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ABSTRACT 

Invasive species can be detrimental to freshwater ecosystems. By completing 

laboratory and field studies to observe processes and behaviors of the invasive Asian 

Clam (Corbicula fluminea), I documented pathways whereby this invasive species 

impacts aquatic ecosystems under conditions typical of urbanized streams. The 

predominant pathways by which clams impacted nitrogen (N) cycling were through 

excretion, thus increasing ammonium (NH4
+) flux out of sediment, and through 

bioturbation, which increased nitrate (NO3
-) diffusion to the sediment and dinitrogen gas 

(N2) production (i.e., denitrification). The effect was greater under urban conditions, 

where C. fluminea population density and water column NO3
- were higher than in the 

rural stream. Urban environmental conditions also negatively impacted the clams’ 

physiology and mortality. The decline in clam condition and high mortality rates, 

particularly under high nutrient conditions, suggest that it may not be the tolerance of the 

individuals that allows for the persistence of successful populations, but the life history 

strategies of the species. Conducting laboratory and field studies on clams’ ecosystem 

effects inspired questions about what factors control clams’ burial behavior. In laboratory 

experiments on clam behavior, I found that larger substrates impeded burrowing ability. 

Despite ease of movement in smaller substrates, clams did not preferentially choose one 

substrate over another or move laterally once buried. I also found that presence of 

predators did not affect burial speed or number of clams that buried unless the predator 
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was frequently manipulating the clams. Learning how invasive species behave and how 

they affect the ecosystem is crucial to the management and prevention of initial invasion, 

and I hope that my research will be of help in those efforts.
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CHAPTER I

INTRODUCTION 

The threat of non-native species invasions 

 Biological systems are in a delicate balance in which every component is 

interconnected. Biological invasion by non-native species are a major threat to ecosystem 

balance, especially in freshwater environments (Carpenter et al., 2011). A major concern 

regarding invasions is their impact on native organisms and ecosystem processes such as 

nutrient cycling and primary production. Invaders form new species assemblages that 

change ecosystem function or reduce native species abundance through competition, 

predation, or indirect effects (Sax et al., 2007). There are not only ecological changes 

associated with invasive species, but economic impacts as well. The economic cost of 

damages or control measures from invasive species is estimated at $120 billion per year 

in the United States (Pimentel et al., 2005). Despite these obvious detriments, if there is a 

silver lining to be found, it may be that invasive species provide new experiments that 

allow for research on factors associated with global change such as extinctions, 

speciation and ecosystem functions (Sax et al., 2007).  

Research on invasive species in freshwaters is critical because these ecosystems 

are imperiled, and provide numerous important services (Dudgeon et al., 2006). While 

intentional introduction of non-native species into aquatic environments has decreased, 

freshwater ecosystems remain vulnerable to the introduction of new invasive 
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species through shipping, recreation or accidental release (Ricciardi, 2006). These 

methods of translocation are exacerbated by human population growth and movement, 

and anthropogenic stressors such as urbanization (Pimentel et al., 2005). 

Some of the most well-known and successful invasive species in freshwater 

ecosystems are bivalves (Sousa et al., 2009). The most common are the zebra mussel 

(Dreissena polymorpha), quagga mussel (Dreissena bugensis), golden mussel 

(Limnoperna fortunei), Chinese pond mussel (Anodonta woodiana), and the Asian clam 

(Corbicula fluminea) (Strayer, 2009; Darrigran and Damborenea, 2005; Paunovic et al., 

2006; Sousa et al., 2008a). These bivalve taxa often occur at very high densities, 

becoming the dominant invertebrates in terms of biomass. Their rapid growth and high 

fecundity allow them to sustain high populations and rapidly recolonize after population 

crashes (Sousa et al., 2009; Sousa et al., 2008b). Each of these bivalves acquires nutrients 

through the filtration of phytoplankton, bacteria, and organic material from the water 

column, and can influence nutrient dynamics through their excretion (Vaughn and 

Hakenkamp, 2001). In fact, bivalve populations have been shown to have equal or even 

greater filtration rates than all other filter-feeders in their respective ecosystems (Strayer 

et al., 1999). Zebra mussels, quagga mussels, and golden mussels attach to hard 

substrates, or to one another, using byssal threads, and can lead to major biofouling 

problems. The pond mussel and Asian clam are burrowing bivalves. Their burrowing 

behavior can disturb the sediment-water interface, increasing sediment oxygen reduction 

and nutrient diffusion through bioturbation (Vaughn and Hakenkamp, 2001). 
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Corbicula fluminea as an invasive species and ecosystem engineer 

 The Asian clam, Corbicula fluminea, was first described in 1774 by O. F. 

Muller as one of three species in the genus Tellina, and was later described by Megerle 

von Mühlfeld in the genus Corbicula (Araujo et al.,1993). Originally found in Southeast 

Asia, the Pacific Islands, and some parts of Europe and Africa, C. fluminea was first 

documented in the United States in Washington State in the 1930’s (McMahon, 1983). 

Exhibiting such characteristics as early maturation, short life-span, and high fecundity, C. 

fluminea has become widespread throughout the United States (Sousa et al., 2008a). 

Population size and biomass are highly variable depending upon location and time of 

year, but they are typically in high densities (1-269,000 individuals m-2; Schmidlin and 

Baur, 2007; Cherry et al., 2005; Sousa et al., 2008b). This species is a burrowing bivalve 

found in sandy substrata and is also a filter feeder (Araujo et al., 1993). C. fluminea 

resources overlap with native bivalves in the family Unionidae (freshwater mussels) and 

Sphaeriidae (fingernail clams), and represent a potential competitor to those species 

(Atkinson et al., 2011). 

A unique adaptation of C. fluminea is its capacity to supplement its filter feeding 

with pedal feeding, or ingesting organic material directly from the sediment. This method 

of obtaining nutrients has an effect on sediment characteristics, organic matter cycling, 

and other benthic organisms (Hakenkamp et al., 2001; Sousa et al., 2008a). Bioturbation, 

the mixing of sediments by an organism through behaviors such as burrowing, can 

increase sediment oxygen (O2)  penetration, exchange of nutrients between the water 

column and sediment pore spaces, reduce organic matter through consumption, and 
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dislodge other benthic macroinvertebrates (Vaughn and Hakenkamp, 2001). This is an 

important adaptation for C. fluminea because filter-feeding alone may not provide enough 

nutrients to fully support the clams’ metabolism (Boltovskoy et al., 1995). 

Another adaptation that allows C. fluminea to contend with low food availability 

is its valve closure behavior. C. fluminea can regularly partake in extended periods of 

valve closure (10-12 hours), remaining aerobic inside the valve for the first few hours and 

then becoming anaerobic. Several other bivalve species including zebra mussels 

(Dreissena polymorpha) and pisiid clams (Sphaerium corneum and Pisidium amnicum) 

have been documented to exhibit valve closure of several hours. This behavior allows for 

reduced metabolic costs during periods of food resource limitation or other stressful 

environmental conditions such as predation or water contamination (Ortmann and 

Grieshaber, 2003). 

Despite its capacity to withstand brief periods of duress through valve closure, C. 

fluminea is subject to large die-offs caused by factors such as siltation, extreme high or 

low temperatures, and low dissolved oxygen (DO), especially in the winter (Cherry et al., 

2005; French and Schloesser, 1996). Consequently, there is a release and accumulation of 

high concentrations of ammonia (NH3
+), which can reduce water quality to the detriment 

of other benthic organisms (Cherry et al., 2005; Wittmann et al., 2012). While the soft 

clam tissue quickly decomposes or provides food for other organisms, the valves (i.e., 

shells) remain on the benthos for long periods of time (Sousa et al., 2008b). As a result, 

one impact of C. fluminea invasion is that it can provide a new, hard substrate in 

otherwise soft-bottomed streams. Empty C. fluminea shells left behind after die-offs 
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reach high densities. For example Werner and Rothhaupt (2007) reported an average 

density of 2,000 shells m-2 in Lake Constance in Central Europe. Hard shells provide 

habitat for organisms such as epiphytic and epizoic organisms and increase population 

densities of mayflies and leeches (Vaughn and Hakenkamp, 2001; Werner and 

Rothhaupt, 2007), but the presence of shells of live clams has negative effects on the 

abundance of bacteria and flagellates, possibly due to bioturbation or consumption 

(Hakenkamp et al., 2001).  

Along with altering the physical composition of the stream benthos, C. fluminea 

can impact biogeochemical processes (Sousa et al., 2008a) through elevating nutrient 

concentrations via excretion and mineralization of their biodeposits (i.e, feces; Vaughn 

and Hakenkamp, 2001) and by enhancing diffusion of water and nutrients across the 

sediment-water interface through burrowing and pedal feeding (Zhang et al., 2011). C. 

fluminea can increase the inorganic nitrogen (N) concentrations of ammonium (NH4
+) 

and nitrate (NO3
-) in porewaters, which serve as chemical substrates for important N 

transformations (Chen et al., 2005; Zhang et al., 2011 ). Because C. fluminea can increase 

concentrations of N species needed for nitrification and denitrification, and occur at high 

densities, C. fluminea has the potential to have a significant effect on nitrification and 

denitrification at the stream reach scale. However, its influence on sediment N 

transformation rates have not been previously documented.  

Urban Streams 

Historically, urban areas have been centered near river ecosystems, which is why 

many rivers and streams have suffered degradation from urbanization effects (Francis, 
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2012). Urbanization and the expansion of impervious surfaces can cause higher runoff 

and flood events, which alters channel morphology (Wang et al., 2001). Higher nutrient 

and contaminant concentrations associated with effects of urbanization (i.e., effluent from 

industry, wastewater treatment, and road runoff) decrease species richness by selecting 

taxa most ‘tolerant’ of urbanized conditions (Walsh et al., 2005). C. fluminea is 

considered one of these tolerant taxa because it can thrive in poor quality water and 

habitats due to its short generation time, high fecundity, flexible feeding mechanisms, 

phenotypic plasticity, and preference for sandy, loose substrates typical of urban streams 

(Sousa et al., 2008a). Because C. fluminea has high population densities in urban streams 

with high N loads, understanding its influence on N fluxes in urban conditions will be 

critical for management of water and habitat quality in these ecosystems. 

Economic repercussions of Corbicula fluminea colonization 

Corbicula fluminea invasion has potential economic impacts. Accumulation of 

empty shells may create new habitats, but they also impact recreation and fishing by 

becoming trapped in nets (Sousa et al., 2008b). Shells are also associated with biofouling, 

or the blockage of pipes and water lines, particularly near power plants and industrial 

water systems (Robinson and Wellborn, 1988; Darrigran, 2002). In the United States, C. 

fluminea is estimated to cost approximately $1 billion per year in damages and control 

measures (Pimentel et al., 2005). There have been some effective treatments for C. 

fluminea, such as screens and filters, physical removal, or chemical treatments, but most 

treatment approaches are tailored for power plant intake pipes, not open water, and costs 
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of C. fluminea mitigation remain a prominent conservation concern (Sousa et al., 2008b; 

Wittmann et al., 2012). 

Experimental Design: C. fluminea ecosystem effects and behavior 

For a comprehensive analysis of how C. fluminea affects ecosystem processes, 

and environmental factors that influence its behavior, I completed two studies. First, a 

combined laboratory and field study to test the clams’ ecosystem effects in urban stream 

conditions,  and second a behavioral study in the lab to observe bottom-up and top-down 

drivers of C. fluminea burrowing behaviors.  

My first objective, discussed in Chapter II, was to design a laboratory study to 

examine the effects of urban stream conditions on C. fluminea. We developed a 

controlled experiment in Loyola University Chicago’s artificial stream facility to mimic 

urbanized stream characteristics. We set up 8 streams consisting of 3 fully-crossed 

treatments: added nutrients, added sediment organic matter, and clams. We then 

measured clam condition, N transformations, and ecosystem metabolism over 9 weeks. 

Results from this laboratory study positioned me well to select factors to test in the 

subsequent field study. 

The second component of Chapter II was to carry out a complementary field 

study to test the influence of C. fluminea on stream biogeochemistry in an urban stream 

relative to a rural, forested stream. This was done using two streams of similar 

geomorphology and with persistent populations of C. fluminea. For the urban site, we 

chose a reach in the North Branch of the Chicago River at Harms Woods in Cook 

County, Illinois. For the rural site, we selected Eagle Creek, part of the Kalamazoo River 
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Watershed near Augusta, Michigan. The Chicago River reach exhibited characteristics 

typical of urban streams such as elevated nutrient concentrations and eroded banks. The 

substrate composition was highly variable, although the majority was sand, gravel, and 

empty C. fluminea shells. The substrate composition in Eagle Creek was predominantly 

sand and gravel and nutrient concentrations were low. We deployed an experiment where 

sediment was incubated in plastic trays with and without clams at each site. After six 

weeks incubation in the streams, the trays were collected and we measured the clams’ 

effects on sediment organic matter and N transformations, as well as clam condition and 

excretion rates in each stream. 

A conceptual diagram for the relationships among C. fluminea, N transformations, 

and gross primary production (GPP) is shown in Figure 1. In this study, I hoped to 

demonstrate the effects of C. fluminea populations on ecosystem processes, in an urban 

and rural stream. I expected that C. fluminea would increase the rate of nitrification due 

to the high levels of porewater NH4
+ released through excretion and mortality, and 

increased oxygenation of sediment through their burrowing. Denitrification should also 

be increased, as nitrification can increase NO3
- availability (i.e., indirect denitrification or 

coupled nitrification-denitrification). In addition, clam burrowing can increase diffusion 

of water column NO3
- into sediment where it can be denitrified (i.e., direct 

denitrification). I also expected to see a decrease in primary production and respiration as 

clams consume water column and sediment microbes and primary producers. I presumed 

that C. fluminea would exhibit better condition and survivorship in streams with higher 

nutrients and sediment organic matter due to the increased food resources. Finally, due to 
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the high concentrations of C and N in urban streams, I expected the clams’ effect on N 

cycling would be masked in the Chicago River, and that the clams in the rural stream, 

Eagle Creek, would have more of an impact on nitrogen cycling. 

 

Figure 1. Conceptual diagram of hypothesized ecosystem effects of Corbicula fluminea 

 

My second objective, discussed in Chapter III, was to measure external (i.e., 

substrate composition and crayfish predation) drivers of C. fluminea burrowing behavior. 
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The clams are most commonly found in soft-bottomed streams (Araujo et al., 1993) and 

their predators in invaded habitats are predominantly fish and crayfish, but include some 

birds and mammals as well (Saloom and Duncan., 2005). The research questions for the 

bottom-up effects included:  

(1) Do large substrates inhibit Corbicula burrowing behavior?  

(2) Does C. fluminea move horizontally? 

(3) Is choice involved in substrate association? 

I expected that clams would burrow more quickly in finer substrates such as sand and 

organic matter versus larger substrates like gravel due to ease of movement. I also 

expected to see more lateral movement in finer substrates. Finally, I expected that clams 

would show a preference for sand + organic matter over gravel due to ease of burrowing 

and additional food resources present. 

To examine predator interactions, I tested the effect of another invasive species, the 

rusty crayfish (Orconectes rusticus) on clam burrowing behavior. Crayfish are natural 

predators and scavengers of C. fluminea (Covich et al., 1981). Our questions were: 

(1) Does the predator presence influence clam burrowing behavior? 

(2) Does the intensity of the interaction of a predator affect clam burrowing behavior? 

We measured clam burrowing behavior as the speed of burial and the proportion of 

clams buried in a 24 hour period. I expected that clams would burrow more quickly in the 

presence of a predator that was unrestricted and if the predator was sensed (i.e., caged 

predator) than in the absence of a predator, because increased burial speed could be an 

important defense mechanism for the bivalves. I also predicted that more interactions 
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with the predator would reduce burrowing success due to repeated predator-induced 

valve closure. By answering these questions, I hoped to better understand the abiotic and 

biotic controls on C. fluminea burrowing behavior, as these could be important 

considerations for management applications that mitigate current invasions or prevent 

additional C. fluminea range expansion. 
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CHAPTER II

ECOSYSTEM EFFECTS OF THE INVASIVE ASIAN CLAM (CORBICULA 

FLUMINEA) IN URBAN STREAMS 

Introduction 

The introduction of invasive species can have multiple negative environmental 

and ecological effects, and is now considered to be one of the predominant causes of 

environmental change globally (Vitousek et al., 1990; Mack et al., 2000; Carpenter et al., 

2011). A species is typically labeled invasive or non-indigenous if it has been introduced 

to a novel area through anthropogenic means and has established a subsistent population 

(Sax et al., 2007). Not all species that are introduced can persist in a new environment, 

and of those that do, only some will be detrimental to the ecosystem (Williamson and 

Fitter, 1996; Carpenter et al., 2011). Characteristics typical of successful invaders are: 

large geographical distribution, genetic variability and phenotypic plasticity, tolerance to 

abiotic changes, short generation times, rapid sexual maturity, high fecundity, and 

opportunistic feeding behavior. These characteristics can be advantageous for species 

colonizing an area with regular disturbances (Sousa et al., 2008b).

 Aquatic invasive species affect physicochemical conditions and biodiversity of 

their invaded habitats (Strayer et al., 1999). Invaders can establish a niche in their 

invaded range because native organisms have no evolutionary history with the invader. 

Invasive species can also have multiple effects on ecosystem structure and function, as 
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invaders can alter pools or fluxes of nutrients including carbon, nitrogen, and oxygen 

(Sax et al., 2007). Aside from ecological effects, invasive species cause millions of 

dollars per year in damages or control measures (Pimentel et al., 2004).

Along with other factors such as changes in climate, land use, and pollution (i.e., 

eutrophication and industrial chemicals), aquatic invasive species are a major reason 

freshwater ecosystems are among the most highly altered worldwide (Carpenter et al., 

2011). In the Great Lakes Basin for example, there are nearly 200 non-indigenous species 

that have established populations since 1840. While intentional introduction has 

decreased, the rates of unintentional introduction through activities like shipping have 

continued to increase (Ricciardi, 2006).  

Some of the most well-studied invasive species in freshwaters include the 

Eurasian round goby (Neogobius melanostomus) and dreissenid mussels (i.e. zebra and 

quagga mussels). The round goby is native to the Black and Caspian Seas but populations 

have spread rapidly in the United States, particularly in the Great Lakes region (Kipp and 

Ricciardi, 2012). Dreissenid mussels are widespread in the US and cause dramatic 

ecological changes such as eutrophication and habitat destruction (Strayer, 2009). 

Quagga mussels are similar in morphology and function, however they are able to persist 

in soft-bottomed bodies of water where zebra mussels prefer hard substrates (Patterson et 

al., 2002).  

Aside from dreissenid mussels, one of the most abundant bivalve invaders of 

freshwater ecosystems is the Asian clam, Corbicula fluminea (Muller1774). It first 

invaded the United States in the 1930’s, and is present throughout much of the 
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continental US (Araujo et al., 1993). Like other invasive species, C. fluminea exhibits 

typical r-strategy life history including early maturity, rapid growth, and high fecundity 

(Sousa et al., 2008b). One prominent reason for C. fluminea’s success as an invasive 

species is its non-selective diet. It can filter particles from the water column (i.e., filter-

feed) and feed on sediment particles using its foot (i.e., pedal feed), thus allowing for 

maximum exploitation of available resources (Reid et al., 1992).  

Recent studies have demonstrated multiple effects of C. fluminea on native taxa. 

High densities of the clam were negatively correlated with the population density of 

benthic bacteria and flagellates (Hakenkamp et al., 2001). The large number of shells in 

invaded habitats provides hard substrates in otherwise soft-bottomed areas, which have 

been associated with an increase in other species such as mayflies and leeches (Werner 

and Rothhaupt, 2007). In addition, C. fluminea is also subject to mass die-offs caused by 

low dissolved oxygen and overwintering mortality, which elevates ammonia (NH3) 

concentrations. This can accumulate in porewater to levels that are lethal to native 

mussels (French and Schloesser, 1996; Cherry et al., 2005). 

Corbicula fluminea is of particular concern where it occurs in association with 

native mussels in the family Unionidae, which are the most highly threatened freshwater 

species in the world (Atkinson et al., 2011). Unlike C. fluminea, unionid mussels are 

long-lived, have highly specialized relationships to fish species that host their parasitic 

juveniles (i.e., glochidia), and live in dense colonies within select benthic habitats (Neves 

and Widlak, 1987). In contrast, C. fluminea are short-lived, reproduce without fish hosts 

or long-lived juvenile stages, and may be less selective for benthic substrates. By filling a 
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broader trophic niche than their native competitors, C. fluminea may be able to better 

utilize the available resources (Atkinson et al., 2010). The decline in native mussels and 

the increase of C. fluminea could cause significant changes in ecosystem processes. 

While native mussels and C. fluminea share some of the same functional roles (i.e., 

burrowing and filter feeding), there may be differences in rates of feeding, excretion 

compounds, and sources of food ( Vaughn and Hakenkamp, 2001; Atkinson et al., 2011).  

 Corbicula fluminea, like other burrowing bivalves, affect nutrient cycling in 

aquatic ecosystems through excretion, biodeposition, and bioturbation (Vaughn and 

Hakenkamp, 2001). Excretion contains high amounts of inorganic nutrients which are 

released into the ecosystem (Sousa et al., 2008a), and C. fluminea, excretion can release 

nutrients in excess of benthic nutrient demand (Lauritsen and Mozley, 1983). Their 

burrowing action indirectly impacts nutrient dynamics by increasing exchange of solutes 

and oxygen between the water column and sediment (Vaughn and Hakenkamp, 2001). 

Burrowing can also increase sediment microbial activity, leading to more rapid 

degradation of organic matter and nutrient mineralization and flux from sediment (Zhang 

et al., 2011). As C. fluminea range expansion continues, it is increasingly important to 

understand environmental drivers of its effects on different types of aquatic ecosystems. 

Corbicula fluminea is a successful invader of aquatic environments with low 

human impact (i.e., “pristine” ecosystems), as well as streams and lakes influenced by 

urban land-use. Urban rivers are characterized by multiple environmental stressors, 

including higher nutrient concentrations, changes in the width and depth of the channel 

(i.e., increased flooding during storms and decreased flow during dry periods), and 
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changes in species richness and diversity (i.e., decrease in species richness and increase 

in tolerant species) (Walsh et al.,2005). Most previous studies of C. fluminea have taken 

place in aquatic ecosystems with low-human influence, so their ecosystem effects in 

urbanized locations have not been quantified. Our research questions were (1) does C. 

fluminea change rates of nitrogen (N) cycling and ecosystem metabolism via their 

filtration, burrowing and excretion? and (2) how does the influence of C. fluminea differ 

in an urban relative to a rural stream? We addressed these questions in a laboratory study 

and a field experiment.  

Materials and Methods 

Artificial stream study 

This 9 week study was conducted in the artificial stream facility at Loyola 

University Chicago. The purpose of the study was to measure clam survivorship and 

ecosystem effects under conditions typical of urbanization. Artificial streams were re-

circulating chambers with a paddle wheel, channel width = 14.0 cm, and total flowpath 

length = 2.0m. The streams were filled to 60 L, and water level was marked and 

maintained throughout the study. Streams were refilled with tap water that had been 

allowed to dechlorinate for a minimum of 2 d. 

In each stream we placed 12, 22.86 cm X 13.97 cm X 8.89 cm plastic trays for the 

experimental units (Plastic Take-Out Container, Hangzhou Yusheng Plastic Products Co. 

Ltd., Hangzhou City,China). We tested 3 factors in a fully crossed design: the presence of 

organic matter, added nutrients, and presence of clams. Trays were filled with either 400 

mL all-purpose sand (KolorScape All Purpose Sand, Oldcastle,Inc., Atlanta, GA) or a 
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mix of 200 mL all-purpose sand and 200 mL potting soil (Miracle-Gro Organic Choice 

potting soil, The Scotts Company LLC, Marysville, OH) to represent organic matter. 

Those streams designated to have clams  received 14 clams in each tray to correspond 

with the 200 m -2 average density found in literature (Lauritsen and Mozley 1983, 

Schmidlin and Baur 2007, Brown et al.2007) for a total of 168 clams artificial stream-1. 

Clams were collected from the North Branch of the Chicago River on 21 February 2012. 

The streams designated to contain nutrients received enrichment with 100 mL 40.64 g L-1 

NaNO3 and 1.85 g L-1 KH2PO4 solution once a week (target concentration in stream= ~8 

mg N L-1 and 0. 6 mg P L-1) consistent with a highly eutrophic stream. All 8 streams were 

inoculated with 100 mL of sediment-periphyton slurry collected from the Chicago River 

on the same date as the clams. 2 mL of non-viable marine algae (Shellfish Diet 1800, 

Reed Mariculture Inc., Campbell, CA) was distributed evenly into each stream every 

Monday, Wednesday and Friday for the duration of the study.  

Ecosystem metabolism 

2 data-logging sondes were rotated among the study streams so that each stream 

had a sonde in it for 24 h each week for the duration of the study. Sondes measured water 

temperature and dissolved oxygen (DO; as percent saturation and mg L-1) every 15 min 

for 24 h using a luminescent DO  probe (Hach Hydromet, Loveland, CO). Reaeration 

(kO2 at 20oC) was equal to 0.015 min-1 and was estimated from velocity-reaeration 

measurements previously established for these artificial streams (T. Hoellein, 

unpublished data). Community respiration (CR) was the average reaeration-corrected 

oxygen (O2) flux during the dark, and gross primary production (GPP) was the sum of the 
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instantaneous change in O2 concentration (reaeration-corrected) during daylight hours 

(Marzolf et al. 1994, Young and Huryn 1998). 

Trays from each stream were sampled at 3 weeks, 6 weeks, and 9 weeks after the 

start of the experiment. On each date, 3 trays from each stream were removed for 

sampling. For those streams containing clams, one clam from each of the 3 sampled trays 

was used to measure excretion rates, and a different clam from each of the 3 trays was 

used to calculate condition index. From each of the streams, a composite sediment 

sample was collected from each tray. Sediment was taken from 3 areas within the tray 

and homogenized with a metal stir bar. From this composite sample, measurements were 

taken for sediment AFDM, exchangeable NH4
+, nitrification, and denitrification potential 

(see below for details on these methods). Once the trays were sampled they were returned 

to the streams but were marked and were not re-sampled.  

Condition index and excretion rates 

Condition index was calculated as the volumetric meat-to-shell ratio using the dry 

weight of meat (g) X 100 divided by shell-cavity volume (mL) (Mann 1978). Live clams 

were preserved for 24 h in 95% ethyl alcohol. Clam tissue was removed, dried, and 

weighed. To determine the shell-cavity volume, we filled one clam valve with 

Kolorscape All-Purpose sand (Kolorscape, Oldcastle,INC, Atlanta, GA) and weighed the 

sand. A mass to volume regression for playground sand was calculated by weighing sand 

from known volumes (i.e. 1.25 mL and 5 mL). We doubled the sand mass from 1 valve to 

account for both halves of each individual’s shell and used our standard regression to 
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calculate shell volume for each clam. Shell length was measured at the widest part of the 

clam. 

To measure excretion rates, we adapted a protocol from Lauritsen and Mozley 

(1983). 500 mL of site water was filtered through a vacuum into a 1000 mL, acid washed 

plastic beaker (N=6). One clam from each tray was placed in the filtered water, and one 

beaker was left with only water to serve as a control. The beakers were then covered with 

foil perforated with small holes. Only four clams were used from the Chicago River site 

due to mortality. A 20 mL water sample was taken from each cup at 2, 8, and 24 h, 

filtered using Whatman 25mm Glass Microfibre Filters (Whatman,Ltd., GE Healthcare, 

Piscataway, NJ) and frozen until analyzed on a Seal Auto-analyzer 3 for NH4
+ 

concentrations (see below). Excretion was calculated as the linear increase in NH4
+-N 

relative to the control. 

Sediment ash-free dry mass and exchangeable NH4
+ 

A 5 ml subsample from the composite sediment sample was collected and used to 

measure AFDM. The sample was placed in pre-ashed and weighed tins. The samples 

were dried at a temperature of 60⁰C for a minimum of 2 d, and then the dry weight was 

recorded. Next, the samples were ashed at 550⁰C for 3 h and cooled in desiccators for 

minimum of 1 h before measuring the ash weight. Our protocol for exchangeable NH4
+ 

measurement was adapted from Maynard et al. (1993). 10 mL of the homogenized 

sediment sample was placed into a 50 mL centrifuge tube. The samples were weighed 

and an equivalent volume of 2M potassium chloride (KCl) was added (1 ml KCl per 1 g 

wet sediment). The centrifuge tubes were then placed on a shaker table at 150 rpm for 1 
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h. We centrifuged the tubes at 6000 rpm for 10 min., and the supernatant liquid was 

filtered using Whatman 25mm Glass Microfibre Filters (Whatman,Ltd., GE Healthcare, 

Piscataway, NJ) into 20 mL scintillation vials and frozen until analysis. 

Nitrification and denitrification enzyme activity 

We measured nitrification via the nitrapyrin inhibition method. Nitrapyrin blocks 

the conversion of NH4
+ to NO3

- (Frye 2005, Strauss and Lamberti 2000). A nitrapyrin 

solution was made from 0.5 g of nitrapyrin dissolved in 10 mL dimethyl sulfoxide 

(DMSO). We added 25 mL sample sediment and 50 mL site water to each of two flasks, 

one with 20 µl of the nitrapyrin + DMSO and the other with 20 µl of DMSO only. All 

flasks were then covered loosely with foil and placed on a shaker table at 150 rpm for 2 

days. Samples were covered to block light which could affect the nitrifying bacteria. 

After 2 d, 25 mL of 2M KCl was added to each flask and shaking resumed for an 

additional 2 h. Then, using a modified 20 mL syringe, 30 mL of the slurry from each 

flask was placed in 50 mL centrifuge tubes, centrifuged for 10 min at 6000 rpm, and the 

supernatant was filtered and frozen in the same manner as for the exchangeable NH4
+. 

Denitrification via acetylene-block was used to measure denitrification enzyme 

activity (DEA; Smith and Tiedje 1979). 25 mL sample sediment from each tray in the 

artificial stream was funneled into 125 mL media bottles along with 45 mL unfiltered site 

water(N=3 per stream, N=24 total). 5 mL of chloramphenicol solution was then added to 

the media bottles to prohibit bacteria from producing additional enzymes (final 

chloramphenicol concentration 0.3mM). The headspace of the media bottles were then 

purged for 5 min with N2 and simultaneously vented with a syringe needle. The media 
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bottles were re-equilibrated to atmospheric pressure. At this point, 15 mL of pure 

acetylene gas was added to each media bottle and then shaken for several seconds. 

Triplicate gas samples were collected 15 min after the addition of acetylene and then 

every hour for a total of 3 sampling times for each media bottle. Our sampling technique 

was to pull a 5 mL gas sample from the media bottle and inject it into a 3 ml silicone-

coated vacutainer (Kendall Monoject Blood Collection Tube, Covidien, Mansfield, MA). 

The 5 mL was replaced with an 1:9 acetylene:N2 mixture to maintain constant volume. 

The samples were sealed with silicone caulking until they could be run on the gas 

chromatograph (GC 2014, Shimadzu Scientific Instruments, Inc, Columbia, MD) with an 

autosampler (AOC-5000, Shimadzu Scientific Instruments, Inc). Using the gas 

chromatograph we could measure the nitrous oxide (N2O) and calculate the rate of N2O 

accumulation as DEA (Murray and Knowles 1999).  

Field study 

For the field study, we selected an urban stream and a rural stream which each 

had persistent populations of Corbicula fluminea. The urban stream was the North 

Branch of the Chicago River at Harm’s Woods in Cook County, Illinois (42.06o N 

latitude and 87.77o W longitude). Preliminary data showed this stream exhibited 

characteristics typical of urban streams such as elevated nutrient concentrations and 

decreased macroinvertebrate species richness. The substrate composition is highly 

variable, although the majority is sand, gravel, and C. fluminea shells. Discharge at this 

location of the North Branch at the time of our sampling was ~0.43 m3 s-1. Our rural site 

was Eagle Lake Outlet (i.e., Eagle Creek), part of the Kalamazoo River watershed in the 
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Fort Custer Recreation Area near Augusta, Michigan (-42.33o W latitude and 85.32o N 

longitude). The substrate composition is predominantly sand and gravel and at the time of 

our sampling had a discharge of ~0.015 m3s-1. In addition to high C. fluminea 

populations, both streams had full riparian canopy cover during summer, and drained 

lentic habitats (i.e., a lake or a small impoundment) 500-1000 m upstream of the study 

sites.  

We began the field experiment in the rural and urban streams on 15 June 2012, 

and 20 June, 2012, respectively. We divided a 38.1 cm X 27.94 cm X 10.16 cm plastic 

tray in half vertically with rubber landscape edging. Each side was filled to the top with a 

mixture of playground sand and pea gravel. One side was left as a control (i.e., no clams) 

and 15 individual clams were put on the opposite side, corresponding to approximately 

280 clams m-2, within the range we expected from literature values (Lauritsen and 

Mozley 1983, Schmidlin and Baur 2007, Brown et al.2007). The clams were collected 

just downstream from where the trays were placed. A lid with 1.7 cm2 aperture plastic 

mesh was then placed on top of the tray and secured with zip-ties. Trays were submerged 

in the stream and held in place with metal rebar that was hammered into the benthos. We 

deployed 5 trays at each site, and trays were left for 6 weeks. 

Prior to tray placement, we collected several measurements to represent the 

physicochemical characteristics and macroinvertebrate communities at each site. We 

marked a 100 m reach just upstream (Eagle Creek) or downstream (Chicago River) of the 

tray placement site. We collected 5 benthic macroinvertebrate samples at random 

locations in the reach using a modified Hess sampler approach (Hess Stream Bottom 
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Sampler, WILDCO, Yulee, FL). The Hess sampler (area=0.088 m2) was inserted ~10 cm 

into the stream benthos, the sediment surface was vigorously stirred by hand, and the 

dislodged benthic macroinvertebrates were collected in the Hess sampler net. We 

collected the sediment and benthic material from ~10 cm depth by scooping it directly 

into the Hess sampler net (mesh size=250 mm) in a modified approach that allowed for 

collection of burrowing bivalves. All material from the Hess sampler net was preserved 

with 80% ethanol. We quantified stream discharge by measuring the depth and water 

velocity at every 1 m subsection across a width transect. In addition, we collected 3 water 

samples by filtering stream water using a 60 mL plastic syringe fitted with Whatman 

25mm Glass Microfibre Filters (Whatman,Ltd., GE Healthcare, Piscataway, NJ) into 20 

mL plastic scintillation vials.  

Trays were removed from the stream on August 1(urban) and August 8 (rural), 

2012, and immediately brought back to the laboratory. We removed all clams from the 

trays, and one clam from each tray was used to measure condition index and excretion 

rates using methods described above. We then collected a composite sediment sample 

from the control and +clam sides of each tray. A 28.27 cm2 core was inserted ~3 cm into 

the sediment, a flat plastic tool was slid underneath, and the sediment was placed into 2, 

160 ml sediment containers. This was repeated at 4 locations in both the control side and 

+clam side of each tray. The sediment was homogenized using a metal stir bar and the 

sample was then used for all sediment measurements. We measured ash-free dry mass 

(AFDM), exchangeable NH4
+, and nitrification on sediment from the control and +clam 

sides of each tray using methods identical to those described above. 
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Nutrient and gas fluxes 

Fluxes of NH4
+, NO3

-, N2, and O2 were measured using a flow-through method, an 

approach modified from Gardner and McCarthy (2009). 150 ml of homogenized 

sediment from the control side of the replicate trays was placed in each of 3 acrylic cores 

(30cm X 7.62 cm), and same amount of homogenized sediment from the +clam side of 

the sediment trays was placed in another 6 cores. We filled each of the cores with site 

water to a height of ~5 cm (251 cm3). We added 4 individual clams directly to 3 of the 

cores that contained sediment from the +clam side of the tray. As a result, we had 3 

replicate cores of sediment from the control side of the tray, 3 replicate cores of sediment 

that was exposed to clams in the stream but did not have clams in the core (ex clams), 

and 3 replicate cores that had sediment that was exposed to clams in the stream and had 

live clams in the cores (+clams). A plunger with a rubber o-ring was fit snugly into each 

core to create a seal. The plunger lid was plumbed with an inlet and outlet tube made of 

polytetrafluoroethylene (PET). We placed an aerator in 3 separate carboys which 

contained 20 L of site water. Un-amended site water (i.e., no NO3
- enrichment or isotope 

tracers were added) was pumped from the carboys into the cores, then out into plastic 

beakers at a rate of 1 ml min-1. 

Water was passed over sediment for 3 d. After 24 h, 60 mL from the in-flow 

carboy and each of the outflows was collected and filtered into 3, 20 mL scintillation 

vials for later measurement NH4
+ and NO3

- flux. In addition, water from the inflows and 

outflows was collected into triplicate 12 mL glass exetainers for measuring dissolved 

gasses. For this process, we filled each exetainer slowly from the bottom and allowed 
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them to overflow for several seconds. We added 200 µL zinc chloride (ZnCl), capped the 

vials ensuring no air bubbles in the headspace, and stored them underwater at room 

temperature or below until they were run on the Membrane Inlet Mass Spectrometer 

(MIMS, Bay Instruments, Easton, MD). The water sampling procedure was repeated at 

24h, 48h, and 72h (Gardner and McCarthy 2009). 

On the MIMS, a peristaltic pump sampled the water from the glass exetainers and 

dissolved gasses were extracted from the sample across a membrane under vacuum. The 

mass spectrometer measured abundance of 28N2,
32O2, and 40Ar. Standards consisted of 

purified water (18 mohms resistance; E-Pure, Barnstead International, Dubuque, IA) was 

maintained at constant temperature (24.5oC; Circulating Bath, VWR International, 

Radnor, PA), equilibrated to atmospheric gasses by stirring at low speed (Lab Egg RW11 

Basic, IKA Works, Inc., Wilmington, NC). Samples were corrected for instrument drift 

with standard water throughout the run. 

Fluxes for each core were first calculated for each of the 3 dates of the flow-

through measurement, and then averaged across the 3 dates (Gardner and McCarthy 

2009). Flux was equal to the difference between concentration in the outflow minus 

concentration in the inflow, and corrected for surface area of the core and pump flow rate 

(flux units = mass element m-2 h-1). A negative value indicates net retention (i.e., net 

uptake) and a positive value net production or flux out of the sediment. 

Water chemistry 

Samples for water column NH4
+, excretion, exchangeable NH4

+, nitrification, and 

NH4
+ fluxes were run on an Autoanalyzer III (Seal Analytical, Inc., Mequon, WI) using 
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the phenol hypochlorite technique (Solorzano 1969). For exchangeable NH4
+, and 

nitrification, standard matrices were adjusted to account for KCl concentrations in the 

samples. Water column NO3
- and soluble reactive phosphorus (SRP) were also run on an 

Autoanalyzer III using cadmium reduction and antimonyl tartrate techniques, respectively 

(APHA 1988, Murphy and Riley 1962). 

Data analysis: Artificial stream study 

To measure effects of the 3 fully-crossed treatments on clam physiology, 

ecosystem metabolism, and sediment biogeochemistry in the artificial stream study, we 

used a 3 X 2 factorial ANOVA (Tank and Dodds 2003) for the presence or absence of the 

three treatment factors. Due to available resources and time constraints, each treatment 

was not replicated in separate artificial streams. Instead, replicates consisted of separate 

trays deployed within each treatment stream. We note this reduces the independence of 

replicate treatments for each date. However, this allowed us to test a wider breadth of 

factors. All statistical analyses were run using SYSTAT 13 (Systat Software, Cranes 

Software International Ltd., Chicago, IL). 

Data analysis: Field study 

For the field study, we used a two-way Analysis of Variance (ANOVA) by site 

and clam treatment to quantify effects of site and clams on AFDM, nutrient fluxes, 

nitrification rates, denitrification potential, and porewater NH4
+ concentrations. We ran an 

ANOVA based on site on clam condition index and excretion rates. The data for 

condition index in the artificial stream study and the field study were exponentially 

transformed (X2 and X3, respectively) and the O2 flux measurements in the artificial 



27 

 
 

stream study were reciprocally transformed to meet the assumptions of normality and 

equal variance.  

Results 

Artificial stream study 

In general, organic matter addition had the strongest effect on stream ecosystem 

function and clam condition and excretion (Table 1). The trays with organic matter 

increased nitrification rates (p<0.001), while clams and nutrient addition had no effect on 

nitrification. As expected, organic matter addition to the tray increased organic matter 

concentration relative to the trays with no organic matter (Table 1). However, when 

clams were present in trays with organic matter, there was a decline in organic matter 

content relative to those trays with organic matter and no clams (Table 1 and Figure 2). 

For DEA, significant interaction effects among all three factors precluded simple 

interpretation of each factor’s impact (Figure 3). We had a large die-off of clams in week 

6 in the stream that contained trays with no organic matter and added nutrients. This was 

likely reflected in the very high rate of DEA in that site at week 3, and contributed to the 

significant interaction terms (Figure 3). Clams decreased GPP (p=0.027), especially in 

the sediment with organic matter added (Figure 4), but there were no significant effects  

on CR among treatments. Clam condition decreased over time in all treatments; the clams 

in trays with organic matter present were in better condition than in trays with no organic 

matter (p=0.021). The stream with the lowest clam mortality rate was that with organic 

matter present but no added nutrients. Finally, there was no consistent pattern of 

treatment effect on excretion rates (Figure 5).  
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Table 1. P-values for 3 x 2 Factorial ANOVA for sediment characteristic and clam 
physiology in the artificial stream study across 3 sampling dates and 8 treatments. 
Organic matter (O), Nutrient addition (N), Clams (C). Significant p-values are in bold. 
Process O N C OXN OXC NXC OXNXC 
Nitrification (ug N m-2 h-1)             
Date 1: <0.001 0.321 0.922 0.166 0.747 0.554 0.975 
Date 2: <0.001 0.339 0.334 0.863 0.824 0.719 0.451 
Date 3: <0.001 0.339 0.334 0.863 0.824 0.719 0.451 
Denitrification enzyme activity (DEA; ug N m-2 h-1) 
Date 1: 0.001 0.380 0.283 0.465 0.299 0.570 0.593 
Date 2: <0.001 0.002 <0.001 0.043 <0.001 0.001 0.012 
Date 3: 0.085 0.004 0.066 0.033 0.003 0.038 0.007 
Ash-free dry mass (g)             
Date 1: <0.001 0.944 0.017 0.335 0.001 0.813 0.152 
Date 2: <0.001 0.200 0.009 0.279 0.016 0.798 0.462 
Date 3: 0.001 0.332 0.092 0.120 0.020 0.743 0.598 
Porewater NH4

+ (ug L-1)             
Date 1: <0.001 <0.001 0.310 0.008 0.001 0.994 0.054 
Date 2: <0.001 0.020 <0.001 <0.001 <0.001 0.555 <0.001 
Date 3: 0.854 0.311 0.022 0.304 0.017 0.040 0.037 
Gross Primary Production (g O2 m

-2 d-1)   
  0.717 0.097 0.027 0.946 0.416 0.208 0.726 
Community Respiration (g O2 m

-2
 d

-1)           
  0.213 0.074 0.403 0.695 0.251 0.497 0.668 
Excretion (ug NH4

+ h-1)           
Date 1: 0.844 0.304   0.920       
Date 2: 0.008 0.310   0.004       
Date 3: 0.280 0.430   0.255       
Clam condition index (g mL-1)         
Date 1: 0.318 0.321   0.522       
Date 2: 0.021 0.171   0.164       
Date 3: 0.024 0.236   0.772       
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Figure 2. Average nitrification rates (A) and Ash-Free Dry Mass (B) for each of the eight  
experimental streams across three sampling dates. Unfilled symbols represent treatments 
with added organic matter and filled symbols represent treatments without organic 
matter. Error bars represent standard error. 
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Figure 3. Denitrification enzyme activity in all eight treatment streams across three 
sampling dates. Unfilled symbols represent treatme
symbols represent treatments without organic matter.

 
 

Denitrification enzyme activity in all eight treatment streams across three 
sampling dates. Unfilled symbols represent treatments with organic matter added, filled 
symbols represent treatments without organic matter. Error bars represent standard error.
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Denitrification enzyme activity in all eight treatment streams across three 
nts with organic matter added, filled 

Error bars represent standard error. 
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Figure 4. Average gross primary production from all eight treatment streams over nine 
weeks. White bars indicate treatments with no clams and black bars indicate treatments 
with clams present. + or – indicates presence or absence of treatment (O=organic matter, 
N=nutrient solution). Overall, clams decreased primary production (ANOVA p=0.027). 
Error bars represent standard error. 
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Figure 5. Mean excretion rate (A) and average condition index (B) of clams across three 
sampling dates. Unfilled symbols represent treatments where organic matter was added 
and filled symbols represent treatments without organic matter. Error bars represent 
standard error. 
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Field study 

The Chicago River exhibited higher concentrations of NO3
- and NH4

+, higher 

discharge, and greater benthic density of clams (Table 2). With over 1,500 individuals m-

2, the Chicago River is at the high end of the range of C. fluminea reported in locations 

from the northern limit of its distribution, and the density in Eagle Creek (174 m-2) was 

closer to literature values (French and Schloesser 1996, Ortmann and Grieshaber 2003, 

Lauritsen and Mozley 1983). The substrate in Eagle Creek was more than 60% sand and 

gravel, however, in the Chicago River it was less than 50% sand and gravel with a higher 

proportion of shells, silt, and woody debris.  

Overall, C. fluminea drove similar changes to N biogeochemistry at both sites 

(Table 3), but the magnitude of change differed between locations. Like in the artificial 

stream study, clams did not affect nitrification rates, and there were no differences in 

nitrification between sites. The amount of organic matter was lower in the Chicago River 

than in Eagle Creek (p=0.045), but the presence of clams did not affect sediment organic 

matter, which is contrary to results from the artificial stream study (Figure 6). N2 flux out 

of the sediment (i.e., denitrification) was greater when live clams were present (2-way 

ANOVA, p=0.011) relative to control sediment and sediment exposed to clams, and N2 

flux was higher in the Chicago River (2-way ANOVA p=0.006) than Eagle Creek (Figure 

7). There was more O2 uptake when live clams were present (2-way ANOVA p<0.001), 

but the two streams were not significantly different (2-way ANOVA p=0.197; Figure 7). 

In both sites, the presence of live clams increased NH4
+ flux out of the sediment (2-way 

ANOVA p=0.020; Figure 8). There was more NH4
+ and NO3

- uptake in the Chicago 
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River than in Eagle Creek (2-way ANOVA, p=0.003, and p=0.045, respectively; Figure 

8), and Eagle Creek showed net release of both solutes across control and clam 

treatments. There was no significant difference in individual clam excretion rates 

between sites, although the Chicago River clams showed a trend of higher excretion 

(Figure 9). Finally, while there was clam greater mortality in sediment trays in the 

Chicago River, the condition of those in the Chicago River was better than that at Eagle 

Creek (p=0.045).  

We used benthic density of clams in each stream to scale up their effects on N 

fluxes to the level of 1 m2 of streambed (Figure 10). Results showed an increase in NH4
+ 

and N2 flux out of the sediment when exposed to clams relative to control sediment, and 

fluxes were even higher when live clams were present. However, the difference between 

rates in the control sediment and in sediment with live clams was different at each site. 

For example, the difference in NH4
+ flux between control and live clams was 466. µg N 

m-2 h-1 at Eagle Creek, and 3,623 µg N m-2 h-1 in the Chicago River. The difference in N2 

flux in control and live clam sediment was also smaller in Eagle Creek (280 µg N m-2 h-1) 

relative to the Chicago River (6,069 µg N m-2 h-1). Also, the fluxes in the Chicago River 

were much more variable than in Eagle Creek as indicated by the error bars. 
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Table 2. Comparison between North Branch of the Chicago River (urban) and 
Eagle Creek (rural) for physicochemistry, benthic substrate composition, and 
benthic macroinvertebrates community. 
Measurement Chicago River Eagle Creek 

Water Column NO3 (ug L-1) 2,490.8 42.2 

Water Column NH4
+ (ug L-1) 126.1 17.9 

Porewater NH4
+ (ug L-1) 228.5 270.4 

Discharge (m3 s-1) 0.43 0.01 

Number of clams m-2 (ind m-2) 1,516.5 174.7 
Benthic Composition     
Sand and Gravel 41% 65% 
Silt 6% 5% 
Boulder and Cobble 1% 15% 
Shells 27% 1% 
Other 25% 14% 
Benthic macroinvertebrate biomass g m-2 (%)   
Corbiculidae 228.67 (99.18%) 8.06 (78.21%) 
Unionidae 0.79 (0.34%) 2.19 (21.22%) 
Dreissenidae 0.48 (0.21%) - 
Chironomidae 0.05 (0.02%) 0.01 (0.10%) 
Oligochaeta 0.01 (0.01%) - 
Hirudinae 0.25 (0.11%) 0.04 (0.36%) 
Other 0.30 (0.13%) 0.01 (0.11%) 
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Table 3. P-values for a 2-way ANOVA by site (rural and urban stream) and clam 
treatment for sediment physicochemistry and clam physiology measurements 
from the field study. Bold values are significant at p<0.05. 
Process Site Treatment Interaction 

Nitrification (ug N m-2 h-1) 0.320 0.390 0.589 

N2 flux (ug N m-2 h-1) 0.006 0.011 0.342 

O2 flux (ug m-2 h-1) 0.197 <0.001 0.325 
Sediment organic matter (g) 0.045 0.418 0.356 

NH4
+ flux (ug N m-2 h-1) 0.003 0.020 0.993 

NO3
- flux (ug N m-2 h-1) 0.045 0.993 0.989 

Porewater NH4
+ (ug N L-1) 0.466 0.369 0.409 

Excretion rate (ug NH4
+-NgAFDM-1 h-1) 0.257     

Clam condition index (g mL-1) 0.045     
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Figure 6. Average nitrification rates (A) and sediment ash-free dry mass (B) at the two 
study sites Chicago River and Eagle Creek. White bars indicate no clams and grey bars 
indicate clams present. Although there was no clam effect, Eagle Creek had higher 
organic matter (2-Way ANOVA p=0.045). 
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Figure 7. N2 flux (A) and O2 flux (B) in sediment without clams, exposed to clams, and 
with live clams present in the Chicago River and Eagle Creek. N2 flux (i.e., 
denitrification) was higher in the Chicago River and when live clams were present (2-
Way ANOVA p=0.006, p=0.011). There was more O2 uptake (i.e., respiration) when live 
clams were present (2-Way ANOVA p=0.001). 
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Figure 8. NH4
+ flux (A) and NO3

- flux (B) in sediment with no clams (control), exposed 
to clams (x clam) and with live clams present (clam). Black bars represent measurements 
from the Chicago River and grey bars represent measurements from Eagle Creek. 

2-Way ANOVA 
Site: p=0.045 
Clam: p=0.993 
Interaction: p:=0.989 
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Figure 9. Average excretion rate (A) and condition index (B) in clams from the Chicago 
River and Eagle Creek. Clams from the Chicago River had a higher tissue:shell cavity 
volume ratio than those in Eagle Creek (t-test p=0.045). Error bars represent standard 
error. 
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Figure 10. Comparison of biogeochemical processes between the Chicago River (A) and 
Eagle Creek (B), adjusted for benthic clam density. White bars represent sediment 
without clams, grey bars represent sediment exposed to clams, and black bars indicate 
sediment with live clams present. Error bars represent standard errors. 
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Discussion 

Overall, our results showed that C. fluminea affected key aspects of N 

biogeochemistry, but the magnitude of their effect varied according to environmental 

conditions, both in laboratory streams and in situ. In addition to the environmental 

effects, clam condition and mortality was also affected by the stream environment. In 

general, it appears clams interacted with stream N and C dynamics most through 

excretion, which increased NH4
+ flux, and through burrowing activity, which increased 

water column diffusion and thereby higher rates of N2 flux and respiration, as well as 

changes in sediment AFDM. 

Clam effects on sediment AFDM 

We did not expect that the clams would have a significant effect on sediment 

organic matter. While we expected some consumption by pedal-feeding, we provided a 

high quality algae mix food to clams in the lab, and clams in the field were downstream 

of lentic habitats. Our field and lab studies produced mixed results. In the artificial stream 

study, the presence of clams decreased sediment organic matter, but there was no effect 

of clams on AFDM in the field study. Most likely, there was no effect of clams on 

sediment organic matter in the field study because there is a constant import and export 

of organic matter in natural streams. However, the decline in sediment AFDM in trays 

that contained clams + organic matter in the lab study could be due to 1) pedal feeding, 2) 

displacement via burrowing and locomotion, or 3) erosion in the early stages of the 

experiment.  
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Evidence from a concurrent study on clam behavior (see Chapter 3 of this thesis) 

suggests that the displacement explanation is unlikely because we found very little clam 

horizontal movement. Also, AFDM declined even though not all the clams were buried in 

the trays. In a combination laboratory and field study, Hakenkamp and Palmer (1999) 

showed that pedal-feeding reduced sediment organic matter when conditions favored 

pedal-feeding. However, we think pedal feeding reduction was at most only part of the 

cause in organic matter reduction in our study, since those clams in sediment with 

organic matter showed a decline in condition index similar to the other treatments, and 

our clam behavior study suggested there was no preference for substrates containing 

organic matter relative to those without. We observed that some of the displaced organic 

matter in the artificial streams seemed to float in the water column or line the bottom of 

the stream (i.e., was not consumed). 

The reduction in organic matter in the trays with clams happened within the 1st 3 

weeks of the experiment, and stayed uniform thereafter (Figure 2), suggesting erosion as 

a possible explanation for the clams effect. The organic matter seemed to be displaced 

from the physical presence of the clams, not through their burrowing or feeding. Allen 

and Vaughn (2011) also found that bivalve-induced erosion disturbs sediment organic 

matter within high density assemblages of unionid mussels in artificial streams. This is 

important because the abundance of sediment organic matter was a driving factor in 

several biogeochemical rates, including nitrification and DEA. In addition, the presence 

of organic matter in the artificial stream study sustained higher clam condition indices by 

the end of the 9 week study. The magnitude of AFDM in the +organic matter treatment 
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was much higher in the lab study relative to AFDM in the field study (5 g and 0.6g, 

respectively). Overall, while the laboratory experiment clearly demonstrated the effect of 

organic rich sediment on N dynamics, the high AFDM in sediment trays limits the 

extension of these results to exploring clam effects on N dynamics under oligotrophic and 

eutrophic environments. 

Clam mortality and condition index is influenced by environmental conditions 

C. fluminea populations are subject to large-scale die-offs that have multiple 

ecosystem effects (Cherry et al. 2005). Our results suggest that high nutrient conditions, 

combined with low organic matter abundance, can generate a population crash of C. 

fluminea. The results we observed in one of our artificial streams were consistent with 

those findings. The sudden clam die-off in the stream with no organic matter and high 

nutrients caused unusually high numbers in our DEA measurements in week 9 (Figure 3). 

Overall, the clams with the best survival had organic matter present but no added 

nutrients. In a similar fashion, clam mortality in the Chicago River field experiment was 

higher than in Eagle Creek, and Eagle Creek had more organic matter (Figure 6) and 

lower nutrients (Table 2). Wittmann et al (2012) also observed that high NH4
+ 

concentrations combined with low DO, increased clam mortality and subsequent algal 

growth. Previous studies have suggested that low food quantity and quality, associated 

with higher water temperatures create metabolic expenses that trigger clam mortality 

events (McMahon 2002, Ilarri et al 2010).  

 Condition indices are often used in bivalve aquaculture and there are several 

variations in the measurements (Lucas and Beninger 1985). We used a volumetric meat-
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to-shell ratio (Mann 1978) to determine environmental effects on the clams’ condition in 

both lab conditions and in the field. Measuring the condition index is most often done in 

oyster studies (Lawrence and Scott 1982, Mason and Nell 1995) but has been used 

previously with C. fluminea (Cataldo et. al 2001). A low condition index would be 

indicative of poor environmental conditions or some other kind of stress on the clam 

(Lucas and Beninger 1985). Under laboratory conditions, we found that there was a 

general decline in the condition index of the clams across the course of the study. The 

results of condition index in the field suggest that clams in the Chicago River have a 

higher body tissue to shell cavity volume ratio than those in Eagle Creek. What 

confounds these results, however, is that we found 73% mortality in the clams from the 

Chicago River while there was only 13% mortality from Eagle Creek. An assessment of 

the condition indices by Mann (1978), found that results can sometimes be misleading 

because they only account for fluctuations in water content, not any other potential 

factors. Therefore, this index may not have been very helpful in assessing the 

physiological condition of C. fluminea. Lucas and Beninger (1985) proposed another 

index known as Net Growth Efficiency, which calculates the amount of energy allocated 

toward tissue growth. While it may be more informative, it is also more complicated. 

This index requires calorimetry and lipid extraction as well as multiple measurements 

throughout bivalve development.  

Corbicula fluminea excretion rates, porewater NH4
+, and NH4

+ flux 

 Our combined field and lab data suggest that NH4
+ produced by C. fluminea via 

excretion was one of its major impacts on stream N dynamics. Excretion rates were 
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similar across lab and field studies, and NH4
+ in cores with live clams were higher than in 

sediment with no exposure to clams in both the Chicago River and Eagle Creek. 

Excretion rates show high variation among taxa, organism size, age, and environmental 

conditions (Vaughn and Hakenkamp 2001), so it was difficult to compare the rates we 

found to other studies. However, James et al. (2000) found relatively similar rates in 

zebra mussels in the upper Mississippi River (0-200 µg N gAFDM-1 h-1).  

Clams significantly increased sediment NH4
+ flux relative to control sediment at 

both sites, which was likely due to clam excretion. NH4
+ flux at Eagle Creek increased by 

a factor of 3, and in the Chicago River, flux shifted from net uptake to net NH4
+ release 

that was nearly 5 times greater than the flux in Eagle Creek. While this difference in 

NH4
+ flux cannot be accounted for solely by excretion rates, the excretion rates were 

higher in the Chicago River than in Eagle Creek. We predicted that NH4
+ flux in the 

sediment with clams may increase NH4
+ in sediment porespaces, however we have no 

evidence for this in the Chicago River, Eagle Creek, or laboratory study. Overall, the data 

suggest clams increase NH4
+ in the water column only, which may be available for 

biofilm growth or nitrifiers downstream of clam excretion sites. 

Clam effects on nitrification and N2 flux 

 Clams could increase nitrification through two pathways: increased porewater 

NH4
+, and increased oxygenation of sediments. Bivalves elsewhere have been shown to 

increase sediment nitrification through bioturbation, accelerating the degradation of 

organic matter and releasing ammonium (Henriksen et al. 1983, Chen et al 2005). We 

found no evidence for an increase in nitrification rates, but there were some patterns in 
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the data that suggest an influence of clams on nitrification may be possible. Nitrification 

was slightly higher at the Chicago River relative to Eagle Creek (although not 

significantly so), which could be attributed to higher water column NH4
+. In addition, 

there was a trend of higher nitrification in the sediment exposed to clams (Figure 6). It 

may be that if we had incubated clams at higher densities in the trays we would see the 

trend continue to increase, since inorganic N and P fluxes out of sediments tend to 

increase directly with clam density (Zhang et al. 2011, Figure 10). Finally, because of the 

toxicity of DMSO and nitrapyrin, we were unable to run nitrification assays in sediment 

with living clams (as we did for N2 and O2 flux). We may have measured higher 

nitrification rates in cores with living clams, as this also increased denitrification rates 

relative to sediment which was simply exposed to clams in the field. However, our results 

for NH4
+ flux, porewater NH4

+ and nitrification suggest that while clams contribute to the 

NH4
+ pool in the water column, any influence they have on nitrification likely occurs 

downstream, where NH4
+ may again contact the sediment-water interface. 

Live C. fluminea clearly and significantly increased N2 flux from sediments in the 

field study. To our knowledge, this is the first study to examine the effects of live C. 

fluminea on N2 production. This was captured during our flow-through analysis in which 

live clams were left in the cores for 3 d during the assay. Since there was a constant flow 

of water, the clams survived and were actively burrowing, excreting, and feeding within 

the cores. This flow-through technique is commonly used in lakes (Zhang et al. 2011) and 

coastal sediments (Gardner and McCarthy 2009), but less frequently used in analysis of 

nutrient fluxes in stream sediments (but see Juckers et al 2013). We acknowledge the 
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water velocity in the flow-through cores is lower than stream water velocity. However, 

the technique has advantages over static water incubations (e.g., acetylene block for 

denitrification or light/dark bottle methods for respiration) as it maintains constant 

replacement of water, allows organisms to be relatively unperturbed during the assay, and 

there is no manipulation of ambient light, dissolved gas, or water chemistry.  

Denitrification is driven by the availability of NO3
-, organic carbon, and anoxic 

conditions (Newell et al. 2002). Denitrification was higher in the Chicago River than in 

Eagle Creek, as was NO3
- concentration. There was less organic matter in the Chicago 

River compared to Eagle Creek, suggesting NO3
- availability, rather than C, was driving 

differences in N2 flux. Nitrate can be supplied to denitrifying microbes directly from the 

water column or sediment porespaces (i.e., direct denitrification), or may be provided by 

nitrifiers in coupled nitrification-denitrification reactions (i.e., indirect denitrification). 

Results from the field study strongly suggest that clams increased direct denitrification. 

N2 flux and water column NO3
- were 2 and 59 times higher, respectively, in the Chicago 

River than in Eagle Creek. In addition, there were no effects of clams on nitrification or 

porewater NH4
+ concentrations, also supporting the conclusion that the mechanism of 

clams’ influence was direct denitrification. Finally, there was an increase in sediment N2 

flux when live clams were present in the cores relative to sediment that was exposed to 

clams, suggesting that the presence of live, burrowing clams was necessary for increasing 

N2 flux. This burrowing activity could increase the diffusion of NO3
- in the water column 

to sediment microbes, while NH4
+ in clam waste expelled through their siphons into the 

water column. Zhang et al. (2011) used microelectrode profiles to show that burrowing C. 
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fluminea increase sediment oxygenation and organic matter mineralization, and proposed 

that increased water column diffusion may increase nitrification and denitrification. 

Denitrification rates are typically higher in rivers than other aquatic ecosystems, 

but can vary greatly due to temperature, season, and other spatial and temporal factors 

(McCutchan and Lewis 2008). Denitrification rates measured via N2 flux in this study 

were in the same range as studies that have used 15N tracers and acetylene-block to 

measure denitrification. Using isotopic tracers, the range for denitrification in 24 urban 

streams throughout North America was ~500-4000 µg N m-2 h-1 and in 24 rural streams 

was ~90-800 µg N m-2 h-1 (Mulholland et al. 2008). The N2 flux we measured in the 

Chicago River and from the non-urban stream were also similar (~400-700 µg N m-2 h-1). 

Bruesewitz et al. (2006) measured effects of zebra mussels on denitrification using 

acetylene-inhibition. Their results showed DEA to be N limited and highly variable, but 

their measurements were well above our measurements at ~500-250 mg N m-2 h-1 

(Bruesewitz et al. 2006), relative to ~0-115 mg N m-2 h-1 (this study).  

The lab study suggested that organic matter, rather than clams or nutrients, were 

the primary driver of DEA. However, the field study did not show organic matter to drive 

N dynamics or that clams affected organic matter. This discrepancy could be due to (1) 

differences in organic matter abundance in the field vs. lab, or (2) differences in the 

technique for measuring N2 production in the 2 studies. Organic matter content was 

approximately 6 times higher in the field study than in the lab. At these levels, it did not 

appear to be limiting to N2 production. In the lab study, there were no live clams present 

in the DEA assay, while in the field, we had live clams in the flow through incubations. 



50 

 
 

This is because the conditions in the DEA bottles do not allow for living clams (i.e., 

anoxia, acetylene, and chloramphenicol). We did not use flow through cores for the lab 

study simply because we did not have the resources or equipment available at the time. 

Overall, our results suggest that the nutrients and sediment organic matter were more 

important to DEA than the clams in the lab study, while in the field the ambient 

concentrations were high enough that organic matter was not limiting to N 

transformations. 

Overall effect of Corbicula fluminea on N dynamics at study sites 

C. fluminea increased rates of biologically active NH4
+ in stream water via 

excretion, but they also increased the amount of inert N2 flux from sediments most likely 

produced through burrowing and diffusion of water column NO3
- (rather than through 

coupled nitrification-denitrification). We compared these fluxes of inorganic N by scaling 

up the rates from the cores using benthic C. fluminea density at each site to generate 

conclusions regarding their net effect on inorganic N dynamics at the scale of 1 m2 of 

streambed.  

In Eagle Creek, the additional NH4
+ flux out of the sediment with live clams 

(relative to control sediment) was higher than the increase in N2 flux (466 µg N m-2 h-1 

NH4
+ flux and 280 µg N m-2 h-1 N2 flux ). This suggests that while clams increased the 

amount of N in the N2 pool, they increased the amount N in the NH4
+ pool even more, so 

their net effect was to increase biologically active inorganic N in the stream. In the 

Chicago River, however, the additional NH4
+ flux out of the sediment from the live clams 

was less than their increase in N2 flux (3,623 µg N m-2 h-1 NH4
+ flux and 7,121 µg N m-2 
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h-1 N2 flux). This increase may represent an ecosystem service of C. fluminea. However, 

we note that a considerable amount of N is stored in clam tissues given their high density 

(Table 2), and their death and decomposition, especially during cold weather months, 

likely increases bioavailable N at those times. A full accounting of C. fluminea’s 

influence on inorganic and organic N pools is a prerequisite to claiming the ecosystem 

service of denitrification enhancement. 

Our understanding of the clams’ net impact on inorganic N fluxes is complicated 

by the NO3
- flux patterns, which showed high NO3

- uptake in the Chicago River and 

release of NO3
- in Eagle Creek, regardless of the presence of clams (Figure 10). This 

NO3
- release in Eagle Creek could be partially attributable to nitrification, however, the 

rate of nitrification in sediment exposed to clams was lower (27 µg N m-2 h-1 in Eagle 

Creek) relative to NO3
- flux out of these sediments (169 µg N m-2 h-1 in Eagle Creek). 

Zhang et al. (2011) found NO3
- release from sediments in cores with live C. fluminea 

attributed to increased nitrification and diffusion. It is unclear where the source of the 

NO3
- flux from sediments in Eagle Creek originates, but it could at least partially 

represent the nitrification effect we were unable to measure in the cores with live clams. 

Macroinvertebrate community and relative clam density 

 Our survey of benthic macroinvertebrates showed that C. fluminea dominates 

benthic biomass in both the Chicago River and Eagle Creek, but particularly in the urban 

stream. We have no data on past C. fluminea densities at either site, but our evidence for 

the ‘snapshot’ of macroinvertebrate communities in June 2012 suggest C. fluminea can 

thrive under urban and rural stream conditions, while other bivalves are less successful. 
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However, there were more native mussels present in Eagle Creek, which represented 

about 25% of benthic macroinvertebrate biomass. Our data cannot address whether or not 

C. fluminea outcompetes native bivalves in the urban or rural stream, or if their relative 

composition is determined by other environmental factors (i.e., urbanization, substrate 

composition, and reproduction). Vaughn and Spooner (2006) found no significant 

relationship between C. fluminea and native mussels. Karatayev et al. (2003) found no 

correlation between the biomass of C. fluminea and that of other invertebrates in a 

eutrophic Texas lake. Our expectation is that the external factors affecting water and 

habitat quality drive relative community composition of lotic bivalves, but it is unclear 

how bivalve interactions change in urbanized streams relative to more pristine habitats.  

Conclusion 

Corbicula fluminea is a conservation concern because of its invasibility, 

biofouling potential, and potential for competition with native species. The rapid growth 

and high fecundity this species exhibits allows them to invade a variety of freshwater 

ecosystems and sustain high population densities (Sousa et al. 2008b). The high 

abundance and unique feeding capabilities allows this species to alter food webs and 

stream ecosystem function, particularly if populations continue to increase while native 

species decline (Atkinson et al 2010). Due to its wide distribution and high density this 

species merits increased attention and monitoring to document its population and 

ecosystem effects. Our results indicate that C. fluminea can be the major driver of pools 

and fluxes N in the stream benthos. More studies are needed to determine the fate of N 

taken up in C. fluminea biomass over longer time scales, their effect on N transformations 
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relative to native mussels, and to document seasonality in C. fluminea-mediated fluxes of 

NH4
+ and N2.  

C. fluminea can contribute to economic problems through biofouling and 

subsequent clean-up procedures (Darrigran 2002). It is estimated that this species alone 

accounts for approximately $1 billion annually in control measures and damages just in 

the United States (Pimentel et al. 2005). While some treatments such as filters, physical 

removal, and chemical controls have been employed, they are not often appropriate for 

open water systems. Even those that have been developed for use in lakes or streams may 

have short-term success, but the long-term status is unknown (Wittmann et al. 2012). 
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CHAPTER III

EXTERNAL EFFECTS ON BURROWING BEHAVIOR OF THE ASIAN CLAM 

(CORBICULA FLUMINEA) 

Introduction 

Studying locomotion can provide insight into animal life history strategies. 

Bivalves are generally considered to be sedentary organisms, but they engage in different 

types of locomotion across their life stages (Kondo 1997). Larvae can be planktonic, 

parasitic, or have their own basic swimming capacity (Neves and Widlak 1987). As 

adults, bivalve behavior includes feeding, filtration, mating, excretion, burrowing, and 

lateral movement (Amyot and Downing 1997, Vaughn and Hakenkamp 2001). Some 

bivalves also experience seasonal migration (Watters et al. 2001). In addition, external 

factors such as sediment contamination, the type of substrate, and presence of predators 

can affect bivalve locomotion (McCloskey and Newman 1995, Schmidlin and Baur 2007, 

Saloom and Duncan 2005). 

Corbicula fluminea (Muller1774) has been highly invasive to freshwater 

ecosystems in the United States since 1938 (Araujo et al. 1993). This species is a 

burrowing clam, which impacts the physical and biogeochemical properties of the 

ecosystem through bioturbation and sediment mixing (McCall et al 1986, Allen and 

Vaughn 2009). Burrowing evolved as a mechanism to continue feeding while avoiding 

predation or harmful environmental factors (Amyot and Downing 1997). C. fluminea are 
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most often found in sandy substrates (Schmidlin and Baur 2007), and have been shown to 

select sand substrates over gravel. In addition, there is some evidence to suggest C. 

fluminea avoid contaminated sediments, settling instead in uncontaminated sediments 

(McCloskey and Newman 1995). However, it is unclear if clams “choose” which 

substrate to burrow in, if they move among substrates, or if the portion of the population 

which settles in less favorable substrates die off, while those in better habitats thrive. 

Understanding drivers of C. fluminea burrowing behavior is important because they can 

be present in very high densities and have large effects on stream ecosystem communities 

and processes. 

Little is known about horizontal movement in freshwater mussels or clams. 

Horizontal movement is theorized to occur in response to stressful environmental 

conditions such as low food resources or anoxic conditions (Saarinen and Taskinen 

2003). Amyot and Downing (1997) examined horizontal movement in a freshwater 

mussel, Elliptio complanata, to document spatial population dynamics. They found that 

mussels did not move horizontally once they burrowed and travelled relatively short 

distances annually (i.e., <3 m per year; Balfour & Smock 1995). Schwalb and Pusch 

(2007) also showed that unionid mussel annual movements are small and appear to be 

erratic. To our knowledge, there have been no studies on horizontal movement in C. 

fluminea. 

Bivalves respond to predators largely by closing their valves, but they could also 

respond through changes in burrowing rate or horizontal movement. C. fluminea have a 

wide range of predators, predominantly fish and crayfish, but also birds, raccoons, and 
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muskrats (Robinson and Wellborn 1988, Strayer 1999, Saloom and Duncan 2005). 

Predation and environmental factors affect clams behavior including increased burial 

depth and longer valve closure times (Ortmann and Grieshaber 2003). Like other 

burrowers, C. fluminea may face a physiological trade-off during predator evasion. 

Burying allows for protection from predators, but can inhibit valve opening for feeding or 

ventilation (Saloom and Duncan 2005). 

Crayfish are a natural predator of C. fluminea and may potentially benefit from 

the introduction of C. fluminea as a novel food source in invaded ecosystems (Covich et 

al. 1981). An invasive species in the northern Midwest, the Rusty Crayfish, Orconectes 

rusticus, inhabits some of the same ecosystems as C. fluminea (Taylor and Redmer 

1996). O. rusticus is widespread throughout the United States and was first found in 

Illinois in 1973. Since then it has become the most abundant crayfish species in most of 

the sites at which it is found, often to the detriment of native crayfish taxa (Taylor and 

Redmer 1996). Studies using Procambarus clarkii and Cambarus bartonii showed the 

crayfish easily consume small clams, larger clams with damaged shells, and clams that 

had recently died (Covich et al. 1981). However, clams were less likely to be eaten when 

they were buried in the substrate (Klocker and Strayer 2004). While clams are clearly at 

risk to predation from crayfish, no previous studies have documented if C. fluminea 

changes its burrowing behavior when exposed to crayfish predators. Understanding the 

predator-prey dynamics between these macroinvertebrates will be useful for predicting 

their ecosystem effects and managing their populations. 
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Our objectives in this study were to: (1) determine the effect of substrate type on 

C. fluminea burrowing behavior and horizontal movement and (2) determine the effect of 

a predator, O. rusticus, on C. fluminea burrowing behavior.  

Materials and Methods 

The influence of sediment type on clam burrowing and horizontal movement 

The objective of the first set of studies was to measure the effect of substrate type 

on C. fluminea burrowing rates and horizontal movement. Clams were collected from the 

North Branch of the Chicago River on 21 February 2013 and brought to the artificial 

stream facility at Loyola University Chicago. Artificial streams are re-circulating 

chambers with a paddle wheel, where channel width = 13.97 cm and total flowpath length 

= 203.2 cm.  

We set up 3 replicate streams, each containing trays with different substrate types: 

(1) playground sand, (2) a 50/50 mix of sand and potting soil, (3) small gravel (mean 

diameter = 5.9 mm), (4) large sized gravel (mean diameter = 12.3 mm), and (5) extra 

large gravel (mean diameter = 19.1 mm). Each stream had 3 trays of each sediment type. 

Trays were 23 cm X 14 cm X 9 cm plastic take-out containers (Plastic Take-Out 

Container, Hangzhou Yusheng Plastic Products Co. Ltd., Hangzhou City, China). We 

marked a grid in units of 1 cm on all sides of the tray and placed 5 evenly spaced clams in 

each tray. The clams in each tray were painted with a different color nail polish on one 

valve to identify and track them. Immediately after being placed in the stream, each tray 

was recorded with a video camera suspended 40 cm above the tray on a ring stand for 

approximately 1 hour. Researchers watching the video considered clams fully buried if < 
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1/2 of the shell was visible above the substrate. Using this parameter, clams were 

considered either buried or not buried after 60 min. The next day, we counted the number 

of clams buried after 24 h. 

To measure horizontal movement, we took a picture of each tray to document the 

clams’ initial positions. One tray was collected each week for each of the substrate types, 

and we recorded how far each of the 5 clams had moved from their initial position. Some 

of the clams were visible at the surface, but if they were not, we gently probed with a 

closed pen to find the position of buried clams. To calculate horizontal movement, we 

measured a direct line from initial position to final position using the grid marked on the 

sides of the tray.  

Sediment preference experiment 

The sediment preference experiment was set up in separate artificial streams. In 

each stream, we placed 3 trays containing 6 clams. The trays were filled with 2 types of 

sediment so there was a line of separation running down the center of the tray, parallel to 

the direction of stream flow. The trays were filled with sediment that contained a 50/50 

sand and organic matter mixture on one side of the tray, and gravel (mean diameter 5.9 

mm) on the other, with a piece of cardboard in the middle. When the cardboard was 

removed, this established a clear distinction between substrate types. The clams were 

marked with nail polish to follow individuals on video. The clams were positioned in the 

center of the trays so that 3 had their foot facing one substrate and the other 3 had their 

foot facing the other substrate. Immediately after placing the trays in the stream, each tray 

was recorded with a video camera to observe the direction and speed of clam burial. We 
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considered clams buried in a particular substrate if more than half of the body was buried 

in that substrate. Any clams that buried straight down or did not bury at all were noted 

and recorded in separate categories. We recorded preference for each clam for 1 h after 

placing them in the tray, and then again at 24 h.  

Effects of predator presence on clam burrowing 

Crayfish are natural predators for clams (Covich et al. 1981). We used rusty 

crayfish (Orconectes rusticus) as a model predator to document its effect on C. 

fluminea’s behavior. This study was conducted in aquaria, rather than artificial streams, 

because monitoring crayfish interactions with clams was much more successful under 

aquarium conditions. We set up 9, 38 L aquaria as experimental replicates. Three aquaria 

had an unrestricted crayfish which were able to directly contact the clams. To represent a 

perceived predator, another three aquaria had crayfish contained in 1 cm2 wire mesh 

cages (20 cm x 15 cm x 15 cm). The final three tanks were controls (no crayfish). To start 

the experiment, 10 clams from crayfish-free artificial streams were added to each 

aquarium. Each aquarium was recorded with a video camera for 1 h, beginning when all 

clams were placed into the tank. We recorded clam burial speed, and the number of clams 

buried after 1 h and after 24 h as described above.  

Effects of predator intensity on clam burrowing 

The final experiment measured crayfish behavior influenced clam burrowing 

using a video camera. Crayfish behaviors included walking on the clams, manipulating 

clams, and picking up/moving clams. We ran 10 new trials using aquaria with clams and 

unrestricted crayfish. We tallied how many interactions occurred in each trial. We then 
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categorized the crayfish-clam encounters as “low interaction” when ≤ 14 manipulations 

occurred during 1 hour, and “high interaction” if ≥15 manipulations occurred during 1 

hour. 

Statistical analyses 

We analyzed burrowing rate across substrate types using a one-way ANOVA 

followed by Tukey’s multiple comparison test. We used simple linear regression to test 

the relationship between horizontal movement and substrate particle size. To determine 

substrate preference, we ran a t-test on burial location, and a t-test on those clams that 

buried in the direction of their foot relative to those which buried in a different direction. 

We used an ANOVA to test for the effects of an unrestricted and caged predator on the 

burrowing speed as well as the proportion of clams that buried. Finally, we used a t-test 

to analyze if the crayfish interaction intensity affected the proportion of clams that 

successfully buried. All statistical tests were run in SYSTAT 13 (Systat Software, Cranes 

Software International Ltd., Chicago, IL). 

Results 

Substrate size affected both clam burrowing speed and horizontal movement. 

Larger gravel substrates slowed down the rate of burial, with the largest gravel size (19.1 

mm) greatly slowing down the burial process (ANOVA p<0.01, Figure 11). With 

increasing particle size, the horizontal distance moved by the clams decreased 

(regression, R2=0.257, p=0.05; Figure 12). However, the distance measured over the 

course of the 21 d experiment was very small across treatments. The average distance 
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was 11 mm per 21 days and the maximum distance moved by any clam was just over 40 

mm during the 3 week period.  
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Figure 12. Regression showing the decrease in horizontal distance moved over 21 d as 
particle size increases. 

 

Despite the differences in burial rate among sediment size classes, clams did not 

show a preference for one substrate over another (t-test p=0.395). Instead, clams 

displayed a tendency to burrow in the direction of their foot (t-test p=0.05, Figure 13). 
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Figure 13. C. fluminea showed no preference in substrate between the sand/organic 
mixture and gravel. Clams burrowed in the direction of their foot more often than away 
from their foot or straight down (8%). Error bars represent standard error. 



65 

 
 

To examine the effects of a predator on clam burrowing behavior, we first tested 

if clams would sense and respond to a predator in the water by altering burial speed and 

proportion of clams buried. Burial speed and proportion of clams buried were the same 

among the control, caged predator, and unrestricted predator treatments (Figure 14). 

However, when the crayfish were able to manipulate the clams, the frequency of their 

manipulations reduced the proportion of clams that successfully buried. Where predators 

infrequently touch the clams, their burial proportion was over 30% more than when the 

crayfish frequently manipulated the clams (t-test p=0.021, Figure 15). 
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Figure 14. Burrowing time (A) and percentage of clams buried (B) when a predator was 
able to directly manipulate clams, was present but unable to access clams, and no 
predator present. Error bars represent standard error. 
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Figure 15. More clams buried in the substrate when there were fewer crayfish 
interactions within one hour compared to when crayfish frequently manipulated the 
clams.  
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Discussion 
 

Documenting environmental controls on burrowing behavior in bivalves is 

important for understanding the aggregation of their populations in particular substrate 

types, predator avoidance strategies, and reproductive success (Downing et al. 1993). In 

addition, as burrowing and horizontal movement come at some energetic cost, 

documenting abiotic and biotic drivers of these behaviors can help establish conditions 

that might benefit species conservation (i.e., endangered Unionidae mussels) or present 

new options for mitigating effects of invasive species such as C. fluminea.  

As expected, increased substrate particle size, particularly the largest gravel 

(19.1mm), slowed C. fluminea burrowing speed and impaired horizontal movement. It 

was not surprising to find little lateral movement after burial, however, there were no 

previous studies of lateral movement in C. fluminea. In a similar fashion, freshwater 

mussels have been known to move only very small distances over the course of a year 

(Balfour and Smock 1995). Amyot and Downing (1997) found nearly all of the 

freshwater mussels, Elliptio complanata, which buried into the sediment in the fall 

emerged in the spring at the same location. The only vertical and horizontal movements 

in E. complanata were associated with seasonal variation and spawning periods. A 

subsequent study by Amyot and Downing (1998) suggested that lateral movement in E. 

complanata could bring males and females closer together, with females moving less 

because of the energetic cost. C. fluminea populations have high numbers of 

hermaphrodites (Hillis and Patton 1989) and high population densities, so lateral 

movement for reproductive behavior is likely unnecessary. 



69 

 
 

We expected C. fluminea to prefer finer substrates over larger substrates, but 

found no evidence for substrate preference. Instead, C. fluminea typically buried in the 

direction their foot was facing. Our results are in contrast to a similar preference study on 

C. fluminea, which reported a selection for finer substrates over gravel (Schmidlin and 

Baur 2007). However, this study was conducted in situ and did not examine the direction 

of the foot. McCloskey and Newman (1995) showed that C. fluminea chose 

uncontaminated sediment over contaminated sediment when given a choice. However, 

the authors note external factors affected these results, as both the clams and the snails in 

the study (Campeloma decisum) preferred the left side of the aquarium over the right side 

of the tank despite sediment contamination. 

Previous studies on sediment preference assume C. fluminea sense the substrate 

available, and either change burrowing direction or move horizontally towards a substrate 

that is more appealing (i.e., smaller grain size or uncontaminated sediments; Schmidlin 

and Baur 2007). However, previous research has not measured horizontal movement or 

‘course correction’ during burrowing. Our results show no evidence that either 

mechanism for sediment preference occurs. Instead, it appears the clams largely burrow 

in the direction in which they were placed (Fig 13), and there was little horizontal 

movement in any of the substrate types (Fig 12). In general, substrate preference in C. 

fluminea is not well documented, and should be examined further for a better 

understanding of how clams’ sensory capacity (or lack thereof) influences their 

burrowing behavior.  
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Another factor that might impact C. fluminea burrowing behavior is the presence 

of predators. Robinson and Wellborn (1988) suggested that the burrowing activity of C. 

fluminea evolved to reduce the risk of predation. This anti-predator behavior is also 

exhibited by other freshwater bivalves such as unionid mussels (Waller et al. 1999). 

Klocker and Strayer (2004) showed that fingernail clams (Sphaeriidae) were less likely to 

be consumed when they were buried in the sediment compared to clams at the surface. 

Therefore, we expected that more clams would burrow into the substrate, and do so more 

quickly, in the presence of an unrestricted predator that could actively manipulate them, 

and when there was a caged predator nearby (sensed via a chemical cue). Our results did 

not show this pattern. Instead, we found that C. fluminea showed neither a burrowing 

speed response nor a change in the percentage of individuals that buried when an 

unrestricted or caged predator was present relative to control conditions. We 

acknowledge that an alternative explanation for this pattern is that this species of crayfish 

was not perceived as a predator by the clams. Studies using other predators (i.e., fish) or 

predators from the clams’ native habitat may be needed to resolve this question. 

However, there was little behavioral change in the clams aside from valve closure when 

touched directly by predators. As with the results for substrate preference and horizontal 

movement, these data suggest that clams did not sense and then respond to the presence 

of the predator in their environment by changing burrowing rate.  

The strongest effect of predators on clam burrowing behavior was when they were 

frequently manipulated by the crayfish. More clams buried successfully when they were 

left untouched or when there were few interactions by the crayfish, and 30% fewer clams 
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buried when the crayfish frequently manipulated them. The explanation for this pattern is 

that when the clams are touched, they instinctively close their valves to protect damage to 

their soft tissue. While this behavior avoids immediate predation, frequent valve closure 

due to predator manipulation could generate some energetic cost to clams over the long 

term. If clams must continually close and re-bury themselves, they lose potential feeding 

time, have restricted respiration while closed, and expend extra energy during repeated 

burrowing. This predator effect on was shown in a study of blue mussels (Mytilus edulis). 

Robson et al. (2010) found there was a trade-off between maximizing feeding and 

avoiding predation with respect to valve closure. These energetic costs have not 

previously been quantified for C. fluminea, and represent a potentially overlooked, sub-

lethal effect of predators on C. fluminea physiology. 

To our knowledge, little is known about the physical capacity for C. fluminea to 

sense their environment and respond to stimuli through a change in locomotion. That is, it 

is unclear if C. fluminea can distinguish among substrate types with touch receptors or if 

they can sense predators in water using olfactory or other chemosensory organs. In 

addition, it is unknown if clams have the neural capacity to translate those senses into a 

change in behavior. Except when the crayfish were physically manipulating the clams, it 

appears chemical cues of predator presence were not received or were not processed into 

anti-predator behavioral responses. Many superorders of marine bivalves such as 

Limoidea and Mytiloidea, along with some freshwater bivalves are known to have 

photoreceptors (Morton 2008), and zebra mussels can detect certain contaminants 

through chemoreceptors (Kraak et al. 1992), but published research on C. fluminea 
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sensory capacity is minimal. Our data suggest the ability for either sensory capacity or 

behavioral response are limited, but more studies are needed that address their physiology 

and behavior, conducted in the context of meaningful ecological parameters such as 

predation and substrate variation.  

Low sensory capacity for substrate selection or predator avoidance in C. fluminea 

suggests that if individual clams are located in habitats that inhibit their burial, or in 

locations with predators, they are likely at a higher risk of predation as they will not 

search for different substrate or increase speed of burial. However, C. fluminea is a 

successful invasive species worldwide. This indicates that even if individuals are not 

particularly well-equipped to move themselves to avoid predation or non-suitable 

substrates, the populations persist because other life history strategies such as high 

fecundity and rapid growth facilitate invasion success.  

A wide range of studies have focused on various aspects of C. fluminea ecology 

and invasion (Robinson and Wellborn 1988, Hornbach 1992, Sousa et al. 2008a, Ilarri et 

al. 2011). Several studies have examined valve closure behavior (Ortmann and 

Grieshaber 2003, Ham and Peterson 1994), but in general, research on other C. fluminea 

behaviors is sparse. However, behavior is a crucial part of what makes species successful 

as invaders or as ecosystem engineers (Holway and Suarez 1999). This study and 

subsequent analyses of C. fluminea behavior will be helpful in predicting the potential 

ecosystem effects and possible management options of the Asian clam in established or 

newly invaded habitats
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CONCLUSION

 Corbicula fluminea is a widespread invasive species in the United States and 

throughout the world (Araujo et al 1993). Concurrent with the drastic decline in native 

mussel populations in North America, the continued spread of this species can cause a 

multitude of alterations to taxa and ecosystem processes (Sax et al. 2007, Atkinson et al. 

2011). My study showed that C. fluminea can have an effect on key processes in nitrogen 

cycling. However, the magnitude of its effects were variable based on density and 

surrounding environmental conditions. The results of the behavioral study show that 

instinctive responses of valve closure dominate clams response to environmental stimuli, 

rather than more sophisticated responses of substrate preference or predator sensing. I 

conclude that C. fluminea is such a successful invader not because it is an aggressive 

competitor, highly tolerant organism, or capable of avoiding predators, but rather because 

its life history strategies have evolved to allow populations to thrive, even to the 

detriment of an individual. Future studies regarding C. fluminea should be executed 

locally for the most accurate observation of the species effects on its ecosystem. Since 

biomass and abundance can vary so dramatically, the magnitude of the impact on the 

environment will likely vary as well (Sousa et al 2008a). It is also important to increase 

research on behavioral aspects of C. fluminea as it may be helpful in analyzing the 

interactions between this invader and native species. Also, maximizing knowledge 
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regarding the behavior and life history strategies of any invasive species will aid in 

management and preventative measures.
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