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1. REVIEW OF THE RELATED LITERATURE 

1.1 Pain Mechanisms 

1.1.1 Historical Account 

Pain is one of the most common experiences of man and the expla­

nations of its nature probably one of his oldest preoccupations. 

Throughout the years, several theories have been proposed to explain 

the phenomenon of pain; as research evidence began to accumulate all 

these theories have been shown to be inadequate. 

One of the earlier writers on pain, Aristotle, considered pain 

to be a manifestation of the soul, an emotion, and the epitome of un­

pleasantness (Aristotle [330 B.C.?] cited by Hardy et al., 1952). 

Man was thought to continuously fluctuate between two emotional states 

of pleasure and pain; thus, pain was equated with the unpleasantness 

one experiences throughout his/her life (Aristotle [330 B.C.?] cited 

by Hardy et al., 1952). 

The view of pain as an emotional state was championed until the 

end of the eighteenth century when Darwin proposed the Intensive The­

ory of pain (Darwin, 1794, cited by Hardy et al., 1952). The Inten­

sive Theory considered pain to occur whenever any of the "sensorial 

emotions" namely heat, touch, sight, taste, or smell were stronger 

than usual (Darwin, 1794, cited by Hardy et al., 1952). Although the 

Intensive Theory was popular for a long time, evidence now demon-

1 



strates that in some cases pain is in itself a particular form of 

sensation (Sweet, 1959; Dash and Deshpande, 1976). 

2 

The twentieth century saw the Intensive Theory of pain replaced 

by the Specificity Theory which until recently was the theory taught 

in medical schools (DeSousa and Wallace, 1977). The Specificity The­

ory implies a straight-through transmission system from somatic pain 

receptors via specialized pain fibers and a pain pathway to a "pain 

center" in the brain (Sweet, 1959). Evidence today, however, suggests 

that the perception of pain cannot be directly related to the neural 

activity in any particular anatomical structure (Melzack and Wall, 

1965). Furthermore, pain is influenced by many psychological vari­

ables such as attention, anxiety, suggestion, and prior conditioning; 

thus, the perception of pain includes a very pervasive psychological 

component (Melzack and Wall, 1965). 

Recently, research concerning pain has moved in the direction of 

investigating the plasticity and modifiability of events in the cen­

tral nervous system (CNS) through various physiological and psychol­

ogical techniques; these techniques will be reviewed briefly; perti­

nent physiological and anatomical descriptions also will be presented. 

In addition, the involvement of the cholinergic, serotonergic, and 

endogenous opioid systems in the rhenomenon of pain will be reviewed. 

However, before proceeding any further, it is necessary to define some 

relevant terms which will be employed throughout this dissertation. 



1.1.2 Definitions 

Just as there have been many theories proposed to explain the 

phenomenon of pain, many definitions have been proposed. Analysis of 

the current literature suggests that the term "pain" must be defined 

in terms of psychology rather than physiology, and therefore is only 

applicable for use when describing the human experience. Merskey 

( 1978) has proposed the following definition of pain: "pain is an un­

pleasant experience which we primarily associate with tissue damage 

or describe in terms of tissue damage or both". 

Next, the term "nociception" is defined as potentially tissue­

damaging thermal, mechanical, or chemical energy impinging upon spe­

cialized nerve endings called nociceptors (Fordyce, 1978). In this 

3 

scheme, the pain experience must be perceived in order for it to be 

said to have occurred. However, nociceptive input for pain needs not 

occur since man may perceive pain even in the absence of noxious 

stimuli such as in phantom limb pain. Similarly, the presence of nox­

ious stimuli does not insure the experience of pain since various 

neurological defects, the administration of drugs, or other factors 

make it possible for noxious stimuli to exist without being perceived. 

Thus, the terms pain and nociception although related to one another 

clearly are not interchangeable. 

Finally, the terms "analgesia" and "antinociception" are defined 

as the failure of an organism to exhibit pain- and nociceptive-induced 

behaviors, respectively; behavior is defined as observable, measurable, 
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overt, verbal and non-verbal actions of an organism (Fordyce, 1978). 

In regards to pain and. nociception, the essence of the problem is that 

there are pain- and nociceptive-induced behaviors. It is these part­

icular behaviors such as the various autonomic responses and voluntary 

or reflex muscular movements in laboratory animals as well as the 

verbal and non-verbal descriptions by humans which are observed and 

quantitated in the study of nociception and pain. 

1.1.3 Psychological Factors Influencing Pain 

Presently, there exists a large and increasing body of evidence 

which suggests that pain is influenced by a variety of psychological 

factors (Sternbach, 1978). To understand pain first one must take 

into account its interaction with the overall total personality. 

Since an individual's personality is shaped from birth, a develop­

mental analysis might prove useful in demonstrating the importance of 

early childhood events in shaping the pain experience. Pozanski 

(1976) demonstrated that children (age 5 to 16 years) who exhibit 

recurrent pain syndromes, for which there is no evident organic cau­

sation, such as chronic abdominal pain, headache, and limb pain come 

from families in which the parents themselves were more prone to 

exhibit pain behaviors. Pozanski (1976) suggests that the models 

presented by parents influenced pain associated behaviors in their 

children. 

Second, pain also has a very important cultur~l dimension. 

People respond to pain not only as individuals but also as members of 



their cultural heritage. While differences in pain behavior among 

cultural and ethnic groups are not well understood, consistencies 

within a particular group suggest that members of the group model 

normative standards for both the degree and way in which suffering 

is perceived and exhibited (Craig, 1978). Cultural specific attitudes 

towards pain can be summarized as follows: Yankees are apathetic, 

matter of fact, doctor-help oriented; Jews are concerned about im­

plications of pain and distrust pain relief procedures; Italians 

readily express desire for pain relief; Irish block both expressions 

of suffering and concern for the implications of pain (Craig, 1978). 

Third, some reinforcing, environmentally situated events may be 

pain contingent; that is, certain reinforcing events will not occur 

unless preceded by pain behaviors. Pain medications prescribed on 

5 

a "take only as needed" basis may be effective reinforcers or posi­

tive consequences of pain-related behavior or pain percetion if the 

patient feels better when sedated or analgetic (Fordyce, 1978). Sim­

ilarly, accident victims or wounded war heroes who are in pain may 

receive love,· attention, and .affection as rewards for pain behavior 

(DeSousa and Wallace, 1977). Finally, pain behavior is often rewarded 

financially; monetary compensation after successful litigation is an 

excellent reinforcement causing people to remain in pain (DeSousa and 

Wallace, 1977). 

Indirect reinfo=cement of pain behavior may occur when pain be­

havior leads to avoidance of some aversive or unpleasant consequence 

such as avoiding an unpleasant job, a threatening social encounter, 



or an aversive set of duties and responsibilities (Fordyce, 1978). 

Paraphrased, "when I am in pain, bad things don't happen which other­

wise would (Fordyce, 1978)". 

Fourth, in order for any stimulus to produce pain it must affect 

either the arousal or selective aspects of the patient's attention. 

Since an individual possesses a finite attention capacity, it follows 

that involvement of attention in one area will be accompanied by re­

moval of attention from another area. In fact, almost any situation 

that attracts intensive maintained attention will diminish or abolish 

pain perception (Melzack, 1961). 
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Strong relationships between pain and mood have been demonstrated. 

Anxiety is generally recognized as inceasing pain; thus, anything 

which diminishes anxiety may be expected to diminish pain (Merskey, 

1978) . Even the mere presence of the word pain during instructions 

in an experimental situation decreased the level of electroshock pain 

in patients as compared to a group of patients in which the mention of 

pain was not made during the instructional process (Hall and Stride, 

1954). On the other hand, excitement or aggression may leave subjects 

totally oblivious.even to serious trauma. Most notable examples are 

(i) football players and other sportsmen who suffer traumatic blows 

during competition but do not notice any pain until the contest is 

completed and (ii) severely wounded soldiers performing heroic tasks 

in spite of apparently incapacitating injuries (Merskey, 1978). 

Overall, a most important psychological component of pain has 



been amply demonstrated. The next section reviews the many pertinent 

physiological and anatomical aspects of pain. 

1.1.4 Physiological and Anatomical Correlates 

1.1.4.1 Nociceptors 
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Specific somatic receptors, called nociceptors, which convey 

neural impulses arising from a noxious stimuli have been identified 

and characterized as follows: (i) nociceptors are much more resistant 

to damage from noxious input than the low threshold mechanical and 

thermal receptors (ii) nociceptors have higher thresholds with respect 

to all stimuli in comparison to other sensory receptors of the same 

tissue and (iii) unlike other receptors, nociceptors undergo the 

process of sensitization; that is, repeated stimulation reduces the 

threshold for activation and increases the £requency of discharge per 

unit of stimulus (Perl, 1976). 

Nociceptors can be classified by measuring the discharge f:::-e­

quency of isolated peripheral nerves in response to a variety of nox· 

ious and innocuous stimuli applied to the skin (Besson and Perl, 1969). 

Briefly, (i) "mechanical nociceptors" respond to strong mechanical 

stimuli but are not at all excited by noxious thermal stimuli, (ii) 

"mechanical and thermal nociceptors" respond to both strong mechanical 

and noxious cold, and (iii) "polymodal nociceptors" respond to noxious 

mechanical, cold, and heat stimuli (Angel, 1977). In addition, a 

fourth group of nociceptors called "chemosensitive nociceptors" has 



been identified in the anesthetized skin of leprosy patients; the 

application of several algesic substances to blistered skin produced 

pain as measured by the patients verbal reports; noxious thermal and 

mechanical stimuli were ineffective (Dash and Deshpande, 1976) .. 
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The morphological structure of nociceptors has not been iden­

tified unequivocally. Attempts to describe the morphological substrate 

for nociceptors have been based upon delineation of the receptor 

function of a spot of skin with subsequent fixation, excision, and 

histological examination, or by the functional isolation of a known 

structure and accurate determination of its adequate stimulus (Angel, 

1977) . Research in this area has been concentrated on the receptor 

structure in the human tooth since most authorities believe that only 

the sensation of pain is felt when any form of stimulation is applied 

to the dental pulp (Scott and Maziarz, 1976). 

For many years, free nerve endings were considered to be noci­

ceptors. However, most receptors in mammalian hairy skin are of this 

type indica~ing that such endings probably subserve sensations other 

than pain (Weddell et al., 1955). In addition, the cornea lS inner­

vated exclusively by free nerve endings but mediates sensations of 

touch, pressure, and temperature as well as pain (Lele and Weddell, 

1956). Although no morphological differe~ces are seen among free 

nerve endings, the possibility of physiological specificity remains. 



1.1.4.2 Primary Afferent Nerve Fibers 

Nerve impulses generated by stimulation of nociceptors in the 

body tissues are transmitted along primary afferent nerve fibers to 

various destinations in both the spinal cord and brain (Melzack, 

1973). The peripheral nerve contains a heterogeneous mixture of 

primary afferent fiber types which can· be classified by utilizing a 

knowledge of nerve fiber diameter and impulse conduction velocity. 

A simple classification scheme is summarized as follows: the "A" 
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fiber group consists of five subgroups of myelinated fibers designated 

in order of diminishing fiber diameter (20 to 1 ~m) from alpha (a) 

through epsilon (s); the conduction rate of nerve impulses (120 to 

4 m/s) varies directly with the diameter of the axon (Angel, 1977). 

"C" fibers are unmyelinated, have diameters of 0.3 to 1.5 ~m, and 

conduction rates of 0.4 to 2.0 m/s (Angel, 1977). 

Clark et al. (1935) demonstrated that for the cat C fibers con­

ducted to the CNS neural impulses which elicited autonomic responses 

similar to those produced by noxious stinulation; A fibers were in­

effective. 

In humans, electrical stimulation of A a fibers has been correl­

ated with pricking pain sensations whereas stimulation of A-delta (o) 

and C fibers produced prolonged, chronic, dull, sometimes burning pain 

sensations (Torebjork, 1974; Torebjork and Hallin, 1974; Willer et 

al., 1978). 



Clinical observations do not completely support the role played 

by these small diameter primary afferent fibers in pain perception; 

for instance, two peripheral neuropathies, namely Fabry's Disease 
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and a hereditary sensory disease both result in a decrease of the 

number of small diameter primary afferent fibers found in the pe­

ripheral nerve, but are associated with increased and decreased pain 

sensations, respectively (Wall, 1978). However, since pain perception 

involves numerous higher brain centers as well as primary afferent 

fibers it would be difficult to speculate about the changed state of 

pain perception in neuropathies on the basis solely of the state of 

the primary afferent nerve fiber. 

Finally, Applebaum et al. (1976) demonstrated that 50% of the 

small unmyelinated fibers in the ventral roots arise from dorsal root 

ganglion and are sensory fibers. Furthermore, many of these fibers 

are selectively responsive to noxious cutaneous mechanical and ther­

mal stimuli (Clifton et al., 1976). Thus, these fibers may also par­

ticipate in the transmission of neural impulses arising from noxious 

stimulation. 

1.1.4.3 Spinal Cord Involvement 

The cytoarchitectonic investi~ations of Rexed (1952) established 

that neurons of the dorsal horn of the spinal cord are arranged in a 

series of six clearly defined laminae. The surface of each lamina is 

roughly parallel to the dorsal and ventral surfaces of the cord; 

laminae are numbered consecutively I through VI from the extreme 
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dorsal aspect to the center of the spinal cord. 

Christensen and Perl (1970) demonstrated that lamina I neurons 

are excited by intense thermal and mechanical cutaneous stimulation. 

This finding has been confirmed in several laboratory animals includ­

ing the rat (Giesler et al., 1976). Although experiments involving 

recording from lamina II cells have not been performed extensively, 

Perl (1976) has shown that some lamina II cells were excited by high 

intensity thermal and mechanical stimuli. 

Neurons in lamina V can be excited by noxious thermal and mechan-

ical stimuli (Price and Mayer, 1975). These neurons in contrast to 

lamina I neurons also respond to innocuous thermal and mechanical 

stimuli; their firing rates increase as the stimulus increases through­

out a range of innocuous to noxious intensities; these neurons have 

been called "wide dynamic range neurons" (Price and Mayer, 1975; 

Giesler et al., 1976). 

Neurons located in laminae III and IV show excitatory responses 

to innocuous touch and pressure movements and pressure stimulation; 

however, these neurons were not excited by noxious pressure stimu­

lation(Giesler et al., 1976). 

In summary, it appears that there are two populations of neurons 

in the dorsal horn which are responsive to noxious stimulation: (i) 

lamina I, marginal, neurons and (ii) lamina V, wide dynamic range 

neurons. 
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1.1.4.4 Ascending Transmission Systems 

Three anatomically distinct pathways convey sensory information 

from the periphery to the cerebral cortex; they include (i) the 

dorsal column-lemniscothalarnic system, (ii) the spinocervical-lem­

niscothalarnic system, and (iii) the spinothalamic system which con­

sists of spinoreticular, paleospinothalarnic, and neospinothalamic 

components (Angel, 1977). It appears that all three ascending trans­

mission systems participate in the transmission of neural impulses 

arising from noxious input (Dennis and Melzack, 1977). 

For years the dorsal columns has been viewed as carriers only 

of innocuous touch and proprioceptive information. While this still 

appears to be the case for primary afferent fibers ascending in the 

dorsal columns it can no longer be said of the secondary afferent 

fibers. Petit (1972) determined that 9.3% of fibers examined in the 

dorsal columns originated from spinal neurons. The frequency of 

evoked tonic discharge in these secondary afferent fibers increased 

accordingly to the strength of applied heat and mechanical stimulus 

even when the stimulus was brought well into the noxious range (Petit, 

1972). Thus, the dorsal column-lemniscothalamic system has the cap­

acity to transmit nociceptive information. 

Neurons which demonstrate increased discharge frequencies in 

response to noxious mechanical and thermal stimuli have been shown 

to be present in the spinocervical tracts of the cat (Price and Brown, 

1975) and monkey (Bryan et al., 1974). In addition, some of these 



cells respond exclusively to noxious mechanical stimulation (Bryan 

et al., 1974) . 
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The spinothalamic system is believed to be the principal path­

way for conveying nociceptive information in man and primates 

(Willis, 1976). Trevino et al. (1974) demonstrated that many spino­

thalamic neurons have their origins in spinal cord laminae known to 

be associated with the transmission of nociceptive information such 

as laminae I, IV, and V (see section 1.1.4.3). 

Price and Mayer (1975) demonstrated that 50% (41 out of 82) 

of the cells studied in the anterolateral quadrant of the spinal 

cord responded to both innocuous and noxious mechanical stimuli 

while 12% (10 out of 82) of the cells studied responded only to 

noxious mechanical stimuli. Similar results in studies of the 

projections to various midline and intra-laminar thalamic nuclei 

(Willis, 1976) via the spinothalamic tract as well as to the medul­

lary reticular formation (Fields et al., 1975) via the spinoretic­

ular tract also have been obtained. 

Finally, it should be pointed out that specific central struc­

tures (such as the nuclei of the lateral diencephalon) which receive 

neural input via the rapidly conducting dorsal column, spinocervi­

cal, and ~eospinothalamic tracts are activated prior to other 

central sites (such as midline and intralaminal thalamic nuclei 

and brain stem reticular formation) to which the slowly conducting 

paleospinothalamic and spinoreticular tracts ascend, respectively 



(Bowsher, 1976). Dennis and Melzack (1977) suggest that the rapidly 

conducting systems convey phasic information about pain whereas the 

slowly conducting systems carry tonic information. 
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Overall, it appears that all of the ascending tracts discussed 

above participate in the transmission of nociceptive information to 

various higher centers in the CNS. The heterogeneity of the ascending 

systems in terms of termination sites as well as the rate at which 

neural impulses are transmitted suggest that specific ascending 

systems may selectively activate not only anatomically specific brain 

sites but also physiologically specific mechanisms. 

1.1.4.5 Supraspinal Associated Structures 

Various supraspinal structures such as the reticular formation, 

thalamus, and cortex have been implicated in processing information 

concerning noxious stimulation (Kerr and Wilson, 1978). 

Casey et al. (1974) have demonstrated that 57% (59 out of 104) 

of the units studied in the medullary nucleus reticularis giganto­

cellularis responded to innocuous and noxious mechanical stimuli; in 

addition, 25% of these units responded exclusively to noxious mechan­

ical stimuli. Investigations of the nucleus ventralis of the medulla 

have also demonstrated that a majority of cells (70%) respond to nox­

ious heat and mechanical stimulation; some of these cells respond ex­

clusively to noxious stimulation (Benjamin, 1970). 

Imprecisely defined regions in the pontine reticular formation 
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(Eickhoff et al., 1978), mesencephalic reticular formation (Young and 

Gottschaldt,l976;Eickhoff et al., 1978), and mesencephalic central 

grey region (Eickhoff et al., 1978) also contain cells which respond 

to noxious stimulation. Again, the majority (>70%) of the units test­

ed in each study responded to innocuous as well as noxious heat and 

mechanical stimuli; some (>16%) of the units tested respond exclu~ 

sively to noxious stimulation. 

The thalamic posterior group of nuclei (PO) contain neurons which 

resp?nd to noxious stimulation of the skin; 30% of 258 neurons studied 

were determined to be nociceptive; 16% responded exclusively to nox­

ious mechanical stimuli while 14% of the cells responded differentially 

to both noxious and innocuous mechanical stimulation (Dong and Wagman, 

1976). 

Similarly, neurons in the medial thalamus particularly the nu­

cleus parafasicularis, respond to noxious mechanical stimuli; however, 

more than half of the nociceptive neurons in the medial thalamus, 

unlike the nociceptive cells in the PO, did not respond to innocuous 

mechanical stimulation (Dong et al., 1978). Thus, the thalamus partic­

ipates in the nociceptive phenomenon. 

Cerebral cortical involvement in the appreciation of nociceptive 

input has been suggested by the following experiments. First, ablation 

of the secondary somatosensory cortex, the anterior ectosylvian gyrus, 

and its bordering sulci increased the escape threshold to noxious elec-

tric shock in cats; ablation of the primary somatosensory cortex was 
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ineffective (Berkely and Parmer, 1974). 

Second, specific evoked potentials (EPs) have been demonstrated 

to arise from noxious tooth pulp stimulation in man; tooth pulp­

evoked potentials were not present when devitalized teeth of normal 

patients were stimulated or when an individual congenitally insensi­

tive to pain was used as the subject (Chatrian et al., 1975). Re­

cently, Chen et al. (1979) demonstrated that the amplitudes of spe­

cific components of the EP waveform were directly related to the stim­

ulus intensity and subjective pain response as measured by the sub­

ject's verbal reports. 

1.1.4.6 Descending Systems 

Anatomically, the brain stem reticular formation receives input 

fibers from a number of higher centers. Axon degeneration studies 

have demonstrated that fibers originating in all parts of the cere­

bral cortex, especially the motor cortex, descend to terminate in the 

brain stem reticular formation; the majority of these fibers end in 

two fairly well defined areas, the pontine nucleus pontis oralis, and 

the medullary nucleus reticularis gigantocellularis (Rossi and Brodal, 

1956) . Electrical stimulation of intralaminar and midline thalamic 

nuclei has been shown by intracellular recording techniques to depo­

larize cells located in pontine and medullary reticular formation 

(Mancia et al., 1974a). The existence of intrareticular connections 

within the brainstem itself wh~ch produce primarily ascending inhibi-

tory effects also have been demonstrated by intracellular recording 



techniques (Mancia et al., 1974b). 

Neuron degeneration studies show that reticulospinal fibers 

from the medial portions of the pontine and medullary reticular for­

mation descend to terminate in cervical and thoracic spinal cord; 

17 

more than half of the cells in specific reticular nuclei namely pontis 

caudalis, oralis, gigantocellularis, ventralis, and lateralis project 

to the spinal cord (Torvik and Brodal, 1957). 

Recently, descending reticulospinal projections from medullary 

reticular nuclei were studied with autoradiographic methods; the nu­

cleus reticularis gigantocellularis projects primarily to motor re­

lated areas such as laminae VII and VIII; the nuclei raphe magnus and 

reticularis magnocellularis project primarily to laminae with known 

nociceptive input such as laminae I, II, III, and V (Basbaum et al., 

1978; see section 1.1.4.3). 

Overall, the brain exhibits the anatomical capacity to influence 

sensory input at several levels of the CNS. An analysis of how these 

descending systems affect nociception will be discussed in sections 

l. 3 • 4 and 1. 4 . 4 . 

1.1.5 Gate Control Theory 

The Gate Control Theory of pain developed by Melzack and Wall in 

1965 has attracted its share of criticism; nevertheless, it remains 

the most readily accepted theory of pain today. The basic proposals 

of this theory as set forth by Melzack and \vall (1965) will be pre-
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sented as follows. 

First, the transmission of nerve impulses by primary afferent 

nerve fibers to spinal cord transmission cells (T cells) is modulated 

by a spinal gating mech~nism in the dorsal horn. The substantia gel­

atinosa, laminae II and III, is considered to be the site of the spi­

nal gating mechanism. 

Second, the spinal gating mechanism is influenced by the relative 

amounts of activity in large, Aa fibers and small diameter Ao and C 

fibers; activity of large fibers tend to inhibit transmission (close 

the gate) while activity in the small fibers tend to facilitate trans­

mission (open the gate) . The mechanism of this effect is that large 

Aa fibers have a brief excitatory effect on spinal T cells but then 

close the gate by inhibiting transmission from Aa, Ao, and C fibers 

through activation of interneurons in the substantia gelatinosa. On 

the other hand, Ao and C fibers prevent this inhibitory effect by in­

hibiting the inhibitory interneurons, thus opening the synaptic gate 

and increasing excitatory input to the T cells. However, clinical 

observations do not completely support this hypothesis (see section 

1.1.4.2). 

Third, the spinal gating mechanism is influenced by nerve impuls­

es that descend from the brain. As described previously, various 

cognitive factors such as attention, anxiety, etc. influence pain 

responses. The brain stem reticular formation as well as reticula­

spinal projections inhibit transmission from the spinal T cells. Since 



fibers from the cortex project to the reticular formation as well as 

directly to the spinal cord by means of corticospinal fibers this 

provides a system by means of which cognitive processes are able to 

influence spinal T cell activity. 
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Fourth, a specialized system of large diameter, rapidly conduct­

ing fibers (the central control trigger) activates selective cogni­

tive processes which then influence, by way of descending fibers, the 

modulatory properties of the spinal gating mechanism. The dorsal 

column medial lemniscal and dorsolateral systems could fulfill the 

function of the central control trigger (Melzack and Dennis, 1978). 

The fifth proposal is that when the output of the spinal cord T 

cells exceeds a critical level, it activates those neuronal areas 

which subserve the complex, sequential pattern of pain related be-

havior. 

A final aspect of the Gate Control Theory is referred to as the 

central biasing mechanism (Melzack and Dennis, 1978). Here, brain­

stem areas which are known to exert an inhibitory control over trans­

mission in the pain signalling system receive inputs from widespread 

parts of the body and in turn project to widespread parts of the spi­

nal cord and brain. Stimulation of the small diameter afferents can 

increase input to this central biasing mechanism resulting in the 

closing of the gates to noxious inputs from selected body areas. The 

cells of the midbrain reticular formation are known to have large 

receptive fields and electrical stimulation of reticular formation 
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can produce analgesia in discrete areas of the body. It is possible 

then, that particular body areas may project especially to some re­

ticular areas, and these in turn would close the gate to input from 

particular parts of the body. This model could be used to explain 

aspects of hyperstimulation analgesia of which acupuncture and trans­

cutaneous electrical stimulation are but two examples. 

1.1.6 Brain Mechanisms 

It is obvious that the phenomenon of pain cannot be viewed solely 

in terms of sensory perception without r3garding motivational affect­

ive and cognitive processes. Melzack and Casey (1968) proposed a 

three dimensional psychological scheme to include (i) sensory-discrim­

inative, (ii) motivation-affective, and (iii) cognitive-evaluative 

components of pain. A brief summary of their proposal follows. 

First, the neospinothalamic tract, the spinocervical tract, and 

postsynaptic elements in the dorsal column-medial lemniscal system all 

project at least in part to the ventral basal thalamus which shows a 

discrete somatotopic organization. Since all of these ascending sys­

tems appear to be involved in the transmission of nociceptive infor­

mation, these rapidly conducting tracts have the capacity to process 

information concerning the spatial, temporal, and magnitude proper­

ties of the nociceptive input. Therefore, this system may subserve the 

sensory-discriminative dimension of pain. 

Second, the spinoreticular and paleospinothalamic tracts project 
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to the brainstem reticular formation and limbic system. Since the 

reticular formation and limbic system have been shown to participate 

in the pain process, the powerful motivational drive and unpleasant 

affective characte~istics of pain may be influenced by activities in 

those particular brain regions which are affected primarily by the 

slowly conducting spinal systems. 

Third, various cognitive activities such as cultural values, 

attention, and anxiety all have a profound effect on the pain expe­

rience. These cognitive functions must be able to act selectively on 

the sensory and motivation systems in order to influence the pain re­

sponse. The dorsal column-medial lemniscal system and dorsolateral 

projection pathways rapidly carry impulses directly and indirectly to 

the cerebral cortex. Influences that descend from the cortex are known 

to act at the level of the ventrobasal thalamus as well as dorsal horn 

cells. Therefore, these rapidly conducting ascending and descending 

systems appear to have the capacity to influence pain related infor­

mation being transmitted over the more slowly conducting pathways and 

thus account for the fact that psychological processes play an impor­

tant role in determining the quality and intensity of pain. 

Melzack and Casey (1968) suggest that these three psychological 

processes interact with one another to provide perceptional infor­

mation regarding the location, magnitude, and spatiotemporal proper­

ties of the noxious stimulus; motivational tendency toward escape; and 

cognitive information based upon past experience and probability of 



outcome of the various response. All three components then influence 

the appropriate motor mechanisms which produce the overt behaviors 

characterizing the pain response. 

1.1.7 Importance of Pain 
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Pain is of crucial biological importance; true value of this can 

be seen in congenitally insensitive individuals who suffer excessive 

tissue damage such as burning a hand or arm on a heated stove, chewing 

off the end of their tongues, or chopping a knee with an axe all be­

cause of the inability to experience pain which would have protected 

them from these various occurrences (Swanson et al., 1965). Although 

pain does serve as a warning of injury to the individual and is of 

great diagnostic value to the physician it may also be an unnecessary 

evil at times when its warning effect is useless such as in terminal 

cancer or phantom limb pain. 

1.1.8 Treatment of Pain 

1.1.8.1 Pharmacological Intervention 

The ideal analgesic agent should be effe9tive when given orally, 

rapidly active after ingestion, and sufficiently strong to produce an 

appropriate level of analgesia; it should not produce tolerance, ad­

diction, or respiratory depression; its actions should be specific and 

associated with few side effects; finally, an antidote should be avail­

able. In other words the ideal analgesic should control pain without 

producing any undesirable side effects and dependence (Villaverde and 
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MacMillan, 1977). 

The narcotic analgesics are the group of drugs which, among anal­

gesics available today, fulfill the above criteria most closely, even 

though they are far from being ideal; most of them are opium deriva­

tives while others are synthetic or semisynthetic products; morphine and 

meperidine are the principal members of these two groups, respectively. 

Besides producing analgesia the narcotics also produce, even when 

used in therapeutic doses,undesirable side effects such as sleepiness, 

nausea, vomiting, and respiratory depression. Among serious problems 

associated with the narcotics is that of the tolerance which develops 

to the analgesic effects upon repeated administrations; that is, con­

tinually increasing doses of narcotic must be administered to produce 

a sufficient analgesia. Unfortunately, in the chronic pain patient the 

doses of narcotic required are often extremely high increasing the 

frequency and severity of the associated side effects. In addition, 

as tolerance further develops there is no dose of narcotic which will 

produce analgesia short of ~ausing death. 

In addition to tolerance, physical dependence, i.e. addiction, 

develops with repeated use of narcotics; the abuse liability and possi­

bility of developing psychological dependence on the effects of these 

compounds is one of the major limitations for their clinical use. How­

ever, in patients with painful terminal illnesses, this factor should 

not prevent the physician from alleviating the patient's pain and dis­

comfort. 
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The principal use of the narcotics is for the treatment of severe 

pain which cannot be alleviated by other analgesics, such as in can­

cer, traumatic accidents, burns, fractures, and severe visceral 

lesions. 

The salicylates, most notably acetylsalicylic acid (aspirin), 

constitute a second major group of analgesics. The overall analgesic 

effect of the salicylates is inferior to that achieved by the nar­

cotics; salicylates do appear to be more effective against integumental 

than visceral pain. 

While used in therapeutic doses, the salicylates do not produce 

respiratory depression or sleepiness, prolonged salicylate use may 

cause hyperventilation, tinnitus, and mental confusion. Gastro­

intestinal distress, nausea, and vomiting, are the most common side 

effects. Salicylates are recommended for treatment of headache, 

arthritis, dysmenorrhea, and neuralgia. 

Para-aminophenol derivatives such as phenacetin and acetamino­

phen and pyrazalon derivatives such as antipyrine and aminopyrine 

and their modern congeners such as indomethacin all produce an equiv­

alent level of analgesia as do the salicylates and consequently these 

compounds are employed in the treatment of similar types of pain as 

are the salicylate drugs. It should be emphasized that with many of 

these drugs their analgesic effect may depend on their peripheral 

antiinflammatory action. Thus, they may be useful in arthiritis and 

gout. 
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In addition, high doses of phenacetin produce methemoglobinemia, 

nephropathy and hepatic necrosis while high doses of acetaminophen 

may cause thrombocytopenia and nephrotoxicity. However, in recommen­

ded therapeutic doses, phenacetin and acetaminophen are well toler­

ated. 

Aminopyrine and possibly antipyrine produce severe blood dyscra­

sias such as thrombocytopenia and agranulocytosis; consequently, these 

compounds are reserved for use in cases that do not respond to sali­

cylates or para-~~nophenol derivatives. 

Antimalarials, most notably quinine, whose main use is for the 

treatment of malaria also produce analgesia. As analgesics, however, 

their effects are weaker than those of the salicylates. Quinine is 

used only with considerable caution due to the potential nephrotoxic 

and hemolytic idiosyncratic reactions. 

Finally, certain groups of drugs are used for specific types of 

pain as follows: (a) local anesthetics such as procaine, lidocaine, 

and dibucaine are used primarily to produce surface and infiltration 

anesthesia in localized parts of the body; (b) vasodilators such as 

nitroglycerine and amyl nitrate are used for the treatment of angina 

pectoris, both as a preventive and for relief of the acute attack; 

(c) corticoids such as cortisone, hydrocortisone, and prednisone are 

employed in the treatment of pain associated with inflammation, ar­

thritis and bursitis; and (d) muscle relaxants such as meprobamate are 

used to treat pain associated with muscle spasms in rheumatic disease 
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or following trauma. 

While numerous analgesic agents are employed for the relief of 

pain, the narcotic analgesic compounds constitute the most effective 

and most potent analgesics available today. In view, however,·of 

their side actions and addictive liability, improvements in the pharma­

cological manipulation of pain, particularly chronic pain, are requir­

ed. 

1.1.8.2 Neurosurgical Ablative Techniques 

Various neurosurgical ablative procedures such as dorsal rhizo­

tomy, chemical sympathectomy, percutaneous chordotomy, and chemical 

hypophysectomy have been employed, without a great deal of success, 

in the management of chronic pain. 

Dorsal rhizotomy, sectioning of the dorsal roots, failed to pro­

duce long term (6 month} analgesia in the majority of cases (Loeser, 

1974}. Aside from imperfect surgical procedures, several other 

explanations may account for this lack of success. First, the source 

of pain may not lie in the periphery, therefore, deafferentation would 

not isolate the brain from the pathology (Melzack and Loeser, 1978}. 

Second, deafferentation may itself generate abnormal firing patterns 

which the patient senses as painful (Loeser, 1974}. Finally, primary 

afferent sensory nerve fibers associated with nociceptors are known 

to exist in the ventral roots (Applebaum et al., 1976}; the presence 

of these fibers also may account for the failure of dorsal rhizotomy 

to relieve pain (Clifton et al., 1976}. Overall the best prognosis 



for the patient offered dorsal rhizotomy for the relief of chronic 

pain is poor. 
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Similarly, the localized injection of phenol (6.7% in water) into 

the sympathetic chain, chemical sympathectomy is useful only when 

the disease is confined within the visceral cavity; it therefore is 

rarely successful in pain of malignant disease in which the cells at 

any early stage invade neighboring structures innervated by the so­

matic nerves of the body wall (White, 1974). Furthermore, chemical 

sympathectomy suffers from a high incidence of associated complica­

tions such as pneumothorax, kidney puncture, and intravascular injec·­

tions as well as a postoperative neuritis in the groin area and thigh 

regions of a large number of patients (14.6%; Reid et al., 1970). 

Radiofrequency currents are used to produce lesions in the antero­

lateral quadrant of the spinal cord for the relief of chronic pain. 

Initially pain relief is excellent for 90% of the patients (n=l,279); 

however, an abrupt decrease in efficacy occurs three months after the 

operation and continues to decrease thereafter so that only 40% of 

the patients continue to report adequate pain relief one year after 

the operation (Rosonoff, 1974). In addition, complications such as 

muscle weakness, sphincter paralysis, and localized burning sensations 

have also been reported (Mullan et al., 1963). One explanation which 

may account for this procedural failure is that ascending tracts con­

vey impulses arising from noxious stimuli are not restricted to the 

anterolateral quadrant of the spinal cord (see section 1.1.4.4). 
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Chemical hypophysectomy, neuroadenolysis, is achieved by the lo­

calized injection of absolute ethanol into the pituitary gland (Morrica, 

1974). This procedure was initiated in cancer patients with diffuse 

bone and/or visceral matastesis arising from hormone-dependent tumors 

(Morrica, 1974). Miles and Lipton (1976) reported that cancer pain 

arising from other nonhormone-dependent tumors was also relieved by 

chemical hypophysectomy. However, since ethanol injected into the 

pituitary has been shown to spread to the hypothalamus, it may act 

there to interfere with pain perception (Miles and Lipton, 1976; 

Yanagida et al., 1979). Finally, the severe complications associ~ted 

with chemical hypophysectomy such as diabetes insipidus, hypoadrenal­

ism, hypothyroidism, decreased libido, hyperthermic crisis, hyper­

phagia, and anhydrosis suggest that this procedure be used only after 

other treatment procedures have failed to relieve pain (Morrica, 1976). 

Overall, the neurosurgical ablative techniques have the disadvan­

tages of being restricted to a specific part of the body, gradual re­

turn of pain with time, or more seriously, various permanent neurol­

ogical complications. Thus, these methods for pain relief are grad­

ually being replaced by other related methods namely nerve stimulation 

techniques. 

1.1.8.3 Stimulation Produced Analgesia (SPA) 

Reynolds (1969) first employed electrical stimulation of the mid­

brain periaqueductal grey matter (PAG) to render rats sufficiently 

antinociceptive to pe:form abdominal surgery. Since then, PAG stimu-
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lation-induced analgesia (SPA) in laboratory animals has been reported 

to block behavioral responses such as extreme pinch (Reynolds, 1969), 

tissue damaging heat (Mayer and Liebeskind, 1974), electric tooth pulp 

stimulation (Oliveras et al., 1974), and the application of various 

algesic substances (Melzack and Melinkoff, 1974). Electrical stimu­

lation of other central sites such as the septal nuclei, dorsolateral 

thalamic nuclei were effective with regard to only certain types of 

noxious stimuli (Mayer and Liebeskind, 1974); stimulation of the ven­

trobasal complex of the thalamus and lateral hypothalamus was com­

pletely ineffective (Mayer and Liebeskind, 1974). 

In humans, electrical stimulation of various areas in the CNS 

such as the dorsal columns (Shealy et al., 1967), internal capsule 

(Adams et al., 1974), and PAG (Richardson and Akil, 1977a, b) pro­

duced analgesia. However, the occurrence of undesirable side effects 

such as nystagmus, nausea, vertigo, reports of enhanced pain sensa­

tions as well as the lack of prolonged effectiveness of treatment has 

limited the clinically effective target site to an area between the 

nucleus parafasicularis and third ventricle at the level of the pos­

terior commisure (Richardson and Akil, 1977a, b). 

SPA can be measured after only a few seconds of central stimu­

lation (Mayer et al., 1971) and the post stimulation duration of ef­

fectiveness in the rat lasts for minutes to hours (Mayer and Liebeskind, 

1974). Similarly, 30 minut~s of stimulation afforded 3 to 4 hours of 

pain relief in humans (Hosobuchi et al., 1977). Thus, SPA provides 

an alternative approach for the control of chronic intractable pain. 
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Evidence suggests that SPA, morphine-induced antinociception, and 

the endogenous opioid system all may be interrelated. The mechanism 

involved in SPA as well as the role played by the endogenous opioid 

system in antinociception and analgesia will be reviewed subsequently 

(see sections 1.3.4 and 1.4.4). 

1.1.8.4 Psychological Manipulations 

The first nonphysical method employed in the treatment of chronic 

pain utilizes placebos, pharmacologically inert agents. Placebo-in­

duced analgesia reduced pain by about half of its original intensity 

in a variety of clinical situations for about 30% of the patients stud­

ied (Evans, 1974). On the other hand, placebos reduced experimentally­

induced pain in only 3 to 16% of the experimental populations (Evans, 

1974). Thus, placebos relieve pathological pain more effectively than 

they relieve experimental pain. It should be pointed out here that 

the placebo was at least half as effective as the assumed strength of 

the analgesic drug being administered under double blind conditions 

regardless of what analgesic was administered (Evans, 1974). This 

finding holds true for aspirin (Evans, 1974), morphine (Evans, 1974), 

and transcutaneous electrical stimulation (Thorsteinsson et al., 1978). 

Overall, the judicious use of placebo-induced analgesia for a 

specific group of patients appears to be useful and in some cases may 

be more clinically effective than specific drugs. In addition, cer­

tain variables within the doctor patient relationship such as trust, 

belief, and the drug giving ritual appear to produce powerful curative 



31 

effects and therefore should be emphasized as a foundation on which 

all other therapeutic procedures concerning the treatment of chronic 

pain be built. 

A second nonphysical method used for the treatment of chronic 

pain is called hypnosis-induced analgesia. The usefulness of hypnosis 

in the relief of pain was demonstrated early in the 19th century when 

limb amputations and other major operations were performed apparently 

painlessly with hypnosis as the only analgesic-anesthetic agent 

(Esdaile, 1957 cited by Hilgard, 1978). Since hypnotizability is seen 

as a personality trait which an individual possesses rather than a 

skill which may be improved with time (Perry, 1977), the range of 

patients in which hypnosis-induced analgesia would likely be effective 

is severely restricted. 

Since naloxone fails to antagonize hypnosis-induced analgesia 

(Goldstein and Hilgard, 1975), it does not appear that the endogenous 

opioid system is involved in mediating this effect. Hilgard (1978) 

suggests that hypnosis-induced analgesia occurs primarily at higher 

cognitive levels which include cortical involvement. 

The final nonphysical technique used in the treatment of chronic 

pain employs operant conditioning methods. Pain behavior, like other 

ope=ants, while initially elicited by an antecedent stimulus may come 

under the control of consequences (Fordyce et al., 1973). When an 

operant is followed by a positive consequence such as praise, atten­

tion, money, or food that behavior is likely to occur in the future. 



Alternatively, when an operant is followed by a negative consequence 

such as criticism or loss of valued rewards that behavior is likely 
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to occur less in the future. Thus, in a specific group of patients, 

pain behavior may occur only because it is followed by positive con­

sequences. Fordyce et al. (1973) successfully employed the operant 

conditioning technique in a study utilizing a selected group of pa­

tients who suffered from chronic pain which was thought to occur from 

factors other than tissue pathology. The results of this study demon­

strated (i) a significant decrease in medication required and (ii) 

significant increases in walking and nonreclining activities. 

1.2 Cholinergic System in Antinociception and Analgesia 

1.2.1 Central Cholinergic System 

Central actions of cholinergic agonists and antagonists, anti­

cholinesterases, and acetylcholine (ACh) itself must be considered 

in terms of the presence and distribution of cholinergic synapses o~ 

cholinoceptive neurons or both, as well as in terms of cholinergic 

pathways. 

A variety of histochemical and biochemical techniques and bind­

ing studies have been utilized to investigate brain neuronal mecha­

nisms in which ACh is t~:ought to be the neurotransmitter. Acetyl­

cholinesterase (AChE) has been investigated utilizing histochemical 

procedures (Shute and Lewis, 1967; Lewis and Shute, 1967) while ACh 

(Cheney et al., 1975), choline acetyltransferase (CAT; Kobayashi et 
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al., 1975), and high affinity choline uptake (Kuhar et al., 1973a, 

1975) have been investigated by various biochemical tests. More 

recently, binding studies as well as studies of muscarinic and nico­

tinic cholinoceptivity have been used to determine the distribution 

of muscarinic (Kobayashi et al., 1978a; Krnjevic, 1974) and nicotinic 

(Hunt and Schmidt, 1978) binding sites. Since all of the afore­

mentioned parameters are considered to be functionally components of 

cholinergic neurons and synapses, indirect evidence from these studies 

concerning the distribution of cholinergic synapses and pathways can 

be obtained. 

Shute and Lewis (1967) demonstrated that AChE accumulated at the 

proximal end of sectioned nerves whereas it disappeared distal to the 

division. Utilizing histochemical procedures, Shute and Lewis (1967) 

and Lewis and Shute (1967) mapped the cell bodies and axons of cholin­

ergic neurons in the CNS. Two principal cholinergic pathways emerged 

from these studies. First, the ascending reticular system arises from 

reticular and tegmental nuclei of the brainstem and projects via dor­

sal and ventral tegmental pathways to virtually all cortical and sub­

cortical structures. Second, the cholinergic limbic system consisted 

of septa-hippocampal connections as well as hippocampal afferent 

projections to the medial sortex, nuclei connecting with the ascending 

cholinergic reticular system, and subfornical and supraoptic crest. 

Electrolytic lesions of the medial septal area decreased ACh 

levels, CAT activity, and high affinity choline uptake in the hippo­

campus (Kuhar et al., 1973a). Identical effects were observed in the 
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interpeduncular nucleus area when the medial habenular areas was le­

sioned (Kuhar et al., 1975). This provides additional evidence for 

cholinergic septa-hippocampal and habenular-interpeduncular tracts. 

Utilizing mass fragmentography and gas chromatography, Cheney et 

al. (1975) demonstrated that a high ACh/CAT ratio which is indicative 

of cholinergic terminals was found in (i) olfactory structures, (ii) 

preoptic nuclei, (iii) several hypothalamic and thalamic nuclei, (iv) 

habenular and mammalary nuclei, (v) various midbrain nuclei, (vi) 

locus coeruleus 7 and (vii) nucleus interpositus of the cerebellum. 

In addition, high content of CAT has been demonstrated in certain cra­

nial nerve nuclei including III, IV, VII, and XII as well as nuclei 

salvitorius, tractus solitarius and caudate putamen of the rat brain 

stem (Kobayashi et al., 1975). 

Utilizing a binding assay, Kobayashi et al. (1978a) found a 

high density of cholinergic muscarinic binding sites in the hippo­

campus, caudate-putamen, nucleus accumbens and cerebral cortex; septal 

areas, interpeduncular nuclei, habenular nuclei, and medial thalamus 

exhibited a less dense population of binding sites; least dense bind­

ing site distribution was observed in the spinal cord and cerebellum. 

The distribution of cholinergic nicotinic binding sites has also 

been investigated utilizing binding assays (Hunt and Schmidt, 1978). 

Binding sites were predominantly found with central areas of the brain 

associated with direct sensory input such as olfactory bulbs, superior 

colliculus, cochlear nuclei, the substantia gelatinosa, and the prin-



cipal trigeminal sensory nucleus (Hunt and Schmidt, 1978). Certain 

limbic areas such as the hippocampus, amygdala, mammallary bodies, 

and dorsal tegmental nucleus also contain nicotinic binding sites 

(Hunt and Schmidt, 1978). 

35 

Presynaptic localization of a neurotransmitter substance must be 

considered in terms of the concept of the synaptic vesicle. Accord­

ingly, ACh has· been shown to be contained in synaptic vesicles ob­

tained from the synpatosomal fraction of cerebral cortical tissue 

(Whittaker and Sheridan, 1965) and of other brain tissues. Altogether, 

localization of ACh-containing 'resicles agrees with that of other mark­

ers of the cholinergic system. It must be added in this context 

that ACh-containing vesicles are morphologically specific and differ 

from those containing GABA or catecholamine(Karczmar, 1976). 

Localized injections of ACh and subsequent recordings from various 

cholinoceptive neurons have provided additional information concern-

ing the central cholinergic system. Most cholinoceptive cells in the 

CNS were excited and depolarized; occasionally inhibitory, hyperpolar­

izing responses were observed (Krnje-vic, 1974) . The :nost common excit­

atory action of ACh in the CNS has muscarinic characteristics;_ it is 

relatively slow in onset and very prolonged and is readily blocked by 

atropine; the ionic mechanism of depolarization is probably a reduc­

tion in potassium conductance(Krnjevic, 1974). Other excitatory ef­

fects occur at nicotinic sites: ACh has a very quick and rapidly revers­

ible effect on some CNS neurons such as the Renshaw cell; dihydro-

beta-erthroidine and mecamylamil".e blocked this effect (Krnjevic, 1974) . 
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Finally, inhibition of some CNS neurons caused by a specific increase 

in potassium permeability is mediated by muscarinic receptors 

(Krnjevic, 1974). 

It should be pointed out that the presence of cholinoceptive 

neurons, ACh and AChE by themselves do not insure proof of cholin­

ergic transmission. For instance, the cerebellum contains AChE con­

taining cells and fibers but no specific pathway in the cerebellum has 

been shown to act by release of ACh (Krnje~ric, 1974). 

Finally, ACh was the first neurotransmitter substance collected 

following stimulation of different CNS preparations (Pepeu, 1973) . 

The original method of Mitchell (1963) for studying ACh release from 

the cerebral cortex utilized the cortical cup; ACh content was deter­

mined by bioassay on the dorsal muscle of the leech. Investigations 

of ACh release from subcortical structures were made possible by the 

push-pull cannula described by Gaddum (1961). In either case, ACh re­

lease studies were only possible if 95% of the AChE present had been 

previously inhibited (Lancaster, 1971). ACh release has been demon­

strated in such brain areas as sensory motor, auditory, parietal, and 

visual cortex; caudate nucleus; ventrobasal complex of the thalamus; 

thalamic nuclei ventralis, lateralis, and posterior; hypothalamus; 

medulla; and spinal cord (Pepeu, 1973). In addition, ACh release from 

central brain sites depends upon the presence of calcium ions (Randic 

and Padjen, 1967). Overall, the release studies provide additional 

evidence and information concerning the distribution of the central 

cholinergic system. 
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In summary, what emerges is the concept that cholinergic synapses 

and pathways are present in many CNS structures;the major central 

cholinergic system comprises a diffuse ascending tegmental-mesenceph­

alic-cortical system; the most notable pathways included here are 

the ventral and dorsal tegmental pathways, habenulo-interpeduncular 

tract, septohippocampal tract, and thalamocortical tract. 

1.2.2 Interactions with Other Neurotransmitter Systems 

Next, the interaction between the cholinergic, catecholaminergic, 

and serotonergic neurotransmitter systems throughout the CNS has been 

demonstrated (Karczmar, 1975). Cholinergic agonists and antagonists 

affect levels and/or turnover rates of brain catecholamines and sero­

tonin (5-HT) ; the effect on the 5-HT system is most pronounced 

(Karczmar, 1976). Diisopropyl phosphofluoridate (DFP) increased 5-HT 

levels in the rabbit midbrain, thalamus, hippocampus, and medulla 

(Barnes et al., 1974); effects were reversed by atropine (Barnes et 

al., 1975). DFP recently has been shown to increase both 5-HT levels 

and turnover in several rat brain regions; effects were reversed by 

atropine (Barnes et al., 1978). 

Furthermore, DFP increased levels of dopamine (DA) in several 

rabbit brain parts including the thalamus, hypothalamus, midbrain, and 

hippocampus (Glisson et al., 1972, 1974). Alternatively, DFP decreased 

norepinephrine (NE) levels in the same four rabbit brain regions dis­

cussed above (Glisson et al., 1972, 1974). The effect of DFP on NE 

arises from central actions while the DFP effect on DA depends in part 



on peripheral actions; atropine methyl nitrate, the quaternary ana­

logue which does not readily penetrate the blood brain barrier (BBB) 

blocked the DFP effect on DA but was ineffective against NE (Glisson 

et al., 1974). 

38 

Concerning reciprocal relationships, ACh-5-HT interactions may be 

bidirectional. 5-hydroxytryptophan (5-HTP), the metabolic precursor 

for 5-HT, significantly increased the level of ACh following pretreat­

ment with the serotonergic neurotoxin 5,6-dihydroxytryptamine in mice 

(Barnes et al., 1973a, b). On ~~e other hand, ACh brain levels were 

not affected by the catecholamine neurotoxin, 6-hydroxydopamine or by 

the metabolic precursor for catecholamines, 1-dopa (Barnes et al., 

1973c) . 

The pharmacological evidence described above demonstra~es that 

the interaction between various neurotransmi~ter systems in the CNS 

is widespread. The exact mechanism of these effects, in terms of 

neurotransmitter turnover rates and pertinent circuitry remains to be 

established. In addition, the results discussed above suggest that 

it may be difficult to obtain a predictable cholinergic effect that 

would depend solely on cholinergic synapses and pathways and/or cho­

linoceptive neurons. However, specific effects of cholinergic drugs 

on behavior are obtained as discussed in the following sections. 



1.2.3 Antinociception and Analgesia 

1.2.3.1 Compounds Which Affect the Cholinergic System 

Several cholinomimetic compounds such as dibromopyruvic acid 

(Martinet al., 1958), tremorine (Chen, 1958), arecoline (Herz, 

1961), oxotremorine (Harris et al., 1968), carbachol (Metys et al., 

1969), and pilocarpine (Houser and Van Hart, 1973); various anti­

cholinesterase agents such as physostigmine (Harris et al., 1968) 

and DFP (Koehn and Karczmar, 1978); and ACh itself (Pedigo et al., 

1975) produce antinociception when administered to mice and rats. 

Recently, physostigmine (Sitaram et al., 1977) and arecoline 

(Sitaram, 1979, personal communication) have caused an analgetic 

action in normal human volunteers. 

Scopolamine, an anticholinergic agent, produced antinociception 

when administered to monkeys (Pert, 1975). The discrepancy between 

findings in the monkey and all other species including man concern­

ing the involvement of the cholinergic system in nociception cannot 

be explained at present. 

39 

The antinociceptive and analgesic states produced by the com­

pounds mentioned above will henceforth be referred to as cholinergic­

induced antinociception and analgesia, respectively. 
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Prostigmine (Slaughter and Munsell, 1940), pilocarpine (Saxena 

and Gupta, 1958), DFP (Bhargava and Way, 1972), and ACh (Pedigo et 

al., 1975) potentiate narcotic-induced antinociception in laboratory 

animals. In addition, some partial agonists of narcotics such as 

cyclazocine, cyclorphan, nalorphan, and pentazocine are converted from 

inactive to active antinociceptive agents in the mouse in the presence 

of physostigmine (Harris et al., 1967). 

Some of these various agents which affect the central cholinergic 

system proved to be more potent on a milligram basis than morphine; 

for instance, oxotremorine was 3000 times more potent than morphine 

in the mouse (Leslie, 1969). Finally, oxotremorine but not morphine 

could produce antinociception when administered to frogs (Nistri et 

al., 1974). 

Several anticholinesterase agents such as pyridostigmine 

(Slaughter, 1950) physostigmine (Floodmark and Wrammer, 1945) 

and neostigmine (Hand and Audin, 1944; Christensen and Gross, 1948) 

potentiate narcotic-induced analgesia in humans. In fact, the com­

bination of neostigmine with a narcotic analgesic was considered to be 

more effective than the narcotic analgesic used alone as the dose of 

the narcotic employed to produce analgesia could be reduced, hence 

lessening the severity of associated side effects, most notably nausea 

and somnolence (Hand and Audin, 1944). 

1.2.3.2 Central Muscarinic Nature 

Cholinergic-induced antinociception and analgesia result from 
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actions involving central cholinoceptive sites of the muscarinic type 

as suggested by the following. First, tertiary anticholinergic-anti­

muscarinic agents such as atropine sulfate and scopolamine which cross 

the BBB antagonize cholinergic-induced antinociception and analgesia; 

quaternary anticholinergics such as atropine methyl nitrate and methyl­

scopolamine which do not cross the BBB are ineffective (Herz, 1961; 

Handley and Spencer, 1969; Pedigo et al., 1975; Sitaram et al., 1977; 

Koehn and Karczmar, 1978). On the other hand, various anticholinergic 

drugs which block central cholinoceptive sites of the nicotinic type 

such as dihydro-13-erythroidine(Herz, 1961), various alpha substituted 

acetylcholine derivatives (Dewey et al., 1975), nicotine and hexa­

methonium (Pert, 1975), and·mecamylamine (Pedigo et al., 1975) do not 

affect cholinergic-induced antinociception. It may be added that in 

monkeys, only those anticholinergic agents such as scopolamine which 

cross the BBB are effective antinociceptive agents when administered 

systemically; methylscopolamine was ineffective (Pert, 1975). 

Second, muscarinics, but generally not nicotinics (see however, 

below), do exert antinociceP.tion. For instance, carbachol, a quater­

nary cholinomimetic which also possesses some activity at nicotinic 

receptors, produces antinociception when administered intracerebro­

ventricularly (Icvt); effects were reversed by atropine (Metys et al., 

1969). 

Drug interactions with muscarinic receptors in peripheral tissues 

appear to be stereospecific; (+) isomers of beta-substituted methyl­

choline mimick the action of muscarine; (-) isomers were inactive 
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(Ellenbroek and Van Rossurn, 1960). Chemical derivatives of beta­

substituted methylcholine which exhibit muscarinic action stereospe­

cifically antagonized ACh-induced antinociception in mice; (+) isomers 

were active while the (-) isomers were inactive (Dewey et al., 1975). 

Thus, cholinergic-induced antinociception appears to be stereospecif­

ically mediated by muscarinic receptors in the CNS. 

It must be added that while most laboratories have failed to 

demonstrate antinociceptive activity for compounds which interact with 

nicotinic cholinergic receptors (Herz, 1961; Metys et al., 1969; Pert, 

1975; Pedigo et al., 1975), Phan et al. (1973) showed that nicotine 

produced antinociception when administered to rodents; the effect was 

blocked by mecamylamine but atropine was ineffective. However, more re­

search concerning this effect is required before two independent chol­

inergic systems can be implicated in the production of antinociception 

and analgesia. 

Pharmacological evidence concerning specific central sites for 

cholinergic modulation of the antinociceptive state comes from many 

sources. Intraventricular (Ivt) administration of carbachol (Metys 

et al., 1969), oxotremorine (Handley and Spencer, 1969), ACh (Pedigo 

et al., 1975), and scopolamine (Pert and Maxey, 1975) suggest the in­

volvement of structures immediately around the ventricular system 

since the time course of the antinociceptive state and diffusion prop­

erties of these drugs limit their potential sites of action to those 

particular areas. In addition, Ivt administrations of oxotremorine 

and arecoline into the septal area, mesencephalic reticular formation, 
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hypothalamus, and medial thalamic nuclei produce significant antinoci­

ception; applications into the striate or hippocampus were ineffective; 

effects were reversed by atropine (Metys et al., 1969). 

The close anatomical proximity of the ascending cholinergic re­

ticular formation and the paleospinothalamic and spinoreticular tracts 

which carry nociceptive information (see section 1.1.4.4), as well as 

the fact that Ivt applications of cholinomimetic agents into these 

areas produced antinociception led Sitaram et al. (1977) to postulate 

that physostigmine produced analgesia by virtue of its action mediated 

by the ascending reticular activating system. 

In any case, the specific sites and pathways involved in mediat­

ing and modifying cholinergic-induced antinociception and analgesia 

remain to be further identified. 

1.2.3.3 Mechanisms 

The mechanisms of effects concerning cholinergic-induced anti­

nociception are not known. The following evidence suggests as well as 

refutes various possible explanations.· 

First, the production of antinociception and elevation of ACh 

levels may be correlated for some centrally acting cholinomimetics 

such as oxotremorine (Harris et al., 1969). Morphine which produces 

a potent level of antinociception also increases brain ACh levels 

(Hano et al., 1964). However, various partial narcotic agonists and 

antagonists such as nalorphine, naloxone, pentazocine, and cyclazocine 
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(Howes et al., 1969) as well as several CNS depressants such as methyl­

parafynol, hydroxydione, pentobarbital, and reserpine (Giarman and 

Pepeu, 1962) do not produce antinociception but increase brain ACh 

levels. Therefore, no correlation exists between the ability of a 

compound to produce antinociception and increase brain ACh levels. 

Thus, cholinergic-induced antinociception needs not be directly attri­

butable to enhancement of brain ACh levels. 

Alternatively, oxotremorine and morphine decrease the turnover 

rate of brain ACh (Norberg and Sundwall, 1977); this action of mor­

phine appears to be due to its antirelease effect (Domino et al., 

1976). However, pentobarbital also decreases brain ACh turnover 

(Norberg and Sundwall, 1977). Again, no correlation exists between 

the ability of a compound to produce antinoci~eption and decrease ACh 

turnover. 

It should be pointed out that correlations between the antinoci­

ceptive state and whole brain or brain region neurochemistry may be 

misleading. It may be that the pertinent neurochemical changes associ­

ated with antinociception are restricted to nondetectable brain sites. 

Alternatively, the compounds which affect the cholinergic system may 

interact with other neurotransmitter systems to produce antinocicep­

tion. Since the various agents which affect the central cholinergic 

system influence the levels and turnover rates of other neurotrans­

mitters in the CNS, nociception and pain are probably mediated by a 

complex interplay of neurotransmitters (see section 1.2.2). To 



identify the neurotransmitter or neurotransmitters involved, various 

pharmacological manipulations were attempted as follows. 

Pretreatment with reserpine which decreases brain DA, NE and 
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5-HT levels, antagonized the antinociceptive states produced by physo­

stigmine (Pleuvry and Tobias, 1971) and tremorine (Sethy et al.,l971). 

Since reserpine decreases both catecholamines and indoleamines (Shore 

and Brodie, 1957), the following procedures were utilized to differ­

entiate the involvement of the various neurotransmitters. 

Concerning the involvement of DA and NE, diethyldithiocarbamate, 

which reduces brain NE levels by inhibiting dopamine-beta-hydroxylase 

(DBH), antagonized the antinociceptive state produced by tremorine 

(Sethy et al., 1971), physostigmine and oxotremorine (Pleuvry and 

Tobias, 1971), while alpha-methylparatyrosine (AMPT), a tyrosine hy­

droxylase inhibitor, 1-dopa, the metabolic precursor for DA and NE, 

and pimozide, aDA receptor blocker, were ineffective (Paalzow and 

Paalzow, 1975). These data suggest that NE may play a role in cholin­

ergic-induced antinociception but that DA probably does not. 

Various manipulations which affect the serotonergic system exert, 

on the whole, inconsistent effects on cholinergic antinociception. 

For instance, precursor loading with 5-HTP enhances physostigmine­

induced antinociception in mice (Pleuvry and Tobias, 1971) but not in 

rats (Paalzow and Paalzow, 1975). Para-chlorophenylalanine (PCPA) 

which decreases brain 5-HT levels by inhibiting tryptophan hydroxyl­

ation, antagonizes physostigmine-induced antinociception in mice 
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(Pleuvry and Tobias, 1971) and rats (Bhattacharya and Nayak, 1978); 

however, PCPA had no effect on oxotremorine (Pleuvry and Tobias, 1971; 

Paalzow and Paalzow, 1975) or DFP-induced antinociception (Koehn and 

Karczmar, 1978) in rats. Overall, reports from various authors con­

cerning the involvement of the serotonergic system in cholinergic­

induced antinociception are contradictory and inconclusive. The in­

volvement of the serotonergic system in antinociception and analgesia 

will be discussed in more detail in section 1.3. 

Endogenous opicid system may constitute another system that could 

be involved in cholinergic-induced antinociception (see also section 

1.4). Naloxone, a pure narcotic antagonist, antagonized the anti­

nociceptive state produced by physostigmine and oxotremorine (Harris 

et al., 1969), ACh (Pedigo et al., 1975) and DFP (Koehn and Karczmar, 

1978). Furthermore, antagonism of DFP-induced antinociception by 

stereoisomers of some narcotic antagonists was shown to be stereo­

specific (Koehn et al., 1979). On the other hand, Pedigo et al.(l975) 

demonstrated that inactive (+) isomers of partial narcotic agonists 

antagonized ACh-induced antinociception; (-) active isomers were in­

effective. 

Since one of the major characteristics of morphine-induced anti­

nociception is the tolerance which arises on chronic treatment, stud­

ies utilizing a cross tolerance design were performed to discern a 

possible common mechanism of cholinergic- and morphine-induced a~ti­

nociception. Invariably, cross tolerance did not develop between mor-
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phine-induced antinociception and antinociceptive state produced by 

oxotremorine (Howes et al., 1969), physostigmine (Pleuvry and Tobias, 

1971), scopolamine (Pert and Maxey, 1975), or DFP (Koehn et al.,l979). 

The results do not nullify the idea that morphine and the various 

compounds which affect the cholinergic system may be acting on opiate 

sensitive systems to produce their antinociceptive states since tol­

erance may not develop at sites at which the cholinomimetics and anti­

cholinesterases act to produce antinociception. Overall, the data 

suggest the possible involvement of an endogenous opioid system in 

cholinergic-induced antinociception. The involvement of the endoge­

nous opioid system in antinociception and analgesia will be discussed 

in greater detail in section 1.4. 

In summary, the exact neurochemical mechanisms involved in me­

diating or modifying cholinergic-induced antinociception remain only 

poorly understood at this time. 

1.2.4 Locomotion and Exploration 

Cholinergic agonists and antagonists induce or affect a number 

of animal locomotor and related overt behaviors including a state 

referred to as "alert non-mobile behavior" (ANMB; Karczmar ,· 1977) . 

Concerning the spontaneous locomotor activity in rats, ACh 

(Herman et al., 1972), arecoline (Costall et al., 1972), and physo­

stigmine (Adams, 1973) decrease spontaneous locomotor activity; 

this effect was reversed by atropine. Alternatively, atropine sul­

fate and scopolamine increase spontaneous locomotion; the corre-



spending quaternary compounds were ineffective(Adams, 1973). Thus, 

stimulation of central cholinergic muscarinic receptors attenuate 

while blocking those receptors enhances locomotion. 
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· The locomotor depression produced by cholinomimetics and anti­

cholinesterases appears to be primarily related to the relative activ­

ity of the dopaminergic and cholinergic systems in the nigrostriatal 

and extrapyramidal pathways; locomotion is mediated by cholinergic 

projections to the striatum which are behaviorally inhibitory; this 

system may be modulated via dopaminergic inhibition (Karczmar, 1977). 

However, locomotion may also depend upon a cholinergic inhibitory 

mechanism in the septa-hippocampal system. Atropine or scopolamine 

applied to dorsal or ventral hippocampal sites increased locomotor 

activity in the rat (Leaton and Rech, 1972) and mouse (Abeelen et al., 

1972). 

ANMB combines with what appears to be mental alertness; again, 

hippocampus may be the site involved as ANMB correlates with theta 

waves or hippocampal slow activity electroencephalographic (EEG) pat­

terns(Karczmar, 1977). However, hippocampal slow theta wave may not 

be always concomitant with immobility or ANMB. In rats, the presence 

of hippocampal theta wave activity was correlated with attentional or 

investigational responses occurring during exposure to a novel environ­

ment (exploratory activity; Komisaruk, 1970). In addition, intra­

hippocampal administrations of m2thylscopolamine increased exploratory 

activity, in two strains of mice; neostigmine was ineffective (Abeelen 

et al., 1972). Thus, exploration appears to be blocked by a cholin-
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ergic inhibitory mechanism residing probably in septal-hippocam?al 

pathways. 

1.2.5 Thermoregulation 

Meyers (1974) described a scheme for the role of the cholinergic 

system in thermoregulation of that cat and monkey. According to this 

scheme, the anterior hypothalamic preoptic area contains neurons which 

are thermosensitive as well as a comparator mechanism which contrasts 

the set point with local temperature; 5-HT and NE are released within 

this area to activate and inhibit, respectively, a cholinergic heat 

production system which then passes through the posterior hypothalamus. 

The posterior hypothalamus contains a set point mechanism which de-

d h +/++. b .... pen s upon t e Na Ca rat1o, an a errat1on of wh1ch w1ll act1vate an 

independent cholinergic heat dissipating system. 

Evidence from pharmacological studies support this scheme. 

First, intracerebral administrations of carbachol (Avery, 1970) or 

ACh (Rudy and Wolf, 1972) into anterior hypothalamic sites produced 

hyperthermia. Alternatively, pilocarpine or ACh produced hypothermia 

when administered into posterior hypothalamic sites; effects were re-

versed by atropine (Kirkpatrick and Lomax, 1970). Cholinomimetics and 

~,ticholinesterases administered systemically produce hypothermia in 

the rat (Lomax and Jenden, 1966; Kirkpatrick and Lomax, 1970; Meeter 

and Wolthius, 1968); however, whether sites and/or mechanisms other 

than the hypothalamic thermoregulatory center are involved is undeter-

mined at this time. 



1.3 Serotonergic System in Antinociception and Analgesia 

1.3.1 Central Serotonergic System 

Just as the central actions of drugs which affect the cholin­

ergic system must be considered in terms of the associated central 

cholinergic structures, so too must drugs which affect the central 

serotonergic system be viewed in terms of corresponding serotonin 

(5-HT) receptors, synapses, and pathways. 
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Unlike the cholinergic cell bodies which exist in a very diffuse 

pattern throughout the CNS, cell bodies of 5-HT neurons are mainly 

localized in midline raphe nuclei of the lower brainstem. Utilizing 

fluorescent histochemical techniques, Dahlstrom and Euxe (1964) 

identified nine distinct brainstem regions associated with 5-HT neu­

rons; these regions were consecutively labelled Bl through B9 from 

the caudal medulla to the rostral pons. 

Bl, B2, and B3, namely raphe nuclei pallidus, obscurus, and 

magnus (NRM), respectively, are located in the ventromedial medulla 

and send axons down the spinal cord via anterior and lateral funiculi 

to terminate with 5-HT containing terminals in the spinal dorsal, 

ventral grey matter, and sympathetic chain (Dahlstrom and Fuxe, 1965; 

Basbaum et al., 1978). These nuclei and associated projection path­

ways constitute the descending 5-HT system. 

5-HT neurons located in the central dorsomedial midbrain, namely 

raphe nuclei dorsalis (B7) and medianus (B8) project to the telenceph-



alan and diencephalon. The greatest number of ascending 5-HT fibers 

originate in the dorsal raphe (B7) ; striatal and hippocampal 5-HT 

projections arise chiefly in the dorsal and median raphe nuclei, 

respectively (Dahlstrom and Fuxe, 1964; Lorens and Guldberg, 1974). 

5-HT cells in the region of the formatio reticularis (B9) located 

just ventral to B7 and B8 in the midbrain also project rostrally to 

the diencephalon (Dahlstrom and Fuxe, 1964). 
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Two groups of 5-HT cells are found in the pons; the raphe nucleus 

po~tis (BS) lies at the level of the nucleus motorius and the B6 cell 

group is found on the midline just below the fourth ventricle; both 

BS and B6 send fibers to the hypothalamus (Dahlstrom and Fuxe, 1964; 

Fuxe and Jonsson, 1974). The final group of 5-HT cells is located 

in the vicinity of the area postrema in the medulla; projection sys­

'tems from this group remain to be identified (Dahlstrom and Fuxe,l964). 

Altogether, the B4 through B9 cell groups and projection systems com~ 

prise the ascending 5-HT system. 

The metabolic pathways involved in the synthesis and catabolism 

of brain 5-HT are outlined briefly as follows (Messing and Lytle,l977). 

First, the amino acid, tryptophan, is taken up into the neuron and 

5-hydroxylated by tryptophan hydroxylase (TH) to form the intermediate 

metabolite, l-5-hydroxytr1ptophan (5-HTP); the intracerebral hydroxyl­

ation of tryptophan is the primary factor and rate limiting reaction 

controlling cerebral 5-HT formation (Moir and Eccleston, 1968). 5-HTP 

is then decarboxylated by the enzyme aromatic l-amina acid decarboxyl-
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ase to form 5-hydroxytryptamine (5-HT; serotonin). Following release 

from the neuron, 5-HT is actively taken up by presynaptic nerve ter­

minals where it is deaminated and oxidized by the enzymes monoamine 

oxidase and aldehyde dehydrogenase, respectively, to form the major 

metabolite, 5-hydroxyindoleacetic acid (5-HIAA). 

1.3.2 Role of 5-HT in Antinociception and Analgesia 

Various experimental procedures have been utilized to investigate 

a possible role of 5-HT in the production of antinociception and anal­

gesia; included here are pharmacological studies, dietary manipula­

tions, and electrical lesions experiments; electrical stimulation 

studies will be discussed in section 1.3.4. 

Para-chlorophenylalanine (PCPA) decreases 5-HT and 5-HIAA levels 

by inhibiting TH, the rate limiting enzyme in 5-HT synthesis (Koe and 

Weissman, 1966). PCPA decreased jump response thresholds to electric 

shocks in rats; this effect was reversed by the administration of the 

metabolic precursor, 5-HTP (Tenen, 1967). 5-HTP produced antinoci­

ception when administered by itself to rats (Contreras and Tamayo, 

1967; Radouco-Thomas et al., 1967). However, administration of 5-HTP 

increases 5-HT formation within 5-HT neurons but also leads to the 

formation of 5-HT within dopamine neurons (Fuxe et al., 1971). In 

contrast, 1-tryptophan administrations increase 5-HT formation only 

in 5-HT neurons due to the relatively specific localization of the 

enzyme tryptophan hydroxylase (Moir and Eccleston, 1968). L-trypto­

phan administrations do not affect sensitivity to electric shocks in 



rats (Hole and Marsden, 1975). Fluoxetine hydrochloride (Lilly 

110140), a specific inhibitor of 5-HT uptake into synaptosome (Wong 

et al., 1974), increased jump response thresholds in rats (Messing 
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et al., 1975). Quipazine, which mimicks the effects of 5-HT on var­

ious smooth muscle preparations (Hong et al., 1969), also produced 

antinociception when administered to rats; effects were antagonized 

by methysergide (Samanin et al., 1976). The major factor which pre­

vents researchers from determining whether 5-HT participates in anti­

nociception and analgesia is the lack of a specific 5-HT receptor 

blocker. Five drugs (cinanserin, cyproheptadine, methysergide, 

methergoline, and methiothepin) have been suggested to block 5-HT 

receptors in the b~ain based on their ability to block the effects 

of 5-HT on smooth muscle and invertebrate neurons; unfortunately, 

their 5-HT antagonism is not entirely specific (Haigler and Aghajanian, 

1977). 

Rats fed a tryptophan deficient diet exhibited low tryptophan 

and 5-HT levels and decreased flinch-jump thresholds; PCPA augmented 

the hypernociceptive state; administrations of tryptophan or fluoxe­

tine restored flinch-jump thresholds to control levels (Lytle et al., 

1975; Messing et al., 1976). 

Electrolytic lesions in the median forebrain bundle, s~ptum, 

ventrolateral tegmentum, and dorsomedial tegmentum dec~eased telen­

cephalic 5-HT content and increased sensitivity to electric foot-shock 

in rats (Lints and Harvey, 1969; Harvey and Lints, 1971); these two 



effects were reversed by the administration of 5-HTP; administrations 

of 1-dopa were ineffective (Harvey et al., 1975). 
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While electrolytic lesions of specific CNS structures such as the 

median forebrain bundle decrease brain 5-HT content and produce hyper­

nociception, the electrolytic lesioning process itself probably de­

stroys non-serotonergic neurons as well. In addition, when 5-HT neu-

rons in the dorsal (B7) or median raphe (B8) are destroyed by electro­

lytic lesions no alteration in nociceptive responses in rats were 

observed (Harvey et al., 1974; Lorens and Yunger, 1974). 

In summary, while some evidence suggests that 5-HT participates 

in antinociception and analgesia, no conclusive evidence for the re­

lationship exists. 

l. 3. 3 Serotonin (5-HT) and !-lorphine-Induced Antinociception 

Many of the various pharmacological and physiological manipula­

tions which are known to affect the central serotonergic system and 

the nociceptive state also affect morphine-induced antinociception. 

Several compounds which affect the serotonergic system have been 

shown by a variety of testing procedures to potentiate narcotic-in­

duced antinociception; included here are 5-HTP (Contreras and Tamayo, 

1967; Radouco-Thomas et al., 1967), fluoxetine (Messing et al., 1975), 

as well as 5-HT itself administered intraventricularly (Ivt; Sewell 

and Spencer, 1974). Pretreatment with PCPA antagonized morphine-in­

duced antinociception; this effect was reversed by 5-HTP (Garlitz 
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and Frey, 1972). Methysergide, cinanserin, and cyproheptadine also 

antagonized morphine-induced antinociception (Garlitz and Frey, 1972; 

Yaksh et al., 1976a). 

Electrolytic lesion studies have produced varying effects on 

morphine-induced antinociception depending upon the lesion placement. 

Lesions that destroy specific ascending serotonergic fiber systems, 

as demonstrated by the resultant decrease in telencephalic 5-HT 

content, fail to alter the antinociceptive action of morphine in the 

rat: sites included here are (i) nucleus raphe medianus (B8; Lorens 

and Yunger, 1974; Hole and Marsden, 1975), nucleus raphe dorsalis 

(B7; Lorens and Yunger, 1974; Hole and Marsden, 1975), dorsal and ven­

tral tegmental nuclei of Gudden (Lorens et al., 1975), and median fore­

brain bundle (Harvey et al., 1975). 

On the other hand, electrolytic lesions of the nucleus raphe 

magnus (B3) antagonized morphine-induced antinociception in the rat 

(Proudfit and Anderson,l975). Since the nucleus raphe magnus (B3) is 

known to contain 5-HT neurons which descend to terminate on spinal 

cord structures known to respond to noxious stimuli (Proudfit and 

Anderson, 1975; Basbaum et al., 1978), the descending serotonergic sys­

tem may participate in the expression of morphine-induced antinoci­

ception. 

1.3.4 Serotonin(5-HT) and Stimulation Produced Analgesia (SPA) 

Drugs which affect the serotonergic system have been shown to 

alter stimulation produced analgesia (SPA) similarly to their effect 



on morphine-induced antinociception (see section 1.3.3). Thus, PCPA 

antagonized the antinocieptive state produced by morphine (Gorlitz 

and Frey, 1972) as well as by electrical stimulation (SPA) of the 

nucleus raphe dorsalis (B7) in the rat (Akil and Mayer, 1972). 

Similarly, electrical stimulation of the nucleus raphe magnus 

(B3) also produced antinociception in the rat (Proudfit and Anderson, 

1975) . Related studies have shown that selective lesions of the 

spinal cord dorsolateral funiculus (DLF) prevents the antinociceptive 

actions of SPA applied to periaqueductal grey ~ites (PAG) or of 

morphine (Basbaum et al., 1977). Similarly, DLF lesions prevent the 

inhibitory effect of nucleus raphe magnus (B3) on spinal cord neurons 

in laminae I, II, and v which are considered to be involved in pain 

modulation (Fields et al., 1976; see section 1.1.4.3). Recently, 

serotonin-containing fibers which descend from the nucleus raphe mag­

nus (B3) and terminate in lamina I, II, IV, and v have been shown to 

descend through the DLF (Basbaum et al., 1978). These particular 

studies along with those described in section 1.4.4 illustrate the 

importance of the descending serotonergic system underlying the anti­

nociceptive actions of SPA and morphine administrations. 

While the serotonergic system appears to participate, at least 

in part, in mediating SPA and morphine-induced antinociception, it 
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is also apparent that other neurotransmitter systems also mediate 

these effects. Pharmacological manipulations of catecholamine sys­

tems alter SPA; pimozide, a dopamine receptor blocker, decreased while 

apomorphine, a dopamine receptor stimulator increased SPA; disulfiram, 



which depletes NE by inhibiting the enzyme dopamine-beta-hydroxylase 

(DBH), increased SPA (Akil and Liebeskind, 1975). NE specifically 

reduced the firing rate of dorsal horn interneurons in response to 

noxious stimuli but did not alter the firing rate in cells excited by 

innocuous stimuli (Belcher et al., 1978). Recently, Yaksh (1979) 

reported that the antinociceptive action of morphine applied to PAG 

sites could be antagonized only by the combined intrathecal admin­

istrations of phentolamine, a NE receptor blocker, and methysergide; 

administrations of either antagonist alone significantly although 

incompletely antagonized this morphine effect. Clearly, non-seroton­

ergic systems exist which participate in the expression of SPA and 

morphine-induced antinociception. 

1.4 Endogenous Opioid System in Antinociception and Analgesia 

1.4.1 Endogenous Opioid System 

57 

One of the more interesting findings in neuroscience research has 

been the discovery of stereospecific opiate binding sites in the CNS 

(Goldstein et al., 1971) and subsequent isolation and identification 

of several endogenous opioid peptides (Hughes et al., 1975a; Guillemin 

et al., 1976; Li and Chung,l976). The endogenous opioid peptides sub­

sequently have demonstrated opiate-like activities, particularly the 

ability to produce antinociception, when administered to laboratory 

animals (see section 1.4.2). 

The first endogenous opioids found in the brain and sequenced by 

Hughes et al. (1975a) were the pentapeptides, methionine- and leucine-
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enkephalin, which differed from each other only in the terminal amino 

acid. Subsequently, other larger peptides found in the brain and pi­

tuitary exhibited similar opiate action; included here are beta (B)­

endorphin (Li and Chung, 1976) and alpha (a)- and gamma (y}-endorphin 

(Guillemin et al., 1976}. 

The endorphins each share a common amino acid sequence with the 

terminal residues of S-lipotropin (LPH), a 91 amino acid pituitary 

peptide discovered by Li et al. (1965}; residues 61 to 91, 61 to 76, 

and 61 to 77 of S-LPH are identical with s-, a-, andy-endorphin, 

respectively. Finally, the structure of methionine-enkephalin occu­

pies position 61 to 65 of B-LPH. 

Goldstein (1976) suggested that S-LPH might be enzymatically 

cleaved in the pituitary to form a-, B-, andy-endorphin and, in turn, 

methionine-enkephalin. However, it has recently been shown that 

hypophysectomy failed to alter the quantity and distribution of the 

endorphins (Cheung and Goldstein, 1976) or enkephalins (Kobayashi et 

al., 1978b) in the brain suggesting that the pituitary and brain 

constitute separate compartments with respect to these peptides. 

Presently, research aimed at identifying possible prohormones and/or 

precursors for the various opioid peptides is being conducted (Yang 

et al., 1979). 

The enkephalin content of various CNS structures has been shown 

to be unevenly distributed by a variety of assay procedures including 

bioassay (Hughes et al., 1977), radioimmunoassay (Yang et al., 1977; 
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Kobayashi et al., 1978b), and receptor binding studies (Simantov et 

al., 1976a). In general, the striatum, central grey region, nucleus 

accumbens, and hypothalamus contained the highest content of methi­

onine- and leucine-enkephalin; the thalamus, amygdala, pons, medulla, 

and caudate-putamen contained lesser amounts of the enkephalins; the 

midbrain, hippocampus, cerebellum, and cortex exhibited the lowest 

enkephalin content (Hughes et al., 1977; Yang et al., 1977; Kobayashi 

et al., 1978b; Simantov et al., 1976a). In every brain region stud­

ied, the methionine-enkephalin content was found to be 2 to 7 times 

greater than the corresponding leucine-enkephalin content (Kobayashi 

et al., 1978h). In addition, immunohistochemical studies have also 

demonstrated the presence of methionine- and leucine-enkephalin pos­

itive fibers in laminae I, II, III, V, and VII of the spinal cord 

(Watson et al., 1977; Simantov et al., 1977). 

On the other hand, S-endorphin-like immunoreactivity is seen 

predominantly in the h7pothalamus, septum, midbrain, and pons-medulla 

while no material attributable to B-endorphin could be found in the 

striatum, hippocampus, cortex, or cerebellum (Rossier et al., 1977b; 

Watson et al., 1978). Overall, the distribution of a B-endorphin 

reactive system and a methionine-enkephalin reactive system in the 

CNS appear to be quite different suggesting the existence of two 

separate opioid peptide systems. 

Opiate binding_sites and opioid peptide containing cell bodies 

and/or terminals have been found for the most part to be distributed 
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in close proximity to each other. For example, in accordance with the 

relative distributions of opioid peptides, the periaqueductal grey 

region, several hypothalamic nuclei, and spinal cord laminae I, II, 

and III exhibited high density of opiate binding sites; the cortex and 

cerebellum contained the least dense opiate binding sites (Kuhar et 

al., 1973b; Atweh and Kuhar, 1977a, b). On the other hand, the nu­

cleus raphe magnus (NRM) contains a high level of methionine-enkeph­

alin positive cells (Hokfelt et al., 1977) but exhibits a low level 

of opiate binding sites (Atweh and Kuhar, 1977a). 

Subcellular fractionation experiments demonstrated that enkeph­

alin-like-activity was predominantly localized to the synaptosomal 

fraction, the region known to contain several neurotransmitters 

(Simantov et al., 1976b). 

Finally, methionine- and leucine-enkephalin are released from 

synaptosomes and isolated striatal slices by potassium-induced neuron 

depolarization or veratridine (Henderson et al., 1978); 8-endorphin 

is released from pituitary as well as hypothalamic sites by potassium­

evoked cellular depolarization (Przewlocki et al., 1978; Osborne et 

al., 1979). 

Overall, the enkephalins and endorphins fulfill two criteria 

required for identity as a neurotransmitter substance. First, these 

peptides exhibit the differential distribution expected of a neuronal 

system in the CNS. Second, pharmacological antagonism establishes 

whether the neurotransmitter is released and characterizes the 
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receptor mediating the various responses (see sections 1.4.2 and 1.4.3), 

However, several other criteria such as physiologically-induced re-

lease, vesicular location, transmitter synthesizing system, and iden-

tity of action must be met before their role as neurotransmitter sub-

stances is established. 

1.4.2 Antinociception, Analgesia, Enkephalins, and Endorphins 

The enkephalins and 6-endorphin have been shown to produce a dose 

dependent, naloxone reversible, antinociceptive state following intra-

cerebroventricular (Icvt) administrations in the rat (Belluzzi et al., 

1976; Bloom et al., 1976), mouse (Buscher et al., 1976; Loh et al., 

1976), and cat (Meglio et al., 1977). 

Enkephalin-induced antinociception develops after a 2 to 3 

minute latency and lasts for 5 to 10 minutes (Buscher et al., 1976); 

antinociception produced by 6-endorphin lasts up to 90 minutes after 

administration (Loh et al., 1976). It appears that the short duration 

of enkephalin-induced antinociception and, in fact, the failure of 

some investigators to demonstrate any antinociceptive action (Bloom 

et al., 1976) is attributable to the fact that the enkephalins, unlike 

$-endorphin, are rapidly destroyed enzymatically in the brain (Dupont 

et al., 1977) . 2 Structurally altered enkephalins, most notably D-ala -

methionine-enkephalin, which are resistant to enzymatic degradation 

are active antinoci.:::eptive agents when administered systemically or 

orally (Roemer et al., 1977). 



The enkephalins and S-endorphin also produce antinociception in 

the rat when administered directly into the midbrain periaqueductal 

grey region (Chang and Fang, 1976; Malick and Goldstein, 1977) or 

intrathecally (Yaksh and Henry, 1978; Yaksh et al., 1978). 
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Finally, methionine-enkephalin reduced the firing rate of dorsal 

horn neurons activated by noxious stimuli but did not affect the fir­

ing rate of neurons activated by innocuous stimuli; inhibitory effects 

were reve~sed by naloxone (Randic and Miletic, 1978). 

1.4.3 Antinociception, Analgesia, ~,d Naloxone 

Jacob et al. (1974) first demonstrated that naloxone administered 

by itself produced hypernociceptive responses in rats; subsequently, 

some laboratories have confirmed this hypernociceptive action of nal­

oxone in rodents (Grevert and Goldstein, 1977; Carmody et al., 1979). 

Goldstein et al. (1976) failed to observe the hypernociceptive 

naloxone effect. Frederickson et. al. (1977) later reported 

that the hypernociceptive response produced by naloxone followed a 

diurnal rhythm. 

In humans, Grevert and Goldstein (1978) showed that naloxone 

failed to alter responses in experimentally-induced pain situations 

namely cold water imMersion and ischemia. Alternatively, Buschbaum 

et al., (1977) reported that naloxone produced hypoalgesia and hyper­

algesia in individuals determined to be pain sensitive and pain in­

sensitive, respectively. The diurnal variation in nociceptive respon-



siveness produced by naloxone in laboratory animals has also been 

demonstrated in humans (Davis et al., 1978). Finally, naloxone en­

hanced the post-operative pain arising from the removal of impacted 

molars (Levine et al., 1978). Naloxone also restored pain sensi­

tivity, measured as an increase in flexor reflex, in an individual 

who was congenitally insensitive to pain (Dehen et al., 1978). 

Overall, it appears that naloxone produces hypernociception 

and hyperalgesia only in special cases which may be associated with 

increased activity in the endogenous opioid system such as stress 

(Madden et al., 1977; Rossier et al., 1977a). 
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Several other pharmacologically- and physiologically-induced 

antinociceptive states can be antagonized by naloxone: included here 

are acupuncture (Mayer et al., 1976); transcutaneous electrical stim­

ulation (Chapman and Benedetti, 1977); stimulation produced analgesia 

(SPA; Akil et al., 1976; see section 1.4.4 for further discussion); 

stress induced by cold water (Bodnar et al., 1977), footshock(Chesher 

and Chan, 1977), and immobilization (Amir and Amit, 1978); phenoxy­

benzamine (Elliot et al., 1976); nitrous oxide (Berkowitz et al., 

1977); physostigmine and oxotremorine (Harris et al., 1969); acetyl­

choline (Pedigo et al., 1975); and diisopropyl phosphofluoridate 

(DFP; Koehn and Karczmar, 1978). It must be pointed out that naloxone 

antagonism of antinociception and analgesia is necessary but not suf­

ficient evidence to conclude the involvement of the endogenous opioid 

system as mediating these effects. Since non-specific actions of 



naloxone could contribute to its antagonism of antinociception and 

analgesia it is necessary to determine whether this antagonism is 

stereospecific. 

1.4.4 Stimulation Produced Analgesia (SPA) 

Reynolds (1969) first demonstrated that focal electrical stimu­

lation applied to the midbrain periaqueductal gray matter (PAG) rend­

ered rats sufficiently antinociceptive to permit abdominal surgery. 

Since then, numerous studies have demonstrated that focal electrical 

stimulation of discrete brain regions produced a profound, long last­

ing level of antinociception (SPA) in laboratory animals as well as 

in humans (see section 1.1.8.3). 

The most significant factor, however, concerning SPA is the fact 

that SPA and opioid-peptide-induced antinociception appear to share 

both common sites and mechanisms of action. A number of studies have 

mapped the b'rain for effective antinociceptive sites with SPA and 

opioid microinjections. 

64 

Electrical stimulation of the mesencephalic gray matter and peri­

aqueductal grey matter produced antinociception as measured by a va­

=ietv of noxious stimuli in the rat (Mayer and Liebeskind, 1974); loci 

in the central gray surrounding the aqueduct and caudal portions of 

the third ventricle were particularly effective (Rhodes and Liebeskind, 

1978). Similarly, the most sensitive sites to intracerebral applica­

tion of morphine in the rat lie in the ventrolateral sections of the 



caudal PAG region (Yaksh et al., l976b). 

Electrical stimulation of other brain areas such as the septum, 

medial thalamus, ventral tegmentum, and pretectal area produced test 

specific antinocicpetive states; ventrobasal thalamic and lateral 

hypothalamic sites were ineffective (Mayer and Liebeskind, 1974; 
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Rhodes and Liebeskind, 1978). On the other hand, morphine injected 

into the posterior, anterior, and ventromedial hypothalamus, medial 

thalamus, and caudate increased flinch-jump thresholds in rats (Jacquet 

and Lajtha, 1973). Inejcted into the septum, morphine was ineffective 

(Jacquet and Lajtha, 1973) . 

The nucleus raphe magnus (NRM) of the medulla yields a profo~md 

level of antinociception following electrical stimulation in the rat 

and cat (Proudfit and Anderson, 1975; Oliveras et al., 1978; see sec­

tion 1.3.4). Alternatively, the nucleus reticularis gigantocellularis 

of the medulla is extremely sensitive to local injections of morphine; 

applications into other medullary nuclei including NRM were ineffect­

ive (Takagi et al., 1977). 

In summary, the degree of overlap for common effective brain 

sites of SPA and morphine, while not perfect, is impressive as it 

concerns the medial portions of the brain stem extending from the ros­

tral medulla to the diencephalon. In fact, concurrent mapping studies 

performed in the same animal demonstrate that PAG sites are particu­

larly sensitive to both procedures (Yeung et al., 1977). 



The tail flick response in rats is considered to be a spinal 

reflex since both spinally intact animals as well as animals with 

spinal transections (T4-T5) respond to noxious heat stimulus applied 

to the rat's tail (Irwin et al., 1951). Since both morphine and SPA 

have been reported to block the tail flick response in rats (Mayer 

et al., 1975), the spinal cord appears to participate, at least in 

part, in mediating antinociception produced by these two methods. 

In addition, recent electrophysiological investigations demon­

strate that morphine injections as well as electrical stimulation of 

PAG sites specifically inhibited the responses of spinal cord wide 

dynamic range interneurons to noxious heat but not to innocuous me­

chanical stimuli. Neither the narcotics nor electrical stimulation 

affected neurons which responded exclusively to innocuous stimuli; 

thus, both procedures appear to specifically inhibit input at the 

spinal cord level (Bennett and Mayer, 1979). 

Cross tolerance studies were performed to identify common neural 

substrates activated by SPA and morphine. Tolerance to SPA develops 

upon repeated stimulation in both the rat (Mayer and Hayes, 1975) and 

human (Hosobuchi et al., 1977); this tolerance exhibits cross toler­

ance to the antinociceptive and analgesic actions of morphine; toler­

ance to morphine reduced the effectiveness of SPA in the rat (Mayer, 

and Hayes, 1975) whereas tolerance to SPA increased the dose of mor­

phine required to produce analgesia in humans (Hosobuchi et al., 

1977) . Tolerance to SPA and cross tolerance with morphine decreased 

after periods of nonstimulation in both species (Mayer and Hayes, 
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1975; Hosobuchi et al., 1977). 

As stated earlier (see section 1.4.3), Akil et al. (1976) 

demonstrated that the narcotic antagonist, naloxone, reduced by 

approximately 30% the antinociceptive state produced by SPA applied 

to the PAG region in the rat brain. Other investigators demonstrated 

only a minor antagonistic effect of naloxone 3 to 5 minutes post 

stimulation (Pert and Walter, 1976) while still others report no 

effect of naloxone at all (Yaksh et al., 1976b). On the other hand, 

naloxone completely reversed the analgesia produced by PAG stimul­

ation in 6 out of 7 patients studied (Adams, 1976; Hosobuchi et al., 

1977). 

Finally, analgesia arising from electrical stimulation of the 

PAG region was associated with increased amounts of enkephalin-like­

material (Akil et al., 1978) and immunoreactive-S-endorphin (Hoso­

buchi et al., 1979) in the ventricular cerebrospinal fluid (CSF); 

leucine-enkephalin levels were not altered (Hosobuchi et al., 1979). 
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Patients diagnosed as having organic pain exhibited significantly 

lower levels of methionine-enkephalin-like-material when compared with 

normal non painful volunteers or patients diagnosed as having psycho­

genic pain (Almay et al., 1978). In addition, patients with high 

levels (>0.9 pmol/ml) of methionine-enkephalin-like-material exhibit 

higher pain thresholds and pain tolerance levelz than did patients 

with low levels (<0.9 pmol/ml) of methionine-enkephalin-like-material 

(Von Knorring et al., 1978) . 



In summary, although the exact role of the endogenous opioid 

system in antinociception and analgesia remains to be established, 

the combined data reported above suggest that these naturally 

occurring peptides may be involved in the control of pain. 
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2 . RESEARCH OBJECTIVES 

All the known potent naturally occurring and various synthetic 

narcotic analgesics produce tolerance and physical dependence (Isbell, 

1977) . In spite of the fact that no nonaddicting potent analgesic 

exists, the research devoted to this particular problem has led to 

the development of other useful drugs such as methadone which is used 

for withdrawal procedures and to maintain persons addicted to the 

opioids (Isbell, 1977). Another benefit has been the stimulation of 

the basic sciences to pursue research programs directly and indirectly 

related to the management of the chronic pain state. These research 

efforts have led to a more complete understanding of the anatomical, 

neurochemical, neurophysiological, and psychological mechanisms in­

volved in the perception of pain. 

Compounds which produce antinociception when administered to 

laboratory animals do not necessarily produce analgesia when admin­

istered to humans; however, a correlation between the antinociceptive 

and analgesic properties of a drug does exist for many narcotics 

(Isbell, 1977), certain compounds which affect the cholinergic system 

(Herz, 1961; Harris et al., 1968; Sitaram et al., 1977; Sitaram, 1979, 

personal communication), ~d various derivatives of delta-9-tetra­

hydrocannabinol (Bhargava, 1978a; Jochimsen et al., 1978). Thus, 

investigating drug-induced antinociception as an index of effective­

ness of that drug to produce analgesia, while not applicable for all 
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drugs which produce antinociception is a valid procedure for specific 

drugs and/or classes of drugs. 

Previous studies indicate that ACh (Pedigo et al., 1975), 

various cholinomimetics (Chen, 1958; Herz, 1961; Harris et al., 1967, 

1968), and/or ~~ticholinesterases (Harris et al., 1968; Bhargava and 

Way, 1972; Koehn and Karczmar, 1978) produce antinociception as well 

as potentiate narcotic-induced antinociception when administered to 

rodents. In addition, anticholinesterases, long known to potentiate 

narcotic-induced analgesia in humans (Floodmark and Wrammer, 1945) 
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have recently been shown to produce analgesia when employed alone 

(Sitaram et al., 1977). Thus, present evidence suggests that com­

pounds which affect the cholinergic system may be useful agents to 

investigate concerning the management of pain. The purpose of this 

dissertation research is to examine the antinociceptive property of the 

anticholinesterase agent, diisopropyl phosphofluoridate, DFP, and 

its various aspects. 

The first objective of this research is to determine whether 

similarly to other anticholinesterases DFP will produce antinoci­

ception when administered to rats. 

Anticholinesterase agents produce a state of immobilization 

(Adams, 1973) and hypothermia (Meeter and Wolthius, 1968) when admin­

istered to rats. Since the methods employed to assess antinoci-

ception, the hot plate and tail flick tests, involve motor and temp-



erature dependent behavioral responses it will be important to 

separate the antinociceptive effects from the attenuated mobility 

and hypothermia produced by DFP; exploratory and motor activity 

levels and rectal temperatures will be measured for this purpose. 

The second objective of this research is to determine whether 

the antinociceptive action of DFP in the rat is related to the in­

volvement of· either the serotonergic or endogenous opioid systems 

in the CNS. Since increased activity of 5-HT neurons in the CNS 

is associated with the production of antinociception (see section 

1.3) and DFP markedly increases 5-HT levels and turnover rates 

(Barnes et al., 1975, 1978), it may be speculated that DFP-induced 

antinociception results from actions involving the serotonergic 

system (see section 1.2.2). 
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On the other hand, an endogenous opioid system may mediate DFP­

induced antinociception (see section 1.4). Several endogenous opioid 

peptides such as leucine- and methionine-enkephalin (Blasig and Herz, 

1976) and 8-endorphin (Szekely et al., 1977) produce antinociception 

when administered exogenously. Since antinociception produced by 

stress (Chesher and Chan, 1977 ; Bodnar et al., 1978), brain stimu­

lation (Ad~ms, 1976), acupuncture (Mayer et al., 1976), as well as a 

number of drugs (Elliot et al., 1976; Stewart et al., 1976; Harris 

et al., 1976; Berkowitz et al., 1977) is antagonized by naloxone, a 

narcotic antagonist, these various procedures may release endogenous 

opioids which then serve as endogenous antinociceptive agents. Nal-



axone also antagonizes the antinociceptive state produced by physo­

stigmine and oxotremorine (Harris, 1970) and ACh (Pedigo et al., 

1975). Thus, if the enkephalins or endorphins indeed function as 

endogenous antinociceptive agents, then the antinociceptive state 

produced by DFP may result from DFP-induced release of the endogenous 

opioids. 
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It is hoped that the study of the mechanisms involved in OFF­

induced antinociception may provide an explanation for certain con­

flicting findings and may also shed some light upon the mechanisms of 

antinociception in general. Finally, this investigation may, pos­

sibly, contribute to the management of pain by providing the rationale 

for implementing novel forms of drug therapy. 



3 • MATERIALS AND METHODS 

3.1 Animals 

Male Sprague-Dawley rats, 160-350 gm obtained from Locke­

Erickson and King Animal Distributors were used for behavioral 

studies as well as for brain serotonin (5-HT) and enkephalin level 

determinations. Male CFl mice, 25-40 gm obtained from Charles River 

Animal Distributors were used for vasa deferentia bioassay prepa­

rations. Animals were housed in a temperature-controlled (22 ± 2°C) 

room with lights on and off at 0700 and 1900 hours daily. In all 

cases, food and water were provided ad libitum. 

3.2 Drugs and Chemicals 

3.2.1 Source 

Diisopropyl phosphofluoridate (DFP) obtained from K & K Labora­

tories, Plainview, New York in propylene glycol vehicle was diluted 

as appropriate in peanut oil (Mallinckrodt Chemical Company) . 

Morphine sulfate (Merck Chemical Division); atropine sulfate 

(City Chemical Company); atropine methyl nitrate, para-chlorophenyl­

alanine methyl ester (PCPA) and pilocarpine HCl (Sigma Chemical 

Company); naloxone HCl (Endo Laboratories) ; MR 2266 and MR 2267 

(- and+ stereoisomers of 5,9 a-diethyl-2-(furylmethyl)-2'-hdyroxy-
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6,7-benzomorphan, Boehringer Ingelheim); GPA 1843 and GPA 1847 

(- and+ stereoisomers of 2-allyl-2'-hydroxy-9 B-methyl-5-phenyl-

6,7 benzomorphan, CIBA-Geigy Corporation); and d- and 1-cyclazocine 

(Sterling-Winthrop Research Institute) were dissolved in normal 

saline. 

Serotonin creatinine sulfate complex (Sigma Chemical Company) 

was dissolved in 0.1 N HCl (stock solution) and redissolved freshly 

each day in 0.1 N HCl for use in the fluorometric assay. Leucine­

and methionine-enkephalin (Beckman Biochemicals) were dissolved in 

distilled water (stock solution) and redissolved in Krebs solution 

for use in the bioassay. 

Distilled water, taken from the central storage tap, was de­

ionized (Barnstead Ultrapure Mixed Bead) and redistilled (Corning 

Water Distillation Apparatus) for use thro?ghout these experiments. 

3.2.2 Dosage and Schedules 

DFP (1.5, 1.0, 0.5, and 0.1 mg/kg) and morphine (3.0 mg/kg) 

were administered subcutaneously (s.c.) one hour prior to initiation 

of experiments. Atropine sulfate (4.0 mg/kg), atropine methyl 

nitrate (4.0 mg/kg), naloxone (5.0, 0.5 and 0.05 mg/kg) MR 2266 

and MR 2267 (1.0 rng/kg) ,GPA 1843 and GPA 1847 (5.0 rng/kg), and d­

and 1-cyclazocine (0.64 rng/kg) were administered intraperitoneally 

(i.p.) 30 minutes prior to experimentation. Pilocarpine (2.5 rng/kg) 

was administered subcutaneously 30 minutes prior to experimentation. 

PCPA was administered in doses of 100 (PCPA1) or 300 (PCPA2) 
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mg/kg i.p. on each of the two days preceeding testing; a third dose 

of 100 mg/kg i.p. was given two hours before the initiation of exper­

iments. 

In all cases, control animals were administered the drug vehicle, 

peanut oil or saline, in an identical manner. 

3.2.3 Development of Tolerance 

For the production of tolerance, animals were injected with mor­

phine 3 times per day (at 0800, 1600, and 2400 hours) at a total daily 

dose as follows: 30, 60, 90, 120, 150, 180, 300, 450, and 600 mg/kg 

i.p. on days 1 through 9, respectively. Control animals were admin­

istered the vehicle. Hot plate responses (see section 3.3.2) were 

measured on day 6 (Tolerance level A) and on day 9 (Tolerance level 

B) • 

3.3 Behavioral Studies 

3.3.1 Pretest Care of Animals 

Rats.were housed 3 or 4 per cage. Since handling produces stress 

in rats (Ader, 1968) and the handling involved in testing may affect 

the performance of rats not previously handled (Joffe and Levine, 

1973) , rats were handled for at least 5 minutes on each of the three 

days preceeding any testing situation to minimize stress effects. 

Preinjection (baseline) measurements of all responses except 

exploratory and motor activity level determinations (see sections 



4.2.1, 4.2.2, 4.6.1, 4.6.2, 4.7.2, and 4.7.3) were obtained at least 

one hour prior to the administration of any compound. 

Mice were housed 10 per cage until their use for bioassay prep­

arations. 

3.3.2 Hot Plate Test 

3.3.2.1 Apparatus 
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The following two apparatuses were utilized for hot plate studies. 

First, inverted blocks of a Tecam Driblock DB-3 Test Tube Heater 

served as the hot plate source. The heat blocks were surrounded by 

a wire cage (23 em long x 9.5 em wide x 9.5 em high) which restricted 

the animals' movement to the heat block surface. The temperature 

was maintained at 55 ± 0.5°C by a variable heat control. Rats weigh­

ing 160-220 gm were employed in experiments concerning (a) effect 

of atropine sulfate and atropine methyl nitrate on DFP-induced anti­

nociception (see section 4.1.3), (b) effect of PCPA on DFP-induced 

antinociception (see section 4.5.1), and (c) pharmacological compar­

ison of DFP- and morphine-induced antinociceptive states (see section 

4. 7 .1). 

Second, a standard hot plate (32 em square surface, property of 

the University of Iowa) was utilized. A plastic cylinder (22 em diam­

eter x 30 em high) restricted the animals' movements to the hot plate 

surface. The temperature was monitored and maintained at 55 ± 0.5°C 

by a series of built-in thermistors which provided the entire hot 



plate surface with a constant temperature. Rats weighing 200-350 gm 

were employed in experiments concerning: (a) DFP- and pilocarpine­

induced antinociception (see section 4.1.1), (b) Effect of naloxone 

on DFP-induced antinociception (see section 4.8.1), (c) Effect of 

stereoisomers of narcotic antagonists on DFP-induced antinociception 

(see section 4.9), and (d) Effect of tolerance to morphine on DFP­

and pilocarpine-induced antinociception (see section 4.10). 

·3.3.2.2 Testing Procedure 
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The hot plate test was carried out as follows. The rats were 

placed on the hot plate surface; the latency of onset of the following 

responses were recorded: ·(a) licking of the front paws, (b) licking 

or lifting/spinning movement of the hind paw, and (c) jumping off of 

the hot plate surface. All response times reported represent the 

latency of onset of the first response observed. A 30 second time 

limit was set to be the maximum nociceptive response time in all tests 

except those involving (a) DFP- and pilocarpine-induced antinocicep­

tion (see section 4.1.1) and (b) Effect of naloxone on DFP-induced 

antinociception (see section 4.8.1) where a EO second time limit was 

used. 

3.3.3 Tail Flick Test 

In the tail flick test, animals were placed in a plastic restrain­

ing cage which allowed the tail to extend outwards and to relax for 

3 minutes. The tail was then placed in a grooved slot of an asbestos 
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board; the beam of the light source, Blue M Infra Oven (375 watts), 

was focused one inch from the tip of the rats' tail. A 60 second time 

limit was set and the characteristic flicking movement of the tail was 

used as the endpoint. 

3.3.4 Activity Level Determinations 

3.3.4.1 Apparatus 

Exploratory and motor activity levels were assessed in a covered 

circular activity cage (Lehigh Valley Instruments Corporation) with a 

46 em high cylindrical wall. Six photoelectric cells, with opposing 

lights, were placed every 8.7 em along the cylindrical wall 2.5 em 

above the floor. Two counters, each responsive to 3 photoelectric 

cells, recorded the number of times each beam of light was broken. 

3.3.4.2 Exploratory and Motor Activity 

The number of photoelectric interruptions were recorded 15 and 

75 minutes after placing the rats individually in the activity cages. 

Activity levels reported represent the average of the two counters. 

Activity levels measured during the first 15 minutes and subsequent 

60 minutes of "the test are commonly referred to as the exploratory 

and motor activity periods, respectively (Karczmar and Scudder, 

1967) . 

Exploratory activity levels were also measured by placing the 

animals individually in the activity cages for 10 minute periods at 



at various times post drug administrations. Counters recorded the 

number of photoelectric interruptions during each 10 minute test 

session. 

3.4 Rectal Temperature 
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Rectal temperatures in rats were measured by means of a thermister 

probe (Yellow Springs Instrument Company) inserted into the rectum 

to a depth of 50 mm and retained in situ until a constant temperature 

reading was obtained (usually 30 seconds) . 

3.5 Brain Serotonin (5-HT) Assay 

Brain (5-HT) levels were determined according to modifications of 

methods originally described by Atack and Magnusson (1970) and Atack 

(1973) . This experimental procedure utilizes the processes of cation­

exchange chromatography to separate and spectrophotofluorometry to 

quantify 5-HT; it was employed with respect to 3 different brain re-

gions, and can be outlined as follows: 

3.5.1 Tissue Samples 

(a) Rats were sacrificed by decapitation (1000 to 1200 hours); 

brains were quickly removed from the cranial vault. 

(b) Meninges and cerebellum were discarded. 

(c) Brains were rapidly divided into three regions: 

(1) Medullary (medulla) 

(2) Meso-diencephalon (thalamus, hypothalamus, pons, and 

midbrain) 



(3) Telencephalon (cortex and caudate) 

(d) Brain regions ~ere frozen in liquid nitrogen and stored at 

-2ooc until analyzed. 

3. 5. 2 Reagents 

(a) Water (see section 3.2.1) 

(b) 2N NaOH + l% EDTA (Dissolve 40 gm NaOH and 5 gm EDTA in 

500 ml water) 

(c) lON, 2N, and lN HCl (Made appropriately from concentrated 

12 N HCl) 

(d) ETOH/HCl (Combine equivalent volumes of redistilled 95% 

ETOH and 2N HCl) 

(e) O.lN Sodium Phosphate Buffer (Dissolve 8.83 gm NaH 2Po4 , 

12.88 gm Na2HP0
4

'12H2o, and 1 gm EDTA in 1,000 ml water) 

(f) Homogenizing Solution (Dissolve 0.125 gm Na2s2o
5 

and 0.5 gm 

EDTA in water. Add 8.55 ml 70% HCl04 and bring to a final volume of 

250 ml with water) 

(g) 5N K2co
3 

(Dissolve 69.0 gm K2co 3 in 200 ml water) 

(h) BromPhenol Blue Solution (B.P.B.; dissolve 1-6 -mg 3'3"5'5"­

tetrabromophenolsulphonephthalein Na in 100 ml of redistilled 95% 

ETOH) 

(i) Ortho-phthaldehyde (OPT, stock solution; dissolve 29.65 mg 

of OPT in 50 ml of lON HCl) 

OPT (experimental solution; take 8.72 ml of OPT stock so­

l uti on up to 100 ml final volume with lON HCl) . 
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(j) Serotonin (5-HT, stock solution; dissolve 42.95 mg of 

serotonin creatinine sulfate complex in 250 ml of O.lN HCl) 

5-HT (Experimental solution; take 1.0 ml of 5-HT stock 

solution up to 50 ml final volume with O.lN HCl) 

3.5.3 Column Preparation 

3.5.3.1 Cycling and Regeneration of Resin 

Ion-exchange chromatography resin should be given at least one 

complete change of form to remove other ions and impurities (Mikes, 

1970). Utilizing a magnetic stirring apparatus, 250 gm of DOWEX AG 

SOW X4 200-400 mesh H+ from ion-echange resin was cycled and regen­

erated ten times with the following solutions: 

(a) 300 ml 2N NaOH + l% EDTA 

(b) 300 ml ETOH/HCl 

(c) 300 ml 2N HCl 

(d) 300 ml water 

The regenerated resin was stored in water at S°C. 

3.5.3.2 Packing of Columns 
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The columns to be packed with ion-exchange resin have been 

adapted from 1.0 ml disposable syringes (4.2 mm internal diameter x 

7.0 em high; Fig. 1). A piece of tygon tubing, which serves to attach 

the column assembly to the glass syringe apparatus was affixed to the 

upper end of the syringe barrel (Fig. 1). Since air bubbles disrupt 

the uniform packing of t~e resin, the actual packing was performed 
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FIGURE 1 

Diagram of column assembly and glass syringe apparatus 
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Fig. l 
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with the columns submerged in water. First, a small piece of glass 

wool which serves to trap the resin in the column, was inserted into 

the column and forced to the tip with a stirring rod (Fig. 1). A 2 ml 

pipet filled with resin was inserted into the top of the column and 

the resin was allowed to flow into the column. When the resin bed 

had reached a height of 50 mm, another piece of glass wool was insert­

ed into the top of the column, thus trapping the resin between the 

two pieces of glass wool (Fig. 1). The freshly packed column was 

mounted onto one of the glass syringes in the glass syringe apparatus 

(Fig. 1). The glass syringe apparatus consisted of the following. 

Two 20 ml glass syringe barrels were connected to each other through 

a series of three-way stopcocks (Fig. 1). One syringe barrel served 

as a reservoir through which the extract and other reagents could be 

added to the column (Fig. 1). The other glass syringe barrel served 

as the site of attachment for the column (Fig. 1). The glass syringe 

apparatus was suspended vertically through holes in a wooden board 

(Fig. 1). 

3.5.3.3 Preparing Columns for Samples 

It is oftennecessary to ion exchange resin for elution ion­

exchange chromatography to adjust the pH to optimal for separation 

(Mikes, 1970). Here, the resin was prepared for the addition of tissue 

extracts by cycling the resin into the form of the buffer cation (Na+) 

and then washing with buffer (Atack, 1973). This was accomplished by 

passing the following solutions through the column: (a) 20 ml 2N 

NaOH + 1% EDTA, (b) 50 ml water, (c) 20 ml 2N HCl, (d) 50 ml water, 



(e) 20 ml O.lN sodium phosphate buffer (pH=6.5), and (f) 5 ml 

water. The pH of the effluent is taken as a control measurement to 

check that the inflowing solution and effluent have the same compo­

sition; thus, a pH of 6.5 indicated that the column was ready for 

the addition of the tissue extracts. 

3.5.4 Extraction Process 

(a) Weighed brain regions were chilled and homogenized in 8.0 ml 

of homogenizing solution (see section 3.5.2). 

(b) Homogenate was centrifuged at 4000 RPM for 15 minutes. 

(c) Supernatant was poured into 15 ml graduated tubes. 

(d) Pellet was reextracted with 3.0 ml of homogenizing solution; 

centrifuged at 4500 RPM for 10 minutes; supernatants were combined. 

(e) pH was adjusted to 6.5 with 5N K2co3 (using 2 drops of B.P.B. 

as pH indicator) . 

(f) Supernatant was set for 10 minutes on ice. 

(g) Centrifuged at 5000 RPM for 15 minutes. 

(h) Tissue extracts filtered (Watman No.1) onto ion-exchange 

column; passed through column (flow rate <0.5 ml/min) mol. 

(i) Columns rinsed by passing the following solutions: 

(1) 15 ml water 

(2) 15 ml O.lN sodium phosphate buffer 

(3) 15 ml water 

(j) 5-HT was eluted with the following sulutions: 

(1) 10.5 ml lN HCl (discard) 

85 



86 

(2) 4.7 ml ETOH/HCl (discard) 

(3) 6.0 ml ETOH/HCl (collect = 5-HT fraction) 

Internal standards were prepared by substituting 1400, 700, and 

350 ng of 5-HT as well as 0.5 ml of ETOH and H2o in place of a brain 

sample. Per cent recovery of 5-HT and column reagent blanks fluores­

cent values were determined from these five internal standards. 

3.5.5 Conversion of Serotonin (5-HT) to Fluorophore 

Serotonin (5-HT) content in biological tissues can be determined 

by fluorescent methods directly (Maicker and Miller, 1966). However, 

reacting 5-HT with o-phthaldehyde (OPT) yields a substituted indole 

compound which is 20 times more fluorescent than 5-HT itself (sensi­

tive to 1.0 ng 5-HT; Maicker and Miller, 1966). Therefore, 5-HT was 

reacted with OPT according to the methods described by Maicker and 

Miller (1966). The process is outlined as follows: (a) Add 2 drops 

of OPT and 0.5 ml of sample eluate to 1.0 ml lON HCl (b) Boil for 

15 minutes (c) Allow to cool to room temperature. 

External standards and reagent blanks were prepared as follows. 

To 1.0 ml of lON HCl the following amounts of standard 5-HT and re­

agents were added: 

(a) 700 ng 5-HT [0.500 ml 5-HT (Experimental solution) + 0.000 ml 

O.lN HCl] 

(b) 350 ng 5-HT [0.250 ml 5-HT (Experimental solution) + 0.250 ml 

O.lN HCl] 
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(c) 175 ng 5-HT [0.125 ml 5-HT (Experimental solution) + 

0.375 ml O.lN HCL] 

(d) ETOH Blank (0.500 ml ETOH) 

All samples and standards were read in an Aminco-Bowman Spectra-

photofluorometer at uncorrected wavelengths of 360 m~ (activation) 

and 470 m~ (emission). The water reagent blank was set at 0.05 

fluorescent units and the samples were read accordingly. 

3.5.6 Calculations 

The formula for calculating ng 5-HT/gm brain tissue is as 

follows: 

A X (B - C) 
ng 5-HT/gm brain tissue 

(D - E) X F X G 

where, 

A= 12 (6.0 ml/0.5 ml; total volume of 5-HT eluate fraction collected, 

see section 3.5.4 

Volume of 5-HT eluate fraction converted to fluorophore, see 

section 3.5.5) 

B = Fluorescent units of sample (tissue extract) 

C = Fluorescent units of column reagent blank (determined from intern-

al standards passed through the column, see section 3.5.4). 

D Fluorescent units of external standard 

E Fluorescent units of external reagent blanks 

F = Per cent recovery (determined from internal standards passed 

through the column, see section 3.5.4) 
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G = Brain region weight 

Average recoveries for 5-HT were found to vary between 65 and 

80 per cent. Brain sample concentrations (ng/gm) were always correct­

ed for 100 per cent recovery based on the internal standard recovery 

percentage for each experiment. 

3.6 Brain Enkephalin-like-material Level Assay 

Brain enkephalin-like-material levels were determined according 

to methods originally described by Hughes et al. (1975b; 1977) and 

modified at present. Experimental procedures involved are (1) mole­

cular seive chromatography to separate and {2) vas deferens bioassay 

preparation to quantify enkephalin-like-material; procedures are out­

lined as follows. 

3.6.1 Tissue Samples 

(a) Rats were sacrificed by decapitation (0800 to 1000 hours); 

brains were quickly removed on ice. 

(b) Meninges and cerebellum were discarded. 

(c) Weighed brains were placed in 10 ml of 0.1 N HCl for the 

extraction of enkephalin-like-material (see section 3.6.4). 

3.6.2 Reagents 

(a) Water (see section 3.2.1) 

(b) O.lN HCl (Made appropriately from concentrated 12N HCl) 

(c) Dichloromethane (As obtained commercially) 



(d) Methanol (MeOH) (Degassed under vacuum in heavy walled 

filtering flask) 

(e) Kreb's Solution (Dissolve 13.72 gm NaCl, 0.70 gm KCl, 

0.734 gm cac1 2 ·2H2 0, 0.332 gm NaH2Po
4

·H2o, 3.96 gm d-glucose, and 

4.20 gm NaHC0 3 in 2000 ml water) 

(f) Leucine/Methionine-Enkephalin (Stock solution; dissolve 

1.0 mg leucine/methionine-enkephalin in 1.0 ml water) 

(g) Leucine/Methionine-Enkephalin (Experimental solution; 

take 10 ~1 of leucine/methionine-enkephalin stock solution up to a 

final volume of 10 rnl in Kreb's solution) 

3.6.3 Column Preparation 

3.6.3.1 Resin Cleaning Procedure 

Chromatography resin was cleaned prior to its use to remove 

any impurities. Utilizing a magnetic stirring apparatus, 250 gm of 

Arnberlite XAD2, neutral polystyrene bead resin was washed with t~e 

following solutions ten times: 

(a) 300 rnl Dichloromethane 

(b) 300 rnl Isopropyl alcohol 

(c) 300 rnl water 

The cleaned resin was stored in water at room temperature. 

3.6.3.2 Packing of Columns 

Cylindrical columns (25 ern high, Kontes Martin Company) were 

used in this procedure. The lower portion of the column (14 ern, 8.0 
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8.0 mm internal diameter) held the chromatography resin; the upper 

portion (11 em, 32 mm internal diameter; 125 ml capacity) served as 
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a reservoir for the application of brain extracts and various solu­

tions. A rotating plastic stopcock located at the base of the column 

adjusted the flow rate. The columns were suspended vertically through 

holes in a wooden board. A small piece of glass wool was inserted 

into the column to trap the resin at the lower end. The column was 

filled with resin to a height of 80 mm. To remove air bubbles which 

interfere with the uniform packing of the resin and flow of solutions 

through the columns, a small glass stirring rod was used periodically 

during the times at which the columns were filled with resin as well 

as during the subsequent extraction process. 

3.6.4 Extraction Process 

(a) Chilled homogenization of weighed brains in 10.0 ml of 

O.lN HCl 

(b) Centrifugation of homogenate in a total volume of 20-30 ml 

of O.lN HCl at 19,000 RPM for 30 minutes 

(c) Pouring of supernatant onto prewashed(300 ml H20) column 

and pass through resin (flow rate < 1 ml/minute) 

(d) Rinsing of columns by passing the following solutions: 

(1) 40 ml QlN HCl 

(2) 50-200 ml H
2
o 

(e) Eluting enkephalin-like-material with 40 ml MeOH (~egassed) 

(f) Vaporizing and withdrawing ~eOH down to approximately 2 ml 

under vacuum at 40°C (Buchi Rotorvapor-R Apparatus) 



(g) Transfer of remaining eluate to 25 ml round bottom flask 

and desication to complete dryness under vaccum at 50°C (Buchi Roto­

vapor-R-apparatus) 

(h) Freezing (-20°C) dried sample until used in bioassay 
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Internal standards were prepared by substituting 400 mg of leu­

cine-enkephalin in place of two brain samples; per cent recovery of 

enkephalin for each experiment was determined from these two internal 

standards. 

3.6.5 Bioassay 

3.6.5.1 Preparation of Vasa Deferentia 

(a) Mice were sacrificed by cervical dislocation. 

(b) Vasa deferentia were quickly removed and placed in Kreb's 

solution. 

(c) Cotton threads were attached to one end of each vas defer-

ens. 

(d) Tissues were mounted vertically in a 1.7 ml organ bath 

(Kontes Martin Corporation, as by design) containing oxygenated (95% 

o2 ; 5% co
2
); Krebs solution at 37°C. 

(e) The upper end of each tissue was attached by a thread to an 

isometric or isotonic transducer (Harvard Apparatus). 

(f) The tissue was placed initially under 200-500 mg tension. 

3.6.5.2 Electrical Stimulation 

(a) Two platinum wires (10 mm long) located at each vertical 
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extremity served as stimulating electrodes. 

(b) Tissues were submaximally stimulated with square pulses of 

0.5 to 0.8 msec duration from a Grass 548 Stimulator. 

(c) Frequencies of 0.07 to 0.10 Hz were used. 

3.6.5.3 Measurement of Enkephalin-like-material 

Enkephalins inhibit the electrically evoked contractions of the 

longitudinal muscle of the mouse vas deferens by depressing evoked 

norepinephrine output; this effect is mediated through the opiate re­

ceptor (Hughes et al., 1975b). The depression of evoked contraction 

is represented as a depression of the twitch height and is related to 

the amount of enkephalin added to the bath in a dose dependent manner 

(Fig. 2). Utilizing a bracket assay, the amount of enkephalin-like­

material in a sample may be determined as follows. First, constant 

responses (±5%) to repeated applications of known amounts of standard 

leucine-enkephalin were obtained to insure reliability of tissue re­

sponses (Fig.2). Second, various amounts of unknown sample are applied 

until an amount which depresses the twitch height by approximately 

50% is determined. ·Third, the unknown sample is bracketed between 

predetermined low and high doses of standard leucine-enkephalin; the 

low dose of standard should depress the twitch height less than the 

brain sample; the high dose of standard should depress the twitch 

height more than the brain sample. Finally, complete antagonism, that 

is 100% reversibility, by the narcotic antagonist, naloxone (900 nM) 

of the twitch height depression due to the administration of the brain 
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FIGURE 2 

Inhibition of electrically evoked contractions of 

the longitudinal muscle of the mouse vas deferens 

by leucine-enkephalin (Leu-Enk). W =washout time. 

Application of naloxone (Nal. 900 nM, bath concen­

tration) prior to washout is used to demonstrate 

that the depressant action of Leu-Enk is mediated 

through the opiate receptor. 
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sample identified the depressant action of the brain sample as being 

mediated through the opiate receptor. A 6 minute dose cycle was used 

throughout. 

3.6.6 Calculations 

The amount of enkephalin-like material expressed as ng leucine­

enkephalin-equivalents/gm brain tissue was calculated using the fol­

lowing formula: 

A x B = ng leucine-enkephalin-equivalents/gm brain tissue 
C X D X E 

where, 

A = ng leucine-enkephalin equivalent in organ bath (determined 

from the standard curve drawn from the low and high doses of stand­

ard leucine-enkephalin used in the bracket assay) 

B = Total volume of Krebs solution used to redissolve sample 

C Volume of sample injected into the organ bath 

D Per cent recovery (determined from internal standards, see 

section 3. 6 .4) 

E = Brain weight 

Average per cent recovery for internal standards of leucine­

enkephalin (400 ng) varied between 20 and 90%. Calculations were 

always corrected for 100% recovery based on the internal standard 

recovery percentage for each experiment (see section 3.6.4). 



96 

3.7 Statistical Analysis 

Hot plate responses (see sections 4.1.1, 4.1.3, 4.5.1, 4.7.1, 

4.8.1, 4.9, and 4.10), tail flick responses (see sections 4.1.2, and 

4.5.2), and rectal temperature measurements (see section 4.3 and 

4.8.3) were compared to preinjection, baseline, values for each animal 

(paired student t test, two tailed). 

Exploratory activity levels (see sections 4.2.2, 4.6.1, 4.7.2, 

and 4.8.2), motor activity levels (see sections 4.2.1, 4.6.2, and 

4.7.3), brain region 5-HT levels (see section 4.4.1, 4.4.2, and 4.4.3) 

and whole brain enkephalin-like-material levels (see section 4.11) 

were compared to responses and values obtained from animals adminis­

tered the appropriate vehicle/s (analysis of variance, Newman-Keuls 

test) . Other tests for statistical significance are as stated in 

Chapters 4 and 5. 

3.8 Definitions 

The statistical analysis employed in this dissertation require 

more restrictive definitions of some commonly· used terms as follows. 

"Antinociception" is defined as statistically significant (p<0.05) 

increase in hot plate or tail flick response times (latencies) in rats 

administered a compound when compared to preinjection, baseline resp­

onses (paired student t test) . 

When the preinjection, baseline, and postinjection hot plate or 

tail flick response latencies (times) in rats administered known anti-



nociceptive doses of DFP or morphine did not differ (p>O.OS; paired 

student t test) due to the administration/s of an additional com­

pound, this effect was referred to as "antagonism of the antinocicep­

tive state". 

Rarely, the administration of a compound reversed the effect of 

known antinociceptive doses of DFP or morphine; that is, DFP or mor­

phine in the presence of an additional compound produced a statistic­

ally significant (p<O.OS) decrease in the latency of the hot plate or 

tail flick responses in rats when compared to preinjection, baseline 

responses (paired student t test) . This effect is referred to as 

"reversal of the antinociceptive state". 

Some compounds, administered alone, significantly decrease 

(p<0.05) the animals' hot plate or tail flick response latencies when 

compared to preinjection, baseline responses (paired student t test). 

This effect is referred to as the production of a "hypernociceptive 

state". 

All other comparative terms such as increased, decreased, atten­

uated, etc. reflect statistically significant (p<0.05) differences as 

described by the appropriate statistical analysis. 
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4. RESULTS 

4.1 DFP- and Pilocarpine-Induced Antinociception in Rats 

4.1.1 Hot Plate Test 

The effect of a single s.c. administration of DFP (0.1, 0.5, 

1.0, and 1.5 mg/kg) or pilocarpine (2.5 mg/kg) on the hot plate re­

sponse times of rats was measured 1, 2, 4, 6, 8, 24, and 48 hours 

after the DFP and 30 minutes after the pilocarpine injection, respec­

tively. DFP produced antinociception 1 hour post injection at all 

doses tested; pilocarpine (2.5 mg/kg) also produced a significant 

antinociceptive state 30 minutes after its administration; the vehi­

cle was ineffective (Table 1). Response times of animals administered 

the vehicle were not significantly different when compared to response 

times of control, non-injected, animals in the hot plate test or in 

any other test or measurement described in this dissertation (analysis 

of variance, Newman-Keuls test; Table 1). 

The antinociceptive state produced by DFP followed a dose depend­

ent relationship in terms of potency and duration of effect. Thus, 

the response latency was increased by 77 to 94% by doses of 1.0 and 

1.5 mg/kg of DFP, and by some 28% by the dose of 0.1 mg/kg. Antinoci­

ception produced by DFP (1.0 and 1.5 mg/kg) was maintained for 6 hours 

with maximum effects at 2 and 4 hours, respectively; DFP (0.1 and 0.5 

mgjkg) produced antinociception that lasted for l hour after admin­

istration (Fig. 3). Finally, it should be noted that animals admin-

98 
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TABLE 1 

Hot plate response times (seconds ± S.E.M.) of rats 

subsequent to the single s.c. administration of the 

vehicle, DFP (0.1, 0.5, 1.0 and 1.5 mgjkg), or pilo­

carpine (2.5 mg/kg). n = number of animals employed 

in each group. Postinjection responses were compared 

to preinjection responses for each animal (paired 

Student's t Test). *p<0.05 and **p<O.Ol. 
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TABLE l 

EFFECT OF DFP AND PILOCARPINE ON HOT PLATE RESPONSE 

TIMES OF RATS 

Hot Plate 

Res,Eonse Times (Sec) ± S.E.M. 

Group (n) Preinjection Postinjection 

Control (non-injected) 3 9.6 ± 0.7 9.5 ± 0.8 

Peanut oil 8 8.9 ± 0.6 9.2 ± 0.6 

DFP (0 .1 mg/kg) 8 9.9 ± 0.9 12.8 ± 1.6* 

DFP (0.5 mg/kg) 8 11.0 ± 0.9 15.2 ± 1.3* 

DFP (1.0 mg/kg) 8 9.7 ± 0.9 18.8 ± 3.2** 

DFP (1.5 mg/kg) 8 9.4 ± 0.8 16.6 ± 2.0** 

Pilocarpine (2. 5 mg/kg) 8 9.2 ± 1.3 16.0 ± 1.4** 

*p<0.05 and **p<O.Ol 
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FIGURE 3 

Hot plate response times (seconds ± S.E.M.) of rats 

subsequent to the administration of vehicles (closed 

circles) or DFP (0.1 mg/kg, closed squares; 0.5 mg/kg, 

closed triangles; 1.0 mg/kg, op~n circles; and 1.5 mg/kg, 

open squares). Each point represents the mean± S.E.M. 

of eight animals. Hot plate response times were comp­

ared to preinjection (P on abscissa) response values 

(paired Student's t Test). Statistical analysis for 

significance is as stated in the text (see section 4.1.1). 
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istered the vehicle or DFP (0.1 mg/kg) exhibited attenuated hot plate 

responses 6 and 8 hours postinjection (Fig. 3). 

4.1.2 Tail Flick Test 

The effect of DFP (0.1, 0.5, 1.0, and 1.5 mg/kg) on the tail 

flick response times of rats was measured 1 hour after the DFP admin­

istration. DFP in doses of 1.5 and 1.0 mg/kg produced antinocicep­

tion; at doses of 0.1 and 0.5 mg/kg, DFP was ineffective; animals ad­

ministered the vehicle did not exhibit antinociception (Table 2) . 

4.1.3 Effect of Atropine Sulfate and Atropine Methyl Nitrate 

To determine whether DFP-induced antinociception arises from 

stimulation of central cholinergic receptors (see section 1.2.2), 

the effect of atropine sulfate and atropine methyl nitrate on DFP­

i~duced antinociception was studied utilizing the hot plate test. Ad­

ministered 30 minutes after the administration of DFP (1.5 mg/kg), 

atropine sulfate (4.0 mg/kg) antagonized whereas atropine methyl ni­

trate (4.0 mg/kg) did not affect the antinociceptive state produced by 

DFP (Table 3). Atropine sulfate (4.0 mg/kg) or the vehicles did not 

affect the hot plate response when administered alone (Table 3) . 

Altogether, it is obvious that, similarly to other drugs which 

affect the central cholinergic system, DFP and pilocarpine produce 

antinociception. 
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TABLE 2 

Tail flick response times (seconds ± S.E.M.) of rats 

subsequent to the single s.c. administration of the 

vehicle or DFP in doses of 0.1, 0.5, 1.0 and 1.5 mgjkg. 

n = number of animals employed in each group. Post­

injection responses were compared to preinjection 

responses for each animal (paired Student's t Test). 

*p<.O .05. 
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TABLE 2 

EFFECT OF DFP ON TAIL FLICK RESPONSE TIMES OF RATS 

Tail Flick 

ResEonse Times (sec) ± S.E.M. 

Group (n) Preinjection Postinjection 

Control (non-injected) 8 17.9 ± 2.0 16.9 ± 1.5 

Peanut oil 9 18.1 ± 1.9 18.1 ± 1.7 

DFP (0 .1 mg/kg) 8 17.7 ± 1.6 18.9 ± 2.4 

DFP (0.5 mg/kg) 6 18.1 ± 2.1 18.3 ± 2.7 

DFP (1.0 mg/kg) 6 18.0 ± 1.8 22.8 ± 2.6* 

DFP (1.5 mg/kg) 8 17.2 ± 1.9 23.6 ± 1.8* 

*p <0.05 
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TABLE 3 

Hot plate response times (seconds ± S.E.M.) of rats 

subsequent to the administrations of vehicles, DFP 

(1.5 mg/kg)-saline, DFP (1.5 mg/kg)-atropine sulfate 

(4.0 mg/kg), DFP (1.5 mg/kg)-atropine methyl nitrate 

(4.0 mg/kg), and peanut oil-atropine sulfate (4.0 mg/kg). 

n = number of animals employed in each group. Post­

injection responses were compared to preinjection 

responses for each animal (paired Student's t Test). 

**p < 0.01 and ***p<O.OOl. 
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TABLE 3 

EFFECT OF DFP ON HOT PLATE RESPONSE TIMES OF RATS 

Hot Plate 

Res;eonse Times (Sec) ± S.E.M. 

Group (n) Pre injection Postinjection 

Control (non-injected) 12 8.2 ± 0.3 7.8 ± 0.7 

Peanut oil-saline 10 8.7 ± 0.5 9.1 ± 0.8 

DFP (1.5 mg/kg)-saline 10 8.2 ± 0.3 16.9 ± 0.8*** 

DFP (1.5 mg/k~-atropine 
8 8.4 ± 0.4 9.0 ± 0.5 sulfate (4 .0 mg/kg) 

DFP (1. 5 mg/kg)-atropine 8 8.6 ± 0.4 14.9 ± 0.5** methyl nitrate (4 .0 mg/kg) 

Peanut oil-atropine 
6 7.9 ± 0.4 9.5 ± 0.4 sulfate (4 .0 mg/kg) 

**p<O.Ol and ***p<O.OOl 



4.2 OFF-induced Immobilization in Rats 

An established effect of DFP is reduction of the animal's motor 

activity (Karczmar, 1977). Since the effects of DFP on rat motor 

activity and environmental response may interfere with the hot plate 

assessment of antinociception, motor and exploratory activity levels 

were studied. 

4.2.1 Exploratory Activity 

The animal's exploratory activity, that is, its response to a 

novel environment may be a particularly pertinent correlate of anti­

nociception as measured by the hot plate test. 
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The effect of DFP administered in doses of 0.1, 0.5 and 1.5 mg/kg 

on exploratory activity was studied one hour after the administration 

of DFP. DFP (1.5 mg/kg) decreased by 45% exploratory activity; in 

doses of 0.1 and 0.5 mg/kg, DFP was ineffective; administration of the 

vehicle did not affect exploration (Table 4) . 

To further investigate the effect of DFP on exploration, explor­

atory activity levels were measured 1 to 48 hours after the adminis­

tration of DFP (0.1, 0.5, 1.0, and 1.5 mg/kg) at the same time inter­

vals at which hot plate responses were measured (see section 4.1.1). 

DFP (1.5 mg/kg) reduced exploratory activity in rats 1, 2, and 48 

hours after the DFP administration. DFP in doses of 0.1, 0.5, and 1.0 

mg/kg reduced exploratory activity 2 hours after the DFP injection; 

the diminution in exploration at 2 hours followed a dose dependent 
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TABLE 4 

Exploratory and motor activity levels (activity cage 

counts± S.E.M.) of rats subsequent to the administration 

of vehicle or DFP in doses of 0.1, 0.5 and 1.5 mg/kg. 

n = number of animals employed in each group. Exploratory 

and motor activity levels were compared to levels obtained 

from animals administered the vehicle (analysis of variance, 

Newman-Keuls test). *p<0.05 and **p<O.Ol. 
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TABLE 4 

EFFECT OF DFP ON EXPLORATORY AND MOTOR ACTIVITY LEVELS 

OF RATS 

Activit;[ Cage Counts± S.E.M. 

Group (n) Explorato;y Motor Activit;[ 

Control (non-injected) 12 462 ± 27 511 ± 19 

Peanut oil 9 448 ± 12 512 ± 12 

DFP (0 .1 rng/kg) 7 410 ± 33 404 ± 29** 

DFP (0 .5 rng/kg) 8 336 ± 28 239 ± 24** 

DFP (1.5 rng/kg) 7 252 ± 19** 164 ± 13** 

*p<0.05 and **p<O.Ol 
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relationship for all doses of DFP tested (Fig. 4). Exploratory activ­

ity levels were compared to levels obtained from animals administered 

the vehicle (analysis of variance, Newman-Keuls test; Fig. 4). 

4.2.2 Motor Activity 

The effect of DFP administered in doses of 0.1, 0.5 and 1.5 mg/kg 

reduced motor activity levels (Table 4). The diminution in motor ac~ 

tivity produced by DFP(O.l to 1.5 mg/kg) followed a dose dependent re­

lationship. Administration of the vehicle did not affect motor activ­

ity (Table 4) . 

4.3 Effect of DFP on Rectal Temperature of Rats 

Mild hypothermia (a 2 to 3°C decrease in rectal temperature below 

normal) produced hypernociception in the cat (Liu and Fang, 1972). 

Since the systemic adrninist=ation of DFP produces hypothermia in the 

rat (Meeter and Wolthius, 1968), this effect of DFP may interfere with 

the correct evaluation of antinociception as measured by temperature 

sensitive tests such as the hot plate and tail flick tests. The ef­

fect of DFP on rectal temperatures of rats was measured l to 48 hours 

after the administration of DFP at the same time intervals at which 

hot plate responses were measured (see section 4.1.1). DFP (1.0 mg/ 

kg) produced hypothermia (a 2.4oc decrease in rectal temperature) 2 

hours postinjection at 4 hrs the effect was not significant any more. 

The vehicle was ineffective (Fig. 5). 
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FIGURE 4 

Exploratory activity levels of rats expressed as the 

percent of preinjection activity cage counts ± S.E.M. 

subsequent to the administration of vehicle (closed 

circles) and DFP (0.1 mg/kg, closed squares; 0.5 mg/kg, 

closed triangles; 1.0 mg/kg, open squares; and 1.5 mg/kg, 

open circles). Each point represents the mean of five 

animals. Exploratory activity levels were compared to 

levels obtained from animals administered the vehicle 

(analysis of variance, Newman-Keuls test). Statistical 

analysis for significance is as stated in the text (see 

section 4.2.2). 
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FIGURE 5 

Rectal temperature measurements (Oc) of rats subsequent 

to the administration of vehicle (closed circles) and 

DFP (1.0 mg/kg; open circles). Each point represents 

the mean± S.E.M. of eight animals. Rectal temperature 

measurements were compared to preinjection (P on abscissa) 

values for each animal (paired Student's t Test) . 

.. p<O.Ol. 
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4.4 Brain Region Serotonin (5-HT) Levels of Rats 

4.4.1 Effect of DFP 

Increased levels and turnover of acetylcholine (ACh; see section 

1.2.3) and/or serotonin (5-HT; see section 1.3.2) in the central 

nervous system (CNS) have been associated with antinociception and 

analgesia. Since DFP markedly increased brain 5-HT levels when admin­

istered to rabbits (Barnes et al., 1975), it was important to ascer­

tain whether-DFP exerted a similar effect in the rat. 

The effect of DFP on 5-HT levels in three rat brain regions was 

investigated one hour after the administration of DFP. As shown in 

Table 5, DFP (1.·5 mg/kg) increased 5-HT levels in the medulla, meso­

diencephalon, and telencephalon when compared to 5-HT levels of 

animals administered t~e vehicle, peanut oil (analysis of variance, 

Newman-Keuls test; Table 5). These increases amounted to 217, 132, 

and 131 per cent in the medullary, meso-diencephalic, and telenceph­

alic brain regions respectively, with respect to animals administered 

the vehicle (Table 5). 5-HT levels of animals administered peanut 

oil, saline, or saline and peanut oil did not differ from values ob­

tained in control, non-injected animals in any case (analysis of var­

iance, Newman-Keuls test; Table 5). 

4.4.2 Effect of PCPA 

To ascertain the significance of the rise in 5-HT with respect to 

the antinociception produced by DFP, PCPA, a tryptophan hydroxylase 
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TABLE 5 

Serotonin (5-HT)levels expressed as ng 5-HT/gm tissue 

± S.D. in three rat brain regions (medulla, meso­

diencephalon and telencephalon) subsequent to the 

administration of DFP (1.5 mg/kg), PCPA1 , or PCPA2 (see 

section 3.2.2), PCPA1-DFP (1.5 mg/kg), PCPA2-DFP 

(1.5 mg/kg) as well as vehicles. n =number of brain 

regions measured. In all cases, 5-HT levels in animals 

administered the various drug/s were compared to 5-HT 

levels obtained in animals administered the appropriate 

vehicle/s (analysis of variance, Newman-Keuls test). 

**p<O .01. 



TABLE 5 

EFFECT OF DFP, PCPA, AND PC?A-DFP ON RAT BRAIN REGION SEROTONIN (5-HT) LEVELS 

BRAIN REGION 5-HT LEVELS (ng 5-HT/gm TISSUE) ± S.D. 

Group (n) t-tedulla (n) Meso~iencephalon (n) 

Control (non-injected) 12 270 ± 21 ll 548 ± 26 ll 

DFP (1.5 mg/kg) 7 589 ± 26** 7 724 ± 43** 8 

Peanut oil 6 272 ± ll 8 518 ± 24 8 

PCPAl 6 202 ± 20** 5 196 ± 17** 6 

PCPA
2 

8 143 ± ll** 8 159 ± 25** 8 

Saline 6 259 ± 23 8 517 ± 44 8 

PCPA
1

-DFP (1.5 mg/kg) 6 213 ± 19** 7 234 ± 26** 9 

PCPA
2

-DFP (l. 5 mg/kg) 6 173 ± 10** 6 187 ± 16** 6 

Saline-peanut oil 7 279 ± 19 8 526 ± 30 8 

**p<O.Ol 

Telencephalon 

339 ± 26 

444 ± 30** 

350 ± 21 

237 ± 13** 

196 ± 13** 

379 ± 19 

282 ± 29 

227 ± 18** 

348 ± 33 

..... ..... 
00 
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inhibitor, was employed and its action on the DFP mediated changes in 

5-HT levels, antinociception, and exploration and locomotion were 

evaluated. 

First~ the effect of PCPA on brain region 5-HT levels was stud­

ied; two dose regimens, PCPA1 and PCPA2 , were employed (see section 

3.2.2); in either case, PCPA reduced 5-HT levels in all three brain 

regions; particularly PCPA2 reduced 5-HT levels by 52, 70, and 48 per 

cent in the medullary, meso-diencephalic, and telencephalic brain 

regions, respectively, when compared to saline injected animals 

(analysis of variance, Newrnan-Keuls test; Table 5). 

4.4.3 Effect of PCPA-DFP 

The effect of PCPA pretreatment regimens, PCPA1 and PCPA2 , on the 

DFP-induced increase in 5-HT levels was studied. Administered to 

1 2 PCPA and PCPA pretreated animals, DFP (1.5 mg/kg) did not affect the 

dimunition in 5-HT levels produced by either PCPA1 or PCPA2 in any 

brain region studied (analysis of variance, Newrnan-Keuls test; Table 

5). Brain 5-HT levels in PCPA1-DFP (1.5 mg/kg) and PCPA2-DFP (1.5 

mg/kg) treated animals were still significantly reduced when compared 

to animals administered saline and peanut oil except for the effect of 

PCPA1-DFP (1.5 mg/kg) on the telencephalic 5-HT levels (analysis of 

variance, Newrnan-Keuls test; Table 5). 
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4.5 Effect of PCPA on OFF-induced Antinociception in Rats 

4.5.1 Hot Plate Test 

Since pretreatment with PCPA antagonized the OFF-induced in-

crease in brain region 5-HT levels in rats, it was important to deter-

mine whether PCPA pretreatments would affect the antinociceptive state 

produced by OFP; the hot plate and tail flick tests were employed for 

this purpose. 

mens 

Table 6 demonstrates the effect of two PCPA pretreatment regi­

(PCPA1 and PCPA
2

; see section 3.2.2) on the OFF-induced anti-

nociceptive state of rats as measured by the hot plate test. Employed 

1 2 alone, PCPA and PCPA , produced hypernociception (Table 6). However, 

PCPA pretreatments did not antagonize the antinociceptive state prod-

uced by OFP (1.5 mg/kg; Table 6). Administration of the vehicles was 

ineffective (Table 6) . 

4.5.2 Tail Flick Test 

PCPA2 (see section 3.2.2) produced a bypernociceptive state when 

administered alone to rats as measured by the tail flick test (Table 

7). However, PCPA2 pretreatment did not affect the antinociceptive 

state produced by OFP (1.5 mg/kg; Table 7). Vehicles were ineffective 

in the tail flick test (Table 7) . 
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TABLE 6 

Hot plate response times (seconds ± S.E.M.) of rats 

subsequent to the administration of vehicles, DFP 

l 2 (1.5 mg/kg), PCPA or PCPA (see section 3.2.2), as 

well as the combination PCPA~or PCPA2-DFP (1.5 mg/kg). 

n = number of animals employed in each group. Post-

injection responses were compared to preinjection 

responses for each animal (paired Student's t Test). 

*p<0.05, **p<O.Ol, and ***p<O.OOl. 
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TABLE 6 

EFFECT OF PCPA ON DFP-INDUCED ANTINOCICEPTION: 

HOT PLATE TEST 

Hot Plate 

Res:eonse Times (Sec) ± S.E.M. 

Grou:e (n) Preinjection Postinjection 

Control (non-injected) 10 8.1 ± 0.4 8.3 ± 0.4 

Saline-peanut oil 10 6.9 ± 0.6 7.3 ± 0.4 

DFP (1.5 mg/kg) 7 8.6 ± 0.9 15.3 ± 1.0** 

PCPAl 12 7.1 ± 0.4 5.3 ± 0.4* 

PCPA2 8 9.2 ± 1.1 5.4 ± 0.4** 

PCPA1-DFP (1.5 mg/kg) 7 7.2 ± 0.7 21.2 ± 1.3*** 

PCPA2-DFP (1. 5 mg/kg) 7 7.5 ± 0.5 21.4 ± 2.1*** 

*p<0.05, **p<0.01 and ***p<O.OOl 
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TABLE 7 

Tail flick response times (seconds ± S.E.M.) of rats 

subsequent to the administration of vehicles, DFP 

(1.5 mg/kg), PCPA2 (see section 3.2.2), and PCPA2-

DFP (1.5 mg/kg). n = number of animals employed 

in each group. Postinjection responses were compared 

to preinjection responses for each animal (paired 

Student's t Test). ***p<O.OOl. 
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TABLE 7 

EFFECT OF PCPA ON DFP-INDUCED ANTINOCICEPTION: 

. TAIL FLICK TEST 

Tail Flick 

Res12onse Times (Sec) ± S.E.M. 

Group (n) Preinjection Postinjection 

Control (non-injected) 8 17.5 ± 0.5 18.1 ± 0.6 

Saline-peanut oil 9 17.3 ± 0.5 16.9 ± 0.5 

DFP (1. 5 mg/kg) 8 17.2 ± 0.5 23.6 ± 0.6*** 

PCPA2 
9 17.0 ± 0.5 10.7 ± 0.5*** 

PCPA2-DFP (1. 5 mg/kg) 8 17.6 ± 0.7 25.8 ± 0.5*** 

***p<O.OOl 
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4.6 Effect of PCPA on DFP-induced Immobilization in Rats 

4.6.1 Exploratory Activity 

The effects of PCPA and PCPA-DFP combinations on exploratory 

and motor activity were evaluated to test whether or not the lack of 

effect of PCPA on DFP-induced antinociception was related to a PCPA 

action on the mobility of the rats. As shown previously (see section 

4.2.1), DFP (1.5 mg/kg) decreased exploratory activity (Table 8). 

Administered alone, PCPA2 , did not affect exploratory activity (Table 

8). In addition, pretreatment with PCPA2 did not affect the diminu­

tion in exploration produced by DFP(l.5 mg/kg; Table 8). Administra­

tion of the vehicles was ineffective (Table 8). 

4.6.2 Motor Activity 

As demonstrated earlier (see section 4.2.2), DFP (1.5 mg/kg) de­

creased motor activity; the diminution amounted to 61% when compared 

to animals administered the vehicle (Table 8). PCPA, administered by 

itself, si9nificantly increased motor activity; yet, pretreatment with 

PCPA2 did not affect the diminution in locomotion produced by DFP 

(1.5 mg/kg; Table 8). The vehicles did not affect motor activity 

(Table 8) . 
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'!'ABLE 8 

Exploratory and motor activity levels (activity 

cage counts ± S.E.M.) of rats subsequent to the 

administration of vehicles, DFP (1.5 mg/kg), PCPA2 

(see section 3.2.2), and PCPA2-DFP (1.5 mg/kg). 

n = number of animals employed in each group. 

Exploratory and motor activity levels were compared 

to levels obtained from animals administered the 

vehicles (analysis of variance, Newman-Keuls test). 

**p<O .01. 
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TABLE 8 

EFFECT OF PCPA ON THE ATTENUATED EXPLORATORY AND 

MOTOR ACTIVITY LEVELS OF RATS PRODUCED BY DFP 

Activity Cage Counts ± S.E.M. 

Group (n) Exploratory Motor ---
Control (non-injected) 8 473 ± 18 521 ± 28 

Saline-peanut oil 9 493 ± 24 543 ± 30 

DFP (1.5 mg/kg) 8 257 ± 13** 211 ± 12** 

PCPA
2 9 372 ± 40 820 ± 21** 

PCPA
2

-DFP (1.5 mg/kg) 8 177 ± 17** 183 ± 10** 

**p<O.Ol 



4.7 Pharmacological Comparison of DFP- and Morphine-induced 

Behavioral Effects in Rats 

4.7.1 Antinociception 

In an attempt to ascertain whether DFP-induced antinociception 

is related to a narcotic sensitive and/or endogenous opioid system, 

the following experiments were performed. 
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The antinociceptive actions of DFP and morphine were evaluated 

pharmacologically; the hot plate test was employed for this analysis 

(Table 9). DFP (1.5 mg/kg) and morphine (3.0 mg/kg)produced equiva­

lent levels of antinociception(Table 9). Atropine sulfate (4.0 mg/kg) 

antagonized the antinociceptive action of DFP but did not affect mor­

phine-induced antinociception (Table 9). However, naloxone (5.0 mg/ 

kg) antagonized both morphine- and DFP-induced antinociceptive states 

(Table 9). Atropine sulfate (4.0 mg/kg) and naloxone (5.0 mg/kg) 

were ineffective when administered alone. The vehicles were ineffec­

tive (Table 9) . 

4.7.2 Exploratory Activity 

The effect of DFP and morphine on exploration and locomotion was 

investigated pharmacologically to determine whether the antinocicep­

tive state produced by these two compounds could be attributed to a 

drug effect on animal mobilization. 

DFP (1.5 mg/kg) and morphine (3.0 mg/kg) reduced exploratory 
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TABLE 9 

Hot plate response times (seconds ± S.E.M.) of rats 

subsequent to the administrations of vehicles, DFP 

(1.5 mgjkg) and morphine (3.0 mgjkg) as well as DFP 

(1.5 mgjkg) or morphine (3.0 mg/kg) in combination 

with either atropine sulfate (4.0 mg/kg) or naloxone 

(5.0 mgjkg). n =the number of animals employed in 

each group. Postinjection responses were compared 

to preinjection responses for each animal (paired 

Student's t Test). *p<0.05 and ***p<O.OOl. 



TABLE 9 

PHARMACOLOGICAL COMPARISON OF DFP- AND MORPHINE-INDUCED ANTINOCICEPTIVE STATES: HOT PLATE TEST 

Hot Plate 

Res;eonse Times (Sec) ± S.E.M. 

Group (n) Preinjection Postinjection 

Control (non-injected) 12 8.2 ± 0.3 8.3 ± 0.4 

Peanut oil-saline 10 8.6 ± 0.4 8.8 ± 0.4 

DFP (1.5 mg/kg) 10 8.2 ± 0.3 16.9 ± 0.8*** 

DFP (1.5 mg/kg)-atropine sulfate (4.0 mg/kg) 8 8.4 ± 0.4 8.9 ± 0.5 

DFP (1.5 mg/kg)-naloxone (5.0 mg/kg) 8 7.8 ± 0.4 8.5 ± 0.5 

Morphine (3.0 mg/kg) 10 9.1 ± 0.3 17.3 ± 0.5*** 

Morphine (3.0 mg/kg)-atropine sulfate (4. 0 mg/kg) 9 8.6 ± 0.5 •19.4 ± o. 7*** 

Morphine (3.0 mg/kg)-naloxone (5 .0 mg/kg) 8 8.9 ± 0.6 7.0 ± 0.4* 

*p<0.05 and ***p<O.OOl 

~ 
w 
0 
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activity levels (Table 10). The reduction in exploration by morphine 

or DFP was not affected by atropine sulfate (4.0 mg/kg) or naloxone 

(5.0 mg/kg), nor was the affect of DFP (1.5 mg/kg) affected by atro­

pine methyl nitrate(4.0 mg/kg; Table 10). Administered alone, atro­

pine sulfate(4.0 mg/kg) decreased exploratory activity; the vehicles 

were ineffective (Table 10) . Exploratory activity levels were comp­

ared to levels obtained from animals administered the vehicles (anal­

ysis of variance, Newman-Keuls test; Table 10). 

4.7.3 Motor Activity 

Employed at equi-antinociceptive doses, DFP (1.5 mg/kg) decreas­

ed, whereas morphine (3.0 mg/kg) increased motor activity (Table 10). 

Atropine sulfate (4.0 mg/kg) ,atropine methyl nitrate (4.0 mg/kg) ,and 

naloxone (5.0 mg/kg) did not affect the attenuated motor activity 

produced by DFP (1.5 mgjkg; Table 10). However, atropine sulfate 

(4.0 mg/kg) did antagonize the increase in motor activity produced by 

morphine (3.0 mg/kg); naloxone (5.0 mg/kg) not only antagonized but 

reversed the motor response induced by morphine (3.0 mg/kg; analysis 

of variance, Newman-Keuls test; Table 10). Administered alone, atro­

pine sulfate (4.0 mg/kg) reduced motor activity; the vehicles were in­

effective (Table 10) . Motor activity levels were compared to levels 

-obtained from animals which received the vehicles (analysis of var­

iance, Newman-Keuls test; Table 10). 
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TABLE 10 

Exploratory and motor activity levels (activity cage 

counts± S.E.M.) of rats subsequent to the administration 

of vehicles, atropine sulfate (4.0 mg/kg), DFP (1.5 mg/kg), 

and morphine (3.0 mg/kg) as well as DFP (1.5 mg/kg), 

or morphine (3.0 mg/kg) in combination with either 

atropine sulfate (4.0 mg/kg) or naloxone (5.0 mg/kg). 

n = number of animals employed in each group. Explor­

atory and motor activity levels were compared to levels 

obtained from animals administered the vehicle (analysis 

of variance, Newman-Keuls test). **p<O.Ol. 



TABLE 10 

PHARMACOLOGICAL COMPARISON OF THE EFFECTS OF DFP AND MORPHINE ON EXPLORATORY AND MOTOR ACTIVITY 

LEVELS OF RATS 

Activity Cage Counts ± S.E.M. 

Group (n) Exp1orat()!"Y Motor Act:.i_vity 

Control (non-injected) 12 483 ± 17 524 ± 12 

Peanut oil-saline 10 501 ± 21 511 ± 15 

DFP (1.5 mgjkg) 10 248 ± 18** 236 ± 10** 

DFP (1.5 mg/kg)-atropine sulfate (4.0 mg/kg) 8 311 ± 13** 249 ± 15** 

DFP (1.5 mg/kg)-atropine methyl nitrate (4. 0 mg/kg) 8 232 ± 19** 248 ± 18** 

DFP (1.5 mg/kg)-naloxone (5 .0 mgjkg) 8 198 ± 10** 196 ± 11** 

Morphine (3.0 mg/kg) 10 324 ± 10** 791 ± 21** 

Horphine (3.0 mg/kg)-atropine sulfate (4.0 mg/kg) 9 297 ± 15** 557 ± 32 

Morphine (3.0 mg/kg)-naloxone (5.0 mg/kg) 8 293 ± 12** 158 ± 23** 

Atropine sulfate (4 .0 mg/kg) 6 325 ± 27** 390 ± 19** 

**p<O.Ol I-' 
w 
w 



134 

4.8 Effect of Naloxone on DFP-induced Responses in Rats 

4.8.1 Antinociception 

It was particularly noteworthy that naloxone, a pure narcotic 

antagonist, antagonized DFP-induced antinociception (see section 

4.7.1). To further study this effect, the effect of naloxone (0.05, 

0.5, and 5.0 mg/kg) on DFP-induced antinociception in rats was stud­

ied 1 to 48 hours after the single administration of DFP (1.0 mg/kg) 

utilizing the hot plate test. At the dose of 0.05 mg/kg, naloxone 

did not affect DFP-induced antinociception; it was effective 1 hour 

after the administration of DFP in antagonizing the DFP-induced anti­

nociceptive state at doses of 0.5 and 5.0 mg/kg (Fig. 6). In fact, 

administered in a dose of 5.0 mg/kg, naloxone produced hyper­

nocicpetion 1 hour after the DFP administration (Fig. 6). Vehi­

cles were ineffective (Fig. 6). 

4.8.2 Exploratory Activity 

As demonstrated earlier (see section 4.7.2), DFP (1.5 mg/kg) de­

creased exploration 1, 2, and 48 hours after the administration of 

DFP (Fig. 4). Naloxone in doses of 0.05, 0.5,and 5.0 mg/kg did not 

affect the attenuated exploratory activity produced by DFP (1.5 mg/kg). 

Figure 7A demonstrates exploratory activity levels 1, 2, and 4 hours 

after the DFP injection for animals administered the vehicles, DFP 

(1.5 mg/kg), and the combination DFP (1.5 mg/kg) with naloxone (5.0 

mg/kg). 
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FIGURE 6 

Hot plate response times (seconds ± S.E.M.) of rats 

subsequent to the administrations of vehicles (closed 

circles) ;DFP (1.0 mg/kg) with naloxone (0.05 mg/kg­

closed triangles; 0.5 mg/kg-open circles; 5.0 mg/kg­

closed squares); and DFP (1.0 mg/kg with saline-closed 

hexagons). Each point represents the mean ± S.E.M. 

of eight animals. Hot plate responses were compared 

to preinjection (P on abscissa) responses for each 

animal (paired Student's t Test) .. p<0.05, •. p<O.Ol, 

and .•• p<O.OOl. 
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FIGURE 7A 

Exploratory activity levels of rats expressed as percent 

prein,jection a_cti vi ty cage counts ± S .E .M. subsequent to 

the administration of vehicles (circles), DFP (1.5 mg/kg) 

with saline (squares), and DFP (1.5 mg/kg)-naloxone 

(5.0 mg/kg) combination (triangles). Each point represents 

the mean± S.E.M. of five animals. Exploratory activity 

levels were compared to activity levels obtained from 

animals administered the vehicles (analysis of variance, 

Newman-Keuls test) .•• p<O.Ol. 

7B 

Rectal temperature measurements (°C) of rats subsequent to 

the administration of vehicles (circles), DFP (1.0 mg(kg) 

with saline (squares), and DFP (1.0 mg(kg)-naloxone (5.0 

mg/kg) combination (triangles) . Each point represents 

the mean± S.E.M. of eight animals. Rectal temperature 

measurements were compared to preinjection (P on abscissa) 

measurements for each animal (paired Student's t Test) . 

. . p<O .01. 
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4.8.3 Hypothermia 

As demonstrated earlier (see section 4.3), DFP (1.0 mg/kg) 

produced hypothermia 2 hours after its administration (Fig. 7B). 

Naloxone (5.0 mg/kg) did not affect the hypothermic state produced 

by DFP (1.0 mg/kg) 2 hours after DFP (Fig. 7B). Administered alone, 

naloxone (5.0 mg/kg) did not affect rectal temperatures; the vehi­

cles were ineffective (Fig. 7B). 

Thus, naloxone reduced the antinociceptive state produced by DFP 

(see section 4.8.1) but did not affect the attenuated exploration 

(see section 4.8.2) or hypothermia (see section 4.8.3) produced by 

DFP. 

4.9 Effect of Stereoisomers of Narcotic Antagonists on 

DFP-induced Antinociception in Rats 

Since non-specific actions of naloxone could contribute to its 

inhibition of DFP-induced antinociception, it was important to deter­

mine if the antagonism was stereospecific. 

MR 2266, MR 2267, GPA 1843, GPA 1847, d-cyclazocine, and 1-cyclaz­

ocine were administered individually 30 minutes after the adminis-

tration of DFP (1.0 mg/kg) or morphine (3.0 mg/kg). MR 2266 (1.0 mg/ 

kg) and GPA 1843 (5.0 mg/kg), the (-) isomers and active narcotic ant­

agonists, reduced both morphine and DFP-induced antinociceptive states 

(Table 11). MR 2267 (1.0 mg/kg) and GPA 1847 (5.0 mg/kg), the corre-

spending (+) isomers, did not affect the antinociceptive s~ates pro~uced 
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~ABLE 11 

Hot plate response times (seconds± S.E.M.) of rats 

subsequent to the administrations of DFP (1.0 mg/kg) 

or morphine (3.0 mg/kg) followed 30 minutes later by 

either the vehicle, MR 2266 {1.0 mg/kg), MR 2267 

(1.0 mg/kg), GPA 1843 (5.0 mg/kg), GPA 1847 (5.0 mg/kg), 

d-cyclazocine (0.64 mg/kg), or 1-cyclazocine (0,64 mg/kg). 

n = number of animals employed in each group. Post­

injection responses were compared to preinjection 

responses for each animal (paired Student's t Test). 

*p<0.05 and **p<O.Ol. 
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TABLE 11 

EFFECT OF STEREOISOMERS OF NARCOTIC ANTAGONISTS ON 

MORPHINE AND DFP-INDUCED ANTINOCICEPTIVE STATES: HOT PLATE TEST 

Hot Plate 

Res12onse Times (Sec) ± S.E.M. 

Group (n) Preinjection Postinjection 

Morphine-saline 17 9.3 ± 1.2 18.6 ± 2.4** 

Morphine-MR 2266 (-) 12 9.1 ± 0.9 9.8 ± 1.6 

Morphine-MR 2267 (+) 12 9.0 ± 0.9 18.3 ± 2.9** 

Morphine-GPA 1843 (-) 12 9.7 ± 0.7 12.2 ± 1.1 

Morphine-GPA 1847 ( +) 12 9.4 ± 0.8 16.5 ± 2.2** 

Morphine-l,cyclazocine (-) 5 11.4 ± 1.0 13.6 ± 0.7 

Morphine-d,cyclazocine (+) 5 11.1 ± 3.2 18.2 ± 3.2* 

uFP-saline 13 8.8 ± 1.2 18.3 ± 2.7** 

DFP-MR 2266 (-) 8 6.7 ± 0.7 7.4 ± 1.2 

DFP-MR 2267 ( +) 8 8.7 ± 1.4 12.2 ± 2.8* 

DFP-GPA 1843 (-) 8 10.8 ± 1.9 12.2 ± 1.5 

DFP-GPA 1847 (+) 8 8.8 ± 1.9 15.4 ± 3.1* 

DFP-l,cyclazocine (-) 5 9.7 ± 0.7 16.7 ± 1. 7* 

DFP-d,cyclazocine (+) 5 11.2 ± 1.3 10.6 ± 1.4 



duced by either morphine or DFP (Table 11). The vehicle was inef­

fective (Table 11). 
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On the other hand, the relationship between the antagonist action 

against DFP- and morphine-induced antinociception and the stereoiso­

mers of cyclazocine, a partial narcotic agonist, was reversed; d­

cylcazocine (0.64 mg/kg) antagonized the antinociceptive action of 

DFP but did not affect morphine-induced antinociception; l-cyclazo­

cine(0.64 mg/kg) reduced morphine-induced antinociception but was in­

effective against DFP-induced antinociception (Table 11) . 

4.10 Effect of Tolerance to Morphine on DFP- and 

Pilocarpine-induced Antinociception in Rats 

Cross tolerance studies were performed to discern a possible 

common neural mechanism mediating antinociception produced by mor­

phine, pilocarpine, and DFP. As demonstrated earlier (see sections 

4.1.1 and 4.7.1) DFP (1.0 mg/kg), pilocarpine (2.5 mg/kg), and mor­

phine (3.0 mg/kg) produced antinociception as measured by the hot 

plate test in rats (Pretolerance; Table 12). Morphine-induced anti­

nociception was completely attenuated in animals rendered tolerant to 

morphine as measured on day 6 (tolerance level A; Table 12). However, 

DFP-and pilocarpine-induced antinociception was maintained in animals 

rendered tolerant to morphine on day 6 (tolerance level A) ; in addi­

tion, DFP-induced antinociception was maintained on day 9 (tolerance 

level B; Table 12). Thus, the antinociceptive actions of DFP and 

pilocarpine did not exhibit cross tolerance to the antinociceptive 
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TABLE 12 

Hot plate response times (seconds± S.E.M.) of rats 

subsequent to administrations of DFP (1.0 mg(kg)) pilo­

carpine ( 2 . 5 mg/kg ), or morphine ( 3. 0 mg(kg) . Hot 

plate measurements were made both prior to the develop­

ment of tolerance (Pretolerance) as well as after the 

development of tolerance to morphine at different 

levels (TOlerance levels A and B; see section 3.2.3). 

n = number of animals employed in each group. All 

responses were compared to Preinjection, baseline, 

responses for each animal (paired Student's t Test). 

*p<O.OS and **p<O.Ol. 
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TABLE 12 

EFFECT OF TOLERANCE TO MORPHINE ON DFP- AND PILOCARPINE-INDUCED 

ANTINOCICEPTION: HOT PLATE TEST 

Hot Plate 

Res12onse Times (sec) ± S.E.M. 

Administration Morphine DFP Pilocarpine 
(n-8) (n=8) (n=8) 

Preinjection 11.0 ± 0.6 11.0 ± 1.1 7.0 ± 0.7 

Pretolerance 22.7 ± 1.1** 21.2 ± 1.4** 12.3 ± 2.2* 

Tolerance Level A 11.4 ± 1.0 17.6 ± 1. 7* 13.3 ± 2.6* 

Tolerance Level B 17.3 ± 2.0* 
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actions of morphine. Tolerant animals exhibited no altered responses 

when administered the vehicle alone. Non-tolerant animals demonstrated 

antinociceptive responses to morphine (3.0 mg/kg) and DFP (1.0 mg/kg) 

on days 1,6, and 9; responses to pilocarpine (2.5 mg/kg) were not 

measured on these days. 

4.11 Effect of DFP on Rat Brain Enkephalin-like Material Levels 

The stereospecificity of the narcotic antagonist action on the 

antinociceptive state produced by DFP (see section 4.9) suggests that 

DFP-induced antinociception is mediated via opiate receptors, possibly 

by the release of endogenous opioids. Therefore, the effects of DFP 

on whole brain enkephalin-like-material levels in the rat were stud­

ied l hour after the administration of DFP. 

Sixty-eight rat brains were assayed for enkephalin-like-material 

content utilizing the mouse vas deferens bioassay technique as describ­

ed in section 3.6. Unfortunately, only 7 rat brain samples were found 

to be acceptable according to the criteria of the bioassay procedure 

(see section 3.6.5.3). Enkephalin-like-material content of whole rat 

brains, expressed as ng leucine-enkephalin equivalents/gm brain tissue, 

was determined to be 229 ng leucine-enkephalin equivalents/gm brain 

tissue in animals which received DFP (1.0 mg/kg; n=2), and 252 ng 

leucine-enkephalin equivalents/gm brain tissue in animals which re­

ceived peanut oil (n=5). These levels were not significantly differ­

ent (analysis of variance, Newman-Keuls test). 
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The following reasons explain why, for the most part, the re­

maining brain samples (n=61) failed to meet acceptable bioassay cri­

teria and therefore could not be included in the results:(i) per cent 

recovery of the internal standards (see section 3.6.4) often was less 

than 90% and occasionally even as low as 20% in some experiments, (ii) 

the rat brain sample increased t~1e resting tone of the longitudinal 

muscle of the mouse vas deferens making it impossible to accurately 

measure the depression of the electrically-evoked twitch height (Fig. 

SA), (iii) the rat brain sample inconsistently depressed the electric­

ally-evoked twitch height of the longitudinal muscle of the mouse vas 

deferens, that is, the depressed twitch height returned to normal 

prior to washout time; this suggests that substances other than en.­

kephalin-like-material were responsible for the twitch height depres­

sion (Fig.SB), and (iv) the depression of the electrically-evoked 

twitch height of the longitudinal muscle of the mouse vas deferens 

produced by the rat brain sample could not be completely (that is by 

100%) reversed by the addition of naloxone (900 nM bath concentration); 

this indicates that additional not enkephalin-like-materials may be 

responsible for the twitch height depression (Fig. 8C). 

Overall, the experiments designed to determine the effect of DFP 

on rat brain enkephalin-like-material levels were incomplete and in­

conclusive due to the lack of reliable, extraction and bioassay tech­

niques. 
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FIGURE SA 

Inhibition of the electrically-evoked contraction of the longitud­

inal muscle of the mouse vas deferens by a rat brain sample extract 

{S) . Notice the increased resting tone of the vas deferens produced 

by S when compared to the normal resting tone following the adminis­

tration of standard leucine-enkephalin (see Figure 2). W =washout 

time. 

8B 

Inhibition of the electrically-evoked contractions of the longitudinal 

muscle of the mouse vas deferens by a rat brain sample extract {S) . 

Notice the non-constant depression of twitch height produced by S 

when compared to the constant twitch height depression produced by 

standard leucine enkephalin (see Figure 2). W =washout time. 

sc 

Inhibition of the electrically-evoked contractions of the longitudinal 

muscle of the mouse vas deferens by a rat brain sample extract (S) 

and subsequent reversal by the addition of naloxone (N; 900 nM bath 

concentration) prior to washout (W). Notice the incomplete, less 

than 100%, reversibility by N of the depressed twitch height produced 

by S when compared to the complete reversal of the twitch height 

depression produced by standard leucine-enkephalin (see Figure 2). 
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5. DISCUSSION 

5.1 General 

5.1.1 DFP, Mechanism of Action 

Anticholinesterase (anti-ChE) agents constitute one of the few 

classes of drugs for which a mechanism of action has been defined in 

terms of inhibition of a specific enzyme. Until World War II, the 

enzyme cholinesterase (ChE) was of pure academic interest; however, 

during the war, intense research programs arose in the field of 

organophosphorus anti-ChE's because their toxicities suggested their 

use as potential chemical warfare agents. Investigations in England 

produced a series of organophosphorus anti-ChE's, one of which was 

diisopropyl phosphofluoridate (DFP; Holmstedt, 1959; Karczmar, 1970). 

Cholinesterases (ChE's) contain at least one anionic and one 

esteratic site in their active centers; the most likely carrier of 

the negative charge in the anionic site is glutamic acid while serine 

and histidine are the basic groups of the esteratic site (Karczmar, 

1970). 

True cholinesterase (AChE) which hydrolyzes acetylcholine at a 

higher rate than butyrylcholine is the enzyme present in the brain, 

spinal cord, striated muscles, smooth muscles of the bronc:':-.ioles, 

urinary bladder, salivary glands, and erythrocytes of several but not 

all vertebrates (Koelle, 1951). Pseudocholinesterase (BuChE) which 

hydrolyzes butyrylcholine at a higher rate than acetylcholine is found 
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in the serum of most vertebrates, carotid body, hepatic cells, and 

muscularis mucosa of intestinal cells (Koelle, 1951). DFP produces 

a 50% inhibition of BuChE at low concentrations (10-8M) while AChE 

-6 is 50% inhibited by higher concentrations of DFP (10 M); thus, DFP 

preferentially inhibits BuChE (Aldridge, 1953). The doses of DFP 

used in this dissertation, 0.1 to 1.5 mg(kg may be extrapolated in 
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terms of equidistribution in the tissues as corresponding to 5.4 x 

10-7 to 8.2 x 10-6M. Thus, it would be expected that DFP in doses of 

0.5, 1.0, and 1.5 mg/kg inhibit at least 50% of AChE; less than 50% 

inhibition of AChE would be expected from the administration of 0.1 

mg/kg DFP. Actually, as an extremely lipid soluble compound (Usdin, 

1970) , DFP may be expected to be distributed preferentially in the 

nerve tissue. 

Anti-ChE's may be classified as reversible or irreversible based 

upon the ease with which the inhibitory action can be reversed. Re-

versible inhibition has been divided into three groups: (i) competitive 

(ii) noncompetitive and (iii) uncompetitive. Competitive inhibition 

occurs with anti-ChE's which are structurally similar to the normal 

substrate; with these compounds, Km increases and Vmax is unaltered. 

Noncompetitive inhibitors bind with some site on the ChE molecule 

distinct from the active site; in this case, Vmax decreases and Km 

remains unaltered. Uncompetitive inhibition occurs when the inhibi-

tion binds to the enzyme substance complex; in this case, Km and vmax 

both decrease. Oximes, inorganic compounds, and bis and mono quater-

nary compounds are examples of reversible inhibitors (Karczmar, 1970). 
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The inhibitory action of irreversible inhibitors is not easily 

reversed and the amount of inhibition increases as the amount of in-

hibitor present increases. Irreversible inhibition occurs in a two 

step process (i) a reversible formation of enzyme-inhibitor complex 

and (ii) an irreversible phosphorylation (carbamylation) of the 

enzyme; the degree of inhibition depends upon the rate constant of 

inhibition and is directly proportional to the amount of inhibitor 

present. Organophosphorus compounds such as DFP, carbamates, and 

organosulfonates are irreversible inhibitors (Usdin, 1970). 

DFP contains an electron deficient phosphorus atom by virtue of 

the attached highly electronegative fluorine atom. This phosphorus 

atom makes an electrophilic attack on the electron rich oxygen atom 

of the serine residue yielding diisopropylphosphoserine, a fluorine 

atom, and a proton. Thus, DFP enters the active site of serine con­

taining enzymes including ChE's, phosphorylates the serine residue, 

and inactivates the enzyme (Jansz et al., 1959; Koshland, 1963). 

The major mechanism of action of DFP, as well as the other ChE 

inhibitors, is actually due to the accumulation of ACh within the body 

as a result o= continued release from nerve terminals and failure to 

be subsequently hydrolyzed by active ChE (Usdin, 1970). Thus, the 

pharmacological effects of DFP are for the most part predictable based 

upon a knowledge of thosP sites where ACh is released by and the cor­

responding effector organs of the c~emical ~ediator. 

Single incremental subcutaneous (s.c.) administrations of DFP 



152 

in rats produced (i) skeletal muscle twitches; (ii) increased saliva-

tion, retching, diarrhea, and micturition; and (iii) general flacid­

ity; death when it occurred was attributed to respiratory failure, 

caused in part by the neuromuscular paralysis, central depression, 

and increased bronchiole secretions. Lethal dose-SO (LD-50) established 

in our laboratories and elsewhere amounted 3.0 mg/kg (Horton et al., 

1946); it depends on the source and the batch of DFP. 

In humans, the systemic administration of DFP produced the fol­

lowing: (i) twitching and generalized weakness of skeletal muscles; 

(ii) bronchoconstriction and increased secretions; (iii) increased 

sweating, salivation, lacrimation, and micturition; (iv) gastrointes­

tinal disorders; and(v) slight bradycardia (Grab, 1963). Central nerv­

ous system (CNS) manifestations included giddiness, tension excessive 

dreaming, insomnia, nightmares, headache, electroencephalographic 

(EEG) alterations, drowsiness, confusion, and generalized depression 

of respiratory and circulatory centers (Grab, 1963). 

Finally, a delayed, demyelinating neuropathy characterized by an 

onset of sensory symptoms and motor weakness has been reported 8 to 

14 days after exposure to DFP and other organophosphorus compounds; 

the mechanism responsible for this effect remains to be determined 

(Grab, 1963). 

5.1.2 DFP, Investigational Compound 

DFP was chosen as the investigational compound for these studies 

for several reasons. Fi=st, cholinergic-induced antinociception 
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arises from stimulation of central cholinergic receptors (see section 

1.2.3). Drugs administered systemically must therefore be able to 

cross the blood brain barrier (BBB) to produce antinociception. DFP, 

being highly lipophilic readily penetrates the BBB. 

Second, the irreversible inhibition of ChE produced by DFP allows 

the various biochemical and behavioral experimental procedures to be 

performed at times distant from injection or one another, reducing the 

injection frequency and handling stress effects (see section 3.3.1). 

Third, both the serotonergic (see section 1.3) and cholinergic 

(see section 1.2) systems have been implicated in antinociception. 

That the serotonergic system is coupled with the cholinergic system 

is suggested by the fact that pilocarpine, arecoline, oxotremorine, 

DFP, and physostigmine increase serotonin (5-HT) and 5-hydroxyindole­

acetic acid (5-HIAA) levels in rats indicating an increased 5-HT turn­

over (Reid, 1970; Haubrich and Reid, 1972; Barnes et al., 1978). In 

addition, DFP increased 5-HT levels to a greater extent than did the 

other compounds. This research was initiated to separate the cholin­

ergic from the serotonergic effects with respect to cholinergic·-in­

duced antinociception. DFP, which produced the greatest effect on 

5-HT levels, appeared to be best suited for this purpose. 

Finally, the ability to produce antinociception when administered 

to laboratory animals had not yet been demonstrated for DFP. In fact, 

DFP failed to produce antinociception in previous studies; however, 

experimental procedures involved differed from those employed pres-
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ently (Saxena, 1958; Cox and Tha, 1972). Saxena (1958) utilized 

noxious pressure applied to the rats tail; the hot plate and tail 

flick tests were used here. Cox and Tha (1972) used mice; rats were 

studied in this laboratory. 

5.1.3 Methods of Evalu~ting Antinociception 

Antinociception can be measured by a variety of laboratory test­

ing procedures in several laboratory animals. For instance, electric­

al st~rnulation of the tooth pulp in the dog, cat, and rabbit has been 

useful in determining antinociceptive activity since the tooth pulp 

contains nociceptors (see section 1.1.4.1). 

Pressure or noxious mechanical stimulation applied to the tail 

of the rat or mouse has been used as a means of evaluating antinoci­

ceptive activity .. This method, originally described by Haffner (1929), 

utilized an artery clip applied to the base of the tail; the latency 

of biting at the clip was quantitated. 

The intraperitoneal (i.p.) administration of a number of corn­

pounds such as ACh, acetic acid, and phenylquinone produce a character­

istic response in mice called writhing. The ability of compounds to 

inhibit this response has also been used to assess antinociceptive 

activity. 

The classical method of experimentation employs noxious heat 

stimuli to evaluate the antinociceptive activity of drugs. The orig­

inal method of D'Amour and Smith (1941) involved focusing a beam of 
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of light through a prism onto a rats tail; the latency of the 

characteristic tail flick was quantitated. 

The reaction of a mouse or rat placed on a hot plate, noxious 

heat source, has also been used extensively to evaluate antinocicep­

tive activity. The original paper of Woolfe and MacDonald (1944) 

described the responses observed when mice were placed on a hot plate; 

included here were sitting up, blowing on the front paws so as to 

cool them, licking of the hind paws, and eventually jumping off of the 

hot plate surface. 

Overall, the simplest and yet effective method is the use of the 

hot plate. By placing the animal, which has received the test drugs, 

on the hot plate surface and recording the time to response it is 

possible to determine the relative potency, onset, intensity, and 

duration of antinociceptive activity. Thus, the hot plate test was 

used in these experiments. 

The application of heat to the rats tail is another method which 

may prove useful in the evaluation of antinociception since the char­

acteristic tail flick response represents a spinally mediated reflex 

which appears to be independent of motor behavior; thus, this test 

also was used here. 

The choice of animals and procedures was dependent also on the 

following considerations; (i) the hot plate and tail flick tests are 

easily performed requiring no additional surgical procedures as in the 

tooth pulp stimulation experiments and no additional injections as in 



the writhing tests, (ii) the choice of antinociception testing proce­

dures limited the choice of laboratory animals to be used to the rat 

or mouse. The decisive factor was the ability to extract sufficient 

quantities of 5-HT and enkephalin-like-material for quantitative 

analysis of the brain. 

5.2 DFP-Induced Antinociception 
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DFP produced antinociception when administered to rats whether 

measured by the hot plate or tail flick test (Tables 1 and 2) . The 

antinociceptive state produced by DFP followed a dose dependent re­

lationship as determined by the hot plate procedure (Table 1) . 

Antinociception produced by DFP was long lasting, up to 6 hours dur­

ation in the hot plate test, which is consistent with the irreversible 

effect of DFP on ChE (Fig. 3). 

When one considers that besides being bound to ChE's, DFP is also 

bound irreversibly to non-ChE proteins and proteolipids and as it is 

readily hydrolyzed enzymatically (Mazur, 1946), DFP is a particularly 

potent antinociceptive agent, as at the dose of 1.5 mg/kg it increased 

by 214 and 132% the animals response times in the hot plate and tail 

flick tests, respectively (Tables 1 and 2). 

It is noteworthy that even at low doses (0.1 mg/kg), DFP produced 

a significant antinociceptive response (Table 1). While DFP is con­

sidered as acting primarily via the inhibition of ChE with resultant 

ACh accumulation, it appears that anti-ChE's may have actions inde­

pendent of ChE inhibition (Van Meter et al., 1978). Therefore, DFP may 
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produce antinociception by actions independent of ChE inhibition such 

as affecting ionic conductances or rendering the cholinergic receptor 

more reactive to ACh (Van Meter et al., 1978). 

Cholinergic-induced antinociception and analgesia result from 

actions involving central cholinoceptive sites of the muscarinic type 

(see section 1.2.3). Similarly, DFP-induced antinociception appears 

to result from central actions involving muscarinic receptors since 

atropine sulfate antagonized while atropine methyl nitrate was in­

effective in blocking this response (Table 2). 

Specific central sites involved in mediating the antinociceptive 

effects of DFP cannot be determined from these studies. However, 

additional experiments which would provide evidence for specific sites 

of action could be performed as follows. 

First, spinal and supraspinal structures may be associated with 

DFP-induced antinociception. Assessment of tail flick response in 

animals in which the spinal cord has been transected (T6-T8) may pro­

vide evidence for a principal spinal or supraspinal site of action. 

Second, previous investigations suggest that certain structures such 

as the septum, mesencephalic reticular formation, and medial thalamic 

nuclei may be involved in mediating cholinergic-induced antinocicep­

tion(see section 1.2.3). Localized injections of DFP with the concom­

itant assessment of nociceptive responses may therefore provide addi­

tional evidence for an anatomical substrate for the particular DFP 

effect. 
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Third, cholinergic-induced antinociception may be indirectly medi-

ated through the involvement of other neurotransmitter systems in the 

CNS as suggested earlier (see section 1.2.4). Various pharmacological 

manipulations can be used to ascertain which neurotransmitter system 

or systems as well as which tracts or areas are involved. In fact, 

this principle was utilized to determine the involvement of the sero­

tonergic system in DFP-induced antinociception (see section 5.5). 

Similar studies could be designed to determine the involvement of 

other neurotransmitter systems such as the noradrenergic and dopamin­

ergic systems. 

Another problem is concerned with the clinical application of 

the data. Although DFP is too toxic to be employed in clinical stud­

ies, other anti-ChE's such as physostigmine can be utilized to gain 

information concerning a possible site of action and mechanism of 

cholinergic-induced antinociception. The assessment of pain in a clin­

ical setting may provide evidence to suggest which component of the 

pain experience, sensory-discriminative, ~otivational-affective, or 

cognitive-evaluative, is affected by the drug. Since specific brain 

mechanisms are thought to be related to specific anatomical structures 

data obtained in the clinics may provide evidence for not only which 

brain process but also which anatomical loci are involved in cholin­

ergic-induced antinociception (Melzack and Casey, 1968; Melzack,l975). 

Recently, Sitaram et al. (1977) have demonstrated that physostig­

mine produced analgesia in normal human volunteers as measured by 
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(i) the subjects verbal response and (ii) specific cortical average 

evoked electroencephalographiG responses (AER). Sitaram et al. (1977) 

suggest that physostigmine affects the motivational-affective and cog­

nitive-evaluative psychological components of the pain experience via 

its cortical arousal effect. This dissertation provides the basis for con­

tinued clinical investigations concerned with the involvement of the 

cholinergic system in the pain phenomenon. In particular, the effect 

of physostigmine on narcotic-induced analgesia will be studied (appen-

dix 1). See section 5.6.3 and appendix 1 for a complete discussion of 

the appended clinical investigation protocol. 

Finally, one problem concerning the present data should be empha-

sized. Hot plate responses of animals administered either 0.1 mg/kg 

or 0.5 mg/kg of DFP or the drug vehicle were attenuated 6 to 8 hours 

post injection (Fig. 3). Two explanations concerning this effect may 

be presented as follows. The attenuation of hot plate responses could 

be attributed to a learning/conditioning effect; repeated exposure to 

a task involving a negative consequence (hot plate surface) de­

creases the time associated in the task. Alternatively, the animals 

were exhibiting a diurnal variation in responsiveness to noxious input. 

Significant diurnal variations have been demonstrated for hot plate 

response times in mice (Frederickson et al., 1977). Thus, the animals 

administered the vehicle or DFP in low doses (0.1 and 0.5 mg/kg) may 

have been exhibiting a normal diurnal variation in responsiveness; 

employed in doses of 1.0 and 1.5 mg/kg DFP was so potent as not to 

allow this expression of a diurnal rhythm (Fig. 3). 
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5.3 DFP-Induced Immobilization 

The first question which arises is whether the antinociceptive 

state produced by DFP is due to or dependent on, the attenuation of 

spontaneous locomotor activity; tnis is particularly pertinent in the 

case of the hot plate test since the behavioral responses which are 

measured in this test involve locomotor movements (see section 3.3.2). 

The animals exploratory activity level, that is its response to 

a novel environment, may be a pertinent correlate of antinociception 

as measured by the hot plate test since both measurements were made 

immediately after placing the animal in this novel environment. 

DFP reduced exploratory activity levels; neither atropine sulfate 

nor atropine methyl nitrate affected the attenuation of exploration 

produced by DFP (Tables 4 and 10). In fact, atropine sulfate also 

reduced exploration when administered alone; this may account for its 

inability to restore exploratory activity attenuated by DFP (Table 

10). Yet, DFP-induced antinociception was antagonized by atropine 

sulfate; atropine sulfate, alone, failed to alter hot plate responses 

(Table 3). Thus, the antinociceptive state produced by DFP is not 

related to the attenuated exploration produced by DFP. 

An apparent discrepancy arises concerning the effect of anti­

cholinergic agents on exploration (see section 1.2.4), as many inves-­

tigators reported that atropine augments exploratory and/or motor 

activity. However, this discrepancy can be explained by examining 
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the operational definitions employed in each case. Kornisaruk (1970) 

defined exploratory activity in terms of sniffing behaviors; Abeelen 

et al. (1972) regarded rearing, leaning, and sniffing as exploratory 

acts; presently, exploration was defined in terms of gross locomotor 

movements during early phase of exposure to novel surroundings (see 

section 3.3.4.2). Clearly, while all studies measured behaviors in 

a novel environment, exploration, these studies do not measure iden­

tical behaviors. 

Additional evidence that the antinociception and attenuation of 

exploration produced by DFP are independent phenomena is as follows: 

(i) peak attenuation of exploration did not coincide with peak anti­

nociceptive responses at any time tested 1 to 48 hours after the ad­

ministration of any dose of DFP, (ii) at 0.1 mg/kg, DFP produced anti­

nociception but did not affect exploratory activity, and (iii) nalox­

one antagonized DFP-induced antinociception but did not affect DFP­

induced attenuation of exploration (Tables 9 and 10) . A complete dis­

cussion of the effect of naloxone on DFP-induced behavioral responses 

is provided in section 5.6. 

Motor activity levels which represent the animals ability to make 

spontaneous locomotor movements also were studied as a potential 

correlate to antinociception. It should be pointed out that motor 

activity was measured 15 minutes after the animals had been placed in 

the activity cages while hot plate responses were measured immediately 

after placing the animal on the hot plate surface(see section 3.3.4.2). 
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DFP reduced in a dose dependent manner motor activity in rats; 

the diminution in motor activity produced by DFP was not affected by 

atropine sulfate, atropine methyl nitrate, or naloxone (Tables 4 and 

10). However, employed by itself, atropine sulfate reduced motor 

activity; this may account for its inability to restore motor activ­

ity attenuated by DFP (Table 10). On the other hand, DFP-induced 

antinociception was antagonized by atropine sulfate and naloxone; 

atropine methyl nitrate was ineffective (Table 9). Thus, DFP-induced 

antinociception was sensitive to the actions of both atropine sulfate 

and naloxone whilst DFP-induced attenuation of motor activity was not 

affected by either atropine sulfate or naloxone. Therefore, the anti­

nociception and attenuation of motor activity produced by DFP do not 

appear to be related. 

Finally, it must be emphasized that DFP produced antinociception 

in the tail flick test as well; this test appears to be less dependent 

on changes in motor behavior than the hot plate test. Since antinoci­

ception and the attenuation of locomotion appear to be independent, 

further experiments to separate these two phenomena need not be pro­

posed. 

5.4 DFP-Induced Hypothermia 

Since the hot plate and tail flick tests involve temperature 

sensitive measurements and as the systemic administration of DFP is 

known to produce hypothermia (Meeter and Wolthius, 1968), the hypo­

thermic state produced by DFP may interfere with the evaluation of 
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DFP-induced antinociception. 

In agreement with the earlier data of Meeter and Wolthius (1968) , 

DFP produced a pronounced hypothermia (Fig. 5). Here, DFP-induced 

antinociception and hypothermia were seemingly independent effects: 

(i) DFP (1.0 mg/kg) produced antinociception which lasted up to 6 

hours post administration (Fig. 3) while hypothermia was obtained only 

at 2 hours post injection (Fig. 5) and, (ii) naloxone antagonized the 

DFP-induced antinociceptive state (Table 8) but did not affect hypo-

thermia produced by DFP (Fig. 7). A complete description of the 

effect of naloxone on DFP-induced behavioral responses is given in 

section 5.6. 

Liu and Fong (1972) demonstrated that hypothermia produced an 

alteration in the antinociceptive response to intra-arterial injec­

tions of ACh in cats; mild hypothermia, a 2 to 3° decrease in rectal 

temperature below normal, produced a hypernociceptive state; a further 

reduction in rectal temperature, 5 to 6° below normal rectal tem­

perature, produced antinociception. Based upon the study of Liu and 

Fong (1972) , the hypothermia produced by DFP in the present experi­

ments, a 2.4° decrease in rectal temperature, would be expected to 

produce hypernociception and thus antagonize the antinociceptive state 

produced by DFP. In fact, DFP produced both a pronounced level of 

antinociception and hypothermia in the rat and thus it appears that 

DFP-induced antinociception and hypothermia are unrelated. 
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5.5 DFP-Induced antinociception and the Serotonergic System 

5.5.1 Neurochemistry 

The next question which arises concerns the neurochemical mech­

anisms involved in DFP-induced antinociception. The antinociceptive 

state and ACh levels and/or turnover rates may be correlated for some 

but not all centrally acting cholinomimetics, anticholinesterases, 

narcotic agonists and antagonists, and various CNS depressants (see 

section 1.2.3). Thus, the antinociceptive state produced by those 

compounds may not be directly attributable to actions via the central 

cholinergic system. The multitransmitter character of the CNS as well 

as the effects which cholinergic agents produce on systems other than 

the cholinergic system suggest the possibility that DFP-induced anti­

nociception may be attributed to a DFP action mediated by non-cholin­

ergic systems (Karczmar, 1975). 

First, the interplay between the ~holinergic and serotonergic 

systems may be involved. For a long time now the serotonergic system 

has been implicated in antinociception; increased activity of brain 

and spinal cord serotonin neurons such as that produced by electrical 

stimulation, precursor loading, uptake inhibitors, and receptor ago­

nists is associated with antinociception and enhanced antinociceptive 

potency of drugs such as morphine; decreased activity in those neurons 

induced by electrical and chemical lesioning as well as precursor 

restricted diets is associated with hypernociception and diminished 

antinociceptive drug potency (see section 1.3). 



That the serotonergic system may be coupled with the cholinergic 

system is suggested by the fact that oxotremorine and physostigmine 

(Reid, 1970) , pilocarpine and arecoline (Haubrich and Reid, 1972), 

and DFP (Barnes et al., 1974, 1975) increase 5-HT and 5-HIAA levels; 

these data indicate that DFP increased 5-HT turnover, and indeed 

appropriate measurements showed that this is so (Barnes et al., un­

published) . 

It was therefore important to determine if DFP had a similar 

effect in rats. As shown in Table 5, 5-HT levels were markedly in­

creased in the rat medulla, meso-diencephalon, and telencephalon fol­

lowing a single administration of DFP. DFP increase in 5-HT levels 

and turnover as well as the antinociceptive state produced by DFP are 

mediated through activation of central muscarinic receptors since 

atropine sulfate antagonized whereas atropine methyl nitrate did not 

affect these two effects of DFP (Barnes et al., 1978; Koehn and 

Karczmar, 1978). 

It may be speculated that the resultant accumulation of ACh due 
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to DFP inhibition of ChE depolarizes serotonergic neurons thus in­

creasing 5-HT levels and turnover. On the other hand, the increase in 

5-HT levels and turnover elicited by DFP might be due to a direct 

stimulatory action of DFP upon 5-HT release. The present experiments 

do not demonstrate which explanation is correct. Finally, DFP may 

increase 5-HIAA brain levels by affecting transport systems responsible 

for 5-HIAA elimination. 
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Since the rise in 5-HT levels and turnover produced by DFP could 

underlie DFP-induced antinociception, it was important to separate 

these two phenomena produced by DFP. One method by which this could 

be accomplished is by manipulating the serotonergic system followed by 

DFP administration,measurements of nociception and of 5-HT levels. 

Para-chlorophenylalanine (PCPA) which inhibits the synthesis of 5-HT 

by inhibiting tryptophan hydroxylation was employed for this purpose. 

The use of PCPA as an inhibitor of 5-HT biosynthesis was first 

reported by Koe and Weissman (1966). The mechanism of action of PCPA 

on the 5-HT biosynthetic process appears to involve three separate 

parts. These various mechanisms must be considered in experiments in 

which PCPA is used to evaluate biochemical mechanism underlying behav­

ioral and pharmacological phenomenon. 

First, a reversible inhibition of tryptophan hydroxylase (TH) 

activity lasting 4 hours with peak effect at 1 to 2 hours post injec­

tion was observed following the systemic administration of PCPA; this 

inhibition of enzyme activity was attributed to 1) competition of PCPA 

with substrate for entry into the nerve ending as well as 2) the co~ 

petitive inhibition of the enzyme for the substrate (Knapp and Mandell, 

1972). A second, irreversible inhibition of TH was observed 2 days 

after the PCPA injection; this inhibition has been attributed to in­

corporation of PCPA into TH during new protein synthesis in the nerve 

cell body (Gal et al., 1970). Thus, pretreatment of the animal two 

days as well as 2 hours prior to experimentation yields a model 



M7 

system in which the three mechanisms involved in the inhibition of 

5-HT synthesis by TH are maximally inhibited. In fact, this was the 

1 2 basis of the injection schedules employed presently (PCPA and PCPA ; 

see section 3.2.2). 

Finally, the doses of PCPA utilized in these experiments were 

selected because these doses specifically inhibited TH activity with-

out affecting the activity of other enzymes such as tyrosine hydrox-

ylase, aromatic amino acid decarboxylase, or monoamine oxidase all 

of which affect dopaminergic or noradrenergic neurotransmitter systems 

(Koe and Weissman,l966). 

Serotonin (5-HT) levels were measured in rat medulla, meso~dien-

cephalon, and telencephalon subsequent to the administration of PCPA1 

2 or PCPA (see section 3.2.2) to monitor the inhibitory action of PCPA 

on 5-HT biosynthesis. As shown in Table 5, PCPA decreased 5-HT levels 

in all three rat brain regions, particularly following the two daily 

300 mg/kg doses followed on the third day by a 100 mg/kg dose (PCPA
2
). 

It should be pointed out that the depletion of rat brain 5-HT was not 

as great as that originally described by Koe and Weissman (1966). 

However, the experimental procedures in these two studies differed in 

the following ways. First, Koe and Weissman (1966) sacrificed the 

rats by an intravenous (i.v.) administration of pentobarbital; decap-

itation was used in the present studies (see section 3.5.1). Second, 

spectrophotofluorometric methods for quantitation of 5-HT differed; 

Koe and Weissman (1966) measured 5-HT directly whereas, here, 5-HT 



was converted to a substituted indole compound which is more fluo­

rescent than 5-HT itself (see section 3.5.5). 
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Subsequently, the effect of DFP on rat brain region 5-HT levels 

in animals pretreated with either PCPA1 or PCPA2 was determined (see 

section 3.2.2). DFP did not affect attenuation of 5-HT levels by 

PCPA pretreatment dosage regimens in any of the three rat brain reg­

ions studied; that is, PCPA pretreatment prevented the DFP-induced 

augmentation of 5-HT levels (Table 5). Thus, DFP-induced increase in 

rat brain 5-HT levels depends upon a functionally intact 5-HT bio­

synthetic system. 

5.5.2 Antinociception 

Since the DFP augmentation of 5-HT levels in rat brain depends 

upon a functionally intact 5-HT biosynthetic system, it was important 

to determine whether the antinociceptive state produced by DFP also 

depends upon this system. 

PCPA produced hypernociceptive responses in rats as measured by 

the hot plate test (Table 6). This effect of PCPA is consistent with 

earlier findings of Tenen (1967) and Messing et al. (1975) who demon­

strated an increased sensitivity to electric footshock in rats as 

measured by the flinch-jump test. 

The tail flick test was also employed to assess the nociceptive 

responses of rats following PCPA treatment. Here, the tail flick 

apparatus was adjusted so that the response latency of control animals 
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was long enough (15 seconds; see section 4.5.2) to allow monitoring 

of possible hypernociceptive responses. As a result, it would be 

shown that PCPA produced hypernociception in rats also as measured by 

the tail flick test (Table 7). Thus, just as in the case of previous 

reports (see section 1.3), decreased serotonergic neurotransmission 

such as that produced by PCPA correlates with the hypernociceptive 

state in rats. 

As demonstrated earlier (see sections 4.1.1 and 4.1.2), DFP pro­

duced antinociception in rats as measured by the hot plate (Table 6) 

and tail flick tests (Table 7). If DFP-induced antinociception were 

dependent upon a functionally intact 5-HT system, the pretreatment 

with PCPA would be expected to antagonize the antinociceptive action 

of DFP. Alternatively, if DFP-induced antinociception were independ­

ent of the 5-HT system, PCPA pretreatment would not be expected to 

affect the DFP-induced antinociceptive state. Tables 6 and 7 demon­

strate the effect of PCPA pretreatment on the DFP-induced antinoci­

ceptive state as measured by the hot plate and tail flick tests, re­

spectively. The interesting finding was that PCPA pretreatment 

did not antagonize DFP-induced antinociception as evaluated by either 

test (Tables 6 and 7). Thus, DFP-induced antinociception and the 

increase in brain 5-HT levels produced by DFP appear to be independent 

effects. The augmentation of rat brain 5-HT levels is dependent 

whereas antinociception produced by DFP is independent of a function­

ally intact 5-HT biosynthetic system. 

Generally, the antinociceptive effects of physostigmine were 
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affected by manipulation of the serotonergic system (see section 1. 

2.3.3). This discrepancy concerning the effect of PCPA pretreatment 

on cholinergic-induced antinociception (see section 1.2.3.3) may be 

due to differences in the mechanism of the cholinergic effects of oxo­

tremorine, DFP and physostigmine. Thus, it should not be surprising 

that the antinociceptive states produced by these compounds may arise 

through different mechanisms. In fact, in the case of oxotremorine· 

and physostigmine this was found to be so; oxotremorine-induced anti­

nociception is potentiated by procedures which decrease brain cate­

cholamine systems but is unaffected by procedures which change the brain 

5-HT system; physostigmine-induced antinociception is affected by pro­

cedures which alter catecholamine and 5-HT systems (Pleuvry and Tobias, 

1971). It should also be noted that with the exception of the present 

study, none of the other investigations measured 5-HT levels and/or 

turnover and thus were unable to correlate behavioral and neurochem­

ical data. Finally, differences in technique and dosages must also be 

considered in this context. 

5.5.3 Immobilization 

It has long been known that PCPA affects spontaneous locomotor 

activity in the rat (Tenen, 1967). Since the hot plate test involves 

locomotor sensitive measurements, the effects of PCPA and PCPA-DFP 

combinations were evaluated to determine whether the lack of effect of 

PCPA on DFP-induced antinociception was related to a PCPA action on 

the mobility of the rat. 
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Previous investigations have demonstrated that PCPA decreased 

exploration in rats (Marsden and Curzon, 1976), contrary to the pres­

ent findings. However, it should be noted that Marsden and Curzon 

(1976) defined exploration in terms of open field activities such as 

the number of squares entered, number of rearings, number of 1800 

turns, grooming time, and number of fecal pellets; thus, their oper­

ational definition of exploration was different from the locomotor 

activity levels measured as exploration in the present experiments 

(see section 3.3.4.2). 

As demonstrated earlier (see section 4.2.1), DFP reduced explo­

ratory activity levels of rats(Table 8). PCPA, administered by itself, 

did not affect exploration nor was it capable of affecting the dimi­

nution of exploratory activity produced by DFP (Table 8). It would 

be expected that via reducing exploratory activity in rats PCPA could 

interfere with the assessment of the nociceptive response. However, 

since PCPA did not affect exploration nor did pretreatment with PCPA 

affect the diminution of exploration produced by DFP, the lack of 

effect of PCPA on DFP-induced antinociception was not related to an 

alteration of exploration produced by PCPA. 

As demonstrated earlier (see section 4.2.2), DFP reduced motor 

activity levels of rats (Table 8). PCPA, administered by itself, in­

creased motor activity (Table 8); this effect of PCPA on motor activ­

ity is consistent with the original findings of Tenen (1967). How­

ever, PCPA was unable to affect the DFP-induced decrease in motor ac­

tivity(Table 8). If PCPA affected the antinociceptive state produced 
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by OFF by altering the animals motor activity levels, it would be ex­

pected that the PCPA-induced increase in motor activity would antag­

onize OFF-induced antinociception. However, PCPA pretreatment did not 

antagonize the antinociception produced by OFF (Table 8). Thus, the 

PCPA affect on motor activity was not related to the PCPA lack of 

effect on OFF-induced antinociception. 

5.6 OFP-induced Antinociception and the Endogenous Opioid System 

5.6.1 Antinociception, Pharmacological Analysis 

It has long been known that anti-ChE's such as prostigmine 

(Slaughter and Munsell, 1940), physostigmine (Floodmark and Wrammer, 

1940), and OFP (Bhargava and Way, 1972); cholinomimetic compounds such 

as pilocarpine (Saxena and Gupta, 1957); as well as ACh (Pedigo et 

al., 1975) itself, potentiate narcotic-induced antinociception and/or 

analgesia. Recent discoveries of the stereospecific opiate receptor 

(Goldstein et al., 1971) and several endogenous opioid-like peptides, 

enkephalins (Hughes et al., l975a) and endorphins (Li and Chung, 1976; 

Guillemin et al., 1976) have advanced our working knowledge of pain 

mechanisms. Therefore, any hypothesized role for a neurotransmitter 

such as ACh in pain modulation must take into account possible inter­

actions with endogenous opioid system. A pharmacological analysis of 

the antinociceptive actions of OFP and morphine was performed to in­

vestigate possible relationships between the cholinergic and endog­

enous opioid systems in the pain phenomenon. 



As described earlier (see section 4.1.1), DFP produced anti­

nociception in the rat as measured by the hot plate test (Table 9). 
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As expected, morphine also produced antinociception in rats as measur­

ed by the hot plate test; this effect was antagonized by the narcotic 

antagonist, naloxone; atropine sulfate was ineffective (Table 9). The 

interesting finding of this study was the fact that naloxone antagcn­

ized DFP-induced antinociception (Table 9) . 

Naloxone has been reported to block the antinociceptive effects 

of other compounds which affect the cholinergic system such as physo­

stigmine and oxotremorine (Harris et al., 1969) and ACh (Pedigo et 

al., 1975) as well as other pharmacologically- and physiologically­

induced antinociceptive states such as those produced by acupuncture 

(Mayer et al., 1976), stimulation produced analgesia (SPA; Akil et 

al., 1976), and stress (Bodnar et al., 1977; Chesher and Chan, 1977). 

The fact that naloxone antagonized the antinociception arising from 

these various procedures suggests that antinociception may result from 

actions mediated through the opiate receptor, possibly via the release 

of endogenous opioids. 

However, it must be pointed out that naloxone antagonism of anti­

nociception is necessary but not sufficient evidence to implicate the 

involvement of the endogenous opioid system. Nonspecific actions of 

naloxone could interfere with the assessment of nociceptive responses. 

First, naloxone may act as a gamma amino butyric acid (GABA) antago­

nist. The iontophoretic application of naloxone antagonized GABA-
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induced inhibition of firing in 21 out of 27 spontaneously active, 

olfactory tubercle neurons in the rat (Dingledine et al., 1978). 

Furthermore, applied iontophoretically, naloxone antagonized ACh, 

nicotine and morphine-induced excitation but did not affect morphine­

induced inhibition of Renshaw cells in cats (Duggan et al., 1975). 

Thus, naloxone also may act as a cholinergic-nicotinic receptor an­

tagonist. Alternative explanations describing the naloxone effect 

are also plausible. Finally, naloxone itself, has been shown in some 

cases to produce analgesia. Lasagna (1965) demonstrated a bidirec­

tional effect of naloxone; low doses of naloxone, 1 to 2 mg, produced 

analgesia whereas higher doses, 5 to 8 mg, produced ~yperalgesia as 

measured by verbal reports in patients with postoperative pain. Re­

cently, naloxone has been shown to produce analgesia measured as chan­

ges in cortical evoked potentials following electrical stimulation, in 

pain-sensitive individuals; the same dose of naloxone produced hyper­

algesia in pain-sensitive individuals (Buschsbaum et al., 1977). 

Experiments which would help define the role of the endogenous 

opioids include the following. First, stereoisomers of narcotic an­

tagonists other than naloxone may be used to determine the stereospeci­

ficity of the narcotic antagonism. Experiments with MR 1452/3 and 

MR 2266/7, the~ methyl and~ ethyl N furylmethyl analogues of ~-5,9-

dialkyl-2'-hydroxy-6,7-benzomorphan, respectively and GPA 1843/7, the 

N-allyl analogue of S-9-methyl-5-phenyl-2'-hydroxy-6,7-benzomorphan, 

have confirmed the stereospecific effects of naloxone on the electric­

ally evoked release of ACh from guinea pig ileum (Waterfield and 



Kosterlitz, 1975). Jacob and Ramabadran (1978) also have confirmed 

stereospecific effects of MR 2266/7 on the morphine-induced antinoci­

ceptive state in mice utilizing the hot plate test. The effect of 

stereoisomers of narcotic antagonists on DFP-induced antinociception 

is discussed in section 5.6.2 below. 

Next, the existence of cross tolerance with the antinociceptive 

action of morphine may be used to demonstrate the involvement of a 

common neural substrate. Both exogenous S-endorphin (Szekely et al., 

1977) and methionine-enkephalin (Blasig and Herz, 1976) pro-

duce cross tolerance with morphine. In addition, tolerance to mer-

phine reduced the effective level of antinociception produced by elec­

trical stimulation (SPA) of periaqueductal gray areas (PAG; Mayer and 

Hayes, 1975) and stress in rats (Spiaggia et al., 1979); reciprocal 

tolerance was incomplete in each case (Mayer and Hayes, 1975; Spiaggia 

et al., 1979). Cross tolerance studies between DFP- and morphine­

induced antinociception are described in section 5.6.3). 

Direct release of endogenous opioid peptides by an appropriate 

stimulus constitutes further evidence for the involvement of the endog­

enous opioid system. Electrical stimulation (SPA) of the periaque­

ductal gray region (PAG) , which produced analgesia in patients suffer­

ing from chronic intractable pain, was associated with increased cere­

brospinal fluid (CSF) levels of enkephalin-like-material (Akil et al., 

1978) and immunoreactive-S-endorphin (Hosobuchi et al., 1979). Elec­

tro-acupuncture increased endorphin activity CSF levels in chronic 
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pain patients (Sjolund et al., 1977). The effect of DFP on the endog­

enous opioid system is discussed below in section 5.6.4. 

Additional experiments that would clarify the mechanisms involv­

ed in DFP-induced antinociception may be suggested. Pomeranz et al. 

(1977) demonstrated that electro-acupuncture-induced antinociception 

could be blocked by hypophysectomy in mice. Li and Chung (1976) and 

Guillemin et al. (1976) have reported that morphine-like-pituitary­

peptides, endorphins, are concentrated in the pituitary. If OFF­

induced antinociception was mediated via the release of endorphins 

from pituitary sites, then hypophysectomy would be expected to block 

the antinociceptive action of DFP. Carboxypeptidase A and leucine 

aminopeptidase are known to enzymatically degrade enkephalins (Hughes 

et al., 1975a). In addition, the enkephalins are rapidly degraded by 

enzymes found in rat cerebral tissues (Dupont et al., 1977). If OFF­

induced antinociception were mediated by the release of enkephalins, 

agents which inhibit the degradative enzymes should potentiate this 

response. For example, bacitracin is known to inhibit the enzymatic 

breakdown of enkephalins in rat brain tissue extracts (Simantov et 

al., 1976c). However, the specificity and potential side effects as­

sociated with any enzyme inhibitor which would otherwise interfere with 

nociception measurements, must be considered. 

5.6.2 Stereospecificity 

Since non-specific actions of naloxone could contribute to its 

inhibition of DFP-induced antinociception (see section 5.6.1), it was 
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important to determine whether the antagonism was stereospecific; 

synthetic antagonists of the benzomorphan series were employed for 

this purpose. MR 2266, MR 2267 and GPA 1847 possess relatively low 

agonists activity while GPA 1843 possesses no agonist activity as 

measured by their abilities to depress the electrically evoked 

contraction of the guinea-pig ileum (Waterfield and Kosterlitz, 19751. 

The (-) isomers of two narcotic antagonists, MR 2266 and GPA 1843, 

antagonized both morphine and DFP-induced antinociceptive responses 

whereas the corresponding (+) isomers, MR 2267 and GPA 1847, did not 

reduce either morphine or DFP-induced antinociceptive responses 

(Table 11). This stereospecificity of narcotic antagonist action 

suggests that DFP-induced antinociception is indeed mediated via 

opiate receptors. Jacob and Ramabadran (1978) have demonstrated 

similar effects of MR 2266 and MR 2267 on antinociception p~oduced 

by arecoline and physostigmine. 

Although Pert and Snyder (1973) could not find affinity of ACh, 

atropine, or carbamylcholine for stereospecific opiate receptors, 

the possibility remains that DFP may itself act directly on the 

opiate receptor; appropriate binding studies are required. 

Stereoisomers of cyclazocine, a partial narcotic agonist, had a 

differential effect on the antinociceptive states produced by OFP 

and morphine; (-) cyclazocine antagonized whereas (+) cyclazocine 

did not affect morphine-induced antinociception; alternatively (+) 

cyclazocine antagonized DFP-induced antinociception while (-) cycla-
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zocine was ineffective (Table 11). This effect has been reported 

previously employing stereoisomers of cyclazocine and pentazocine 

(Pedigo et al., 1975). The discrepancy between the action of narcotic 

antagonists and partial narcotic.agonists on cholinergic-induced 

antinociception is particularly puzzling. The type of test employed 

or drug specificity does not explain this effect as different tests 

for measuring nociceptive responses and different compounds which 

affect the cholinergic system have produced similar results (Pedigo 

et al., 1975; Table 11). No plausible interpretation of this ef-

fect can be presented at present. 

Finally, inconsistencies in the actions of the (+) isomers (MR 

2267, GPA 1847, and d-cyclazocine, Table 11) suggest that different 

opiate receptors may mediate the antinociceptive actions of DFP and 

morphine. Additional investigations such as pA2 studies are required 

to clarify these effects. 

5.6.3 Cross Tolerance Studies 

Cross tolerance exists.between the antinociceptive responses to 

morphine and exogenous opioid peptides (Blasig and Herz, 1976; 

Szekely et al., 1977). It would be expected that if DFP- and mor­

phine-induced antinociception were mediated via a common neuronal 

substrate, cross tolerance to morphine and DFP would be observed 

(see section 5.6.1). However, cross tolerance did not develop 

between morphine-induced antinociception and the antinocieptive 



state produced by DFP (Table 12) . Cross tolerance studies between 

morphine and pilocarpine were performed to determine whether 

the lack of cross tolerance between morphine and DFP was specific 

for DFP or representative of cholinergic-induced antinociception. 

Pilocarpine was selected since it enhances cholinergic neuro­

transmission by different mechanisms than does DFP {see section 

5.1.1); pilocarpine mimicks directly the action of ACh on cholin­

ergic-muscarinic receptors. Again, cross tolerance failed to 

develop between the antinociceptive actions of morphine and pilo­

carpine (Table 12). A similar lack of cross tolerance between 

morphine and oxotremorine (Howes et al., 1969) and physostigmine 

(Pleuvry and Tobias, 1971) has been reported. Thus, it appears 

that morphine- and cholinergic-induced antinociception is not 

cross tolerant. 

The possibility that the level of morphine tolerance was in­

adequate to demonstrate cross tolerance with DFP appears unlikely 

since DFP maintained an antinociceptive action even at increased 

levels of morphine tolerance (tolerance level B, Table 12). 

Alternatively, the lack of cross tolerance suggests that 

multiple neural substrates may act via opiate receptors to produce 
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antinociception. The chronic administration of morphine while 

producing tolerance to exogenous opioid peptides (Blasig and Herz, 

1976; Szekely et al., 1977) may not induce tolerance at those 

site? in the CNS at which a DFP- and pilocarpine-endogenous 

opioid interactions occur. 

Distinct opiate receptor populations which exhibit selective 

high affinity binding for (D-ala, D-leu)-enkephalin and morphine 

have been identified in the rat CNS (Chang and Cuatrecasas, 1979). 

It has not been established whether morphine, exogenous opioid 

peptides, or endogenous opioid peptides normally interact with 

one or both opiate receptors. However, it may be that cholinergic 

compounds release endogenous enkephalins which then interact with 

one type of opiate receptor while morphine interacts with another 

opiate receptor. Whether cross tolerance occurs between these 

two opiate receptor populations remains to be established. 
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The basis for implementing the appended clinical investigation 

protocol (see appendix 1) may be reviewed in light of these present 

findings as to the lack of cross toler~nce between morphine and DFP. 
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Anti-ChE's administered by themselves, are known to produce antinoci­

ception (Harris et al., 1968; Koehn and Karczmar, 1978) and analgesia 

(Sitaram et al., 1977); in addition, anti-ChE's potentiate narcotic­

induced antinociception (Bhargava and Way, 1972; Ireson, 1970) and 

analgesia (Floodmark and Wrammer, 1940). The antinociceptive actions 

of anti-ChE's do not exhibit cross tolerance with the antinociceptive 

action of morphine (Pleuvry and Tobias, 1971; Koehn et al., 1979). 

The appended clinical investigation protocol (see appendix 1) was de­

signed to determine whether the anti-ChE's agent, physostigmine, would 

produce analgesia in narcotic tolerant patients. It is hoped that 

this study will provide evidence for the existence of a cholinergic 

sensitive system which may be manipulated pharmacologically for the 

treatment of pain. 

5.6.4 Effect of DFP on the Endogenous Opioid System 

The release of endogenous opioid peptides by an appropriate stim­

ulus is required to establish the involvement of the endogenous opioid 

system in antinociception. If OFF-induced antinociception arises via 

actions involving the endogenous opioid system, DFP should release 

endogenous opioids. Potassium~induced depolarizations have been shown 

to release methionine- and leucine-enkephalin from isolated stria~al 

slices (Henderson et al., 1978) as well asS-endorphin from pituitary 

and hypothalamic sites (Przewlocki et al., 1978; Osborne et al., 1978). 

The present experiments were designed to study the effect of DFP on 

enkephalin-like material release from rat brain. Experimental proce­

dures for extraction (Hughes et al., 1977) and quantitation (Hughes et 
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al.,l975b) of enkephalin-like-material were chosen for this purpose 

(see section 3.6). In fact, the studies of the effects of DFP on 

enkephalin-like-material did not yield adequate data due to the lack 

of reliable extraction and bioassay techniques (see section 4.11). 

Methodological requirements for release studies include the 

following. First, the extraction process should eliminate any cont­

aminants which would otherwise interfere with the quantitation proce­

dure. This, in fact, was the primary failure in the present experi­

ments(see section 4.11). Second, the assay technique must be appro­

priately sensitive to measure experimentally-induced changes; here, 

sensitivities of 0.5 ng leucine-enkephalin equivalents are required, 

and this sensitivity did not obtain in our experiments. Enkephalin­

like-material levels in rats were studied with and without a DFP in­

jection in an attempt to establish proper methodology required for re­

lease studies as well as to demonstrate an effect of DFP on enkeph­

alin-like-material content (see section 4.11). While only 7 out of 

68 rat brain samples studied fulfilled acceptable criteria for bio­

assay (see section 3.6.5.3), no significant differences in enkephalin­

like-material levels were observed between animals administered DFP 

or the drug vehicle. The failure of the remaining brain samples to 

meet acceptable criteria was due to the presence of a non-enkephalin­

like-material contaminant (see section 4.11). 

Several changes implemented to eliminate any impurities or con­

taminants can be outlined as follows: (i) the chromatography resin 

was recycled an additional 10 times with isopropyl alcohol and water 
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(see section 3.6.3.1), (ii) brain homogenates were centrifuged at 

between 5 and 120,000 G for between 10 to 60 minutes (see section 

3.6.4), (iii) height of the resin bed was changed to 40, 80 and 120 mm 

(see section 3.6.3.2), (iv) eluate was put through columns to reelute 

enkephalin-like-material (see section 3.6.4), (v) eluate was taken to 

complete dryness by freeze evaporation techniques under vaccurn with 

phosphorus pentoxide as drying agent whenever samples would not go 

to complete dryness in Rotorvapor Apparatus (see section 3.6.4), (vi) 

freeze dried samples were heated (see section 3.6.4), and (vii) brain 

samples were passed through Arnberlite IRA-400 anion exchange resin 

prior to introduction onto Arnberlite XAD-2 columns (see section 3.6.4). 

Invariably, these changes failed to improve the extraction process. 

Although the experimental procedures utilized in these experi­

ments failed to produce results, alternative methods are available. 

Radioimmunoassay techniques have been used to determine the enkephalin 

content of several rat brain regions (Yang et al., 1977; Kobayashi et 

al., 1978b). The sensitivity and specificity of the antisera employed 

in the radioimmunoassay must be taken into account for quantitative 

analysis of this type. 

5.6.5 Exploratory and Motor Activity 

An established effect of DFP treatment is reduction of the ani­

mal's locomotion (see section 1.2.4). Since the effects of DFP and 

morphine on rat mobility and environmental response may interfere with 

the hot plate assessment of antinociception, exploratory and motor 



activity effects of these drugs with and without their antagonists 

were studied. 
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As described earlier (see section 5.3), DFP reduced exploratory 

activity levels in rats; neither atropine sulfate, atropine methyl 

nitrate, nor naloxone affected the DFP reduction of exploration (Table 

10). Morphine also reduced exploration in rats; naloxone and atropine 

sulfate did not alter this morphine effect (Table 10). However, the 

antinociceptive states produced by DFP and morphine do not depend upon 

the reduction of exploration produced by either compound since nalox­

one antagonized the antinociceptive state but failed to alter the 

attenuated exploration produced by these two compounds. 

It must be pointed out that atropine sulfate, alone, reduced 

exploration; this may account for its lack of effect in reversing th~ 

DFP-induced reduction in exploratory activity. A similar effect of 

naloxone, alone, could account for its failure to reverse the reduc~ 

tion in exploration produced by morphine. Since the effect of naloxone 

on exploration was not studied in the present experiments, further in­

vestigations are required to clarify this point. 

As described earlier (see section 5.3), DFP reduced motor activ­

ity levels of rats; atropine sulfate, atropine methyl nitrate, and 

naloxone did not affect the diminution in locomotion produced by DFP 

(Table 10). On the other hand, morphine increased locomotion; atro­

pine sulfate prevented while naloxone reversed the morphine-induced 

increase in motor activity (Table 10). 
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Section 5.3 describes the effect of DFP on locomotion, indica­

ting that DFP-induced antinociception and DFP-induced attenuation of 

locomotion are not related. In addition, the endogenous opioid system 

does not appear to participate in the DFP-induced depression of loco­

motion since naloxone failed to alter this DFP effect. 

It is well recognized that morphine affects spontaneous locomotor 

activity in rats. Low doses of morphine (1.0 to 5.0 mg/kg) increase 

locomotion while higher doses of morphine (10 to 40 mg/kg) produced 

biphasic changes, initial depression followed by stimulation of loco­

motion (Domino et al., 1976). In the present experiments, morphine 

(3.0 mg/kg) increased locomotion (Table 10). The locomotor effect of 

morphine appears to be mediated via opiate receptors since naloxone 

antagonized this effect (Table 10) . Naloxone not only antagonized but 

actually reversed the effect of morphine on locomotion (Table 10). 

However, since the effect of naloxone, alone, was not studied it is 

impossible to determine whether the action of naloxone on morphine de­

pression of locomotion was due to the effect of the former on motor 

behavior or involved the endogenous opioid system. Other investiga­

tors failed to demonstrate an effect of naloxone on motor activity 

(Bhargava, 1978b; Amir et al., 1979). 

It is interesting to note that atropine sulfate antagonized the 

increased locomotion produced by morphine thus implicating the cholin­

ergic system in this particular morphine effect (Table 10) . Recent 

studies have s~own that the effect of morphine on locomotion and ACh 

synthesis in rats correlates for some but not all doses of morphine; 



thus, the depressant and/or stimulant action of morphine on loco­

motion may involve neurotransmitter systems other than the cholin­

ergic system (Vasko and Domino, 1978). 
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Finally, the antinociceptive effects of morphine and DFP do not 

appear to be related to the effect of these drugs on motor activity 

since (i) employed at equiactive antinociceptive doses, morphine 

increased while DFP decreased locomotion, (ii) atropine sulfate and 

naloxone antagonized DFP-induced antinociception but failed to alter 

the attenuation of locomotion produced by DFP, (iii) atropine sulfate 

antagonized the augmented motor activity produced by morphine but 

failed to alter morphine-induced antinociception (Table 10). 

5.6.6 Effect of Naloxone on DFP-induced Responses 

The effect of naloxone on antinociception, attenuated mobility, 

and hypothermia produced by DFP was studied 1 to 48 hours after the 

DFP injection to determine if the naloxone antagonism of DFP-induced 

antinociception was related to a naloxone effect on animal mobility 

or temperature. 

As discussed earlier (see section 4.7.1), naloxone antagonized 

DFP-induced antinociception in a dose dependent manner (Fig. 6). 

Naloxone (5.0 mg/kg) not only antagonized DFP-induced antinociception 

but also produced hypernociception following the DFP administration 

(Fig. 6). Naloxone has been shown to produce hypernociception 

only under certain circumstances such as stress (Madden et al., 

1977; Rossier et al., 1977a). Thus, the reversal of DFP-
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induced antinociception may be attributed in part to a naloxone effect 

in a stressed animal. It should also be pointed out that naloxone 

(5.0 mg/kg) produced different effects on DFP-induced antinociception 

in different studies; naloxone (5.0 mg/kg) antagonized DFP-induced 

antinociception in earlier studies (see section 5.6.1). 

That the duration of action of DFP was greater than that of nal­

oxone correlates well with the irreversible nature of this anti-ChE 

agent (Fig. 6). In adnition, the antinociceptive response induced 

by morphine similarity outlasts the antagonistic action of naloxone 

(Smits, 1976). 

As described earlier (see section 4.8.2), naloxone failed to 

alter DFP-induced decrease in exploration 1 to 48 hours post DFP in­

jection (Fig. 7A). Naloxone also failed to affect DFP-induced atten­

uation of motor activity (Table 10). Thus, the naloxone antagonism 

of DFP-induced antinociception is not related to a naloxone effect 

on DFP-induced immobilization. 

As discussed earlier (see section 4.3), DFP produced hypothermia 

in rats. Naloxone did not affect the hypothermia produced by DFP nor 

did it alter rectal temperatures in naive animals (Fig. 7B). Since 

naloxone antagonized DFP-induced antinociception (Table 9) but failed 

to affect the hypothermia produced by DFP (Fig. 7B), the naloxone ant­

agonism of DFP-induced antinociception is independent of a naloxone 

temperature effect. 



5.7 Concluding Comments 

Pain, by itself, is an extremely complex, ill-defined pheno­

menon (see section 1) . All research investigations concerning 

the various aspects of the pain phenomenon entail experimental 

procedures which may produce complicating factors, thus, the 

scientific study of pain can be additionally complex. 

The basic scientist attempts to correlate the antinociceptive 

and analgesic properties of a drug so that preliminary research 

on pain can be conducted in the laboratory. Here, behavioral 

responses to a variety of noxious stimuli in several laboratory 

animals are measured (see section 5.1.3). While this procedure 

does not appear to be valid for all drugs which produce antinoci­

ception, a correlation does exist between the antinociceptive and 

analgesic properties of a particular drug or group of drugs such 

as drugs which affect the cholinergic system (see section 2) . The 

antinociceptive action of the anticholinesterase agent, diisopropyl 

phosphofluoridate (DFP), was studied in this dissertation. 

Certain factors, which can interfere with the correct assessment 

of antinocicpetion, are inherent in every testing procedure. For 

instance, here, DFP is kn~Nn to depress locomotor activity and 
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produce hypothermia (see section 2) . While these two effects of 

DFP were controlled during the present studies, either effect 

could have interfered with the correct evaluation of antinoci­

ception (see sections 5;3 and 5.4). 

It also should be pointed out that DFP may produce antinoci­

ception by stimulating Renshaw Cells. Here, the apparent anti­

nociception would be attributable to a decreased alpha motor neuron 

excitability, thus, a decreased ability to respond. This mechanism, 

however, seems unlikely since cholinergic-induced antinociception 

is known to arise from stimulation of supraspinal cholinergic 

receptors (see section 1.2.3.2). 

The ultimate test, however, is to determine whether the drug 

in question produces a clinically significant level of analgesia 

when administered to humans. The clinical value must take into 

account potential deleterious side effects as well as the effective 

level of analgesia produced by the drug. Thus, pain studies can 

be conducted only in the clinical setting. 

While DFP is too toxic for use in clinical studies, another 

anticholinesterase agent, physostigmine, is available and approved 

for clinical use. A study to determine the effect of physostigmine 

on the pain state in narcotic-tolerant individuals is described in 

the appendix (see appendix 1) . 
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6. SUMMARY 

Oiisopropyl phosphofluoridate (DFP; 0.1 to 1.5 mg/kg s.c.) pro­

duced antinociception in rats as measured by the hot plate test. The 

duration and intensity of the antinociceptive response incr~ased as 

the dose of OFP was increased. Administered 30 minutes after the ad­

ministration of DFP (1.5 mg/kg s.c.), atropine sulfate (4.0 mg/kg i.p.) 

antagonized while atropine methyl nitrate (4.0 mg/kg i.p.) did not 

affect the OFF-induced antinociceptive response. Administered in. 

doses of 1.0 and 1.5 mg/kg s.c., OFF produced antinociception in rats 

as measured by the tail flick test. OFF (0.1 to 1.5 mg/kg s.c.) de­

creased exploratory and motor activity levels in rats. Administered 

in a dose of 1.0 mg/kg s.c., DFF decreased rectal temperatures in 

rats. Atropine sulfate (4.0 mg/kg i.p.) failed to alter the diminu­

tion in exploration or motor activity produced by OFP. These results 

indicate that OFF-induced antinociception in rats arises via actions 

involving central cholinergic system; antinociception produced by OFF 

was independent of the locomotor depression and hypothermia produced 

by DFF. 

OFF (1.5 mg/kg s.c.) increased serotonin (5-HT) levels in rat 

medulla, meso-diencephalon, and telencephalon. As the serotonergic 

and cholinergic systems have been implicated in antinociception, OFF­

induced antinociception could be attributed to either system; para­

chlorophenylalanine (FCFA) was employed to clarify this point. Ad­

ministered alone, FCPA (i) decreased 5-HT levels in all three rat 
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brain regions studied, (ii) produced hypernociception as measured by 

the hot plate and tail flick tests, and (iii) increased motor activity 

levels; PCPA, alone, did not affect exploratory activity. Pretreat­

ment with PCPA prevented the augmentation of 5-HT levels produced by 

OFF (1.5 mg/kg s.c.) but did not affect the antinociceptive state or 

attenuation of exploratory or motor activity levels produced by OFF. 

Thus, OFF-induced antinociception is independent of the serotonergic 

system. 

Administered 30 minutes after the administration of OFF (1.0 mg/ 

kg s.c.), naloxone (0.5 to 5.0 mg/kg i.p.) antagonized OFF-induced 

antinociception. MR 2266 (-5,9 a-diethyl-2-(3-furylmethyl)-2'-hy­

droxy-6,7-benzomorphan, 1.0 mg/kg i.p.) and GPA 1843 (-2-allyl-2'­

hydroxy-9 S-methyl-5-phenyl-6,7-benzomorphan, 5.0 mg/kg i.p.), the 

active (-) isomers of narcotic antagonists, reduced morphine- and 

OFF-induced antinociception; MR 2267 and GPA 1847, the inactive (+) 

isomers of the corresponding narcotic antagonists, did not affect 

morphine- or OFF-induced antinociception. MR 2266, MR 2267, GPA 1843, 

and GPA 1847 did not produce antinociception in naive animals. An­

imals rendered tolerant t9 the antinociceptive action of morphine 

(3.0 mg/kg s.c.) by repeated daily injections of morphine failed to 

exhibit cross tolerance to an equiactive antinociceptive dose of DFP 

(1.0 mg/kg s.c.) or pilocarpine (2.5 mg/kg s.c.). These results sug­

gest that OFF-induced antinociception is mediated via stereospecific 

opiate receptors, possibly by the release of endogenous opioid pep­

tides. This latter phenomenon could not be demonstrated at this time. 
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CLINICAL INVESTIGATION PROTOCOL 

1. Introduction 

Acetylcholine, various cholinomimetics, and several anticholin­
esterase agents exhibit an antinociceptive action and the ability to 
potentiate narcotic-induced antinociception in experimental animals 
(Chen, 1958; Harris et al., 1968; Pedigo et al., 1975). Several in­
vestigations have demonstrated that the anticholinesterase agent, 
physostigmine has similar actions in humans (Slaughter, 1950; Karczmar, 
1977) . Recent animal studies in these laboratories are particularly 
pertinent (Koehn and Karczmar, 1978). First, we confirmed the anti­
nociceptive potency of anticholinesterase compounds described by 
others; in fact, some of those compounds appeared, in animals, to be 
several times more potent than morphine. Second, we have showed that 
this antinociceptive effect can be obtained in full in animals ren­
dered tolerant to morphine. Presently, intractable pain is treated by 
the chronic administrations of narcotic analgesic compounds. Side 
effects associated with this treatment include nausea, drowsiness, 
constipation, hypotension, and increased intracranial pressure, as 
well as addiction liability. What is most important, there is develop­
ment of tolerance to the analgetic action of the narcotic compound; 
thus, to achieve pain control larger and larger doses of narcotic is 
needed. Ultimately, the patients become refractory, as there is no 
dose of the narcotic that will produce analgesia short of causing re­
spiratory depression and death. 

This study is designed to test the analgetic property of physo­
stigmine, when used in combination with narcotic analgesics. It is 
hoped that the results will demonstrate that it is possible to in­
crease the pain threshold beyond that obtained with any dose of the 
narcotic used alone, thus, allowing the dose of narcotic analgesic to 
be reduced; smaller dose of the narcotic may be sufficient to produce 
pain control in the presence of physostigmine. Altogether, it is hoped 
to establish new therapeutic regimen for treating intractable as well 
as other associated pain states. 

The feasibility and safety of the proposed study can be readily 
substantiated. In the past, neostigmine was used in man to produce 
analgesia and to potentiate analgesia produced by codeine (for refer­
ences cf. Karczmar, 1977); as is well known, neostigmine is used safe­
ly fo~many years in myasthenic patients. Physostigmine was tested 
as an analgesic in normal volunteers (Sitaram et al., 1977); further­
more, it was employed in man in a number of other conditions. For 
instance, it is used to antagonize toxicity due to scopolamine and 
atropine, phenothiazines and tricyclic antidepressants; in fact, it is 
the treatment of choice in this latter condition (Snyder et al., 1974). 
It was used also in facilitating recovery from general anesthesia 
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(Bidwai et al., 1976; Brebner and Hadley, 1976). Furthermore, it is 
used currently in man to control mania, Huntington's chorea, and tar­
dive dyskinesia, and to improve memory (for references, cf. Karczmar, 
1976; 1977; Karczmar and Dun, 1978). In these various conditions, 
physostigmine was used in intravenous (IV) , intramuscular (IM) , and 
oral (PO) doses of up to 2-4 mg total dose; there is no report of se­
rious side actions and none of toxicities. In some patients, nausea 
and abdominal cramps were noticed. More rarely, sweating and saliva­
tion were observed. However, pretreatment with a synthetic anti­
cholinergic agent Robinul (0.15 mg IM) 30 minutes prior to the admin­
istration of physostigmine (0.5 mg IV) prevents these peripheral side 
effects. No further side actions or toxicities will be expected from 
the dose used. There are special considerations pertinent in the con­
text of the safety of study in question. First, physostigmine is a 
so-called reversible inhibitor of cholinesterase, the inhibition being 
short-lived and not extending, in both animal and human studies, be­
yond l to 2 hours. Second, physostigmine acts via temporary accumu­
lation of acetylcholine;as the latter is hydrolyzed upon the termin­
ation (reversal) of anticholinesterase action of physostigmine, no 
potentially deleterious delayed effects and no pathology result from 
the action of physostigmine. Third, there are specific, fast acting 
and safe antagonists of physostigmine; the quaternary anticholinergics 
such as methanthaline and propanthaline can be used to control the 
peripheral effects of physostigmine, such as gastrointestinal hyper­
motility, while atropine and scopolamine may be used to prevent both 
central and peripheral actions of physostigmine. Finally, physostig­
mine (Antilirium) is obtainable in a preparation designed for human 
use. 

2. Specific Aims 

This investigation is designed to establish the following: 
(A) Physostigmine potentiation of narcotic-induced analgesia in terms 
of: 

(1} Latency to onset of analgesia after drug administration 
(2) Duration of analgesic effect 
(3) Peak analgetic action 

(B) Therapeutic evaluation of combined narcotic-physostigmine drug 
treatment on the subjective pain experience. 

(l) Sensory qualities in terms of temporal, spatial, pressure et 
al. 

(2) Affective qualities in terms of tension, fear, and autonomic 
properties • 

(3) Evaluative qualities that describe the subjective overall 
intensity of the total pain experience. 

3. Experimental Protocol 

All patients and controls used in this study will be obtained by 
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their consent from the service of Dr. K. Badrinath, Chief, Oncology 
Section, Loyola University Medical Center. Patients who are presently 
being administered narcotic analgesics on a chronic basis for relief 
of intractable pain will be selected for this study. Patients shall 
have no known history or evidence indicating the presence of cardiac 
arrythmias, demonstrable intracranial lesions or any other physical 
or psychological abnormalities which would by the discretion of the 
attending physician place them at any particular risk. The age range 
of the patients will vary; primarily adults (i.e. greater than 21 years 
of age) will be used. No financial compensation is planned as part of 
this study. No additional laboratory or diagnostic procedures will be 
employed in or solely for the purpose of this study. 

4. Clinical Protocol 

Patients who receive narcotic analgesics on a regular basis will 
be utilized in this study. All patients participating in this study 
will be required to complete an informed consent (see pp.203). Having 
obtained the patients consent, the research investigator along with 
the patient will complete the McGill Pain Assessment Questionnaire 
which is used to gather a medical history as well as to initially 
evaluate the patients' pain status (Melzack, 1975). This requires 
approximately 30 minutes of the patients time. 

On the test day (day 1, Table 1) a patient will receive his/her 
regularly scheduled pre-determined dose of narcotic analgesic. Robinul 
(0.15 mg IM) will be administered 30 minutes before the subsequent 
drug administration for the relief of pain. At that time, the nar­
cotic analgesic physostigmine or narcotic-analqesic placebo comination 
will be employed in place of the regularly scheduled dose of narcotic 
analgesic. The correct evaluation of any drug effect requires that a 
double blind study be utilized. The choice of the combination for the 
particular patients will be randomized according to the methods de~ 
scribed by Sakal and Rohlf (1973). Furthermore, neither the patients 
nor the physician administering the drugs will know whether he/she is 
given the narcotic analgesic-placebo or the narcotic analgesic-physo­
stigmine combination. The patients will be asked to evaluate and com­
pare his/her conditions for the time periods corresponding to the two 
drug administrations mentioned previously; all evaluations will be 
made by completing the McGill-Melzack Pain Questionnaire 20 minutes 
after the administration of the regularly scheduled dose of the nar­
cotic analgesic and subsequent narcotic analgesic-physostigmine/placebo 
combination (Melzack, 1975). This procedure will be repeated (day 3, 
Table 1). Those patients who received the narcotic-analgesic physo­
stigmine drug combination on day 1 will now, day 3 receive the nar­
cotic analgesic-placebo drug combination and vice versa. The McGill­
Melzack Pain Questionnaire will be administered as before. Double 
blind study technique will be employed. In accordance with the I.R.B. 
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guidelines, patient confidentiality will be secured. Patients will be 
identified by a coded patient identification number on all forms. 

5. Interpretation of Data 

This investigation will be evaluated by tabulating the patients 
responses from the McGill-Melzack Pain Questionnaire (Melzack, 1975). 
The original McGill-Melzack Pain Questionnaire was specifically de­
signed to provide quantitative measures of clinical pain that can be 
treated statistically. The 3 major measures are: (1) the pain rating 
index, based on two types of numerical values that can be assigned to 
each word descriptor, (2) the number of words chosen, and (3) the 
present pain intensity based on a 1 to 5 intensity scale. Modifica­
tion of the original questionnaire (i.e. the addition of part 5) was 
instituted to gather additional pertinent information for this study 
(Melzack, 1975). 

Statistical analysis to determine the effecti,~ness of this pro­
cedure can be performed by comparing the patients responses in the 
various categories for the regularly scheduled dose of the narcotic 
analgesic and the narcotic analgesic-physostigmine/placebo combination 
testing sessions. If a patient's responses for the drug combination 
are greater than for the regularly scheduled dose of narcotic, it is 
rated+; if less,-; if no change, '0'. Then, a simple sign test for 
significance can be carried out. Similarly, the t test can be used 
in which the mean net changes are calculated and the differences from 
the mean are calculated for each testing session to determine whether 
a statistically significant difference has occurred. Both types of 
tests will be employed in this study. It is anticipated that this 
study will employ 20 to 40 patients. However, a pilot study utilizing 
5 patients will be performed in an unblinded manner which will allow 
the investigators to determine the degree of significance, thus allow­
ing for a better estimate of the number of patients (n) required. 'n' 
will be set on the basis of fewest patients which would be likely to 
show a statistically significant difference (p<0.05). 

6. Risks and Potential Benefits 

Risks to the patient include the potential side effects of Robinul 
and physostigmine treatments; dry mouth, nausea, bradycardia, and hypo­
tension. Gastric symptoms and heart signs if they appear will be 
treated with clozapine and atropine respectively. Any complaints of 
pain at any time during the study will be recorded and a narcotic an­
algesic given immediately. The only actual discomfort associated with 
this experiment is due to the intramuscular (IM) and intravenous (IV) 
administrations of Robinul and physostigmine/placebo respectively. 

The potential benefits of this experiment are as follows: physo-
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stigrnine is expected to potentiate narcotic-induced analgesia by pro­
ducing a greater level of analgesia; thus,(l) the refractory patient 
would be responsive to the analgetic effect of the combined drug 
treatment and (2) the dose of the narcotic analgesic could be reduced, 
thus reducing the severity of associated side effects. If the results 
are positive this would lend evidence and support for establishing a 
new more effective treatment plan for the control of pain. This could 
also lend further evidence for the use of anticholinesterase agents 
as analgesic substances (new use). 

7. Table 1 

Informed consent form for each patient utilized in this study must 
be completed (see pp. 203). 

McGill Pain Assessment Questionairre completed before test day 
(Melzack, 1975). 

Test Day Drug Administrations 

Regularly scheduled, predetermined dose of narcotic anal­
gesics administered throughout study (Narc.). 

Narc. 

*McGill-Melzack Pain Questionnaire 20 min. post drug 
administration. 
Robinul (0.15 mg IM) 30 minutes prior to Narc. + Physo­
stigmine/Placebo 

1 Narc. + Physostigmine (0.5 mg IV)/Placebo 

*McGill-Melzack Pain Questionnaire 20 min. post drug 
administration 

Narc. 

Narc. 

2 Narc. 

Narc. 

Narc. 

*McGill-Melzack Pain Questionnaire 20 min. post drug 
administration 
Robinul (0.15 mg IM) 30 minutes prior to Narc. + Physo­
stigmine/Placebo 



3 Narc. + Physostigmine (0.5 mg IV)/Placebo 

*McGill-Melzack Pain Questionnaire 20 min. post drug 
administration 

Narc. 

*McGill-Melzack Pain Questionnaire (Melzack, 1975). 
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8. Informed Consent IRB Number --------
Loyola University Medical Center 

Maywood, Illinois 
Department of Medicine 

Section of Oncology and Pharmacology 

Patient's Name 

Project Title: 

Date: --------------

-------------------------------------------------------------

8.1 Patient Information 

8.1.1 Description and Explanation of Procedure 

Your illness requires frequent and repeated administration of 
narcotic analgesic drugs to prevent the pain which you experience. As 
you become tolerant to the analgetic action of the narcotics the dose 
must be increased to remain effective. Associated with the chronic 
administration of narcotics are several side effects; most notably 
nausea, drowsiness, constipation, and respiratory depression. Some­
times your pain cannot be controlled satisfactorily even as we in­
crease the dose. The purpose of this investigation is to study the 
usefulness of the drug physostigmine, used in a combination therapy 
program with the narcotic analgesic to potentiate the effective level 
of analgesia. This would allow the dose of the narcotic to be re­
duced lessening the severity of side effects attributable to narcotic 
administration, and may improve pain control and your well-being. 

The correct pharmacological analysis requires that this study 
be done according to double-blind technique. To correctly evaluate 
the usefulness of physostigmine each patient will receive the narcotic 
analgesic-physostigmine combination and the narcotic analgesic-placebo 
(inactive compound) combination on test days l and 3 or vice versa. 
Neither the patient nor the physician administering the drug will know 
who receives what. In addition, 30 minutes prior to the administration 
of the narcotic analgesic-physostigmine/placebo combination you will 
receive an intramuscular (IM) injection of Robinul to prevent the ap­
pearance of side effects attributable to the administration of phy­
sostigmine. Each patient will participate in this study on three 
days. During this time, you will be asked to complete with the help 
of a research investigator five questionnaires as follows. First, the 
McGill Pain Assessment Questionnaire will be administered on the day 
preceding the first test day. This will require approximately 30 min­
utes of your time. Second, the McGill-Melzack Pain Questionnaire will 
be administered two times each on test days l and 3. You will be asked 
to complete this form following your regularly scheduled dose of nar­
~otic analgesic as well as following the combination regularly sched­
uled dose of narcotic analgesic with physostigmine/placebo on each 



test day (total of 4 times) . No participation is required on test 
day 2. 

8.1.2 Risks and Discomforts 
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There are essentially no life risks involved using physostigmine 
at this dose (0.5 mg); potential adverse side effects are few. Some 
patients report feelings of nausea which can be remedied by admin­
istration of Clozapine or Compazine. Bradycardia (slow heart) consti­
tutes another side effect which has developed in some patients. Your 
heart rate and blood pressure will be monitored and in need can be 
corrected by administration of atropine" The only discomfort associ­
ated with this procedure would be due to the needle for intramuscular 
(IM) injection of Robinul and the intravenous (IV) injection of physo­
stigmine/placebo. 

I understand that biomedical or behavioral research such as that 
in which I have agreed to participate, by its nature, involves risk 
of injury. In the event of physical injury resulting from these re­
search procedures,emergency medical treatment will be provided at no 
cost, in accordance with the policy of Loyola University Medical Cen­
ter. No additional free medical treatment or compensation will be 
provided except as required by Illinois law. 

In the event you believe that you have suffered any physical 
injury as the result of participation in the research program, please 
contact Dr. H.J. Blumenthal, Chairman, Institutional Review Board for 
Protection of Human Subjects at the Medical Center, telephone (312) 
531-3384. 

8.1.3 Potential Benefits 

The benefit to you that we hope for will be a lessening of pain, 
and reduction of untoward side effects due to narcotic drug adminis­
tration (drowsiness and constipation) . We also hope that this partic­
ular therapeutic regimen will prove to be effective and thus establish 
a new procedure for treating patients who require this type of care. 

8.1.4 Alternatives 

The alternative method for management of your pain is to be main­
tained on a narcotic analgesic treatment plan. The side effects and 
risks associated with this therapy are stated previously. 
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Consent 

I have fully explained to (name: patient) the nature 
and purpose of the above described procedure and the risks that are 
involved in its performance. I have answered and will answer all 
questions to the best of my ability. 

(signature: principal investigator) 

I have been fully informed of the above-described procedure with its 
possible benefits and risks. I give permission for my participation 
in this study. I know that Dr. Ketty Badrinath or his associates will 
be available to answer any questions I may have. If, at any time, 
I feel my questions have not been adequately answered, I may request 
to speak with a member of the Medi~al Center Institutional Review 
Board. I understand that I am free to withdraw this consent and 
discontinue participation in this project at any time without prej­
udice to my medical care. I have received a copy of this informed 
consent document. 

(signature: patient) 

(signature: witness to signatures) 



APPROVAL SHEET 

The dissertation submitted by Gary L. Koehn has been read and 
approved by the following committee: 

Alexander G. Karczmar, M.D., Ph.D. 
Professor and Chairman 
Department of Pharmacology 
Loyola University Stritch School of Medicine 

Edm~~d G. Anderson, Ph.D. 
Professor and Chairman 
Department of Pharmacology 
University of Illinois 

Graeme Henderson, Ph.D. 
Assistant Professor 
Department of Pharmacolo~w 
Loyola Uni vt~rsi ty Stri t-::, School of Medicine 

Byong Moon, Ph.D. 
Assistant Professor 
Department of Pharmacology 
Rush 1-l.edical College 

R. Alan North, M.D., Ph.D. 
Associate Professor 
Department of Pharmacology 
Loyola University Stritch School of Medicine 

229 

The final copies have been examined by the director of, the dis­
se~tation and the signature which appears below verifies the fact that 
any necessary changes have been incorporated and that the dissertation 
is now given final approval by the Committee with reference to content 
and form. 

The dissertation is therefore accepted in,partial fulfillment of 
the requirements for the degree of Doctor of Philosophy. 

Date / I 


	Diisopropyl Phosphofluoridate-Induced Antinociception
	Recommended Citation

	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img109
	img110
	img111
	img112
	img113
	img114
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img158
	img159
	img160
	img162
	img163
	img164
	img165
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239
	img240
	img241
	img242
	img243
	img244
	img245
	img246
	img247
	img248
	img249
	img250

