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ABSTRACT 

Squamous cell carcinoma (SCC) is the second most common type of skin cancer 

in the United States with around 3.5 million cases diagnosed every year. Protein Kinase C 

(PKC) is a family of 9 serine/threonine kinases having distinct role in cell proliferation, 

differentiation, apoptosis and angiogenesis. One widely expressed isoform of PKCs, 

PKC-δ has been shown to act as a tumor suppressor in skin cancer by mediating cell 

apoptosis. Re-expression of PKC-δ in human SCC cells induced apoptosis and 

suppressed tumorigenicity in vitro. PKC-δ expression is lost in 30% of human SCC 

tumors and is repressed in keratinocyte cell lines expressing activated HRAS.  The 

Denning lab showed earlier that this loss of PKC-δ is at the transcriptional level and 

involves the Ras pathway shown below.  

We hypothesize that compounds inhibiting this pathway will re-induce PKC-δ 

gene expression and will be effective therapeutic agents in SCC. In order to test the 

hypothesis, we proposed development of a high throughput, cell-based reporter assay on
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Ras transformed keratinocyte cell line, HaCaT-Ras to measure PKC-δ promoter activity 

and screen compounds having potential to induce PKC-δ promoter activity. 

In this study, we utilized a PKC-δ promoter reporter plasmid (pGL3-hPKCδ-4.4) 

generated earlier in our lab to assess PKC-δ promoter activity, in which 4.4 kb region of 

human PKC-δ promoter was inserted next to luciferase reporter gene. The first goal of 

this project was to develop a HaCaT-Ras cell line stably transfected with PKC-δ reporter 

plasmid. To do this, we co-transfected HaCaT-Ras cells with PKC-δ reporter and EGFP 

plasmids, and sorted EGFP positive cells by flow cytometry to select clones which were 

stably transfected with EGFP. In the next step, clone screening, we identified one clone 

having stable PKC-δ reporter expression. Thus we were successful in generating a stable, 

PKC-δ promoter-reporter transfected HaCaT-Ras cell line. 

The second aim of this study was to identify positive control compound(s) that 

give high induction in PKC-δ promoter activity to characterize and validate this assay. To 

pursue this aim, we tested 13 compounds belonging to different pharmacological classes 

either alone or in the combination for their ability to induce PKC-δ promoter activity on 

HaCaT-Ras cells transiently transfected with PKC-δ reporter. We identified src-family 

kinase inhibitor PP2 and the combination of NF-κB inhibitor Bay11-7085 and PKC 

activator TPA as reasonable positive control compounds for this assay. We proposed to 

perform this assay on microplate reader PHERAstar FS, and optimized the protocol on 

this instrument so that resulting high-throughput screening assay has higher Z value 

(statistical parameter directly related with quality of high-throughput screening) and 

convenience. After series of experiments which tested effects of various time-points of 

luminescence measurements, optic settings, and durations of shaking on quality of assay, 
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we were able to generate a protocol which offered less variability and accurate signal 

measurement on PHERAstar FS.  

To conclude, in this project we generated a HaCaT-Ras cell line stably transfected with 

PKC-δ promoter-reporter plasmid (pGL3-hPKCδ-4.4), and a protocol for high throughput 

luciferase reporter assay in PHERAstar FS. Overall, these studies will be very helpful in 

future for developing a robust, high-throughput screening assay to screen large number of 

compounds which have potential to induce PKC-δ gene expression.
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CHAPTER 1 

BACKGROUND 

Squamous Cell Carcinoma 

Skin cancer is the most frequent form of cancer in the United States with around 3.5 

million new cases diagnosed every year (1). There are two major types of skin cancers 

depending on their cells of origin in the skin tissue. In melanoma skin cancer, cancer 

originates in melanocytes, cells responsible for producing the pigment melanin. The other 

type of skin cancer is non-melanoma skin cancer, where cancer originates from 

keratinocytes in the skin. Non-melanoma skin cancer is again divided into two sub-

classes namely basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). 

Squamous cell carcinoma (SCC) is the second most common (around 20% of non-

melanoma skin cancers) type of skin cancer in the US (2, 3). As SCCs may be fatal if not 

treated properly, a safe and efficacious therapeutic strategy is required to make treatment 

better, and reduce its mortality rate. Currently primary treatment option for SCC includes 

surgery. However, it has adverse effects such as skin scarring, irritation, redness, loss of 

pigments, and is economically expensive. To avoid these clinical side-effects and make 

treatment more economically affordable to patients, a second treatment approach, 

chemotherapy may be used to treat SCC. However, applicability of this approach is 

limited by the fact that only a handful of topical agents such as 5-fluorouracil, and 

imiquimod are available to treat SCC today. Hence, more effective pharmacological 
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agents that alleviate and eliminate SCC are of crucial need to provide better treatment 

options to SCC patients.  

 PKC-δ as a tumor suppressor in SCC 

Protein Kinase C (PKC) is a family of 9 serine/threonine kinases having distinct role in 

cell proliferation, differentiation, apoptosis and angiogenesis (4, 5). PKCs reside in the 

cell cytosol in their inactive state. Activation of most PKCs takes place by their 

recruitment into the cell membrane and allosteric activation by diacylglycerol (DAG) (4, 

5). Calcium enhances the process of activation of classical PKCs-α, β, and γ (4, 5). When 

upstream mediator of the signal is a tyrosine kinase receptor, production of DAG in the 

cell membrane results from cleavage of phosphotidylinositol 4,5-bisphosphate (PtdIns 

(4,5)P2) by phospholipase C-γ (PLC-γ) (4, 5). In contrast when the signaling is conducted 

by G protein-coupled receptors (GPCRs), Gαq subunit interacts with PLC-β which results 

in cleavage of PtdIns (4,5)P2 and synthesis of DAG in the cell membrane (4, 5). Once 

activated, PKCs are phosphorylated on their kinase domains and phosphorylate their 

downstream substrates which can result in any of the different biological effects of PKCs 

including regulation of cell growth and differentiation.  

One widely expressed isoform of PKCs, PKC-δ, induces growth arrest in several types of 

cells upon its activation (6, 7) and is shown to be pro-apoptotic in renal, neuronal and 

breast cell lines (8, 9, 10). Our lab has previously shown that PKC-δ is both necessary 

and sufficient for apoptotic cell death in human keratinocytes after exposure to UV light 

(11, 12, 13). PKC-δ is activated by caspase-3 mediated cleavage in response to apoptotic 

stimulus resulting in its constitutionally active catalytic fragment in human keratinocytes 

(11). This constitutionally active PKC-δ fragment in turn phosphorylates and 
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downregulates anti-apoptotic Mcl-1 protein in mitochondria, resulting in cytochrome C 

release and apoptosis (14). Over-expression of PKC-δ in keratinocytes by retroviral 

infection reduced their growth by inducing apoptosis in vitro (15).  

A tumor suppressor gene is defined as a gene which prevents or inhibits formation of 

tumors, and its expression is often lost in the cancerous tissue. The Denning lab explored 

PKC-δ’s role as a tumor suppressor in squamous cell carcinoma and found that 30% of 

human SCC-tissue samples showed loss or reduction of PKC-δ protein (15). Also, 

transgenic mice over-expressing PKC-δ are resistant to chemically induced SCCs (16). 

Interestingly, re-expression of PKC-δ in HRAS transformed human keratinocytes grafted 

in nude mice dramatically inhibited tumor growth in vivo (15). Taken together, it is clear 

that PKC-δ plays prominent role in eliminating pre-cancerous cells by mediating UV 

induced apoptosis in human keratinocytes, and has tumor suppressor properties in SCC. 

Thus increasing expression or activity in SCC might be a promising strategy to develop 

novel therapeutics for SCC. 

Correlation between PKC-δ loss and Ha-Ras 

Ras is a family of small GTPase proteins found in human cells encoded by three genes 

named as HRAS, KRAS and NRAS. These GTPase proteins are activated through 

various external stimuli (e.g. mitogens such as EGF) and subsequently activate 

downstream effectors that control cell growth, differentiation and survival. Gene 

amplification or activating mutation in Ras gene leads to aberrant cell growth or 

differentiation, often leading to cancer (17, 18).  

As in other human cancers, activating Ras mutations are found in SCCs, where around 

50% of SCCs carry activating Ras mutations (19). As significant proportion of human 
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SCCs have active Ras mutations (19) as well as loss of PKC-δ (15), it is possible that 

these both events are correlated with each other in human SCCs. In Over 90% of 

chemically induced mouse tumors have been shown to carry activating Ha-Ras (a 

member of Ras family of proteins, encoded by HRAS gene) mutations (20). In the 

HaCaT immortalized human keratinocytes cell line, expression of activated Ha-Ras 

reduces PKC-δ protein and mRNA levels (21). It has also been demonstrated earlier that 

in vitro transduction of active Ras in keratinocytes isolated from mice, highly induces 

mRNA expression of several EGFR ligands such as TGF-α, heparin binding EGF like 

factor, betacellulin (22). This phenomenon results in generation of autocrine loop by 

active Ras, where high levels of EGFR ligands lead to over-activation of EGFR in Ras 

transformed keratinocytes. Furthermore, majority of human SCC-tissue samples which 

showed reduced PKC-δ levels also stained positive for phospho-EGFR (15) suggesting 

activation of Ras in these tumors (15). Phospho-EGFR was not detected in normal human 

skin (15). Thus we propose that it is activating Ha-Ras mutation that confers reduction in 

PKC-δ protein expression.  

PKC-δ loss on transcriptional level 

The Denning lab published in 2010 that loss of PKC-δ expression in human SCC is on 

transcriptional level (23). They selected 14 human SCC-tissue samples which showed 

loss of PKC-δ expression in immunohistochemistry, and all of these samples expressed 

low PKC-δ mRNA levels, when measured by qRT-PCR (23). Also in gene-deletion 

analysis using qPCR, 8 out of 9 SCC tumors had intact PKC-δ gene, supporting 

transcriptional repression as a major process contributing to PKC-δ loss in SCC (23). 
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After establishing a relationship between activating Ras mutations and PKC-δ loss 

earlier, our lab extended studies on Ras transformed HaCaT cells in vitro. Ras 

transformed HaCaT cells, named as HaCaT-Ras had lower endogenous PKC-δ mRNA 

levels compared to HaCaT cells (23). To assess PKC-δ promoter activity, the promoter 

region of human PKC-δ gene from a BAC clone (RPCI-11-82B23, BACPAC Resources, 

Children’s Hospital Oakland Research Institute) was sub-cloned into the firefly luciferase 

reporter construct pGL3-Basic vector (Promega) to generate pGL3-hPKCδ-4.4 plasmid 

(23). As shown in the Figure 1, a 7.4 kb region of PKC-δ gene was excised from BAC 

clone using XhoI and EcoRV enzymes in first step. Then, 4.4 kb region of PKC-δ 

promoter was excised using XhoI and SacII enzymes and sub-cloned into XhoI and 

HindIII restriction sites of pGL3-basic vector. Resulting pGL3-hPKCδ-4.4 construct was 

then used to measure PKC-δ promoter activity in different cell lines. When this construct 

was transfected into HaCaT-Ras cells, they showed significantly less PKC-δ promoter 

activity compared to HaCaT cells (23). This result confirmed that Ras mediated PKC-δ 

transcriptional loss in keratinocytes is due to reduction in PKC-δ promoter activity.
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Figure 2 illustrates restriction-site map of pGL3-hPKCδ-4.4. 

 

  

  

Figure 1: pGL3-hPKCδ4.4 Construction: 7.4 kb fragment of PKC-δ gene of 

was excised from 180 kb-BAC clone, followed by sub cloning 4.4 kb region of 

PKC-δ promoter into pGL3 basic vector. 
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PKC-δ gene regulation studies 

Although functions of PKC-δ have been studied widely, few studies have been done to 

understand its gene regulation. The 31 kb long human PKC-δ gene is located at 3p21.31 

region of the human chromosome (24). It comprises of 18 exons. In 2003, Suh et al. 

studied a 1.7 kb promoter region of murine PKC-δ gene, and showed that NF-κB 

increases PKC-δ promoter activity, resulting in increase in its expression (24). When 

mouse keratinocytes were transfected with murine PKC-δ promoter and treated with 

TNF-α, an activator of NF-κB, they showed higher reporter activity compared to 

untreated keratinocytes (24). This increase in reporter activity by TNF-α was abrogated 

by infecting keratinocytes with superrepressor IκB, a negative regulator of NF-κB (24). 

Liu and co-workers in 2006 showed that RelA, a major transactivating subunit of NF-κB 

positively regulates PKC-δ expression in mouse fibroblasts (25). This positive regulation 

was a result of increase in PKC-δ promoter activity mediated by interaction of RelA with 

Figure 2: pGL3-hPKCδ4.4 Plasmid Map: 4.4 kb promoter region of PKC-δ 

gene was sub-cloned into pGL3 basic vector between restriction sites XhoI and 

HindIII (17). Total length of pGL3-hPKCδ4.4 was 9.2 kb. Diagram of pGL3-

Basic Vector is a copyright of Promega Corporation. 
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two NF-κB binding sites identified in the same studies at -83 to -74 and -52 to -43 sites in 

-309 to -1 region of human PKC-δ promoter (25). Other studies done on PKC-δ gene 

regulation in past demonstrated that molecules p63, p73 in keratinocytes and SP1 in 

skeletal muscle cells also play role in positively regulating PKC-δ promoter activity (26, 

27).  

A former Ph.D. student of the Denning lab, Vipin Yadav attempted to dissect the 

signaling pathway downstream of activated Ha-Ras that leads to transcriptional 

repression of PKC-δ promoter activity. In his study, TFSearch analysis identified many 

potential transcription factor binding sites such as NF-κB, c-Ets, AP-1 in 4.4kb long 

human PKC-δ promoter (Figure 3). Site directed mutagenesis of NF-κB binding motif at 

-311 site in PKC-δ promoter resulted in 20 fold increase in PKC-δ promoter activity in 

HaCaT-Ras cells. Further, ChIP analysis using PCR primers that corresponded to NF-κB 

binding sites at -311 and -301 on PKC-δ promoter revealed that p50 and c-Rel subunits of 

NF-κB are specifically recruited to PKC-δ promoter in HaCaT-Ras cells. These results 

suggested that NF-κB plays prominent role in Ras mediated repression of the PKC-δ 

promoter. The data he generated further suggests that activated Ras activates PI3K, which 

activates Fyn (Src-family kinase), which subsequently phosphorylates IκB-α, a negative 

regulator of NF-κB (Yadav, Denning, Personal communication, Figure 4). This leads to 

degradation of IκB-α and activation of NF-κB, which finally represses PKC-δ promoter 

activity (Yadav, Denning, Personal communication, Figure 4). This proposed mechanism 

of active Ha-Ras leading to low PKC-δ promoter activity (Yadav, Denning, Personal 

communication, Figure 4) might be useful in devising therapeutic strategies to increase 

PKC-δ promoter activity in human keratinocyte cell line.  
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Figure 3: Potential Transcription Factor Binding Sites on the Human PKC-δ 

Promoter: In schematic depicting potential transcription factor binding sites on 

4.4 kb PKC-δ promoter region, please note the functional NF-κB binding site -

311 (second arrow pointing upward from the right side) on promoter. 
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High Throughput Screening 

High throughput screening (HTS) is a process of drug-discovery in which large numbers 

of molecules belonging to the pharmacological classes of interest are tested for their 

ability to produce measurable biological or chemical change in the system in highly 

accurate, sensitive, convenient, automated, as well as time and cost-efficient manner. 

Chemical compound libraries might contain 100,000 to as many as 1 million molecules, 

Figure 4: Proposed pathway leading to PKC-δ transcriptional repression 

after Ras activation: Activated Ras activates PI3K, which further activates src-

family kinase Fyn. Activated Fyn in turn phosphorylates and degrades IκB-α 

which activates NF-κB comprising p50 and c-Rel subunits. NF-κB finally 

translocates into nucleus and repressed PKC-δ promoter. 
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high throughput screening of which is conducted mainly in 96, 384 or 1536 well plate to 

allow miniaturization and automation. It also often involves robotics and automatic liquid 

handling systems. In screening, compounds which have desired biological or chemical 

effect of quantum above the set threshold are called ‘hits’. These hits are subjected to 

additional biochemical, pharmacological and clinical tests in next steps to find out the 

best compound having potential to become a therapeutic agent. 

HTS majorly involves two types of assays, namely biochemical and cell-based assays 

(28). Bio-chemical assays include isolation of biological or chemical target, and direct 

measurement of effect of drug candidates on target in vitro in environment suitable for 

biochemical measurements (29-35). Cell-based assays, which are performed on cells 

grown in vitro (36-41), are increasingly preferred over biochemical assays for HTS due to 

their similarity to physiological environment and larger scope of studies extending 

beyond just one target to multiple targets and whole signaling pathways (28). In addition 

to these two conventional approaches, many whole organism-based screening assays 

have been developed (42-52) in attempt to make HTS as physiologically relevant as 

possible. 

Cell-based assays represent at least half of all the HTS assays performed today (53). 

Major subtypes of cell-based assays are second messenger, reporter gene and cell 

proliferation or toxicity assays (53). Cell-based reporter gene assays are widely used to 

measure transcriptional or promoter activity of gene of interest. There have been many 

studies where cell-based reporter assays are successfully developed in high throughput 

format (38, 39, 54-57). Recently a group of researchers in Switzerland developed a 

HaCaT keratinocyte-based, high throughput luciferase reporter assay to test compounds 
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for their ability to sensitize the skin by inducing promoter of human AKR1C2 gene (58). 

In this study, HaCaT cell line stably transfected with pGL3 basic vector carrying 

antioxidant response elements (AREs) of human AKR1C2 gene was created using drug 

selection approach (58). This cell line was then used to screen numerous compounds and 

assess the statistical parameters of the assay (58). 

Validation of HTS 

After HTS assay has been designed, it is validated using statistical parameters. Zhang et 

al has very well defined a parameter to assess usefulness of assay for high throughput 

screening known as Z-factor (59). Z-factor is defined as follows (59):  

 

    1 - 
3 Standard Deviation of Positive Control  3 Standard Deviation of Negative Con rol

  Mean of Positive Control - Mean of Negative Control  
  

Following are the interpretations of Z values for HTS (59): 

Table 1: Inferences of Z values in High-Throughput Screening (59) 

Z value Inference for screening 

1 An ideal assay. 

0.5≤ <1 An excellent assay 

0<Z<0.5 A doable assay 

0 A yes/no type assay 

<0 Screening essentially impossible 
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Objective and hypothesis 

Our objective was to develop a stable cell-based reporter assay that could accurately 

detect relative PKC-δ promoter activity so that high throughput screening of compound 

libraries could be performed to identify compounds that induce PKC-δ transcription. The 

identified compounds (also referred to as ‘hits’) could be suitable candidates for novel 

drug development project for SCC, as even small increase in apoptosis can cause 

relatively large growth inhibition in regressing skin tumors (60). We proposed following 

hypothesis for this project. 

Compounds belonging to specific classes such as NF-κB inhibitors, or src-family kinase 

inhibitors, induce PKC-δ gene expression in stably transfected, PKC-δ reporter-human 

keratinocytes cell line which is Ras-transformed. 

We identify following specific aims to test this hypothesis. 

Specific Aims 

Aim 1: To develop a stably transfected PKC-δ promoter-reporter cell line, suitable 

for high throughput screening.  

Aim of developing a stable PKC-δ reporter cell line, suitable for high throughput 

screening forms the backbone of this project, as this cell line could be used in developing 

assay as well screening of compounds. 

This aim has been divided into following sub-aims for convenience. 

Sub-Aim 1A: Transfection and sub-sequent selection/sorting of transfected cells 

followed by selection of clones. 

Sub-Aim 1B: Screening of selected clones. 
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Aim 2: To identify positive control compounds which induce PKC-δ promoter 

activity and validation of PKC-δ reporter assay. 

This aim has been divided into following sub-aims for convenience. 

Sub-Aim 2A: To identify positive control compounds which induce PKC-δ promoter 

activity. 

It is very important for this project to identify in prior some compounds which induce 

PKC-δ gene expression to use them as positive controls for screening libraries of 

compounds. 

Sub-Aim 2B: Validation of PKC-δ reporter assay. 

Validation of assay i.e. all experimental conditions such as clone, positive control, plating 

density is highly important step before going to screening stage. It allows researcher to 

assess whether the assay is applicable to high throughput screening or needs further 

optimization. 

Sub-Aim 2C: Investigating Ras and PKC-δ expression in HaCaT-Ras and other cell 

lines.
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CHAPTER 2 

MATERIALS AND METHODS 

Cell Culture 

Both the HaCaT and HaCaT-Ras cells were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM, Life Technologies, Carlsbad, CA) supplemented with 10% Fetal 

Bovine Serum (FBS) and 1% Penicillin Streptomycin (Pen Strep). MDA-MB-231 cells 

were cultured in Improved Minimum Essential Medium (IMEM, VWR, Radnor, PA) 

supplemented with 5% FBS, 1% L-glutamine, and 1% non essential amino acids. To 

enhance growth of single HaCaT and HaCaT-Ras cells plated in 96 well plates after flow-

cytometric cell sorting, either medium was supplemented with 10 ng/mL of human EGF, 

or regular medium and conditioned medium (medium collected from plate of similar cells 

when cells reached around 80% confluency) were used in 1:1 proportion.  

Drugs and compounds 

Compounds used in this project were PP2 (Life Technologies, Carlsbad, CA), Dasatinib 

(LC Laboratories, Woburn, MA), LY294002 (Alexis Biochemicals, San Diego, CA), Bay 

11-7085 (Santa Cruz Biotechnology, Dallas, TX), Bortezomib (Millennium 

Pharmaceuticals, Cambridge, MA), MG132, GDC-0941 (Chemietek, Indianapolis, IN), 

Wortmannin (Alexis Biochemicals, San Diego, CA), Vitamin D3 (Sigma, St Louis, MO), 

TNF-α, estrogen (Sigma, St Louis, MO), insulin and TPA (Alexis Biochemicals, San 
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Diego, CA). Stock solutions were made in either DMSO or DEPC-treated water 

depending on vehicle recommended by manufacturer for different compounds. 

DNA Plasmid 

pGL3-hPKCδ-4.4 has been described previously (Figure 2, Reference 23). Renilla 

luciferase control pRL-CMV was purchased from Promega, Fitchburg, WI. EGFP 

plasmid pEGFP-C1 (Clontech, Mountain View, CA) was a gift from Dr. Clodia Osipo. 

Transfection 

Transfections were performed using TransIT 2020 (Mirus, Madison, WI) or FuGENE 6 

(Roche, Indianapolis, IN) by following manufacturer’s protocol. Briefly, on the day of 

transfection media on the cells was removed and replaced with regular DMEM for 

TransIT 2020 or serum-free Opti-MEM (Life Technologies, Carlsbad, CA) for FuGENE 

6. Recommended quantities of plasmid DNA and transfection reagent were mixed and 

incubated at room temperature for 30 minutes to allow complex formation, followed by 

addition of appropriate volume of this mixture into each well. Amounts of plasmid DNA 

transfected for different experiments are reported in their individual sections. MDA-MB-

231 cells were transfected using Lipofectamine (Life Technologies, Carlsbad, CA) 

according to manufacturer’s protocol.  

Dual Luciferase Assay 

HaCaT or HaCaT-Ras cells were plated on 12 well plate at density of 150,000 cells or 

200,000 cells per well respectively. 24 hours after plating, firefly luciferase reporter 

plasmid (pGL3-hPKCδ-4.4) and renilla luciferase control plasmid (pRL-CMV) were 

transfected into cells using TransIT 2020 or FuGENE 6 by methods described in 

Transfection section. In each well of a 12 well plate, 0.5 µg of firefly and 0.05 µg of 
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renilla luciferase plasmids were transfected. In experiments where cells were treated with 

drugs, drug treatments were started 24 hours after transfection. 48 hours after starting 

drug treatment, cells were lysed and firefly and renilla luciferase activities were measured 

using Dual Luciferase Reporter Assay (Promega, Fitchburg, WI) as per manufacturer’s 

instructions in Zylux bench-top luminometer. In experiments where cells were not treated 

with drugs, 48 hours after transfection luciferase activities were measured.  

Flow Cytometry 

Cells were washed with PBS- once and trypsinized. After trypsinization cells were 

suspended either in PBS with 1% BSA in PBS or DMEM with 10% FBS, followed by 

sorting of highly EGFP positive cells in BD FACSAria III (Becton Dickinson, Franklin 

Lakes, NJ). Each sorting was performed on single cells gated from a mixed population. 

Wherever necessary, sorted cells were directly plated in 96 well plate as single cell per 

well.  

Single Luciferase Assay 

Cells were plated on p60 or 6 well-plate in a way that they were around 60% confluent 

the next day. 24 hours after plating, pGL3-hPKCδ-4.4 was transfected into cells using 

FuGENE 6. Roche recommended ratio of 3 μL of FuGENE 6 for 1 μg of pGL3-hPKCδ-

4.4 was used for transfection. One day after transfection, HaCaT or HaCaT-Ras cells 

were plated in 96 well plate at a density of 20,000 or 50,000 cells per well respectively. 

Volume of DMEM in which cells were plated was 95 µL per well. The next day, drug 

treatments were initiated on cells by adding 5 µL of drug stock solutions per well, where 

concentrations of stock solutions were 20 times higher than the required concentrations. 

48 hours after starting drug treatments, luminescence was measured in PHERAstar FS 
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microplate reader (BMG Labtech, Cary, NC) using Steady-Glo Luciferase Assay System 

(Promega, Fitchburg, WI) following Promega’s protocol. For experiments where cells 

were not treated with drugs, luminescence was measured 48 hours after plating cells. 

Time point of luminescence measurement after addition of Steady-Glo luciferase assay 

reagent varied with different experiments. 

Luminescence and Fluorescence Measurements in PHERAstar FS 

All measurements were performed on PHERAstar FS with the help of BMG Labtech’s 

software and operating manual. For luminescence measurements, automatic injection 

function of PHERAstar FS was used to add luciferase assay reagent into 96 well plates. 

Speed of injection was chosen as 100 µL/second. 10 minutes after adding reagent, 

luminescence was measured in a ‘Plate Mode’ using ‘Bottom Optics’. Plate was read 

after enabling 6 mm of ‘Orbital Averaging’, a function which averages out multiple read-

outs taken across a specific diameter instead of taking just one read-out from a single 

point. Delay was 0.52 seconds. Focal height adjustment was performed on whole plate 

every time before reading luminescence. In experiments where plates were shaken after 

injecting the reagent, more than one kinetic cycle were chosen depending on 

experimental conditions such as shaking time, number of measurements, otherwise plates 

were read using one kinetic cycle. Shaking was performed by choosing ‘Additional 

Shaking’ option in injection settings, where required speed and mode of shaking was 

chosen.  

Fluorescence intensities were measured in ‘End Point Mode’, using appropriate 

excitation and emission module in PHERAstar FS. Before each measurement focal height 

and gain were adjusted for whole plate. 
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Cell Viability Assays 

For Alamar Blue assay (Life Technologies, Carlsbad, CA), 10 µL of Alamar Blue reagent 

was added to 100 µL of media in each well of 96 well plates. Then the plates were 

incubated at 37˚ C for approximately 2 hours. After incubation, fluorescence on plates 

was read using excitation/emission filter of 544/590 nm on POLARstar Omega (BMG 

Labtech, Cary, NC) as per manufacturer’s instructions. To perform Cell Titer-Fluor Cell 

Viability Assay (Promega, Fitchburg, WI), manufacturer’s protocol was followed. 

qRT-PCR 

For qRT-PCR, total RNA was isolated from cells using TRIzol Reagent (Life 

Technologies, Carlsbad, CA) following manufacturer’s protocol. Isolated RNA was 

converted to cDNA, and qRT-PCR was performed using SYBR Green real-time PCR kit 

(Life Technologies, Carlsbad, CA). GAPDH was a normalizing control for all the qRT-

PCRs. The sequences of primers were 5’-CAGATTGTGCTAATGCGGGC-3’ 

(Forward), 5’-TTTGCAATCCACGTCCTCCA-3’ (Reverse) for PKC-δ, 5’-

AGTCGCGCCTGTGAACG-3’ (Forward), 5’-CGTCATCGCTCCTCAGGG-3’ 

(Reverse) for Ha-Ras, 5’-GGCAGCCCTGTACGGGAGGT-3’ (Forward), 5’-

GCTCCACCTGCTCCAGCACC-3’ (Reverse) for Fyn, and 5’-

ACACTCAGCATCATCAAACTCAA-3’ (Forward), 5’-

TTCAGTGATAGCATCACCATGTC-3’ (Reverse) for GAPDH. 

Statistical Analysis 

Student’s T test was performed to calculate the P values and determine the statistical 

significance of the data. The difference observed between two experimental groups was 

considered statistically significant if the P value was less than 0.05.



 
 

20 
 

CHAPTER 3 

RESULTS 

pGL3-hPKCδ-4.4 isolation and verification 

To transfect PKC-δ promoter-reporter plasmid into cells, we isolated pGL3-hPKCδ-4.4, 

which is firefly luciferase reporter plasmid of 4.4 kb human PKC-δ promoter, from 

bacteria using QIAGEN Plasmid Midi kit according to manufacturer’s protocol. The 

length of isolated plasmid was verified by linearizing it with restriction enzyme XhoI, 

and running it on 0.8% agarose gel. In Figure 5, length of a linearized plasmid is 

approximately 9 kb (lane 3), which closely resembles length of pGL3-hPKCδ-4.4 (9.2 kb, 

Figure 2).
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Figure 5: Identification of 9.2 kb long- pGL3-PKC-δ-4.4 plasmid: 1 µg of 

pGL3-PKC-δ-4.4 plasmid was run on 0.8% agarose gel either uncut or linearized 

after digesting with XhoI. 
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Sensitivity of HaCaT-Ras cells to different drugs 

In order to develop a stably transfected HaCaT and HaCaT-Ras cell lines using drug-

selection approach, we sought to determine drugs to which both the cell lines were 

sensitive, and the optimal concentrations of drugs at which all the sensitive cells on the 

plates were killed. To determine this, we treated HaCaT and HaCaT-Ras cells with 

different concentrations of different drugs over different time durations. Results of these 

experiments are summarized in following table.  

Table 2: Sensitivity of HaCaT and HaCaT-Ras cells to various drugs 

HaCaT and HaCaT-Ras cells were treated with following drugs with specified 

concentration range and time duration. Results are stated in ‘Sensitivity’ column. 

(O.C = Optimal Concentration at which all the cells died, o.m.p = over multiple passages, 

Note: Sensitivity of HaCaT cells to blasticidin and puromycin was not tested as they were 

already sensitive to G418 and Hygromycin.)  

 HaCaT HaCaT-Ras 

Drug 

Concentration 

Range Tested 

(µg/mL) 

Time 

Duration of 

Drug 

Exposure 

(Days) 

Sensitivity 

Time 

Duration of 

Drug 

Exposure 

(Days) 

Sensitivity 

Puromycin 1-10 Not Tested Not Tested 5 Resistant 

G418 100-1200 4 

Sensitive 

O.C (1000 

µg/mL) 

17 o.m.p Resistant 

Hygromycin 100-1200 4 

Sensitive 

O.C (600 

µg/mL) 

7 o.m.p Resistant 

Blasticidin 10-50 Not Tested Not Tested 2 days 

Sensitive 

O.C (20 

µg/mL) 
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In summary, HaCaT-Ras cells were only sensitive to blasticidin, in contrast to HaCaT 

cells which were sensitive to both G418 and hygromycin.  

Transfection, sorting of transfected cells, and selection of clones. 

As an alternative approach to drug-selection, we decided to co-transfect HaCaT and 

HaCaT-Ras cells with PKC-δ promoter-reporter plasmid and an enhanced green 

fluorescent protein (EGFP) plasmid, and sort EGFP transfected cells by flow cytometry 

later on. Sorted EGFP+ cells should express PKC-δ promoter-reporter as the quantity of 

PKC-δ reporter plasmid used for transfection was much higher than quantity of GFP 

plasmid. Also we proposed that EGFP fluorescence in cells could serve as an internal 

control for cell viability. Figure 6 illustrates the complete approach of cell sorting to 

develop stable, pGL3-hPKCδ-4.4 transfected cell lines. 

We co-transfected pGL3-hPKCδ-4.4 plasmid in excess of pEGFP-C1 plasmid (4:1 ratio) 

in both HaCaT and HaCaT-Ras cells using FuGENE 6. 24 hours after transfection, we 

could visualize fluorescent HaCaT and HaCaT-Ras cells under fluorescent microscope, 

confirming that both the cells were transfected with pEGFP-C1. On the next day highly 

EGFP+ HaCaT and HaCaT-Ras cells were sorted by FACS (Figure 7). 17.5 percent of 

HaCaT-Ras cells were highly EGFP+ after primary bulk-sorting (Figure 7 B). The 

percentage of highly EGFP+ HaCaT-Ras cells here reflects transfection efficiency of 

pEGFP-C1 in HaCaT-Ras cells. Sorted cells were plated in 96 well plates at single cell 

per well. Also 20,000 and 50,000 bulk sorted HaCaT and HaCaT-Ras cells respectively, 

were plated in p35 plates. 48 hours after plating, we could visualize a single fluorescent 

cell in many but not all wells of 96 well plates (Figure 8). After 11 days, we again sorted 

highly EGFP+ cells from the HaCaT- Ras cells that were plated in p35 after first sorting. 
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2.4 percent of HaCaT-Ras cells were highly EGFP+ after secondary bulk-sorting (Figure 

7 C). The percentage of highly EGFP+ HaCaT-Ras cells here reflects percentage of 

HaCaT-Ras cells stably transfected with pEGFP-C1. Taking into account percentages of 

highly EGFP+ cells from both the figures 7A and 7C (17.5 and 2.4 respectively), it could 

be interpreted that out of 100% highly EGFP+ HaCaT-Ras cells sorted in primary sort, 

around 98% cells lost their EGFP expression by 10 days. Secondary sorted highly 

EGFP+ HaCaT-Ras cells were also plated in 96 well plates at single cell per well to select 

clones. 

We allowed sufficient time for clones to grow in 96 well plates, and selected clones 

which showed good growth rates. We selected 3 clones of HaCaT cells from sorted 

highly EGFP+ HaCaT cells. 7 and 4 clones of HaCaT-Ras were selected from highly 

EGFP+ HaCaT-Ras cells sorted for the first time and second time respectively. Selected 

clones were frozen down and stored in liquid nitrogen at -80˚ C. 
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Figure 6: Schematic of transfection and sorting of cells followed by selection of 

clones for screening: pGL3-hPKCδ-4.4 and pEGFP-C1 were co-transfected into 

HaCaT and HaCaT-Ras cells in ratio of 4:1 using FuGENE 6. Ratio of 4:1 was 

used for amounts of pGL3-hPKCδ-4.4 and pEGFP-C1 so that probability of 

EGFP+ cells being transfected with pGL3-hPKCδ-4.4 is high. Flow cytometric cell 

sortings for highly EGFP+ cells were performed two times, followed by plating 

one highly EGFP+ cell per well of 96 well plates each time. After indicated time 

periods HaCaT-Ras and HaCaT clones were collected and frozen down at -80˚ C.  
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97.6% 

2.4% 17.5

% 

82.5% 

4.5% 

95.5% 

(B) HaCaT-Ras- 

Primary sorting 

(C) HaCaT-Ras- 

Secondary 

sorting 

(A) HaCaT 

Figure 7: Flow cytometric sorting of highly EGFP+ HaCaT and HaCaT-Ras 

cells: In flow-cytometric analysis, percentages of highly pEGFP-C1+ cells were 

quantified in single cell population, gated from mixed cell population. 4.5% 

HaCaT cells (A) and 17.5% HaCaT-Ras cells (B) were found highly EGFP+ 48 

hours post-transfection. This was followed by sorting, plating and expansion of 

highly EGFP+ cells in bulk. After 11 days, primary sorted HaCaT-Ras cells were 

sorted again and 2.4% HaCaT-Ras cells (C) were highly EGFP+. 
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Screening of selected clones 

Approximately 60 days after freezing down the clones, all the frozen clones were thawed 

to screen for clones which were stably transfected. None of the HaCaT clones were 

EGFP+, however 4 out of 11 HaCaT-Ras clones were EGFP+ after thawing. The 4 

EGFP+ HaCaT-Ras clones were clones 8, 9, 10 and 11. 

Screening of HaCaT-Ras clones was performed in two batches (Figure 9 and 10), in 

which the HaCaT and HaCaT-Ras clones were plated in 96 well plates, and luciferase 

activity for each clone was measured in PHERAstar FS 72 hours after plating. Also, 24 

hours after plating clones were treated with 250 µM PP2 to see the inducibility of 

reporter activity in each clone. In screening, the only clone found stably transfected with 

pGL3-hPKCδ-4.4 was clone 9 (Figure 10 A). Difference between reporter activities of 

clone 9 and untransfected control was more than 100-fold and significant (Figure 10 B, 

Bright field Fluorescence 
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Figure 8: Single EGFP+ HaCaT-Ras cell in a 96 well plate: Image of a 

single EGFP+ HaCaT-Ras cell in 96 well plate observed 48 hours after 

plating. Objective: 4X 
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p<0.005). On the other hand, reporter activity of clone 9 was drastically less compared to 

transiently transfected HaCaT-Ras cells, a positive control for this experiment (Figure 10 

A). None of the HaCaT-Ras clones showed induction in PKC-δ reporter activity when 

treated with PP2 (Figure 9, 10). None of the HaCaT clones showed reporter activity 

higher than untransfected control in screening (Data not shown). 
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PKC-δ promoter activity in different 

HaCaT-Ras clones 

Figure 9: HaCaT-Ras Clone Screening Batch 1: HaCaT-Ras clones were plated 

in 96 well plates. 24 hours later clones were treated with 250 µM PP2, and 48 

hours following drug treatment, luminescence was measured in PHERAstar FS 

with untransfected HaCaT-Ras as negative control and transiently transfected 

HaCaT-Ras as positive control. n=9 for untransfected, transiently transfected 

HaCaT-Ras cells and untreated clones, n=3 for treated clones. n= number of 

replicates for any data point in one experiment. Error bars denote standard 

deviations. 
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Figure 10: HaCaT-Ras Clone Screening Batch 2: HaCaT-Ras clones were 

plated in 96 well plates. 24 hours later clones were treated with 250 µM PP2, and 

48 hours following drug treatment, luminescence was measured in PHERAstar FS. 

(A) Luciferase activity measured on all the clones with untransfected HaCaT-Ras 

as negative control and transiently transfected HaCaT-Ras as positive control (B) 

Re-plotting of luciferase data in (A) showing difference between luciferase 

activities of untransfected control and clone 9. Each data point is average of 6 

replicates in one experiment. Error bars denote standard deviation. 



30 
 

 
 

PP2 induces PKC-δ promoter activity in HaCaT-Ras cells 

Next, we wanted to identify positive control compounds which could highly induce PKC-

δ promoter activity in HaCaT-Ras cells to develop a robust high throughput assay having 

a high Z value. In order to do that, HaCaT-Ras cells were co-transfected with pGL3-

hPKCδ-4.4 and pRL-CMV plasmids (in 16:1 ratio), and treated with PP2, LY294002 or 

Dasatinib one day post transfection. We hypothesized that src-family kinase inhibitors 

PP2 and Dasatinib, and PI3K inhibitor LY294002 would have potential to inhibit 

elements of Ras signaling pathway described earlier (Figure 4). 48 hours following drug 

treatments, firefly and renilla luciferase activities were measured by dual luciferase assay. 

As shown in Figure 11, PP2 (10 µM) treatment showed 1.5-fold induction in PKC-δ 

promoter activity compared to untreated control. P value calculated for this difference of 

luciferase activities using Student’s T test, was less than 0.005. As 0.05 is a pre-

determined significance threshold, we considered this induction in reporter activity as 

statistically significant. LY294002 (10 µM) treatment led to significant decrease in PKC-

δ promoter activity, whereas Dasatinib (10 nM) treatment did not change it significantly 

(Figure 11).  
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Optimization of PHERAstar FS for fluorescence and luminescence measurements 

We sought to optimize PHERAstar FS for fluorescence and luminescence measurements 

in this project. We checked if PHERAstar FS had ability to detect fluorescent signals 

emitted by pEGFP-C1 transfected HaCaT-Ras cells in 96 well plates. As shown in Figure 

12, EGFP transfected HaCaT-Ras cells showed very high fluorescence intensity 

compared to untransfected HaCaT-Ras cells in PHERAstar FS. In contrast, there was no 

significant difference observed between fluorescence of EGFP transfected and 

untransfected HaCaT cells, indicating very low transfection efficiency (Figure 12). 
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Figure 11: Dual luciferase assay on HaCaT-Ras cells after different drug 

treatments: pGL3-hPKCδ-4.4 and pRL-CMV were co-transfected into HaCaT-

Ras cells in relative amounts of 16:1 using TransIT 2020. 24 hours after 

transfection, cells were treated with indicated concentrations of PP2, LY294002, 

and Dasatinib. Dual luciferase assay was performed 48 hours following drug 

treatments. Each data point shown in figure is average of three replicates in one 

experiment. Error bars denote standard deviation. 
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Figure 13 shows the luminescence measurements carried out on the PHERAstar FS on 

pGL3-hPKCδ-4.4 transfected HaCaT-Ras cells, with or without 10 µM PP2 treatment. It 

is noticeable that luminescence measured in pGL3-hPKCδ-4.4 transfected HaCaT-Ras 

cells was more than 10-fold higher compared to untransfected control (Figure 13). 

Further, luciferase activity was significantly increased when transfected cells were treated 

with PP2 (Figure 13). 
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Figure 12: Fluorescence measurement in PHERAstar FS: HaCaT and HaCaT-

Ras cells were transfected with indicated plasmids using FuGENE 6, and plated in 

a 96 well plate 24 hours after transfection. 48 hours after plating, fluorescence 

intensity was measured in PHERAstar FS. Note the high RFU value for EGFP 

transfected HaCaT-Ras cells. Here n = number of replicates for each data point in 

one experiment. Error bars denote standard deviations. 
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To decide the optimal time point of reading luminescence in PHERAstar FS after 

addition of Steady-Glo Luciferase assay reagent, we measured luminescence at different 

time points after addition of assay reagent in addition to following manufacturer’s 

recommended protocol of measuring luminescence 10 minutes after adding assay reagent 

(Figure 14). As seen in Figure 14, for both PP2 treated and untreated HaCaT-Ras cells 
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Figure 13: Luminescence measurement in PHERAstar FS: HaCaT and 

HaCaT-Ras cells were transfected with pGL3-hPKCδ-4.4 using FuGENE 6, and 

on next day, transfected cells were plated in a 96 well plate. 24 hours after plating, 

cells were treated with 10 µM PP2. Luminescence was measured in PHERAstar 

FS 48 hours following drug treatment. Note RLU values in transfected cells with 

or without PP2 treatment. n = 5 for all data points. Here n = number of replicates 

for each data point in one experiment. Error bars denote standard deviations. 
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luciferase activity was fairly similar over time. Although it increased to small extent after 

50 minutes, increases in PP2 treated and untreated cells were similar (Figure 14). As 

measuring luminescence after longer waiting times (50, 60 minutes) did not offer any 

advantages, we chose 10 minutes as an optimal time point for reading luminescence after 

adding reagent. 
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Figure 14: Luminescence measurement in PHERAstar FS over different time 

points: HaCaT-Ras cells were transfected with pGL3-PKC-δ-4.4 plasmid using 

FuGENE 6, and on next day transfected cells were plated in a 96 well plate. 24 

hours after plating, cells were treated with 10 µM PP2. 48 hours following drug 

treatment, luminescence was measured in PHERAstar FS 0, 10, 50 and 60 minutes 

after adding Steady-Glo Luciferase assay reagent. RLU values shown in the graph 

are averages of five replicates in one experiment. 
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We also carried out experiment to determine best optic settings in PHERAstar FS to 

measure signals from a 96 well plate, and obtained the following results for three 

important optic parameters of PHERAstar FS. 

1. Measurements by ‘Bottom Optics’ were more sensitive and accurate compared to 

those by ‘Top Optics’ (Data not shown).  

2. Using ‘Orbital Averaging’ during read-outs increased agreeability of readings 

amongst replicates of similar groups (Figure 15). However, orbital averaging did 

not affect magnitude of signals. 

3. We read fluorescence signals on PHERAstar FS using different numbers of 

flashes per well in the range of 0 to 159, and found that increasing number of 

flashes per well increased accuracy of read-outs (Data not shown). So we used 

159 flashes per well to measure fluorescence in PHERAstar FS. 
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Effect of orbital averaging on precision of fluorescence 

measurements   

Figure 15: Orbital averaging in PHERAstar FS improves precision of 

fluorescence measurements: HaCaT-Ras cells were transfected with pGL3-PKC-

δ-4.4 plasmid using FuGENE 6, and on next day transfected cells were plated in a 

96 well plate. 24 hours after plating, cells were treated with indicated drugs. 48 

hours following drug treatment, luminescence was measured in PHERAstar FS. 

%CV was calculated from fluorescence intensities of three replicates in one 

experiment. 
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Higher doses of PP2 lead to higher induction in PKC-δ reporter activity 

To characterize dose-response effect of PP2 on HaCaT-Ras cells, we treated pGL3-PKC-

δ-4.4 transfected HaCaT-Ras cells with increasing doses of PP2 and found that increase 

in dose of PP2 results in higher induction in PKC-δ promoter activity (Figure 16). 

Highest fold induction in reporter activity compared to control was 2.61-fold for 100 µM 

PP2 (Figure 16). Moreover, there was no peak effect observed in the dose-response curve 

(Figure 16, note last two columns). 
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Combination of Bay 11-7085 and TPA induces PKC-δ reporter activity 

In experiments similar to the one described earlier (Figure 16), we tested different 

compounds and combination of compounds for their ability to induce PKC-δ reporter 

activity (Figure 17, 18). The compounds tested included proteosome inhibitor 

Bortezomib (61), NF-κB inhibitor Bay 11-7085, PI3K inhibitor GDC-0941 which were 

used to inhibit elements of proposed Ras signaling pathway earlier (Figure 4) and TNF-α, 
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* 
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=  p<0.05 compared to Untreated 
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PKCδ promoter activity for HaCaT-Ras cells 48h after 

treatments with different concentrations of PP2   

Figure 16: PP2 Dose-Response Relationship: HaCaT-Ras cells were transfected 

with pGL3-PKC-δ-4.4 using FuGENE 6, and plated in 96 well plate on the next 

day. 24 hours after plating, cells were treated with different concentrations of PP2. 

48 hours following drug treatment, luciferase activity was measured in 

PHERAstar FS.  n= 4 for PP2 (1 µM), n=6 for other data points, where n= number 

of replicates for data point in one experiment. FI = Fold Induction. Error bars 

denote standard deviations. 
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Vitamin D3, Estrogen, Insulin and TPA which were shown to induce PKC-δ gene 

expression in other studies (24, 62-65). As evident in Figure 18, combination of 25 µM 

Bay 11-7085 and 50 nM TPA gave the highest induction in reporter activity amongst all 

compounds or combination of compounds tested. 
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Figure 17: Testing different compounds for their ability to induce PKC-δ 

promoter activity 1: HaCaT-Ras cells were transfected with pGL3-PKC-δ-4.4 

using FuGENE 6, and plated in 96 well plate on the next day. 24 hours after 

plating, cells were treated with indicated concentrations of Bortezomib, Vitamin 

D3, TNF-α, Estrogen, and Insulin. 48 hours following drug treatment, luciferase 

activity was measured in PHERAstar FS.  n= 9 for untreated, n=3 for other data 

points, where n= number of replicates for data point in one experiment. Dotted 

line indicates basal PKC-δ reporter activity in untreated HaCaT-Ras cells on 

graph. Error bars denote standard deviations. 
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Figure 18: Testing different compounds for their ability to induce PKC-δ 

promoter activity 2: HaCaT-Ras cells were transfected with pGL3-PKC-δ-4.4 

using FuGENE 6, and plated in 96 well plate on the next day. 24 hours after 

plating, cells were treated with indicated concentrations of Bay 11-7085, Bay 11-

7085+TPA, GDC-0941, GDC-0941+TPA and TPA. 48 hours following drug 

treatment, luciferase activity was measured in PHERAstar FS.  n= 9 for untreated, 

n=3 for other data points, where n= number of replicates for data point in one 

experiment. Dotted line indicates basal PKC-δ reporter activity in untreated 

HaCaT-Ras cells on graph. Error bars denote standard deviations. 
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Z value calculations 

Z values for the two candidate assays in which positive control compounds showed 

highest induction in PKC-δ reporter activity, were calculated by equation described 

earlier (59). The first assay, consisting of combination of Bay 11-7085 and TPA as a 

positive control (Figure 18, column 1 as a negative control, column 4 positive control), 

gave Z value of -0.06 after analysis. Following interpretations for Z values described in 

section 1.7 in background, this assay was unacceptable for high throughput screening. 

Second assay, which employed PP2 as a positive control (Figure 16, column 1 as a 

negative control, column 6 positive control), gave Z value of 0.19. Z value of 0.19 could 

be interpreted as a doable assay (Table 1). However, none of the candidate assays had our 

desired Z value of 0.5 or above to generate an excellent assay. So in order to obtain 

higher Z values, we attempted to find ways to increase the induction in reporter activity 

with drug treatments and decrease the variability of luminescence.  

Treatment of HaCaT-Ras cells with PP2 reduces number of attached cells 

If drug treatments had any effect on number or viability of HaCaT-Ras cells, those effects 

would also have effects on the luciferase activities of treated cells. Therefore it was 

important to know whether or not drugs being used in this project had any effects on 

number or viability of HaCaT-Ras cells, and if they did, to find out a convenient way to 

normalize the luminescence data with cell number or viability. When EGFP transfected 

HaCaT-Ras cells were treated with 10 µM PP2 for 48 hours, they showed formation of 

clusters and reduction in number of attached cells (Figure 19).  
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Figure 19: Effect of PP2 on morphology and number of attached HaCaT-Ras 

cells: HaCaT-Ras cells were transfected with EGFP using FuGENE 6, and plated 

in 96 well plate on the next day. 24 hours after plating, cells were treated with 10 

µM PP2.  Images shown here were captured in fluorescent microscope 48 hours 

after PP2 treatment. Objective: 4X 
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EGFP fluorescence does not reflect number of attached HaCaT-Ras cells observed 

on plate 

When we treated EGFP transfected HaCaT-Ras cells with drugs PP2, Bortezomib and 

MG132 (another proteasome inhibitor), we found poor correlation between number of 

attached HaCaT-Ras cells observed under microscope and fluorescence measured in 

PHERAstar FS after drug treatments (Figure 20). Specifically, with 1 µM PP2 treatment, 

reduction in number of attached cells observed under microscope (Figure 20 B, second 

column) was not reflected in fluorescence measurement as a reduction in fluorescence 

intensity (Figure 20 A, third bar). This was also true for 1 µM MG132 treatment (Figure 

20 A-fourth lane, B -third image). Thus EGFP fluorescence was not a reliable method to 

normalize for cell number and viability. 
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Figure 20: Poor correlation between fluorescence read by PHERAstar FS and 

number of attached cells observed for HaCaT-Ras cells treated with different drugs: 
Treatments with the indicated drugs were started on HaCaT-Ras cells, co-transfected with 

pGL3-hPKC-δ-4.4 kb and EGFP 24 hours post-transfection. Then (A) Fluorescence was 

measured using PHERAstar FS, 48 hours post drug treatments. Error bars denote standard 

deviations (B) Cells were observed under fluorescent microscope, 24 hours after initiation 

of drug treatments. Shown are the images of PP2 (1 µM), MG132 (1 µM), and 

Bortezomib (200 nM) treated cells. Objective: 4X. n=6 for Untreated, n=3 for all drug 

treatments, n= number of replicates for any data point in one experiment. 

 

 

 

 

 



45 
 

 
 

Viability of HaCaT-Ras cells decreases after PP2 treatment 

We used different methods of measuring cell viability to see if reduction in number of 

attached cells observed after PP2 treatment (Figure 20 B) is actually reduction in cell 

viability or not. Indeed, PP2 treatment decreased number of viable HaCaT-Ras cells as 

measured by Alamar Blue and Cell-Titer Fluor Cell Viability Assays (Figures 21,22). 

Reduction in cell viability assay was 16% using Alamar Blue after 200 µM PP2 treatment 

(Figure 21), whereas it was 57% using Cell-Titler Fluor Cell Viability assay after 250 µM 

PP2 treatment (Figure 22). 
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Figure 21: Cell viability measurements using Alamar Blue Assay: pGL3-

hPKC-δ-4.4 kb transfected HaCaT-Ras cells were plated in 96 well plate. 24 hours 

after plating, cells were treated with PP2. 48 hours after drug treatments, cell 

viability was measured using Alamar Blue assay following manufacturer’s 

protocol. n=6 for all data points, where n = number of replicates for any data point 

in one experiment. Error bars denote standard deviations. 
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Figure 22: Cell viability measurements using Cell-Titler Fluor Viability 

Assay: HaCaT-Ras cells were plated in 96 well plate. 24 hours after plating, cells 

were treated with PP2. 48 hours after drug treatments, cell viability was measured 

using Cell-Titler Fluor Viability assay following manufacturer’s protocol. n 2 for 

all data points, where n = number of replicates for any data point in one 

experiment. Error bars denote range. 
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Effect of shaking on variability of luminescence 

To reduce variability in luminescence read-outs in PHERAstar FS, we employed a 

shaking step in our protocol and assessed how it affects %CV (Co-efficient of Variation) 

of luminescence read-outs. We saw reduction in %CV after shaking the plate for up to 10 

minutes after measuring luminescence by Steady-Glo Luciferase Assay protocol (reading 

luminescence 10 minutes after addition of assay reagent without shaking the plate) 

(Figure 23 A). Shaking for more than 10 minutes after first measurement resulted in 

increase in %CV (Figure 23 A, time point 4 and 5). Figure 23 B depicts the luminescence 

values read on PHERAstar FS in this experiment. 
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(A) Effect of shaking on variability in luminescence in HaCaT-

Ras cells treated with Bay11+TPA 

Figure 23 (A): Shaking reduces variability of luminescence read-outs in 

PHERAstar FS: pGL3-hPKC-δ-4.4 kb transfected HaCaT-Ras cells were plated 

in 96 well plate. 24 hours after plating, cells were treated with combination of 25 

µM Bay 11-7085 and 50 nM TPA. 48 hours after drug treatments, luminescence 

was measured in PHERAstar FS at different time points described in figures. 

Briefly, for first time point, company protocol was followed to measure luciferase 

activity without shaking and each of subsequent measurements included 5 minutes 

shaking period. (A) shows %CV calculated from (B) luminescence values for all 

groups (See next page). For each time point cumulative shaking time in mentioned 

in figure. Speed and motion of shaking of most recent shaking is mentioned in 

brackets. 
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Figure 23 (B): Shaking reduces variability of luminescence read-outs in 

PHERAstar FS: pGL3-hPKC-δ-4.4 kb transfected HaCaT-Ras cells were plated 

in 96 well plate. 24 hours after plating, cells were treated with combination of 25 

µM Bay 11-7085 and 50 nM TPA. 48 hours after drug treatments, luminescence 

was measured in PHERAstar FS at different time points described in figures. 

Briefly, for first time point, company protocol was followed to measure luciferase 

activity without shaking and each of subsequent measurements included 5 minutes 

shaking period. (B) shows luminescence values for all groups. n= 6 for all data 

points, where n = number of replicates for any data point in one experiment. For 

each time point cumulative shaking time in mentioned in figure. Speed and motion 

of shaking of most recent shaking is mentioned in brackets. Error bars denote 

standard deviations. 
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We also looked at the effect of shaking on variability of luminescence in HaCaT-Ras 

cells treated with PP2. We found that increase in shaking time results in decrease in %CV 

of luminescence (Figure 24 A). Again, we noticed that at time point 3 (after 10 minutes 

of shaking) %CV was low for both untreated and PP2 treated HaCaT-Ras cells, but 

increasing shaking time beyond that resulted in increase in %CV for PP2 treated cells 

(Figure 24 A). 
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Figure 24 (A): Effect of shaking on PP2 treated HaCaT-Ras cells: pGL3-

hPKC-δ-4.4 kb transfected HaCaT-Ras cells were plated in 96 well plate. 24 hours 

after plating, cells were treated with 250 µM PP2. 48 hours after drug treatments, 

luminescence was measured in PHERAstar FS at different time points indicated in 

figures. Briefly, for first time point, company protocol was followed to measure 

luciferase activity without shaking and each of subsequent measurements included 

5 minutes shaking period. (A) shows %CV calculated from (B) luminescence 

values for all groups (See next page). For each time point cumulative shaking time 

in mentioned in figure. Speed and motion of shaking of most recent shaking is 

mentioned in brackets. 
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(B) Effect of shaking on luminescence measurements in 

HaCaT-Ras cells after PP2 treatment 

Figure 24 (B): Effect of shaking on PP2 treated HaCaT-Ras cells: pGL3-

hPKC-δ-4.4 kb transfected HaCaT-Ras cells were plated in 96 well plate. 24 hours 

after plating, cells were treated with 250 µM PP2. 48 hours after drug treatments, 

luminescence was measured in PHERAstar FS at different time points indicated in 

figures. Briefly, for first time point, company protocol was followed to measure 

luciferase activity without shaking and each of subsequent measurements included 

5 minutes shaking period. (B) shows luminescence values for all groups. n= 6 for 

all data points, where n = number of replicates for any data point in one 

experiment. For each time point cumulative shaking time in mentioned in figure. 

Speed and motion of shaking of most recent shaking is mentioned in brackets. 

Error bars denote standard deviations. 
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To see if adding shaking step right after addition of reagent reduces variability or not, we 

performed experiment similar to figure 23 except with shaking the plate right after adding 

the reagent this time. Interestingly, %CVs after shaking the plate right after addition of 

reagent were higher than ones where plate was not shaken ( 8.6 and 10.6 for untreated 

cells at time points 1 in Figure 23 A and 25 A respectively, and 7.2 and 8 for treated cells 

at time points 1 in Figure 23 A and 25 A respectively). Secondly, shaking the plate at first 

time point did not lead to reduction in %CV in at least two subsequent time points as 

much as seen without shaking plate at first time point (First three time points in untreated 

cells in 23 A are 8,6.1 and 4.5, whereas in 25 A are 10.5, 9.6 and 8.7). Therefore, we 

found that the optimal shaking duration to achieve lowest %CVs was 10 minutes, where 

shaking of the plates was started 10 minutes after addition of the reagent. 
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Figure 25 (A): Shaking plate right after addition of luciferase reagent is not 

beneficial to reduce variability: pGL3-hPKC-δ-4.4 kb transfected HaCaT-Ras 

cells were plated in 96 well plate. 24 hours after plating, cells were treated with 

combination of 25 µM Bay 11-7085 and 50 nM TPA. 48 hours after drug 

treatments, luminescence was measured in PHERAstar FS at different time points 

described in figures. Briefly, for first time point, plate was shaken for 5 minutes 

right after addition of reagent and luminescence was measured 10 minutes after 

shaking. Each of subsequent measurements included additional 5 minutes shaking 

period. (A) shows %CV calculated from (B) luminescence values for all groups 

(See next page). For each time point cumulative shaking time in mentioned in 

figure. Speed and motion of shaking of most recent shaking is mentioned in 

brackets. 

 

 

 

 

 



55 
 

 
 

 

 

 

 

 

 

 

 

 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

HaCaT Ras HaCaT Ras + 
(Bay11+TPA) 

Time point 1 = 5 mins 
shaking (200 rpm, linear) 
after addition of reagent 

Time point 2 = 10 mins 
shaking (700 rpm,orbital) 

Time point 3 = 15 mins 
shaking (700 rpm,orbital) 

Time point 4 = 20 mins 
shaking (700 rpm,orbital) 

(B) Effect of shaking on luminescence measurements in  

HaCaT-Ras cells with Bay11+TPA treatment II 

P
K

C
-δ

 P
ro

m
o
te

r 
A

ct
iv

it
y
 

Figure 25 (B): Shaking plate right after addition of luciferase reagent is not 

beneficial to reduce variability: pGL3-hPKC-δ-4.4 kb transfected HaCaT-Ras 

cells were plated in 96 well plate. 24 hours after plating, cells were treated with 

combination of 25 µM Bay 11-7085 and 50 nM TPA. 48 hours after drug 

treatments, luminescence was measured in PHERAstar FS at different time points 

described in figures. Briefly, for first time point, plate was shaken for 5 minutes 

right after addition of reagent and luminescence was measured 10 minutes after 

shaking. Each of subsequent measurements included additional 5 minutes shaking 

period. (B) shows luminescence values for all groups. n= 6 for all data points, 

where n = number of replicates for any data point in one experiment. For each 

time point cumulative shaking time in mentioned in figure. Speed and motion of 

shaking of most recent shaking is mentioned in brackets. Error bars denote 

standard deviations. 
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PKC-δ mRNA levels in HaCaT-Ras cells 

We were concerned if our HaCaT-Ras cells still had repressed PKC-δ gene expression 

because (i) we always observed high basal PKC-δ reporter activity in transiently 

transfected HaCaT-Ras cells (Figure 9, 10 A), and (ii) PKC-δ reporter activity could not 

be highly induced in these cells even at higher concentrations of PP2 (Figure 16). To 

answer this question, we measured steady state mRNA levels of PKC-δ in HaCaT-Ras 

cells by qRT-PCR and found that they were not lower compared to those in the HaCaT 

cells (Figure 26), as had been reported previously (17,23). Instead, PKC-δ mRNA levels 

were three fold higher in HaCaT-Ras cells than those in HaCaT cells (Figure 26). 
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Figure 26: PKC-δ mRNA levels are not reduced in HaCaT-Ras cell line: RNA 

from both the HaCaT and HaCaT-Ras cells were isolated, and qRT-PCR was 

performed to check mRNA levels of PKC-δ after conversion of RNA to cDNA. 

n=3 for all data points, where n = number of replicates for any data point in one 

experiment. Error bars denote standard deviations. 
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Ras mRNA levels in HaCaT-Ras cells 

Since Ras is an upstream mediator of our proposed signaling pathway leading to PKC-δ 

gene repression in HaCaT-Ras cells (25), we measured mRNA levels of Ras  in HaCaT-

Ras cell lines to see if they still over-express Ras protein compared to HaCaT cells. 

Steady state mRNA levels of Ras were not up regulated in two different thaws of HaCaT-

Ras cells of our laboratory compared to HaCaT cells (Figure 27), as determined by qRT-

PCR.  
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Figure 27: Ras mRNA levels are reduced in HaCaT-Ras cell line: RNAs from 

HaCaT and two different thaws of HaCaT-Ras cells, HaCaT-Ras KP and HaCaT-

Ras SF were isolated, and qRT-PCR was performed to check mRNA levels of Ras 

after conversion of RNA to cDNA. n=3 for all data points, where n = number of 

replicates for any data point in one experiment. Error bars denote standard 

deviations. H.Ras KP = HaCaT-Ras cells cultured by Kushal Prajapati, and H.Ras 

SF = HaCaT-Ras cells cultured by Sarah Fenton. Both the H.Ras KP and H.Ras 

SF belonged to the same frozen stock of HaCaT-Ras cells. 
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PKC-δ mRNA levels in HaCaT-Fyn cells 

Since HaCaT-Ras cells no longer had lower endogenous PKC-δ levels (Figure 26) and 

higher endogenous Ras levels, we sought to find out another cell line having reduced 

PKC-δ levels that could be used to continue this study. We assessed endogenous PKC-δ 

mRNA levels of Fyn transformed HaCaT cells, HaCaT-Fyn as high Fyn activity may lead 

to reduction in PKC-δ gene expression (Figure 4). We also checked PKC-δ mRNA levels 

of triple negative breast cancer cells, MDA-MB-231 with or without 10 µM LY294002 

treatment to see if they have PI3K mediated repression of PKC-δ transcription. Using 

qRT-PCR, we found that HaCaT-Fyn cells had higher PKC-δ mRNA levels compared to 

HaCaT cells (Figure 28). When MDA-MB-231 cells were treated with 10 µM 

LY294002, they showed higher PKC-δ mRNA levels compared to untreated control 

(Figure 28). However, this data could not be recapitulated in a dual luciferase assay, 

wherein we found decrease in PKC-δ mRNA levels in MDA-MB-231 cells after 

LY294002 treatment (Figure 29). 
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Figure 28: PKC-δ mRNA levels in HaCaT-Fyn and MDA-MB-231: HaCaT-

Fyn, MDA-MB-231 cells were plated in a way that they were around 60% 

confluent the next day. On next day, treatment with 10 µM LY294002 was started 

on MDA-MB-231. 24 hours after that RNA from all cells were isolated, and qRT-

PCR was performed to check mRNA levels of PKC-δ. n 3 for all data points, 

where n = number of replicates for any data point in one experiment. Error bars 

denote standard deviations. 
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Figure 29: Dual luciferase assay on MDA-MB-231 cells after different drug 

treatments: pGL3-hPKCδ-4.4 and pRL-CMV were co-transfected into MDA-

MB-231 cells in relative amounts of 9:1 using Lipofactamine. 24 hours after 

transfection, cells were treated with indicated concentrations of PP2 and 

LY294002. Dual luciferase assay was performed 24 hours following drug 

treatments. Each data point shown in figure is average of three replicates. Error 

bars denote standard deviation. 
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CHAPTER 4  

DISCUSSION 

The goal of this study was to develop a stable, high-throughput screening PKC-δ reporter 

assay that allows screening of high number of compounds having a potential to induce 

PKC-δ gene expression in both academic and industrial settings. To develop a stably 

transfected cell line, drug selection approach is a commonly utilized by scientists (57, 

58). In our case, HaCaT-Ras cells were resistant to most of the selection drugs but the 

blasticidin. We did not have any mammalian-expression vector carrying blasticidin 

resistance gene to select the transfected cells using blasticidin. Although we could sub-

clone a blasticidin resistance gene in mammalian-expression vector, we proposed an 

alternative approach of developing a stably transfected cell line to save time. We 

proposed an approach which involved co-transfection with PKC-δ reporter plasmid and 

EGFP, followed by flow-cytometric sorting of EGFP+ cells to select stably transfected 

cells. Although the drawback of this approach is that cells are not always under selection 

pressure to allow elimination of cells which lose plasmids over time, the advantage is that 

cells stably transfected with EGFP could be easily determined by observing fluorescent 

cells under microscope. Hereby, we utilized this approach and were successful in 

generating a HaCaT-Ras cell line stably expressing the pGL3-hPKCδ-4.4 reporter 

plasmid.
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For selecting the most appropriate clone for assay development, growth, stable 

transfection and inducibility of reporter activity after treatment with positive control 

compound PP2 were major criterions. Although we obtained a clone stably transfected 

with pGL3-hPKCδ-4.4kb plasmid (Clone 9), inducibility of reporter activity after PP2 

treatment was absent in all the clones. The reason for lack of inducibility in reporter in 

clones may be attributed to the fact that at some point of time HaCaT-Ras cells stopped 

activating our proposed Ras pathway (Figure 4, 26, 27) leading to PKC-δ promoter 

repression.  

Searching a good positive control compound which robustly induces PKC-δ promoter 

activity was a challenging task as gene regulation of PKC-δ has not been studied 

extensively in the past, and so not many compounds increasing PKC-δ gene expression 

are known. To find out a positive control that highly induces our 4.4 kb-PKC-δ promoter 

activity, we chose specific compounds which would inhibit components of proposed Ras 

signaling pathway (Figure 4), and compounds which increased PKC-δ gene expression in 

other studies. We found the src family kinase inhibitor PP2 to be the best inducer of 

PKC-δ promoter activity in HaCaT-Ras cells (Figure 16). The results of NF-κB inhibitor-

Bay 11-7085 alone leading to reduction in PKC-δ promoter activity (Figure 18, column 2, 

3) suggested that NF-κB might be a positive regulator of PKC-δ transcription. This was 

in congruence with earlier human PKC-δ promoter studies reported on mouse fibroblasts 

by Liu et al. (25). Interestingly, combination of Bay 11-7085 and PKC activator-TPA 

induced PKC-δ promoter activity, as a result of synergy between the two compounds. On 

the other hand, TNF-α, vitamin D3, estrogen, and insulin did not induce PKC-δ reporter 

activity. These findings were not consistent with previous reports (24, 63-65), possibly 
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because the cell systems used in those studies were different than our cell model system. 

Substantial efforts were put to optimize the high-throughput assay protocol in 

PHERAstar FS. For all the single luciferase assays carried out in PHERAstar FS using 

Steady-Glo Luciferase Assay System, it should be noted that there was no internal control 

(such as Renilla luciferase) to normalize the data for transfection efficiency like in dual 

luciferase assays, and it was assumed that transfection efficiencies of pGL3-hPKCδ-4.4 

for all the HaCaT-Ras cells plated in multiple wells were similar. Also in these 

experiments Steady-Glo Luciferase Assay System was injected into wells using 

automatic injectors of PHERAstar FS against Promega’s protocol recommendation of not 

using automatic injectors for this reagent to avoid frothing. We used relatively low 

automatic injection speed in PHERAstar FS, and found no visual evidence of frothing in 

media on the plate after automatic injection.  

The Z value was our yardstick to assess the usability of high-throughput assay developed 

in this project. We were able to develop an acceptable assay (Z=0.19) using PP2 as a 

positive control in this study, however were not successful in generating excellent assay 

having Z value 0.5 or higher. To improve quality of the assay, we aimed to increase the 

fold induction in PKC-δ promoter activity after drug treatment and reduce variability 

(%CV) of luminescence. As PP2 treatment caused reduction in number attached HaCaT-

Ras cells when observed under the microscope, we thought that it was important to 

normalize luciferase activity with cell number or viability to correct for the effect of 

reduced cell viability on induction in reporter activity for any compound in statistical 

analysis. Initially in this study we proposed to use EGFP fluorescence as an internal 

control for cell viability, however we could not do so as EGFP fluorescence did not 
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correlate with the number of attached cells observed under microscope (Figure 20). The 

probable reason for this phenomenon was that drug compounds had an effect on the 

transcription of EGFP through interaction with CMV promoter of pEGFP-C1 plasmid 

transfected into HaCaT-Ras cells. Using Alamar Blue and Cell Titer Fluor Viability 

assays, we showed that treating HaCaT-Ras cells with compounds such as PP2 reduces 

their viability (Figures 21, 22). However, both Alamar Blue and Cell Titer Fluor Viability 

assays interfered with luminescence measurements (Data not shown). Thus multiplexing 

any suitable cell viability measurement kit in a high throughput luciferase assay in a way 

that it does not affect luciferase measurements, and health of cells is an important 

challenge that needs to be addressed in future. In an attempt to reduce variability in 

luminescence measurements, we started shaking 96 well plates before reading 

luminescence on PHERAstar FS. As reported in an earlier study (66), shaking the plates 

before reading luminescence resulted in reduction in %CV in luminescence. We found 

that the optimal time point and duration of shaking to achieve lowest %CV values in our 

protocol were 10 minutes after adding the assay reagent and 10 minutes respectively 

(Figure 23 A).  

At some point of time during this study, our HaCaT-Ras cells lost active Ras pathway we 

proposed earlier and consequentially stopped expressing lower PKC-δ and higher Ras 

mRNA levels. It was difficult for us to explain the reason for this occurrence, however 

one possible reason we postulated was that HaCaT-Ras cells methylated and silenced 

retroviral-LTR promoter, which drove stable active Ras expression in these cells. As this 

signaling pathway was pivotal for this study, we could not continue to optimize the assay 

further until and unless we had a cell system expressing low PKC-δ promoter activity and 
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gene expression as a result of active Ras pathway (Figure 4). We hypothesized that Fyn 

transformed HaCaT cells, HaCaT-Fyn, have lower PKC-δ mRNA levels compared to 

those in HaCaT cells as Fyn plays role in proposed Ras pathway downstream of active 

Ras (Figure 4). However, experimental results we obtained were opposite to our 

hypothesis, as PKC-δ mRNA levels were higher in HaCaT-Fyn cells compared to HaCaT 

cells (Figure 28). Triple negative breast cancer cells MDA-MB-231 harbor endogenous 

KRAS mutation and were earlier shown to express lower Fyn mRNA levels when treated 

with LY294002 (67), suggesting PI3K mediated activation of Fyn in these cells. So we 

premised that MDA-MB-231 cells have active Ras pathway we proposed (Figure 4), and 

should have higher PKC-δ promoter activity and gene expression when treated with 

LY294002. Indeed, we detected higher PKC-δ mRNA levels (Figure 28), but not PKC-δ 

reporter activity (Figure 29) in MDA-MB-231 cells after LY294002 treatment. The 

probable reason for this contradictory data is that PKC-δ mRNA levels and promoter 

activity are not regulated in a similar manner in MDA-MB-231 cells. As a result, we 

were unsuccessful in finding out any other cell line that could substitute for HaCaT-Ras 

cells in this study.  

In summary, we successfully generated a HaCaT-Ras cell line stably transfected with 

pGL3-hPKCδ-4.4. We identified PP2 and combination of Bay 11-7085 and TPA as 

positive control compounds for developing high throughput PKC-δ promoter-reporter 

assay system. We also demonstrated importance of measuring cell viability and proposed 

Cell Titer Fluor Viability Assay as an assay system of preference to measure cell 

viability. A detailed protocol for this high throughput assay with specific focus on 

increasing Z value and convenience of operation in PHERAstar FS was developed in this 
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project. In future, stable cell system having active Ras pathway (Figure 4) and low PKC-

δ gene expression should be found out to verify findings of this study and continue 

improving the assay to obtain higher Z values. Human SCC cell line with endogenous 

HRAS mutation and low PKC-δ gene expression would be a reasonable substitute cell 

model. As an alternative approach, if active Ras pathway (Figure 4) could be transiently 

induced into HaCaT cells by transfection or viral infection of active Ras, a transient cell-

based assay to measure PKC-δ promoter activity could be developed. The tentative 

design of this transient assay in HaCaT cells comprises transient transfection or infection 

of active Ras, followed by transient transfection of luciferase reporter plasmids pGL3-

hPKCδ-4.4 and pRL-CMV (Renilla internal control), and measurement of luciferase 

activities at the last stage. Another possible approach is to induce over-activation of Ras 

in the HaCaT cells by treating them with EGF (22) and utilize them as a substitute for 

HaCaT-Ras cells. 
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