.3 14.5 + 4.8 6.3 t 
II 104 92 15.3 + 2.8 13.8 + 1.0 13.4 + 2.1 3.8 + 0.8 

Values represent the mean of three samples + the standard deviation. tindicates mean values only in cases 
for which only two samples were available. *Indicates that no sample was available for analysis. Animals 
in both Series I and II received similar injections of isotopically labelled precursors at 12 days of age. 
Series II animals represent a separate population of subjects begun on a similar experimental protocol after 
Series I was in progress. That is, all animals within a given series received identical injections from a 
common isotopic preparation prepared fresh for each series. Additional details of isoto~ic administration 
are provided in text. Data for each fraction represent the quotient of total recovered H DPM divided by 
total protein. It is not corrected for spill of the leucine 3H label into lipid material. As stated, the 
data are relative measures of protein metabolism. 



TABLE VIII 

14
c SPECIFIC RADIOACTIVITY (DPM/ll GRAM PROTEIN) 

Age Days 
in After Light Medium Heavy Brain 

Series Days Injection Myelin Myelin Myelin Homogenate 

I 13 1 45.9 + 10.0 19.0 + 14.3 13.3 + 1.4 8.8 + 1.0 
I 16 4 37.8 + 8.8 30.3 + 5.6 18.5 + 8.7 6.9 + 1.5 
I 22 10 11.9 + 0.8 5.6 + 1.6 6.0 + 0.7 1.6 + 0.4 
I 29 17 9.3 + 1.3 7.8 + 5.8 4.1 + 1.2 2.0 + 0.6 
I 43 31 4.4 + 1.0 2.0 + 0.6 1.6 + 4 * 
I 64 52 4.6 t 2.7 t 1.8t 0.8 t 
I 97 85 3.3 t 1.7t 0.9 t 0.6 t 

II 13 1 23.2 + 4.7 22.3 + 5.0 10.1 + 0.7 6.6 + 1.3 
II 15 3 9.5 + 6.2 364.7 + 167.3 107.1 + 64.5 * 
II 21 9 8.8 + 3.2 5.8 + 2.5 2.9 + 0.7 ''< 

II 52 40 4.2 + 1.6 2.2 + 0.5 1.3 + 0.3 0.8 + 0.1 
II 68 56 4.3 + 2.8 1.9+ 1.0 1.2 + 0.7 0,4 t 
II 104 92 1.9+ 0.5 1.5+ 0.1 1.4 + 0.1 0.3 + 0.03 

Values represent the mean of the samples + the standard deviation. tindicates mean values only in cases 
for which only two samples were available. *Indicates that no sample was available for analysis. Animals 
in both Series I and II received similar injections of isotopically labelled precursors at 12 days of age. 
Series II animals represent a separate population of subjects begun on a similar experimental protocol 
after Series I was in progress. That is, all animals within a given series received identical injections 
from a common isotopic preparation prepared fresh for each series. Additional details of isotopic 
administration are provided in text. Data for each fraction represent the qu~tient of total recovered 14c 
DPM divided by total protein. It is not corrected for entry of the glucose 1 C label into lipid primarily 
nor for the high lipid content of myelin. As stated, data are relative measures of lipid metabolism. 
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FIGURE 1. Graphical representation of specific radioactivity 

( 3H DPM/~ gram protein and 
14c DPM/~ gram lipid) changes in 

myelin subfractions following administration of [3H]leucine 
14 and [ C]glucose at 12 days of age. Data represent informa-

tion, corrected accordingly, from Tables VII and VIII for 

animals in Series I. Graphic representation is corrected to 

reflect actual partitioning of either label into protein and 

lipid compartments and to reflect the proportion of protein 

and lipid present in myelin. A similar graphical representa­

tion would obtain v1ere information from Tables VII and VIII 

corrected accordingly for Series II animals. Standard devia­

tions are indicated by vertical bars. 
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VII and VIII corrected accordingly to more accurately reflect protein 

and lipid specific radioactivities. 

Tables VII and VIII and Figure 1 demonstrate similar trends for 

specific radioactivities of protein and lipid in either Series I or II. 

Over the two approximately 90-day intervals following administration of 

isotopically labelled protein and lipid precursors the following trends 

were observed. Specific radioactivities declined in time for all three 

subfractions of myelin and for whole brain homogenate except for an 

early peak in specific activities in medium and heavy myelin seen at 4 

and 3 days following injection in Series I and II~ respectively. A 

similar "delayed" peak in specific radioactivity was observed in somewhat 

similarly prepared "heavy myelin" and "membrane fraction" 2 days follow-

3 
ing administration of [2,3- H) tryptophan (Agrawal et al, 1974a). 

In Series I over the interval 18 hours to 85 days post injection 

protein specific radioactivity declined 89, 61, 65, and 96 percent, re-

spectively, in light, medium, and heavy myelin and whole brain homogenate. 

Similarly, in Series II over the interval 18 hours to 92 days post injec-

tion corresponding declines in protein specific radioactivity were 92, 93, 

89, and 97 percent, respectively. The early peak in protein specific 

radioactivity in medium and heavy myelin, respectively, was 3 times 

greater and 2.2 times greater after 4 days than at the original 18 hour 

time point in Series I, contrasted with corresponding peaks in protein 

specific radioactivity 9.5 times greater and 10.4 times greater, respec-

tively, after 3 days than at the original 18 hour time point in Series 

II. In Series I lipid specific radioactivity declined 93, 91, 93, and 

93 percent, respectively, in light, medium, and heavy myelin subfractions 



and in whole brain homogenate. Similarly, in Series II corresponding 

percentage declines in lipid specific radioactivity were 92, 93, 86, 
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and 95 percent, respectively. The early peak in lipid specific radio­

activity in medium and heavy myelin, respectively, was 1.5 times greater 

and 1.4 times greater after 4 days than at the original 18 hour time 

point in Series I, contrasted with corresponding peaks in lipid specific 

radioactivity 16 times greater and 10.6 times greater, respectively, 

after 3 days than at the original 18 hour time point in Series II. 

Representative Fast Green stained electrophoresed SDS gels of 

myelin protein are illustrated in Figure 2. The electrophoretic pattern 

illustrated for each myelin subfraction was similar at each age point. 

An analysis of Fast Green stained electrophoresed SDS gels of 

myelin subfractions over the age range 13 to 97 days of age revealed a 

common pattern. Large basic protein in the system employed here appeared 

as a split band as reported previously (Allison, Agrawal, and Moore, 

1974). Basic protein accounted for approximately 53, 45, and 30 percent, 

respectively, of total dye binding in light, medium, and heavy myelin 

subfractions. Proteolipid protein accounted for approximately 25, 28, 

and 31 percent of total dye binding in light, medium, and heavy myelin 

subfractions. ~~ accounted for approximately 22, 26, and 38 percent 

of total dye binding in light, medium, and heavy myelin subfractions. 

In agreement with Matthieu, et al (1973) basic protein was enriched in 

light myelin and high molecular weight proteins in heavy myelin. In 

contrast to Matthieu, proteolipid protein was somewhat more enriched in 

heavy myelin than lighter subfractions. 



P LP 

L BP 

S BP 

FIGURE 2. SDS-polyacrylarnide gel electrophoresis of myelin pro­

teins from the (A) light, (B) medium, and (C) heavy subfractions 

of 64-day-old rats . Each gel was loaded with 200 ~g of myelin 

protein prior to electrophoresis. Labels: HMW high molecular 

weight proteins, PLP = proteolipid protein , LBP l arge basic 

protein, and SBP = small basic protein . 
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The percentage distribution of 
3
H incorporation into major 

myelin proteins separated by electrophoresis on SDS gels was deter-

mined over the interval 18 hours to 85 days post injection. Approx­

imately 60-70 percent of solubilized 3H radioactivity was associated 

with basic protein and proteolipid proteins in the light and medium 

myelin subfraction whereas in the heavy myelin subfraction over 50 

percent of the solubilized 
3

H radioactivity recovered from electro-

85 

phoresed gels was found associated with high molecular weight proteins. 

Also over the time interval 18 hours to 85 days post injection 

the distribution of solubilized, recovered 
14c DPM radioactivity was 

determined amongst the major lipid classes separated by thin layer 

chromatography. The share of recovered 
14c DPM radioactivity found 

associated with galactosphingolipids (cerebroside and sulfatide) was 

approximately 53, 46 and 43 percent respectively in light, medium, and 

heavy myelin subfractions, respectively. The percent of 14c DPM radio-

activity associated with phospholipids was approximately 17-18 percent 

in the light and medium myelin subfractions and 25 percent in the heavy 

myelin subfraction. While there was a modest enhanced relative incor­

poration of 14c into galactosphingolipids of lighter subfractions and 

into phospholipids of heavier subfractions, the pattern observed for 

1 · · · f 
14c · h 1 1 · 1 Th re at1ve 1ncorporat1on o 1nto c o estero was equ1voca • e 

proportion of recovered 
14c DPM radioactivity found associated with 

cholesterol varied from approximately 25 to 31 to 28 percent, respect-

ively for light, medium, and heavy subfractions. Proteolipid which 

comigrates with phospholipids in the tlc system employed contributed 



negligibly to the radioactivity recovered in the phospholipid band. 

14 
This conclusion was drawn from the observation of negligible C 

radioactivity associated with separated proteolipid protein on SDS 

gels. 

The specific activity of the enzyme CNP was determined for 

myelin subfractions and whole brain homogenate over the age range 

13 to 97 days of age (Table IX). The specific activity declined with 

age, except for an increase in specific activity in medium and heavy 

subfractions between 13 and 16 dyas of age. There were no other 

86 

developmental or subfraction differences. The specific activity of CNP 

was higher in each of the myelin subfractions than in whole brain 

homogenate at all the ages examined. 



TABLE IX 

SPECIFIC ACTIVITYt OF CNP 

' ' ' (2 ,3 -cyclic NUCLEOTIDE 3 -PHOSPHOHYDROLASE) 

Age 
in Light Medium Heavy Brain 
Days Myelin Myelin Myelin Homogenate 

13 1054 + 298 (5) 1255 + 395 (6) 636 + 394 (6) 498 + 30 (3) 

16 894 + 472 (5) 2049 + 596 (4) 1368 + 197 (5) * 

22 569 + 154 (6) 602 + 149 (6) 690 + 468 (6) * 

29 765 + 299 (5) 837 + 383 (6) 845 + 252 (4) 324 + 43 (3) 

43 493 + 83 (3) 525 + 55 (3) 521 + 108 (3) * 

64 493 + 161 (5) 546 + 166 (5) 510 + 187 (5) 333 + 93 (5) 

97 484 + 76 (5) 570 + 41 (5) 535 + 160 (5) 270 + 67 (5) 

CNP activity assayed according to the procedure of Kurihara 
and Tsukada (1967a). tSpecific activity expressed as ~moles 3'-AMP 
formed/hour/mg protein as the mean ± the standard deviation. Number 
of samples assayed in parentheses. *Indicates that no sample was 
available for analysis. 
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SHORT TERM METABOLISM 

Whole brain homogenate and myelin subfraction protein metaboliSf(! 

was studied in normal Holtzman albino rats maintained on a normal~ ad 

libitum feeding regimen. Parameters of protein metabolism were examined 

at intervals, 1, 12, and 24 hours following intracerebral injection of 

3 
L- [4,5- H) leucine at 12 days of age. 

Over the 24-hour period examined while brain homogenate protein 

increased 7 percent (Table X), myelin subfraction protein accretion 

was very rapid. During that interval protein accretion was 8-fold for 

light myelin, 14-fold for medium myelin, and 3-fold for heavy myelin 

(Table XI). Concurrent to this period of rapid protein accretion, the 

proportion of total myelin protein recovered in the heavy subfraction 

decreased from 77 to 52 percent while the proportionate share represent-

ed by light myelin increased from 17 to 28 percent. 

During this early 24-hour period of rapid myelin protein accretion, 

while recoverable 
3H radioactivity declined in brain homogenate by 61 

percent (Table XI) the amount of recoverable 3H radioactivity in heavy 

myelin declined by only 6 percent whereas recoverable radioactivity in 

each of the light and medium subfractions increased 12-fold (Table XI). 

It is of interest that immediately after injection heavy myelin accounted 

for 90 percent of the recoverable myelin protein radioactivity whereas 

12 and 24 hours following injection this proportion declined to 45 and 

42 percent. During the same interval the proportion of recoverable 

myelin subfraction protein radioactivity increased from 6 to 29 percent 

in light myelin and from 4 to 20 percent in medium. One would expect 



TABLE X 

BRAIN HOMOGENATE PROTEIN CONTENT, 3H DPM, AND SPECIFIC RADIOACTIVITY IN 12- TO 13-DAY-OLD RATS 

HOURS 
AFTER 
INJECTION 

1 

12 

24 

MG PROTEIN 
BRAIN HOMOGENATE 

143 + 17 

151 + 24 

153 + 4 

BRAIN HOMOGENATE 
X 10-6 (DPM) DPM/~ GRAM PROTEIN 

17.1 + 5.9 119 + 31 

11.1 + 3. 6 74 + 26 

6.7 + 7.3 45 + 49 

Each value represents the mean of three samples + the standard deviation. Specific radioactivity expressed 

as dpm/~gram protein. 



TABLE XI 

MYELIN SUBFRACTION PROTEIN CONTENT, 3H DPM, AND SPECIFIC RADIOACTIVITY IN 12- TO 13-DAY OLD RATS 

3H 

HOURS MG PROTEIN/BRAIN X 10-3 DPM ~DPM/~GRAM PROTEIN) 
AFTER LIGHT MEDIUM HEAVY LIGHT MEDIUM HEAVY 
INJECTION MYELIN MYELIN MYELIN MYELIN MYELIN MYELIN 

1 0.05 + .01 0.02 + .002t 0.23 + .20t 3 + 0.7 (60) 2 + 0.5 (lOO)t 47 + 18 (204)t 

12 0.18 + .13 0.15 + . 08 0.33 + .14 33 + 9 (183) 22 + 3 (147) 45 + 30 (136) 

24 0.42 + .09 0.29 + .10 0.77 + .26 36 + 11 (86) 25 +10 ( 86) 44 + 5 (57) 

Each value represents the mean of three samples ± the standard deviation. Specific radioactivity expressed 

as dpm/~gram protein is presented in parentheses. tindicates that only two samples were available for 

analysis. 

1..0 
0 



newly synthesized myelin protein to be radioactively labelled. It is 

to be noted that while light and medium myelin subfractions continued 

to accumulate both newly synthesized protein and incorporated radio-

activity, the heavy myelin subfraction accumulated newly synthesized 

protein without accumulating additional radioactive labelling. 

Specific radioactivity for whole brain homogenate and myelin 

subfraction protein was dete~ined over the 24-hour period following 

isotope administration (Tables X and XI). Protein specific radio-

activity declined 62 percent in brain homogenate and 72 percent in heavy 

myelin. Light myelin protein specific activity had a 3-fold peak 

observed at 12 hours while medium myelin had a more modest 1.5-fold peak 

in protein specific radioactivity at 12 hours. 

After allocating appropriate aliquots of myelin subfractions for 

determinations of protein and 
3

H radioactivity remaining material was 

committed to preparation of Fast Green stained electrophoresed SDS gels. 

One such gel was prepared for each subfraction at each age except for 

medium myelin at the 1-hour time point which was not available. Suffi-

cient radioactivity could be solubilized from cut gels to determine the 

3 
percent distribution of the incorporated H label into major myelin 

proteins. 

The proportion of solubilized 
3
H radioactivity from electro-

phoresed gels was determined for gels in the series. The proportion 

associated with high molecular weight protein was approximately 63, 72, 

and 81 percent, respectively, for light, medium, and heavy myelin. The 

proportion associated with proteolipid was approximately 24, 15, and 11 
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percent, respectively, for light, medium, and heavy myelin. The propor­

tion associated with basic protein was approximately 13, 13, and 8 

percent, respectively, for light, medium, and heavy myelin. Compared 

to the pattern observed earlier in the long term study, the present study 

reflects an enrichment in the proportion of radioactivity associated 

with high molecular weight protein and a deficiency of radioactivity 

associated with myelin basic_protein and proteolipid protein at 12 to 13 

days of age. 
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CHRONIC MATERNAL ETHANOL CONSUMPTION: 

EFFECTS ON OFFSPRING CNS MYELIN METABOLISM 

Whole brain homogenate and myelin subfraction protein and 

lipid metabolism was studied in the offspring of Sprague-Dawley 

female rats whose consumption of a liquid diet supplemented with 

ethanol was for a chronic period extending 2 months prior to concep-

tion through the third day postpartum. Controls were the offspring 

of females pair fed an isocaloric diet containing additional non-

alcoholic carbohydrate in lieu of any ethanol during an identical 

period. The period of the special dietary regime will be referred to 

as chronic. Offspring in the two sets are hereinafter referred to as 

chronic ethanol pups and control pups, respectively. A variety of 

parruneters of myelin subfraction protein and lipid metabolism was 

examined at 18, 25, and 53 days of age following an 18-hour pulse 

3 
labelling with intracerebrally injected L-[4,5- H) leucine and 

D- [U-14c] glucose. 

Throughout the age range examined, chronic ethanol pups had 

modest but consistent and sustained decrements in live body weight and 

fresh wet weight (Table XII and Figure 3). Chronic ethanol pups had 

decrements in body weight of approximately 12, 16, and 9 percent, 

respectively, at 18, 25, and 53 days of age. Corresponding decrements 

in brain fresh wet weight were approximately 7, 4, and 16 percent, 

respectively, at 18, 25, and 53 days of age. 

In contrast to observed decrements in body and brain weights, 

chronic ethanol pups had higher total myelin protein at 18 and 25 days 
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TABLE XII 

BODY AND BRAIN HEIGHTS 

Body Wt. 
Age Animal Grams (n) 

18 Control 27.4 (3) 

18 Chronic-Ethanol 24.2 (3) 

25 Control 50.9 (3) 

25 Chronic-Ethanol 43.0 (3} 

53 Control 189 (3) 

53 Chronic-Ethanol 172 (3) 

Control and ethanol pups exposed to effects of chronic 
maternal consumption of pair-fed isocaloric liquid diets 

Brain Wt. 
Grams (n) 

1.30 {3) 

1.21 (3) 

1.41 (3) 

1.35 (3) 

1. 73 (3) 

1.45 {3) 

for a chronic period as described in text. Body weight represents 
mean of live body weights only for those number (n) of animals 
sacrificed, and is comparable to mean of live body weights for all 
animals of a given age as graphed in accompanying figure. 
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FIGURE 3. Brain and body \-!eights of chronic ethanol and control 

rats. The body weights represent the mean of 3-12 rats. Each 

brain weight represents the mean of three brains. Ethanol pups 

are offspring of females exposed to ethanol for a chronic peri­

od as described in text. 
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of age (Table XIII). The statistically significant (p < 0.05) 

increase in total myelin protein in 18- and 25-day-old chronic ethanol 

pups was due exclusively to a statistically significant (p < 0.05} 

increase in the chemically and morphologically immature heavy myelin 

subfraction. At the age of 18 and 25 days the amount of protein in 

whole brain homogenate and in the light and medium subfractions in 

chronic ethanol pups was essentially the same as respective fractions in 

control pups. At 53 days of age both chronic ethanol pups and control 

pups had essentially the same amount of protein, respectively, in whole 

brain homogenate and heavy myelin. At 53 days of age the chronic ethanol 

pups had statistically significant (p < 0.05) reduced light and medium 

myelin pr~ein. Fifty-three-day-old chronic ethanol pups also had reduced 

total myel;h protein, however, the total reduction in myelin protein was 

not statistically significant. 

There were also different patterns of radioactive incorporation 

of 3H- and 
14

c-labelled precursors for chronic ethanol pups and control 

pups (Table XIV and XV). At 18 days of age chronic ethanol pups had 

statistically significant (p < 0.05) increases in total myelin incorpo­

ration of both 
3
H and 

14
c which was due to a statistically significant 

(p < 0.05) increase of incorporation into the chemically and morpho-

logically immature heavy myelin subfraction. As well, there were in-

creases in incorporation of both labels in light and medium myelin; 

however, these increments were not statistically significant. Incorpo-

ration of both labels into whole brain homogenate at 18 days of age was 

essentially similar for both chronic ethanol pups and control pups. At 



TABLE XIII 

BRAIN AND MYELIN SUBFRACTION PROTEIN 

Animal Brain Total 
-*ht 

Medium Heavy 
(age in days) Homogenate Myelin lin Myelin Myelin 

Control (18) 132 + 19 1.42 + 0.25 0.88 + 0.24 0.35 + 0.18 0.19 + 0.07 

Chronic Ethanol (18) 134 + 10 2.05 + 0.10* 0.98 + 0.02 0.37 + 0.11 0.71 + 0.10* 

Control (25) 164 + 12 3.04 + 0.73 2.38 + 0.45 0.47 + 0.23 0.19 + 0.12 

Chronic Ethanol (25) 165 + 8 4.78 + 0.34* 2.42 + 0.28 0.75 + 0.16 1. 60 + 0. 281~ 

Control (53) 209 + 9 10.96 + 0.83 5.61 + 0.58 2.14 + 0.15 3.21 + 0.37 

Chronic Ethanol (53) 208 + 21 8.99+1.67 4.39 + 0.64* 1.44 + 0.25* 3.15 + o. 71 

Each value represents the mean of 3 samples + the standard deviation. *Value obtained for the ethanol rats 
statistically different from the control value at p < 0.05. Ethanol rats offspring of females exposed to 
ethanol chronically as described in text. 



TABLE XIV 

3H RADIOACTIVITY IN BRAIN AND MYELIN SUBFRACTIONS 

-6 "---./ 
10-3 

10 DPM/brain DPM/brain 
Animal Brain Total Light Medium Heavy 
(age in days) Homogenate Myelin Myelin Myelin Myelin 

Control (18) 19.9 + 2.0 251.0 + 35.5 165.6 + 56.3 48.1 + 25.8 38.3 + 1. 9 

Chronic Ethanol (18) 19.3 + 4.1 363.5 + 78.6* 206.5 + 42.9 64.9 + 20.2 92.1 + 20.0* 

Control (25) 7.1 + 0.5 96.1 + 37.0 75.6 + 25.4 17.2 + 9.2 3.3 + 2.5 

Chronic Ethanol (25) 10.3 + 0.2* 365.5 + 63.4* 188.8 + 38.1* 58.6 + 17.1* 118.1 + 25.8* 

Control (53) 5.2 + 0.3 135.0 + 24.7 65.1 + 17,5 24.4 + 7.1 45.4 + 0.5 

Chronic Ethanol (53) 1.9 + 1.8* 53.0 + 14.6~~ 23.4 + 6.2* 10.0 + 3.3* 10.6 + 2.6* 

Each value represents the mean of three samples + the standard deviation. *Value obtained for the ethanol 
rats statistically different from the control value at p < 0.05. DPM = disintegrations/min, Ethanol 
rats offspring of females exposed to ethanol chronically as described in text. 



TABLE XV 

14
c RADIOACTIVITY IN BRAIN AND MYELIN SUBFRACTIONS 

-6 10 DPM/brain 10-3 DPM/brain 
Animal Brain Total Light Medium Heavy 
(age in days) Homogenate Myelin Myelin Myelin Myelin 

Control (18) 1.28 + 0.22 33.4 + 7.3 21.9 + 9.1 6.7 + 4.8 4.8 + 0.4 

Chronic Ethanol (18) 1.14 + 0.17 51.2 + 5.8* 31.4 + 4.2 8.5 + 1.7 11.3 + 0.8* 

Control (25) 0.47 + 0.03 15.6 + 5.2 13.1 + 3.7 2.1 + 1.3 0.4 + 0.3 

Chronic Ethanol (2.5) o.68 + o.os~': 39.9 + 2.2~~ 23.5 + 0.6* 5.9 + 0.8* 10.6 + 0.3ic 

Control (53) 0.24 + 0.06 10.1 + 2.2 5.1 + 1.4 2.0 + 0.5 3.0 + 0.4 

Chronic Ethanol (53) 0.13 + 0.05* 5.1 + 0.6~~ 2.5 + 0.3* 0.9 + 0.2* 1.7 + 0. 2)~ 

Each value represents the mean of three samples + the standard deviation. *Value obtained for the ethanol 
rats statistically different from the control value at p < 0.05. DPM = disintegrations/min. Ethanol rats 
offspring of females exposed to ethanol chronically as described in text. 
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5 d f b h 
3

H d 14c · · · · 11 2 ays o age ot an 1ncorporat1on was stat1st1ca y 

~ significantly (p < 0.05) elevated in chronic ethanol pups in all myelin 

~ 
~· 

>-· 
subfractions and in whole brain homogenate. At 53 days of age chronic 

ethanol pups had statistically significantly (p < 0.05) reduced 3 H and 

14c . . 1ncorporat1on in all myelin subfractions and in whole brain homogenate 

when compared to control pups. 

Thus, chronic ethanol pups, compared to controls, demonstrated 

greater myelin synthesis at younger ages and reduced synthesis at the 

oldest age examined. 

Figure 4 illustrates the appearance of gels prepared from 25-

day-old light, medium, and heavy subfraction delipidated protein from 

chronic ethanol pups. As documented in Table XVI similar and normal 

electrophoretic patterns were observed in terms of the percent dis-

tribution of dye-binding between major myelin proteins. That is, light 

myelin was enriched in basic protein and deficient in high molecular 

weight protein while the pattern was reversed for heavy myelin and 

intermediate for medium myelin. All three myelin subfractions had 

nearly equivalent proportions of proteolipid protein. 

3H radioactivity was solubilized and eluted from gels and 

analyzed for the relative distribution of the incorporation of the label 

between the major myelin protein classes. As indicated in Table XVII 

experimental and control pups had very similar patterns within each sub­

fraction. The proportion of 
3

H incorporation into high molecular weight 

proteins was slightly less in light myelin than in either medium or heavy 

myelin, while light myelin had some enrichment in the proportion of label 
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FIGURE 4 . SDS polyacrylamide gels of myelin protein from the 

(A) light , (B) medium, and (C) heavy subfractions i s olated from 

25- duy- old chronic ethano l pups. Each gel was loaded with 200 

~g of protein prior to electrophoresis. Labels: illnv = high 

mol cular weight proteins, PLP = proteolipid protein, LBP = 
large basic pro t ein, and SBP = small basic protein. 
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TABLE XVI 

PROTEIN DISTRIBUTION OF MAJOR PROTEIN BANDS ON SDS GELS 

Percent Dye Binding 
Myelin Fraction-

Animal HMH PLP LBP SBP 

Light-Control 46 + 6 15 + 3 21 + 2 18 + 5 

Light-Chronic Ethanol 38 + 5 18 + 2 26 + 3 18 + 2 

Medium-Control 55 + 4 12 + 2 17 + 2 16 + 1 

Medium-Chronic Ethanol 64 + 10 11 + 4 14 + 4 13 + 8 

Heavy-Control 74 + 12 11 + 6 8 + 5 6 + 2 

Heavy-Chronic Ethanol 61 + 12 15 + 9 11 + 2 13 + 6 

Each value represents the mean+ the standard deviation of values obtained from SDS gels at 18, 25, and 53 
days of age. Values were calculated by dividing the area under densitometric peaks of specific major 
proteins by total gel protein densitometric area. Each value was multiplied by 100 to determine the 
percent distribution. Values reflect uncorrected dye binding only. Ethanol pups are offspring of female 
rats exposed to chronic alcohol consumption as described in text. Hffiv = high molecular weight proteins, 
PLP = proteolipid protein, LBP =. large basic proteins, SBP = small basic proteins. 
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TABLE XVII 

3
H DISTRIBUTION IN MYELIN PROTEINS 

Fraction-animals HMW PLP BP 

Light-Control 67 + 7 14 + 2 20 + 5 

Light-Chronic Ethanol 68 + 2 15 + 1 16 + 3 

Medium-Control 76 + 10 12 + 5 12 + 4 

Medium-Chronic Ethanol 72+ 1 16 + 5 12 + 4 

Heavy-Control 71 + 6 13 + 1 16 + 6 

Heavy Chronic Ethanol 75 + 1 14 + 1 11 + 0 

Values were calculated by dividing the 3H radioactivity associated 
with a specific category of proteins by the total 3H radioactivity 
solubilized from an entire gel. Each value was multiplied by 100 to 
determine the percent distribution of radioactivity. Each value 
represents the mean + the standard deviation of values obtained at 18 
and 25 days of age. Values from 54-day-old rats were not included 
because the 3H solubilized from each gel slice was too low to be 
meaningful. ~v = high molecular \veight proteins; PLP = proteolipid 
protein; BP = sum of large and small basic proteins. Ethanol rats 
offspring of females exposed to ethanol chronically as described in 
text. 
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incorporated in basic proteins. All myelin subfractions had essentially 

the identical proportion of 3H radioactivity incorporated in proteo-

lipid protein. 

Thus, myelin protein from chronic ethanol pups in terms of 

electrophoretic patterns and proportion of 3H incorporation into major 

myelin proteins appeared to be quite normal. 

The distribution of 
14c incorporation into major myelin lipids 

separated by thin layer chromatography was determined for each sub-

fraction from experimental and control pups. Similar distributions of 

14c incorporation into major myelin lipids was observed for each myelin 

subfraction from either the experimental or control pups. Approximately 

14 
48, 25, and 25 percent of the recovered C radioactivity was found 

associated with phospholipids, galactosphingolipids (cerebrosides and 

sulfatides) and cholestrol, respectively. 

Thus, in terms of the proportionate 
14c incorporation into 

major myelin lipids, the myelin lipid from chronic ethanol pups 

appeared normal. 

The chief overall effect of chronic maternal ethanol con-

sumption upon offspring myelination appeared to be an aberrant pattern 

of myelin synthesis. Compared to controls, at various ages chronic 

ethanol pups had statistically significant alterations in the total 

amount, maturity, and synthesis of CNS myelin. However, having isolated 

myelin protein and lipid from such animals, no quantitative or quali-

tative aberrations were evident by the electrophoretic and thin layer 

chromatography methods herein employed. 



ACUTE PERIOD OF MATERNAL ETHANOL 

CONSUHPTION: IN UTERO EFFECTS ON 

CNS MYELIN METABOLISH 

105 

Whole brain homogenate and myelin subfraction protein and lipid 

metabolism were studied in the offspring of Sprague-Dawley female rats 

whose consumption of a liquid diet supplemented with ethanol was for an 

acute period extending from the fifth day of gestation through the third 

day postpartum. Controls were the offspring of females pair-fed an 

isocaloric diet containing additional non-alcoholic carbohydrate in lieu 

of any ethanol during an identical period. Offspring in the tw-o sets 

are hereinafter referred to as acute ethanol pups and control pups. The 

period of the special dietary regime will be referred to as either acute 

or in utero. A variety of parameters of myelin subfraction protein and 

lipid metabolism was examined at 18, 25, and 53 days of age following an 

18-hour pulse labelling with intracerebrally injected L- [4,5-
3

HJ 

leucine and D- [u-14cJ glucose. 

In contrast to the chronic ethanol study, the effects of acute 

in utero exposure to ethanol were, with few exceptions, minimal. 

The body and brain weights of acute ethanol pups were very close 

to those of control pups (Table XVIII and Figure 5). The difference in 

body weight between experimental and control pups at 53 days is explain­

ed in Table XVIII. When the body weights of all animals at 53 days of 

age, including animals not sacrificed, are considered (Figure 5) no 

apparent differences were present. 

The yield of whole brain homogenate protein and myelin sub-
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TABLE XVIII 

BODY AND BRAIN WEIGHTS 

Body Ht. Brain Wt. 
Age Animal Grams (n) Grams (n) 

18 Control 29.7 (3) 1.34 (3) 

18 Acute-Ethanol 29.8 (3) 1.32 (3) 

25 Control 48.0 (3) 1.44 (3) 

25 Acute-Ethanol 55.9 (3) 1.42 (3) 

53 Control 222 (3) 1.85 {3) 

53 Acute-Ethanol 121* (3) 1.81 (3) 

*Discrepancy between mean live body weight between 53-day-old control 
and experimental pups reflects sex differences. All three control pups 
were male; one ethanol pup was male (229 grams) while two ethanol pups 
were female (53.7 and 80.1 grams). Control and ethanol pups exposed 
to in utero effects of maternal consumption of pair-fed isocaloric liquid 
diets for an acute period of time as described in text. Body weight 
represents mean of live body weights only for those number (n) of animals 
sacrificed, and is comparable to mean of live body weights for all 
animals of a given age as graphed in accompanying figure. 
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FIGURE 5. Brain and body weights of acute ethanol and control 

rats. The body weights represent the mean of 6-12 rats. Each 

brain weight represents the mean of three brains. Ethanol pups 

are offspring of females exposed to ethanol for an acute period 

as described in text. 
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fraction protein is tabulated in Table XIX. Generally, acute ethanol 

pups had amounts of protein comparable to those present in control pups. 

However, at 53 days of age acute ethanol pups had a statistically sig-

nificant (p < 0.05) increase in the chemically and morphologically 

immature heavy myelin subfraction. At 53 days of age acute ethanol pups 

also had reductions in the more mature light and medium myelin sub-

fractions and in total myelin protein. However, these reductions were 

not statistically significant. 

3H d 
14c d · · · d f 1 bf an ra 1oact1v1ty recovere rom mye in su ractions was 

nomalized with respect to whole brain homogenate radioactivity to 

correct for variability in injection (Tables XX and XXI). At 18 days of 

age acute ethanol pups had statistically significant (p < 0.05) incre­

ments in normalized 3H incorporation into light and medium myelin sub-

fractions and total myelin. Normalized incorporation into heavy myelin 

was decreased in acute ethanol pups, but not statistically significantly. 

14 
A similar trend was observed for C normalized incorporation at 18 days 

of age. Normalized incorporation of 
14c in 18-day acute ethanol pups 

was elevated in light and medium myelin subfractions and whole brain 

homogenate but decreased in heavy myelin. However, only the increment 

in the medium subfraction was statistically significant. At 25 and 53 

days of age there were no statistically significant differences in 

normalized 3H and 14c incorporation in any fraction from control or 

acute ethanol pups. 

3H radioactivity was solubilized and eluted from Fast Green 

stained electrophoresed SDS gels. The percent distribution of the 



TABLE XIX 

MYELIN SUBFRACTION PROTEIN 

Mg. Protein/Brain 

Animal-Age 
in Days Homogenate Total Light Medium Heavy 

Control-18 151 + 1 2.11 + .29 0.79 + .18 0.66 + .14 0.66 + .17 

Acute Ethanol-18 161 + 3 1.99 + .21 o. 79 + • OS o. 74 + .12 0.47 + .15 

Control-25 187 + 9 5.44 + .40 2.90 + .37 1.26 + .21 1.28 + .17 

Acute Ethanol - 25 168 + 10 4.30 + .08 2.80 + .21 1.14 + .15 1.36 + .03 

Control-53 235 + 9 13.70+1.36 6.62 + .06 4. 90 + 1.48 2.19 + .28 

Acute Ethanol-53 219 + 6 12.01 + 1.84 5.65 + 1.84 3.30 + .18 3.05 + .30* 

Each value represents the mean of 3 samples + the standard deviation. A * indicates that the experimental 
value is different than the control at p < .05. Ethanol pups exposed to ethanol for an acute period in utero 
as described in text. 



TABLE XX 

3
H RADIOACTIVITY IN MYELIN SUBFRACTIONS 

Animal-Age 
in Days 

Control-18 

Acute-Ethanol-18 

Control-25 

Acute Ethanol-25 

Control 53 

Acute-Ethanol-53 

3H DPM--Myelin Fraction/Homogenate x 100% 

Total Light Medium 

2.20 + .24 .90 + .10 .68 + .13 

2.53 + .09* 1.18 + .12* .95 + .07* 

5.95 + .97 3. 77 + .99 1.16 + .11 

4.91 + .69 2.88 + .44 1.09 + .22 

4.61 + .89 2.04 + .95 1.64 + .40 

4.51 +1.35 2.05 + .70 1.28 + .41 

llO 

Heavy 

.61 + .19 

.40 + .13 

1.02 + .22 

.94 + .05 

.93 + .59 

1.17 + .25 

Each value represents the mean of 3 samples + the standard deviation. 
A * indicates that the experimental value is different than the control 
value of p < .05. The ethanol pups exposed to ethanol for an acute 
period in utero as described in text. 
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TABLE XXI 

14c RADIOACTIVITY IN MYELIN SUBFRACTIONS 

14 
C DPM---Myelin Fraction/Homogenate x 100% 

Animal-Age 
in 
Days 

Control-18 

Acute Ethanol-18 

Control-25 

Acute Ethanol-25 

Control-53 

Acute Ethanol-53 

Total 

4.41 ± .50 

4.90 ± .33 

8. 71+ ± 1.52 

7.57 ± 1.13 

5.82 ± 2.25 

5.20 ± 1. 93 

Light 

2.05 ± .29 

2.47 ± .38 

5.90 ± 1. 61 

4.87 ± . 68 

2.90 ± 1.35 

2.60 ± 1.15 

Medium Heavy 

1.35 ± .14 1.01 ± .34 

1. 78 ± .02* .65 ± .22 

1. 58 ± .21 1.26 ± .11 

1.52 ± .38 1.18 ± .11 

1.92 ± .69 1.00 ± .47 

1.41 ± .47 1.19 ± .31 

Each sample represents the mean of 3 samples ± the standard deviation. 
A * indicates that the experimental value is different than the control 
at p < .05. Ethanol pups exposed to ethanol for an acute in utero peri­
od as described in text. 
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3H incorporated into the major myelin proteins was determined (Table 

XXII). Close agreement between experimental and control subfractions 

was observed except for a statistically signific.ant (p < 0.05) increase 

in the proportion of 
3H radioactivity associated with proteolipid pro-

tein in acute ethanol pups. Compared to the light myelin subfraction, 

heavier myelin subfractions from both experimental and control pups 

demonstrated a modest increase in the proportion of 3H radioactivity 

associated with high molecular weight protein. Compared to heavier 

myelin subfractions, the light myelin subfraction from both experimental 

and control pups demonstrated a modest increase in the proportion of 3H 

radioactivity associated with proteolipid protein. 

Th d · ·b · f 14c · · · · e percentage 1str1 ut1on o 1ncorporat1on 1nto maJor 

myelin lipids separated by thin layer chromatography was determined 

(Table XXIII). There was very close agreement between experimental and 

1 · 1 f h bf · Th · f 14c d" contra an1ma s or eac su ract1on. e proport1on o ra 10-

activity associated with cholesterol was 26-27 percent for all sub­

fractions. The proportion of 
14c radioactivity associated with galacto-

sphingolipids (cerebrosides and sulfatides) was 35-43 percent with in-

creased proportions in the lighter subfractions. The proportion of 

14c radioactivity associated with phospholipids ranged from 27 to 35 

percent, respectively, for light to heavy myelin subfractions. 

Compared to effects of chronic maternal alcohol consumption the 

effects of in utero exposure to alcohol were rather modest. 



TABLE XXII 

3 
H DISTRIBUTION IN MYELIN SUBFRACTION PROTEINS 

Myelin Fraction­
Animal 

Light-Control 

Light-Acute Ethanol 

Medium-Control 

Medium-Acute Ethanol 

Heavy-Control 

Heavy-Acute Ethanol 

3 
Percent Total H DPM/GEL 

High 
Molecular 
Weight 

70.0 + 2.8 

67.1 + 3.4 

78.2 + 7.2 

73.4 + 4.9 

80.3 + 4.7 

78.5 + 3.2 

Proteolipid 

18.7 + 2.0 

21.7 + 2.8 

8.2 + 2.7 

18.0 + 2.3* 

11.8 + 3.5 

12.5 + 1.3 

Basic 
Proteins 

11.3 + 1.0 

11.2 + 2. 3 

13.6 + 4.7 

8.7 + 2.9 

7.8 + 2.1 

9.0 + 2.3 

Each value represents the mean + the standard deviation of values 
obtained at 18, 25 and 53 days of age. Values were calculated by 
dividing the 3H radioactivity associated with a specific category 
of proteins by the total 3H radioactivity solubilized from a gel. 
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Each value was multiplied by 100 to determine the percent distribution 
of radioactivity. A * indicates that the experimental value is 
different than the control value at p < .05. Ethanol pups exposed to 
ethanol for an acute period in utero as described in text. 



TABLE XXIII 

14
c INCORPORATION INTO MYELIN SUBFRACTION LIPIDS 

Myelin Fraction­
Animal 

Percent Total 14c DPM 
Galacto- Phospho-

sphingolipids lipids 
Cholesterol 
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Light-Control 26.5 + .9 42.9 + 3.4 27.8 + 4.2 

Light-Acute Ethanol 28.3 + 2.7 41.7 + 2.0 27.2 + 4.8 

Medium-Control 25.9 + 1.5 41.9 + 5.0 29.6 + 5.5 

Medium-Acute Ethanol 26.1 + 1.9 41.0 + 3.0 30.1 + 5.2 

Heavy-Control 27.4 + 2.4 35.2 + 5.8 34.9 + 7.2 

Heavy-Acute Ethanol 25.9 + 2.3 36.6 + 3.6 34.9 + 6.3 

Each value represents the mean + the standard deviation of values 
obtained at 18 25 and 53 days of age. Values were calculated by 
dividing the 14c radioactivity associated with a specific category of 
lipids by the total l4c radioactivity solubilized from a thin layer 
chromatography lane. Each value was multiplied by 100 to determine 
the percent distribution of radioactivity. Ethanol pups exposed to 
ethanol for an acute period in utero as described in text. 
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POSTNATAL MP.TEfu~AL PROTEIN-CALORIE 

11ALNUTRITION EFFECTS ON OFFSPRING 

CNS MYELIN METABOLIS.H 

Whole brain homogenate and myelin subfraction protein and lipid 

metabolism was studied in the offspring of Sprague-Da~v-ley female rats 

protein-calorie malnourished by dietary restriction during the first 18 

days postpartum, after which nutritional remediation was begun with ad 

libitum access to normal laboratory rat chow. Controls were the off-

spring of females fed normal laboratory rat chow ad libitum at all times. 

A variety of parameters of myelin subfraction protein and lipid metabo-

lism was examined at 18, 25, and 53 days of age following an 18-hour 

pulse labelling with intracerebrally injected L-[4,5-
3
HJ leucine and 

14 
D-[U- C) glucose. 

Body and brain weights of postnatally protein-calorie malnour-

ished pups were decreased throughout the period examined (Table XXIV 

and Figure 6). The decrement in body and brain weights was greatest 

before nutritional remediation was begun. The body weight of protein-

calorie malnourished pups vras49, 62, and 81 percent of control body 

weight, respectively, at 18, 25 and 53 days of age. Brain weights of 

protein-calorie malnourished pups followed a similar pattern. Exper-

imental brain weights were 77, 88 and 92 percent of control brain 

weight, respectively, at 18, 25 and 53 days of age. 

A similar pattern was also observed for whole brain homogenate 

and myelin subfraction protein content in experimental and control pups 

(Table XXV). In prot~in-calorie malnourished pups the content of 
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TABLE XXIV 

BODY AND BRAIN WEIGHTS 

Body Wt. Brain l-lt. 
Age Animal Grams (n) Grams (n) 

18 Control 28.8 (3) 1.24 (3) 

18 Postnatal-Protein-Calorie 14.2 (6) 0.95 (6) 
Malnutrition 

25 Control 51.4 (3) 1.46 (3) 

25 Postnatal-Protein-Calorie 32.0 (3) 1.28 (3) 
Malnutrition 

53 Control 182.0 (3) 1.67 (3) 

53 Postnatal-Protein-Calorie 148.0 (3) 1.53 (3) 
Malnutrition 

Control animals fed ad libitum normal laboratory rat chow at all times. 
Staging and severity of postnatal protein-calorie malnutrition is 
described in text. Body weights represent mean of live body weights 
only for those number (n) of animals sacrificed, and is comparable to 
mean of live body weights of all animals of a given age as graphed in 
accompanying figure. 



2.0 BODY BRAIN 
2.0 _c 

----PC 

(f) 

~ ~ ' --cr too - l.O -a: , , 
C) , 

DAYS 

FIGL~E 6. Brain and body weights of postnatally protein-calorie 

malnourished and control pups. The body weights represent the 

mean of 3-12 rats. Each brain weight represents the mean of 

three brains except the value for 18-day-old brain weight of 

protein-calorie malnourished pups which represents the mean 

of six brains. C = control, PC = protei.n-calorie malnourished. 
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TABLE XXV 

BRAIN AND MYELIN PROTEIN 

Mg. Protein/Brain % of Total Myelin Protein 

Age-Animal Brain Total Light & 
Homogenate Myelin Hedium Heavy 

18-Control 163 + 6 1.45 + .52 63.4 + 5.9 36.4 + 5.9 

18--Postnatal-Protein-Calorie 109 + 10* .63 + .22* 56.0 + 7.3 44.0 + 7.3 

25-Control 187 + 9 5.44 + .40 76.4 + 1.4 23.6 + 1.4 

25--Postnatal-Protein-Calorie 144 + 15* 3.09 + .58* 60.9 + 2.6* 39.1 + 2.6* 

53-Control 229 + 11 10.72 + .80 65.9 + 2.0 34.1 + 2.0 

53--Postnatal-Protein-Calorie 193 + 21* 9. 91 + 1.04 78.8 + .72* 21.2 + • 72"~~ 

Each value represents the mean of 3 values + the standard deviation. A * indicates that the experimental 
value is different than the control value at p < .05. Details of the staging and severity of dietary 
stress are provided in text. 

1-' 
1-' 
00 
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homogenate protein was statistically significantly (p < 0.05) reduced 

at all ages, especially at younger ages during which nutritional re­

mediation was incomplete. The experimental pups had brain homogenate 

protein content 67, 77, and 84 percent of control, respectively, at 18, 

25, and 53 days of age. Similarly, total myelin protein of experimental 

pups was 43, 57, and 92 percent of control total myelin protein, respec­

tively, at 18, 25, and 53 days of age. The reduction in total myelin 

protein at 18 and 25 days of age was statistically significant (p < 0.05). 

The proportion of total myelin either in light and mediummyelin 

subfractions combined or in heavy myelin alone was also determined 

(Table XXV) • At 18 days of age total myelin protein v1as apportioned 

between the lighter subfractions and heavy myelin in a comparable manner 

in both experimental and control pups. However, at 25 and 53 days of 

age there was statistically significant differences (p < 0.05) in the 

apportionment of total myelin protein between the lighter subfractions 

and heavy myelin subfractions. At 25 days of age protein-calorie mal­

nourished pups had a greater proportion of the chemically and morpho­

logically immature heavy myelin subfraction. But at 53 days of age 

protein-calorie malnourished pups had a greater proportion of the 

chemically and morphologically more mature lighter myelin subfractions. 

With longer periods of nutritional remediation the deficit in 

body and brain weight and in brain homogenate and total myelin protein 

became less pronounced. A further measure of this improvement is 

afforded by calculating the yield of mg total myelin protein per gram 

wet weight of brain. This ratio increased over the age range 18 to 53 
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days of age for experiment~l pups from 0.66 to 2,41 to 6,48 compared 

with controls for which the corresponding ratios were 1.17, 3.73, and 

6.42. This measure of myelin protein concentration converged towards 

normality at 53 days of age, 35 days following initiation of nutritional 

rehabilitation. 

3
H and 

14c radioactivity incorporation data were normalized 

with respect to homogenate radioactivity to correct for injection 

variability (Tables XXVI and XXVII). Radioactivity in the lighter myelin 

subfractions was combined. A similar pattern of radioactive incorporation 

was observed for both isotopes. 

At 18 days of age there were no statistically significant dif-

f . 1 d d . · f · h 3H llf erences 1n norma ize ra ioac.tive 1ncorporat1on o e1t er or C 

in lighter myelin subfractions and heavy myelin between experimental and 

control animals. At 25 days of age protein-calorie malnourished pups had 

statistically significantly (p < 0.05) greater normalized 3H radio-

activity incorporation in heavy myelin and total myelin. At 25 days of 

age protein-calorie malnourished pups had statistically significantly 

( 0 05) 1 . d 14c d. · · · · · 1· h p < • greater norma 1ze ra 1oact1v1ty 1ncorporat1on 1n 1g ter 

myelin subfractions, heavy myelin, and total myelin. The greatest 

· · 1· d 3H d 14c d" · · · · 1ncreases 1n norma 1ze an ra 1oact1v1ty 1ncorporat1on were seen 

in 53-day-old protein-calorie malnourished offspring lighter myelin sub-

fractions and total myelin. The approximately 2-fold increase in 

normalized radioactivity in the lighter subfractions and the approxi-

mately 1.7-fold increase in normalized radioactivity in total myelin 

were both statistically significant (p < 0.05). Normalized radio-



TABLE XXVI 

3
H DPH-MYELIN FRACTION/HOHOGENATE X 103 

Light & 
Age-Animal Hedium Heavy Total 

18-Control 3.01 + 1.30 3.60 + .43 6.61 + 1.42 

18-Postnatal-Protein-Calorie 6.83 + 2.97 3.62 + .96 10.46 + 3.73 

25-Control 12.74 + 3.00 4.33 + .88 17.08 + 2.37 

25-postnatal-Protein-Calorie 17.28 + 1.82 9.67 + 2.09* 26.95 + 1.81* 

53-Control 17.78 + 8.80 9.06 + 4.30 26.85 +12.92 

53-Postnatal-Protein-Calorie 38.87 + 4.86* 9.67 + .08 48.54 + 4. 82~-

Each value represents the mean of values obtained from 3 animals + the standard deviation. A * indicates 
that the experimental value is different from the control value at p < 0.05. The timing and severity of 
the postnatal stress is described in the text. 



TABLE XXVII 

14c DPM-MYELIN FRACTION/HOMOGENATE X 103 

Light & Heavy Total 
Age-Animal Medium 

18-Control 8.27 ± 3. 77 7.64 ± 1.32 15.92 ± 4.37 

18-Postnatal-Protein-Calorie 10.61 ± 4. 77 4.88 ± 1.32 15.49 ± 5.93 

25-Control 20.28 ± 3.38 5.75 ± 1.29 26.03 ± 2.11 

25-Postnatal-Protein-Calorie 30.15 ± 1.56* 12.78 ± 2.19* 42.93 ± 1. 4 71: 

53-Control 24.62 ± 6.41 12.49 ± 2.00 37.11 ± 8.41 

53--Postnatal-Protein-Calorie 46.85 ± 1.23* 11.08 ± 1.85 57.92 ± 2.05* 

Each value represents the mean of values obtained from 3 animals ± the standard deviation. A ,'c indicates 
that the experimental value is different from the control value at p < o.os. The timing and severity of 
the postnatal stress is described in the text. 



activity in 53-day-old experimental and control pups was essentially 

the same in heavy myelin for each of the isotopes. 

Hence, during the period of nutritional remediation follow-
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ing 18 days of age, synthesis as measured by normalized radioactivity 

incorporation was sustained and elevated in protein-calorie malnourished 

pups. After the first 7 days of nutritional remediation there was in­

creased synthesis in all myelin fractions. At 53 days of age after an 

additional 28 days of nutritional remediation in protein-calorie mal­

nourished pups there was elevated synthesis only in the lighter, more 

mature myelin subfractions. 

Densitometric scans of Fast Green stained electrophoresed SDS 

gels were analyzed to determine the percent dye binding by the major 

myelin proteins (Table XXVIII). At all ages the densitometric pattern 

for control medium and control heavy myelin subfraction proetins was 

age-independent. However, there were interesting age-dependent changes 

in the densitometric patterns of gels obtained from protein-calorie 

malnourished medium and heavy myelin subfraction proteins. The enrich­

ment in high molecular weight proteins and the relative deficiency in 

basic proteins which characterizes heavier myelin subfractions when com­

pared to light myelin was further accentuated in 18- and 25-day-old 

protein-calorie malnourished pups. At 53 days of age the additional 

enrichment in high molecular weight protein and relative additional 

deficiency in basic protein in heavier myelin subfractions was abolished. 

That is, only at 53 days of age did the heavier myelin subfraction 

protein electrophoregrams from protein-calorie malnourished pups assume 



TABLE XXVII I 

RELATIVE DISTRIBUTION OF MYELIN PROTEINS IN MYELIN SUBFRACTIONS 

% Of Total Dye Binding Capacity On Fast Green Stained Gels 

Sub fraction Age - Animal HMW PLP LBP SBP 

Light Avg-Control 46.5 ± 2.7 18.6 ± 1. 3 18.6 ± 0.6 16.1 ± 2.0 

Light Avg - Postnatal-Protein-Calorie 43.9 ± 2.6 18.6 ± 1. 9 20.1 ± 1.1 17.4 ± 1.2 

Medium Avg-Control 56.9 ± 5.7 17.8 ± 2.0 14.5 ± 0.9 10.8 ± 3.0 

Medium 18-Postnatal-Protein-Calorie 63.6 13.1 12.7 10.6 

Medium 25-Postnatal-Protein-Calorie 67.8 14.5 10.3 7.4 

Mzdium 53-Postnatal-Protein-Calorie 47.1 19.9 18.1 15.0 

Heavy Avg-Control 64.7 ± 4.6 17.1 ± 0.5, 10.3 ± 1. 3 7.3 ± 1.8 

Heavy 18-Postnatal-Protein-Calorie 79.2 16.1 3.4 1.3 

Heavy 25-Postnatal-Protein-Calorie 76.1 19.4 4.8 1.8 

Heavy 53-Postnatal-Protein-Calorie 66.0 17.9 9.6 6.6 

Avg = Average. Malnutrition as described in text. Average values are averages of values obtained at 18, 
25, and 53 days of age ± the standard deviation. Averaged values stated for those subfractions for which 
there was no significant variation in gel protein patterns as a function of age. Ill1W = High Molecular 
Weight Proteins, PLP = Proteolipid Protein, LBP R Large Basic Protein, SBP • Small Basic Protein. Values 
were calculated by dividing the area under densitometric peaks of specific major proteins by total gel 
protein densitometric ar~a. Each value was multiplied by 100 to determine the percent distribution. 
Values reflect uncorrected dye binding only. 



a normal appearance. Rather than labelling this phenomenon "age­

dependent," it would be more correct to label it "remediation-

dependent." With longer periods of nutritional remediation the 

electrophoretic protein pattern became more normal in appearance in 

the heavier myelin subfractions of postnatally protein-calorie mal­

nourished pups. Such an "age-dependent" or remediation-dependent" 

effect was not observed for proteolipid protein. 

The appearance of selected control and experimental myelin 

subfraction protein Fast Green stained electrophoresed SDS gels is 

illustrated in Figures 7, 8, 9, and 10. 

3
H radioactivity was solubilized and eluted from gels and 

analyzed for the relative distribution of the incorporation of the 

label between the major myelin protein classes (Table XXIX). As in­

dicated in Table XXIX for each subfraction there vms close agreement 

bet,veen experimental and control pups. The greatest proportion of 

recovered 3H radioactivity was associated with high molecular weight 
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protein, with increased association in the heavier myelin subfractions. 

There was a modest enrichment in the proportion of 
3
H radioactivity 

associated with proteolipid protein and the basic proteins in the 

light myelin subfraction. 

The distribution of 
14c incorporation into major myelin lipids 

separated by thin layer chromatography was determined for each sub­

fraction from experimental and control pups (Table XXX)~ The proportion 

of 
14c radioactivity associated with cholesterol followed no particular 

pattern, accounting for approximately 27, 31, and 24 percent of recovered 



126 

PLP 

LBP 

SBP 

FIGURE 7. SDS polyacrylamide gels of myelin protein from the 

(A) light, (B) medium, and (C) heavy subfractions isolated from 

25-day-old control rats. Each gel was loa ded ~vith 200 pg of 

protein prior to electrophoresis . Labels: HMW high molecular 

weight proteins~ PLP = proteolipid protein, LBP large basic 

protein, and SBP = small basic protein . 
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FlGURE 8 . SDS po l yacryl amide gel s of myelin pro tein from the 

(A) light, (B) medium , and (C) heavy subfrac tions isolated from 

18-day-old pos tnatally protein-calorie malnourished pups . Each 

gel was loaded with 200 ~g protein prior to electrophoresis . 

Labels: H}ll~ high molecular weight proteins, PLP = proteolipid 

pro tein, LBP large basic protein, and SBP = small basic protein . 
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FIGURE 9. SDS polyacrylamide gels of myelin protein from the 

(A) l ight, (B) medium , and (C) heavy subfractions isolated from 

25-day- ol d postnatally protein-calorie malnourished pups . Each 

ge l was loaded with 200 ~g protein prior to electrophoresis . 

Labels: H}~ high molecular weight proteins , PLP = prot eolipid 

prote in, LBP large basic protein, and SBP = small basic protein. 
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FIGURE 10. SDS polyacrylamide gels of myelin protein from t he 

(A) light, (B) medium, and (C) heavy subfractions isolated from 

53-day-old postnatally pro tein-ca l orie malnourished pups. Each 

gel was loaded with 200 ~g protein prior to electrophoresis. 
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Labels: illn.J 

protein, LBP 

high molecular weight proteins, PLP = proteolipid 

l arge basic protein, and SBP = small basic protein . 



TABLE XXIX 

RELATIVE DISTRIBUTION OF 3H MYELIN PROTEINS 

% of Total 3H Recovered From SDS-Gels 

Sub fraction Animal HMW PLP LBP SBP 

Light Control 64.1 + 1.6 19.9 + 0.7 9.6 + 1.0 6.4 + 1.7 

Light Postnatal-Protein-Calorie 63.8 + 1.4 21.4 + 1. 9 9.9 + 1.8 4.8 + 0.6 
Malnutrition 

Hedium Control 71.7 + 0.3 15.6 + 1.3 8.5 + 0.7 4.2 + 0.6 

Medium Postnatal-Protein-Calorie 77.1 + 2.3 12.1 + 0.6 6.8 + 1.5 4.1 + 1.2 
Malnutrition 

Heavy Control 74.9 + 5.0 15.6 + 4.0 6.1 + 0.9 3.4 + 1.1 

Heavy Postnatal-Protein-Calorie 75.0 + 9.1 17.2 + 7.6 5.3 + 1.0 2.4 + 1.1 
Malnutrition 

Each value represents the mean of samples obtained at 18, 25, and 53 days of age + the standard deviation. 
HMW = High Holecular Weight Proteins, PLP = Proteolipid Protein, LBP = Large Basic Protein, SBP = Small 
Basic Protein. Protein-calorie malnutrition is described in text. Values were calculated by dividing 
the 3H radioactivity solubilized from an entire gel. Each value was multiplied by 100 to determine the 
percent distribution of radioactivity. 



TABLE XXX 

RELATIVE DISTRIBUTION OF 14c IN MYELIN LIPIDS 

Cerebrosides 
Sub fraction Animal Cholesterol & Sulfatides Phospholipids 

Light Control 24.9 + 3.0 38.4 + 6.0 35.9 + 9.3 

Light Postnatal-Protein-Calorie 29.8 + 5.4 24.9+1.7* 42.4 + 5.9 
Malnutrition 

Medium Control 33.5 + 1.5 24.6 + 3.4 40.1 + 4.4 

Medium Postnatal-Protein-Calorie 28.7 + 5.3 25.3 + 3.7 44.0 + 4.1 
Malnutrition 

Heavy Control 20.4 + 3.8 31.0 + 4. 8 49.1 + 8.4 

Heavy Postnatal-Protein-Calorie 26.6 + 8.1 24.9 + 3.2 46.1 + 4.7 
Malnutrition 

Each value represents the mean of samples obtained at 18, 25, and 53 days of age + the standard 
deviation. Protein-Calorie malnutrition is described in text. Values were calculated by dividing the 
14c radioactivity associated with a specific category of lipids by the total 14c radioactivity solubilized 
from a thin layer chromatography lane. Each value was multiplied by 100 to determine the percent 
distribution of radioactivity. 
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14c d" · · 1· h d. 1 ra 1oactiv1ty, respectively, 1n 1g t, me 1un1, and heavy mye in 

subfraction lipids. The proportion of 
14c radioactivity associated 

with phospholipids followed an expected pattern of enrichnlent in 

h · bf · f 
14c d" · · eav1er su ractions. The proport1on o ra 1oact1v1ty assoc-

iated with phospholipids was approximately 39, 42,and 48 percent, 

respectively, in light, medium, and heavy myelin subfraction lipids. 

There was a statistically significant (p < 0.05) one-third decline in 

the proportion of 
14c radioactivity associated with galactosphingolipids 

(cerebrosides and sulfatides) in light myelin from malnourished pups 

compared to light myelin from control pups. The proportl.on of 14c 

radioactivity associated with galactosphingolipids in medium and heavy 

myelin subfractions was 25 and 28 percent, respectively. 



CHAPTER IV 

DISCUSSION 

NORMAL LONG-AND SHORT-TERM 

METABOLISM OF MYELIN SUBFRACTIONS 

Matthieu et al. (1973) have suggested that their heavy 

myelin subtraction is enriched in membranes in transition from oligo-

dendroglial membranes to mature myelin. Accordingly, one would expect 

heavy myelin to account for a greater proportion of total myelin during 

early myelinogenesis than late myelinogenesis. This expectation was 

borne out by the present research. During the long-term study 53 per-

cent of total recoverable myelin protein was in the heavy myelin sub-

fraction in 13-day-old pups. At subsequent times, the light myelin 

accounted for either a majority or a plurality of total myelin protein. 

Similarly, in the short-term study approximately 50 percent of myelin 

protein recovered 12 and 24 hours following injection of 12-day-old pups 

was from the heavy myelin subtraction. The proportion of heavy myelin 

protein was even greater in the more immature 12-day-old brains examined 

one hour following injection in the short-term study. These observa-

tions are in accord with those of Morell et al. (1972) who observed a 

greater proportion of their lower layer material in early murine myelin-

agenesis. 

The 3H radioactivity associated with myelin proteins and the 
14c 

radioactivity associated with myelin lipids increased throughout most of 

the 85-day period following administration of the leucine and glucose 
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derived 
3
H and 14c labels in the long-term study. The increase in 

recoverable protein-associated 3
H radioactivity was greater than that 
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b · d f 1· ·d · d 14c d" · · o serve or 1p1 -assoc1ate ra 1oact1v1ty. The observed protein 

and lipid radioactivity increases are in accord with several reports of 

the incorporation of a variety of isotopically labelled precursors 

(Davison and Gregson, 1966; Suzuki, 1970; Banik and Davison, 1971; 

Jungawala and Dawson, 1971; Benjamins et al., 1973; Druse ~tal. 1974). 

However, with the exception of Druse e~ al. (l974) who observed an 80-

day increase in protein-associated 
3

H radioactivity following [~] 

fucose labelling of glycoprotein, and the present study, sustained in-

creases in radioactivity have not been reported for periods longer than 

21 days. 

The observed increase in total radioactivity associated with 

myelin subfraction protein and lipid may be due to various factors which 

Druse et al. (197 4) consider in detail. Basically, there are two major 

possibilities to consider: either labelled compounds in whole brain pools 

are reutilized or radiolabelled material from a specific myelin precursor 

pool is subsequently incorporated in myelin. The present study supports 

the latter explanation. 

It is unlikely that the brain would reutilize compounds such as 

leucine and glucose. These compounds are metabolically labile, easily 

catabolized, easily incorporated into a variety of whole brain protein 

and lipid products, and rapidly equilibrated with total body pools. 

Furthermore, during the 18-hour to 85-day period examined, total recov-

bl h 1 b · 3H d 14 d. . . d d b era e w o e ra1n homogenate an C ra 1oact1v1ty ecrease y ap-
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proximately 90 percent. 
3 14 

Reutilization of H and C labels from a 

shrinking whole brain pool of radioactivity becomes a less likely ex-

planation for recovery of increasing radioactivity in myelin sub-

fractions. 

It is more probable that a large proportion of the initial 

increase in myelin radioactivity is derived from a membranous pre-

cursor of very high specific radioactivity. The appearance of peaks of 

radioactivity in medium and heavy myelin at 4 days following injection 

in Series I and 3 days in Series II is consistent with the incorporation 

of highly labelled precursor pool materials. Agrawal et al. (1974), 

Sabri et al. (1975), and Benjamins et al. (1976a, 1976b) have suggested 

that the myelin-like fraction is the precursor membrane. Benjamins et 

al. (1973, 1976a, 1976b) also report data consistent with a myelin mem-

brane precursor role for the microsomal fraction. 3 
The peak in H spe-

cific radioactivity in the heavy myelin subfraction observed at one hour 

after injection in the short-term study may be due to the rapid incor-

poration of highly labelled proteins into heavy myelin. 

The present study i.s compatible with - but does not unequiv-

ocably prove - the attractive hypothesis that a membranous myelin pre-

cursor is first converted to the heaviest isolatable myelin fractions, 

which subsequently are converted to lighter myelin, presumably by inser-

tion of myelin specific proteins and lipids. This hypothesis was sup-

ported by Benjamins et al. (1973); however, in more recent studies 

Benjamins et al. (1976a, 1976b) reported a more complex model. As was 

reviewed previously, in these studies they observed certain protein and 

lipid myelin components entering myelin density subfractions sequen-
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tially from heavier to lighter subfractions (i.e.) in support of the 

hypothesis) and others entering subfractions simultaneously (i.e. not in 

support of the hypothesis). The report of Figlewicz and Druse (1976a) 

concerning CNS myelin dysgenesis in the quaking mutant mouse is consis­

tent with a blockage in the subsequent maturation of heavy myelin into 

lighter myelin subfractions, in support of the hypothesis. One cannot 

rule out the possibility that various myelin density subfractions are 

under independent genetic control. 
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CHRONIC- AND ACUTE- MATERNAL 

CONSUMPTION OF ETHANOL: EFFECTS ON 

OFFSPRING MYELIN SUBFRACTION }ffiTABOLISM 

Two technically similar studies were designed as possible 

animal models for the fetal alcohol syndrome (FAS). The effects of 

chronic maternal ethanol consumption were significantly more profound 

than those seen following acute (in utero) ethanol consumption. The 

different effects observed in the two model systems may be pertinent 

to a consideration of the phenomena operative in the etiology of FAS 

associated neurological dysfunction. 

Chronic exposure to ethanol prior to and including gestation 

through the third day postpartum resulted in dramatic alterations in 

3 14 the patterns of incorporation of H and C labelled precursors and 

accretion of myelin subfraction protein. However, once having separated 

myelin subfractions, no apparent significant alterations were seen in 

either the electrophoretic profile of myelin subfraction proteins, or 

the pattern of radioactivity incorporation into electrophoretically sep-

arated proteins and thin layer chromatographically separated major 

lipid classes from myelin subfractions. The normal electrophoretic pat-

tern of myelin subfraction protein from chronic ethanol pups is in 

accord with the only other study of the effects of maternal ethanol con-

sumption specifically upon CNS myelinogenesis (Szoke, Malone» and 

Rosman, 1977). Szoke et al. (1977) observed normal electrophoretic pro-

files of whole brain CNS myelin protein from pups exposed to ethanol 

early during gestation. The only abnormality which they observed was a 
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significant decrease in lipid soluble whole brain protein from 32- to 

40-day-old ethanol pups. 

The conclusion to be drawn from the altered patterns of pro-

tein precursor incorporation is that chronic maternal ethanol consumption 

causes premature onset and cessation of active myelination in the off-

spring. 

At 18 and 25 days of age there was statistically significantly 

elevated total myelin protein recovered from chronic ethanol pups due to 

a statistically significantly elevated amount of the immature heavy 

myelin subfraction. Conversely, at 53 days of age there was slightly 

less total myelin protein recoverable from chronic ethanol pups and 

statistically significant declines in the amount of the more mature 

lighter myelin subfractions. The increment in recovered heavy myelin 

protein from chronic ethanol pups at 18 and 25 days of age is not due to 

an artifactual increase in contaminating membranes. Heavier myelin sub-

fractions are more likely to be contaminated with other myelin-associated 

membranes than are the lighter subfractions. However, in the present 

study identical procedures were employed for myelin isolation and sub-

fractionation throughout the study. Furthermore, the electrophoretic 

patterns of myelin subfraction proteins were normal. 

8 d f b h 3H d 14c . . . At 1 ays o age ot an 1.ncorporat1.on were stat1.s-

tically significantly elevated in total myelin and heavy myelin in 

chronic ethanol pups. At 25 days of age there were statistically sig-

nificant elevations in incorporation of both labels in all brain homog-

enate and myelin subfraction preparations from chronic ethanol pups. 
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Conversely, at 53 days of age chronic ethanol pups had statistically 

significant decrements in incorporation of both labels in each myelin 

subfraction as well as in brain homogenate. 

In many ways the observed effects of chronic maternal ethanol 

consumption are completely dissimilar to the typical patterns seen in 

pre- and postnatally malnourished offspring. Chronic ethanol pups had 

comparable whole brain homogenate protein, whereas malnourished off­

spring typically have decreased brain protein (Nakhasi et al., 1975; 

Krigman and Hogan, 1976). In contrast to accelerated or premature CNS 

myelination observed in the chronic ethanol pups, malnourished offspring 

typically have delayed CNS myelination (Geison and Waisman, 1969; 

Fishman et al., 1971; Nakhasi et al., 1975; Krigman and Hogan, 1976). 

Furthermore, in contrast to the observed normal electrophoretic patterns 

observed in chronic ethanol pups, malnourished offspring typically have 

abnormal myelin protein electrophoretic patterns (Wiggins, et al., 1976). 

The only reported causes of accelerated CNS myelinogenesis have 

been exercise stimulation (Sammeck, 1975) and early postnatal hyper­

thyroidism (Hamburgh and Bunge, 1964; Hamburgh,l968). The first cause 

seems unlikely here. The second cause was not investigated but merits 

further inquiry. Perhaps chronic maternal ethanol consumption and/or 

withdrawal therefrom may result in mater~al or fetal/neonatal abnor­

malities in endocrine balance or general metabolism. 

Because CNS myelination is a postnatal event in the rat, any 

proposed mechanism must consider the fact that the alcoholic diet was 

removed at least a week or more before the usual onset of myelination 

in the rat. Therefore, the effect(s) "\rhich ethanol exerts must be med-
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iated by either pre- or perinatal action, presumably, on neurons, 

axons, and/or oligodendroglia. Since the presence of healthy, func-

tional neurons, axons, and oligodendroglia, each in appropriate num-

hers, is requisite for proper myelination there exist multiple loci 

which might be involved. Observed CNS myelination abnormalities may 

be contributory to FAS associated neurological dysfunction. More 

likely, the observed CNS myelination abnormalities reflect more under-

lying neural abnormalities. 

Other neural effects of in utero exposure to ethanol have been 

reported. Alterations in certain neurotransmitter substances have been 

reported. Rawat (1977) reported increased levels of y-aminobutyric acid 

(GABA)and glutamate and decreased acetylcholine and acetyl CoA. Elis, 

Drisiak, Paschlova, and Masek (1976) reported alterations in serotonin 

levels. Branchey and Friedhoff (1976) reported slight elevation in the 

activity of the biosynthetic enzyme, tyrosine hydroxylase. 

In contrast to the chronic study, maternal ethanol consumption 

for an acute (in utero) period resulted in near normal myelination 

synthetic patterns. The major effects observed in the acute ethanol pups 

were increased incorporation of[3H]leucine into light and medium myelin 

14 subfractions and total myelin and increased incorporation of[ C]glucose 

into the medium myelin subfraction from 18-day-old acute ethanol pups. 

In contrast to chronic ethanol pups, the acute ethanol pups had 

near normal patterns of CNS myelin subfraction protein accertion except 

for a statistically significant increase in heavy myelin protein from 

53-day-old acute ethanol pups. However, 53-day-old acute ethanol pups 
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had near normal amounts of light and medium myelin; a small increment in 

the immature heavy myelin subfraction is, accordingly, of questionable 

physiological significance. 

In accord with the observations of Szoke et al. (1977) myelin 

subfraction protein from acute ethanol pups had normal electrophoretic 

profiles. Also, no differences were observed in the pattern of 14c 

incorporation into major myelin subfraction lipid classes separated by 

thin layer chromatography. 

Since in utero ethanol exposure resulted in nominal effects 

while chronic ethanol exposure prior to and including the in utero period 

did cause profound effects, ethanol probably is not exerting a terato­

genic effect ~er se with respect to CNS myelination. More probably, it 

is exerting its chronic effect by perturbation in maternal or offspring 

endocrine or metabolic balance. The present study, however, cannot prove 

or disprove that interesting possibility. While no teratogenic effects 

were observed in this particular in utero, acute paradigm, negative 

results from this study do not preclude the possibility of in utero 

teratogenic effects of ethanol if dosage of ethanol were sufficiently 

high. 

It is interesting that the typical mother reported in human FAS 

case histories has been a chronic abuser of ethanol for several years. 

Jones et al. (1973) report an average of 9.4 years (ranging 2-23 years) 

chronic ethanol abuse in their case history population. 



POSTNATAL PROTEIN-CALORIE MALNUTRITION: 

EFFECTS ON OFFSPRING CNS MYELIN 

SUBFRACTION METABOLISM 
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Postnatally protein-calorie malnourished pups had rather pro­

found decrements in body and brain weights, total myelin protein, alter­

ations in the pattern of incorporation of isotopically labelled protein 

and lipid precursors, and abnormal distribution of incorporated 3H and 

14c radioactivity in electrophoretically separated myelin proteins and 

thin layer chromatographically separated myelin lipids. The severity of 

many of these effects was mitigated during increasing periods of nutri-

tional remediation. 

The present study is in accord with previous studies which 

examined postnatal malnutritional effects on CNS whole myelin. In 

agreement with Nakhasi et al. (1975) and Krigman and Hogan (1976), mal-

nourished offspring had deficits in whole brain homogenate protein 

throughout the study. In agreement with Geison and Waisman (1969), 

Fishman et al. (1971), Nakhasi et al. (1975), and Krigman and Hogan (1976), 

the stress employed here also resulted in a temporary deficit in total 

CNS myelin which was restored upon nutritional remediation. In agree­

ment with Wiggins et al. (1976) malnourished pups at early ages had ab­

normal electrophoretic profiles of myelin protein from medium and heavy 

myelin subfractions. In the present study the increase in the propor­

tion of high molecular weight proteins and the decrease in the propor­

tion of myelin basic proteins were more significant than the decrement 

in proteolipid at early ages in medium and heavy myelin from post-
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natally protein-calorie malnourished pups. 

Because the heavy myelin subfraction described by Matthieu 

et al. (1973) and Zimmerman et al. (1975) has a composition similar 

to CNS myelin isolated from immature brain, an excess or dispropor-

tionate share of heavy myelin could be a useful measure of CNS 

immaturity. The observed relative excess of heavy myelin at 25 days 

of age might be explained by a significant increase in the number or 

proportion of smaller diameter axons invested with fewer myelin lamellae. 

Heavy myelin, thought to be enriched in transitional membranes, pre-

sumably forms the myelin in closest contact with the axon. Histological 

studies were not done in the present study. However, Krigman and Hogan 

(1976) observed smaller axons and a decreased number of myelin la-

mellae per axon diameter in postnatally starved rat pups. 

C d 1 h 3H d. . . d d d ompare to contra s, t e ra 1oact1V1ty ata emonstrate 

statistically significantly increased synthesis of heavy myelin and 

total myelin in 25-day-old stressed pups and increased synthesis of 

lighter myelin subfractions and total myelin in 53-day-old stressed pups. 

The 14c radioactivity data demonstrated statistically significantly 

increased synthesis of lighter and heavy myelin subfractions in 25-

day-old stressed pups and increased synthesis of lighter myelin sub-

fractions and total myelin in 53-day-old stressed pups. 

The protein accretion and radioactivity incorporation data 

are consistent with greater synthesis of heavy myelin at 25 days and 

greater synthesis of lighter myelin at 53 days of age. This altered 

pattern of CNS myelinogenesis is compatable with a temporary delay in 
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the conversion of heavy to lighter myelin. 

If normal myelinogenesis involves the conversion of heavier 

myelin subfractions into lighter myelin subfractions, the process of 

maturation presumably involves the synthesis and insertion of myelin 

specific proteins and lipids into the immature membranes. Either an 

inability to synthesize or to insert would be manifested in delayed 

or defective myelination. The protein electrophoretic studies indicated 

a temporary deficit of myelin basic protein. The present study is un-

able to determine whether this defect reflects delayed synthesis or 

delayed insertion of myelin basic protein. However, it is interesting 

to note that in stressed pups there were decreased proportions of 14c 

in galactosphingolipids in light and heavy myelin, the decrease in 

light being statistically significant. Relative changes in the compo-

sition of myelin lipids have been reported in protein deprived pups by 

Nakhasi et al (1975) and Simons and Johnston (1976). Membrane lipid 

defects might result in inability to make normal insertions. 

As discussed before, normal myelinogenesis requires healthy, 

functional neurons, axons, and oligodendroglia, each in adequate numbers 

and proportions. Any alterations or defects at these loci may affect 

myelinogenesis. Since myelinogenesis is a postnatal event in the rat, 

it is reasonable that the abnormalities observed here reflect abnor-

malities in oligodendroglia which proliferate and myelinate axons 

postnatally. This assumption is borne out by the report of Krigman and 

Hogan (1976). They observed a deficit in the number of oligodendroglia 

in severe postnatal malnutrition. It is also possible that substrate 



availability limitations vJere also contributory to the observed 

delayed and abnormal pattern of myelination in the present study. 
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CHAPTER V 

SUMMARY 

Purified central nervous system (CNS) whole brain myelin (Norton 

and Poduslo, 1973b) was subfractionated into myelin of light, medium, 

and heavy density (Matthieu et al., 1973). Protein and lipid metabolism 

of these myelin subfractions was investigated in developing rat brain 

using radioisotopically labelled precursors injected intracerebrally. L­

[4,5-3HJleucine and D-[u-
14

cJglucose were chosen as labelled precursors, 

respectively, of protein and lipid, 

Myelin subfraction metabolism was investigated in normal devel-

oping rat brain during a long term period extending 18 hours to approxi­

mately 90 days following administration of both the 
3H and 

14
c labelled 

precursors to 12-day-old pups, and at intervals of 1, 12, and 24 hours 

3 following administration of the H labelled precursor to 12-day-old pups. 

Myelin subfraction metabolism was also investigated in developing rat 

brain in .three experimental paradigms: chronic maternal ethanol consump-

tion, acute (in utero) ethanol consumption, and postnatal protein-calorie 

malnutrition. The stress paradigms were designed to investigate the ex-

tent and possible significance of abnormalities in myelinogenesis in 

animal model systems of the human fetal alcohol syndrome (FAS) (Lemoine 

et al., 1968) and malnutrition, each of which is associated with neuro-

logical dysfunction in affected neonates. 

Stress paradigms were different in each case. In the chronic 

ethanol study females were maintained on either control or ethanol liq-

uid isocaloric diets (Freund, 1969; Lieber and DeCarli, 1974) for a pe-
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riod beginning two months before gestation and ending on the third post-

partum day. In the acute ethanol study the diets were employed from 

approximately the fifth day of gestation through the third postpartum 

day. In the malnutrition study, lactating females were restricted in 

total quantity of an otherwise normal diet during the first 18 postpar-

tum days. In each stress paradigm, myelin subfractions were investigat-

ed at 18, 25, and 53 days of age following an 18 hour pulse labelling 

with both radioisotopically labelled precursors. 

Normal long and short term studies revealed sustained accretion of 

3 14 
myelin protein and incorporation of both H and C throughout the peri-

od examined. Evidence was obtained consistent with the hypothesis 

(Matthieu et al., 1973) that the chemically and morphologically immature 

heavy myelin is converted to the mature lighter myelin subfractions. 

The existence of a myelin precursor membrane was also supported by total 

and specific radioactivity data. 

The fetal alcohol syndrome is a multiple pathology syndrome of 

unknown etiology associated with chronic maternal ethanol abuse. Evi-

dence was obtained that acute (in utero) exposure to ethanol causes only 

minimal and transient perturbations in CNS myelinogenesis, whereas chron-

ic ethanol exposure results in premature onset and cessation of myelina-

tion, abnormal proportions of myelin subfraction protein, and apparently 

normal myelin protein electrophoretic patterns from separated myelin sub-

fractions. The observed aberrant myelinogenesis probably reflects more 

underlying neural abnormalities of unknown nature. The effect of etha-

nol in the present study does not appear to be teratogenic; it may re-

fleet abnormalities in maternal or fetal/neonatal endocrine or metabolic 
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status as a consequence of chronic ethanol exposure or withdrawal there­

from. 

In agreement with several investigators, severe deficits in body 

and brain weights, deficits in brain and myelin protein, and abnormal 

electrophoretic profiles of myelin protein were observed following pro­

tein-calorie malnutrition~ With increasing periods of nutritional reme­

diation these effects were minimized. The pattern of myelinogenesis was 

delayed and altered. The association of neonatal malnutrition with 

neurological dysfunction and with dysmyelination was reviewed. 

The research reported represents the first account of the metab­

olism of the Matthieu myelin subfractions, the first report of the effect 

of maternal ethanol consumption upon myelinogenesis, and the first report 

of the effect of postnatal protein-calorie malnutrition on the metabolism 

of separated myelin subfractions. 
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