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CHAPTER ONE 

INTRODUCTION 

According to the World Health Organization (WHO) each year 8.2 million people 

die worldwide from cancer (World Health Organization, 2016).  In the United States 

cancer is the second leading cause of death, and the American Cancer Society (ACS) 

estimates that one in two men and one in three women living in the U.S.  will develop 

cancer at some point in their lives (American Cancer Society, 2016). Due to the 

prevalence of cancer there are countless institutions and scientist researching cures, 

treatments, and other areas of aid. The ACS has invested over $4 billion in research since 

1946 (American Cancer Society, 2016). The National Cancer Institute, the U.S. 

government’s primary agency for cancer related research, funded 3,100 institutions and 

over 14,000 investigators in 2014 (National Cancer Institute, 2016). Their efforts have 

assisted in lowering the death rate of cancer by 22% from 1990-2011 (National Cancer 

Institute, 2016). Although annual death rates are consistently decreasing, the projected 

number of new cases of cancer will increase by 70% over the next 20 years.  

 There are several options available for the treatment and management of cancer, 

some of which are: chemotherapy, radiation therapy, surgery, angiogenesis inhibitor 

therapy, and photodynamic therapy. Chemotherapy is the most popular course of 

treatment. Chemotherapy uses drugs to stop or slow the growth of cancer cells. It is often 

combined with radiation therapy of surgery. A major drawback of chemotherapy is its 
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robustness. It attacks both cancerous and healthy cells which leads to many unwanted 

side effects. 

 Radiation therapy damages cancer cells’ DNA by using X-rays, gamma rays, or 

other charged particles. This method of treatment can damage healthy cells as well. 

Surgery is commonly coupled with radiation therapy to remove the tumor and some of 

the tissues around it, but there is high incidence of reoccurrence. 

 Angiogenesis inhibitor therapy prevents the formation of new blood vessels which 

in return prevents tumors from growing. This type of treatment does not “cure” the 

patient it only halts the tumors growth. To rid the patient of the cancer this therapy is 

combined with radiation and/or chemotherapy, leading to aforementioned unwanted side 

effects. 

Photodynamic therapy (PDT) use light for the treatment of cancer (Figure 1). A 

light sensitive drug is given to a patient and absorbed by cells throughout the body. After 

a period of time most of the drug leaves the body, but the cancer cells retain the drug. The 

cells laden with the drug is exposed to light and the drug becomes toxic to cells 

destroying the cancer. One limitation of this method is the light needed to activate most 

drugs cannot pass through more than one centimeter of tissue (Vrouenraets, et al., 2003) 

therefore this restricts the types and sizes of cancer treated. Also, the drug is absorbed by 

cells throughout the body and can be retained by non-cancerous cells which leads to 

unwanted cell death and prolonged light sensitivity throughout the entire body.   For 

these reasons, our research focuses on the development of new PDT agents to increase 

specificity and to widen the scope of its use.  



3 
 

 

 

Figure 1. Photodynamic Therapy Schematic. A photosensitizer is given to the patient 
either topically or intravenously. Cancerous tumors preferentially retain the 
photosensitizer while healthy cells do not. The tumor is then irradiated with light at the 
appropriate wavelength which in turns activates the photosensitizer to become cytotoxic 
to the tumor. (Mroz, et al., 2011)   
 

Historical Perspective on Photodynamic Therapy 

The use of phototherapy can be traced back to Ancient Egypt, Indian, and Chinese 

civilizations. In 1900 Oscar Raab observed that acridines (Table 1) in the presence of 

daylight are lethal to protozoan paramecium (Pervaiz and Malini, 2006). Raab along with 

his mentor, Herman Von Tappeiner, coined the term “photodynamic reaction” to 

differentiate their dynamic photobiological reactions that occurred in the presence of 

molecular oxygen from the photosensitization of photographic plates by certain 

chromophores (Pervaiz and Malini, 2006). In 1901 Niels Finsen discovered that red light 

can be used in the prevention of the formation and discharge of small pox pustules. He 

also discovered that ultraviolet light can be used to treat cutaneous tuberculosis (Dolman, 

et al., 2003). He was awarded him the Nobel Prize in 1903 for this research (Dolman, et 

al., 2003). In 1903 Tappeiner and Jodlbauer treated skin tumors with topically applied 
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eosin (Table 1) and white light (Dolman, et al., 2003). This was the beginning of modern 

PDT. 

Modern PDT began with the study of porphyrins as photosensitizers. In 1911 

Hausmann studied hematoporphyrins (Table 1) to determine their photosensitivity and 

phototoxic effects (Pervaiz and Malini, 2006). In 1955 hematoporphyrin derivatives 

(HPD) were developed by Samuel Schwartz (Pervaiz and Malini, 2006). These 

derivatives were more phototoxic than hematoporphyrins (Pervaiz and Malini, 2006). 

Five years later Richard Lipson and Edward Baldes at the Mayo Clinic showed that 

Schwartz’ HPD localized to tumors and emitted fluorescence which could be used to 

detect tumors (Pervaiz and Malini, 2006). Thomas Dougherty reported in 1975 that HPD 

and red light destroyed mammary tumor growth in mice and J.F. Kelly used HPD and 

light to kill bladder carcinoma in mice (Pervaiz and Malini, 2006). The first PDT drug 

was approved by the Federal Drug Administration (F.D.A.) in the U.S. in 1993.  

Acridine Eosin Hematoporphyrin 

 

 

 

 

 

 

 

 
Table 1. Early Photosensitizers: Acridine and Eosin were observed in 1900 and 1903 
respectively to be lethal in the presence of light. Hematoporphryins were used in 1911. 
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Photodynamic Therapy Mechanism 

PDT has three requirements: a photosensitizer (PS), light at an appropriate 

wavelength, and molecular oxygen. A PS is a molecule that upon activation by light at a 

particular wavelength in the presence of molecular oxygen produces reactive oxygen 

species (ROS). The PS absorbs photons from light and this energy promotes one electron 

from the singlet state to a high energy orbital but it retains its spin. This state is short 

lived and is relaxed by fluorescence or internal conversion to heat (Robertson, 2009). 

This excited state may also undergo intersystem crossing in which the spin of the excited 

electrons inverts and forms an excited triplet state. This triplet state is long lived and can 

proceed via two routes, Type I reactions and Type II reactions (Figure 2) (Robertson, 

2009). In Type I reactions the PS in the triplet state reacts directly with a substrate. The 

PS tranfers a proton and/or electron to the directly to the substrate to create a radical 

anion and/or cation respectively. These radicals then react with molecular oxygen to 

produce ROS (Robertson, 2009). In Type II reactions the PS in the excited triplet state 

reacts directly with molecular oxygen to produce singlet state oxygen (Robertson, 2009). 

Type I and II occur simultaneously and the ratio of the two is determined by the PS, 

concentration of substrate, availability of molecular oxygen, and various other factors.  

Hydroxyl radicals and singlet oxygen are both very reactive and have short half live 

(<0.04 µs), thus only molecules in close proximity to the ROS production site  (<0.02 

µm) are affected by PDT (Pervaiz and Malini, 2006). 
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Figure 2. Type I vs. Type II reaction pathway. The PS absorbs photons from light and 
this energy promotes one electron from the singlet state to a high energy excited orbital. 
This excited state may undergo intersystem crossing in which the spin of the excited 
electrons inverts and forms an excited triplet state. This triplet state can proceed via two 
routes, Type I and II reactions. (Cieplik, et al., 2014) 
 

Modern Photosensitizers 

 An ideal photosensitizer will be chemically pure, chemically and physically 

stable, have a short time span between administration and accumulation in tumors, 

exhibit high selectively for cancerous cells, be retained preferentially by the cancerous 

cells, have minimal dark cytotoxicity, be cytotoxic only upon photoactivation, have a 

high quantum yield for the production of singlet oxygen, and be excreted from the body 

quickly (Pervaiz and Malini, 2006; Dolmans, et al., 2003). Absorption between 600-800 

nm has been deemed the optimal therapeutic window (Figure 3). Absorption and 

scattering of light by tissue increase as the wavelength decreases (Ethirajan, et al., 

2011;Pandey and Zheng, 2000). Nucleic acids and amino acids are present in tissue and 
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they absorb light between 250- 300 nm. Therefore, if a PS has a maximum absorbance 

over 600 nm these components will have very little effect on the PS effectiveness. 

Hemoglobin is the main component of tissues and is the biggest contributor to its 

absorption spectrum. Hemoglobin’s absorptions peaks are all below 620 nm and those 

close to 620 nm are very weak. Melanin is also contained in tissues and has a broad 

absorption spectrum with strong absorption at shorter wavelengths (Ethirajan et al., 

2011,Franck and Nonn, 1995). Taking into account all of the components mentioned 

which absorb below 600 nm means that light penetration is minimal at wavelengths <600 

nm. Wavelengths above than 800 nm do not provide enough energy to form a sizeable 

yield of ROS upon photoactivation (Ethirajan et al., 2011; Agostinis et al., 2011). 

 

 
Figure 3. Optimal Therapeutic Window. Wavelength below 600nm are mainly absorbed 
by nucleic acids, amino acids, melanin, and hemoglobin. Wavelengths above 800 nm do 
not provide sufficient energy to generate appreciable amounts of singlet oxygen. 
(Ethirajan et al., 2011; Seery, 2016) 

 
First Generation Photosensitizers 

Hematoporphyrins and HPD are referred to as first generation PS (Bonnet, 1999). 

HPD have a strong absorption band at 400 nm, commonly called the Soret band, and a 

four band absorption, Q band, which appears at 500, 540, 570, and 630 nm (Bonnet, 
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1999).  Photofrin®, was the first porphyrin based PS used in clinical trials and 

subsequently the first to receive approval for use in the U.S. and Canada for the 

treatments of bladder, gastric, endobronchial, brain, and esophageal cancer (Dolman, et 

al., 2003). Photofrin® consists of about 60 different porphyrins (Orenstein, et al., 1996). 

Woodburn et al purified the porphyrins contained in Photofrin® and determined that 

porphyrins with cationic side chains localized in mitochondria and those with anionic 

side chains localized in lysosomes(Orenstein, et al., 1996; Woodburn, et al., 1991). 

Woodburn further investigated and determined that localization in mitochondria provided 

the most cellular death Orenstein, et al., 1996; Woodburn, et al., 1991;Woodburn, et al., 

1992).  

 These first generation PS were effective and made from readily available 

inexpensive reagents. Yet, HPD are complex mixtures that are difficult to reproduce, 

have modest activity, and poor selectively.  In addition, first generation PS like 

Photofrin®   have four to six week patient photosensitivity (Josefen and Boyle, 2008). 

Furthermore, the absorption at 630 nm, is very weak and outside of the optimum 

therapeutic window (Yamamto, et al., 1999, Hirth and Michelsen, 1999). The weak 

absorption is compensated by using high doses of light of and drug which increases 

harmful side effects (Bonnet, 1999; Jori, 1992). These drawbacks lead to the creation of 

second generation PS. Many of these PS are porphyrin derivatives due to porphyrin’s 

efficiency to generate singlet oxygen, lack of dark cytotoxicity, its ability to absorb light 

at longer wavelengths and have intense bands above 600 nm.  
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Second Generation Photosensitizers 

Porphyrins. In order to capitalize on the advancements of Photofrin®, second 

generation PS began with attempts to produce pure porphyrins (Figure 4a). Many 

substituted porphyrins that have the lowest energy band red-shifted and/or intensified 

were synthesized.  m-THPP (5,10,15,20-tetraakis(m-hydroxy-phenyl)porphyrin (Figure 

4b) was determined to be 25-30 times more potent than HPD. Sulfonated derivatives of 

tetraphenylporphyrins (TPP) (Figure 4c) were synthesized, yet they appear to have some 

neurotoxicity in rats (Bonnet, 1999).  

 

A 

 

B 
C 

 
Figure 4. Chemical Structure of Porphyrins. (a) Porphyrin (b) m-THPP (c) TPP 

Chlorins.  Chlorins (Figure 5A) have strong absorption bands in the red region 

(Bonnet, 1999). They are derived from chlorophyll. They differ from porphyrin by the 

absence of at least one double bond in one of the pyrrole rings in the chlorin. Visudyne®, 

a benzoporphyrin derivative (BPD) (Figure 5b) is a chlorin synthesized from 

protoporphyrin that has absorption at 690 nm and it is rapidly accumulated in tumors 

which allow for irradiation on the same day that it is injected (Detty, et al., 2006). 

Visudyne® has been approved for the treatment of wet age-related macular degeneration 

in the U.S. since 2000. It has a relatively short half-life with skin photosensitization 
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lasting less than a week. Foscan®, a synthetic chlorin, 5,10,15,20-tetraakis(m-hydroxy-

phenyl)chlorin (m-THPC) (Figure 5c) is a potent photosensitizer that was approved in 

2001 for use in Europe, Norway, and Iceland (Pervaiz and Malini, 2006). The U.S. Food 

and Drug Administration (FDA) rejected Foscan® in 2000 (Woodburn, et al., 1992). 

Foscan® has a strong absorption peak at 652 nm, and drug and light dose are ten times 

lower than HPD. Foscan® is also 25-30 times more effective than HPD, but it lacks 

selectively, and has a six week skin photosensitization period which is a major drawback.  

 

A 

 

B 

 

C 

 
Figure 5. Chemical structures of Chlorins. (a) Chlorin (b)BPD (c)Foscan (m-THPC) 

Phthalocyanines and related naphthalocyanines. Phthalocyanines (Figure 6b) 

and naphthalocyanines (Figure 6a) have macrocyclic π-system these compounds have 

strong absorption at 670 nm and 770 nm respectively. Due to their strong absorptions 

only a small dose is needed (Nyman and Hynninen, 2004; Bonnet, 1995). Phototoxicty 

increases when they are chelated with Zn3+ and Al3+. These metals extend the lifetime of 

the triplet state (Orenstein, et al., 1996). To increase hydrophilicity, sulfonated derivates 

were synthesized (Woodburn, et al., 1992). Photosens®, a sulfonated aluminum 

phthalocyanine (Figure 6c), has been successfully used in clinical studies for the 
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treatment of cutaneous and endobronchial lesions and head/neck tumors (Uspenskii, et 

al., 2000; Sokolov, et al., 1995). Cellular uptake and phototoxicity are directly 

proportional to the degree of sulfonation (Woodburn, et al., 1992). Unfortunately, 

sulfonation could not be controlled, and the product is a mixture of sulfonated 

phthalocyanines that could not be separated (Woodburn, et al., 1992).   

 

a 

 

b 

 

c 

 
Figure 6. Chemical Structures of Phthalocyanines and Naphthalocyanines.  
(a) naphthalocyanine (b)phyalocyanin (c) Photosens® (AlPcS4). 

 
d-Aminolevulinic acid (ALA). ALA (Figure 7a) is a naturally occurring amino 

acid, and an intermediate in the synthesis of heme.  During the biosynthesis of the heme 

ALA is converted into proporphyrin IX (PpIX), which is phototoxic. PpIX (Figure 7b) 

accumulates in tumor with slight selectivity due to the activity of two different enzymes, 

ferrochelatase and porphobilinogen deaminase. Ferrochelatase is responsible for 

incorporating iron into PpIX, and porphobilinogen deaminase is responsible for forming 

uroporphyrin from porphobiligen (Woodburn, et al., 1992).  This provides for higher 

selectivity than Photofrin® but the maximum absorption is at 635 nm. Also, ALA is 

hydrophilic which makes it difficult penetrate cell membranes (Woodburn, et al., 1992). 
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A 

 

b 

 
Figure 7. Chemical Structures of ALA and PpIX. (a)ALA (b)PpIX 

Although first and second generation photosensitizers are beneficial in the 

treatment of cancers, they have one major disadvantage. They are not tumor selective. 

These photosensitizers accumulate in both normal and cancer cells which causes severe 

side effects. Therefore, a third generation of photosensitizers is currently being 

investigated. This new generation of compounds will maintain or enhance the 

characteristics of second generation PS, yet offer enhanced tumor selectivity.  

Targeted PDT 

A major problem with current cancer therapies is the low selectivity of the anti-

cancer drug. Low selectivity of the drug allows for the toxic effects of the drug to exerted 

on both healthy and cancerous tissue. PDT can be considered to have increased 

selectivity over traditional cancer therapies because the toxic effects of the drug in only 

induced by light, and the tissues not exposed to light will be spared the toxic effects. Yet, 

some tissues that are exposed to environmental light after administering PS can exhibit 

some phototoxicity that persists for several weeks after treatment. Therefore, targeted 

PDT is the focus of the third generation PS. By covalently or non-covalently attaching a 

targeting moiety to the PS specificity is increased. Such approaches have included the use 
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of low density lipoproteins (LDL) conjugates, monoclonal antibodies conjugates, 

transferrin conjugates, and macrophage scavenger receptor mediated protein conjugates. 

Conjugates of PS to small molecules such as steroids, and sugars to nanoparticles have 

been investigated to improve cell-type specificity in targeted PDT. 

Liposomes and low density lipoproteins. Liposomes prepared with the ethoxy 

castor oil, Cremphor-EL, has been used for the delivery of hydrophobic PS (Reddi, 

1997). It was shown that 70-80% of hematoporphyrin that was administered in 

dipalmitoylphosphatidylcholine (DPPC) liposomes became associated with lipoproteins, 

while 10% of hematoporphyrin was associated with protein fraction after delivery in 

phosphate buffered saline (Reddi, 1997). These studied indicated that the liposomal 

hematoporphryin accumulated in the tumor at a slower rate than the free drug, but it 

reached a maximum tumor concentration twice as high. Importantly, the skin 

concentration was lower than the free drug (Reddi, 1997).  

 Proliferating tumor cells and tumor microvascular endothelial cells overexpress 

LDL receptors. Thus, LDL conjugates can be used as targeting vehicles to enhance a PS 

intracellular accumulation and potentially its photodynamic activity via receptor 

mediated endocytosis pathway (Sharman, et al., 2004). LDLs also play an important role 

in the transport of hydrophobic PS across the plasma membrane (Reddi, 1997). The 

binding of serum proteins to the PS is mainly controlled by the hydrophilicity of the PS 

(Reddi, 1997). Moderately hydrophobic PS have been shown to be transported in the 

bloodstream by albumin, whilst highly hydrophobic are transported by lipoproteins. In 

human erythrocytes, phthalocyanine-loaded LDL conjugates have been shown to induce 
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cytotoxic effects by targeting specific thiol groups at the cell membrane (Martins, et al., 

2002). The efficiency and selectivity of PS delivery to LDL receptors in cancer cells 

depends on the conformational change of the LDL structure. The hydrophobic Zn(III)-

phthalocyanine (ZnPc) PS bound to human LDL (ZnPc-LDL) exhibits low affinity for 

LDL receptors and the conjugate was internalized into human HT1080 fibroblasts 

through non-specific endocytosis. The lack of affinity was due to changes in the 

apolipoprotein-B structure induced by phthalocyanine association in the ZnPc-LDL 

conjugate (Polo, et al., 2002). To improve the incorporation of phthalocyanine-LDL 

complexes, an attempt has been made to introduce a 12 carbon alkyl chain to aluminum 

tetrasulfonated phthalocyanine (AlPcS4) through a sulfonamide bond (Urizzi, et al., 

2000). This conjugate showed tumor regression activity and was effective against A549 

adenocarcinoma lung cancer cells (Sharman, et al., 2004; Urizzi, et al., 2000). 

 To enhance selectivity PS-LDL conjugates have been coupled to other targeting 

moieties such as folate (Zheng, et al. 2005; Song, et al., 2007). These targeting agents 

have been reconstituted into a LDL core. Transmission electron microscopy has 

confirmed that these conjugates retain the size and shape of native LDL and were 

preferentially taken up by tumor tissues (De Vries, et al., 1999). Although LDL has 

proven to be a useful vehicle for the delivery of lipophilic drugs and diagnostic agents to 

tumors, its clinical application in cancer is limited to LDL receptor related diseases 

because many tumors do not over express LDL receptors (Dolmans, et al., 2003; Zheng, 

et al., 2005;Fodinger, et al., 2000; Bailey and Gregory, 1999).  
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Antibodies and serum proteins. To enhance tumor selectivity. Antibodies can be 

used as targeting vehicles when being conjugated to PS (Mayo, et al., 2003). The 

conjugation of a PS to an antibody retains the photosensitizing properties and the 

conjugates bind to targeted cells more strongly than the native PS. Bhatti etal (Bhatti, et 

al., 2008) introduced a system in which multiple PS were covalently attached to single 

chain variable fragments. The resulting photoimmunoconjugates not only retained 

photophysical properties but also were more potent than any of the individual PS with 

respect to tumor cell killing capacity. Another study showed that multiply loaded 

bioconjugates composed of transferrin and hematoporphyrin when combined with 

luminol can significantly improve the specificity and efficiency of PDT for 

erythroleukemic cells by a factor of almost seven fold (Laptev, et al., 2006). Malatesti et 

al (Malastesti, et al., 2006) synthesized a cationic 5,15-diphenyl porphyrin-monoclonal 

antibody (DPP-MAb) conjugates via an isothiocyanate linkage. The resulting DPP-Mab 

conjugate were photodynamically inactive. Chlorin e6-monoethylenediamine monoamide 

has been studied by the Hasan laboratory (Soukos et al, 1998). Theses conjugates were 

synthesized with various linkers including dextran, poly-L-lysine to increase the 

photosensitizer:MAb ratio. It was shown that ratios between 24-36 impaired 

immunoreactivity. These compounds also showed increased tumor selectivity and 

phototoxicity, yet complete removal of the tumor cells were not consistently found. 

Steroids and hormones. Many steroid hormones have been conjugated to various 

PS to increase selectivity, based on the hypothesis that the overexpressed steroid 

receptors that in hormone-sensitive cancer cells can serve as the targeting site. Sharman 
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et al. (Sharman, et al., 2004) have discussed the use and efficacy of 2-methoxyestradiol, 

glucocorticoids, lovastatin, estrogens, androgens, progesterone, glucocorticosteroids, 

thyroid hormones and retinoic acid (Golab, et al., 2003; Cowled, et al., 1985; Biade, et 

al., 1993; Aranda and Pascual, 2001). All of these molecules can bind with high affinity 

to a specifc member of the nuclear hormone receptor superfamily (Josefen and Boyle, 

2008). Steroid receptors located on the nuclear membrane attracted and directed their 

ligands into cancerous cells where these receptors are overexpressed.  

 Hormone-responsive tumor cells, especially breast tumor cells that naturally 

overexpress estrogen receptor, can be targeted for the selective delivery of estrogen-

porphyrin conjugates for targeted PDT in breast cancer. Although many steroid-

photosensitizer conjugates can effectively increase the phototoxicity within targeted 

tumor cells, their low binding affinity to the targeted steroid receptors remains a problem 

(Sharman, et al., 2004). High phototoxicity often associates with low selectivity, and vice 

versa. For example, when chlorin e6-estradiol conjugates was introduced into the 

estrogen receptor positive MCF-7 breast cancer cells, it proved to be highly photoactive 

(James, et al., 1999). However, the binding affinity of this conjugate to the estrogen 

receptors was about 300 times less than estradiol (Swamy, et al., 2002). One the other 

hand, steroid-PS conjugates such as tetraphenylporphyrin-C11-β-estradiol can exhibit 

high selectivity toward steroid receptor positive cancer cells, but is phototoxic activity 

was insufficient and ineffective when being test in MCF-7 breast cancer lines (Aranda 

and Pascual, 2001; James, et al., 1999, Swamy, et al., 2002). Tamoxifen (TAM), an 

antiestrogen, covalently linked to pyrophenophorbide (a porphyrin derivative) via a seven 
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carbon long tether. Results of the estrogen receptor (ER) binding assay showed that this 

TAM-pyropheophorbide conjugates showed specific binding affinity for ERα and 

displayed a strong cell killing properties in MCF-7 breast cancer cells (Fernandez, et al., 

2006). In another study, four conjugates of C17-α-alkylnulestradiol and chlorin e6-

dimethylester were synthesized with varying tether lengths. One of the conjugates was 

efficiently taken up selectively by breast cancer cells and showed were phototoxic upon 

irradiation with red light (Azria, et al., 2009; Swamy, et al., 2006). 

 Folate. A wide variety of photosensitizer drug carriers including liposomes, 

LDLs, and small oligonucleotide fragments have been conjugated to folate and evaluated 

for the effectiveness of folate receptor (FR) targeted delivery with varying degree of 

success. The cell membrane FR can be used as a selective target for PS drug delivery. 

The FR α isoform is usually amplified in epithelial cancers, while over expression of the 

FR β isoform is commonly found in myeloid leukemia and activated macrophages 

associated with chronic inflammatory disease (Zhao and Lee, 2008). Conjugates of folic 

acid can be taken up by cancer cells via receptor mediated endocytosis (Reddi, 1997).  

These conjugates have been shown to enhance the uptake ratio and antitumor activity of 

the PS both in vitro and in vivo. One of the problems with most PS currently used in PDT 

clinical trial is their low tumor-to-normal epithelial uptake ratio. This is especially the 

case with m-THPC. In order to overcome this limitation, Gravier et al. (Gravier, et al., 

2008) have reported on the synthesis of an m-THPC-like photosensitizer conjugated to 

folic acid. Using optical fiber fluorimetry, the enhanced selective accumulation of this 
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conjugate was demonstrated in FR α positive KB mouse tumor cells 4 h after injection 

and the resulting tumor-to-normal tissue ratio was 5:1. 

 FR-mediated liposomal delivery has also been shown to enhance antitumour 

efficacy of the photosensitizer doxorubicin both in vitro and in vivo (Pan and Lee, 2004). 

These FR-targeted liposomes could serve as carriers directing many genes and antisense 

oligodeoxyribonucleotides to FR-positive tumor cells. Both solid tumors and leukemia 

can potentially benefit from this approach (Reddi,1997; Pan and Lee, 2004). Studies have 

also demonstrated the role of folic acid conjugation in rerouting the resulting conjugate 

bearing an LDL carrier molecule from its natural receptor to cancer cells through folate 

receptors (Glickson, et al., 2009; Preise, et al., 2009). 

 Vascular targeted-PDT. To induce tumor growth, tumor tissues need to develop a 

vascular system based on existing host blood vessels for nutrients delivery and the 

removal of metabolic wastes. Vascular-targeted photodynamic therapy (VTP) makes use 

of the intravascular excitation of PS to produce cytotoxic ROS, which are the mediators 

through which VTP initiates acute local inflammation inside the illuminated area 

accompanied by tumor cells death (Reddi, 1997). Unlike other PDT techniques, PS used 

in VTP are activated in the vasculature. Various mechanisms of VTP-mediated tumor 

eradication through immune response induction has been examined. Using the PS WST-

II, Preise et al. (Fleshker, et al., 2008) has shown that long-lasting systemic antitumor 

immunity was induced by VTP that activates both cellular and humoral components and 

that VTP can be used in conjunction with immunotherapy for the enhancement of host 

antitumor immunity. To increase the overall success rate of VTP, an assessment for 
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successful VTP of solid tumor 24 h post treatment is needed to allow for a second 

treatment in case of failure. For example, the treatment of carcinoma tumors in mice by 

VTP with the photosensitizer WST-II was used to enable fast assessment of treatment 

success after 24 h. The mice that signified treatment failure, featuring various levels of 

subsequent tumor re-growth, were treated again and the overall successful VTP rate 

increased to over 90% (Eggener and Coleman, 2008). Two common vascular-targeting 

photosensitizers being clinically used today are verteporfin and palladium 

bacteriopheophorbide (WST09 or Tookad) (Trachtenberg, et al., 2008). It was shown that 

Tookad-VTP can produce large avascular regions in the irradiated prostate, resulting in a 

complete negative biopsy response at high light doses (Di Stasio, et al., 2005). 

 Lectins and saccharides for PS conjugates. Lectins are cell adhesion molecules 

that have been known to play a role in recognizing cell surface carbohydrates of cancer 

cells, including liver, breast, prostate, lung, and bile duct cell types. Thus, they are 

popular targets for developing glycoconjugated photosensitizer drugs (Frochot, et al., 

2003). Cancer cells generally overexpress monosaccharide transporters at the surface of 

their plasmic membrane (Taquet, et al., 2007). This will allow for increased PS solubility 

and enhanced selectivity. Mono-glucosylated porphyrins and mono-glucosylated chlorin 

e6 have been shown to accumulate mainly inside the endoplasmic reticulum in human 

colon adenocarcinoma cell line HT29. Improved cellular uptake and increased 

photodynamic activity in terms of singlet oxygen quantum yield and a high extinction 

coefficient value were also demonstrated (Zheng, et al., 2001; Chen, et al., 2004). In 

another experiment, β-galactose was conjugated to the PS, purpurinimides. This PS-
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saccharide complex is recognized by galectin-l in vitro and exhibits an increase in 

photodynamic efficacy (Hamblin, et al., 2000). Non-hydrolyzable saccharide-porphyrin 

conjugates have also been synthesized using a tetra(pentafluorophenyl)-porphyrin and a 

thiol sugar derivative. These saccharides-porphyrin conjugates showed a varying degree 

of PDT success across different types of malignant cancer cells (Sutton, et al., 2002). 

 Targeting with peptides.  Peptides are of interest for targeted PDT due to their 

cell penetrating properties and their affinity to specific receptors (Taquet, et al., 2007). 

Peptide-PS generally retain the photophysical properties of the PS, yet the quantum yield 

of singlet oxygen is often lowered (Taquet, et al., 2007).  The arginine-glycine-aspartic 

acid (RGD) peptide motif has been shown to improve PDT targeting efficiency and 

reduce the side effects of accumulated photosensitizers in non-target tissue (Taquet, et 

al., 2007). RGD conjugated to tetraphenylchlorin (TPC) was shown to be internalized 80-

100 more times than TPC alone after 24 h and it was shown to bind specifically to the 

overly expressed avß3 integrin on the surface endothelial cells in tumor neovasculature. 

But the RGD-TPC had a two-fold decrease in singlet oxygen production. Cyclic RGD 

peptide conjugated to photosenstizer PpIX was shown to have an increase cell 

accumulation over PpIX, but when tested in vivo it accumulated in the liver and did not 

enhance PDT (Taquet, et al., 2007). In another study, Frochot et al. (Zheng, et al., 2001) 

synthesized a conjugate of porphyrin and the avß3 integrin specific peptide RGD. The 

higher photodynamic efficiency observed was correlated with greater cellular uptake of 

the conjugate. In vitro results have confirmed that PS with linear or cyclic RGD motifs 

are much more potent in targeting tumor endothelial cells due to its high affinity to avß3 
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integrin receptors commonly found in many types of cancer and may potentiate the effect 

of vascular PDT in vivo as well. 

The RGD motif has also been employed in PDT that involves tumor targeting 

with adenoviral proteins because the penton base of the adenovirus type 2 capsid protein 

contains the RGD sequence. Allen, et al. (Taquet, et al., 2007) has covalently coupled the 

PS tetrasulfonated aluminum phthalocyanine (AlPcS4) to various adenovirus capsid 

proteins, and the AlPcS4A protein complex has been shown to induce greater 

phototoxicity than the unconjugated AlPcS4A. This suggests that the high affinity 

RGD/receptor complex can be potentially used as another targeting vehicle to deliver 

photosensitizers to the appropriate tumor cells. 

Peptides can also be used to target a specific subcellular compartments. Nuclear 

localization sequence (NLS) has been used to target the nucleus although attempts to 

detect the PS-NLS in the nucleus have failed (Taquet, et al., 2007). A major issue with 

PS-peptide conjugates in vivo is their lack of stability in the bloodstream (Taquet, et al., 

2007).  

Nanoparticles. Two general strategies exist for using nanoparticles as a 

photosensitizer carrier system. The first is using biodegradable nanoparticles, made of 

polymers readily degraded in a biological environment, in which the photosensitizers 

can be released from the nanoparticle and irradiated to produce single oxygen. The 

secondly strategy is to use non-biodegradable nanoparticles in which the photosensitizer 

is not necessarily being released from the system, but the singlet oxygen could diffuse 

freely in and out of the nanoparticle carrier system (Spenlenhauer, et al., 1989). 
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 One of the most commonly used biodegradable nanoparticle is the aliphatic 

polymer poly(DL-lactic-co-glycolide) (PLGA) nanoparticle. The mechanism of which 

involves a size-dependent hydrolytic process. Nanoparticles of less than 300 µm in 

diameter undergo a homogeneous degradation while larger particles show a 

heterogeneous degradation in vivo and in vitro (Gomes, et al., 2005). Polymeric PLGA 

nanoparticles have been loaded with various PS including bacteriochlorophyll-a (BChl-

a) (Gomes, et al., 2007; McCarthy, et al., 2005), p-THPP, m-TPPPL, m-TTP (Ricci-

Junior and Marchetti, 2006), zinc(ll) phthalocyanine (ZnPc) (Zeisser-Labouebe, et al, 

2006), hypericin (Hy) (Kopelman, et al., 2005). The delivery process has been shown 

taking place in two steps: (1) adhesion of the particles to the cell surface followed by 

(2) the release of the PS, which caused detectable photodamage of the targeted cellular 

surface after laser irradiation (Bechet, et al., 2008). PLGA nanoparticles loaded with p-

THPP achieved vascular targeted PDT, they are limited in their loading capacity 

(Taquet, et al., 2007). In addition, these nanoparticles lose their PS content in aqueous 

solution at a steady rate (Taquet, et al., 2007).  

 Many non-degradable nanoparticles have also been synthesized, although their 

application in targeted PDT is still limited. The ability of non-biodegradable 

nanoparticles to serve as multifunctional platforms proved to be quite effective in the 

diagnostic and treatment of cancer. For example, in a brain cancer study (Sutton, et al., 

2002), a non-degradable polyacrylamide nanoparticle platform containing Photofrin® 

with a PEG surface coating, and the cellular targeting agent (the integrin-targeting RGD 

peptide) was synthesized. This multifunctional nano-platform was capable of diagnosing 
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brain cancer due to the presence of an associated magnetic resonance imaging (MRI) 

contrast enhancer. In in vivo experiments, the MRI contrast agent could be used to 

monitor changes in tumor diffusion, tumor growth and tumor load (Ahmad and Mukhtar, 

2000). Treatment with this PS-nanoparticle system was followed by irradiation of the PS 

and tumor necrosis (Sutton, et al., 2002; Ahmad and Mukhtar, 2000). Most non-

degradable nanoparticles are silica-based or metallic-based. One advantage of metallic-

based nanoparticles, in contrast to their silica-based counterparts, is that they can be 

confined to an extremely small particle size of only a few nanometers while their large 

surface area can facilitate a large number of photosensitizer molecules, which resulted in 

an increased singlet oxygen diffusion (Doughtery, et al., 1998). 

Folate Directed, Protein Based Targeted PDT 

 Our laboratory aims to develop a third generation PDT agent that will provide 

increased selectivity for tumor cells, and a greater concentration of PS at the site of 

action, using a L.E.D. light source. We will generate folate directed PDT agents that will 

target the FR on cancerous cells. Many cancers overexpress the FR, therefore attaching 

folate to a PS should enhance selectivity, and delivered into the cell via receptor mediated 

endocytosis.  

 In addition to poor specificity, the light needed to activate many PDT agents can 

only penetrate tissues between 0.5-3 cm. This drastically limits the types, size, and 

location of cancers that can be treated. Utilizing a PS that has absorbances in the 

optimum therapeutic window, 600-800 nm, with high extinction coefficients, will allow 

for deeper tissue penetration of light and enough energy to produce singlet oxygen. Our 
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PS of choice is Chlorin e6 (Ce6), a relatively inexpensive commercially available dye. 

Ce6 will lead to significant cellular death due to its absorption maxima at 660nm and 

corresponding high extinction coefficient of 59,000 M-1cm-1 at that wavelength. This will 

allow for deeper penetration into cells and higher generation of singlet oxygen.  

 We will use bovine serum albumin (BSA) as our carrier. Folate and Ce6 will be 

covalently bound to BSA through amidation reaction. The incorporation of BSA will 

increase solubility and reduce hydrophobicity.  
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CHAPTER TWO 

PURPOSE OF RESEARCH 

The main objective of this research is to develop a folate-directed, protein-based 

photodynamic therapy agent to treat cancerous tumors and to show their effectiveness in 

cell culture and in vivo. We aimed to develop novel photodynamic therapy (PDT) agents 

that specifically target cancerous cells. PDT utilizes oxidative damage to kill these cells.  

Light excites a photosensitizer, which then reacts with oxygen to form a highly reactive 

oxygen species, singlet oxygen.  This singlet oxygen reacts with cellular macromolecules 

to cause lethal damage (Vrouenraets, et al., 2003). We hypothesize that folate (FA) 

conjugation to a photosensitizer will increase the agent’s specificity. Folate receptors are 

overly expressed in epithelial, ovarian, cervical, breast, lung, kidney, colorectal, and brain 

tumors (Zwicke 2012; Parker 2005) Therefore, FA-PDT has double selectivity due to the 

combination of folate-targeting plus limited-area light exposure. The folate containing 

conjugate can be taken up by the cell into the cytoplasm via receptor mediated 

endocytosis.  

In addition to poor tissue specificity of many PDT agents, the light needed for 

excitation can only penetrate tissues between 0.5-3cm (Vrouenraets, et al., 2003). This 

drastically limits the types, size, and location of cancers that can be treated. Utilizing a 

photosensitizer that have absorbances at longer wavelengths in the optimum therapeutic 

window, 600-850 nm, with high extinction coefficients, will allow for deeper tissue 
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penetration of light and enough energy to produce singlet oxygen (Vrouenraets, et al., 

2003). We hypothesized that using chlorin e6 (Ce6), a relatively inexpensive 

commercially available dye, as a photosensitizer will lead to significant cellular death. 

Ce6 has an absorption maximum at 660 nm and corresponding high extinction coefficient 

of 59,000 M-1cm-1 at that wavelength (Dolmans, et al., 2003). This will allow for deeper 

penetration into cells and higher generation of singlet oxygen.  

 Both FA and Ce6 are hydrophobic therefore, we hypothesize by covalently 

attaching FA and Ce6 to bovine serum albumin (BSA), hydrophilicity will increase 

making conjugation chemistry more efficient and delivery to cancerous tumors easier. 

We choose BSA due to its relative stability, low cost, ease of purification, and its high 

number of lysine residues. BSA has between 30-35 free lysines, whose primary amine 

residues can react with the carboxyl groups, 2 and 3, respectively on FA and Ce6 to form 

a stable amide bond. The large number of sites of conjugation provides a platform to 

deliver a greater of number of Ce6 to the cancerous tumor.  

 HeLa cells are an immortal cell line that was derived from cervical cancer cells. 

This cell line is commonly used in cancer research along with a host of other scientific 

quests. Low and Leamon proved in 1991 that the folate receptor on HeLa cells can be 

exploited to deliver folate conjugated macromolecules into the cytoplasm via receptor 

mediated endocytosis. They also proved that macromolecules in the range of 13.7 kDa 

(RNase) to 443 kDa (ferritin) can be internalized into HeLa cells via the folate receptor. 

Therefore, we hypothesize that our folate targeted compound, FA-BSA-Ce6, which is 

well within the size range they explored, should be able to be internalized into HeLa 
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cells, thus making HeLa cells a viable option for cell culture studies. We will explore 

both concentration and light energy, to determine optimal experimental conditions. 

In addition to cell culture, this dissertation will also discuss the use of zebrafish 

for targeted PDT. During embryogenesis zebrafish undergo rapid cell division, which can 

be used as a model for cancer. Zebrafish provides a high throughput organism for in vivo 

studies, as well as their transparent nature allows for insight that cannot be achieved with 

cell culture alone. This use may lead to a new tool for studying zebrafish development. 

This body of work details the synthesis and characterization of folate targeted, 

protein based conjugates, their efficacy in HeLa cell culture, the elucidation of the gene 

expression pattern and confirmation of the folate receptor in zebrafish, and the selective 

targeting of cells during the first 5 days post fertilization of zebrafish embryos.  
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CHAPTER THREE 

BSA BASED, FOLATE DIRECTED PHOTODYNAMIC THERAPY AGENT’S 

EFFECTIVENESS IN HELA CELLS 

Introduction 

 Chemotherapy is one of the most popular course of treatment for cancer. It is 

often coupled with radiation and/or surgery as a two pronged approach to eradicating the 

cancer. There are over 100 chemotherapy drugs available and most work by stopping or 

slowing the growth of rapidly dividing cells throughout the body. This robustness makes 

chemotherapy very effective against cancerous cells yet it also provides an avenue for 

healthy cells to be negatively affected. This leads to numerous unwanted side effects. As 

an alternative to chemotherapy or a method to use less chemo drugs, photodynamic 

therapy (PDT) has become an attractive option. PDT utilizes oxidative damage to kill 

cells.  Light excites a photosensitizer (PS), which activates oxygen to form highly 

reactive oxygen species (ROS), including singlet oxygen, 1O2.  ROS then reacts with 

cellular macromolecules to cause lethal damage (Ahmad and Mukhtar, 2000). In the 

ground state PS have two paired, opposite spin electrons. Upon light activation, one 

electron is promoted to a higher energy orbital, and the PS becomes excited (Robertson, 

2009). The PS can return to a relaxed state by emitting energy as fluorescence. Another 

option is for the PS to undergo intersystem crossing. Intersystem crossing takes the PS to 
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an excited triplet state and from there the PS can participate in two types of reactions 

Type I and Type II (Robertson, 2009). Type I reaction involves the excited PS 

interactingdirectly with a substrate, such as the cell membrane. In this case a hydrogen 

atom is transferred and radicals are formed. These radicals interact with molecular 

oxygen to form reactive oxygen species (Robertson, 2009). In Type II reactions the 

excited PS transfers its energy directly to oxygen to form singlet oxygen, 1O2 (Robertson, 

2009). This 1O2 is toxic to cells and leads to cellular death. Type II reactions are the most 

beneficial to combat cancerous cells because the oxygenated products that are produced 

are more predictable and leads to direct death of the intended cell (Robertson, 2009).  

 Currently Photofrin® (Porfimer sodium) is the most widely used, FDA-approved 

PDT drug for cancer. Photofrin® is a second generation PS that is comprised of a mixture 

of hematoporphryin derivatives. Photofrin® is used to treat esophageal and 

endobronchial cancer. It absorbs light at 635 nm and it is not very selective for cancerous 

cells. This is the case for most of the approved PDT drugs. Many of them have significant 

limitations, primarily low specificity, which causes harm to bystander cells (Dougherty, 

et al.., 1998). They rely on differences in physical properties, such as cellular pH, to 

discriminate between healthy and cancerous cells which leads to poor targeting of tumor. 

In addition, as is the case with Photofrin®, the light needed to excite many PDT agents 

only penetrates tissues to a depth between 0.5-3cm beneath the skin (Fuchs and Thiele, 

1998). This limitation leads to significant limitation of the types, size, and location of 

cancers that can be treated.  
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 Utilizing a photosensitizer that has absorption at longer wavelengths in the 

optimum therapeutic window, 600-850 nm, with high extinction coefficients, will allow 

for deeper tissue penetration of light and enough energy to produce singlet oxygen (Fuchs 

and Thiele, 1998). Chlorin e6 (Ce6), a relatively inexpensive commercially available dye, 

as a photosensitizer will lead to significant cellular death. Ce6 has an absorption 

maximum at 660 nm and corresponding high extinction coefficient of 59,000 M-1cm-1 at 

that wavelength (Oseroff, et al.., 1986). This will allow for deeper penetration into cells 

and higher generation of singlet oxygen.  

 To increase selectivity and effective we propose using folate (FA) as a targeting 

agents for the PS, Ce6.  Many malignant cells overexpress folate receptors in order to 

support its rapid cell division and growth (Bisland, et al.., 1999). FA conjugation to a PS 

will increase the agent’s specificity. Therefore, FA-PDT has double selectivity due to the 

combination of folate-targeting plus limited-area light exposure. The folate containing 

conjugate can be taken up by the cell into the cytoplasm via receptor mediated 

endocytosis. 

 Both FA and Ce6 are hydrophobic. Therefore, in order to increase solubility and 

reduce hydrophobicity as well as provide a scaffold for multiple molecules of Ce6 to be 

delivered to the cancerous cells, we covalently linked FA and Ce6 to bovine serum 

albumin (BSA).  

Materials and Methods 

Reagents.1-ethyl-3-(3dimethylaminopropyl)carbodimide (EDC), bovine serum 

albumin (BSA),  anhydrous dimethyl sulfoxide (DMSO), ethanolamine, fetal bovine 
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serum, folate (FA), Hepes buffered saline (HBS), N-hydroxysuccinimide (NHS), Roswell 

Park Memorial Institute (RPMI), and trypsin/EDTA were purchased from Sigma 

Chemical Company (St. Louis, MO). Chlorin e6 (Ce6) was purchased from Frontier 

Scientific (Logan, UT). Cell Titer Blue Assay was purchased from Invitrogen (Grand 

Island, NY). HeLa cells were obtained from Dr. Stefan Kanzok’s laboratory at Loyola 

University Chicago. All other chemicals used were analytical grade and used without 

further purification, unless otherwise specified.  

 Synthesis of BSA-Ce6, BSA-FA, & FA-BSA-Ce6. Ce6 and FA both contain 

multiple carboxyl groups (three and two respectively). BSA is a 67 kDa single 

polypeptide that has 60 lysine residues.  Of the 60 lysine residues, 30-35 are available to 

react (Huang and Kim, 2004). Carbodiimides are commonly used to activate carboxyl 

groups for conjugation to primary amines. EDC is a water soluble carbodiimide that 

creates a zero length linker between carboxyl and amine groups. EDC coupled with NHS 

reacts with the carboxyl groups on Ce6 and FA to form a semi-stable NHS- ester 

intermediate (Han and Kim, 2004). The lysine residues (primary amine) on BSA reacts 

with the ester intermediate to form an amide bond (Montalbetti and Falque, 2005). 

 Ce6 was placed inside of a 1.5 mL microcentrifuge tube that was covered with 

foil. The dye was dissolved in 200-300 μl of dry DMSO. Next, it was incubated with a 

10-fold molar excess of EDC and a 20-fold molar excess NHS at room temperature for 

30 min.  A 20-fold molar excess of the esterified Ce6 was added dropwise to BSA 

(10mg/ml) that was previously dialyzed in bicarbonate buffer at pH 8.0 The mixture was 

incubated for 24 h at room temperature and quenched with ethanolamine. FA-BSA was 
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prepared in the same manner as BSA-Ce6 with the only exception being that a 10-fold 

molar excess of FA was added to BSA.  The excess Ce6, FA, NHS and ethanolamine was 

removed by dialyzing overnight in phosphate buffered saline (PBS) at pH 7.4.  

 The synthesis of FA-BSA-Ce6 (Figure 8), begins with preparing BSA-FA as 

described above. BSA-FA was exhaustively dialyzed in bicarbonate buffer at pH 8.0. 

Post dialysis a 5, 10, 15, 20, or 30 fold molar excess of esterified Ce6 was added to 

aliquots BSA-FA to determine the optimum Ce6:BSA ratio. The mixtures were incubated 

for 24 h at room temperature. The excess Ce6, NHS and ethanolamine was removed by 

dialyzing overnight in PBS at pH 7.4.  

 
 
Figure 8. Conjugation Schematic. Addition of Folic Acid/Chlorin e6 to BSA. Carboxyl 
groups on folic acid are esterified by reacting with EDC/NHS. The newly formed ester 
reacts with the amine on the lysine residues of BSA to form an amide bond. 
 
 Characterization of conjugates. An acid-acetone precipitation was carried out 

on FA-BSA, BSA-Ce6 and FA-BSA-Ce6 to quantify the number the folates and dyes 
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covalently bound to the protein (Hamblin, et al.., 2000). Briefly, 500 µl of conjugate was 

added slowly while stirring to 5 mL of acidic acetone at 4°C for 4 h. The sample was 

centrifuged at 4000 g at 4°C for 10 min. After centrifuging the supernatant was discarded 

and the pellet was reconstituted in 5 mL of cold acetone, and centrifuged. The 

supernatant was visually inspected after each round of precipitation/centrifuging for hues 

of green and/or yellow. If the supernatant appeared colored, the sample was subjected to 

another round of precipitation. After four rounds of precipitation, an absorption spectrum 

was taken of the supernatant between 220 nm – 900 nm. The spectrum was analyzed for 

any significant peaks, paying close attention to the Ce6 maxima at 400 nm and 660 nm, 

and folate absorption maximum at 363 nm.  This step was repeated until the spectra 

showed no significant peaks above baseline. The remaining pellet was reconstituted in 

1.5 mL of PBS at pH 7.4 and dialyzed against PBS at pH 7.4 for 18h to remove any 

remaining acetone. An absorption spectra was taken of the dialyzed pellet, which 

contains the conjugate, and after correcting for BSA’s slight contribution to the folate 

peak at 363 nm the number of FA and Ce6 molecules covalently attached to the protein 

was determined using folate and Ce6 maxim um absorptions, 363nm and 660nm 

respectively, and corresponding extinction coefficients of 6,197 mM-1cm-1 for folate 

(Kranz, et al.., 1995) and 59,000 mM-1cm-1 for Ce6 (Oseroff, et al., 1986) . 

Determination of ROS production. Photoactivation of Ce6 leads to the 

production of singlet oxygen (1O2) which is a reactive oxygen species (ROS) 

(Wawrzynska, et al.., 2010). ROS is considered to be integral in apoptotic and necroctic 

pathways. Ce6 has been studied for many years and is purported to have a high quantum 
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yield of  1O2 (Douillard, et al.., 2009; Nelson, et al.., 1987, Qian, et al.., 1987; Mojzisova, 

et al.., 2007).To determine if FA-BSA-Ce6 maintains 1O2  production, ρ-nitroso-N, N′-

dimethylaniline (RNO) was used as a singlet oxygen sensor. The production of singlet 

oxygen was monitored by bleaching RNO at 440nm. A 250 μM RNO and 0.03M 

histidine solution was made in D2O. D2O was included to assist in extending the lifetime 

of 1O2  (Klotz, et al.., 1997). 6 µM of unconjugated Ce6 or FA-BSA-Ce6 were dissolved 

in separate vials of 700 μl of 1% DMSO in D2O to maintain solubility of unconjugated 

Ce6. Each solution was added to the RNO solution and bubbled with water-saturated 

oxygen for 10 min. The mixture was placed in a quartz cuvette and irradiated with 44.9 

J/cm2 (8 min) with an 660 nm LED lamp. The absorption at 440 nm (λmax of RNO) was 

monitored every 30 s using a UV-Vis spectrophotometer (Krajlic, et al.., 1978; Mosinger 

and Zdenek, 1997; Muller-Breitkreutz et al.., 1995). 

 Dark cytotoxicity & phototoxicity.  HeLa cells were maintained in Roswell Park 

Memorial Institute (RPMI) media (pH 7.4), supplemented with 10% fetal bovine serum 

(FBS), 2 mM glutamine, and 10 mM HEPES, at 37°C with 5% CO2. Prior to treatment 

the medium was switched to folate deficient RPMI medium. Cells were seeded at an 

initial density of 10,000 cells per well in black-walled 96-well plates. Following seeding 

cells were exposed to the conjugates, BSA-Ce6 or FA-BSA-Ce6, at a Ce6 concentration 

of 1, 2, 5 and 10 µM respectively and incubated for 24 h in the dark. After incubation the 

folate-deficient medium was removed and after several washes the cells were placed in 

folate-containing-RPMI. The cells were then irradiated with a LED lamp (660 nm) for 1, 

2, 4, and 6 min, respectively to deliver 5.6, 11.2, 22.5 and 33.7 J/cm2  respectively. In 
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parallel, an identical control plate was kept in the dark. After incubating for 24 h cell 

viability was determined using Cell Titer Blue Assay Kit (Promega).  

Statistical analysis. Two-tailed student’s t test was used to identify significance 

between means. The level of significance was set to p <0.05. All values stated are 

reported as the mean +/- standard deviation from the mean.  

Results 

Quantification of folates and chlorin e6 molecules bound to BSA. Slight 

modification of published protocols for carboxyl to amine amide bond formation 

(Leamon and Low, 1992), BSA-Ce6 and FA-BSA-Ce6 conjugates were synthesized via 

exposed lysine residues in BSA and free carboxyl groups on Ce6 and FA (Figure 8). BSA 

(10mg/ml) was conjugated to folic acid (FA) using a 10 molar excess of FA to protein. 

Based on the absorbance after dialysis at FA maximum absorption wavelength 368 nm 

and corresponding extinction coefficient of 7410 mM-1cm-1 (Kranz, et al.., 1995) the 

number of folates covalently bound was determined to be two. Ce6 has an absorption 

maximum at 660 nm and corresponding extinction coefficient of 59,000 M-1cm-1 

(Oseroff, et al.., 1986) at that wavelength. A UV-vis spectra was taken after the final 

dialysis, and the number of Ce6 molecules covalently attached to FA-BSA was 

determined. As shown in Table 2, 5:1, 10:1, 20:1 and 30:1 ratio of Ce6 to protein 

produced four, six, ten, and ten molecules covalently attached respectively. 

Porphryin based dyes, such as Ce6, can potentially strongly interact non-

covalently with serum proteins (Mew, et al.., 1983). To ensure that all excess Ce6 

molecules in addition to FA were removed an acetone extraction was also performed on 
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each of the conjugates. After conjugation, an aliquot was added dropwise to cold acetone, 

and the pellet was analyzed via absorption spectroscopy. The resulting number of FA and 

Ce6 that were determined to be covalently attached matched the results from exhaustively 

dialyzing the conjugates. Based on the results, acetone extraction was deemed to be 

unnecessary and the conjugates were dialyzed in PBS post conjugation. Based on the 

results, a ratio of 20:1 was used for FA-BSA-Ce6 synthesis. 

  

 

 

 

 

 

 
Table 2. Number of Dye Bound. The number of Ce6 molecules was determined using 
varying rations of photosensitizer to protein. Ten molecules were covalently attached 
using 20:1 and 30:1, therefore, 20:1 was chosen. 
 

Singlet Oxygen Production due to photoactivation. Ce6 produces a significant 

amount of singlet oxygen (Fernandez, et al.., 1997). To determine if Ce6 maintains its 

output of singlet oxygen once conjugated to FA-BSA, samples of FA-BSA-Ce6 and Ce6 

(both samples contained the same Ce6 concentration) were mixed with RNO (a singlet 

oxygen quencher) and was irradiated with a L.E.D. lamp at 660 nm for 8 min. An UV-

Vis spectra was taken every 30 s monitoring the absorption at 440 nm (Figure 9). As 

singlet oxygen is quenched by RNO, there is a reduction in the absorption at 440nm. The 

decrease in the peak was monitored until the absorbance was around 0.100.  

Ce6:BSA # of Ce6 

5:1 4.2 

10:1 6.3 

20:1 10.4 

30:1 10.3 
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Figure 9. Singlet Oxygen Produced from FA-BSA-Ce6. Singlet oxygen quencher, RNO, 
was used to monitor the production of singlet oxygen of FA-BSA-Ce6 upon irradiation at 
660nm between 0 min and 8 min. 
 

FA-BSA-Ce6 dark cytotoxicity. The cells were exposed to the conjugates for 24 

h, washed and then incubated for another 24 h, after which cell viability was measured 

using Cell Titer Blue Assay Kit (Figure 10), a fluorescence assay in which viable cells 

exhibit a higher fluorescence than non-viable cells. Percent survival was determined by 

comparison to cells exposed to media only. BSA-Ce6 at a concentration of 10 µM had a 

98% (+/- 5   %) cell survival rate. FA-BSA-Ce6 at 1µM, 2 µM, 5 µM, and 10 µM 

concentrations were also assayed for dark cytotoxicity. The respective survival rates were 

as follows: 100 % (+/- 2 %), 93 % (+/- 1.5 %), 98 % (+/- 3 %), 98 % (+/- 2 %) (Figure 
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10). There was no statistical difference between media only cells (control) versus any of 

the test wells. All of the conjugates cell survival rates were above 93% when compared to 

control. 

 

Figure 10. Dark Cytotoxicity Results of Conjugates and Controls. Based on control cells 
all conjugates are not significantly different. 
 

Cell death via photoactivation of FA-BSA-Ce6. The viability of media only 

cells was set at 100%, and all conjugates are reported in comparison to those cells. Cell 

viability for 1µM, 2 µM, 5 µM, and 10 µM FA-BSA-Ce6 was assayed at 5.6, 11.2, 22.4, 

and 33.7 J/cm2 of light, in addition to 10 µM BSA-Ce6. Across all times of light 

irradiation BSA-Ce6 maintained above 92% cell survival (Figure 11).   

No significant cell death resulted for 1µM of FA-BSA-Ce6 at any of the 

irradiation energies. The lowest viability for FA-BSA-Ce6 at 2 µM was 74% with 2 

minutes of light irradiation. This was the lowest viability for that concentration, which 
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was significantly different than at 1 minute, but not significantly different from 4 minutes 

of light (based on standard deviations).  

While the lowest viability for FA-BSA-Ce6 at 2 µM was 74% with 2 min of light, 

the highest viability for both 5 µM and 10 µM FA-BSA-Ce6 was 76% with 1 min of 

light. 5 µM and 10 µM samples show significant difference from the controls starting at 2 

minutes of light, yet they do not show any statistical difference from one another for the 

other light energies (Figure 12). 5 µM FA-BSA-Ce6 caused the most cell death with 4 

min of light which resulted in 5.3% cell survival. 10 µM FA-BSA-Ce6 caused the most 

cell death at 4 min light as well, which resulted in 3.9% cell survival. 

 
 
Figure 11. Phototoxicity of Controls: BSA or BSA-Ce6 showed significant cell death in 
comparison to cells exposed to media only. 
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Discussion 

An effective photodynamic therapy agent will be phototoxic but not cytotoxic in 

the dark. In an attempt to maximize the efficiency of Ce6 conjugation to BSA we varied 

the ratio of Ce6:BSA. There was a lack of increase in Ce6 conjugation with 30:1 ratio in 

comparison to 20:1. In 2004 Huang and Kim reported on the use mass spectrometry 

coupled with lysine specific cross-linkers to analyze the tertiary structure of BSA. In their 

study the were only able to crosslink 34 of the 60 lysines that are present in BSA (Huang 

and Kim, 2004). The lack of increase in Ce6 conjugation with 30:1 vs 20:1 ratio could be 

due to steric hindrance of the available lysines. Thus, a 20:1 ratio of Ce6 to protein was 

chosen, and based on UV-Vis spectra conjugation of both folate and Ce6 was successful.  

To ensure that Ce6 maintained its ability to produce singlet oxygen, its production 

of singlet oxygen was monitored via a singlet oxygen quencher. The results from this 

experiment confirmed that upon conjugation to FA-BSA, Ce6 produces singlet oxygen. 

The effectiveness of FA-BSA-Ce6 as a photodynamic therapy agent was 

examined in comparison to media-only cells and BSA-Ce6 (Figure 11).  BSA-Ce6 was 

shown to not be phototoxic or cytotoxic at 10 µM concentration and at all light intensities 

assayed. This is a significant finding because free Ce6 at significantly lower 

concentrations have been proven to be cytotoxic and we report 98% cell survival rate of 

BSA-Ce6. Conjugating Ce6 to BSA increases its solubility and decreases it 

hydrophobicity. This is the most apparent reason why BSA-Ce6 did not show any 

significant cell death, while in the literature Ce6 demonstrates cytotoxicity. 
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 As shown in Figure 12 cell survival is both concentration and light dose 

dependent. As the concentration of FA-BSA-Ce6 increase and as light exposure time 

increases, cell survival decreases. Interestingly, the same effects are not seen with BSA-

Ce6 (Figure 11). Light irradiation time does not affect percent survival. The only 

difference between the two conjugates is the targeting moiety, folate.  This data 

combined with the ROS production data, it can be concluded that the conjugate is being 

taken up via receptor mediated endocytosis.  

We have demonstrated that conjugation of FA and Ce6 to BSA provides an effective 

PDT agent that is specifically taken up into the cells via receptor mediated endocytosis. 

The conjugate is both dose time and concentration dependent. Thus the higher the 

concentration and the longer light irradiation, the less cell survival. Concentrations less 

than or equal to 2 µM are not effective at killing cells in culture. In contrast there is no 

benefit in using 10 µM FA-BSA-Ce6 due to 5 µM FA-BSA-Ce6 providing essentially the 

same magnitude of cell death. FA-BSA-Ce6 offers potential benefits not seen with 

approved PDT agents. The main difference presented is the ability to target cells that 

upregulate the folate receptor. Thus combining limited light area exposure and the 

targeted conjugated, FA-BSA-Ce6 offers double selectivity.  

 In 2015 Donghong Li et al. synthesized a new a m-tetra(Hydroxyphenyl)chlorin 

(m-THPC) derivative based PS called, PS1, and covalently attached folate to PS1 via 

PEG. m-THPC is approved for use in Europe, Norway, and Iceland as PDT agent under 

the name Foscan (5).  m-THPC has a maximum absorption at 650 nm and without a 

targeting moiety such as folate, it demonstrates poor selectively. Li reported on improved 
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tumor selectively over m-THPC without folate. HeLa cell culture experiments with 15.2 

µM PS1 and light dosages up to 36 J/cm2 resulted in cell viability for all light dosages 

above 10%. When the concentration was varied up to 147 µM and the light was constant 

at 18 J/ cm2, cell viability was above 20% for all concentration tested. Using almost three 

times less of PS, and three times less light, our 5 µM FA-BSA-Ce6 with 11.2 J/cm2  of 

light, produced similar results.  

 In another study folate-targeted PEGylated liposomes with m-THPC were 

synthesized and tested for its effectives as a PDT agent (Moret, et al., 2013). In this study 

the results for phototoxicity in KB cells were significantly better than m-THPC alone and 

the work PS1. Liposomes have previously been shown to be a good encapsulator and 

carrier of m-THPC (Moret et al., 2013). Moret and colleagues synthesized two m-THPC 

liposome conjugates with two different PEG lengths. While no increase of uptake of was 

seen with the smaller 2000 kDA PEG over a zero length linker, uptake was increased 

with the larger 5000 kDa PEG. Their folate targeted conjugate produced less than 10% 

cell survival with only 2.4 µM of conjugate and .8 J/cm2 of light. This is a significant 

improvement in comparison to our conjugates and PS1. But, they also discovered that the 

untargeted and targeted conjugates produced similar phototoxicity. Un-targeted, BSA-

Ce6 was not phototoxic to cells.  

Lee and Low showed that PEG lengths can affect the photo-killing capacity and 

uptake of PDT agents. PS1 was synthesized with a 75 kDa PEG and produced little cell 

death in comparison to Moret and colleagues conjugate. Laura Donahue and colleagues 

(unpublished) has synthesized a 2000 kDa FA-PEG-Ce6 PS that shows promise as a good 
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PDT agent at lower concentration than FA-BSA-Ce6, yet FA-PEG-Ce6 showed some 

cytotoxicity in the dark. Based on these findings with PEG linkers, it may be beneficial to 

link folate to BSA using a 2000-5000 kDa PEG to increase phototoxic at lower 

concentrations while maintaining minimal dark cytotoxicity.  
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CHAPTER FOUR 

EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF THE FOLATE 

RECEPTOR DURING ZEBRAFISH EMBRYOGENESIS 

Introduction 

Folate is a well-studied B vitamin commonly referred to as Vitamin B9.  This 

vitamin is necessary for cell maintenance and division due to its nature as a methyl donor 

required for the synthesis and modification of DNA, RNA, and the amino acids serine 

and methionine (Choi and Mason, 2000; Keleman, 2006).  Folate deficiency during 

human fetal development can lead to neural tube defects (Botez and Reynolds, 1979; 

Clarke, et al.., 1998; Reynolds, 2002; Seshadri, 2001). The British Medical Research 

Council sponsored research that showed that women who had prior neural tube defect 

affected pregnancy reduced the risk of having a subsequent neural tube defect affected 

pregnancy by 70% when they supplemented their diets with 4.0 mg per day of folic acid 

(Wala and Sheldon, 1991).  

 Interestingly, folate can be both a cancer protectant and a pro-tumor agent 

(Meenan, et al.., 1997; Willet, 1994; Giovannucci, et al., 1993; Farias, et al.., 2015; 

Zwicke, et al.., 2012). This discrepancy seems to lie in the balance of the amount of 

folate in the system and its bioavailability to cells. During normal cell differentiation in 

humans, the ability of each cell to import folate is controlled by the protein Folate 
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Receptor 1 (FOLR1). In many tumor cells, the FOLR1 protein is overexpressed, 

suggesting a possible target for anti-cancer therapies (Yoo and Park, 2004; Briggs, 2002 

The teleost Danio rerio (also known as the common zebrafish) has become a 

popular model organism for studying vertebrate development and disease due to its 

functionality and the relative ease with which it is possible to subject them to standard 

molecular, genetic, and embryological manipulation (Kao, et al.., 2014). As an example, 

many of the neural tube defects due to folate deficiency in humans have also been 

documented in zebrafish (Blair, et al.., 2005). Approximately 71% of human genes have 

at least one zebrafish orthologue, and 47% of these have a direct, one-to-one relationship 

with their zebrafish counterpart (Kao, et al.., 2014). 

We have defined the expression pattern of zgc:165502, the zebrafish orthologue 

of the human FOLR1 gene, during embryogenesis using reverse transcription polymerase 

chain reaction (RT-PCR), and whole mount in situ hybridization (WISH). This 

expression pattern will allow researchers in multiple fields the ability to study the 

endogenous zgc:165502 gene as expressed during embryogenesis. 

Methods 

Zebrafish care and husbandry. Zebrafish were maintained at Loyola University 

Chicago. All studies were performed with the approval of the Institutional Animal Care 

and Use Committee (IACUC). Wild-type embryos were raised and staged as described in 

Kimmel et al., 1995.  Post-gastrulation stages were treated with 0.005% 1-phenyl-2-

thiourea (PTU) solution to prevent melanin pigment from developing. Embryos older 

than 24 h post fertilization (hpf) were treated with fresh PTU solution once a day. Once 
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the embryos reached the desired stage, they were dechorionated manually if necessary, 

anesthetized with 0.2% Tricaine pH 7.0, then fixed in 4% paraformaldehyde (PFA) in 

PBS pH 7.0 at 4°C.  After fixing, the embryos were washed four times with phosphate 

buffered saline with 0.1% Tween-20 (PBST). After washing, the embryos were placed in 

100% methanol (MeOH) and stored at −20 °C. 

Reverse-transcription polymerase chain reaction (RT-PCR). RT-PCR was 

performed to confirm the presence of the mRNA for the folate receptor at various stages 

of early embryo development: 1- to 2-cell, 256-cell, sphere, germ, shield, 1 days post 

fertilization (dpf), 2 dpf, 3 dpf, and 4 dpf. The primers were designed to anneal to 

sequences in exons on both sides of an intron. Designing the primers in this way allowed 

for differentiation between the PCR products that were amplified by any possible 

genomic DNA contamination, and those amplified by the cDNA created from the RNA 

template. Total RNA was isolated from 50 staged embryos using a TRIzol reagent (Life 

Tech) and purified using a Direct-zol kit and its corresponding protocol (Zymo 

Research). Of the resulting total RNA, 1.5 µg from each embryo stage was reverse 

transcribed using oligo-dT primers (Integrated DNA Technologies) and a SuperScript III 

Reverse Transcriptase kit (Life Tech) to generate first-strand cDNA. One microliter of 

cDNA from each stage was used as a template for the primers 5’-ATT CCT CAC CTG 

AGC AGA ACA TGG-3’ (forward) and 5’-TGA GGT GAG CAC TCA TAG AAG C-3’ 

(reverse) to amplify a 300 bp fragment of the folate receptor cDNA.  The PCR was run 

with 35 cycles of 45 s at 95 ˚C, 1 min at the annealing temperature 62 ˚C, and 1 min at 72 
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˚C.  Ten microliters of the PCR product was analyzed with a molecular weight marker 

(Hi Lo ladder, New England BioLabs) on a 1% Tris-acetate-EDTA agarose gel.   

In situ hybridization. The complete cDNA sequence of human gene FOLR1 was 

used as a query in a BLAST search of the zebrafish reference genome (Zv10).  This 

yielded a single cDNA clone (7433953) which was obtained as a plasmid clone from 

Open Biosystems.  The fragment was inserted into pCSdest plasmid 22423 (Addgene) 

and linearized using the restriction endonuclease AscI.   A digoxigenin-labeled anti-sense 

probe was synthesized using a RNA labeling kit with SP6 RNA polymerase (Roche).  

The folate receptor sense RNA probe was synthesized and used as a control.  

 Whole mount in situ hybridization was carried out as presented in Sisson and 

Topczewski (2009) and Thisse (2000) using low stringency conditions (50% formamide 

hybridization buffer with a .02% Saline-Sodium Citrate Buffer (SSC) final wash). 

Embryos were placed in 1.5 mL micro-centrifuge tubes, and rehydrated using serial 

dilutions to replace MeOH with PBST (75% MeOH:25% PBST, 50% MeOH:50% PBST, 

25% MeOH:75% PBST, 100% PBST).   Next, embryos staged between 1 dpf and 4 dpf 

were digested using a solution of 1 µL Proteinase K in 2 ml PBST. Embryos that were 

staged at 1 dpf were digested for 5 min and embryos staged at 2 dpf and 3 dpf were 

digested for 30 min. 4 dpf embryos were digested for 45 min. After digestion the 

embryos were placed in 4% PFA for 20 min, and then transferred into PBST.  The 

embryos were pre-hybridized for 3 h with 500 µL hybridization buffer (Hyb+) that 

contained: 50 mL formamide, 25 ml 20X saline-sodium citrate buffer, 5 mg heparin, 50 

mg tRNA, 100 µL 0.1% Tween-20, and 460 µL l 0.1M citric acid. During pre-
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hybridization the embryos were kept at 70°C. After 3 h, the embryos were removed from 

the incubator, and two embryos from each stage were placed in a single micro-centrifuge 

tube for blocking. After this, 300 µl of Hyb+ containing 500 ng of anti-sense probe was 

added to each tube (except for the blocking embryos) and kept at 70°C overnight. The 

blocking embryos were treated the same as the other samples except they were void of 

probe. The following day, the Hyb+ with probe was removed, and each stage was moved 

into 0.02% SSC by successive washes of hybridization buffer without tRNA (Hyb-) and 

SSC (100% Hyb-, 75% Hyb-:25% 2X SSC, 50% Hyb-:50% 2X SSC, 25% Hyb-:75% 2X 

SSC, 100% 2X SSC, 100% 0.02X SSC). Following the SSC washes the embryos were 

moved into PBST using serial dilutions. Next all of the embryos except the blocking 

embryos were treated with 500 µl blocking solution (20% fetal bovine serum (Life Tech), 

2% bovine serum albumin (Sigma) in PBST) for 4 h at room temperature. The blocking 

embryos were pre-absorbed with anti-digoxigenin antibody (anti-DIG, Roche) for 4 h. 

After 4 h the pre-absorbed antibody was diluted with fresh blocking solution, and used to 

replace the blocking solution in each tube. The tubes were placed in the dark overnight at 

4 °C. The next day the embryos were washed several times with PBST and freshly made 

staining buffer (0.100M Tris-HCl (pH 9.5) (Sigma), 0.100M NaCl (Sigma), 0.1% Tween 

20 (Sigma)). Following the washes the embryos were stained with 5-bromo-4-chloro-3'-

indolyphosphate (BCIP) and nitro-blue tetrazolium (NBT) staining solution (Roche) and 

placed in the dark at room temperature. The embryos were monitored closely for staining 

and after defined stains developed, the embryos were washed multiple times with stop 
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solution (0.5M EDTA in PBST).  The resulting embryos were imaged using a Nikon 

digital camera fitted to a light stereo microscope using 3.2X magnification.  

Synthesis of folate-bovine serum albumin-rhodamine (FA-BSA-RH). FA-

BSA-RH was synthesized as shown in Figure 13. 10 mg of folate (FA) was placed inside 

of a small, foil-wrapped Eppendorf tube and dissolved in 200-300 μl of anhydrous 

dimethylsulfoxide (DMSO).   This solution was then incubated with a 10-fold molar 

excess of 1-ethyl-3-(3-dimehtylaminopropyl) carbodimide (EDC) and a 20-fold molar 

excess of N-hydroxysuccinimide (NHS) at room temperature for 30 min.  The resulting 

esterified or “activated” FA was added to a 10-fold molar excess of bovine serum 

albumin (BSA) previously dialyzed in bicarbonate buffer at pH 8.0. The mixture was 

incubated for 24 h at room temperature and quenched with ethanolamine. The excess FA, 

NHS, and ethanolamine was removed by dialyzing overnight in bicarbonate buffer at pH 

8.0. Rhodamine B isothiocyanante (RH) was placed inside of a small foil-wrapped 

Eppendorf tube dissolved in 200-300 μl of anhydrous DMSO. A 10-fold molar excess of 

RH was added to the FA-BSA solution that was previously dialyzed in bicarbonate buffer 

at pH 8. The mixture was incubated for 24 h at room temperature and quenched with 

ethanolamine. The excess Rhodamine B was removed by dialyzing overnight in PBS at 

pH 7.4 in the dark. 
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Figure 13. Synthesis Scheme of FA-BSA-RH. Folic acid (1) was reacted with EDC/NHS 
to yield “activated” folic acid. Activated folic acid was reacted with lysine residues on 
BSA to yield FA-BSA (2). (2) was reacted in buffer with RH (3) to yield the final product 
FA-BSA-RH (4). 
 
 Uptake of FA-BSA-RH. Wild type zebrafish embryos were collected at 3 dpf. 

Three embryos were placed in a single well that contained 3 ml of either embryo media, 

BSA in embryo media (50 µM), 50 µM BSA covalently attached to rhodamine (a red 

fluorescent dye) (BSA-Rh), or 50 µM BSA covalently attached to rhodamine and folate 

(FA-BSA-Rh). The wells were placed in a 37°C incubator overnight in the dark. After 24 

h, the solutions were removed and the embryos were washed 3X with embryo media and 

returned to the incubator for 24 h. A total of 20 embryos were assayed with each 

conjugate (BSA, BSA-Rh, FA-BSA-Rh) and embryo media. Fluorescent images were 

taken of each embryo after washes and 24 and 48 h after exposure to the conjugates with 

a stereo fluorescent microscope with 3.2X magnification.  

Results and Discussion 

Conservation of the folate receptor between species. As we are interested in 

utilizing zebrafish as a model of FOLR1 protein structure and function, we first set out to 
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determine if the zebrafish zgc:165502 protein was similar to its orthologues. To do this, 

we obtained sequences for 11 identified or predicted chordate Folr1 proteins spanning 

from Ciona intestinalis to Homo sapiens, about 750 million years apart in evolution, to 

generate a phylogenic tree (Hedges, et al.., 2015; Shen, et al.., 2012). We also included 

the two known human paralogs of FOLR1, FOLR2 and FOLR3, in our comparison as an 

out group (Figure 14). Our tree demonstrated that the Folr1 proteins seem to follow the 

predicted vertebrate gnathostome phylogenetic order with higher amino acid conservation 

being observed within a subclass or clade of animals (see Neopterygii and Mammalia in 

Figure 14). Interestingly, the Folr1 amino acid identity conservation is ~50 % for animals 

whose last common ancestor existed about 435 million years ago (Shen, et al.., 2012, 

Antony, 1996). 

The human FOLR1 protein is composed of multiple domains that have been well 

characterized for their biological functions (Zhao, et al.., 2011; Lee, et al., 2011).  These 

domains include an endoplasmic reticulum (ER) signal peptide that is cleaved away after 

protein synthesis, a folate receptor family domain (FRF), a glycosyl-phosphatidyl-inositol 

(GPI) site, and a transmembrane helices domain (THD, Figure 15).  We determined the 

percent identity and percent conservation for each of these domains between the human 

FOLR1 and other vertebrates, including zebrafish (Figure 15). For this comparison we 

used 7 species with published full-length Folr1 proteins. 
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Figure 14. Phylogenetic Tree. FOLR1 proteins follows the predicted vertebrate 
gnathostome phylogenetic order with higher amino acid conservation being observed 
within a subclass or clade of animals.  
 

Of the four domains, the FRF domain had the highest percent identity at 58%.  

Interestingly, many of the amino acids that were conserved between human and zebrafish 

were also found to be conserved in the other vertebrates looked at, suggesting the 

importance of these amino acids. Of particular interest, within the human FOLR1 FRF 

domain are two regions that interact with folate: Folate Binding Sites (FBS) 1 and 2. The 

human FOLR1 FBS1, amino acids 124-128, consists of WRKER. When compared to 

zebrafish, only one amino acid is different (K126 R), which conserves the basic charge 

needed at that location.  The human FBS2, at amino acids 157-162, consists of 

HKGWNW. Again, only one amino acid is different between human and zebrafish 

FOLR1 protein in this region. Asparagine 161 has been changed to aspartate acid, both of 

which are polar. While this change does result in a negative charge at this location it is 
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interesting to note that five of the nine species looked at have aspartic acid at this location 

while the other four have asparagine. Taken together, the high conservation of chordate 

Folr1 proteins and the conservation of critical functional domains between zebrafish and 

human FOLR1 protein, suggest that the zebrafish Folr1 receptor is a good candidate to 

study aspects of vertebrate Folr1 protein function.  

 

 
 
Figure 15. FOLR1 Domains. Percent identity and percent conservation for domains 
between the human FOLR1 and other vertebrates, including zebrafish . 

 
Zebrafish zgc:165502  is a maternally loaded gene that is present during the 

first 4 days of development. To map the expression of the zebrafish folate receptor, we 

used reverse transcription-polymerase chain reaction (RT-PCR) on total RNA prepared 

from the following zebrafish stages: 1- to 2-cell, 256-cell, sphere, germ, shield, 1 dpf, 2 

dpf, 3 dpf, and 4 dpf. Amplification with the designed primers yielded a single band at 

the predicted size of 300 bp (Figure 16) for all stages assayed.  
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Expression was seen before the zebrafish maternal-zygotic transition at the 512-

cell stage (~2.75 h post fertilization), this suggests that zgc:165502 mRNA is maternally 

loaded. These findings correlate with previous research demonstrating that multiple genes 

in the folate metabolic pathway are also present as early as the 1- to 2-cell stage in (Lee, 

et al.., 2012).  

 
 
Figure 16. RT-PCR Results. zgc:165502 is detected in embryonic stages of zebrafish by 
RT-PCR. Each stage assayed presented a single band of 300 bp. 

 
Zebrafish zgc:165502 gene expression during early embryogenesis. An 

antisense and sense riboprobe were generated to perform WISH for the stages that 

presented a 300 bp band in RT-PCR experiments results, as well as to determine the 

spatial temporal expression pattern of the folate receptor of those stages (Figures 17 and 

18). All of the stages tested with the antisense probe demonstrated the presence of 

zgc:165502 mRNA, while sense probe assayed at the same stages were negative. The 

stages from the zygote period (1-cell) up to the late segmentation period (24 hpf) express 

the folate receptor globally (Figure 17). After 1dpf the expression pattern of the 

zgc:165502 gene becomes more localized and specific (Figure 18). By 2 dpf, the late 

pharyngula stage, zgc:165502 expression is seen in the head and heart of the embryo.  

Most enzymes in the folate pathway that have been previously investigated in 

zebrafish were found to be maternally loaded and expressed throughout the early embryo. 
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Inhibition of these enzymes were lethal (Sun, et al.., 2009; Gross and Dowling, 2005; 

Kao, et al.., 2007). The results from this investigation support the findings of these 

studies, and suggest that during these periods the folate receptor is used to support cell 

division although not necessarily cell differentiation.  

 

Figure 17. WISH Results for 1-2 Cell to Shield Stage. zgc:165502 is globally expressed 
(a) 1-2 cell (lateral), (b) 256 cell (lateral), (c) sphere (lateral), (d) 30% epiboly (lateral), 
(e) germ ring (lateral), (f) germ ring (top), (g) shield (lateral), (h) shield (top) 
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Figure 18. WISH Results for 1 dpf to 4 dpf. (a) 1 dpf  is globally expressed (b)2 dpf 
expression is shown in the head (c) expression is shown in the pectoral and caudal fin (d) 
expression is shown in the cloaca and pectoral fin  
 

It has been reported that dihydrofolate reductase (DHFR), an enzyme that plays a 

significant role in folate-mediated metabolism, also has a tissue specific expression and is 

abundantly expressed in the brains of zebrafish during early development (Sun, et al.., 

2011).  DHFR knockdown studies resulted in malformation of the heart (Sun, et al.., 

2010). Other studies that treat embryos with methotrexate (MTX), a folate antagonist, 

showed that rescuing treated embryos with folate resulted in decreasing the cardiac 

deformities (Ma, et al.., 2012). Similarly, studies exposing zebrafish to selenite during 

early embryo development resulted in cardiac and neural defects, but these effects were 

prevented with folate administration (Muralidharon, et al.., 2015). Recently, folic acid 

supplementation has been shown to rescue retinal defects induced by ethanol exposure in 

zebrafish during retinal neurogenesis (1-2 dpf) (Parkin, et al.., 2009). The results of these 

various studies support the conclusion that folate is necessary for cell differentiation. 
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Furthermore, if folate is pivotal at these stages of development, the folate receptor will 

also be necessary and it should be expressed in corresponding regions, which this study 

has shown.  

Zebrafish zgc:165502 gene expression during late embryogenesis. Once the 

embryo reaches the hatching period (2-3 dpf) and continues to the early larval stage (4 

dpf), zgc:165502 expression is seen in specific tissues. The pectoral, dorsal, and caudal 

fins, which begin to develop around 36 hpf, start to show zgc:165502 expression by 2 

dpf. Both development and expression continue through 4 dpf. The expression of 

zgc:165502 mRNA in the fins are consistent with previous studies in literature that 

inhibited DHFR. Using low concentrations of MTX, DHFR was inhibited prior to fin 

development and the embryo exhibited ventral edemas, dorsal curvature, and a shortened 

anterior-posterior axis, along with other defects at this stage (Sun, et al.., 2009). It is 

reasonable to infer from this that folate is essential for the growth and development of the 

fins. 

Development of the digestive tract is initiated around 2 dpf and the gut tube 

development concludes around 4 dpf (Pyati, et al.., 2006) when the cloaca begins the 

final stages of development (Kalli, et al.., 2008). Expression of the zgc:165502 gene was 

detected in the digestive tract at 3 dpf and in the cloaca at 4 dpf. This indicates that the 

folate receptor is present at a time and place during development when folate could be 

needed to sustain the growth and development of the digestive organs, including the 

cloaca.  



59 
 

 
 

Fluorescent-tagged folate is selectively taken up during development. To 

further confirm the presence of the zgc:165502 protein 3 dpf embryos were treated with 

fluorescent-tagged folate. As a control, embryos were also exposed to the fluorescent 

dye, free of folate (RH). After 24 h of exposure, the embryos were washed with embryo 

media and observed for fluorescence (Figure 19).  Living embryos treated with FA-BSA-

RH demonstrated bright fluorescence in the head and cloaca, which is where we observed 

the presence of zgc:165502 mRNA by WISH. All embryos assayed, including controls, 

fluoresced in the gut. We hypothesized that this was due to the ingestion of the 

fluorescent compounds rather than the zgc:165502 protein being present. To test this 

hypothesis, embryos were placed in media free of fluorescent dyes and folate for 24 h 

after their initial exposure to fluorescent-tagged folate and then observed again. The 

control embryos did not show any residual fluorescence, while the embryos that were 

initially treated with fluorescent-tagged folate showed the same fluorescent profile seen 

previously. These results demonstrate the ability of tissues shown by in situ hybridization 

to have zgc:165502 mRNA also have the ability to internalize folate.  We have shown for 

the first time, that tagged folate can be selectively taken up during embryo development 

in a targeted fashion.  
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Conclusions 

The folate receptor provides information as to when (developmentally) and where 

(spatially) folate can enter into the zebrafish. This study presents the gene expression 

pattern for the zebrafish zgc:165502 gene during embryogenesis. We have shown that the 

folate binding sites (FBS) in the FOLR1 protein in humans are conserved in zebrafish. In 

addition, we have elucidated the globally expression of the folate receptor mRNA in 

zebrafish during the first 24 hpf and the more specific, localized expression during late 

embryogenesis. 

This information can aid in optimizing current treatments for folate specific 

diseases, as well as potentially provide an avenue for researchers to further investigate 

folate specific conditions such as neural tube defects.  

Many cancers have an upregulated folate receptor (Sudimack and Lee, 2000), and 

targeting the receptor has proven to be a useful method to increase specificity and 

potency of drug treatments (Leamon and Reddy, 2004). The use of zebrafish and 

exploiting the folate receptor can help to advance the field of field of cancer research that 

targets the folate receptor. We have demonstrated the ability to exploit the folate receptor 

by use of fluorescent tagged folate.  
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CHAPTER FIVE 

SELECTIVE TARGETTING OF CELLS IN ZEBRAFISH USING FOLATE 

MEDIATED PHOTODYNAMIC THERAPY AGENT 

Introduction 

 The ability to selectively kill cells in a spatiotemporal fashion can provide insight 

into development. Many cancers overexpress the folate receptor (Bisland et al., 1999) 

due to its role in the synthesis of nucleic acids and amino acids (Choi and Mason, 2000; 

Keleman, 2006).  These cells can be selectively targeted by exploitation of the receptor. 

Many agents that specifically targets cancerous cells have been developed (Sudiamack 

and Lee, 2000; Leamon and Reddy, 2004; Lee and Low, 2012). These agents are taken 

up into the cell’s cytoplasm via receptor mediated endocytosis (Sudiamack and Lee, 

2000; Leamon and Reddy, 2004; Lee and Low, 2012). When folate (FA) is conjugated to 

a photosensitizer (PS), both the FA and the PS can be internalized into the cell (Lee and 

Low, 2012). Upon photoactivation the conjugate produces singlet oxygen which damages 

the cell and can lead to cell death. This method of effecting specific cells with PS that 

produces reactive oxygen species is called photodynamic therapy. Since embryonic cells 

also express folate receptors (as shown in Chapter Four) these PDT agents can be used to 

investigate early development. 

 A common PS that has been used in targeted and non-targeted studies is chlorin 

e6 (Ce6) agent that has FA and Ce6 covalently attached to bovine serum albumin,  
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 FA-BSA-Ce6 (discussed in depth in Chapter Three) that is effective as a folate directed 

PDT agent in HeLa cell culture.  

Selective cell targeting coupled with PDT has been studied in many organism, 

and through our search of the literature we believe zebrafish have yet to be used in these 

types of studies. Zebrafish are good candidates for these studies because they are 

vertebrates and they share a high degree of sequence and functional homology with 

humans, their embryos and larvae are transparent making it easy to see the impact of 

treatment with invasive techniques, and they produce a large number of offspring at one 

time (Kao, et al., 2014).  

We have previously elucidated the gene expression pattern for the folate receptor 

during zebrafish embryogenesis (discussed in Chapter Four). Here we report on the 

exploitation of the receptor by selective targeting of cells that express the folate receptor.   

Materials and Methods 

Reagents.1-ethyl-3-(3dimethylaminopropyl)carbodimide (EDC), bovine serum 

albumin (BSA),  anhydrous dimethyl sulfoxide (DMSO), ethanolamine, folate (FA), N-

hydroxysuccinimide (NHS), Rhodamine B isothiocyanate (RH), Acridine Orange (AO), 

were purchased from Sigma Chemical Company (St. Louis, MO). Chlorin e6 (Ce6) was 

purchased from Frontier Scientific (Logan, UT). All other chemicals used were analytical 

grade and used without further purification, unless otherwise specified.  

Zebrafish care and husbandry. Zebrafish were maintained at Loyola University 

Chicago. All studies were performed with the approval of the Institutional Animal Care 

and Use Committee (IACUC). Wild-type embryos were raised and staged as described in 
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Kimmel et al., 1995.  Post-gastrulation stages were treated with 0.005% 1-phenyl-2-

thiourea (PTU) solution to prevent melanin pigment from developing. Embryos older 

than 24 h post fertilization (hpf) were treated with fresh PTU solution once a day. Once 

the embryos reached the desired stage, they were dechorionated manually if necessary, 

anesthetized with 0.2% Tricaine pH 7.0, then fixed in 4% paraformaldehyde (PFA) in 

PBS pH 7.0 at 4°C.  After fixing, the embryos were washed four times with phosphate 

buffered saline with 0.1% Tween-20 (PBST). After washing, the embryos were placed in 

100% methanol (MeOH) and stored at −20 °C. 

Synthesis and characterization of non-fluorescent folate targeted compounds. 

FA-BSA-Ce6 and BSA-Ce6 were synthesized and characterized as detailed in Chapter 

Three. The final products, BSA-Ce6 and FA-BSA-Ce6 were diluted to a final 

concentration of 5 µM and 10 µM using embryo media. 

Selective cell targeting with FA-BSA-Ce6. Wild type zebrafish embryos were 

collected at 2 days post fertilization (dpf) and 3 dpf. Three embryos were placed in a 

single well that contained 3 mL of either 5 µM or 10 µM of BSA in embryo media, BSA-

Ce6, or FA-BSA-Ce6. The wells were placed in a 37°C incubator overnight in the dark. 

After 24 h, the solutions were removed and the live embryos were washed 3X with 

embryo media and returned to the incubator overnight. The following day each embryo 

was irradiated with light at 660 nm for 1 min, 2 min, 4 min, and 6 min which corresponds 

to 5.6, 11.2, 22.5, and 33.7 J/cm2 respectively. Each embryo was determined to be viable 

or non-viable based on response to touch and heartbeat.  A total of 24 live embryos were 

assayed with each conjugate.  
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Confirmation of selective cell targeting.  After the embryos were treated with 

PDT agents as described, they were immersed in 5 μg/ml Acridine Orange (AO) for 10 

min. Following treatment with AO each embryo was imaged for less than 60 s using a 

stereo fluorescent microscope with FITC filter.  

Results 

 Synthesis of conjugates. We have synthesized FA-BSA-Ce6 and BSA-Ce6 as 

previously described in Chapter Three. Briefly, a 10 molar excess of FA that was 

previoulsy esterified using a water soluable carbodiimide was covalently attached to BSA 

via amidation, producing FA-BSA. BSA-Ce6 was produced in th same manner, except 

Ce6 was used in a 20 fold molar excess to BSA. To generate FA-BSA-Ce6, Ce6 was 

covalently attached to FA-BSA, by the same esterification and proceeding amidation 

reaction. The final conjugates, BSA-Ce6 and FA-BSA-Ce6 were dialyzed in phosphate 

buffered saline pH 7.4. Based on UV-Vis absorption spectroscopy it was deteremined 

that each sample produced contained 8 covalently attached Ce6 to BSA, and 2 molecules 

of FA. 

 FA-BSA-Ce6 effectiveness in zebrafish. All embryos treated with BSA-Ce6, 

BSA, and embryo media that were assayed under all conditions discussed were 

determined to be viable for up to 24 h after light exposure. All embryos that were kept in 

the dark remained viable for up to 72 h after immersion in conjugates. Embryos exposed 

to 1 and 2.5 µM FA-BSA-Ce6 were determined to be viable based on reaction to stimulus 

and continued heartbeat for up to 24 h after light exposure.  
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 The results of FA-BSA-Ce6 at 5 and 10 µM on 4 dpf staged embryos (48 h after 2 

dpf embryos were treated with conjugates) are shown in Table 3. Embryos exposed to 1 

min and 2 min of light were all deemed viable. The embryos exposed to FA-BSA-Ce6 at 

both concentrations were non-viable at the end of 4 min and 6 min light exposure.  

Light exposure 

time 
5 uM 10 uM 

1min 0 0 

2 min 0 0 

4 min 24 24 

6 min 24 24 

 
Table 3. Non-viable embryos after PDT treatment. Results of FA-BSA-Ce6 at 5 and 10 
µM on 4 dpf staged embryos. Embryos exposed to light greater than 4 min were all non-
viable, embryos exposed to light under 4 min were all viable after PDT treatment. 

 
 To determine how much light was needed to induce death the trials were video 

recorded. Viability was based on heart beat; once the heart beat could no longer be 

detected the embryo was deemed non-viable. For 5 µM FA-BSA-Ce6 the embryos were 

non-viable on average after 3:42 minu (222 seconds) of continuous light exposure. For 10 

µM FA-BSA-Ce6 the heart beat stopped on average after 3:20 minutes (200 seconds) of 

continuous light exposure.  
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 The results for trials carried out using 5 dpf (48 h after 3 dpf embryos were treated 

with conjugates) were also video recorded. Each trial was video recorded from the onset 

of light irradiation. For both 5 and 10 µM FA-BSA-Ce6, the embryos were reactive and 

visually appeared to be unaffected for light exposure under 3 min. Beginning around 3 

min of light irradiation, 5 dpf embryos began to tremor. Of the 36 embryos treated with 5 

µM FA-BSA-Ce6, all 36 began to tremor and 12 were unreactive to stimulus (did not 

move when touched). 36 embryos were treated with 10 µM FA-BSA-Ce6 and all began 

to tremor beginning at 3 min of light irradiation and were unreactive to stimulus, unlike 

the 5 µM samples. All embryos regained “normal” functions (based on heart beat, 

reaction to touch, phenotype) after 24 h of irradiation. 

 Selective targeting of cells. To visualize cells that were effected by 

photodynamic therapy treatment with 5 and 10 µM FA-BSA-Ce6 we carried out cell 

death assay with acridine orange. The results of trials with 10 µM FA-BSA-Ce6 are 

presented in Figure 19.  As a control we treated embryos staged at 5 dpf in embryo 

media. 5 & 10 µM FA-BSA-Ce6 embryos show significant cell death over control. There 

appears to be no significant difference between 5 & 10 µM FA-BSA-Ce6. 36 embryos 

were assayed, 4 died while determining correct acridine orange concentration. The other 

32 exhibited the same fluorescence pattern. 



68 
 

 
 

 

 

Figure 20. Acridine Orange Assay Results. 5 dpf Embryos treated with FA-BSA-Ce6 
showed significant cell death over embryo media control. There was no observable 
difference between 5 and 10 µM samples. Image presented is indicative of both 
concentrations. 
 

Conclusions 

 Leamon and colleagues (Leamon, et. al, 1993) and many others have shown that 

the folate receptor in cell culture can be exploited with folate conjugated 

macromolecules. We hypothesized that by attaching FA to our BSA-Ce6 carrier 

molecule, the conjugate will be taken up by receptor mediated endocytosis. Previous 

work in our laboratory has proven that not only does zebrafish express the folate receptor 

during embryogenesis (shown in Chapter Four), but they can also take up a FA bound to 

a macromolecule via receptor mediated endocytosis (Chapter Four). In this study we 

synthesized an analog of the fluorescent compound produced in prior studies presented in 

Chapter Three. We replaced the fluorescent dye with a photoactive dye, Ce6. Ce6 is 

known for its large quantum yield of singlet oxygen produced via photodynamic action. 

In this study we set out to exploit the folate receptor in zebrafish to selectively target and 

effect cells that express the folate receptor.   
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 Photodynamic treatment trials were carried out on zebrafish embryos. To ensure 

that the results produced by the light trials were due to the photodynamic action of the 

targeted compounds we carried out these trials in the dark. All embryos exposed to FA-

BSA-Ce6, BSA-Ce6, BSA, and embryo media were viable up to 48 h after exposure. The 

same cannot be said for embryos treated FA-BSA-Ce6 that were irradiated with light. 

From this we can conclude that the results we received from light based studies were due 

to phototoxicity of the conjugates. These results support the results presented in Chapter 

Three, where over 96% of HeLa cells survived after being exposed to the conjugates in 

the dark, yet there was significant cell death upon photoactivation. 

 Photodynamic treatment of 4 and 5 dpf with our targeted agents resulted in all 

embryos treated with lower concentrations, 1 and 2.5 µM FA-BSA-Ce6, and BSA-Ce6, 

remained viable after treatment with up to 6 min of light.  In addition, all embryos that 

were exposed to controls survived as well as embryos exposed to the conjugates but not 

irradiated with light survived. This was to be expected, because based on our results from 

the cell culture trials, where 26% of cells were non-viable after treatment with 2 µM FA-

BSA-Ce6, and less than 2% of cells were non-viable for cells kept in the dark. Therefore, 

we concluded that our conjugates are not cytotoxic in the dark, and 1 and 2.5 µM FA-

BSA-Ce6 combined with 6 min of light does not produce significant cell death. 

 All embryos survived light treatment with 5 and 10 µM BSA-Ce6 and BSA. 4 and 

5 dpf embryos that were treated with 5 and 10 µM FA-BSA-Ce6 survived treatment with 

1 and 2 min of light. 4 dpf embryo treated at this same concentration but higher light 

dosage, 4 and 6 min, did not survive, yet, 5 dpf embryos treated at these same 
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concentrations remained viable, but treatment induce tremors after 3 min of light 

exposure. The embryos were checked 24 h after the induction of tremors and all signs of 

this effect were absent. To further investigate, those same embryos were exposed to light 

again. This second exposure did not induce tremors or any other noticeable effects. When 

checked for cell death, these embryos exhibited enhanced cell death over controls. Based 

on these results we concluded that our targeted PDT agent effects specific cells, not all 

cells.  

Discussion 

 Folate is a B vitamin that plays a significant role in the prevention of neural tube 

defects (NTDs) and homocysteinemia (Barnabe, et al., 2015; Williams, et. al, 2015; 

Mills, et al., 1995; Rosenquist, et al., 1996). NTDs are malformations of the brain and 

spinal cord that occurs during gestation (Botto, et al., 1999; Lemuire, 1988).  Folate is 

needed for the methylation of homocysteine to form methionine and the synthesis of 

deoxynucleotides needed for DNA replication (Kang, et al., 1987; Krishnaswamy and 

Nair, 2001). Increased levels of homocysteine (homocysteinemia) are suspected to play 

important roles in developmental defects and is a risk factor for ischemic heart disease 

(Krishnaswamy and Nair, 2001; Wald, et al., 1998). NTDs and the effects of 

homocysteine have been documented in zebrafish (Blair, et al., 2005; Muralidharon, et 

al., 2015; Parkin, et al., 2006). These studies show that inhibition of enzymes that 

metabolize folate increased the occurrence of these conditions, and supplementation with 

folate decreased their occurrence.  
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 This study shows that cells that express the folate receptor can be selectively 

targeted and manipulated over cells that do not express the receptor.  Photodynamic 

treatment with 5 dpf resulted in the embryo remaining viable, yet tremors were induced. 

The results from the acridine orange assay demonstrates that we effected selected cells. 

This discovery can lead to further investigation of folate specific diseases and cancers, in 

addition to helping to understand embryonic development. 
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CHAPTER SIX 

CONCLUSIONS 

Photodynamic therapy (PDT) utilizes oxidative damage to kill cancerous cells.  

Light excites a photosensitizer (PS), which then reacts with oxygen to form a highly 

reactive oxygen species, which includes singlet oxygen.  This singlet oxygen reacts with 

cellular macromolecules to cause lethal damage. A prevalent concern with current FDA-

approved PDT drugs is that they exhibit low selectively for cancerous cells over healthy 

cells. An approach to enhance selectively is to covalently attach a targeting moiety to a 

PS. Many cancers overexpress the folate receptor (Zwicke 2012; Parker 2005), therefore 

generating an agent that selectively targets that receptor is beneficial. The main objective 

of this research was to synthesize and characterize the folate directed, protein based 

photodynamic therapy agent, FA-BSA-Ce6. In addition, we wanted to show its 

effectiveness as a selective cell targeting agent in cell culture and in vivo.  

The PS used in our conjugate was chlorin e6 (Ce6). Ce6 is a useful PS due to its 

absorbance in the optimum therapeutic window and high quantum yield of singlet 

oxygen. In addition, Ce6 has three carboxyl groups that provides sites for straightforward 

conjugation to other molecules that contain primary amines. A major drawback to Ce6 is 

its tendency to aggregate in aqueous environments. To overcome this disadvantage, we 
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conjugated Ce6 to the protein, bovine serum albumin (BSA) through an amidation 

reaction with the lysine residues on BSA.  

BSA served as a scaffold to which multiple molecules of Ce6 could be attached 

due to its high number of lysine residues. Although BSA has 60 lysine residues, Huang 

and Kim showed that only 34 of those residues could be modified via lysine specific 

crosslinkers and those lysines were between 20-24 Å apart. We hypothesize that due to 

steric hindrance we were able to attached 10 molecules of Ce6 and two molecules of FA 

onto one molecule of BSA despite using ratios of Ce6:BSA as high as 30:1 and FA:BSA 

as high as 10:1.  

An effective PDT agent will be phototoxic upon irradiation with light at the 

appropriate wavelength, but not cytotoxic in the absence of light. By using the singlet 

oxygen sensor, ρ-nitroso-N,N’-dimethylaniline (RNO), we were able to confirm that 

singlet oxygen was produced upon photoactivation of FA-BSA-Ce6 with 660 nm light 

and that singlet oxygen was not produce in the absence of light in vitro. In HeLa cell 

culture, cells that were exposed to FA-BSA-Ce6 varying in concentration from 1-10 µM 

that were kept in the dark resulted in 93% or greater cell survival. Cell survival decreased 

significantly, to as low as 5% upon photoactivation. In vivo studies with zebrafish 

embryos that were exposed to 5 and 10 µM FA-BSA-Ce6 but kept in the dark resulted in 

all embryos remaining viable for at least 48 h after exposure and none of the embryos 

remained viable after photoactivation with light times greater than 3 mins. Results from 

these in vitro and in vivo studies showed that FA-BSA-Ce6 is not cytotoxic in dark but it 

is phototoxic upon irradiation at 660 nm. 

https://en.wikipedia.org/wiki/%C3%85
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 As shown in Figure 12 HeLa cell survival is both concentration and light dose 

dependent. As the concentration of FA-BSA-Ce6 increase and as light exposure time 

increases (thus irradiation energy increases), cell survival decreases. The same effects are 

not seen with BSA-Ce6 (Figure 11). In fact, cell survival across all light irradiation times 

remained above 92% for BSA-Ce6. In zebrafish trials, the trend continued. Embryos 

exposed to BSA-Ce6 remained viable upon photoactivation. We synthesized a fluorescent 

analog of FA-BSA-Ce6 that contained FA-BSA, but Ce6 was replaced with Rhodamine B 

(RH), due to Ce6 poor fluorescence. Zebrafish embryos were treated with BSA-RH or FA-

BSA-RH. After allowing time for the embryo’s gut to empty, embryos treated with BSA-

RH showed little to no fluorescence. Embryos treated with the FA-BSA-RH brightly 

fluoresced. Additionally, the gene expression pattern for the folate receptor during 

zerbrafish early development was elucidated. Embryos treated with FA-BSA-RH exhibited 

fluorescence in the same pattern that was shown via whole mount in situ hybridization 

(WISH).  From the fluorescence data using FA-BSA-RH, the WISH data, the high cell 

survival after treatment with BSA-Ce6 and light, and the low cell survival from treatment 

with FA-BSA-Ce6 under the same conditions, it is highly suggestible that the conjugate is 

folate directed, and possibly being taken up via receptor mediated endocytosis.  

Photodynamic treatment using FA-BSA-Ce6 with embryos staged at 5 days post 

fertilization (dpf), induced tremoring, although the embryos remained viable. Acridine 

orange experiments showed that cell death was occurring after treatment, and many of 

those cells exhibited florescence with treatment with FA-BSA-RH, and those cells showed 

the presence of the folate receptor in WISH experiments. This shows that FA-BSA-Ce6 
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can selectively target cells that express the folate receptor. The synthesis of FA-BSA-Ce6 

coupled with being able to selectively target and effect folate dependent cells in zebrafish 

opens up many new opportunities for investigation. Zebrafish share a high homology 

similarity to humans therefore they are good candidates as in vivo models to look into folate 

specific diseases as well as cancers. The folate targeted PDT agent could also be used to 

aid in understanding embryonic development. Research has shown that folate may play a 

role in alzheimer’s disease, nueral tube defects, cancers, cardiac diseases, and other 

neurological conditions (Botez and Reynolds, 1979; Clarke, et al. 1998; Reynolds, 2002; 

Seshadri, 2001). By using a folate directed agent, these diseases can be further examined 

and understood.  

 Besides knowing that FA-BSA-Ce6 produces singlet oxygen and singlet oxygen is 

toxic to cells, the actual mode or pathway to cell death is not well understood. It is not clear 

at what point during irradiation is singlet oxygen being produce. The studies discussed in 

this dissertation were end point analysis studies. It would be beneficial for studies to be 

carried out that monitor the production of singlet oxygen. This can be accomplished by in 

assay ROS detectors. 

Depending on the stage of zebrafish embryo, results from photodynamic treatment 

varied. Younger staged embryos died, while older staged embryos survived but began to 

tremor. Studies that look into what particular cells are being effected in vivo can provide 

deeper insight. Investigations into an optimum conjugate exposure time, along with 

elucidating the cascading events that occur after treatment with FA-BSA-Ce6 can and 

should be further explored in both cell culture and in vivo. Those studies will provide 
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insight into how the cell responds to the treatment prior to cell death and can lead to more 

efficient and optimized conjugates.   

FA-BSA-Ce6 provided cell death in both HeLa cell culture and in zebrafish 

embryos. Available molecular oxygen is a big contributor to the effectiveness of PDT. 

Cancer tumors tend to be hypoxic. Therefore, if a PDT agent is able to not only selectively 

target the cancerous cell, but also bring with it molecular oxygen, the effects of the PDT 

agent can be increased. Research in our laboratory has shown that a nanoparticle of up to 

8 modified hemoglobin molecules can be synthesized, and this nanoparticle has a high 

affinity for oxygen (Webster, 2016 in press). Therefore, synthesizing an analog of FA-

BSA-Ce6, by replacing BSA with the modified hemoglobin, can potentially deliver up to 

10 molecules of Ce6, along with 8 molecules of hemoglobin can be beneficial. Each 

molecule of hemoglobin will potentially carry a molecule of oxygen inside the tumor, 

thereby increasing the availability of molecular oxygen, thus increasing the generation of 

singlet oxygen.   

FA-BSA-RH was able to selectively target cells that express the folate receptor. 

Therefore, this analog can potentially be used for tumor imaging before and/or after 

treatment. Many cancers are treated from multiple approaches. Being able to have the 

tumor fluoresce can optimize surgical removal of tumors. In addition, provide a way to 

visualize how much of the tumor remains after surgery or after other cancer related 

treatments.    
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HEMOGLOBIN BASED PDT AGENTS 
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PDT potency has a direct relationship with oxygen availability. Cancerous cells 

are typically hypoxic due to the aggregation of cells, which prevents an appropriate 

vascular system from being developed. Hence, the more oxygen available to the 

photosensitizer the more cellular damage can be done. Crosslinked hemoglobin (XLHb) 

has been shown to have an increased oxygen affinity. Therefore, conjugating Ce6 to 

XLHb should allow for more molecular oxygen to be present inside the targeted cells, 

and result in increased cellular death.   

We successfully synthesized 60 µM XLHb, FA-XLHb, and FA-XLHb-Ce6. The 

conjugates were extracted using cold acid/acetone mixture to quantify the amount of folates 

and chlorin e6 molecules covalently bound to the protein as described in Chapter Three. 

Under these harsh conditions, the heme dissociates from the globin, and the globin 

precipitates along with any covalently bound molecules. FA-XLHb-Ce6 proved to have 

approximately 2.67 folates and 3 chlorin e6 molecules bound per protein molecule (Table 

4). 

 
 

. 

 
Table 4. Acid/Acetone Extraction. Average of 2.67 folates, and 3 chlorin e6 molecules 
bounds per XLHb molecule 
 

Trials # of FA # of Ce6  

1  3 3 

2 2 3 

3 3 3 
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 A key component to successful PDT is providing sufficient oxygen that can be 

converted into singlet oxygen. The FA-XLHb-Ce6 conjugate was assayed for its oxygen 

affinity. An oxygen binding curve was collected (Figure 21) and a Hill plot was constructed 

to determine the conjugate’s p50 (Figure 22). The p50 is the pO2 at which the hemoglobin 

becomes 50% saturated with oxygen. As the p50 decreases, oxygen affinity increases. 

Unmodified hemoglobin has a p50 of approximately 26.5 mmHg. The p50 for the 

crosslinked hemoglobin that was used to synthesize FA-XLHb-Ce6 was determined to be 

10.72 mmHg (+/- .245). The p50 for FA-XLHb-Ce6 was determined to be 7.98 mmHg (+/- 

.215) (Figure 21 and Table 5).  

 From Hill plots a Hill coefficient, “n”, can be calculated. The Hill coefficient is a 

measure of cooperativity. Cooperativity is a measure of affinity for a ligand, and in our 

case an oxygen molecule, to bind to a substrate (crosslinked hemoglobin) upon the binding 

of another ligand at a different binding site. A Hill coefficient that is greater than one 

denotes positive cooperativity. The Hill coefficient for XLHb was determined to be 1.03 

(+/- .010) and for FA-XLHb-Ce6 it was determined to be 1.70 (+/- .682) (Table 5 and 

Figure 22). This data demonstrates that upon conjugating XLHb to folate and chlorin e6 its 

oxygen affinity was enhanced. These results indicated that FA-XLHb-Ce6 oxygen affinity 

is greater than myoglobin (2.5 mmHg), yet lesser than Hb. Therefore, FA-XLHb-Ce6 

should be able to hold on to oxygen in normoxic conditions, and deliver its oxygen in 

hypoxic conditions, such as in cancerous tumors. 
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Sample P50 n 

XLHb 10.72 (+/- .245) 1.03 (+/- .010) 

FA-XLHb-Ce6 7.98 (+/- .215) 1.70 (+/- .682) 

Table 5. P50 and Hill Coefficients. Data table of calculated p50 and hill coefficient for 
XLHb abd FA-XLHb-Ce6 

 
 

Figure 21. Oxygen Binding Curves for FA-XLHb-Ce6. 
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Figure 22. Hill Plots Calculated from Oxygen Binding Curves 

             Each conjugate was subsequently assayed for phototoxicity and dark cytotoxicity 

in HeLa cell culture using a 96 well plate and Cell Titer Blue Assay as previously 

described in Chapter Three.  

 

Figure 23. XLHb Based Conjugates Cell Culture Results. 
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The crosslinked hemoglobin compounds were shown to be cytotoxic. Crosslinked 

hemoglobin provided 118.22% cell survival, while the XLHb-Ce6 and FA-XLHb-Ce6 

provided 63.57% and 50.69% cell survival, respectively. Phototoxicity results were 

81.13%, 18.52%, and 58.32% for XLHb, XLHb-Ce6, FA-XL-Ce6 respectively (Figure 

23). These results do not support our hypotheses. After further examination of the 

hemoglobin based conjugates, we determined that the hemoglobin had oxidized to 

become methemoglobin. Methemoglobin contains Fe3+. This oxidized form of 

hemoglobin has a lower capacity to bind oxygen in comparison to unoxidized 

hemoglobin. Conversely, Fe3+  has a higher affinity for bound oxygen. When oxygen 

binds to methemoglobin the remaining Fe2+ of the tetramer have an increased affinity of 

oxygen. This results in the methemoglobin poorly delivering oxygen to tissues, causing 

hypoxia, which is lethal to cells.   The samples were placed onto a dithionite reduction 

column, and results were not improved. The conjugates were successfully reduced, but 

after 24 h of incubation in a humidified atmosphere we hypothesize that the conjugates 

returned to the met-form. 

The results obtained using a significant lesser amount of conjugates (10 µM) of 

BSA based conjugates provided more consistent (based on standard deviations) data and 

proved to be a more effective conjugate. It should be noted that the amount of light 

energy used was in these XLHb studies was 81 mJ/cm2/nm while the BSA studies were 

carried out with 168 J/cm2/nm.  
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Brief Methods 

 Synthesis of XLHb. Prior to crosslinking hemoglobin at the β82-Lys residues, 

HbA was dialyzed in MOPS buffer at pH 7.0. The HbA was then reacted with bis-(3,5 

dibromosalicyl) fumarate (DBSF) at a 1:1.1 molar ratio. Subsequently, it was incubated 

for 2h at 37 °C. The reaction was terminated on ice and reaction mixutre was dialyzed in 

.01 M Tris buffer at pH 8.5 overnight. The crosslinked hemoglobin was separated from 

umodified hemoglobin using a Sephadex A-50 column with a pH gradient of 8.5-7.0. 

XLHb was confirmed by SDS PAGE-gel electrophroesis.  

Synthesis of FA-XLHb. Folic acid was placed inside of a small eppendorf tube 

covered with foil and dissolved in 200-300μl of dry DMSO. Next, it was incubated with a 

10 fold molar excess of 1-ethyl-3-(3-dimehtylaminopropyl) carbodimide(EDC) and a 20 

fold molar excess of N-hydroxysuccinimide (NHS) at room temperature for 30min. A 10 

fold molar excess of the esterified “acitivated” folic acid per XLHb tetramer was added to 

the XLHb solution that was previously dialyzed in bicarbonate buffer at pH 8.0 The 

mixture was incubated for 24h at room temperature and quenched with ethanolamine. 

The excess folic acid, NHS and ethanolamine was removed by dialyzing overnight in 

PBS at pH 7.4.If the FA-XLHb were to be added to chlorin e6 it was dialyzed in 

bicarbonate buffer at pH 8.0. 

Synthesis of XLHb-Ce6. Chlorin e6 was placed inside of a small eppendorf tube 

and covered with foil and dissolved in 200-300μl of dry DMSO. Next, it was incubated 

with a 10 fold molar excess of 1-ethyl-3-(3-dimehtylaminopropyl) carbodimide(EDC) 

and a 20 fold molar excess of N-hydroxysuccinimide at room temperature for 30min. A 
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10 fold molar excess of the esterified “acitivated” chlorin e6 per XLHb tetramer was 

added to XLHb that was previously dialyzed in bicarbonate buffer at pH 8.0 The mixture 

was incubated for 24h at room temperature and quenched with ethanolamine. The excess 

chlorin e6, NHS and ethanolamine was removed by dialyzing overnight in PBS at pH 7.4.  

Synthesis of FA-XLHb-Ce6. Chlorin e6 was placed inside of a small eppendorf 

tube and covered with foil and dissolved in 200-300μl of dry DMSO. Next, it was 

incubated with a 10 fold molar excess of 1-ethyl-3-(3-dimehtylaminopropyl) carbodimide 

(EDC) and a 20 fold molar excess of N-hydroxysuccinimide (NHS) at room temperature 

for 30min. A 10 fold molar excess of the esterified “acitivated” chlorin e6 per XLHb 

tetramer was added to the FA-XLHb solution that was previously dialyzed in bicarbonate 

buffer at pH 8.0 The mixture was incubated for 24h at room temperature and quenched 

with ethanolamine. The excess chlorin e6, NHS and ethanolamine was removed by 

dialyzing overnight in PBS at ph 7.4.  

Oxygen binding. Four milliliters XLHb or FA-XLHb-Ce6 in MOPS buffer pH 

7.0 was placed inside of the Hemox Analayzer Model B. The sample was allowed to 

equilibrate until it has reached 37°C (approximately 30min). The XLHb is oxygenated 

with air supplied from an air tank. After the XLHb has been completely oxygenated and 

the pO2 has been adjusted to 150mmHg, the sample is deoxygenated by switching off the 

air and turning on the nitrogen. The completion of the curve is reached when the pO2 

approaches zero.  
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PEG BASED PDT AGENTS 
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A PEG based conjugate was synthesized in addition to the protein based 

conjugates. The amines on the PEG allowed for the same carbodiimide esterification 

chemistry to be used for conjugation of folate and dye that was used with the protein 

based conjugates. It also helped maintain solubility. The 4 arm-amine PEG 

(CreativePEGworks, Winston Salem, NC 27113) (Figure 24), was placed inside of a vial 

covered with foil. A fifty fold molar excess of chlorin e6, 50 fold molar excess of 1-

hydroxybenzotriazole, 17 fold molar excess of folic acid, 50 fold molar excess of EDC 

was added to the vial and they were dissolved with 3-5mL of dry DMF. Once all reagents 

were dissolved a 50 fold molar excess of triethylamine was addition to the mixture and 

the vial was placed on a stir plate at  4°C. The resulting mixture was separated using gel 

filtration, and the number of molecules bound was determined via UV-Vis 

spectrophotometry for each fraction collected. Chlorin e6 has maxima absorption at 660 

nm, and folate has maxima absorption at 363 nm. The absorbances at 363 nm was 

corrected for slight overlapping absorption of chlorin e6 and the ratio of dye to folate was 

calculated (Table 6). It was determined that fraction two contained the desired the ratio, 

3:1, and was subsequently used in two HeLa Cell Culture trials. The results of the two 

trials indicated that the 19% and 48% of cells survived respectively after irradiation with 

light. In the dark the conjugates showed 54% cell survival. Therefore, the conjugate was 

deemed cytotoxic. It should be noted that the unlike the protein based conjugates cell 

survival was assayed using MTT and not Cell Titer Blue.  
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Figure 24. 4-Arm Amine PEG. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Table 6. Ratio of Ce6:FA Bound to 4-Arm Amine PEG. Fraction separated and collected 
via gel filtration using a G-10 Sephadex column. An UV-vis spectrum was taken of each 
fraction and subsequently ratios were determined 
 
 
 

Fraction Ratio (Ce6:FA) 

1 7.88 

2 3.09 

3 3.89 

4 3.36 

5 2.56 

6 4.28 

7 4.74 

8 3.96 
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  To determine the exact energy output of the lamp, its energy was measured 

against a calibrated light source. These experiments were carried out with the assistance 

of Dr. Robert Polak in the Physics Department at Loyola University Chicago. The 

experiment was briefly explained by Dr. Polak in an email sent to RoJenia Jones on 

August 12, 2014. The text from the email is below: 

“The total power emitted in electromagnetic waves for a light source is called the radiant 
flux and is measured in units of Watts (W).  The power emitted by the light source for an 
electromagnetic wave at a specific wavelength is called spectral radiant flux and is 
typically measured in (W/nm).  
To determine the spectral radiant flux of an object, we compare the light being emitted by 
it at a specific wavelength to that being generated by a calibrated light source.  In this 
case, we have a calibrated light from Labsphere, which consists of a 2π (“two-pi”) 
incandescent light source being driven by a calibrated power supply.  This light enters an 
integrating sphere and the detector used is an opal glass.  By comparing the light energy 
on the detector to that of an unknown source at a specific wavelength, we can then 
determine the spectral radiant flux of the unknown source. 
The opal glass itself is not a detector though.  Instead we use a Topcon SR-3 
Photoradiometer to determine the spectral radiance (light energy per unit area per unit 
solid angle) on the surface of the opal glass.  The spectral radiant flux of the unknown 
source can then be determined by: 
 the spectral radiant flux of the unknown source, is the spectral radiant flux of the 
calibrated light source (data provided by Labview), is the spectral radiance of the opal 
glass with the unknown source and is the spectral radiance of the opal glass with the 
calibrated light source. 
In this case, we actually aren’t interested in the spectral radiant flux of the unknown light 
source, but the light power per unit area per unit wavelength where the cultures are 
placed.  This is the spectral irradiance and is simply the spectral radiant flux of the light 
entering the integrating sphere through an open port divided by the area of that port. 
To determine this, the light source was placed 3 inches from the port opening and moved 
to measure the light entering the sphere that would correspond to different positions of 
the culture.  We broke this into 12 different bins (each representing a different area of the 
culture tray).  Using the above formula to determine the spectral radiant flux incident 
upon each bin, we can then determine the spectral irradiance by dividing this result by the 
area of the port opening” 
 

All measurements were taken with the source 16 inches from the tray.  The 

irradiance will go as 1/r2 from the source, so changing the distance from 16 inches to 18 
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inches will result in a 21% decrease in the irradiance. There were three trials completed 

for each lamp source tested. Below is a diagram of each “bin”: 

 

1 2 3 

4 5 6 

7 8 9 

10 11 12 

 
Figure 25. Lamp Bins 
 
All data reported in this dissertation (unless otherwise stated) was carried out with a 120 
red LED lamp (660 nm) purchased from Elixa (http://www.elixa.com/shop/120-led-red-
660nm/). The LED array is approximately 3/4″x 2″x 4″.  The results from the light 
intensity study for wavelengths 380 – 780 nm is presented in Figure 26. 
 
In Table 7 and Figure 27, the data is presented for the amount of energy produced at 660 
nm with the lamp 3 inches away from the test surface for 1-10 min. 
 

http://www.elixa.com/shop/120-led-red-660nm/
http://www.elixa.com/shop/120-led-red-660nm/
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Figure 26. Lamp Intensity 
 
 
 

MINUTES J/CM2/NM 

1 5.619322266 
2 11.23864453 
3 16.8579668 
4 22.47728906 
5 28.09661133 
6 33.7159336 
7 39.33525586 
8 44.95457813 
9 50.5739004 

10 56.19322266 

 
Table 7. Energy Output at 660 nm for 1-10 minutes 
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Figure 27. Energy output at 660 nm for 1-10 minutes 
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