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ABSTRACT 

Parkinson’s disease (PD) and related synucleinopathies are progressive 

neurodegenerative disorders that feature the accumulation of intracellular inclusions 

known as Lewy bodies (LBs) in the brain. The presynaptic protein α-synuclein is the 

primary constituent of LBs and has been documented to play a major role in the 

pathogenesis of synucleinopathies. Recently, aggregated α-synuclein has been implicated 

in prompting microglia-mediated inflammation. Neuroinflammation is a detrimental 

process when chronic and is associated with the progression of neuronal death in 

neurodegenerative disorders. Although the mechanisms surrounding the induction of 

neuroinflammation are not well understood, the recently discovered inflammasome-

forming NLR proteins have emerged as important regulators of innate immunity and 

inflammation. In this study, we sought to understand the involvement of the 

inflammasome in response to aggregated α-synuclein in human microglia-like cells. We 

report that aggregated α-synuclein induces vesicle rupture in THP-1 cells that is sensed as 

a ‘danger signal’ resulting in the assembly of the NLRP3 inflammasome, activation of the 

inflammatory caspase-1, and the release of proinflammatory cytokines.



       
  

 

 

CHAPTER ONE 

INTRODUCTION 

Statement of the Problem 

Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple 

system atrophy (MSA) belong to a family of age-related neurodegenerative disorders 

aptly named synucleinopathies that are becoming more prevalent in today’s time due to 

the progressive aging of the population. These disorders are generally characterized by 

distinct neuronal loss, chronic neuroinflammation, and the abnormal deposition of highly 

organized α-synuclein fibrils termed Lewy bodies. There is an overwhelming amount of 

evidence pointing to α-synuclein as the culprit behind synucleinopathy pathogenesis. 

Although the exact mechanism by which α-synuclein promotes disease is not understood, 

growing evidence indicates that pathogenesis is fueled by α-synuclein’s propensity to 

misfold into toxic oligomers/protofibrils, or intermediately sized aggregates. 

Furthermore, in vitro studies have suggested that aggregated α-synuclein may play a role 

in inducing neuroinflammation by directly activating glia cells. Reports of α-synuclein-

induced microglia activation are in agreement with postmortem analysis of parkinsonian 

brain tissue that demonstrate α-synuclein depositions surrounded by activated microglia 

and a large assortment of pro-inflammatory mediators including IL-1β, caspase-1, and 

acute phase proteins.  
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Neuroinflammation has been implicated in the progression of neuronal death; 

however, recent reports label inflammation as a possible accomplice to the on-set of 

neurodegenerative diseases by propagating protein misfolding. In the central nervous 

system (CNS), inflammatory responses play a protective and restorative role that are kept 

under control by anti-inflammatory mechanisms; however, in a traumatized brain 

regulatory mechanisms prove insufficient and inflammation turns chronic, cultivating in 

secondary tissue damage. The mechanisms by which neuroinflammation occurs and the 

mediators involved have not been well characterized; however, the newly discovered 

inflammasome-forming NLR proteins have surfaced as important regulators of innate 

immunity and inflammation and may serve as potential therapeutic targets. These 

proteins are genetically linked to immunologic disorders and have a directive role in the 

secretion of the interleukin-1β (IL-1β) and interleukin-18 (IL-18), pro-inflammatory 

cytokines associated with autoinflammatory and neurodegenerative diseases. 

This thesis describes the regulation of the multiprotein complex known as the 

inflammasome in human microglia-like cells and its response to α-synuclein. Although 

the molecular mechanisms by which α-synuclein activates microglia and mediates 

inflammation in the CNS are not fully understood, findings from our recent studies 

suggest that α-synuclein oligomers can lead to inflammasome activation by means of 

vesicle rupture. It is known that vesicle rupture by protein aggregates such as amyloid-β 

is sensed as a ‘danger signal’ in the target cell and can induce NLRP3 inflammasome 

activation and subsequent IL-1β production in microglia and macrophages. The goal of 

this project was to understand the involvement of the NLRP3 inflammasome and the 
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mechanisms underlying caspase-1 activation and subsequent production of IL-1β in 

response to α-synuclein oligomers in human macrophage THP-1 cells. 

 

Synucleinopathies 

Parkinson’s disease (PD) is an age related neurodegenerative disorder that was 

first described in “An essay of the shaky palsy” by James Parkinson in 1817. His findings 

described individuals experiencing tremor, rigidity, and debilitated motor skills. In 1912, 

Frederick Lewy identified insoluble protein deposits in the brain of postmortem PD 

patients. The protein inclusions were termed Lewy bodies (LBs) and their presence is a 

hallmark of PD pathology (Holdoff 2002). It was not until recent studies by Spillantini 

and colleagues that the primary constituent of LB composition was identified as 

ubiquitinated and phosphorylated fibrillar forms of α-synuclein, a presynaptic protein 

(Uversky 2007). α-synuclein has been incriminated in several other neurodegenerative 

disorders (e.g., multiple system atrophy and dementia with Lewy bodies) collectively 

named synucleinopathies, all of which feature abnormal α-synuclein deposits in neurons 

or glia cells of the brain (Spillantini 1997). 

Parkinson’s disease (PD) is the second most common neurodegenerative disease, 

trailing Alzheimer’s disease (AD). It is a chronic progressive disease characterized by the 

degeneration of dopaminergic neurons in the nigrostriatal system, predominantly those 

from the substantia nigra pars compacta (SNpc) with resultant depletion of dopamine 

(DA). The loss of DA creates irregular neurotransmissions that result in slowness of 
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movement (bradykinesia), varying degrees of rigidity, resting tremors, and postural 

volatility (Chinta 2005; Jankovic 2008).  

Two forms of PD are recognized: early-onset also known as familial and 

idiopathic or late-onset PD, which are clinically indistinguishable from one another. PD 

is classified as a sporadic disease because more than 85% of PD cases are idiopathic and 

exhibit no inheritability (Simunovic 2009). Epidemiological studies suggest that 

idiopathic cases arise from exposure to environmental factors in the context of an aging 

brain. (Tan 2000; Benmoyal-Segal 2006). Less than 10% of all PD cases are familial and 

exhibit inheritability of an autosomal dominant or recessive form of the disease from a 

mutation in a specific gene (Simunovic 2009). Mutations in six genes have been 

identified to cause familial PD of which SNCA, PRKN, and LRRK2 are the most 

prevalent. The α-synuclein gene (SNCA) was the first gene associated with PD after three 

point mutations (A53T, A30P, and E46K) in this gene were tied to early-onset or familial 

PD. (Polymeropoulos 1997; Kitada 1998; Zimprich 2004). Mutation A53T and A30P are 

both linked to early-onset autosomal dominant familial PD (Polymeropoulos 1997; 

Kruger 1998), while point mutation E46K is described to cause early onset of dementia 

with Lewy bodies (DLB) (Zarranz 2004). Furthermore, duplication and triplication of the 

SNCA gene are associated with autosomal dominant form of PD (Dekker 2003; Beyer 

2009). Identification of α-synuclein as the main component of Lewy bodies (Spillantini 

1997) and its genetic link to familial PD provide compelling evidence that α-synuclein 

holds a crucial role in the pathogenesis of PD. 
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Dementia with Lewy bodies (DLB) is a neurodegenerative disease characterized 

by the loss of a variety of neurons, including dopaminergic and acetylcholine neurons 

(Hanson 2009). DLB accounts for 20% of late onset dementia and symptoms include 

dementia, fluctuating cognition, and parkinsonism (Campbell 2001; Hanson 2009).  

Multiple system atrophy (MSA) features neuronal loss in the cerebellum, pons, 

inferior olivary nuclei, basal ganglia, and spinal cord. MSA patients show signs of 

autonomic dysfunction and cellebellar ataxia (Gesine 2013). 

 

Pathology 

PD is associated with degeneration of dopaminergic neurons in the substantia 

nigra. This neurodegeneration is accompanied by intracellular inclusions known as Lewy 

bodies (LBs) and Lewy neurites (LNs) in surviving neurons, whose presence in the 

substantia nigra of the midbrain is the signature neuropathological hallmarks of PD. 

Although dopaminergic cell loss is associated with accumulation of LBs in PD, the cause 

of these inclusions is not known. The neuropathological process of PD is first seen in the 

olfactory bulb and dorsal motor-nucleus of the vagus nerve. The process advances in an 

ascending order towards the locus coeruleus, and the substantia nigra until it reaches the 

neocortex (Braak 2003). Interestingly, pathological events in PD are suggested to occur 

in the enteric plexus of the gastrointestinal system as reports have identified increased 

permeability and α-synuclein inclusions in colonic biopsies from PD patients (Lebouvier 

2010; Braak 2006). Gastrointestinal dysfunction is commonly seen all stages of PD and 

has driven the hypothesis that the intestines might serves as an early site of PD pathology 
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in response to an environmental toxin or pathogen (Forsyth 2011). DLB patients display 

LBs predominantly in the neocortex but pathology is also seen in the midbrain (Campbell 

2001; Hanson 2009).  

In addition to neuronal loss, and LB formation, microglia-mediated inflammation 

is another characteristic feature of PD and other synucleinopathies. An increase in 

activated microglia, resident immune cells of the CNS, has been identified in the SNpc of 

PD patients in postmortem studies (McGeer 1988). Moreover, Croisier and collegues 

demonstrated a relationship between activated microglia and α-synuclein deposition in 

the SNpc in PD patients (Croisier 2005). PD patients also demonstrate elevated levels of 

pro-inflammatory cytokines in the cerebral spinal fluid (CSF) along with influence from 

the adaptive immune system as CD4+ and CD8+ lymphocytes were shown to infiltrate 

the SNpc (McGeer 1988; Farkas 2000; Brochard 2009). Additionally, in vitro studies 

have demonstrated that accumulation of wild type, and mutated α-synuclein induces 

microglia activation (Zhang 2005; Zhang 2007; Klegeris 2006; Reynolds 2008; Su 2009; 

Sanchez-Guajardo 2010). Together, these studies suggest a significant role of α-

synuclein-induced inflammation in the pathogenesis of PD.  

 

Oxidative Stress  

A common feature of neurodegenerative diseases is oxidative stress emanating 

from proteostatic dysfunction prompted by misfolded proteins. In the CNS, oxidative 

stress, induced when the cellular antioxidant response is overcome by reactive oxygen 

species (ROS) (e.g. superoxide), can lead to modifications of nucleic acids, lipids 
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peroxidation, and proteins nitration resulting in cellular damage or cell death. Neurons 

are vulnerable to oxidative damage due to their high respiratory turnover, high-energy 

demand dependent on oxidative phosphorylation, and the presence of catalytic transition 

metals. In PD, the dopaminergic neurons of the SNpc are further afflicted with oxidative 

stress deriving from dopamine (DA) metabolism, mitochondrial dysfunction, and 

microglial phagocytosis (Hald 2005).  

The SNpc is a site particularly vulnerable to oxidative stress due to its already 

high basal level emanating from the dopaminergic neurons’ autonomic pacemaking, and 

the tendency of abundant cytoplasmic DA to autoxidize into toxic intermediates. 

Furthermore, DA catabolism generates ROS and other highly reactive chemical species, 

which can cause oxidative stress and impair mitochondrial respiration.  Mitochondrial 

dysfunction is a major source of oxidative stress. Dysfunction either from environmental 

or genetic factors leads to the excessive production of ROS and culminates in apoptotic 

cell death of neurons. Activated microglia have been shown to be a source of robust 

extracellular ROS in the CNS. Activated microglia are able to maintain homeostasis by 

removing debris or unwanted stressors through phagocytosis; however, clearance through 

phagocytosis is shadowed by a parallel activation of the phagocytic NADPH oxidase 

complex, a major source of ROS (Hald 2005; Jekabsone 2006; Brown 2007)  

 

 

 

 



8 

 

 α-synuclein 

Synucleins are a family of small, soluble presynaptic membrane binding proteins 

aptly termed synuclein for their localization to the nuclear envelope and presynaptic 

terminals of neurons. These proteins are structurally characterized by the bearing of an 

acidic C-terminal region and a repetitive, imperfect AA motif throughout their highly 

conserved N-terminal region. The synuclein family consists of three known proteins 

explicitly found in vertebrates: α, β, and γ-synuclein (Jakes 1994).  

Synucleins attracted much attention after Ueda and colleagues correlated the 

central portion of α-synuclein to the non-Aβ-component (NAC) of amyloid plaques found 

in Alzheimer’s disease (AD); making it the first study to couple α-synuclein and 

neurodegenerative diseases (Ueda 1993). α-synuclein is a 140 AA cytosolic protein 

(Figure 1) primarily localized to presynaptic nerve terminals. The exact physiological 

role of α-synuclein is unknown although studies suggest that it has a role in 

neurotransmitter regulation, neuronal differentiation, and synaptic plasticity (Spillantini 

1997; Martin 2004).  

α-synuclein features a N-terminal domain that houses the three point mutations 

associated with familial forms of PD. (Figure 1). Additionally, this domain shares a 

similar amino acid sequence to that of the class-A2 lipid-binding domains of 

apolipoproteins; amino acid repeats bearing imperfect motifs that constitute amphipathic 

helices, which are features that mediate membrane and lipid interactions with 

phospholipid vesicles (Perrin 2000). Recent studies demonstrated that association of  
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Figure 1. Schematic Structure of α-synuclein. α-synuclein carries a 
highly conserved amphipathic N-terminal domain (AA 1-60; associated 
with lipid binding), a hydrophobic NAC central domain  (AA 61-95; 
unique to α-synuclein; facilitates aggregation), and an acidic C-terminal 
domain (96-140). The figure is a modified version from Dickson et al. 
2001. 
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α- synuclein aggregates with lipid bilayers result in the rupture of lysosomal vesicles in 

neuronal cell lines (Freeman 2013).  

Synucleins are natively unfolded proteins due to their low hydropathy and the 

highly negative charge of its C-terminus. The central hydrophobic region (NAC) is 

involved in protein aggregation, a feature unique to α-synuclein.  

 

α-synuclein Aggregation 

There is overwhelming evidence that α-synuclein plays a role in PD and 

synucleinopathy pathology. As previously stated α-synuclein is the main component of 

LBs, the key feature in synucleinopathies. Although the underlying mechanisms of LB 

formation have yet to be mapped, α-synuclein assembly into amyloid-like fibrils is 

known to be a fundamental event in its development.  

α-synuclein aggregation is dependent on the α-synuclein protein concentration 

derived from its synthesisv and degradation equilibrium. Moreover, aggregation is 

augmented by a number of factors. Point mutations and overexpression due to increased 

gene dosage accelerates the aggregation process (Conway 2000). Chemical modifications 

by small amines, pH, oxidative and nitrative stresses, and a variety of environmental 

insults affects aggregation propensity by influencing α-synuclein’s conformation 

(Conway 2000; Singleton 2003; Bennett 2005; Hoyer 2002).  

It has been established that purified recombinant α-synuclein can assemble into 

amyloid-like fibrils and filaments similar to the LBs affecting PD patients (Conway 1998; 

Uversky 2007). Fibrillization of α-synuclein has been proposed to occur in a two-step 



         

 

11 
process. Aggregation begins with the induction of the natively unfolded monomer to a 

partially folded conformation that self-assembles and formulates oligomers or 

protofibrils. Moreover, protofibrils may act as seeds for the recruitment of additional 

monomers to form insoluble fibrils that escape the ubiquitin-proteosome system (UPS) 

and accumulate in the cytoplasm (Jarrett 1993; Conway 2000; Uversky 2001; Luk 2009).  

It is believed that protein misfolding and oligomeric aggregation leads to α-

synuclein toxic-gain-of-function. Although fibrillar species are found in LBs, growing 

evidence points to soluble protofibrils, or intermediate sized oligomers as instigators of 

disease due to their toxic effect on cells. It has been difficult to test this hypothesis in 

vitro because oligomeric species only exist for a brief period of time before continuing 

the fibrillization process. Additionally, there is no current method to selectively remove 

the soluble protofibrils. (el-Agnaf 2002; Winner 2011).  

Protofibrils are thought to be responsible for pore formation, ER trafficking 

deficit, mitochondrial damage, and inhibition of protein turnover all of which result in 

cellular dysfunction (Volles 2001; Lashuel 2002; Smith 2005; Stefanis 2001; Tanaka 

2001; Petrucelli 2002).  

 

Microglia Mediated Inflammation  

The inflammatory response in the CNS is a complex, multi-component process 

driven by microglia with assistance from infiltrating macrophages and T-cells when 

requested. Neurons and astrocytes are also known to influence and modulate the complex 

milieu of an immune response in the CNS. Both injured and healthy cells release 
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inflammatory mediators in the attempt to build an environment favoring the removal of 

infectious or sterile stressors, and to assist in tissue repair. When the damage is too great 

or the stimulus sustained too long, it leads to chronic neuroinflammation.   

Microglia: Microglia are the resident immune cells of the CNS, comprising 12% 

of total glia population. These resident macrophages are the first line of defense and are 

therefore mapped in all quarters of the CNS, although certain areas are known to house a 

higher density of microglia, including the hippocampus and the substantia nigra (Lawson 

1990). Microglia are of mesodermal origin, as opposed to neuroectoderm derived 

neurons, astrocytes, and oligodendrocytes; however, the cellular origin of microglia has 

been an issue of debate. Recent studies by Kierdof et al. (2013) show that microglia stem 

from erythromyeloid progenitors that are limited to erythrocyte or macrophage lineages. 

Early committed macrophages that migrate from the yolk sac into the neuroepithelium 

during embryonic hematopoiesis differentiate into the microglia population (Neumann 

2013; Ginhoux 2013; Kierdof 2013).  

 Microglia are commonly generalized as resting or activated. Resting microglia 

are characterized with a small soma and ramified processes. Contradicting the term, 

‘resting microglia’ are in constant motion using their elaborated processes to surveying 

the environment. An activated state is depicted by the production of context-specific 

cytokines and chemokines, and an amoeboid morphology where processes shorten, and 

the cell body enlarges (Kohman 2013). Microglia can obtain an ‘actived’ phenotype in 

response to chemical or cellular cues. The simplified classifications, M1 and M2, are 

drive inflammation and phagocytosis of debris, respectively. The classically activated M1 



         

 

13 
phenotype expressing pro-inflammatory cytokines is induced via toll-like receptors 

(TLRs) or interferon-γ (IFN-γ). The M2 phenotype is subdivided into two stages: the 

alternatively activated M2 (anti-inflammatory) stage and the M2-deactivating (tissue 

repair) stage, induced by IL-4 and IL-10, respectively (Olah 2011; Sanchez-Guajardo 

2013).  

Microglia cells express most known toll-like receptors. Toll-like receptors are 

important in properly mounting an innate immune response and will be further discussed 

in the next section. Under sterile conditions, endogenous proteins or molecules released 

from damaged or stressed cells have been shown to stimulate TLRs. TLR endogenous 

ligands include but are not limited to sialic acid-containing glycosphingolipids 

concentrated on neuronal membranes, HSP60, HSP70, HMGB1, biglycan, hyaluronic 

acid, and host DNA. (Ohashi 200; Park 2004; Schaefer 2005; Termeer 2002). Certain 

species of oligomerized amyloid-β and α-synuclein have also been proposed to stimulate 

TLR2 and TLR4 by binding to the accessory protein CD14 (Udan 2008).  

Studies have denoted a balance between M2 and M1 phenotype in early stages of 

α-synuclein induced neurodegeneration. It has proposed that as the disease progresses 

there is a change in the local milieu (e.g., accumulation of protein aggregates, neuronal 

dysfunction, infiltrating immune cells) that disrupts the balance of microglia to a M1 

domineering phenotype that features cytotoxic pro-inflammatory cytokines (Figure 2) 

(Varnum 2012; Sanchez-Guajardo 2013). In vitro studies also suggest a M1 phenotype 

with the progression of PD as it was observed that after not being able to phagocytose the 

activating stimuli, certain aggregated species of α-synuclein, microglia were driven to a  
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Figure 2. Illustration of Microglia Activation and their Dichotomic Role in 
Neuroinflammation. Depending on the stimuli, microglia can display a phagocytic or 
neurotoxic phenotype. There are solid indications that α-synuclein polarizes microglia 
towards a neuroprotective role (M2) in early stages of disease; however, as the disease 
progresses, the accumulation of insoluble aggregates shift microglia towards a chronic 
inflammatory and cytotoxic state (M1).  The cytotoxic phenotype results in the release 
of pro-inflammatory cytokines, chemokines, ROS, and RNS that contribute to the 
oxidative stress of nigral neurons.  

!
α#syn!Aggregates!!

M1#M2#

Neurprotec-ve#
An-#inflammatory!
Trophic!Factors!

Neurotoxic#(Long#Term)#
Pro#inflammatory!Cytokines!

ROS/RNS!

‘Res-ng’##
Microglia!

Apoptosis!!
Caspase!Ac-va-on!

#Ac-va-on#

!!IL#1!
!!!TNF!
!

ROS!
RNS!

!
α#syn!
or!!

Cellular!Debri!!
!!

DA#Neuron#



         

 

15 
M1 state described as an inflammatory phenotype with less phagocytic abilities 

(Park 2008). The overproduction of inflammatory molecules such as IL-1β, and TNFα 

induce cell death, therefore, an understanding of the mechanism by which α-synuclein 

activates microglia deserves further investigation. The NLR family of protein receptors 

has been identified as important regulators of immunity and inflammation; therefore, the 

next section will review current knowledge regarding NLR dependent cellular pathways 

in inflammation and the possibility of NLRs as therapeutic targets.  

 

Innate Immune Response 

The innate immune system relies on germline-line encoded receptors known as 

pattern recognition receptors (PRRs) for host cell recognition of pathogens (Beutler 

2010). PRRs include Toll-like receptors (TLRs), Rig-I-like RNA helicases (RLH), C-type 

lectin receptors (CLRs), and nucleotide-binding domain leucine-rich repeat containing 

receptors (NLRs) (Medzhitov 2009). These receptors recognize conserved microbial 

motifs on pathogens known as pathogen-associated molecular patterns (PAMPs) that 

include bacterial and viral nucleic acids, and pathogen associated cell wall components 

from a variety of microbes.  

Additionally, it was known that endogenous danger signals or danger-associated 

molecular patterns (DAMPs) could promote an immune response, however, the 

mechanism was unclear. In 1994, Matzinger and colleagues proposed the ‘danger model,’ 

where it was hypothesized that host antigen presenting cells could be activated by danger 

signals released from host cells undergoing cellular or mechanical stress prompted by 
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pathogens or sterile insults (Matzinger 2002). It has been reported that danger signals 

can induce downstream production of pro-inflammatory mediators by exogenously 

signaling through PRRs such as TLRs or NLRs. NLR proteins, another class of PRRs, are 

cytoplasmic receptors with a regulatory role in inflammation and the ability to sense both 

intracellular PAMPs and DAMPs (Matzinger 2002). 

 

The NLR Family 

NLRs or Nucleotide-binding-domain-and-leucine-rich-repeat-containing-gene-

family-of-receptors are cytoplasmic protein receptors with an active role in innate 

immune sensing, apoptosis, and reproductive biology (Martinon 2002). The NLR family 

contains 23 human members composed of a tripartite domain structure consisting of a N-

terminal effector domain, a central NACHT domain for oligomerization, and a C-

terminal leucine-rich repeat (LRR) domain. NLR protein receptors are designated into 

subfamilies categorized by their N-terminal effector domain. Table 1 illustrates the 

human NLR members and their accredited subfamilies (Ting 2008).  

In 2002, Martinon and colleagues discovered that a subset of NLRs, able to detect 

both PAMPs and DAMPs, were capable of forming a protein complex termed the 

inflammasome. Assembly of the inflammasome resulted in the activation of the 

inflammatory caspase-1 and the secretion of the pyrogenic cytokines IL-1β and IL-18 

(Martinon 2002). 
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Table1. Abbreviations: CARD, Card activation and recruitment domain; 
AD, acidic activation domain; BIR, baculovirus inhibitor of apoptosis 
repeat (BIR) domain; LRR, leucine rich repeats; PYD, pyrin domain 

Table1. Human NLR Family 
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The Inflammasome 

Recognition of DAMPs or PAMPs by NLRs can result in the assembly of the 

inflammasome, a multi-protein complex responsible for caspase-1 activation. This 

molecular complex is composed of inactive protein monomers, typically NLR receptors, 

an apoptosis-associated speck-like protein containing a CARD (ASC) adaptor protein, 

and caspase-1. When exposed to DAMPs or PAMPs the cell can signal for the protein 

monomers to activate and oligomerize; however, the order of events leading to 

inflammasome assembly and activation are unclear. The inflammasome acts as a platform 

for caspase-1 activation by recruiting and facilitating the cleavage of the inactive 

zymogen, pro-caspase-1, via ASC or NLR association.  

Caspase-1 is an inflammatory caspase and the effector molecule of the 

inflammasome. Its activation by the inflammasome leads to the processing and cleavage 

of pro-IL-1β and pro-IL-18, into their biologically active forms, IL-1β and IL-18, 

respectively. Although caspase-1 is mostly known for its role in pro-IL-1β processing, 

studies by Shao et al. (2007) and Keller et al. (2008) reported that caspase-1 may have 

over 70 additional cleavage targets, and a role in the regulation of glycolysis, and 

unconventional protein secretion of targets lacking a leader sequence.  

IL-1β and IL-18 are potent pyrogenic cytokines crucial for proper immune 

responses that impede pathogenic assaults. Deregulation of their production can be 

harmful to the host and lead to autoinflammatory disorders; therefore, regulation of 

inflammasome activation leading to the secretion of IL-1β and IL-18 requires two 

signals. Signal one upregulates the transcription and translation of pro-IL-1β, pro-IL-18, 
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and NLR receptors typically through TLR priming or signaling. Signal two, produced 

by a number of diverse stimuli, triggers the assembly and activation of the inflammasome 

(Cassel 2010). 

In recent years, three inflammasomes complexes, NLRP1, NLRP3, and NLRC4 

inflammasome complexes have been well studied and shown to have a physiological role  

(Pedra 2009). Figure 3 illustrates the domain organization of the NLRP1, NLRP3, and 

NLRC4 receptors and that of the proteins associated with their multifaceted assembly. 

Table 4 presents published findings regarding their expression profiles in human tissue. 

Recent studies have demonstrated that NLR proteins are expressed ubiquitously 

throughout the human body in a non-overlapping manner. This proposes different roles in 

distinctive cell types that allows for optimal detection of pathogens (Kummer 2007). 

The NLRC4 holds a N-terminal CARD domain, a central NACHT domain, and a 

C-terminal LRR domain (Figure 3). The N-terminal CARD domain allows NLCR4 to 

directly bind to pro-caspase-1 via a homotypic CARD-CARD interaction leading to an 

autocatalytic activation of caspase-1 (Eitel 2010). NLRC4 is a cytosolic sensor of 

flagellin and flagellated pathogens such as S. typhimurium The NLRC4 can initiate an 

inflammatory cell death, pyroptosis, under constant activation (Miao 2006).   
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Figure 3. Domain Organization of NLRP1, NLRP3, NLRC4, and 
Proteins Associated with Inflammasome Assembly. ASC is an adaptor 
protein that binds NLRP3 to recruit caspase-1. NLRP1 and NLRC4 can 
bind directly to caspase-1 via the CARD domain or recruit caspase-1 
through ASC. Caspase-1 is cleaved into its active subunits.  
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NLR Expression Reference 

NLRP1 Heart, Spleen, Thymus, Kidney, 
Liver 

 
Pyramidal Neurons, 
Oligodendrocytes, 

 
Gastrointestinal/ Respiratory 
Tract Epithelial Cell lining, 

 
Primary Immune Cells 

 

Kummer, 2007 
 

de Rivero 
Vaccari 2008 

NLRP3 Esophagus and ectocervix 
(Stratified Non-keratinizing 

squamous epithelium) 
 

Primary Immune Cells (Including 
Microglia) 

 

Kummer 2007 

NLRC4 Bone Marrow, Lungs (Highly 
Expressed) 

 
Lymph Nodes, Placenta, Spleen 

 
Brain Cellular Localization 

Unknown 

Kummer 2007 
 

Poyet 2001 
Cai 2012 

   

Table 2. Expression Profiles of Human NLR Proteins 
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Structurally, the NLRP1 protein receptor sets itself apart due to its unique C-

terminal tail, which carries a CARD domain, and a function-to-find domain (FIIND) 

(Figure 3). The NLRP1 inflammasome was the first complex identified as a caspase-1 

activation platform involved in the inflammatory response; it is composed of the NLRP1  

 receptor, ASC, and caspase-1. The involvement of ASC is believed to be cell-type 

dependent as a study by Faustin et al. (2007) demonstrated that the NLRP1 

inflammasome was able to assemble with only the NLRP1 receptor and pro-caspase-1 

(Faustin 2007; Broz 2010). The NLRP1 inflammasome activates in response to anthrax 

lethal toxin and muramyl dipeptide (MDP) (Levinsohn 2012; Faustin 2009). 

The NLRP3 inflammasome is the most well studied and characterized 

inflammasome complex. Activation of the NLRP3 receptor leads to its oligomerization, 

via NACHT-NACHT domain interactions, and proceeds with the recruitment and 

association of ASC via the Pyrin domain. Subsequently, ASC recruits pro-caspase-1 via a 

CARD-CARD contact, constituting the NLRP3 inflammasome (Figure 4) (Agostini 

2004). 

 

The NLRP3 Inflammasome 

NLRP3 first received attention when mutations in the NLRP3 gene were 

implicated in the autoinflammatory syndromes collectively known as cryopyrin-

associated periodic syndrome (CAPS), characterized by an increase in IL-1β production 

in the absence of infection (Hoffman 2011). Following the discovery that NLRP3 formed  
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Figure 4. Schematic Representation of the NLRP3 Inflammasome. The 
NLRP3 inflammasome is comprised of the NLRP3 protein, ASC, and 
caspase-1. NLRP3 oligomerizes via the NACHT domain upon recognition of 
activating stimuli and recruits ASC via PYD-PYD binding. Association of 
NLRP3 with ASC is required for recruitment of pro-caspase-1. The adaptor 
protein ASC recruits pro-caspase-1 via the CARD domain, leading to the 
processing of pro-caspase-1 to active caspase-1.  
 

  
    

    
  

    Caspase-1!

  
    

    
  

NLRP3 ASC 

NACHT 

CARD 

PYD                   

CARD 

PYD                   NACHT 

          

          



         

 

24 
an inflammasome, mutations in the NLRP3 gene were proven to have a gain-of-

function that produced an unregulated amount of IL-1β, which resulted in chronic 

inflammation (Martinon 2002; Agostini 2004). 

In the CNS, NLRP3 is predominantly expressed by microglia and infiltrating 

macrophages. As previous stated, NLRP3 inflammasome activation leading to the 

secretion of IL-1β and IL-18 requires two signals: 

Signal One:  Signal one upregulates inflammatory gene expression typically 

through TLR priming. As previously stated ‘resting’ microglia cells express pathogen 

recognition receptors (PRRs) including TLRs that bind a range of endogenous and 

exogenous substrates that can result in the downstream activation of the transcription 

factor, NFkB, a key regulator of the inflammatory response. NFkB shifts microglia from 

a ‘resting’ to an ‘active’ phenotype and triggers the expression of many inflammatory 

relevant proteins such as pro-IL-1β, and pro-IL-18; however, many inflammatory 

proteins are expressed as zymogens and require cleavage or a biochemical change, events 

that result from Signal two.  

Signal Two: Signal two leads to the activation of the NLRP3 protein. A variety of 

stimuli, including microbial PAMPs and host-derived DAMPs, are sensed by NLRP3 and 

promote inflammasome activation. Due to the number and divergent characteristics of the 

stimuli, it is unlikely that they are bound directly by the NLRP3 receptor. Rather, it has 

been proposed that the NLRP3 activators converge on a common pathway that leads to 

the generation of a common endogenous NLRP3 ligand. These pathways differ in the 

upstream recognition of PAMPs and DAMPs but all induce potassium efflux and 
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generate mitochondrial-derived ROS believed to culminate in the exposure or 

production of a common cytosolic product that serves as the NLRP3 ligand and activator. 

Furthermore, Ca2+ mobilization has been has been found to hold a role in the regulation 

of NLRP3. (Sutterwala 2007; Latz 2013).  

Pore-formation by bacterial toxins or ATP stimulation of P2X7 receptors incites 

the activation of the cytoplasmic NLRP3 receptor (Kanneganti 2007). Additionally, 

crystalline substances activators are known to lead to inflammasome assembly following 

phagocytosis through the destabilization of lysosomal membranes leading to the release 

of the protease, cathepsin-B, resulting in NLRP3 activation. (Halle 2008; Hornung 2008). 

Although it is unclear of how Ca2+ influences NLRP3 activation, Ca2+ influx has been 

implicated in inflammasome activation induced by particulate or crystalline substances. It 

has been reported that the production of intracellular ROS induced by crystalline 

substances is sensed by TRPM2, a receptor that facilitates Ca2+ influx into the cell (Latz 

2013). Ca2+ mobilization has also been implicated in other pathways that regulate the 

NLRP3 inflammasome such as the response of C/EPB-homologous protein (CHOP) to 

unfolded protein (Latz 2013). NLRP3 inflammasome activation is diagrammed in Figure 

5. 

Inflammasome-forming NLRs, particularly NLRP3, have received much attention 

do to their ability to sense pathogen associated molecular patterns (PAMPs) and danger 

associated molecular patterns (DAMPs). NLRP3 responds to an extensive and diverse list 

of exogenous/endogenous stressors. Figure 6 displays a number of those activating 

factors. NLRP3 responds to pathogens including bacteria like Staphylococcus aureus, 
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Listeria monocytogenes, and Streptococcus pneumonia (Mariathasan 2006; Munoz-

Planillo 2009; Bauernfeind 2011). Viruses including Influenza A virus, Adenovirus, and 

Sendai virus are also known to activate NLRP3 (Kanneganti 2006; Bauernfeind 2011). 

Host-derived DAMPs are implicated in initiating and perpetuating sterile inflammatory 

responses and can lead to cell damage or cell death. NLRP3 recognizes:  Adenosine 

triphosphate (ATP), Monosodium urate (MSU), calcium pyrophosphate  dehydrate 

(CPPD), aluminum hydroxide (alum), asbestos, silica, hyaluronan, amyloid-β, and 

glucose (Sutterwala 2007; Bauernfeind 2011; Park 2007). 

ATP is a danger signal released from damaged and dying cells that alerts the 

environment to tissue damage and prompts inflammasome activation by binding to the 

P2X7 receptor triggering a pannexin-1 hemichannel. The internalization of environmental 

irritants such as silica, alum, and asbestos or host derived factors such as uric acid, 

cholesterol crystals, and amyloid-β have been shown to disrupt lysosomal membranes, 

triggering NLRP3 (Sutterwala 2007). 
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Figure 5.  Model for NLRP3 Inflammasome Activation. The release of IL-1β 
and IL-18 requires two signals for production and secretion. Signal 1: The first 
signal occurs upon PAMP/DAMPs binding to TLRs to initiate the transcription 
and translation of inactive cytokine precursors. Signal 2: The second signal 
involves activation of the NLRP3 protein that leads to inflammasome assembly, 
caspase-1 activation and subsequent cleavage of cytokines. The inflammasome is 
activated through stimuli that induce vesicle disruption (illustrated above). The 
figure is a modified version from Ciraci et al. 2012 
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Figure 6. Known NLRP3 Activators. 
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IL-1 and Inflammation 

 The interleukin family of cytokines consists of 11 members that serve as agonist, 

antagonist, or anti-inflammatory ligands. The interleukin-1 receptor (IL-1R) family 

includes 10 members that serve as ligand binding, decoy, or antagonist receptors 

(Boraschi 2006; Dinarello 2009).  

IL-1β and IL-18 execute their signaling through MyD88, IL-1 receptor-associated 

kinases (IRAKs), and TNF receptor associated factor 6 (TRAF-6) that results in 

downstream activation of transcription factors, mitogen-activated protein kinase 

(MAPK), and NF-κB (Shaftel 2007; Muroi 2008; Dinarello 2009).  

IL-1β: IL-1β is a potent pyrogenic cytokine vital for innate immune 

confrontations against pathogenic assault but it also participates in several crucial 

physiological processes including CNS injury, and hypothalamic temperature regulation 

(Dinarello 2009). IL-1β signaling fosters the production of IL-18, TNF, and additional 

IL-1β by binding to IL-1R in an autocrine and paracrine manner. It also upregulates the 

expression of adhesion molecules in endothelial and mesenchymal cells that lead to the 

infiltration of leukocytes that aid in the resolution of infection and tissue restoration. In 

the CNS, IL-1β is primarily produced by microglia and macrophages and promotes 

astrocyte activation and proliferation as well as disruption of the BBB. (Koziorowski 

2012; Dinarello 2009).   

IL-18: IL-18 is synthesized by monocytes, macrophages, splenocytes, and 

keratinocytes and stimulates the production of IFN-γ from T-helper cells (Th1). In the 

CNS, IL-18 is produced by microglia, astrocytes, and neurons. It stimulates microglia 
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proliferation and emulates IL-1β in the production of IL-1β, TNFα, and adhesion 

molecules leading to the infiltration extravasation of inflammatory cells (Conti 1999; 

Prinz 1999; Sugama 2002). 

 Chronic IL-1β and IL-18 production can be detrimental to host tissue, and is 

therefore regulated at the level of transcription, translation, and secretion to prevent over 

activation of the innate immune response. Patients with autoinflammatory diseases are 

afflicted with chronic inflammation due to disorders in IL-1β secretion, NF-κB 

activation, protein folding, complement cytokine signaling, and macrophage activation 

circumventing the regulatory mechanisms (Master 2009).  
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CHAPTER TWO 

EXPERIMENTAL METHODS AND RATIONALE 

Cell lines and reagents 

 The human monocyte cell line THP-1 was obtained from the American Type 

Culture Collection (ATCC). ATP and phorbol-12-myristate-13-acetate (PMA) were 

purchased from Sigma-Aldrich. The human IL-1β enzyme-linked-immunosorbent assay 

(ELISA) Kit Ready-SET-Go! Kit was obtained from eBioscience (catalog no. 88-7010-

88).  

 

Cell Culture 

 The human monocyte cell line THP-1 was obtained from the American Type 

Culture Collection (ATCC). The THP-1 cells were maintained in Roswell Park Memorial 

Institute (RPMI) 1640 media, supplemented with 10% FBS, 100 IU/ml penicillin, 

1mg/ml streptomycin, 0.25 µg/ml amphotericin B, non-essential amino acids, 1mM 

sodium pyruvate, 10mM HEPES buffer and 2 mM glutamine. THP-1 cells stably 

expressing short hairpin RNAs for NLRP3 and control shRNAs were a kind gift from Dr. 

Christopher Wiethoff.  
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α-synuclein 

Full length α-synuclein was purchased (rPeptide) and the lyophilized protein was 

rehydrated to a concentration of 1mg/ml. Alpha-synuclein was incubated for 3 days at 37 

C in PBS with 100 mM NaCl under constant agitation followed by aliquoting and storage 

at -80 C.  

 

Immunofluorescence microscopy 

 Cells were allowed to adhere to Fibronectin (Sigma-Aldrich) treated glass 

coverslips and fixed with 3.7% formaldehyde (Polyscience) in 0.1 M piperazine-N, N’bis 

(2-ethanesulfonic acid) PIPES buffer at pH 6.8 for 15 min. Images were collected with a 

DeltaVision microscope (Applied Precision) equipped with a digital camera (CoolSNAP 

HQ; photometrics), using a 1,4-numerical aperture (NA) 100X objective lens, and were 

deconvolved with SoftWoRx deconvolution software (Applied Precision). Tiff images 

were generated using Imaris software (Bitplane). 

 

Quantification of IL-β secretion by ELISA 

THP-1 cells were plated at 2x105 cells per well in a black 96-well plate with 5 

ng/ml PMA for 48 hours to induce macrophage differentiation. Differentiated 

macrophages were washed, and then left untreated or pretreated with α-synuclein 

aggregates before being serum starved for 2 hours. A subset of cells were then treated 

with ultrapure LPS (10 ng/ml) for 2 hours, washed and then left untreated, or treated for 1 

hour with 5 mM ATP, as a positive control. Supernatants from each sample were 

collected the morning after, and an ELISA was performed.  
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Caspase-1 Assay 

Diffentiated THP-1 cells were incubated in the presence or absence of α-synuclein 

(2.4 µg/ml) for 48 hours before being serum starved for 2 hours, and then left untreated or 

treated with LPS for 2 hours. Cells were then washed in PBS. Caspase-1 activity in THP-

1 cells was assessed with a caspase-1 FLICA kit (Immunochemistry Technologies) 

according to the manufacturer’s instructions. The maximum fluorescent intensity of 50 

cells in each treatment group was assessed microscopically on a DeltaVision wide field 

fluorescent microscope (Applied Precision).   

 

CFP-ASC expressing THP-1 cells 

The CFP-ASC plasmid was obtained from Dr. Douglas T. Golenbock (University 

of Massachusetts Medical School). Lentivirus was produced in human 293T cells 

transfected with FUGW-based expression vector encoding CFP-ASC with the packaging 

plasmid and the envelope plasmid (VSV-G). Supernatants collected after 48 hours were 

passed through 0.2 µm filters and used to transduce THP-1 cells by spinoculation.  

For experiments, CFP-ASC expressing THP-1 cells (THP-1cASC) were seeded at 

3x105 cells per group sample with 5 ng/ml PMA for 48 hours to induce macrophage 

differentiation and then stimulated. Quantification of ASC complexes per group was 

assessed microscopically on a DeltaVision wide field fluorescent microscope (Applied 

Precision). 
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ROS Assay 

THP-1 cells were plated at 2x105 cells per well in a black 96-well (Costar) plate 

with 5 ng/ml PMA for 48 hours, washed, and rested for 1 day in RPMI 1640 plus 10% 

FBS. Cells were then loaded with the ROS-sensitive fluorescent dye 2,7-

dichlorofluorescein diacetate (DCFDA; Invitrogen) for 30 min by following the 

manufacturer’s protocol, and washed with phosphate-buffered saline (PBS) to remove 

unincorporated dye. α-synuclein aggregates were added at a concentration of 2.4 µg/ml. 

Fluorescence intensity was measured over the course of 72 hours at an excitation 

wavelength of 485 nm and an emission wavelength of 485 nm and an emission 

wavelength of 520 nm on a fluorescent plate reader (Biotek). Results are presented as 

background subtracted values (background was defined as cells that were not loaded with 

DCF).  
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CHAPTER THREE 

RESULTS 

Aggregated α-synuclein induces vesicle damage in THP-1 cells 

 Galectin-3 is a sugar binding protein that recognizes beta-galactosides found on 

the outer leaflet of the plasma membrane and the interior leaflet of intracellular vesicles, 

as so, studies have used Galectin-3 relocalization as an assay to identify vesicle rupture 

(Di Lella 2011; Maier 2012; Ray 2010). By using a retroviral vector expressing mCherry-

Galectin3 our recent studies identified that α-synuclein can rupture intracellular vesicles 

following endocytosis in human neuroblastomas cells (Freeman 2013). Therefore, we 

wanted to investigate whether α-synuclein could induce vesicle rupture in differentiated 

THP-1 cells transduced with the retroviral vector expressing mCherry-Galectin3 (THP-

1chGal3). We treated differentiated THP-1chGal3 cells with α-synuclein for a series of 

time points and found that α-synuclein induced vesicle rupture in cells treated for 48 

hours. Untreated THP-1chGal3 cells displayed a diffuse cytoplasmic localization of 

mcherry-Galectin3, while cells treated with aggregates displayed intracellular punctate 

structures, suggesting vesicle rupture, starting at 24 hours with prominent relocalization 

at 48 hours (Figure 7).  
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Figure 7. α-synuclein aggregates induce vesicular rupture in THP-1 cells.  
THP-1 cells stably expressing mcherry-Galectin3 were treated with α-synuclein 
aggregates for a series of time points. Galectin-3 relocalization at 48 hours is 
indicative of vesicle rupture.  
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  Aggregated α-synuclein induces IL-1β secretion from THP-1 cells   

 As previously stated, activated microglia and microglia-derived IL-1β has been 

identified surrounding Lewy body deposits as wells in the CSF of PD patients (McGeer 

1988; Mogi 1996). It is known that several crystals and aggregated proteins activate the 

NLRP3 inflammasome by means of vesicle rupture in activated microglia, leading to the 

maturation and release of IL-1β. We investigated whether aggregated α-synuclein leads 

to the activation and assembly of the NLRP3 inflammasome and subsequent release of 

IL-1β following vesicle rupture. We primed differentiated THP-1 cells with ultrapure 

lipopolysaccharide (LPS) to induce production of pro-IL-1β since it is not constitutively 

expressed and thus requires transcriptional stimulation. Activated microglia have an 

upregulation of pro-IL-1β whose maturation and secretion is achieved upon NLRP3 

inflammasome activation.  

 It is important to note that in this study, activation of the NLRP3 inflammasome 

and subsequent release of IL-1β derailed from the traditional model that sees cell priming 

or signal one come before treatment with an NLRP3 activator or signal two. There was 

little to no difference in IL-1β release between cells simply primed with LPS and those 

first primed with LPS followed by α-synuclein treatment. We had noted that vesicle 

rupture was induced by α-synuclein 48 hours after initial treatment, therefore, we 

hypothesized that pro-IL-1β levels induced by LPS priming had diminished by the time 

α-synuclein had prompted vesicle rupture and NLRP3 inflammasome activation. We 

therefore treated with α-synuclein for 48 hours then increased production of pro-IL-1β 

with LPS treatment.  
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 We found that aggregated α-synuclein led to a time-dependent and dose-

dependent release of IL-1β into the supernatant with prominent secretion 48 hours after 

treatment, which correlated with the time dependent vesicle rupture observed seen in 

THP-1chGal3 (p<0.01)(Figure 8A, B). In all subsequent experiments, THP-1 cells were 

treated with α-synuclein aggregates for 48 hours.   

In order for IL-1β to be secreted it requires processing from caspase-1. Caspase-1 

is found as the zymogen, pro-caspase-1, that is activated upon inflammasome assembly. 

As such, we tested whether α-synuclein led to the activation of caspase-1 by using a 

fluorescent cell-permeable probe that covalently binds to only activate caspase-1 

(FLICA). The fluorescent intensity of individual cells was assessed microscopically for 

each treatment group. We noted the highest FLICA fluorescence in primed THP-1 cells 

treated with α-synuclein (p<0.01)(Figure 8C). These data collective demonstrate that α-

synuclein vesicle rupture induced activation of the inflammasome and subsequent release 

of IL-1β from THP-1 cells. 
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subjected to similar protocols, much larger species of aggregates
were induced which allowed us to compare the relative
pathological potential of large aggregates and small aggregates in
our experimental system. This is consistent with a previous report
suggesting that E46K has an increased propensity to assemble into
larger, insoluble fibrils with an amyloid architecture [43]. We
cannot exclude the possibility that the reduced vesicular rupture
and ROS induction by the E46K mutant is due to the E46K
mutation. However, we favor the idea that these larger aggregates
induced with the E46K variant were less toxic because they were

too large to be internalized into target cells, preventing them from
inducing the rupture of intracellular vesicles.

The fact that chGal3 positive ruptured vesicles do not
ubiquitously contain detectable amounts of a-synuclein suggests
that a-synuclein has the capacity to dissociate from the endocytic
vesicle following rupture, although we cannot exclude the
possibility that these vesicles contained a-synuclein which was
not detected in our experiments. Similarly, not all of the a-
synuclein signal we observed colocalized with chGal3. This may a-
synuclein which has dissociated from a vesicle following rupture or
alternatively may be a-synuclein still existing within the vesicular
compartment which has not induced vesicle rupture. While we
cannot distinguish between these possibilities using this assay, the
observation that a-synuclein localizes to the periphery of ruptured
vesicles is consistent with the idea that a-synuclein induces
membrane curvature capable of inducing the rupture of these
vesicles.

It is also worth noting how the pathological pathway identified
here might be relevant to the propagation of a-synuclein
pathology in vivo. Work from other labs, taken with the data
presented here, suggests a mechanism by which a-synuclein
mediated lysosome rupture may perpetuate the propagation of a-
synuclein pathology. Specifically, Alvarez-Erviti and coworkers
have demonstrated that lysosomal dysfunction and stress increase
the release of a-synuclein containing exosomes [44]. Danzer and
colleagues have demonstrated a-synuclein containing exosomes
induce more pathology than recombinant aggregates [45]. Taken
together, the observations here and in these studies suggest a
mechanism by which continued vesicular rupture by a-synuclein
may not only exert toxic effects on a given cell but may also
perpetuate the propagation of a-synuclein pathology to neighbor-
ing cells.

Although the data presented here utilize cell lines to demon-
strate lysosomal rupture and ROS induction, it is worth nothing
that others have reported clinical observations consistent with the
pathway identified. Reduced cathepsin and LAMP immunoreac-
tivity has been observed in nigral neurons in PD patients [46],
consistent with the idea of vesicle rupture and cytoplasmic
diffusion of lysosomal contents. The role of mitochondrial
dysfunction is also well established in PD [47].

Our observation that a-synuclein can induce inflammasome
activation in a microglia like cell line may be relevant to the
neuroinflammatory aspects of PD [48,49]. Notably, two hallmarks
of inflammasome activation, IL-1b release [50] and caspase-1
activation [51] have been reported to be elevated in the substantia
nigra of PD patients.

Here, we define the pathway by which a-synuclein escapes the
vesicular compartment and induces toxicity in tissue culture cells.
Future studies are needed to determine the degree to which a-
synuclein mediated lysosomal rupture affects the propagation of
PD pathology in primary neuronal cultures, animal models and
individuals affected by PD and other synucleinopathies.

Supporting Information

Figure S1 a-synuclein monomers do not induce chGal3
relocalization. N27 and SH-SY5Y cells stably expressing
chGal3 were incubated with freshly resuspended a-synuclein for
24 hours. Treatment of these cells with freshly resuspended a-
synuclein did not induce the redistribution observed at an
equivalent concentration of a-synuclein aggregates.
(TIF)

Figure S2 Intravesicular localization of a-synuclein.
N27chGal3 cells were treated with Dylight 488 conjugated a-

Figure 9. a-synuclein aggregates induce the caspase-1-depen-
dent release of interleukin-1b. A. ELISA of the time dependent
release of IL-1b by differentiated THP-1 cells left untreated (Mock) or
stimulated with a-synuclein (2.4 mg/ml) and/or LPS. B. ELISA of the dose
dependent release of IL-1b into supernatants of LPS-primed THP-1 cells
left unstimulated (Ctrl) or stimulated with an increasing amount of a-
synuclein, or ATP (5 mM). C. Quantification of caspase-1 activation in
THP-1 cells. Caspase-1 activation was visualized by incubation with a
fluorescent cell-permeable probe that binds only to activated caspase-1
(FLICA). Data represents the means and standard errors from 3
replicates. *p,0.01
doi:10.1371/journal.pone.0062143.g009
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Figure 8. α-synuclein induces 
caspase-1 dependent IL-1β release 
from THP-1 cells.  
(A). ELISA of the time dependent 
release of IL-1β by differentiated 
THP-1 cells left untreated (Mock) or 
stimulated with α-synuclein (2.4 
µg/ml) and/or LPS. (B). ELISA of the 
dose dependent release of IL-1β into 
the supernatant of LPS-primed THP-1 
cells left unstimulated (Ctrl) or 
stimulated with an increasing amount 
of  α-synuclein.  (C). Quantification of caspase-1 activation of THP-1 cells. 
Caspase-1 activation was visualized by incubation with fluorescent cell-
permeable probe that binds only activated caspase-1 (FLICA). Data represents 
the mean and standard errors of 3 replicates. * indicates a P value <0.01. 
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α-synuclein activates the NLRP3 inflammasome 

Next we investigated whether the adapter protein ASC and the NLRP3 

inflammasome were involved in the activation of caspase-1 and subsequent IL-1β release. 

We stably transduced a fusion protein ASC and cyan fluorescent protein (CSF-ASC) into 

THP-1 cells. The adaptor protein ASC is found diffused throughout the cytoplasm, but 

inflammasome assembly leads to ASC protein oligomerization, changing the cytoplasmic 

fluorescence of CFP-ASC from a diffuse pattern to a punctate formation, a relocalization 

event indicative of ASC activation (Figure 9A; white arrowhead). In agreement with 

the IL-1β assay, the α-synuclein and LPS treatment group supported more cells with 

oligomerized CFP-ASC protein than α-synuclein or LPS alone. (Figure 9A).   

Next, we confirmed that α-synuclein aggregates specifically activated the NLRP3 

inflammasome by obtaining stably transduced THP-1 cells with a lentivirus expressing 

shRNA against NLRP3 or control shRNA. We observed that LPS primed cells expressing 

shRNA knockdown of NRLP3 (THP-1N3KD) released significantly less IL-1β compared 

to LPS primed cells expressing control shRNA (THP-1cntrl) after being treated with α-

synuclein (Figure 9C) (p = 0.0117) To test whether THP-1N3KD cells were competent 

for IL-1β production and release we treated cells with transfected DNA. A different 

inflammasome complex, the AIM2 inflammasome, recognizes transfected DNA and is 

able to mediate casapase-1 activation leading to the secretion of IL-1β in primed cells. 

Both control and NLRP3 knockdown cells produced a robust release of IL-1β (Figure 

9B). Taken together, these results demonstrate that α-synuclein activates the NLRP3 

inflammasome, resulting in caspase-1 activation and the release of IL-1β. 
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Figure 9. α-synuclein aggregates activate the NLRP3 inflammasome.  
(A). THP-1 cells stably transduced with CFP-ASC. Cellular 
outlines/boundaries were captured using the YFP filter. Under baseline 
conditions CFP-ASC fluorescence is distributed throughout the cell; 
however, once the inflammasome is assembled and the adapter protein ASC 
is activated it will proceed to form oligomers that change the fluorescent 
distribution into a punctate structure (white arrowhead).  This grouping of 
CFP-ASC protein serves as a marker of ASC activation. We noted a greater 
number of cells with CFP-ASC clusters in THP-1 cells treated with α-
synuclein and primed with LPS than in cells treated with α-synuclein or LPS 
alone. (B, C). ELISA of IL-1β released into supernatants of LPS primed 
THP-1N3KD and THP-1cntrl left unstimulated (Ctrl) or treated with  
α-synuclein (1.2 µg/ml). Data represents the mean and standard errors of 3 
replicates. * indicates a P value = 0.0117. 
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α-syn-induced inflammasome activation involves K+ efflux and ROS production  

 We further elucidated the mechanism of IL-1β secretion induced by α-synuclein 

by investigating potassium efflux, and ROS production, two events known to be involved 

in NLRP3 inflammasome. In vitro studies have inhibited the efflux process in cells with 

the addition of extracellular KCl to growth medium, and observed an inhibition of 

NLRP3 inflammasome activation. Figure 10A demonstrates that treatment with 

extracellular KCl arrests α-synuclein-induced IL-1β secretion in a dose dependent 

manner. The exact role of potassium efflux in NLRP3 inflammasome activation remains 

elusive; however, it is believed that a low potassium environment might a prerequisite for 

NLRP3 inflammasome assembly (Ciraci 2012). 

Although it is not clear how ROS is involved in the activation of NLRP3, 

inflammasome activation is dependent on the production of mitochondrial-derived ROS. 

It is hypothesized that the mitochondria-derived ROS may be a common event upstream 

of NLRP3 activation that may prompt events leading to the generation or exposure of the 

endogenous NLRP3 ligand that too may be mitochondrial-derived (Ciraci 2012). 

Particulate NLRP3 activators such as uric acid, and amyoid- β have been shown to induce 

vesicular damage, an event shown to drive the production and increase of intracellular 

ROS (Suzanne 2010; Ciraci 2012); therefore, we investigated whether α-synuclein-

induced vesicle rupture also led to the increased production of ROS. We noted the 

production of ROS in THP-1 cells treated with α-synuclein aggregates using the  
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Figure 10. α-synuclein aggregates induce both IL-1β release dependent on K+ 
efflux and the production of ROS in THP-1 cells. (A). ELISA of IL-1β release 
from differentiated wild type THP-1 cells treated with α-synuclein for 48 hr, rested 
in serum-free media for 2 hr, and primed with 10 ng/ml of LPS, while 
simultaneously treating with medium alone or with KCl (potassium efflux 
inhibitor; 30 mM or 60 mM) for two hours. (B). Differentiated wild type THP-1 
cells loaded with the fluorescent substrate H2DCFDA reagent and incubated in the 
presence of or absence of α-synuclein aggregates.  
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fluorophore H2DCFDA that fluoresces after being oxidized by ROS. Differentiated 

THP-1 cells treated with α-synuclein aggregates responded with the generation of ROS as 

a significant increase in fluorescence was observed in a time dependent manner (Figure 

10B).  
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CHAPTER FOUR 

DISCUSSION 

 An inflammatory response is built to promote homeostasis; however, in the 

context of an aging or traumatized brain, inflammation can bring about detrimental 

effects. In the CNS, neuroinflammation is mediated by activated microglia and is a 

neuropathological hallmark of Parkinson’s disease and related synucleinopathies. It is not 

clear whether neuroinflammation feeds the on-set of disease or whether it is a feature that 

drives the progression of neurodegeneration as α-synuclein deposition increases. It is 

important to define the signaling pathways and the mediators through which α-synuclein 

influences microglia secretion of proinflammatory cytokines in order to develop anti-

inflammatory treatments. In this thesis, we demonstrated that α-synuclein oligomers, or 

intermediate sized aggregates induce NLRP3 inflammasome activation in human THP-1 

cells. The NLRP3 inflammasome is a multiprotein complex that serves as a platform for 

caspase-1 activation and results in the release of proinflammatory cytokines IL-1β and 

IL-18. Our experimental results show that aggregated α-synuclein can be added to the 

long list of NLRP3 activators as it is sensed as an endogenous ‘danger signal’ following 

vesicle rupture. Furthermore, we noted that α-synuclein led to the release of IL-1β in a 

time and dose dependent manner that involved ASC oligomerization, caspase-1 

activation, and was dependent on the NLRP3 protein.  
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The central nervous system (CNS) has been perceived to be a site of immune 

privilege due to its physical separation from the rest of the body by the blood brain 

barrier (BBB) and the lack of a lymphatic drainage; however, it is now well established 

that insults to the CNS by injury or disease results in an immune response by resident 

immune cells, microglia and astrocytes. The resident immune cells are also able to recruit 

circulating macrophages and T cells to facilitate robust inflammatory responses. Due to 

the complexity of an immune response, it is believed that treatments against 

inflammation in progressive diseases such as PD might involve a combination of targets. 

Although we have identified that α-synuclein leads to NLRP3 activation, it is important 

to note that the cells used in these experiments are THP-1 cells. THP-1 cells belong to a 

human monocytic cell line that can be differentiated into macrophage like cell. Although 

a number of studies have used THP-1 cells as a microglia-like model, it would be 

beneficial to see the level of NLRP3 activation in an immortalized or primary microglia 

cell line.  

For future experiment, it would be of importance to dissect each step in 

inflammasome activation. In this study we used LPS treatment to activate cells through 

TLR4 signaling for Signal one. It would be of value to use a number of endogenous 

proteins such as HMGB-1 to induce cell priming. Further investigations should also 

target what different surface receptors on microglia lead to downstream signaling and 

production of pro-inflammatory cytokines.  

Signal two leads to inflammasome assembly. It would be wise to further 

investigate whether mutant forms of α-synuclein would also induce inflammasome 

assembly. Studies by Freeman et al. (2013) found that neuronal cells could not 
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endocytose aggregated forms of the mutant E46K. It would be noteworthy to 

investigate whether this mutant form of α-synuclein could be phagocytosed by microglia 

cells and if not, whether or not it could activate the inflammasome through frustrated 

phagocytosis.   

 The newly discovered inflammasome-forming NLRs have been under extensive 

study due to their role in sensing pathogens and endogenous danger molecules, however, 

their role in neuroinflammation has yet to be studied. It is necessary to investigate what 

other NLRs are found in the CNS and their cellular localization. Recent studies by 

Minkiewicz et al. (2013) found that astrocytes, the most abundant glia cell in the CNS, 

express and are able to assemble the NLRP2 inflammasome in response to extracellular 

ATP.  
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