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CHAPTER I 

INTRODUCTION 

Many important decisions within the educational 

enterprise are based on information gained through the 

evaluation of test results. such tests are designed with 

the intent of determining the degree to which a student's 

behavior has been affected, at least theoretically, by a 

particular type of learning experience within the school 

environment. Glaser and Nitko (1971) state that if such 

testing is to be justified, in terms or the time and 

expense required, test results must furnish relevant 

information on which to base decisions tor "the develop­

ment, operation, and evaluation of education". 

However, the decisions made within education can 

be generally no more accurate than the information on which 

they are based. Hence, within any such endeavor, the 

matter of the accuracy of obtained measurement, or the 

degree of "experimental error" present in such measures, is 

of prime importance. The attempt to determine the degree 

of accuracy contained in a set of measurements is the 

concern of the topic of reliability. Although the methods 
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of estimating reliability are varied and can be based on 

somewhat different conceptual definitions, the desired end 

product is always a numerical coefticient which is meant to 

serve as an indicator of the general degree of accuracy of 

a particular measurement instrument; be it test, inventory, 

or scale. 

As was the case with the vast majority of other 

statistical techniques which emerged out of the early 

development of what might be termed traditional or classi­

cal test theory, procedures of reliability estimation 

were designed to be conceptually compatible with scores 

obtained from norm-referenced (NR) tests. The conceptual 

basis of NR testing is that individual performance or 

ability is evaluated on the basis of individual relative 

position within a range of test scores, produced by all 

similarly defined individuals who have taken the same test. 

It follows that there can only be variation in individual 

evaluations if there is variation in individual test per­

formance. And, the greater the degree of individual test 

score variation, the more reliable the estimations of 

relative individual positions in the range of test scores. 

Thus, it is not surprising that traditional procedures 

of reliability estimation depend upon variation in test 

scores, and yield coefficients which increase in degree of 
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estimated reliability as test score variation increases. 

More recently however, a second type ot evaluation 

procedure termed criterion-referenced (CR) or criterion­

referenced mastery (CRM) testing has been developed. This 

latter approach to testing attempts to evaluate individual 

performance not on the basis of relative score location 

within a group of examinees, but rather in terms of indi­

vidual performance in relation to a particular standard or 

criterion determined prior to testing. Therefore, indi­

vidual performance is evaluated without reference to the 

performance of that individual's fellow examinees. 

Both location within a distribution of scores and 

degree of score variation are thus unimportant in the case 

of individual evaluation on the basis of scores obtained 

from CR or CRM measures. As a result, those statistical 

procedures developed within the framework of norm-refer­

enced (NR) testing are both conceptually and mathematically 

inappropriate for use with criterion-referenced (CR) and 

criterion-referenced mastery (CRM) test data. overall, the 

purpose of the present research project is to develop a 

type of reliability estimate to be applied to scores 

obtained from CR or CRM tests. 

This first chapter will be divided into two major 



sections. The first section will concentrate on the con­

cept of test reliability as it has been traditionally 

applied in relation to no~referenced (NR} testing, and, 

the conceptual and mathematical implications of this 

traditional approach in regard to criterion-referenced 

mastery (CRM) test data. The second section will present 

the basic concepts involved in the approach to be taken 

in the development of a reliability estimation procedure 

to be applied to CRM test data. 

4 



NORM-REFERENCED { NR) VERSUS 

CRITERION-REFERENCED (CR) TEST RELIABILITY 

Ibe Concept of Test ReliabilitY 

As expressed by Ebel {1968), according to tradi­

tional test theory the value of a reliability coefficient 

represents the proportion of the observed variance or 

scores yielded from a test, which is due to true score 

variance. That is, a test is the more reliable the less 

the error variance that is contained in the obtained out­

comes of that test. This leads to an inverse relationship 

between the extent to which individuals' test results are 

the effect of the positions of those individuals on some 

hypothetical continuum, and the extent to which those test 

results are affected by extraneous, or error producing, 

variables. 

For example, if a teacher attempts to evaluate the 

mathematical achievement of his or her students by means of 

a test, the hope is that the scores obtained on that test 

will be more the result of the true mathematical ability of 

those students, and less a result of various unrelated 

extraneous variables. The errors of measurement which 

5 
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result from these extraneous variables are assumed to be 

random, and can result from a number of unrelated factors. 

Kerlinger (1973) identifies some ot the sources ot errors 

of measurement as: 

the ordinary random or chance elements present in all 
measures due to unknown causes, temporary or momentary 
fatigue, fortuitous conditions at a particular time 
that temporarily affect the object measured or the 
measuring instrument, fluctuations of memory or mood, 
and other factors that are temporary and shifting. 
(p. 443) 

Because the above sources of measurement error are 

random, and can be manifested in a particular score to 

varying degrees, any measure of the accuracy of a set of 

test scores will necessarily be an estimate. Hence, the 

numerical index previously mentioned, which is termed a 

reliability coefficient and is meant to serve as an indica­

tion of the degree of accuracy of a set of test scores, is 

an estimate. 

It is true that various means have been developed 

with the purpose of yielding an estimate of the reliabil­

ity-of scores obtained from a particular test. Therefore, 

one might ask why another such approach need be developed. 

The task at hand is necessitated due to the fact that the 

"traditional" means of determining test reliability are 

inappropriate when applied in the case of criterion-
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referenced mastery tests. To see why this is the case, it 

is necessary to first examj.ne the manner in which test 

reliability has been "traditionally" defined, both theo­

retically and operationally. 

some Theoretical Considerations of Classical Test 
Reliability 

On the theoretical side of the issue, our discus­

sion begins with consideration of the fact that any set of 

measures obtained from a particular instrument has a total 

obtained variance. It is this concept of obtained variance 

which is crucial to the problem at hand. Therefore, we 

will need to develop the concept of obtained variance to 

fully understand how it relates to a theoretical definition 

of reliability. 

Now, theoretically, each individual score in a 

particular set of measures is assumed to consist of two 

components - a true component and error component. This 

relationship can be expressed by the following equation: 

where: x0 = an individual's obtained score 
i 

( 1 • 1 ) 

XT = an individual's true score, which is a 
i function or that individual's position 

in some hypothetical continuum. 
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XE. = that portion of an individual's obtained 
1 score which is due to random error - this 

effect can be either positive or negative. 

The next step in calculating the obtained variance 

of a set of measures, would be to subtract the arithmetic 

average, or mean, of the set of measures, from each indi­

vidual measure. In the case of our equation, in order to 

maintain algebraic equivalence, the mean would need to be 

subtracted from both sides of the equality, thus yielding: 

where: x0 = the mean of the set of obtained 
1 measures. 

(1.2) 

Since x0 . represents the arithmetic average of a 
1 

set of obtained scores, each of which is made up of a true 

score and an error score, this set of obtained scores 

could theoretically then be separated into a set of true 

scores and a set of error scores. It would then be a simple 

matter to compute the mean of the set of true scores and 

the mean of the set of error scores. Hence, we see that 

the mean of the set of obtained scores is itself made up of 

the combination of two means - the mean of the set of true 

scores and the mean of the set of error scores. Substitut­

ing this alternate expression for x0 into the right side 
1 

of Equation 1.2, and arranging like terms, we have: 



where: !T = the mean of the set of true scores. 
i 

XE = the mean of the set of error scores. 
i 

9 

The value (X0i - x
01

) is termed the deviation score 

or individual 1. Such a score simply represents the dis­

tance in score units of an individual's obtained measure, 

from the mean or the entire set or obtained measures to 

which that particular individual's score belongs. The next 

step in computing the obtained variance would be to square 

each or these individual deviation scores. Thus, squaring 

both sides of Equation 1.3, we have: 

we have: 

( 1.4) 

Multiplying out the right side of Equation 1.4, 

= (" - XT )2 
~i i 

+ 2(Xrr - "X.r ) 
i i 

(1.5) 

The calculation of the obtained variance is then 

actualized by summing these individual squared deviation 
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scores across the n individuals in a particular group, and 

dividing these summed deviation scores by n. Performing 

these two operations on Equation 1.5, and separating the 

terms on the right side of the equation, the following 

equation results: 

n = n (1.6) 

+ 
2 ~ ( x_ - 'XT ) ( XE - XE ) L --.!.i i i i 

n 

+ n 

where: n = the number of individual scores in the 
particular group on which the obtained 
variance is calculated. 

[ means "take the sum of". 

With Equation 1.6, we then have the final formula 

for the calculation of the obtained variance of a set of 

scores or measures expressed in the left-hand side of the 

equation. Looking at the right-hand side of Equation 1.6, 

the first and third terms are also recognized as statisti­

cal expressions of variance. The first term represents 

the variance of the set of true scores for the particular 

group of individuals, while the third term represents the 

variance of the set of error scores for the same group. It 



1 1 

is the middle term of the equation immediately above which 

at first presents some difficulty in interpretation. To 

explain the next step, it is necessary to here point out 

an assumption of the theory of reliability. 

Test theorists assume that the correlation between 

true scores and error scores is zero. Stated conceptu­

ally, this assumption posits that there is no relationship 

between the true scores and error scores for either an 

individual or a group. Taken either individually or group­

wise, even if the true score of an individual, or the set 

of true scores of a group, were known, this knowledge 

would be of no aid in predicting the error score or set of 

error scores that would be associated with the respective 

true score or set of true scores. 

The statistical result of the above assumption is 

that if the correlation between two variables is zero, the 

sum of the cross products of individual scores from their 

respective group means will be zero, when those cross 

products are taken across the entire population. If this 

is the case, the numerator of the middle term on the right 

side of Equation 1.6, which contains such a sum of cross 

products, would be equal to zero, and hence, this middle 

term would drop out of the equation. It should be recalled 

that at this stage we are still speaking theoretically, and 
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it is assumed that the middle term of Equation 1.6 will 

equal zero when measures are made either on the entire 

population of individuals in question, or, an infinite 

number of measures are obtained on a particular individual 

using the same instrument on each occasion. 

It is not within the scope of this thesis to ex­

plore the validity of the assumption that the relationship 

between true scores and error scores is zero. However, 

the interested reader is directed to Hagnusson (1967) for 

a more detailed discussion of this assumption and its 

additional implications. 

Returning to the purpose at hand, with the cancel­

lation of the middle term on the right side, Equation 1.6 

becomes: 

L <xo. - )2 L - 2 - X (XT.- ~.) oi ~ ~ ~ (1.7) = n n 

L - 2 (XE.- XE.) 
+ * ~ n 

For purposes of brevity, Equation 1.7 can be stated 

thusly: 

(1.8) 

where: v0 = variance of obtained scores. 



VT = variance of true scores. 

VE = variance of error scores. 

13 

From Equation 1.8, it can then be seen that the 

obtained variance of a set of measures for a particular 

group can itself be theoretically partitioned into two 

other variances - the variance of the true score for that 

same group, and the variance of the respective error scores. 

A Theoretical Definition of Test Reliability 

First, in theory, test reliability is defined to 

be the ratio of true score variance to observed score vari­

ance. This definition can alternately be interpreted as 

the proportion of observed score variance which is made up 

of true score variance, and can be expressed by the formula: 

-~ rtt - V (1.9) 
0 

where: rtt = the reliability coefficient. 

Equation 1.8 can be algebraically manipulated to 

yield a second equivalent expression of reliability; that 

is: 

(1.10) 



Conceptually, Equation 1.10 defines reliability 

as unity minus the proportion of observed variance which 

is made up of error variance. 

The range of numerical values of rtt can be 

determined upon examination of Equations 1.9 and 1.10. 

14 

Due to the nature of their respective statistical formulae, 

neither VT nor VE can be negative. Indeed, this is true 

of any measure of variance. Hence, from Equation 1.10, 

it is seen that the range of values for both VT and VE is 

from zero to the value of v0• 

Now, if all of the observed variance is made up 

of true score variance, V~ would equal v0, and from Equa­

tion 1.9, we see that rtt would equal unity. Therefore, 

unity represents the upper limit of the range of possible 

values of rtt• Such a result agrees conceptually with our 

general understanding of the reliability of a set of mea­

sures. For, the reliability of an instrument which yields 

a set of measures, can be considered perfect, and possess 

an rtt equal to one, only if that set of measures contains 

no errors and, therefore, VE equals zero. 

On the opposite extreme, if the set of measures 

obtained from a particular instrument are the result 

entirely of errors, VE would equal v0, and from Equation 

1.10 it is seen that such an instrument would have an rtt 
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equal to zero. Therefore, from a theoretical standpoint, 

rtt can range from zero to unity. 

A further point of interest, to which this discus­

sion will return later, is that the theory of test reli­

ability reveals an inverse relationship between the value 

of rtt• and the value of VE. That is, as the degree of 

error contained in the observations yielded by a particular 

instrument increases, and thus VE increases, the reli­

ability coefficient associated with that instrument, rtt' 

decreases toward zero. Conversely, as the degree of error 

contained in such measurements decreases, rtt increases 

toward unity. Such a case is, of course, compatible with 

the common sense notion by which the accuracy of an instru-

ment should be judged. 

An Operational Definition of Classical Test Reliability 

The theoretical definition of reliability developed 

above could not be employed in practice since the value of 

an individual's true score as measured by a particular 

instrument is never known. It follows then, that an opera­

tional definition of test reliability is needed. Ebel 

(1972) defines test reliability operationally, as follows: 

The reliability coefficient for a set of scores from 
a group of examinees is the coefficient of correlation 
between that set of scores and another set of scores 
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on an equivalent test obtained independently from the 
members of the same group. (p. 410) 

Therefore, to actually estimate the degree of 

reliability of a particular instrument, two sets of scores 

obtained independently for the same group of individuals 

would first need to be procured. The reliability coef­

ficient associated with the particular instrument would 

then simply be the correlation coefficient, which is the 

index of the degree of relationship between those two sets 

of scores. Two such sets or scores are obtained generally 

by three "traditional" means: 1) have the individuals 

retake the same instrument; 2) thru the administration or 

an "equivalent" form of the test; or, 3) subdivide the 

items on the particular test into two or more equivalent 

portions. 

A sidenote or interest here is the slight differ­

ence, in semantics alone perhaps, between the theoretical 

and operational definitions of reliability. In theory, the 

degree of reliability possessed by an instrument depends 

upon the amount of error contained in the resulting mea­

surements. When viewed operationally as the relationship 

between two sets of scores, reliability is best seen as 

synonymous with consistency. The assumption here then, is 

that the more consistent the repeated measures yielded by 
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an instrument, the more accurate that instrument. The no­

tion in this latter interpretation being, that if there 

is a relatively large amount of variability among repeated 

measurements of the same object by the same instrument, 

that instrument cannot be considered very dependable. The 

idea of reliability considered as consistency, will be of 

future importance. 

Implications of Operational DefinitiQn of Test Reliabil+tv 

This discussion now turns to consideration of the 

operational definition of reliability as the correlation 

coefficient between two independent and equivalent sets of 

scores of the same group. The fact that the coefficient 

of reliability has been traditionally considered as a cor­

relation coefficient results in an effect which is the 

direct cause of the research problem at hand. In general, 

the relative size of any correlation coefficient is af­

fected by the range of talent of the scores upon which 

that index is calculated. Range of talent is simply the 

distance, in score units, from the lowest score in a 

particular group to the highest score. Other things being 

equal, as the scores within each of two groups increase as 

to the degree to which they vary from one another, or as 

the variances of the sets of scores increase, the corre­

lation coefficient calculated as the index of relationship 
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between those two sets of scores will likewise increase. 

As a practical example, the reliability coefficient 

estimated for a particular test from scores obtained from 

administration to a group of sixth grade students will, in 

general, be smaller than a reliability estimate for the 

same test, using the same method of test administration, 

but utilizing scores for fifth, sixth, and seventh grade 

pupils. Vlhat has happened, is that in the latter case, 

the range of talent has been increased from one grade level 

to three grade levels. The test remains the same, how­

ever the variance associated with the scores obtained from 

the test in the second case has increased. Hence, we see 

that the notion of test score variance is essential to both 

the theoretical and operational definitions of reliability, 

as those definitions have been understood traditionally. 

The problem under current investigation concerns 

the development of a reliability coefficient for CRM tests. 

One might well ask the question why such a pursuit is 

necessary if several means of estimating test reliability, 

herein referred to as "traditional" methods, are generally 

considered acceptable. An answer to this question can be 

achieved by consideration of the types of scores obtained 
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from CRM tests. 

~Vhile the various methods of statistical analysis 

in education and psychology were being developed, since 

approximately the turn of the present century, the major 

mode of testing within these two enterprises can be 

described as norm-referenced (NR). It should therefore be 

of little surprise that the more traditional means of 

statistical analysis should be most applicable to NR test 

data. 

In general, NR tests are designed to yield scores 

which approximate the familiar bell-shaped, normal curve in 

their distribution. The range of such a group of scores 

would have a relatively small percentage of observations at 

the upper end of a score continuum, the majority of scores 

near the middle, and again, a small percentage at the lower 

end of the range. Items are chosen for such a test ac­

cording to their ability to maximize variability between 

individual responses. Items which nearly all of the indi­

viduals taking such a test can be expected to answer either 

correctly or incorrectly, are considered to be of minor 

value. Hence, the emphasis of NR tests on maximizing score 

variability is seen to be compatible with the traditional 

operationally defined estimate of reliability. In fact, 

the vast majority of statistical techniques involve the 



analysis of the variance exhibited in a set of observa­

tions. 
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However, the emphasis in educational testing has 

currently shifted to what have been labeled as criterion­

referenced (CR) tests. Glaser (1963) identified the empha­

sis of CR tests as the assessment of student behavior in 

terms of certain well-defined standards of performance. 

scores on such tests should provide information pertinent 

to both the degree of proficiency a particular student has 

attained with respect to certain criteria of behavior, and 

the relative ordering of individuals taking the particular 

test. 

Although various definitions of CR tests have 

followed, as Alkin (1974) states, they seem to share two 

general characteristics. First of all, test items are se­

lected solely on their ability to elicit certain well­

defined behaviors. The effects of the responses to a 

particular item on score variability within a group, of 

prime importance in the case of an NR test, is of little 

or no importance with a CR test. 

Secondly, individual performance is assessed in 

light of a specified criterion. For example, it may be the 

case that an individual must be able to answer correctly 
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90 percent of the items on a particular test before a 

judgment can be made that that individual has success­

fully acquired the defined behaviors of interest. In 

contrast to an NR test, levels of performance may not be 

determined until after test scores have been collected. 

As a practical example, if a teacher has decided to "mark 

on the curve", the percentage of correct responses on a 

test which represents a performance level worthy of an 

"A", cannot be determined until after the test has been 

administered. 

Therefore, as l1illman and Popham (1974) assert, 

variability is an unnecessary characteristic of CR tests. 

The primary purpose of a CR measure is to assess the cur­

rent status, either before or after some method of instruc­

tion, in regard to a particular domain of well-defined 

tasks. Such a set or class of specified tasks is consid­

ered a universe from which the items on a particular CR 

test represent a random or stratified random sample from 

that universe. An individual's score on such a test reP­

resents an estimate of the individual's true score on the 

entire universe of tasks. Hence, the familiar case results 

of attempting to estimate a parameter from a value obtained 

by random sampling. The degree to which these estimates 

vary from individual to individual is irrelevant. 



Im~lications of CRM Tests for Methods of Reliabilitx 
Estimation 
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As stated previously, the particular problem at 

band concerns a reliability estimate made on a CRM test. 

several definitions of mastery tests and testing have been 

offered (Bloom, 1968, 1973; Mayo, 1968; and Harris, 1974a). 

However, they all indicate that a CRM test is a CR test 

administered at the conclusion of a particular educational 

treatment, and is meant to determine the extent to which 

an individual has attained the tasks identified in the ob-

jectives of that particular treatment. A standard is set 

prior to testing, representing a cut-off point in respect 

to which decisions are made as to whether an individual 

has either mastered or not mastered the specified tasks. 

Upon being evaluated as having mastered the tasks specified 

by an educational treatment, an individual then would move 

on to the next higher level of tasks in such a program. If 

an individual fails to score at or above the cut-off point 

of the CRH test, he/she would then receive further instruc­

tion at that same level, and then be retested. This pro­

cedure can be repeated until an individual is adjudged to 

have mastered the tasks corresponding to a particular level 

of such an educational program. Hence, one can see the 

importance of being able to estimate the accuracy of the 
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tests employed in the above situation; for the scores ob­

tained through administration of a test-retest or equiva­

lent forms format, provide perhaps the sole information 

upon which a mastery or nonmastery decision is made. 

At first glance, the notion of reliability as it 

concerns CRM testing does not seem different from the 

original theoretical definition provided earlier in this 

discussion. Indeed, Osburn (1968) has stated that relia­

bility is the procedure for determining the accuracy of 

an estimate of a person's true score on a universe of 

items. And likewise, we have seen that the score on a 

CRM test can be considered to represent an estimate of an 

individual's true score on some universe of items, by means 

of a random sample of items from that universe. or closer 

proXimity to both the previously stated operational defini­

tion of reliability, and a mastery testing program,· 

Hillman (1974) defines reliability as the consistency of 

estimates regarding a tested individual's "level of func­

tioning". 

However, the problem created by applying the tradi­

tional means of estimating test reliability should already 

be apparent; that is, that test score variance is irrele­

vant to CR measures in general. And in the case of a CRM 

testing program, the number of items on a test can be 
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relatively few. Hence, it would not be out of the ordinary 

that upon completion of an educational treatment in such 

a program, the majority of tested individuals might attain 

perfect or near-perfect scores. In this case, score vari­

ability would be quite low, or perhaps even nil. If tradi­

tional means of reliability, with their dependence on test 

score variance, were used in the above context of testing, 

a small range of talent would result in a calculated relia­

bility coefficient of close to, or perhaps even equal to, 

zero. Therefore, a CRM test may be accomplishing its in­

tended purpose of accurately and consistently estimating an 

individual's true score on a universe of items, yet yield a 

very low coefficient of reliability when the traditional 

means of calculation are used. 

Summary 

In summary then, it has been demonstrated that the 

traditional means of estimating test reliability are inap­

propriate when applied to CRM tests because of the likely 

lack of sufficient variability manifested by groups of 

scores obtained from such tests. On a more philosophical 

point, it may likewise be inappropriate to estimate the 

reliability of CR measures in general, by means dependent 

on score variance, when such variance has been shown to be 

irrelevant to the intended purpose of such tests. 
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The next section attempts to serve as an introduc­

tion to a suggested solution to the problem of estimating 

the reliability or CRM tests, which does not depend on test 

score variance. 



INFORMATION THEORY AS A BASIS 

FOR ESTIMATING CRITERION-REFERENCED 

MASTERY (CRM) TEST SCORE RELIABILITY 

Method or Approach to the Sglution of the Problem 

In a discussion of CR measures, Harris (19?4) sug­

gests two modes of problem-solving which are perhaps appli­

cable to any area. First, one would attempt to identify 

and experimentally apply any already eXisting adaptable 

solutions. Economically speaking, in terms of both time 

and material resources, such a method should be that ini­

tially applied in any temporal sequence or problem-solving. 

Upon demonstrated failure of this first approach, the sec­

ond mode of attack would be an attempt to create a new 

solution. One of the purposes of Chapter II will be to 

demonstrate that already existing solutions have been ap­

plied to the problem of estimating the reliability of CRM 

tests, and that for various reasons these attempts have 

proven inadequate. The purpose of this section is then, to 

introduce a new approach to the above problem, and demon-

strata its conceptual appropriateness. 

Robert L. Thorndike (1951) has stated that if one 
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is interested in what purposes are to be served by measur­

ing the reliability of a test, one must first analyze what 

is to be accomplished by such a test. This notion is re­

ferred to later by Stanley (1971) as the logical aspect of 

the study of reliability in educational measurement. A 

second aspect which Stanley mentions is a statistical one. 

From this latter perspective, methods of data collection 

and statistical analysis must be developed so that they 

are logically consistent with the inferences that are to be 

made with the calculated values. As seen in the previous 

section, score variance is irrelevant in the case of CRM 

tests in general. Therefore, a statistical analysis de­

pendent on such variance, as is the traditional reliability 

coefficient, would seem to be logically inconsistent with 

the inferred purpose of CRM measures. The inference of 

interest concerns whether or not a particular individual 

has mastered the specified tasks related to a particular 

educational treatment. The extent to which that individual 

varies from his/her peers who have also taken the test, is 

of little or no concern. 

As mentioned earlier in this discussion, test 

scores are the major source of information upon which edu­

cational decisions are based. Now, information in any 

situation is only as valuable as its accuracy and relevancy 
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warrants. In a system of CRM testing the decision to be 

made is whether or not an individual student has mastered 

or attained the behaviors associated with a particular 

level of instruction. And, the degree of accuracy which 

accompanies such decisions is dependent for the most part 

upon the accuracy of the information on which they are 

based. It is a basic assumption of the approach taken 

within this paper, that if test scores can be considered 

as information, an index of the consistency of the informa­

tion obtained from two independent and equivalent measures 

applied to the same group of individuals, is synonymous 

with the traditional notion of test score reliability. 

Similarity between Concepts of Reliability and Information 

It should be recalled, that the traditional opera­

tional definition of reliability is best interpreted in 

terms of consistency. Hence, an interpretation of test 

score accuracy in terms of consistency of the information 

provided by such scores seems to be clear of any conceptual 

difficulties regarding this point. If a decision is to be 

made as to the classification of a student as a master or 

nonmaster of a particular subject content, an estimate of 

the consistency of the information on which that decision 

is based, should bear directly upon the degree of accuracy 

of that decision. Accepting this line of reasoning, a 
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statistical estimate of the information contained in a set 

of test scores, is of initial importance. such a statisti­

cal expression of information is provided by the field of 

study termed information theory. 

Every scientific process aims basically at the 

acquisition of information. Information theory assumes 

that it is valuable to be able to estimate the amount of 

information contained in a set of observations, termed mes­

sages, and provides a mathematical basis to do just that. 

Information is theoretically considered as something we 

have obtained from a source, which we did not know before. 

In an educational setting, the source is considered to be 

the individual student. 

It should be mentioned that whether the information 

received in an act of communication is correct or incorrect, 

useful or useless, is irrelevant to a measure of the amount 

of information obtained. The relationship between the 

amount of information obtained in a message, and the cor­

rectness of that information, can be considered analogous 

to the relationship between reliability and validity in 

classical test theory. It is of course necessary in any 

situation to determine whether the information upon which 

decisions are to be based is correct, and in fact useful. 

However, just as a discussion of reliability can be 
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conducted separate from consideration of test validity, an 

analysis of the consistency of information can proceed 

apart from attempts to determine the usefulness of that 

information. This is in no way meant to diminish the ob­

vious importance of knowing whether or not the information 

obtained is useful. Instead, this researcher suggests that 

just as test reliability is considered to be a necessary 

but not sufficient condition for test validity (Gronlund, 

1976, p. 106), information must be shown to be consistent 

before it can be examined for its usefulness. 

Returning to the discussion of the nature of in­

formation, any act of communication provides information 

only to the extent that it reduces a condition of ignorance. 

In a CRM testing situation, the test administration is con­

sidered the act of communication and the scores obtained 

are assumed to provide the information which will remedy 

our ignorance as to whether or not a particular student has 

or has not mastered the behaviors relevant to a given level 

of instruction. The amount of information which can be 

obtained in a particular situation is determined exclusive­

ly by the amount of uncertainty, calculated a priori to the 

act of communication, concerning the state of affairs under 

consideration. As this quantity of uncertainty, which is a 

function of the number of alternatives present in a 
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particular situation, is reduced, the information obtained 

is increased. The result then, is an inverse relationship 

between information and uncertainty. As the uncertainty 

is decreased by the types of responses observed in a par­

ticular situation, information increases. Uncertainty is 

in fact, potential information. The more the uncertainty 

associated with a situation, the greater the opportunity 

for information. 

The above situation can be compared to the inverse 

relationship between error variance and the magnitude of 

the reliability coefficient in traditional test theory. 

The point of similarity here concerns the manner in which 

these quantities are viewed in light of educational deci­

sion-making. 

Traditional test theory assumes that tests which 

yield generally more consistent results, are considered 

the more reliable in terms of judgments or decisions to be 

made, in part, on the basis of those results. In kind, the 

greater the extent to which the uncertainty contained in a 

testing situation is reduced, and hence, the more the 

amount of information which is gained - the greater should 

be the confidence placed in such test results when employed 

in a decision-making process. 
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Although the mathematics of these two approaches 

will be seen to differ, indeed they must if the obstacle 

of minimum score variance yielded by CRM measures is to be 

averted, the attempt of this chapter has been to demon­

strate the conceptual similarities between these two ap­

proaches to the same problem. 

summary 

At the beginning of this chapter it was stated that 

the purpose of this research was the development of a reli­

ability coefficient to be applied to the decisions result­

ing from scores obtained from a criterion-referenced mas­

tery (CRM) test. The first major section of this chapter 

outlined the traditional concepts and statistical defini­

tions of test reliability. Included in this section was 

an argument as to why the traditional approach to test re­

liability can be considered inappropriate when applied to 

CRN measures. The second major section of this chapter has 

been intended to provide an introduction to the methodology 

which will be used to formulate a suggested solution to 

this problem. This new approach has been identified as one 

which will come from within the framework of information 

theory. In introducing the approach that this study will 

take in formulating a possible solution to the problem at 

hand, emphasis was placed on the attempt to demonstrate a 
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similarity between the concepts of information and relia­

bility. This similarity will be focused upon to a greater 

degree in the second section of Chapter II. 



CHAPTER II 

REVIEW OF THE LITERATURE 

As was the case in Chapter I, this chapter will 

consist of two major sections. The first section deals 

with a review of p~evious attempts to develop a reliabil­

ity coefficient, or its equivalent, for CR measures in 

general, and CR1'1 measures in particular. In the second 

major section, a description of the statistical aspects 

and developments of information theory, as related to 

the present purpose, will be presented. 
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ATTEMPTS TO ESTD1ATE THE RELIABILITY OF CR11 Ml"....ASURES 

Introduction 

In a paper presented in 1970, Richard Cox argued 

that if the idea of CR measurement was to be accepted and 

be able to be applied to teacher-made tests, alternatives 

to the traditional statistical approaches to reliability, 

validity, and item analysis must be developed. Up to this 

point, statistical techniques were designed to be applied, 

in the main, to norm-referenced data, which analyzed a 

pupil's performance relative to the performance of his/her 

peers. Such statistical techniques seek to account for, 

or explain, the variance resulting from the responses of a 

number of individuals to a particular set of stimuli. Al­

ternatives to these traditional means of statistical anal­

ysis are required for CR measures since, as seen in the 

previous chapter, individual performance is evaluated with 

respect to an a priori stated set of objectives. In the 

case of a criterion-referenced mastery (CRM) test, the var­

iance yielded by a set of obtained scores may be relatively 

small or possibly even nil. The result of such a situation 

would be a low reliability coefficient, when calculated by 

traditional means, despite the fact that a test may be 
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yielding accurate and consistent estimates of individuals' 

locations on a particular continuum. 

Hambleton and Novick (1973) state that while NR 

measures aim at a 11 f'ixed quota" ranking of individuals, CR 

measures are in general "quota-free" in terms of selection. 

This can be seen to be simply another way of expressing the 

irrelevance of' the relative performance of individuals when 

interpreting the results of' a CR measure. In the ~ase of a 

CRM measure, Hambleton and Novick go on to say that the 

primary problem is to determine whether a student's true 

mastery level is greater than the cut-off' score specified 

for the test. The result would be a classification of 

individuals as either "masters" or "nonmasters" depending 

upon whether an individual's score was above or below the 

stated criterion level. Therefore, errors can be of' two 

types; individuals can be incorrectly classified as "mas­

ters", or, incorrectly classified as "nonmasters". The 

need in such a situation is to minimize what Hambleton and 

Novick term as "threshold loss", or in other words, simply 

minimize the number of' incorrect classifications. 

Traditional correlational estimates of reliability 

will yield an estimate of the amount of error to be taken 

into consideration when interpreting scores obtained on a 

particular test. This error estimate is referred to as a 
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standard error of measurement, and can be used to establish 

a confidence interval within which an individual's true 

score on the considered measure, can be said to fall with 

a particular probability. 

Now, as stated here previously, Hambleton and 

Novick mention that whenever variance is restricted, as is 

the case with a CRM measure, correlational estimates of re­

liability will be necessarily low. However, the above 

authors find that a more serious objection to the use of 

correlational methods of reliability estimation with CRM 

measures stems from the standard error of measurement which 

results from this traditional technique. 

If one accepts the premise that the reliability of 

a CRM measure depends upon the degree of "threshold loss" 

which results from decisions made on the basis of obtained 

test scores, the traditional correlational method of deter­

mining test reliability and an index of standard error is 

also inappropriate in the case of a CRM measure, because 

such an application represents an incorrect choice of loss 

function. For, a traditionally estimated index of standard 

error is in terms of squared-error loss in the score unit 

metric, and not in terms of the losses or incorrect deci­

sions made when testees are classified on the basis of 

those test scores. Put simply, the units in which the 
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standard error is expressed are score points, and do not 

serve to estimate the "threshold loss" that can be expected 

to occur through the formulation of incorrect decisions as 

to the "mastery" or "nonmastery" of individual testees. 

This researcher agrees with the above authors that 

any proposed estimate of the error contained in a CRM mea­

sure must be in a dimension which reflects this "threshold 

loss". Such an approach would ·likewise appear to reflect 

stanley's logical aspect of the topic of reliability re­

ferred to here earlier. Due to the type of inference to be 

made from a CHM measure, the reliability of scores obtained 

from such measures depends upon the consistency of individ­

ual decisions made on the basis of those scores, and not 

the consistency of the score values obtained. 

Suggested Alternative Reliabilit~ Estimates for CRM 
Heasures 

With the above-noted restrictions in mind, atten­

tion is now directed toward suggested alternatives to the 

traditional approach to the reliability of CHM measures. 

A method of estimating the reliability of CRM mea­

sures has been suggested by Carver (1970). This coeffi­

cient is based on the proportion of individual mastery de­

cisions which remain consistent between parallel forms of 
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a test. Calculation of the coefficient is quite simple, 

and can be readily obtained from a table of the following 

type: 

Form B 

Haster Nonmaster 

Nonmaster b a 
Form A 

Haster c d 

(2.1) 

where: N = a + b + c + d 

Such an index possesses the difficulty in inter­

pretation of any proportion or percentage - sample size. 

Indeed, Crehan (1974) in a discussion of various item­

analysis techniques for CRM measures, refers to Carver's 

coefficient as "crude". This index would appear to best 

serve the purpose of a quick "thumb-nail" estimate of the 

consistency of decisions for teacher-made tests. 

Livingston (1972) has proposed a reliability coef­

ficient for CR measures which applies the principles of 

classical test theory. Livingston's index is based on the 

deviations of scores in a group from the chosen cut-off 

score, rather than the mean, which is, as seen in Chapter 

I, the case with a traditionally calculated reliability 
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coefficient. The restriction on such a measure which per­

haps comes most immediately to mind, is that the cut-off 

or criterion score, unlike the mean, is chosen. And the 

procedures by which this choice is made will almost cer­

tainly differ from one measure to the next. 

In the case of a CRM measure, Livingston's index of 

reliability is subject to the problem of possible lack of 

score variance mentioned earlier. For, if all the exam­

inees happened to score at the criterion level, the calcu­

lated rtt would equal o. Or, if all examinees obtained 

the same score, and that score was not equal to the crite­

rion level, the resultant rtt would equal 1.00. In either 

event, the estimated reliability coefficient of the measure 

would be of no aid in an analysis of the ability of such 

an instrument to estimate individual true scores, and yield 

accurate decisions as to mastery or nonmastery. 

Swaminathan, Hambleton, and Algina (1974) note that 

it is to a certain extent conceptually appealing to think 

of the reliability of a CRH measure as the sum of the pro­

portions of individuals assigned to the same category in a 

test-retest mastery/nonmastery decision framework. Such a 

measure would be expressed statistically as: 
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where: 
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(2.2) 

k = the number of mastery states. 

= the proportion or the total number of 
individuals who were assigned to category 
i on a first testing, and again to the 
same category on a second testing using a 
parallel form. 

However, as the authors point out, such an estimate 

does not take into account the agreements which can be ex­

pected to occur by chance. 

As an estimate of the reliability of CR measures, 

the above authors propose the use of a coefficient devel­

oped earlier by Cohen (1968, 1972). Cohen's K (kappa), as 

the coefficient is termed, is suggested as an index of the 

consistency of decisions formulated on the basis of results 

obtained from parallel forms of a CR test. The index is 

calculated by the formula: 

(2.3) 

where: Po = the observed proportion of agreement. 

Pc = the expected proportion of agreement. 

The expected proportion of agreement, Pc' is calcu-

lated by: 
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k 

Pc = L P· p . 
J.. .J. 

(2.4) 
i = 1 

where: k = the number of mastery states. 

= the proportion of examinees assigned to 
category i on the first testing. 

p. 
J.. 

= the proportion of examinees assigned to 
category i on a second testing using a 
parallel form. 

As is apparent from the formula, Cohen's K does 

include an estimate of the proportion of agreement which 

can be expected to occur by chance. 

In addition, K has a range of +1 to -1, with +1 

resulting only if there is exact agreement of the marginal 

proportions between the two testings. The coefficient aP­

proaches -1 as the differences between the marginal propor-

tions become more and more extreme. It was demonstrated 

earlier, in Chapter I, that a traditional reliability coef­

ficient cannot be negative. This presents no great diffi­

culty in the interpretation of Cohen's kappa, since if K 

equals 0 or is negative, there would most certainly exist 

more disagreement in the decision process than would be 

tolerable. 

Hence, although the index kappa, proposed by 

Swaminathan, Hambleton and Algina (1974), possesses the 



characteristic of being an estimate in the dimension of 

"threshold loss", it must be noted that the value of K 
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is heavily influenced by certain factors within the deci­

sion process. These factors are for example, the manner in 

which the particular cut-off score was selected, test 

length, and the characteristics of the particular group in 

question. The authors quite readily recognize this, and 

offer that any decision-making reliability of this type is 

a measure of the consistency of the entire process. The 

test itself is but one form of input to the process. For 

that reason, if coefficient K were employed as an estimate 

of the accuracy of a mastery/nonmastery decision-making 

process, other information regarding the above factors 

would need to be reported as well to allow for a meaning­

ful interpretation. 

From the perspective of traditional test theory, it 

would be desirable to have an estimate of accuracy or con­

sistency more specific to the effects of the test itself 

than to the influences of the particular situation as a 

whole. However, if one is to remain in the dimension of 

"threshold loss", the cut-off score and the manner in which 

it was determined are of prime importance. 

As presented above, coefficient kappa (K) requires 

decision results from two test administrations. However, 
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Huynh (1976) has provided steps by which kappa (K) can be 

estimated from a single test administration. 

Huynh begins by making the familiar assumptions 

that the items on the test administered are homogenous in 

nature, that is, attempt to measure the same general type 

of behavior, have been selected from a larger domain or 

universe of similar items by a process of random selection, 

and there exists a cut-off score which provides the crite­

rion on which mastery/nonmastery decisions are formulated. 

Recalling that coefficient kappa serves as an index of the 

consistency of mastery decisions, the obtained test mean 

and standard deviation are inserted into the Kuder­

Richardson Formula 21. Now, as the reader is probably well 

aware, the KR21 formula yields a reliability coefficient of 

the traditional type on the basis of one test administra­

tion and the number of correct answers for each of the ex-

aminees. The problem of possible lack of variability again 

surfaces with use of the KR21 , and will be commented on 

shortly. 

Upon obtaining a value from the KR21 formula, Huynh 

next proposes using this value to estimate the parameters ~ 

and ~ of a beta-binomial or negative hypergeometric func­

tion. The beta-binomial is a univariate discrete density 

function (Mood, Graybill and Boes, 1974), where variable x 
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can assume values (0, 1, ••• , n). The beta form is used 

within Bayesian statistics to represent the distribution 

of prior information in a probability of success format 

which will in turn yield a posterior distribution with dif­

ferent indexing values (Cox and Hinkley, 1974). Hence, we 

have a mathematical model which employs a distribution 

based on test score data to develop a probability distribu-

tion of certain categories of success, in our case, mastery 

is assigned if an individual scores at or above the chosen 

criterion and denied if one's score is below the criterion. 

This beta-binomial distribution is then used in 

both its univariate and joint density forms to yield esti­

mates of the proportion of individuals classified as mas­

ters on both parallel forms and the proportion of individ­

uals classified as masters on either form. The score val-

ues obtained on the single administration are combined with 

the designated cut-off score to yield these proportions, 

which are then substituted in the following equation to 

yield an estimate of kappa: 

where: 

(2.5) 

= the proportion of individuals classified 
as masters on both parallel forms. 

= the proportion of individuals classified 
as masters on either one or both forms. 
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As a practical limitation of this process Huynh 

notes, as anyone familiar with calculus is well aware, as 

the number of test items approaches ten or more, the calcu­

lations become increasingly tedious if done by hand. In 

such a situation it would be quite advisable to gain ac­

cess to a computer. 

Huynh goes on to discuss certain factors which in­

fluence the relative size of kappa. As expected, the des­

ignated value of the criterion score has its effect on the 

relative value of kappa. If the cut-off is either too 

small or too high, the proportion of consistent decisions 

will likely be close to 1. It is of course desirable to 

have as many consistent decisions as possible, however in 

either case that consistency is most probably due to the 

extreme value of the criterion than to the effects of the 

test itself. At any rate, within these two extremes, Huynh 

demonstrates that the relative values of kappa increase to 

a maximum and then decrease as they approach the opposite 

extreme. 

In regard to test length, kappa is seen to increase 

as items of a homogenous nature are added. This is indeed 

what occurs in the case of a traditional reliability coef­

ficient. However, as Huynh states, a simple formula does 

not yet exist which would estimate the increase in kappa as 



the items on the test were increased by a factor of n. 

This projection is provided for traditional reliability 

coefficients by the Spearman-Brown formula. 
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A final factor discussed, and one which was men­

tioned earlier, is the effect of test score variability on 

kappa. The sample data provided by Huynh illustrate a 

positive relationship between score variability and the 

relative size of kappa. Therefore, as score variability 

decreases the relative size of kappa will likewise tend to 

become smaller. Huynh states that kappa is essentially 

correlational in nature, and as seen in Chapter I, with a 

measure of this sort restricted score variability will 

generally serve to minimize the values of indices of this 

type. 

Therefore, as with the use of coefficient kappa by 

Swaminathan, Hambleton and Algina (1974) as an index of 

reliability obtained from the administration of parallel 

forms, Huynh's kappa as calculated from a single adminis­

tration is in the dimension of 11 threshold loss11 as suggest­

ed by Hambleton and Novick (1973). Hence, Huynh's estimat­

ed kappa is situation specific in the same sense as is that 

calculated from the administration of parallel forms. As a 

result, for a particular set of data there is no unique 

value for coefficient kappa, since the value of kappa will 



48 

change as the mastery criterion level changes. And, as 

was the case with kappa as proposed by Swaminathan et al., 

if the value of kappa is to be meaningfully interpreted, 

situational factors such as test length, score variability, 

the value of the criterion score, as well as the methods 

by which it was determined, and the characteristics of the 

examinees, must also be reported. 

An approach to estimating the consistency of 

mastery/nonmastery decisions from a single administration 

of a CR measure, which is quite similar to Huynh's sugges­

tion, has been forwarded by Subkoviak (1976). Subkoviak 

begins by defining "the coefficient of agreement for an in­

dividual i as the probability that i is assigned to the 

same mastery state on parallel tests X and X'." This co­

efficient of agreement, symbolized as Pc' is the sum of the 

probabilities of consistent mastery/nonmastery decisions 

over the two test administrations for individual i, when 

the criterion score is equal to c. The "coefficient of 

agreement Pc for a group of N persons" is operationally de­

fined as the mean of these individual coefficients; that 

is, 

N 

L 
PC _ i = 1 

- N 
(2.6) 
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where: PC = the coefficient of agreement on the 
parallel forms for the group of N persons. 

pi = the coefficient of agreement for indi-c vidual i. 

c = the value of the criterion score. 

N = the number of individuals. 

The calculation of P~ depends upon the estimation 

of the probability that individual i's score on test X is 

greater than or equal to the criterion value. This latter 

probability, is expressed as P(Xi ~ c), and defined as: 

(2.7) 

where: pi = the probability of a correct item response 
for person i. 

xi = the score of individual i on test x. 
n = the number of items on test X. 

c = the value of the criterion score. 

Subkoviak employs the proportion of test items an­

swered correctly on test X by individual i, as an estimate 

of pi. In this approach, Subkoviak makes the assumptions 

that the scores for each individual i on tests X and X' are 

independently distributed and identically binomial in form. 

For these scores to be binomially distributed, the items 

must be scored either right or wrong, it must be reasonable 
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to assume that the items themselves are independent of one 

another in terms of responses, and the probability of a 

correct response remains constant across all items within 

each individual i. 

As may have been noted already by the reader, there 

are general similarities between the approach of Subkoviak 

and that of Huynh. Indeed, while Huynh assumes that the 

distribution of scores on parallel tests is beta-binomial 

in form, Subkoviak posits that this distribution is a 

simple binomial. Since these two distributions are of the 

same family, it -is no surprise that, as Subkoviak states, 

Pc is a function of coefficient kappa. 

There is one difference however between the two 

estimates which is of interpretive interest. Subkoviak 1 s 

sample data indicates that as the value of C is changed 

from a relatively low value to one which is relatively 

high, Pc ranges from close to 1.00 at the low end, decreas­

es to a minimum somewhere between the two extremes, and 

then increases back to near 1.00 as C approaches its high 

extreme. It will be recalled that Huynh's coefficient 

kappa behaves in an exactly opposite fashion. 

This comparative difference should really come as 

no surprise, since Pc is an index of the proportion of 
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mastery/nonmastery decisions which are consistent between 

parallel forms. And, as Huynh mentions, when the crite­

rion score is either very low or very high, one can expect 

consistent mastery/nonmastery decisions. However, as also 

previously mentioned, either case is of dubious practical 

worth. Nevertheless, one must keep this difference in 

mind when comparing estimates on the basis of these two 

methods. 

Since Subkoviak's coefficient of agreement is, as 

coefficient kappa, in the dimension of "threshold loss", 

it is to a high degree situation specific. Therefore the 

factors which were suggested as needing to be reported 

along with the value of kappa, would likewise need to be 

reported with the value of Pc• In light of the comparison 

immediately above, the value of the criterion score and 

the number of items would be of especial interest. 

A comparison of the Swaminathan et al. (1974), 

Huynh (1976), and Subkoviak (1976) methods for estimating 

the reliability of CRM tests has been carried out by 

Subkoviak (1978). This investigation compared the various 

estimates of Pc yielded by these three techniques. It 

should be recalled that·although coefficient kappa re­

ceived the major emphasis in the Swaminathan et al., and 

Huynh approaches, the proportion Pc is estimated in both 
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cases. 

Subkoviak estimated Pc from the three above pro­

cedures on tests of 10, 30, and 50 items in length; and, 

with criterion levels of 50%, 60%, 70%, and 80%. Each 

index produced estimates which were reasonably close to. 

the parameter value of Pc over the various conditions. The 

Swaminathan et al. procedure yielded estimates possessing 

a relatively higher standard error. In terms of a recom­

mendation, Subkoviak mentions that the Huynh procedure 

requires only one testing, has a mathematically sound 

base, "and produces reasonably accurate estimates, which 

appear to be slightly conservative for short tests". 

As Subkoviak states, the data used in the study 

referred to immediately above is not of the mastery test 

type. Scholastic Aptitude Test item responses from 1586 

students served as the data base, with items being deleted 

"on the basis of content, difficulty, and discrimination" 

to create forms with the varying numbers of' items. Such 

items are clearly more heterogeneous in nature than the 

items generally found on CRM measures. It should be re­

called that these various procedures are based on mathe­

matical distributions which assume homogeneity of' item con­

tent. The more heterogeneous the items on a test, the 

greater the likelihood for an increase in score variance. 
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It remains to be seen what effects restricted score vari­

ance will have on these various estimates. 

~ummary 

Two general approaches to the problem of estimat­

ing the reliability of CRM measures have been discussed. 

The approach taken from the perspective of classical test 

theory encounters the operational difficulty of the pos­

sibility of limited test score variance. However, even 

if this obstacle were to be overcome, there are numerous 

conceptual problems. The error term associated with such 

classical or traditional estimates, is in the dimension of 

squared-error loss. Such an error term does not fulfill 

Stanley's logical aspect of reliability in that it is 

inconsistent with the type of inference which is to be 

made from the information contained in the results of CRM 

measures. The decision to be made from such information 

is whether or not an individual has mastered a particular 

content area. An estimate based on the variance of scores 

among individuals is irrelevant in a case where the deci­

sion to be made is whether or not a particular individual's 

obtained test score has correctly placed him or her, above 

or below a specified criterion level. 

An estimation of the accuracy with which individ­

uals have been classified as masters or nonmasters must be 
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concerned with the number of false "positives" and false 

nnegatives" in relation to a chosen criterion level or 

cut-off score. Hambleton and Novick (1973) have referred 

to this dimension as "threshold loss". In terms of 

stanley's logical aspect of reliability, the notion of 

"threshold loss" seems conceptually consistent with the 

types of inferences which are made from CRM test data. 

Three estimates within the dimension of "threshold 

loss" were reviewed and, were seen to yield relatively ac­

curate estimates of the proportion of consistent decisions 

between two parallel test forms. While the Swaminathan 

et al. procedure required the results from two testings, 

the Huynh and Subkoviak approaches were able to estimate 

the proportion of consistent decisions on the basis of the 

data obtained from a single test administration. 

However, the three above techniques were seen to 

possess the shared disadvantage of being situation specific. 

The reliability estimate calculated by each of these ap­

proaches on a particular set of data would not be unique, 

but would change as the criterion level or cut-off score 

was altered. Therefore, if such a reliability estimate is 

to be interpreted meaningfully, the calculated value should 

be reported along with the cut-off score and how it was 



determined, characteristics of the examinees, and test 

length. 
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A further disadvantage of techniques of reliabil­

ity estimation within the dimension of "threshold loss", 

and one so far not discussed is that they treat all errors 

equally. That is, if an individual is incorrectly classi­

fied as a master, it would not matter whether the person's 

true score were one point below the criterion level or 

several points below. The severity of the error would be 

treated equally in both cases. That is to say that errors 

are in terms of misclassifications; distance does not 

enter into the problem. 



BASIC ASPECTS OF INFORMATION THEORY 

The purpose of this section is to serve as a de­

scription of the basic conceptual and statistical aspects 

of information theory. The literature in this area is 

both vast and diverse, and the presentation here is de­

signed to provide only those preliminary aspects on which 

the methodology of Chapter III is based. 

The field of statistics is concerned with the 

measurement and analysis of a number of concepts, for ex­

ample; variance, deviation, average, relationship, and 

error, which likewise possess a conceptual meaning in our 

common everyday experience. What the study of statistics 

does of course, as is the case with any scientific enter­

prise, is to impose an exact and rigorous definition on 

those concepts. That is, science in general looks at the 

factors which appear to regulate and determine the nature 

of our common sense world, and attempts to rigorously de­

fine and measure those factors so as to arrive at an objec­

tive analysis, estimate or prediction of their nature or 

effects. The field of information theory reflects this 

scientific study of an influential aspect of our everyday 

experience. 

56 
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Any inquiry is marked by the desire to gain infor­

mation of some type. Whether that inquiry is in the form 

of research of the printed word, the experimentation and 

study of animal and human behavior, or the simple ques­

tioning of those believed to have desired answers, the 

goal is to become more informed than we were previously. 

All such forms of inquiry are in fact modes of communica­

tion. In particular, that communication can be between 

the psychologist and man's mental faculties, the physician 

and the body, or the educator and the learner; in general, 

it is between man and the world. .Since both layman and 

scientist alike seek information daily, it would therefore 

seem desirable to possess the means of determining how much 

information had been gained in a particular communicative 

act. This quantification of transmitted information is the 

basic goal of information theory. 

Information theory was formulated to solve the 

basic problems of communication engineering; that is, "How 

does one measure the amount of information in a message to 

be transmitted?"; and, "How much information was actually 

communicated?" By the nature of these questions, it should 

be of no surprise that the initial work in this field was 

performed by electrical engineers. 

What is being attempted herein then, is to take 
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a procedure developed basically in electronics and apply 

it to the explanation of educational and psychological 

phenomena. 

There is nothing new of course, in the application 

of a framework in one field of study as a model for the 

description of concepts in another field. However, to do 

so properly, the aspects of the borrowed framework must 

exhibit a degree of similarity with the phenomena which 

its application seeks to explain. As an example, the 

mathematical properties of the normal distribution have up 

to now been seen to be similar to certain hypothesized as­

pects of various human characteristics as possessed within 

a population. Hence, if information theory is to be seen 

to offer a suitable alternative to traditional reliability 

estimation, certain conceptual similarities must be demon­

strated to exist between the two areas. 

Information Theory and Reliability 

The primary concern of information theory is to 

quantify the amount of information transmitted from sender 

to receiver. Whether that information is true or false, 

as well as matters of human value, are not considered. In­

formation so measured is thus seen to possess a certain 

similarity with reliability in terms of the latter's 
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relationship to validity. 

As stated earlier, the degree of reliability at­

tributed to the measurements obtained from an instrument 

depends, in theory, upon the amount of test score variance 

which is due to error. Operationally, the issue of relia­

bility is handled in classical test theory by the analysis 

of the consistency of Qbtained measurements from one ap­

plication of the instrument to a second independent and 

equivalent application on the same group. As such, relia­

bility's concern is with the accuracy or consistency of 

measurements and not with ~ is being measured. This 

latter task is the topic of validity. 

Reliability is best viewed as a necessary but not 

sufficient condition for validity (Gronlund, 1976). That 

is, accurate measurements of something can be obtained, 

without that something measured being relevant to the pur­

poses to which those measurements are intended. On the 

other hand, before it can be asked whether or not a set of 

obtained measurements is relevant to a particular purpose, 

the question of the accuracy of those instruments must be 

satisfied. In short, reliability concerns the measure­

ments themselves, validity applies to the uses to which 

those measurements are to be put. 
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The concept of information shares the concept of 

reliability's concern with the measurements themselves. 

Test scores can be viewed as messages from testees to the 

examiner, regarding level of achievement in a particular 

subject area. Just as reliability considers the accuracy 

of those scores apart from the question of whether indeed 

the items on which those scores are based, do in fact mea­

sure aspects of the subject area intended, information 

theory is concerned solely with the amount of information 

transmitted by those messages. 

A Conceptual Definition of Information 

An introduction to the conceptual definition of 

information can be perhaps best begun by examining its 

relationship to the term entropy in physics. All physical 

systems are to varying degrees incompletely defined, to 

the extent that, certain variables of a macroscopic nature 

can be measured, while particular aspects of a more micro­

scopic nature within the system remain unknown. For ex­

ample, physicists agree that the hydrogen isotope, tritium, 

has a nucleus composed of two neutrons and a single proton. 

However, the complete number and types of subatomic parti­

cles which make-up a neutron or proton are not known. With­

in such systems, a good deal of information regarding de­

tailed structure is missing. The amount of uncertainty 
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which remains within a system, is labeled entropy. 

The application to education appears clear. Edu­

cators and psychologists seek to define and measure certain 

human characteristics, for example, intelligence, creativ­

ity, aptitude, achievement, anxiety, and, make decisions 

based in part or completely, upon the information provided 

by those measurements. Nevertheless, a great deal remains 

uncertain regarding what underlying factors are connected 

to those "macroscopic" variables in terms of cause and ef­

fect relationships. For example, a group or characteris­

tics collectively defined as intelligence are measured and, 

as a result, children are labeled mentally retarded, learn­

ing disabled, average or genius, to a great extent on the 

basis of those measurements. However, it remains a mat­

ter of debate not only what caused individuals to possess 

varying degrees of such characteristics, but in part also, 

what are the effects of being more or less intelligent. 

Entropy then, measures the lack of information in 

a system. A reduction in entropy is sought through com­

munication with the world, basically, through experimenta­

tion if one is pursuing the problem from a scientific per­

spective. Since, as more information is obtained through 

such communications the amount of entropy is reduced, there 
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exists an inverse relationship between the two concepts. 

To sum up this discussion of the conceptual nature 

of information thus far then, information is obtained from 

some source and insofar as that this information was not 

previously possessed, the uncertainty regarding a situation 

is to some extent reduced. Information so obtained is 

considered apart from its being true or false, useful or 

useless. And, the amount of information provided by an act 

of communication depends upon the extent to which uncer­

tainty is reduced regarding a particular state of nature. 

Information and Uncertainty 

Next, it should be noted that the uncertainty con­

tained in a particular action is a function of the number 

of possible outcomes. For example, if we desired to pre­

dict the result of first, the roll of a fair six-sided die, 

and secondly, the toss of a fair coin, there would be a 

greater amount of uncertainty regarding the outcome of the 

first action relative to that of the second. This is the 

case simply because there are more possible alternatives 

available in the former case. 

Indeed, it would be impossible to gain information 

from a message if some uncertainty as to the nature of the 

response did not exist beforehand. And, due to the inverse 
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relationship between information and uncertainty, the 

greater the amount of uncertainty contained in the possible 

outcomes of a communicative action, the greater the poten­

tial information. Therefore, if the mathematical means to 

quantify information are to be developed, such mathematical 

statements must be a function of the number of possible 

outcomes. 

Hence, it can be seen that the conceptual notion 

of information within information theory is not far dif­

ferent from its everyday usage. Further information is not 

obtained by asking a question or performing an experiment 

of which the outcome is known a priori, and indeed, the 

expected outcome occurs. Information is possible only in 

a questioning format in which the result is uncertain. In 

fact, the more improbable the result, the more the informa­

tion that is gained. In a sense, the more surprising the 

nature of an outcome, the more informed the receiver has 

become. 

This last statement offers a hint as to the ap­

proach that will need to be taken in the mathematical quan­

tification of information. Information will not only be a 

function of the number of possible situation outcomes, but 

most of all, of the probability of occurrence of those 

various outcomes. 
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statistical Aspects of Information Theory 

A review of the development of the statistical ba­

sis of information theory is begun with mention of two 

early papers. In 1924, Nyquist, an engineer at Bell Labo­

ratories, published a paper concerning the factors affect­

ing telegraph speed, in which he proposed that the effi­

ciency with which messages are transmitted, is a function 

of the logarithm of the number of possible levels of cur­

rent. Later, Hartley (1928), also working at Bell, con­

curred that a measure of information needed to be both a 

function of the number of alternative outcome sequences, 

and, logarithmic in form. 

However, a detailed statistical model by which in­

formation could be measured was not formulated until Claude 

E. Shannon and Warren Weaver (1949) published a work enti­

tled, 11The Mathematical Theory of Communication". The work 

of Shannon and Weaver suggested applications outside the 

field of engineering, and resulted in a number of attempts 

to employ information theory in the solution of various 

psychological problems. 

As often seems to be the case when unbounded enthu­

siasm accompanies the wide-spread acceptance of a new solu­

tion to old problems, some of these early applications 
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were, as Attneave (1959) offers, "successful and illumi­

nating, some were pointless, and some were downright bi­

zarre". With the hope that the present application will 

not be placed in one of the last two of Attneave•s cate­

gories, this discussion now looks at why a statistical 

statement of information has been held to be logarithmic 

in nature. 

An example often used to illustrate the basic sta­

tistical nature of information is the old game "Twenty 

Questions". Here, there are a number of categories, one 

of which contains the item or answer sought. By means of 

a series of questions, capable of being answered either 

"yes" or "no", the categories are eliminated until the cor-

rect one is discovered. As an illustration, an example 

employed by Attneave (1959) will be used. 

Suppose that the questioner is thinking of a parti­

cular square on a chessboard and it is the task of the in­

quirer to simply find out which it is. Even though there 

are 64 possible squares, one could readily determine the 

correct location by asking six questions of the form: 

1.) Is it one of the 32 on the left half of the board? 
(Yes) 

2.) Is it one of the 16 in the upper half of the 32 
remaining? (No) 
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3.) Is it one of the 8 in the left half of the 16 
remaining? (No) 

4.) Is it one of the 4 in the upper half of the 8 
remaining? (No) 

5.) Is it one of the 2 in the left half of the 4 
remaining? (Yes) 

6.) Is it the upper one of the 2 remaining? (Yes) 

Figure 2.1 depicts how the area of uncertainty was 

systematically reduced until the correct square was identi­

fied. Of course, the questions could have been differently 

constructed and would have been equally efficient, as long 

as the remaining area of uncertainty was reduced by one­

half. If not, however, more than six questions will often 

be needed to determine the correct square. 

The next step is to numerically express, and quan­

tify the information contained in the above example. The 

six questions will result in a different series of "yes" 

and "no" responses as the square which we seek varies about 

the board. Now suppose 1 is allowed to signify "yes", and 

o, "no". In such a system, based on the same six questions, 

each square's identity will be represented by a unique six 

digit number. Each of these digits is binary in nature in 

that only one of two values can be assumed. With such a 

system, a number one digit in length would be required to 

eliminate the uncertainty contained in 2 alternatives, two 



Figure 2.1 

An Example of the Game of "Twenty Q.uestions"* 

2 2 2 2 1 1 1 1 

2 2 2 2 1 1 1 1 

2 2 2 2 1 1 1 1 

2 2 2 2 1 1 1 1 

3 3 4 4 1 1 1 1 

3 3 4 4 1 1 1 1 

3 3 0 5 1 1 1 1 

3 3 6 5 1 1 1 1 

* Each square contains the number of the question which 
eliminated it as the square which the questioner was 
thinking of. 
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digits would be needed for 4 or 22 alternatives, and as 

seen in the above example, six digits are needed for 64 or 

26 alternatives. 

Within information theory, the binary digit has 

been contracted to "bit", and is used as the unit measure 

of information and uncertainty. Therefore, asking someone 

to locate a particular square on a chessboard of 64 equally 

likely locations, represents a question having 6 bits of 

uncertainty, and in turn, contains 6 bits of information in 

its solution. 

Thus, the amount of uncertainty contained in a 

number, n, of such alternatives, or the amount of informa­

tion required to remove that uncertainty, can be expressed 

by the equation: 

be: 

n = 2U(x) (2.8) 

where: n = the number of alternatives. 

x = some random variable (in this case, a 
square on a chessboard). 

U(x) = amount of uncertainty in x. 

An equivalent expression, solving for U(x), would 
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(2.9) 

where: log is taken to the base 2. 

In the above example, it was implied that each of 

the 64 alternatives had an equal probability, that is, 

1/64, of being the one for which we were searching. One 

can reasonably ask how the situation changes when the ex­

isting alternatives have unequal probabilities associated 

with their respective chances of occurrence. Indeed, as 

the statistical theory of information is developed further, 

it will be seen to be unnecessary to assume that the pos­

sible outcomes of a message have equal probabilities of 

being sent. 

The Statistical Theory of Information 

Before proceeding, however, comment should be made 

concerning the notation used in this discussion. It ap­

pears to be the case with statistics texts in general, that 

notation differs, in varying degrees from source to source. 

The situation is similar within the field of information 

theory. Therefore, it may prove helpful to the reader to 

mention that the notation used herein is adopted from 

Garner (1962). 

* Unless othertvise stated, when the terms "log" or "loga­
rithm" are used within the present paper, the base 2 is 
implied. 
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To begin, assume that a message has been sent from 

some source, and that the message had been selected from a 

set of n possible alternatives, which is represented thus-

ly: 

x = ~1 , x2 , ••• , x1 , ••• , x;J 
where: X = the set of n possible alternatives. 

xi = the ith alternative in set X. 

(2. 10) 

Next, assume that each message in the set of alternatives 

X, has a particular probability of being sent. This set of 

probabilities can then be written as: 

P(X) = ~(x1 , p(x2 ), ••• , p(x1 J, ••• , p(xu2J (2.11) 

where: P(X) = the set of probabilities of occurrence 
associated with the alternatives in set 
x. 
the probability of occurrence of the 
ith alt~rnative in set x. 

The greater the probability of a message being sent, 

the less the information that it conveys. Such a relation­

ship agrees with the common usage of the term "information". 



71 

If we ask someone a question, and receive the answer we 

expected, not much, if any, information is gained. How­

ever, if an answer is received that is to a certain extent 

quite surprising, we would most likely feel that a good 

deal of information had been gained. This relationship 

can be expressed as: 

(2.12) 

where: iff is read "if and only if". 

the information associated with alter­
native xi. 

the probability of the occurrence or 
xi. 

and, similarly for I(~) and p(~). 

It is then the probability of a message's occur-

renee which determines its information value. And, the in­

formation associated with the same message may vary from 

situation to situation or from source to source, simply be­

cause the associated probability may differ. In one situa­

tion, a particular response may be highly probable, while 

in a different situation, that same response would be high­

ly improbable. 

Hence, information is a function not of what is 

said, but rather of what could have been said, and wasn't. 
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As Shannon and Weaver (1949) state: 

The concept of information applies not to the individ­
ual messages (as the concept of meaning would), but 
rather to the situation as a whole, the unit informa­
tion indicating that in this situation one has an a­
mount of freedom of choice, in selecting a message, 
which it is convenient to regard as a standard or unit 
amount. (p. 9) 

Next, consider the case of a source which sends two 

messages; the first from a set X, and the second from set 

Y, where: 

X= [:1' Xz• •••• xi, •••• xnl (2.13) 

and, 

y = ~1' Yz• •••• Yjt •••• y;J (2.14) 

The messages in both X andY, have probabilities associated 

with the likelihood of their transmission in the same man-

ner as the example immediately above. It was stated in 

that example that the amount of information contained in a 

particular message was in some way a function of the proba­

bility of its being sent. This relationship can be repre­

sented thusly: 

(2.15) 



where: sr:(xi0 = a yet to be defined function of 
~ ~ the probability of message xi. 
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With the case of two messages, xi and yj, being 

sent, the assumption is made that the amount of information 

conveyed by both is equal to the amount conveyed by xi' 

plus the amount conveyed by yj' given that xi has been se­

lected. An expression of the amount of information con­

veyed by the two messages, as a function of the probabili­

ties of xi and yj given xi' would be: 

(2.16) 

some function of the probability 
of yj being sent given that xi 
had previously been sent. 

The selection of messages xi and yj can also be 

viewed as the selection of a single ordered pair from the 

Cartesian product space of sets X and Y. The information 

conveyed by messages xi and yj would, in this case, be a 

function of the probability that the ordered pair (xi, yj) 

would be selected. Such a relationship can then be ex­

pressed as: 

( 2. 17) 
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some function of the proba­
bility of the pair (xi' yj) 
being selected. 

Therefore, it follows from equations 2.16 and 2.17, 

upon restating the right side of 2.16 in terms of function 

5 , that: 

(2.18) 

Now, it is an assumption of probability theory,· 

that: 

(2.19) 

So, if the right side of equation 2.19 is substi­

tuted for its equivalent in the left side of equation 2.18, 

the result is: 

(2.20) 

Finally, if "a" is allowed to represent the quan­

tity, p(xi), and, "b" to represent the quantity, p(yj/xi)' 

an equation of the following form results: 

j(ab) = 8 (a) + 8<b) (2.21) 
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A common function which satisfies this condition 

of equality is the logarithm. Hence, the appropriateness 

of the choice of the log function as a measure of informa­

tion is further evidenced. 

Up to now, this discussion has dealt with I(xi) as 

a function of the probability of the occurrence of xi, but 

has not as yet defined that function further than deter­

mining that it should be logarithmic in nature. That is, 

a measure of the information conveyed by message xi would 

be: 

(2.22) 

where: k = some constant. 

It should be recalled from our earlier discussion 

that as the probability of a message's occurrence increas­

es, the information that message conveys will decrease. 

Therefore, the function" J" must be of such a nature that 

I(xi) will become increasingly positive as p(xi) becomes 

increasingly negative, and vice versa. That is, the func­

tion should reflect the fact that the amount of informa-

tion, I(xi)' obtained from a message, xi' will increase as 

the probability, p(xi)' of that message being received 
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decreases. This function will express this relationship 

if "k" is allowed to be a negative number, so as to reflect 

such an inverse relationship, and for simplicity's sake 

the value "-1" is chosen. 

The result then, is an equation by which a measure 

is obtained which seeks to quantify the information re­

ceived thru the occurrence of a message, xi. This equation 

is: 

(2.23) 

The Expected Amount of Information from a Set of Messages 

Before concluding this chapter, there is one final 

concept which must be introduced, as it will prove to be 

of major importance in Chapter III. This concept is the 

expected amount of information that is conveyed by an en­

tire set of messages. 

The application of this notion to an educational 

situation seems relatively straightforward. In the vast 

majority of cases, a test is made up of a number of items. 

It can be seen by the above discussion that there may in­

deed be a way in which the amount of information conveyed 

by the response to a particular item might be measured. 

However, if the amount of information conveyed by the 
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responses on the test as a whole are desired, a method by 

which those individual item measures can be combined, is 

required. 

When statisticians speak in terms of an expected 

value, some type of long term average is being considered. 

The situation here is no different. Since the probability 

associated with a particular message was initially required 

to determine the information conveyed by that message, it 

would be a simple matter to "weight" the quantified infor­

mation, expressed in bits, by multiplying that quantity by 

its probability of occurrence. On the basis of probability 

theory, this weighted value can then be summed with simi­

larly weighted values for the other messages in a given 

set, to obtain the expected information contained in a set 

of messages. Within information theory, this expected in­

formation of a set of messages is defined as uncertainty. 

And, the uncertainty contained in a particular message set 

can be estimated by the equation: 

U(X) = - ~ p(xi) log p(xi) 

i = 1 

( 2. 24) 

where: U(X) = the uncertainty contained in message 
set X. 

p(xi) = the weight given to message xi. 
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As was the case with the representation of infor­

mation, the mathematical expression for the uncertainty 

contained in a set of messages is compatible with the 

everyday use of the term. 

Suppose, for example, that one is confronted with 

a situation which has four possible outcomes, and one, and 

only one, of these outcomes will occur. If asked to pre­

dict which alternative will result, the maximum amount of 

uncertainty would be contained in the choice if each of 

the alternatives were equally likely to occur. On the 

other hand, if one or more alternatives were more likely 

to occur than the others, the maximum uncertainty would 

be reduced. Indeed, if one of the alternative probabili­

ties is allowed to approach one, the uncertainty will in 

turn approach zero. Obviously, if it is certain what will 

occur in a particular situation, there is no uncertainty 

involved in predicting the outcome. 

This common sense notion is reflected in the sta­

tistic representing uncertainty. The uncertainty or ex­

pected information contained in a set of alternative mes­

sages will be at a maximum when each alternative has the 

same probability of being sent. At the other extreme, the 

uncertainty or expected information will decrease toward 

zero, as the probability associated with a particular 
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alternative approaches one. 

~nmmarY 

This second section of Chapter II has been designed 

to sketch the origins and basic conceptions and statistical 

definitions of information theory. It was noted at the be­

ginning of this discussion that since every scientific en­

deavor seeks information of some type, it would seem desir­

able to have some way in which the amount of information 

transmitted in a particular situation could be estimated. 

Information theory was seen to provide such a technique, 

which preserved the common sense notions of information and 

the reduction of uncertainty. 

Finally, it should be stressed that information 

theory is far more complex and statistically diverse than 

the preceding discussion may lead one to suspect. Although 

only univariate and bivariate applications were touched 

upon, multivariate procedures have also been developed. 

However, the basic concepts and definitions presented above 

will prove of sufficient aid in the development of the 

methodology of Chapter III. 



SUMMARY OF CHAPTER 

This chapter consisted of two major sections. The 

first section was designed to serve as a review of pre­

viously suggested reliability estimation procedures to be 

applied to the results of CRM measures. The section began 

with the assertion by Cox (1970) that if CR measurement 

was to be accepted and applied to teacher-made tests, al­

ternatives to the various traditional statistical concepts 

such as reliability must be developed. To substantiate 

this position, reference was made to Hambleton and Novick 

(1973) who demonstrate that the loss function inherent in 

NR reliability estimates depends upon score variability, 

and is inappropriate for use with CRM measures. These au­

thors suggest that the concept of "threshold loss", based 

on the number of incorrect mastery/nonmastery classifica­

tions, is a more appropriate perspective from which to con­

sider the errors associated with CRM measures. Thus, the 

need for the development of statistical techniques specific 

to the nature of Clli1 data was seen to have been previously 

recognized, and a number of reliability estimation proce­

dures have been suggested to meet this need. 

80 
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Five of these previously suggested estimation pro­

cedures were reviewed, all of which have been considered 

to provide loss functions within the dimension of "thresh­

old loss". The first, formulated by Carver (1970), has 

been described as providing only a "thumb-nail" estimate 

of the consistency of mastery/nonmastery classifications, 

while the second (Livingston, 1972) was seen to be ground­

ed in classical test theory and was therefore dependent 

upon a certain degree of score variability. The third co­

efficient reviewed is based upon Cohen's coefficient kappa 

(1968, 1972), and has been suggested by Swaminathan et al. 

(1974). This third coefficient is designed to provide an 

estimate of the consistency of mastery/nonmastery classi­

fications obtained from parallel forms of a CRM measure. 

In discussion of the Swaminathan et al. procedure, 

it was noted that the calculated values which result are 

to a certain extent "situation specific". That is, that 

the nature of the mastery/nonmastery classifications ob­

tained will be to some extent dependent not only on the 

location of the mastery criterion score, but also upon the 

manner in which the criterion was chosen. In short, since 

the calculated coefficient value is dependent upon the lo­

cation of the mastery criterion, the same CRM measure can 

have a number of associated degrees of reliability 
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depending upon the location of the mastery criterion. This 

notion of a CRM measure being "situation specific" was seen 

to run counter to the more traditional position that a par­

ticular test should have a single degree of reliability 

associated with the scores which it yields. However, since 

the nature of the obtained mastery/nonmastery classifica­

tions will necessarily change if the mastery criterion 

changes, the fact that an index of reliability is sensitive 

to such "situational" changes should be viewed as a desira­

ble property of such a coefficient. 

The two further coefficients reviewed were also 

seen to be ''situation specific" as well as yielding esti­

mates within the dimension of "threshold loss". Huynh 

(1976) has developed a procedure of estimating coefficient 

kappa from a single test administration, involving the use 

of the Kuder-Richardson formula 21 as a means of estimat­

ing parameters which are then inserted into a beta-binomial 

distribution to provide the estimate of the kappa value. 

One practical disadvantage of the Huynh procedure is that 

the involvement of calculus makes accessibility to a compu­

ter almost mandatory, and therefore makes the possibility 

of its use by classroom teachers quite unlikely. Huynh's 

coefficient was also seen to be dependent upon the exis­

tence of score variability, and to approach a maximum value 
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of 1.00 as the involved test became either too easy or too 

difficult for the classified examinees. 

The final coefficient reviewed was that suggested 

by Subkoviak (19?6) which also requires only a single test 

administration, and is designed to provide an estimate of 

the proportion Pc of consistent mastery/nonmastery classi­

fications over two test administrations. The procedure 

developed by Subkoviak was seen to be quite similar to that 

suggested by Huynh, as evidenced by the fact that Pc is a 

function of coefficient kappa. 

The first major section of this chapter concluded 

with a reference to Subkoviak's 19?8 study which provides 

a comparative analysis of the final three procedures dis­

cussed above. All of the indices were found to yield ac­

curate estimates of the parameter Pc' with the Swaminathan 

et al. procedure having a relatively higher standard error. 

Subkoviak concluded his study by recommending the Huynh 

procedure in that it was seen to be "mathematically sound" 

and required only a single testing. However, Subkoviak 

notes that the test items which yielded the scores used in 

the analysis were fairly heterogeneous in nature, and it 

was therefore somewhat doubtful if these procedures would 

behave similarly with an increased homogeneity of item 

content. 
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The second major section of this chapter was de­

signed to provide an introduction into the basic concepts 

and statistical definitions of information theory. The 

purpose of this introduction was to provide a familiariza­

tion with the methodology to be used in Chapter III. 

It was noted that since any scientific investiga­

tion is intended to in some way communicate information of 

a particular sort, it would seem advantageous to be able to 

measure the amount of information transmitted in the data 

obtained from such an activity. Information theory is con­

cerned with answering the questions associated with this 

type of communication. The activity to be considered here 

is of course the administration of a CRM measure, with 

some degree of information being communicated from the 

mastery/nonmastery classifications which result. In an 

attempt to justify the application of information theory 

in the solution of the problem at hand, it was noted that 

emphasis will be placed on the similarities between the 

concepts of information and reliability. 

The information obtained through a particular com­

munication was seen to some extent reduce the uncertainty 

which existed prior to the communication. It was next 

noted that the amount of pre-existing uncertainty was a 

function both of the number of possible outcomes which 



85 

could be communicated, and, the relative probabilities of 

occurrence associated with those outcomes. The more im­

probable a possible outcome the more uncertainty that is 

associated with it, and likewise, the greater the amount of 

information that is communicated if that outcome actually 

occurs. The game of "twenty questions" was then used to 

illustrate the development of a statistical definition of 

uncertainty. A statistical definition of information was 

also introduced, and was found to be based on logarithms 

to the base 2. 

The final statistical concept introduced was that 

of the expected amount of information contained in an 

entire set of messages. A statistical definition of this 

concept of expected information was presented, and was de­

fined to be the amount of uncertainty contained in a given 

set of messages. It was mentioned that this statistical 

definition of uncertainty would be of particular importance 

in the methodology of the next chapter. 



CHAPTER III 

CONCEPTUAL BASIS OF METHODOLOGY 

The development of information theory is seen to 

have progressed with different emphases, when the work done 

in the United States is compared to that accomplished in 

Europe (Weltner, 1973; Hintikka and Suppes, 1970). It has 

been noted that information theory had its statistical 

beginnings in America, basically through the work of c. E. 

Shannon. And it is an emphasis on the statistical aspects 

of the theory which characterizes the major portion of the 

work done in the United States. 

However, this emphasis on the purely statistical 

has presented problems in the application of information 

theory to the data of the social sciences. This was a dif­

ficulty briefly hinted at by Attneave (1959). It was noted 

that a mood bordering on unbounded enthusiasm welcomed the 

arrival of information theory. And why not? There may be 

nothing more basically appealing to a scientist or philos­

opher than to be able to measure the information contained 

in a set of data or a logical proposition. Nevertheless, 

as Attneave states, this enthusiasm soon became somewhat 

86 



87 

subdued when many of the early applications of information 

theory proved to be either worthless or "downright bi­

zarre". 

This problem was due basically to the fact that, 

as with statistical theory in general, information theory 

is based on formulas which are made up of symbols which 

are nonlinguistic in nature. And, information theory 

lacked the work necessary in the area of semantics so that 

these nonlinguistic symbols could be interpreted and mean­

ingfully applied to the perspective of the language of the 

social sciences. Earlier, it was mentioned here that 

adapting a framework from one field, to be used as an ex­

planatory model in another, is a frequently used problem­

solving technique of the sciences. However, a set of 

transformation rules must be developed and utilized if the 

application of a framework as a model is to fulfill the 

intended purpose of explaining and predicting phenomena in 

the more unfamiliar field. Work in semantics and inductive 

logic was required to develop such rules for the meaning­

ful application of information theory to the social sci­

ences. 

It is the development of information theory in the 

areas of semantics, inductive logic, and epistemology, 

which characterizes the direction of research of this field 
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in Europe. Considering the relative traditions of Europe 

and America in regards to linguistics, theory of knowledge, 

and formal logic, it does not seem particularly surprising 

that Zuropean authors would be doing the majority of work 

on the semantic perspective of information theory. 

The purpose of this chapter will be to present and 

describe one suggested bridge between these two necessary 

aspects of information theory, as an application to be used 

in the estimation of the reliability of CRN instrument 

classifications. To do so meaningfully in light of the 

previous discussion, it will first be necessary to make 

mention of the logical and semantic basis of the herein 

suggested solution. This will be attempted by first ex­

amining the conceptual informational relationship between 

obtained evidence and a tested hypothesis; which will be 

followed by a suggested manner in which the informational 

strength of obtained evidence can estimate the degree to 

which a tested hypothesis has been confirmed. 

Examination of the relationship between a tested 

hypothesis and the evidence which results will begin with 

consideration from a conceptual perspective. An attempt 

will be made through this discussion to illustrate that 

the extent to which a particular hypothesis is confirmed, 

to be termed "degree of covering", depends upon the 
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strength of evidence obtained from a testing of that hypo­

thesis. It will then be argued that the concept of the 

reliability of mastery/nonmastery classifications resulting 

from the scores obtained from a CRH measure can be ex­

pressed in terms of this general model. In particular, the 

relationship between evidence and hypothesis will be pre­

sented as an analogy of the relationship between true score 

variance and total score variance as expressed within tra­

ditional test theory. 

A statistical definition of "degree of covering" 

will next be presented, with this definition serving as a 

basis for the CRM reliability coefficient then developed. 

A discussion of both the mathematical nature and the philo­

sophical implications of the developed coefficient will 

follow. Finally, the range of possible values of the co­

efficient will be examined. 

The Relationship between Hypothesis and Evidence 

Scientific investigations involve, in a majority 

of situations, the testing of null hypotheses. Evidence is 

obtained, hopefully relevant to the specific null hypothe­

sis being tested, which provides information, in the form 

of observations of some type, which form the basis for a 

decision concerning the rejection or non-rejection of that 
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null hypothesis. 

In the situation at hand, a conceptual hypothesis 

is generated concerning the ability of two tests, con­

structed with the intent to be parallel in form, to yield 

consistent decisions as to the classification of the test­

ees as masters or nonmasters, in regard to the achievement 

of a specific set of objectives. The evidence required to 

make a judgment regarding such a hypothesis would be an 

observation of the consistent mastery and nonmastery deci­

sions yielded by the two tests. Upon determining the ex­

tent to which the evidence implies the hypothesis, one 

could make a decision regarding the acceptance or rejection 

of the tested hypothesis. Generally, this is of course, 

the role of inductive inference upon which the current no­

tion of the scientific method depends. As specifically 

stated, such an analysis of the evidence at hand would pro­

vide an estimate of the degree to which the results of the 

two tests under consideration yielded consistent mastery/ 

nonmastery decisions. 

In terms of the concepts under present study, a 

hypothesis, as stated scientifically, is a conjecture which 

contains within its expression, some amount of uncertainty. 

VIe ask questions, and forward suggested solutions, precise­

ly because we are uncertain about the correct or best 
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answer. And herein lies perhaps the best opportunity to 

visualize the similarity between the concept of uncertainty 

and the statistical definition of variance. 

Traditional statistical techniques, whether it be 

for example, regression analysis, analysis of variance, 

discriminant analysis, or cluster analysis, all attempt to 

explain or account for observed variance of some type. It 

has been observed that groups, individuals, or objects 

vary in the extent of their estimated possession of some 

characteristic or attribute of interest, and it is uncer­

tain as to what degree and in what direction. Therefore, 

an attempt is made to gather relevant evidence, seek to 

identify the sources and extent of the observed variance, 

and on the basis of the information obtained, make a deci­

sion about the hypothesis. 

Much of what has been said immediately above is 

probably not new to the reader. However, the current re­

search seeks to suggest an alternative solution to a tra­

ditional statistical technique. And, the author believes 

that such a situation necessitates the attempt to demon­

strate the conceptual compatibility of this newly suggested 

solution, with that accomplished by traditional techniques 

in similar circumstances. 
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It has been the desired purpose of this section to 

illustrate the similarity between the concepts of uncer­

tainty and variance. As noted earlier in Chapter I, the­

oretically, the reliability of measures obtained from an 

instrument is considered to be the proportion or degree of 

observed score variance which is due to true score vari-

ance. In effect, to what extent is the variance of ob­

tained scores on some instrument due to the true position 

of the individuals taking the test, on a continuum of 

degree of possession of the attribute or characteristic 

which the test seeks to measure. 

. 
As also noted earlier, an operational estimate of 

reliability is the correlation of the set of observations 

obtained from the administration of two independent and 

equivalent measures to a particular group. That is, the 

reliability coefficient, as traditionally defined, is an 

estimate of the degree of total score variance which is 

shared by the two instruments. In this degree of shared 

variance lies the information for a decision regarding the 

reliability of the measurements obtained from the instru-

ments. 

The author will now attempt to demonstrate that 

the ratio of true score variance to total score variance 

has an analogy in the concepts of information and uncer-
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tainty in information theory. 

lDe Shared Inform1tion of Evidence and HYpothesis 

The discussion of Chapter III has so far centered 

on the relationship between evidence and hypothesis, as 

specifically applied to an estimation of test score relia­

bility, within the framework of inductive inference. And, 

if the notions of evidence and hypothesis are to be ex­

pressed in the language of information theory, because of 

the nature of the statistical statements involved, a logi­

cal relation between evidence and hypothesis, based on a 

probability measure, must be determined. In 1970, Risto 

Hilpinen published a study, "On the Information Provided 

by Observations", which offers the basis for just such a 

measure. 

As Hilpinen states, from the viewpoint of inductive 

logic, "probability is a logical relation between two sen­

tences". In application to the problem at hand, assume 

that the hypothesis under study is represented by sentence 

"H", and the evidence on which the credibility of that 

hypothesis is to be decided is termed sentence "E". On 

this basis, a probability statement designed to express the 

degree of credibility of H on the basis of E would be 

"P(H/E) = R". In this relationship, R, as any probability 
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estimate, is a real number within the closed interval 

(0, 1), and represents a "justified degree of belief" in 

H, on the basis of E. (See Figure 3.1) 

Now, as noted, a reliability coefficient is an 

estimate of the ratio of true score variance to total 

score variance. Such a coefficient represents the degree 

or proportion of the total score variance which is "shared" 

by true score variance. And, that coefficient provides us 

with a "justified degree of belief" on which a decision 

concerning the accuracy of the obtained measures can be 

based. 

Within the social sciences, evidence consists of 

observations of some type. In the case at hand, mastery/ 

nonmastery decisions are made on the basis of scores ob­

tained from a first test administration, and these same 

types of decisions are made for the same group of students 

on the basis of the independent administration of a second 

test designed to be equivalent to the first. Such evidence 

could then be used to evaluate the hypothesis that the two 

tests yield consistent mastery/nonmastery decisions. 

In other words, what would be of aid in such a 

situation, would be an index of the degree to which the 

extent of observed consistent mastery/nonmastery decisions, 



Figure 3.1 

An Illustration of the Relationship 

between Evidence and Hypothesis 

Situation in which the information provided by 
the evidence is completely independent from the 
uncertainty contained in the tested hypothesis. 

Situation in which the information provided by 
the evidence "coversn the uncertainty contained 
in the tested hypothesis, to the degree repre­
sented by the shaded area. 
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"confirms" the hypothesis that two instruments do in fact 

yield such decisions. 

Evidence gathered with the purpose of obtaining 

information, if relevant to the hypothesis under study, 

will to some extent relieve the uncertainty which is con­

tained in that hypothetical statement. Hence, basis is 

provided for combining the concepts of evidence and hypoth­

esis in inductive inference with the concepts of informa­

tion and uncertainty in information theory. What is fur­

ther needed to apply this theoretical relationship to an 

observable and practical situation, is a semantic inter­

pretation of information theory, to be added to the statis­

tical definitions. 

The next section presents such a semantic inter-

pretation. 

The Degree of Rypothesis Confirmation by the Strength 
of Evidence 

The logical relation between two sentences, formu­

lated on the basis of the probability of those sentences, 

as outlined in the cited work of Risto Hilpinen, had an 

earlier application in two papers authored by Hakan 

Tornebohm of the University of Gothenburg, sweden. 

In 1966, Tornebohm published a paper titled "Two 
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;.reasures of Evidential Strength", which developed and de­

scribed two techniques designed to estimate the degree by 

which a hypothesis was confirmed on the basis of obtained 

evidence. Tornebohm followed this paper with a 1968 arti­

cle, "On the Confirmation of Hypotheses About Regions of 

Zxistence", which presented suggestions for the application 

of the earlier described measures. The current author 

posits that Tornebohm's work provides the semantic aspects 

which makes possible the application of information theory 

to the task at hand. Therefore, an outline of his notion 

of "degree of covering" as presented in the two above­

mentioned papers must be considered preliminary to the con­

sistency coefficient that will be developed. 

Tornebohm begins by assuming that we have a state 

space of objects, R. In seeking to find the position of 

an object in R, a measurement instrument, z, is employed. 

The result of a particular measurement represents a vector. 

The state space of all such vectors is designated H. This 

state space N thus contains a finite number of cells, each 

cell corresponding to the vector which results from the 

measurement of an object in state space R, by an instrument 

in z. If it can be assumed that the vectors obtained from 

Z are independent of one another, Z is seen to produce a 

functional relationship between R and M, in which every 
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element in R can have one and only one image in M. In 

such a relationship, R is considered the domain, and 1>1 

the range. Such a relationship is illustrated by Figure 

3.2. Within this framework, a hypothesis H could be for­

mulated concerning the conjecture that the images of the 

cells in N, are indeed the region of existence of the 

objects in R. 

This model can easily be applied to the situation 

in which testees are classified either masters or non­

masters on the basis of obtained test scores. 

In such a specific application, a set of individ­

uals who have received a particular treatment or mode of 

instruction, represent the objects in state space R. Upon 

completion of the treatment or instructional program, a 

CRM measure is administered to the individuals in this 

group, and, mastery/nonmastery decisions are made on the 

basis of scores obtained on that measurement instrument. 

This, of course, corresponds to the formulation of an image 

in H composed of the vectors resulting from the measurement 

of the objects in R by instrument z. 

It should be recalled that the items on a CRM are 

meant to represent a random sample from a larger domain 

of items. And, the percentage of items an individual 



Figure 3.2 

An Illustration of the Domain and Range of 

Hastery/Nonmastery States and Classifications 

R 
(Domain) 

True State Space of 
Examinees Who Have 
Hastered Educational 
Objectives 

True State Space of 
Examinees Vlho Have Not 
Hastered Educational 
Objectives 

z 
(Instrument) 
CRH Measure 

M 
(Range) 

State Space of 
Examinees Classified 
as Having r~stered 
the Educational 
Objectives 

State Space of 
Examinees Classified 
as Having Not Mastered 
the Educational 
Objectives 

1..0 
1..0 
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correctly answers on that measure represents an estimate 

of the percentage of items in the entire domain which the 

individual can correctly answer. Thus, the familiar situ­

ation is noted of locating a person's true position on a 

continuum, by a random sample of behaviors that continuum 

is assumed to reflect. 

Hence, it follows that R represents the true state 

space of such examinees, as they exist on some continuum 

of achievement. The scores on a CRM measure, corresponding 

to the vectors produced by instrument z, then result in the 

assignment of these examinees to either a mastery or non­

mastery region of existence on that continuum. These as­

signed regions of existence correspond to the state space 

The hypothesis of interest then becomes one con­

cerning the extent to which the assigned regions of exis­

tence in H are images of the true regions of existence of 

those individuals in ~. And, a statement of reliability 

regarding the accuracy of mastery/nonmastery classifica­

tions is arrived at. As is the case with traditional re­

liability, this problem will be approached operationally 

from the perspective of consistency of classifications. 
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An outline of Tornebohm's model continues with a 

symbolic statement of the hypothesis under study. In this 

specific application, individual ci, as existing in state 

space R, is either in the region of mastery or that of 

nonmastery on the ability continuum of interest. The divi­

sion between these two regions is the selected cut-off 

score or percentage. 

Now, let U represent the region of masters in R, 

and let U' represent the region of nonmasters in that same 

state space. The hypothesis of interest can then be writ­

ten as: 

- (3. 1) H = /\C & 1\C 
u U' 

where: c = a designated master. 

-c = a designated nonmaster. 

"/\ c" = "c is a cell in U" 
u 

and, 

- -"1\ en = "c is a cell in u•n. 
U' 

Equation 3.1 appears here exactly as stated by Tornebohm 

( 1968). 
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The type of evidence by which the hypothesis H is 

tested are of the kind that measurements on the group of 

interest, made by means of some instrument, point to values 

in the I-1 state space. These values in i·1-space in turn pro­

duce images in R space. And, upon the nature of these 

reverse images, decisions can be made as to an individual 

object's region of existence. 

The application to a mastery/nonmastery testing 

situation easily follows. Individuals in a group are 

tested by a CRN measure, a set of scores corresponding to 

the values in ~~space result, and on the basis of a chosen 

cut-off score, these values are applied back to R-space 

and locate each individual in either a mastery or nonmas­

tery region of existence. Keeping in mind Ebel 1 s opera­

tional definition of reliability, the hypothesis of inter­

est in this case will concern the extent to which images 

produced in the mastery and nonmastery regions of existence 

remain consistent from CRM measure to a second independent 

and equivalent such measure. 

Hypothesis Confirmation as "Degree of Covering" 

Returning to the development of an index of hypoth­

esis confirmation, Tornebohm lists three necessary defini­

tions. They are as follows: 
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Def. 1: I( H) = -log p(H) 

Def. 2: I(H/E) = I(HE) - I(E) 

Def. 3: I(H) > O~Dc(H/E) = ~(H)I(HS(H/E~ 

The first definition is familiar from the discus­

sion of the basic concepts of information theory in Chapter 

II. This is simply a measure of the amount of information 

in a hypothesis H. However, it should also be recalled 

from Chapter II, that when information is expressed in 

terms of an expected value, the measure becomes one of un­

certainty, since by definition, expected information and 

uncertainty are synonymous. It will prove valuable later 

in this discussion to speak of the information contained in 

a hypothesis H as the amount of potential information, or 

uncertainty, which can in turn be shared by the evidence 

collected. 

The second definition can be considered to be a 

measure of the amount of information that hypothesis H adds 

to evidence E. Or alternately, I(H/E) represents the 

amount of information contained in H that remains after the 

information common to E, I(E), is subtracted from the 

amount of information in both H and E, I(HE). Again, it is 

conceptually helpful to think in terms of the expected in­

formation in H as uncertainty. In this event, I(H/E) 



104 

corresponds to the amount of uncertainty which remains in 

hypothesis H after the shared information communicated by 

evidence E is subtracted out. 

The third definition provides an index for the de­

gree of confirmation of a hypothesis by evidence, Dc(H/E). 

Tornebohm refers to this index as an estimate of "the de­

gree of covering11 • The definition begins by assuming that 

the uncertainty contained in H is greater than zero. Some 

uncertainty must exist in a situation before any informa­

tion can be obtained concerning it. 

Now, if Dc(H/E) is to be used as an index of evi­

dential strength, there eXist certain conditions which it 

should satisfy. To more easily facilitate the determina­

tion of whether Dc(H/E) fulfills these conditions, the 

expression for I(H/E) in Definition 2 will be substituted 

into Definition 3 to yield the following equation: 

(3.2) 

A first condition which a degree of evidential 

strength should fulfill, is that if the evidence logically 

implies the hypothesis the "degree of covering" should be 

at a maximum. Evidence would logically imply a hypothesis 

only if there was a perfect overlap in these two measures 
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of information; that is, if all of the expected informa­

tion in the hypothesis was communicated by the evidence. 

In this case, I(H) would equal I(E), and -I(HE) would 

equal -(E). Upon substituting this value for I(HE) into 

3.2, it can be seen that the ratio, Dc(H/E), would equal 

1. And, it should be noted that this is the maximum 

value a degree of evidential strength should be able to 

assume, since no more information can be transmitted by 

evidence than there exists uncertainty in the hypothesis. 

Secondly, an index of the degree to which evidence 

confirms a hypothesis should be at a minimum when the in­

formation contained in the evidence is completely indepen­

dent of the expected information contained in the hypothe­

sis. In this respect, it was noted in Chapter II that if 

two sources of information were independent of one another, 

their combined information was equal to the sum of their 

individual measures of information. This is a familiar 

notion from probability theory, and in this case denotes 

that there is no overlap in information between the two 

sources. 

Now, if the above were the case, -I(HE) would equal 

- (r(H) + I(E~. And upon substitution into equation 3.2, 

the numerator can be seen to cancel to zero, which would of 

course cause the "degree of confirmation" to likewise equal 
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zero. 

Therefore, Tornebohm's index of degree of eviden­

tial strength does indeed assume a minimum and maximum 

under the appropriate conditions. 

As it will prove to be of importance, it should be 

noted that if the evidence E is fully implied by the hy­

pothesis H, then I(E/H) would equal zero. That would of 

course be the desired case, since the obtained evidence 

cannot add any information to the expected value of infor­

mation already contained in the hypothesis. With that in 

mind, equation 3.2 can be simplified thusly: 

Dc(H/E) = ~{H) - if~} + I(E)) 

I(H)Dc(H/E) = I(E) - (r(HE) - I(H~ 
I(H)Dc(H/E) = I(E) - I(E/H) 

I(H)Dc(H/E) = I(E) 

and, 

Dc(H/E) = f~~~ (3.3) 

Thus, Dc(H/E) as the ratio of the information in 

evidence E to the information in hypothesis H, is the de­

gree to which the information contained in H is conveyed 

by the evidence E. It may again be conceptually easier 
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to think of this relationship as the degree to which the 

expected information or uncertainty in the stated hypothe­

sis H, is "covered" by the information transmitted from 

the evidence E. 

The next major section will apply Tornebohm's 

"degree of covering" ratio as a model in the development 

of a suggested reliability coefficient for CRM measures. 

Development of Problem Solution - Symbols and Definitions 

The development of the operational form of a sug­

gested reliability coefficient for CRM tests begins by 

assuming that the individuals in a group of interest have 

been evaluated as being either masters or nonmasters re­

garding achievement of some subject area content, on the 

basis of scores obtained from the administration of a Test 

A. After some passage of time, this same group is again 

individually adjudged to be masters or nonmasters of the 

same subject area content, on the basis of scores obtained 

from a Test B. It is also the case that Tests A and B are 

designed with the intent of being equivalent measures of 

the same set of stated objectives. And finally, the ad­

ministration of the two tests are considered to be indepen­

dent of one another. 

such a situation of course, corresponds to that 



108 

required by Ebel's operational definition of test score 

reliability, with the difference in this case being that 

instead of dealing with score values, the results under 

study are classification decisions concerning regions of 

existence. This would need to be the case if a coefficient 

is to result, which will be within Novick's dimension of 

"threshold loss". 

If the above described test-retest design is exe­

cuted, the following sets of observations will result: 

N = number of students taking both tests. 

N(UA) = 
N(UB) = 

N(U'A) = 

N(U'B) = 
N(U

0
) = 

number of classified masters on Test A. 

number of classified masters on Test B. 

number of classified nonmasters on Test A. 

number of classified nonmasters on Test B. 

number of consistently classified masters on 
the two testings. 

number of consistently classified nonmasters 
on the two testings. 

On the basis of these classifications, the follow­

ing proportions can be generated: 

let· 
' xo 

N(U
0

) 
and, x• 

N( U
0

' ) 

= N = N 0 

XA 
N(UA) 

and, XB 
N(U;e) 

= N = N and; 
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and, x• = A 

sion 

x• = B 

Thus: 

x
0 

= the proportion of students in the group who are 
consistently designated masters on the two test­
ings. 

X I 
0 

XA 

x• A 

XB 

x• B 

to 

= the proportion of students in the group who are 
consistently designated nonmasters on the two 
testings. 

= the proportion of students who are designated 
masters on Test A. 

= the proportion of students who are designated 
nonmasters on Test A. 

= the proportion of students who are designated 
masters on Test B. 

= the proportion of students who are designated 
nonmasters on Test B. 

It will also be necessary to the following discus-

let: 

ci = an individual classified consistently as a master 
on Tests A and B. 

and, 

cJ. = an individual classified consistently as a 
nonmaster on Tests A and B. 

In regard to the notion of "threshold loss", the 

extent to which the two independent and equivalent CRM 
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instruments yield consistent mastery/nonmastery decisions 

is of prime interest. What is desired in such a situation 

is the degree to which the evidence obtained lends support 

to the hypothesis that the two testings yield consistent 

classification decisions. Thus, the notion of CRM instru­

ment reliability appears analogous to the relationship be­

tween evidence and hypothesis expressed by Tornebohm 1 s 

"degree of covering". 

Relationship of Evidence and gypothesis to True Score and 
Total Score Variance 

If the hypothesis concerns the degree to which 

independently administered equivalent C&~ instruments yield 

consistent mastery/nonmastery decisions, the degree of con­

firmation will reflect the extent to which the information 

contained in the evidence removes the uncertainty contained 

in the hypothesis. What the author believes to be of espe­

cial importance, in deterMining the appropriateness of the 

herein suggested solution, is the similarity between the 

above relationship of evidence to hypothesis, and that be­

tween true score variance and total score variance in tra-

ditional test theory. 

It was noted in Chapter I that Glass and Stanley 

(1970) compare score variance to the notion of uncertainty 

- a comparison which now appears clearly appropriate. One 
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cannot allocate, partition, or account for more variance 

than already exists in a set of scores. And within tra­

ditional hypothesis testing, decisions are made as to 

whether to confirm or reject a hypothesis on the basis of 

the results of such allocation, partitioning, or accounting 

for of total score variance. In the same vein, it is not 

possible for evidence to convey more information than there 

exists uncertainty in the hypothesis. 

In the case of the situation under current study, ' 

the uncertainty existent in a hypothesis concerning con­

sistent classifications by independent and equivalent CRM 

instruments, is to some degree "covered" by the information 

conveyed by the extent of such consistent classifications 

in the evidence gathered. When Tornebohm's "degree of 

covering" is applied as a model, an index of the extent of 

overlap between the information in the evidence and the un­

certainty in the hypothesis is obtained. This ratio would 

seem to be analogous to the theoretical definition of re­

liability as a ratio expressing the degree of overlap be­

tween true score variance and total score variance. 

An Expression for "Degree of Covering" 

Returning to the development of a suggested relia­

bility coefficient it is a basic definition of information 
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theory that the amount of information provided by a single 

consistent mastery/nonmastery classification, would be: 

Or alternately: 

or -log N(U'o) 
N 

This measure of information would imply that the amount of 

information conveyed would be the same for each consistent 

master and the same for each consistent nonmaster. 

Now, if it can be assumed that the individual mas­

ters and nonmasters are so designated independently of one 

another - and this should certainly be the case in a CRM 

decision framework - then the information conveyed by the 

evidence obtained from one testing would be the sum of the 

information conveyed by the individually classified masters 

and nonmasters. And, the total amount of information pro­

vided by the evidence relevant to such a framework would be 

that conveyed by the evidence from the combination of the 

two testings. However, since these two testings are to be 

considered independent of one another, the information pro­

vided by the total evidence would equal the sum of the in­

formation conveyed by each of the individual tests. There­

fore, the equation for Dc(H/E) would in this case become: 



Dc(H/E) 
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(3.4) 

the information contained in the evi­
dence from Test A. 

the information contained in the evi­
dence from Test B. 

Development of Formula for Coefficient Iota (i) 

Since the individual consistently classified mas-

ters and nonmasters can be assumed to be independent of one 

another, the information contained in either Test A or Test 

B will be the sum of the information transmitted by each of 

these individual classifications. This being the case, the 

numerator of 3.4 becomes: 

N(U
0

) N( U' 
0

) 

I (:'~A) + I ( EB) = L I(ci) + L I(c j > 

i = 1 j = 1 

N(U
0

) N(U 1
0

) 

+ ) I(c1 ) + L I(cj > 
~ 

(3.5) 

i = 1 j = 1 
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Recalling that each consistent master yields the 

same amount of information, and that it is the same case 

for each consistent nonmaster, 3.5 reduces to: 

+ 

= 

+ 

= 2 

+ N(U 1 ) 
0 

-log 0 + N(U 1 ) E 
N(U )) 

!f 0 

( 

N(U
0

)') 

log N -.J + 

N( u• ) 
0 

(_. N(U' 0 ))l 
"-log N ·~ 

(_l N(U' o))l 
\.log N ~ 

( N(U
1 0 )~ 

1(-og N ~ 

(3.6) 
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Hence, equation 3.6 reflects the equivalency of the 

two measures, in that each conveys the same amount of in­

formation, as well as their independence, in that the 

amount of information conveyed by the total evidence is 

equal to the sum of the information sources. 

Now, let us examine the expected information or 

uncertainty contained in the hypothesis as related to the 

observed situation. This measure will, first of all, need 

to take into account the potential information contained 

in both testing situations. Secondly, in keeping with the 

traditional notion of hypothesis testing, I(H) should also 

be a function of sample estimates of the population pro­

portions of consistent masters and consistent nonmasters. 

·~ath these restrictions in mind, I(H) can take the follow­

ing form: 

I(H) = -log p(H) 

= ~(UA) I(ci) + Cl(U' A) I(cj~ 

+ ~(U8) I(ci) + N(U'B) I(Cj~ 
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[ ~ N(U )\ (_ N(U' )~ 
+ L:(UB) \log N°j+ N(U'B) \log N ° -~ 

1 N( u• 0 )~ 
tlog N ::J 

(_ N( u• o >\ll 
\log N ~J 

= -N ~xA log x0 + x•A log x 1
0 ) 

+(xB log x0 + x•B log x• 02J 

The results of equations 3.6 and 3.7 can now be 

substituted into equation 3.4 to obtain the following: 

(3.7) 

-2N(x
0 

log x
0 

+ x•
0 

log x•
0

) 

= ---------------------------------------------------~A log x0 + x•A log x 1
0 ) + (xB log.x0 + x'B log x'~ 
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2(x log x + x• log x• ) 
= (xA 

0 0 0 0 
x• ) log xo + xB log x

0 
+ x•A log x 1

0 
+ x'B log 0 

2(x
2 

log x
2 

+ x 1
0 

log x 1

2
) 

(3.8) = (xA + xB) (log x
0

) + (xiA + x•B) (log x• ) 
0 

The ratio as expressed in Equation 3.8, as a par­

ticular application of Tornebohm's concept of an index of 

"degree of covering" will be designated as coefficient 

iota (i). 

The form of the denominator of coefficient iota 

deserves some comment. One might reasonably ask why, in 

determining a measure of expected information, the sample 

proportions of consistent masters and consistent nonmasters 

were employed, instead of the proportions of masters and 

nonmasters on the two tests. This form would after all, 

yield an index which would appear to be more consistent 

with the notion of uncertainty as statistically defined in 

Chapter II. 

There are two reasons why the existing form of the 

denominator of coefficient iota was chosen - the first is 

mathematical, while the second is of a philosophical na-

ture. 
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When considering the degree to which obtained evi­

dence confirms a hypothesis of region of existence, it is 

in fact being assumed that a certain proportion p, of the N 

subjects in the population of interest, possess a property 

c. Faced with the inability to obtain information from 

each of the individuals in the population, a random sample 

is drawn from that population, and it is found that a cer­

tain proportion, s, of the individuals or objects in this 

sample, are observed to possess the property c. The pro­

portion s is then used to obtain a measure of the informa­

tion contained in the evidence. However, if this measured 

information is to be related to the expected information 

conveyed by the hypothesis to yield an index of the "degree 

of covering", the two information measures must have some 

basis of commonness. In short, there must be some way of 

knowing if the obtained information is relevant to the hy­

pothesis being tested. 

Tornebohm (1966) has demonstrated through the ap­

plication of probability calculus that a ratio such as co-

efficient iota, which serves as a measure of evidential 

strength, will yield a measure of the commonness of the 

sample structure to the population structure. This measure 
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of commonness is then shown to reach a maximum when the 

sample structure is used to estimate the population struc­

ture. That is, on the basis of this measure of commonness 

it can be asserted that upon obtaining "a random sample of 

size n from a population of size N ••• it is most likely 

that the sample comes from a population such that those 

subsets which are like the sample are the most common kind 

of subsets". 

This is of course the desired characteristic of any 

sampling procedure. But what is of importance to the pur­

pose at hand, is that if a measure of the degree of evi­

dential strength is to have this property, an estimate of 

the uncertainty or expected information contained in the 

hypothesis must include an estimate of the degree to which 

the characteristic of interest is manifested in the popula­

tion. If the characteristic of interest is the consistency 

of region classification, the informational structure of 

the hypothesis must be formulated on the basis of an esti­

mate of the frequency of that characteristic in the popu­

lation. If not, evidence of consistency, as obtained from 

the sample, will lack a maximum degree of commonness when 

related to such a hypothesis. Simply stated, such evi­

dence, when used to test a hypothesis which does not re­

flect an estimate of the property of interest, will lack 
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a certain degree of relevance when compared to the situa­

tion in which the tested hypothesis includes an estimate 

of the studied characteristic. 

As applied to the particular situation at hand, if 

the expected information contained in the hypothesis was 

formulated on the basis of the proportions of masters and 

nonmasters on each of the two testings, any evidence con­

cerning the consistency of such classifications from one 

testing to the next, will lack a certain degree of rele­

vance. Tornebohm's argument demonstrates that this degree 

of relevance, as reflected by a measure of commonness, is 

maximized when the hypothesis is stated in terms of the 

characteristic of interest. 

Some Philosophical Implications of the Formula for 
Iota (i) 

The second argument is rooted in the current gen­

erally accepted approach to hypothesis testing. Within the 

social sciences, hypotheses can never be proven either true 

or false. Hypotheses are either substantiated or rejected 

by obtained evidence within some chosen level of probabil­

ity. Such an approach to research assumes that knowledge 

is advanced by means of a succession of formulated and 

tested hypotheses. Since none of these hypotheses can be 

held either totally true or false, each, at best, can be 
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considered to be partially true. On this basis, one hy­

pothesis succeeds another because sample evidence indicates 

that it possesses a higher degree or partial truth than its 

predecessor. Now, according to Stanley (1971), the logical 

perspective to the problem or reliability dictates that the 

method of data collection and statistical analysis must be 

logically consistent with the inference to be made. The 

hypothesis to be considered in the problem under current 

discussion is of course, the extent to which a particular 

CRM instrument yields consistent mastery/nonmastery deci­

sions. As related to the notion of partial truth, evidence 
I 

additional to that already obtained may lead us to change 

our position of belief as to the degree of consistent mas­

tery/nonmastery decisions, and as to whether that estimat­

ed degree of consistency is acceptable to the purposes to 

which the test results are to be put. 

If the chosen mode of statistical analysis is to be 

logically consistent with the inferences by which such a 

series of hypotheses advance, that analysis should result 

in a quantification of the uncertainty contained in a par­

ticularly stated hypothesis. Such a quantification must be 

a function of all the variables upon which these inferences 

are to be based if all the information available is to be 

taken into account. In the case of the type of reliability 
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here being examined, this notion of logical consistency 

demands that the uncertainty contained in a particular 

hypothesis be a function of both the proportions of mas­

ters and nonmasters resulting from the two testings, and 

the proportions of consistent mastery/nonmastery decisions 

between the two tests. This requirement is satisfied by 

the form of coefficient iota as stated in Equation 3.8. 

Before proceeding to Chapter IV, which will con­

cern an application of coefficient iota on sample data, 

one further topic needs to be discussed. That topic con­

cerns the range of possible values which can be assumed by 

coefficient iota. 

The Range of Possible Values of Coefficient Iota (i) 

As the reader is well aware, the range of possible 

values of a traditional reliability coefficient is from 0 

to 1. And since coefficient iota is also a type of ratio, 

it would seem desirable to demonstrate that iota likewise 

assumes such a range of values, and in addition, that it 

assumes the extremes of that range under conditions which · 

are conceptually compatible with the notions of consistency 

and reliability. 

An analysis of the range of coefficient iota will 

be approached from two perspectives: the first from a 
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consideration of iota as a measure of evidential strength 

developed within the framework of information theory; and, 

secondly from the aspect of iota as a mathematical expres-

sion. 

The ~~nimum Value of Iota as a Measure of Evidential 
Strength 

The very worst case from a consistency of classifi­

cation point of view, would be if there were no consistent 

masters and no consistent nonmasters among the individuals 

classified by the results of two testings designed to be 

equivalent. This would necessarily result from the case 

where all individuals who were classified as masters on 

Test A were classified as nonmasters on Test B, and all 

those classified as nonmasters on Test A were classified 

as masters on Test B. Obviously, this is the most extreme 

example of inconsistency, and it would be expected that an 

index of consistency would be equal to zero under such 

circumstances. 

If such a situation were to occur in reality there 

would of course be no need to calculate a coefficient of 

consistency since the evidence obtained in the form of test 

scores would indicate that whatever the two tests measure 

are independent of one another. Additionally, the talents 

and abilities sampled by the two tests are probably to some 
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extent independent of the information and instruction con­

veyed in the learning component in question. In this case, 

no information was transmitted by the evidence in regard 

to the hypothesis being tested, and any measure of the de­

gree to which such evidence confirms a hypothesis should 

be expected to be at its absolute minimum. 

Tornebohm (1966, 1968) and Hilpinen (1970) provide 

examples of the manner in which the minimum value of evi­

dential strength, such as coefficient iota, can be deter­

mined. Recall that the matter of present interest is the 

degree to which a particular hypothesis is substantiated 

by the evidence obtained, or, in another sense, the extent 

to which a particular hypothesis explains such obtained 

evidence. From the perspective of information theory, it 

would first be of interest to determine the amount of in-

formation which the hypothesis adds to the information pro-

vided by the evidence. This measure of "relative" informa­

tion can be expressed as: 

I(H/E) = I(HE) - I(E) (3.9) 

where: I(HE) = the information contained in both 
H (hypothesis) and E (evidence); 

I(E) = the information conveyed by E; 

and, I(H/E) = the amount of information H adds to 
the information conveyed by E. 
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A measure or evidential strength, or an index of 

the degree to which a particular hypothesis H is confirmed 

by the evidence E can then be expressed thusly: 

where: 

(3.10) 

the degree to which the information 
transmitted by H is shared by the 
information conveyed by E. 

The value of I(H/E) in 3.9 can next be substituted 

into 3.10 to obtain: 

(3.11) 

Now, by definition, if the information carried by 

hypothesis H is totally independent of the information con­

veyed by evidence E, then: 

I(HE) = I(H) + I(E) (3.12) 

The expression 3.12 indicates that if Hand E carry 

relative amounts of information of a type which are inde­

pendent of one another, then the information conveyed by a 

combination of H and E is simply equal to the sum of the 

information transmitted by each of the separate messages. 

This can be the case if and only if H and E are independent 

of one another in information carried and there is no 
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overlap in the type of information transmitted. A much 

similar concept is a basic definition of probability 

theory. 

If such independence between H and E was indeed the 

case, we would expect a measure of evidential strength to 

be at its minimum. That is, the information conveyed by 

evidence would be required to substantiate hypothesis H. 

Indeed, if the value of I(HE) in 3.12, given that His 

independent of E on the basis of the information conveyed, 

is substituted into 3.11, the value of Dc(H/E) becomes: 

Dc(H/E) = ti(H) - (l(H) - I(E)) 
I(H) 

- I( E~ • (3.13) 

= ~I(H) - I ( H) + I~ E) - I ( E )) 
I(H 

0 = I(H) 

D (H/E) = 0 c 

Therefore, the minimum of a measure of evidential strength 

(coefficient iota) when considered from the perspective of 

information theory, is o. 

This minimum value of coefficient iota would be 

assumed when evidence E, in the form of obtained test 

scores, fail to convey any information concerning the sub­

stantiation of the hypothesis H that the two tests, which 
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have yielded those scores, are equivalent in terms of the 

mastery/nonmastery classifications that result. Again, 

such would be the case if absolutely no examinees were 

consistently classified as either masters or nonmasters. 

Evidence of this type would be completely independent or 

unrelated to the tested hypothesis, with a result being 

that coefficient iota would assume a value consistent to 

that expected of a traditional reliability coefficient 

under the same conditions. 

The Maximum Value of Iota as a Measure of Evidential 
Strength 

In regard to the maximum value which coefficient 

iota can assume, it can readily be seen by inspection of 

3.8 that iota can never be greater than 1. such is the 

case since there can never be more consistent masters or 

nonmasters than there are masters and nonmasters on either 

of the individual testings considered individually. In 

addition, from the standpoint of information theory, it 

would be logically impossible for a hypothesis H to account 

for more information than that which is carried by the ob­

tained evidence E, when considered on the basis of that 

information alone. 

Conceptually, a measure of evidential strength 

would assume its maximum value when a given hypothesis H 
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accounts for the total amount of information conveyed by 

evidence E. It seems reasonable to expect that a ratio of 

this type would assume a value of 1 at its maximum. Coef­

ficient iota does indeed do so under two somewhat differ­

ent sets of circumstances which will be considered sepa-

rately. 

The first case is the simplest and can be con­

firmed by mere inspection. Assume that all examinees clas­

sified as masters and nonmasters by Test A were to an indi­

vidual similarly classified as such by the results of Test 

B. Likewise, assume that neither proportion of masters or 

nonmasters was equal to 0 or 1. In this case, since all 

mastery/nonmastery decisions are consistent from Test A to 

Test B, we would expect the degree of consistency to be 

perfect, and the index of the degree of consistency to as­

sume a value of 1. In other words, all the information 

contained in the evidence ~ would be accounted for by the 

hypothesis H. Such a situation would result in the follow­

ing equalities: 

and, 

X ' - x• - x• o - A - B' where x•
0 

I 0 or 1. 
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And if these resultant equalities are substituted into 

Equation 3.8, it can readily be seen that coefficient iota 

would reduce to 1. 

The second set of circumstances for which one would 

expect coefficient iota to be at its maximum is if all ex­

aminees are classified as masters on the basis of the re­

sults of both Test A and Test B, or all examinees are con­

sistently classified as nonmasters by the two testings. 

Returning to Equation 3.10, the value I(H/E) as­

sumes under the conditions described immediately above is 

again of interest. First of all, recall that I(H/E) is 

defined as the amount of information that hypothesis H adds 

to the evidence E. In the case of either total examinee 

mastery of both Test A and Test B or total examinee non­

mastery, the evidence E logically confirms the hypothesis 

H that the two tests yiel~ consistent mastery/nonmastery 

decisions. From another point of view, since there were 

no inconsistent mastery/nonmastery decisions, or, no vari­

ance, there was no uncertainty contained in the evidence. 

Therefore, the hypothesis H could not add any information 

to the evidence E, and I(H/E) would equal o. Inserting 

this value for I(H/E) into Equation 3.10, it can be seen 

that Dc(H/E) becomes: 
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DC = ~'a/ - ~ I H) (3.14) 

DC = if~~ 
= 1 

It has been determined then, that coefficient iota, 

as a measure of evidential strength, has a maximum of 1 in 

the case where the evidence E logically confirms the hy­

pothesis H, and, a minimum of 0 when the evidence E is log­

ically independent of the hypothesis H. This range of 

values has been identified on the basis of that which would 

be expected of a measure of evidential strength when con­

sidered from the perspective of information theory. such 

a result would be consistent with the range of values as­

sumed by a traditional reliability coefficient, however the 

task remains to determine mathematically whether this is 

actually the case. 

Before moving on to a mathematical consideration 

of the extremes of the range of values of coefficient iota, 

however, a point should be mentioned that is somewhat ob­

vious. The sets of circumstances which are seen to result 

in coefficient iota being equal to 0 or 1 have practical 

implications which would render the calculation of any con­

sistency coefficient unnecessary. In the case of the total 



131 

lack of even a single consistent mastery/nonmastery deci­

sion from one testing to another, it would be self-evident 

to the examiner that either the two tests lacked even the 

slightest degree of equivalence, or else something had gone 

terribly wrong within the teaching/learning component it­

self. On the other hand, for either the case of total con­

sistent mastery or total consistent nonmastery, it would 

readily be revealed to the examiner that in the former case 

the tests were too easy, or in the latter case that the two 

tests were too difficult. As always, the practical aspects 

of the individual situation must be considered. It may be 

possible that the examiner may be content with total con­

sistent mastery if he/she is convinced that the two tests 

do a valid job of measuring the material covered in the 

specific teaching/learning component. However, even in the 

case of total consistent nonmastery, the practical aspects 

of the individual situation would have to be considered be­

fore making the decision that the tests were too difficult 

for those examinees who will be taking the tests. Never­

theless, this information would be directly revealed by the 

test classifications themselves and the calculation of an 

index of consistency or reliability would provide no fur­

ther information. In short, the situations considered 

above are those situations in which the value of such an 

index would not need to be calculated. 
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The ~~nimum Value of Iota as a Mathematical Expression 

Consideration of the range of values of coefficient 

iota from a mathematical perspective will also begin with 

examination of the set of circumstances corresponding to a 

complete lack of consistency in the mastery/nonmastery 

classifications yielded by the results of two testings. As 

the reader will recall, in such a case there are neither 

any consistent mastery decisions nor any consistent non­

mastery decisions. This situation would result in both x
0 

and x'
0 

as they are found in ~quation 3.8, being equal to 

o. 

It will be necessary to further discussion to note 

that the logarithm to the base 2 of 0 is -oo. This value 

does not present any immediate difficulties however, since 

it can be seen by inspection of Zquation 3.8, that upon 

substitution of 0 for the values of both x
0 

and x•
0

, the 

numerator of coefficient iota becomes 0 while the denomina­

tor tends to -oo. This would of course then result in the 

value of coefficient iota being equal to 0 under such cir­

cumstances. Therefore, it is seen from a second perspec­

tive that coefficient iota becomes 0 when calculated on the 

basis of mastery/nonmastery decisions which are completely 

inconsistent from one testing to another. 
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I,he NaXimum Value of Iota as a Nathematical Exnression 

However, the value which coefficient iota assumes 

when there results either total consistent mastery or total 

consistent nonmastery is not as readily apparent. When 

total consistency is the result, either x
0 

or x 1
0 

will 

equal 1, and the remaining value will necessarily equal o. 
Having previously noted that the logarithm to the base 2 of 

o is -oo, it remains necessary to note that the logarithm 

to the base 2 of 1 is o. 

As a means of demonstrating the behavior of coef­

ficient iota under the conditions of total consistency, it 

will be arbitrarily chosen that x
0 

will equal 1 which nec­

essarily determines that x•
0 

must equal o. The results of 

the following proof would be the same if x 1 had been cho-o 
sen to equal 1. Given that x

0 
equals 1, the following 

equalities would necessarily result from the definition of 

coefficient iota: 

xo = 1 • 
' 

XA = 1 • 
' 

XB = 1 • , 
x• = 0· 

0 ' 
x• A = 0• 

' 
x• 

B = 0· , 



log x = 0; 
0 

and, 

log x 1
0 

= -oo; 
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In effect then, when either x
0 

or x 1
0 

is equal to 

1, the values of the remaining proportions in the equation 

for coefficient iota are necessarily determined and are no 

longer free to vary. When the above values are correspond­

ingly substituted into Equation 3.8, the following results: 

Iota (i) 
= (xA + xB) O:og x

0
) + (x' A+ x' B) O:og x' 

0
) 

= c ,+,(J){t6~ 2 
+ + <gic;r~~ooJ 

0 =a 

And, such a ratio is considered to be indeterminate in 

form. 

It is somewhat of a misnomer however, that ratios 

of this type are labeled indeterminate when the variables 

of the function involved yield such a value. For this does 

not mean that such a function has a value when, in the case 

of coefficient iota either x
0 

or x'
0 

equal 1, but it can 

not be determined what that value is. In fact, if such 

functions have a limit, that is approach a particular value 

as, in this case, the value of the function tends to 0/0, 



135 

it can indeed be determined what that limit is if it ex-

ists. 

A method often employed in such situations is rela­

tively simple and is referred to as L'Hospital 1 s rule. 

This technique is frequently applicable to situations in­

volving a ratio of two functions, say f and g of some vari­

able x, wherein that ratio becomes indeterminate in form as 

x approaches a value c. Examples of indeterminate forms 

would be 0/0, oo/ oo, or -oo/-oo. In order to apply L' Hos­

pital's rule to determine if such a ratio approaches a 

real value as x approaches c, the following five assump­

tions must be fulfilled (Fobes and Smyth 1963): 

(1) Both f and g are continuous in the neighborhood 
of c. 

(2) The derivatives of f and g, designated f' and 
g', exist in that neighborhood. 

(3) The limit of f(x) as x approaches c is equal to 
the limit of g(x) as x approaches c, which is 
equal to 0 (zero), or 

lim f(x) = lim g(x) = o. 
x~c x-tc 

(4) The derivative of g(x), or g 1 (x), does not equal 
0 (zero in the neighborhood of c). 

(5) And, if the above assumptions hold, and 

lim f.ffi exists and equals a number r, then X-)C g 
lim 1.W lim f.ffi x-tc g(x) = X4C g ( = r. 
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To begin application of L'Hospital's rule, the co­

efficient as it appears in Equation 3.8 is expressed as: 

(3.15) 

This discussion will consider the above equation 

as a ratio of two functions of x
0

• It is possible to con­

sider only x
0 

since, as previously mentioned, as x0 ~1, 

the remaining proportions in the equation must by defini­

tion approach certain values, until when x
0 

does equal 1, 

the remaining values in the equation are necessarily deter­

mined. Therefore under these circumstances the value of 

coefficient iota is determined by the value of only one 

variable, x
0

• 

It can be seen from equation 3.15 that both f(x
0

) 

and g(x
0

) are continuous in the neighborhood of x
0 

= 1, 

since the logarithm to the base 2 of any value greater than 

0 and less than 1, will result in a real number. Therefore 

the first ass~~ption necessary for the application of 1 1 

Hospital's rule is fulfilled. 

Prior to taking the derivatives of f(x
0

) and g(x0 ) 

as stated in the second assumption, it will be of aid to 

note that the derivative of log x
0 

when taken with respect 

to x
0

, where the logarithm is to the base 2, is: 
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and, 
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(3.16) 

the derivative of log x
0 

with 
respect to x • o' 

log1 0e • 43429 
= 

log102 .30100 

In the following discussion, the constant .43429/.30100 

will be expressed as b. 

'i\1ith this added notation, the ratio of the deriva­

tives of f(x
0

) and g(x
0

) when taken with respect to x
0 

result in: 

f 1 (x ) 2(x
0 

(1/x
0

) (b) + log x
0

) 
0 

g'(xo) = ( 1/x
0

) (b) + xB (1/x0 ) (b) XA 

2(b + log xo) 
= b (1/x

0
) (xA + xB) (3.17) 

It can thus be noted that the derivatives of f(x
0

) 

and g(x
0

) exist in the neighborhood of x
0 

= 1 since all 

the values involved yield real numbers in both of the func-

tions. Likewise, it is noted that the derivative of g(x
0

) 

does not equal 0 in the neighborhood of x
0 

= 1. And, it 

has been previously noted above that the limits of both 

f(x
0

) and g(x
0

) approach 0 as x
0 

approaches 1. Thus it 
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has been shown that the first four assumptions necessary 

for the application of L'Hospital 1 s rule are fulfilled in 

the case of coefficient iota. It remains then, to examine 

the ratio of the limits of these two functions as x
0 

aP­

proaches 1 to determine if the fifth and final assumption 

is satisfied. On doing this, the following is obtained: 

lim g 1 (x
0

) = 
xo --71 

2~b +log 1) (3.18) 

And, since all individuals were classified as masters on 

both Test A and Test B, it has been noted earlier that 

xA and xB would both be equal to 1, Equation 3.18 thus 

becomes: 

-~ 
- 2b 

= 1 

Hence, the ratio of the limits of the derivatives 

of f(x
0

) and g(x
0
), as x

0 
approaches 1, is seen to exist 

and is equal to 1. It thereby follows from the fifth 
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assumption of L'Hospital's rule, that the limit of coef­

ficient iota, as either x
0 

or x•
0 

approach 1, and there­

maining proportion necessarily approaches o, eXists and 

is equal to 1. This is of course the result that would be 

desired of an index of consistency when applied to a situ­

ation in which mastery/nonmastery classifications are to­

tally consistent from one test administration to the next, 

and the two tests are designed to be equivalent in regard 

to the talent and ability sampled. 

It has been demonstrated then, that coefficient 

iota does assume a range consistent with that which would 

be expected of an index of evidential strength developed 

within the conceptual framework of information theory. 

This demonstrated range of values is also consistent with 

the traditional concept of reliability and consistency. In 

addition, the extreme values of this range are assumed un­

der those conditions which are also compatible with the 

traditional notion of reliability and consistency. 

Summary 

An attempt was made in this chapter to demonstrate 

both the conceptual and statistical similarities between a 

ratio expressing the "degree of covering" of the uncertain­

ty contained in a hypothesis H by the amount of information 
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conveyed in obtained evidence E, and, the ratio of true 

score variance to total score variance. This latter ratio 

being the theoretical definition of a traditional reliabil­

ity coefficient. The notion of "degree of covering", as 

expressed in two articles by Hakan Tornebohm (1966, 1968), 

was then applied as a model in the development of a coef­

ficient designed to serve as an index of the degree to 

which two tests, designed to be equivalent, yield consis­

tent mastery/nonmastery decisions. This suggested index 

was designated coefficient iota (i). Finally, it was de­

termined from both conceptual and mathematical perspectives 

that coefficient iota assumes a range of values from 0 to 

1, and assumes the extremes of this range under conditions 

compatible with the traditional concepts of reliability 

and consistency. 

It will be the purpose of Chapter IV to apply co­

efficient iota to sample data, and analyze its behavior 

in a manner similar to the comparative study undertaken by 

Subkoviak (1978). 



CHAPTER IV 

ANALYSIS AND RESULTS 

Data Base 

The data base of the analysis consisted of the 

responses of 2182 eighth and ninth grade students to the 

items on a CRM mathematics instrument, published by Science 

Research Associates (SRA), Inc. This instrument consists 

of 120 items, evaluating the mastery of 40 objectives, 

with each objective being represented by three items. The 

objectives range in difficulty from the addition of three 

positive.integers, to determining the volume of three­

dimensional solids. 

Formulation of Parallel Test Forms 

Item difficulties and item discriminations were ob­

tained for each of the 120 items on the test instrument. 

Out of these 120 items, parallel forms were created at each 

of 30, 20, and 10 item-length levels. This was accom­

plished by selectively deleting items from the total of 120 

on the basis of content, difficulty, and discriminating 

power. 

141 
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In terms of content, it was assured that each ob­

jective having items in the reduced total from which the 

parallel forms were created, was represented by one, and 

only one, item on each of the forms. Thus the parallel 

forms at each item-length level would evaluate the same 

objectives. In addition, the pairs of items per objective 

were selected on the basis of similarity in difficulty and 

discriminating power. 

The index of item difficulty is simply the per-

centage or proportion of examinees who answered the items 

correctly. Such an index, therefore, gives a ready indi-

cation of how easy or difficult the item was for the entire 

group. In creating the parallel forms, it was considered 

necessary that each item of the pair chosen to represent a 

particular objective, have similar item difficulty values. 

The third criterion used in creating the parallel 

forms was that of the discriminating power of an item, 

measured on the basis of the item's index of discrimina-

tion. The formula used is that developed by Johnson 

(1951), and is as follows: 

where: 

(4.1) 
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Dj = the index of discrimination of item j. 

= the number of examinees having total test scores 
in the upper half of the group, and answered the 
item correctly. 

RL = the number of examinees having total test scores 
in the lower half of the group, and answered the 
item correctly. 

T = the total number of examinees in the group. 

As noted by inspection of the above formula, items 

with negative discrimination values would most certainly 

be poor ones. Such is the case since this would reveal 

that more examinees in the lower half of the group answered 

the item correctly, than examinees in the upper half. In 

terms of how high an item discriminator should be, Ebel 

(1972, p. 399) offers the below evaluation criteria. 

Table 4.1 

Interpretation of Item Discrimination Values 

Index of 
Discrimination 

0.40 and up 

0.30 to 0.39 

0.20 to 0.29 

Below 0.19 

Item 
Evaluation 

Very good items 

Reasonably good, but possibly 
subject to improvement 

Harginal items, usually needing 
and subject to, improvement 

Poor items, to be rejected, or 
improved by revision 



144 

In selecting items for inclusion in the construc­

tion of the parallel forms, Ebel's criteria were used as 

a guideline, as well as, the similarity between the values 

of the indices of discrimination for the items in each 

pair. 

The three criteria of content, difficulty, and 

discriminating power, were thus used to delete items from 

the total of 120 to create parallel forms of 30 items each. 

The same process was then used to create the two smaller 

parallel forms of 20 and 10 items each. The construction 

of these parallel forms was accomplished by the same pro­

cedure as that used by Subkoviak (1978). 

Table 4.2 lists the indices of difficulty and 

discrimination for each of the items in the 30 item pairs 

from which the parallel forms were created. The pairs 

which were used in the creation of the 20 and 10 item par­

allel forms are indicated. The average item difficulties 

and discriminations for the various parallel forms are 

reported in Table 4.3. 

Further descriptive information regarding the par­

allel forms is also provided by the respective means, stan­

dard deviations, and KR-20 reliabilities reported in Table 

4.4. The value of these statistics are based on the entire 
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Table 4.2 

Item Difficulties and 

Discriminations of 30 Item Pairs 

Item Item Item 
Pair tf. Form Difficult:£ Di§criminat;i.on 

1 ** A .621 .555 
1 ** B .630 .562 
2** A .412 .566 
2** B .460 .594 
3** A .334 .421 
3** B .443 .451 
4* A .582 .298 
4* B .424 .420 
5** A .430 .506 
5** B .434 .464 
6* A .758 .389 
6* B .766 .378 
7** A .638 .454 
7** B .661 .449 
8* A .692 .419 
8* B .671 .429 
9* A .582 .324 
9* B .438 .392 

10* A .426 .510 
10* B .384 .503 
11 A .442 .291 
11 B .441 .281 
12** A .356 .477 
12** B .336 .445 
13 A .314 .246 
13 B .178 .226 
14* A .449 .442 
14* B .670 .388 
15** A .468 .411 
15** B .637 .395 

* Used in creation of 20 item parallel forms 

** Used in creation of both 20 and 10 item parallel forms 
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Table 4.2 (Continued) 

Item Difficulties and 

Discriminations of 30 Item Pairs 

Item Item Item 
Pair ti. [Qrm D~fficylt;z D;i.s¥r;i.mi.aa.tion 

16 A .675 .492 
16 B .315 .292 
17* A .758 .373 
17* B .630 .478 
18* A .512 .440 
18* B .486 .369 
19 A .741 .415 
19 B .476 .347 
20** A .564 .415 
20** B .513 .425 
21 A .406 .250 
21 B .814 .322 
22* A .238 .258 
22* B .343 .321 
23 A .326 .252 
23 B .317 .226 
24 A .509 .263 
24 B .385 .249 
25 A .659 .282 
25 B .455 .301 
26** A .418 .378 
26** B .415 .396 
27* A .494 .367 
27* B .378 .319 
28 A .311 .282 
28 B .386 .409 
29 A .239 .248 
29 B .215 .234 
30* A .631 .408 
30* B .349 .342 

* Used in creation of 20 item parallel forms 

** Used in creation of both 20 and 10 item parallel forms 
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A 
B 

A 
B 

A 
B 

Table 4.3 

Average Item Difficulties and 

Discriminations of Parallel Forms 

Item Average Item 
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Average Item 
Length Difficulty D1scriminatioll 

30 .497 .382 
30 .468 .380 

20 .518 .420 
20 .503 .426 

10 .467 .469 
10 .491 .468 



Table 4.4 

Neans, Standard Deviations, and 

KR-20 Reliabilities of Parallel For~s 

Test Length 
Statistics Form 

10 20 

A 4.60 10.21 
He an 

B 4.85 10.38 

Standard A 2.89 5.03 
Deviation B 2.88 5.05 

KR-20 A .702 .802 
Reliability 

B .698 .805 
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30 

14.69 

14.51 

6.78 

6.78 

.837 

.833 
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2182 students in the population. 

Results of AnalYsis 

To summarize thus far then, the creation of the 

parallel forms made available a distribution of scores for 

the responses of the 2182 students on each form, at each 

level of 10, 20, and 30 items. As also was the procedure 

of Subkoviak (1978), mastery criterion of 5~6, 6~6, 7~6, 

and 8~6 correct were considered for each of the pairs of 

parallel forms, at each item-length level. Twelve values 

of coefficient iota were then obtained through calculations 

over the entire population, at each item-length by mastery 

criterion level. These parameter values are recorded in 

the third column of Table 4.5. The remainder of Table 4.5 

reports the results of the final step in the analysis. At 

each item-length by mastery criterion level, 50 random sam­

ples of 30 students each were selected from the population 

of 2182 student test scores. This sampling consisted of 

mastery/nonmastery decisions based upon the respective 

criterion level. Coefficient iota was calculated for each 

sample drawn at each item-length by mastery criterion lev­

el. The fourth column of Table 4.5 reports the means of 

coefficient iota for the 50 random samples at each level, 

as well as the standard deviation of the· sampling distribu­

tion for each of the item-length by mastery criterion 
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Table 4.5 

Results of Analysis 

Nastery Item Population Sample Standard 
Criterion Length Parameter Mean Error 

10 .88 .88 .06 

50% 20 .87 .86 .07 

30 .89 .87 .05 

10 .87 .85 .06 

60% 20 .88 .87 .07 

30 .88 .88 .08 

10 .88 .88 .08 

7CY;G 20 .88 .88 .08 

30 .86 .86 .08 

10 .87 .86 • 10 

80% 20 .84 .84 .09 

30 .82 .84 • 13 
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levels. 

Discussion of Results 

On inspection or Table 4.5, comparison of the indi­

vidual sample means with their respective parameter values, 

would indicate that coefficient iota estimates are unbi­

ased. The sample values of the standard deviation, or es­

timates of the standard error of coefficient iota, are pro­

vided basically for discussion purposes. These values must 

of course be considered relative to sample size. The val­

ues of the estimate of the standard error obtained from 

each sampling distribution could be reduced simply by in-. 

creasing sample size. However, consideration of the be­

havior of the values of the estimates will enter into later 

discussion. 

Insight into the nature of the estimates obtained 

from the various sampling distributions of coefficient iota 

may be best served by consideration of the results reported 

by Subkoviak (1978) in his comparison of four types of sug­

gested reliability coefficients for criterion-referenced 

mastery tests. The results of this are reproduced here as 

Table 4.6. 

It is necessary to further discussion to recall 

that the procedures considered by Subkoviak all concern the 



Table 4.6 

Results of Subkoviak's Comparison of Four Suggested Reliability Coefficients 

Hastery Test Swaminathan 
Criterion Length Parameter Nean St. Error 

10 .67 .68 .08 
50';b 30 .79 .79 .07 

50 .83 .84 .06 

10 .72 .72 .07 
60/6 30 .84 .83 .06 

50 .8? .87 .06 

10 .80 .79 .o8 
7(J;b 30 .88 .88 .06 

50 .91 .91 .05 

10 .88 .87 .06 
80% 30 • 9l~ .93 .05 

50 .96 .96 .oa 

Marshall Subkoviak 
He an St. Error Mean St. Error 

.74 .08 .66 .06 

.82 .04 .81 .04 

.84 .03 .84 .03 

.75 .05 .69 .06 

.84 .03 .84 .04 

.87 .03 .88 .03 

.79 .03 .79 .05 

.88 .03 .89 .04 

.91 .03 .93 .03 

.85 .04 .90 .05 

.93 .03 .95 .03 

.96 .02 .97 .02 

Huynh 
Mean St. Error 

.66 

.80 

.83 

.6? 
• 82 
.86 

.76 

.88 

.91 

.86 

.94 

.96 

.06 

.03 

.02 

.06 

.03 

.02 

.06 

.03 

.02 

.05 

.02 

.02 

..... 
\Jl 
1\) 
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proportion (Pc) of students in a population who are clas­

sified as either consistent masters or consistent nonmas­

ters, on the basis of scores obtained from a test-retest 

situation. The parameter values reported in Table 4.6 

then, are the population values of Pc at each item-length 

by mastery criterion level. The size of the population 

in the Subkoviak study was, as mentioned previously, 1586 

students. The Swaminathan procedure is the actual value 

of Pc obtained from a sample, while the remaining three 

procedures are different types of estimates of Pc obtained 

from a single testing. The sampling procedure of drawing 

50 random samples of 30 students each, at each level, was 

the same as that of the present study. 

The parameter values in Table 4.6 are seen to in­

crease markedly as either the mastery criterion or the 

item-length levels are increased. This is of course to be 

expected with such a proportion. As the mastery criterion 

becomes more extreme in either direction, classification 

will become more consistent. The mean score value for the 

parallel forms in the Subkoviak study were approximately 

5~6 of the total, as they were in the present study. 

Therefore, as the mastery criterion increases, the propor­

tion of consistent nonmasters increases, which has the 

overall effect of increasing Pc• The test essentially 
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becomes too difficult for the students. An increase in 

item length will result in an increase in Pc' simply be­

cause a more representative sampling of the students• level 

of ability is being obtained. 

In comparison, the parameter values of coefficient 

iota in Table 4.5 are relatively stable over changes in 

either mastery criterion level or item-length. However, 

it must be recalled that iota is neither the value of Pc 

obtained from a sample or population of student mastery/ 

nonmastery classifications, nor an estimate of Pc• It is 

true that the formula for coefficient iota involves the 

proportion of consistent masters and nonmasters in a sample 

or population, however the formula takes more than the val­

ue of Pc into consideration. 

Iota is an estimate of the extent to which a cer-

tain amount of obtained information relieves or "covers" 

a certain amount of given uncertainty. The uncertainty 

created in this instance evolves from the hypothesis that 

two parallel test forms, of the same item-length, will 

yield consistent mastery/mastery and consistent nonmastery/ 

nonmastery decisions, on the basis of a chosen mastery cri­

terion level. In estimating the extent to which the ob­

tained information covers the uncertainty created by this 

particular hypothesis, it is seen here as necessary to 
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consider not just the information provided by the value 

of Pc' but also the probability of the individual decisions 

which determined the value of Pc• Consideration of this 

second factor of probability, while being basic to informa­

tion theory, also points out a similarity between coeffi­

cient iota and traditional reliability coefficients. 

As not~d in Chapter I, the traditional theory of 

reliability depends to a great extent on the variability 

of test scores. And, it was seen in Chapter I also, that 

the expected lack of variability in test scores resulting 

from criterion-referenced tests often made the use of tra­

ditional reliability coefficients impossible in such cases. 

Additionally, the concept of the extent to which individual 

test scores vary from one another was posited to be logi­

cally inconsistent, when used in estimations of the accura­

cy of mastery/nonmastery criterion-referenced decisions. 

Nevertheless, basic to the conceptual nature of coefficient 

iota as a proposed estimate of reliability to be used with 

mastery/nonmastery decisions on the basis of results from 

criterion-referenced mastery tests, is the theoretical 

similarities between variance and uncertainty. 

One of the simplest traditional measures of score 

variance is the standard deviation. It can be easily seen 

from the formula for the standard deviation, that not all 
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scores will contribute the same amount of information, if 

you will, to the value of the statistic. Those scores 

which fall on either extreme of the score distribution, 

will of course have more extreme deviations from the mean 

of the distribution, and will contribute more to the sum 

of squares which will yield the value of the standard de­

viation. And, if your interest is in the extent to which 

individual scores vary from one another, this is exactly 

the way things should be. It would not make sense to give 

an extremely deviant score the same weight in the deter­

mination of score variance, as a score which occurs near 

the mean of the distribution. 

A traditional reliability coefficient attempts to 

estimate the extent to which total observed test score 

variance can be explained, or accounted for, by the vari­

ance of true test scores. In the same manner, information 

theory is concerned with the extent to which the uncertain­

ty existent in a particular situation can be relieved by 

obtained information. However, just as individual test 

scores do not contribute equivalently to a measure of vari­

ance, individual events do not contribute equivalently to 

a measure of uncertainty. 

One of the basic theoretical concepts of informa­

tion theory is that the more improbable an event, the 
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greater the information that is conveyed by that event's 

occurrence. This is analogous to the notion that the more 

extreme a test score within its distribution, the greater 

its contribution to a measure of test score variance. The 

operational definition that the amount of information con­

veyed by an event with a particular probability of occur­

rence, is recalled to be the logarithm to the base 2 of 

the event's probability. The values in the Table of Appen­

dix B can be seen to clearly reflect this theoretical con­

cept. A lower probability of occurrence results in a 

greater amount of measured information. 

An example of how this relationship affects coef­

ficient iota estimates, and one of the differences between 

these estimates and estimates of Pc' can be illustrated by 

discussion of the values in Table 4.7. 

It can be seen from comparison of the values of 

Pc and iota, across item-length and mastery criterion lev­

els, that while Pc increases as the mastery criterion level 

increases, iota tends to decrease. And, as would be ex­

pected, it can also be seen from comparison of the values 

of x
0 

and x•
0

, that as the mastery criterion increases the 

majority of consistent classifications are nonmastery/non­

mastery. The question may be raised as to why iota does 

not likewise increase. 
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Table 4.7 

Comparison of Parameter Values of Pc and Iota* 

r.'fastery Item Parameter Values of Indices 
Criterion Length 

PC Iota xo x• XA x' XB 0 A 

10 .88 .88 .44 .45 .48 .52 .51 

50'~ 20 .87 .87 .46 .41 .51 .49 .54 

30 .89 .89 .42 .47 .47 .53 ;47 

10 .88 .8? .33 .55 .39 .61 .41 

60% 20 .89 .88 .35 .54 .39 .61 .41 

30 .90 .88 .29 .61 .34 .66 .33 

10 .90 .88 .25 .66 .28 .72 .31 

7CY/> 20 .90 .88 .24 .66 .28 .72 .30 

30 .91 .86 .18 .73 .23 .77 .22 

10 .92 .87 • 18 .75 .20 .80 .23 

800ft) 20 .91 .84 .14 .77 .17 .83 .20 

30 .94 .82 .08 .86 .11 .89 • 1 1 

* Values of iota calculated from the proportions in this 
Table may differ from those reported in Table 4.5 as a 
result of rounding errors. 

x'B 

.49 

.46 

.53 

.59 

.59 

.67 

.69 

.70 

.78 

.77 

.8o 

.89 
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It is of value here to recall from Chapter II one 

of the criticisms which has been raised regarding many 

suggested reliability coefficients for CRM tests. The 

criticism in question is that all inconsistent mastery/ 

nonmastery classifications are treated equally in the es­

timation of test reliability. In considering what is im­

plied here, recall the example of various deviation dis­

tances and their contribution to the value of a standard 

deviation. In this case, extreme deviations can occur in 

two directions, above the mean and below it. The value of 

the standard deviation is said to be sensitive to such ex­

treme scores. Such extreme scores contribute more infor­

mation to the calculation of the standard deviation than 

do scores relatively closer to the mean of the distribu­

tion. This relationship between extreme scores and the 

calculated value of the standard deviation is analogous to 

the relationship between the probability of consistent 

mastery/mastery and nonmastery/nonmastery decisions, and 

the calculated value of iota. 

The latter relationship referred to immediately 

above, can be revealed through examining the parameter 

values of the proportions in Table 4.7. It can be noted 

that at the 5~G mastery criterion level the proportions of 

consistent masters (x
0

) and the proportions of consistent 

nonmasters (x 1
0

), differ from the respective proportions 
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of masters (xA and xB) and nonmasters (x'A and x'B) on the 

two test forms on an average of .058. It should also be 

noted that at the 50% criterion level the reported propor­

tions are near the midpoint of the range of possible prob­

abilities. 

On proceeding to the 6~~ and 7~~ mastery criterion 

levels it is seen both, that the proportions of consistent 

nonmasters are increasing while· the proportions of consis­

tent masters is decreasing, and that the absolute differ­

ences in the proportions are decreasing. At the 60% cri­

terion level the average absolute difference between the 

corresponding proportions is .055, while at the 7ry~ level 

the average absolute difference is .047. Vfuile the respec­

tive absolute differences between the involved proportions 

have been decreasing, the reported value of iota has also 

been decreasing, although very slightly over the lower 

three criterion levels. 

However, this trend becomes more pronounced at the 

80% criterion level. Here the average absolute difference 

between the respective proportions decreases to .037, while 

iota is seen to decrease at a greater degree than at the 

three previous levels. Such a trend would indicate that 

the mastery/nonmastery classifications made at the 8~& 
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criterion level are not as reliable as the classifications 

made at the 5~~, 6~6, and 7~~ levels. This is opposite to 

the conclusion that would be arrived at if Pc' or any one 

of its estimates were used as the coefficient of reliabil­

ity. This would indicate a quite serious limitation of 

these measures as estimates of the reliability of CRM 

tests. 

In discussing this limitation further, the question 

must be addressed as to why iota values decrease as the 

proportions involved in the ratio become closer in value. 

An initial conclusion might very well be to suspect that 

the value of iota would increase toward its maximum value 

of 1.00, as the absolute values of the proportions tended 

to become more similar. It might seem that the coefficient 

iota ratio in such a case would approach unity. However, 

iota is a ratio of obtained information to the uncertainty 

present, and the influence of probability on these two 

quantities must be considered. Again, it is best to refer 

to a table in explaining why iota behaves as it does. 

The entries in Table 4.8 are the amounts of infor­

mation and uncertainty, measured in bits and identified by 

source, which are used in the calculation of iota at the 

various item-length by mastery criterion levels. Column 3 

reports the total amount of uncertainty present at a 



Mastery 
Criterion 

50% 

60)~ 

7C1;6 

80% 
--~----

Item 

Table 4.8 

Amounts and Sources of Uncertainty and Information 

Involved in the Calculation of the Parameter Values of Iota* 

Uncertainty Uncer a nty 
Created by Created by 
Hasters Nonmasters 
on Forms A on Forms A 

en th & B & B 
10 1 

20 

0 

-~ 1.19_ o .. 37 

Total 

O.Q5 

* Values of iota calculated from this Table may vary from those reported in Table 
4.5 as a result of rounding errors. 

.... 
~ 
1\) 
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particular level, resulting from the proportions of masters 

and nonmasters on the parallel test forms. The specific 

amounts of uncertainty resulting from these two sources are 

reported in Columns 1 and 2. At a particular level there­

fore, the figure in Column 3 would correspond to the denom­

inator of the coefficient iota ratio. 

Column 6 reports the total amount of information 

that is obtained from the consistent masters and the con­

sistent nonmasters on the parallel forms. Columns 4 and 5 

separate this total information into the two sources. 

Thus, Column 6 reports the value of the numerator of the 

coefficient iota ratio at a particular level. 

On inspection of Table 4.8, it can be seen that at 

all three item-length levels of the 50% mastery criterion, 

the amounts of information obtained respectively from the 

consistent masters and the consistent nonmasters "cover" 

to approximately the same extent the uncertainty present 

from the corresponding sources. This stands to reason, 

since it was seen from Table 4.7 that the proportions of 

consistent masters, consistent nonmasters, and masters and 

nonmasters on the individual parallel forms, were quite 

similar to one another at this criterion level. Therefore, 

ther8 is little difference in the extent to which the two 

sources of information "cover" the respective uncertainty 
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associated with each. 

As the mastery criterion level increases however, 

there begins to be a discrepancy in the extent to which 

the two sources of information "cover" the corresponding 

uncertainty. In particular, the bits of information ob­

tained from the proportions of consistent nonmasters to a 

better extent cover the bits of uncertainty present, on the 

basis of the proportions of nonmasters on the two test 

forms. On the other hand, the bits of information obtained 

from the consistent masters start to do a poorer job of 

"covering" the uncertainty associated with this source. 

The combined result is that at the 30 item-length level 

of the 8~/o mastery criterion, despite the fact that the 

measures of information and uncertainty associated with the 

nonmasters are practically equal, the measures of informa­

tion and uncertainty associated with the masters differ to 

such a degree that the resulting value of the coefficient 

iota ratio is at its least in regard to the levels mea­

sured. As mentioned previously, this would lead to the 

conclusion that the mastery/nonmastery classifications are 

the least reliable at this level. 

The question which initiated this discussion was, 

as the mastery criterion level increases, why do iota esti­

mates decrease while Pc and its estimates increase? As has 
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been seen, this would lead to quite opposite decisions re­

garding the reliability of the mastery/nonmastery classifi­

cations which result from the scores on the parallel test 

forms. It is now clear why this is the case. 

The value of Pc and its estimates increase as the 

mastery criterion level increases simply because all mis­

classifications are weighted equally, and as the mastery 

criterion approaches 10~6 there are generally an increasing 

proportion of consistent nonmasters, and fewer misclassifi­

cations. This would be equivalent to the calculation of 

the standard deviation with all scores being weighted 

equally in terms of their deviation distances from the mean 

of the distribution. This is of course not the case. The 

standard deviation, as a measure of variance, does weight 

the scores in the distribution differently in regard to 

their relative distance from the mean, and is most sensi­

tive to scores at the extreme ends of the distribution. 

It is clear on the basis of the above analysis, 

that while coefficient iota weights misclassifications dif­

ferently, ?c and its estimates do not. And as also seen, 

this difference in approach can lead to quite varying con­

clusions. In that the approach taken by coefficient iota 

is analogous to that used in traditional test theory, it 

can be concluded that iota estimates adequately fulfill the 
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need for a reliability coefficient for CRH tests. Indeed, 

it has been demonstrated that Pc and its estimates may lead 

to inaccurate decisions at particular mastery criterion 

levels. 

Summary 

The data base of the analysis consisted of the 

responses of 2182 students on a mathematics mastery evalu­

ation instrument. From these 120 items, two parallel forms 

were created at each of 30, 20, and 10 item-length levels. 

The items making up the parallel forms were paired-off on 

the basis of an item analysis which focused on similarity 

of content, item difficulty, and item discriminating power. 

Descriptive information obtained for each pair of parallel 

forms demonstrated that they were quite similar in terms of 

mean, standard deviation, and KR-20 reliability. 

The analysis began with a calculation of the para­

meter values of iota at each of the three item-length lev­

els for each of four mastery criterion levels - 50%, 6~6, 

7~b, and 8~~. These values were reported in Table 4.5, and 

it was noted that the parameter values of iota varied only 

to a slight degree over the first three mastery criterion 

levels. At the 8~& criterion level however, it was ob­

served that the values began to decrease. 
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The next step in the analysis was to draw 50 ran­

dom samples of 30 student test scores at each of the 12 

item-length by mastery criterion levels. Coefficient iota 

was computed for each of the selected samples, with the 

mean and standard deviation of each ol the sets of random 

samples also being reported in Table 4.5. It was observed 

that the 12 sample means appeared to be unbiased estimates 

of the respective parameter values, with the largest abso­

lute difference being .02. 

To aid in the analysis of results, the findings of 

the study by Subkoviak (1978) were cited in Table 4.6. 

This study, as recalled, involved the comparison of the in­

dex Pc and three estimates of Pc' as coefficients of the 

reliability of the mastery classifications obtained from 

CRH tests. Pc was noted to be the proportion of students 

in a group who were consistently classified as either mas­

ters or nonmasters in a test-retest situation. It was ob­

served from the values in Table 4.6, that the values of Pc 

and its estimates increase markedly as either the mastery 

criterion or item-length level increase. This was seen to 

be expected since the proportion of consistent nonmasters 

will increase as the test becomes increasingly more diffi­

cult to master. 

Prior to a comparison of Pc and its estimates and 
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iota, the conceptual differences between iota and Pc and 

estimates were analyzed. One basis of difference was seen 

to arise from the relation of each to the concept of vari­

ance within traditional test theory. It was recalled to 

be a basic tenet of information theory that the more im­

probable an event, or the more deviant it is from the norm, 

the greater the uncertainty associated with it. Similarly, 

in the case of the standard deviation as a measure of vari­

ance, the more extreme the score, or the more deviant it is 

from the norm, the greater that score's contribution to the 

final value of the index. Pc and its estimates, on the 

other hand, give equal weight to each mastery or nonmastery 

classification. On the basis of this difference, it would 

seem that the theory upon which coefficient iota is based 

is more consistent with traditional test theory. 

Table 4.7 reported the parameter values of Pc for 

the present data at each of the mastery criterion by item­

length levels. Comparison of these values revealed that 

the values of Pc increased as the mastery criterion in­

creased, as was the case in Subkoviak's study, while the 

values of iota began to decrease slightly. This was the 

case despite the fact that the respective proportions in­

volved in the numerator and denominator of the coefficient 

iota ratio became increasingly similar in value. It was 
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further noted that separate analyses of these two trends 

would result in quite different conclusions concerning the 

reliability of the same mastery/nonmastery classifications. 

Further analysis of this difference in conclusions 

was conducted on the basis of the individual proportions 

after being converted into amounts of uncertainty and in­

formation. These amounts, measured in bits, in addition 

to their sources were reported in Table 4.8. This Table 

displayed the two amounts of information which combined to 

equal the value of the numerator of coefficient iota at 

each level, and the two amounts of uncertainty the sum of 

which yielded the denominator of the ratio. On the basis 

of this data, the influence of involving the additional 

factor of the logarithm to the base 2 into the calculation 

became evident. 

In the case of the nonmasters, the trend of in­

creasing similarity between the values of x•
0 

and x'A and 

x'B' as reported in Table 4.7, was repeated in terms of the 

resulting amounts of uncertainty and information in Table 

4.8. As the mastery criterion increases from 5~6 to 8ry~, 

the amounts of information resulting from the consistent 

nonmasters do an increasingly better job of "covering" the 

uncertainty present from the proportions of nonmasters on 

each of the respective parallel forms. If the value of 
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coefficient iota was based solely on the ratio of these 

two values, iota would indeed approach unity as the mastery 

criterion increased. However, the uncertainty and informa­

tion resulting from the respective proportions of masters 

on the two parallel forms, and the proportions of consis­

tent masters must also be taken into account. 

It was seen in Table 4.8 that unlike the informa­

tion resulting from the consistent nonmasters, the infor­

mation obtained from the consistent masters began to do an 

increasingly poorer job of "covering" the uncertainty pre­

sent as the mastery criterion increased. The reason that 

this is the case is basic to information theory, and is 

analogous to what is involved in the calculation of the 

standard deviation. As the mastery criterion increases, 

the test becomes increasingly more difficult and the occur­

rence of a consistent master becomes more improbable, and 

its occurrence results in an increasing amount of informa­

tion. In comparison, a consistent nonmaster is much more 

likely and results in relatively little information. This 

relationship was seen as the same as that involved in the 

calculation of the standard deviation, in that extreme 

scores are more improbable than those relatively closer to 

the mean, and contribute a greater share of information to 

the calculated value. 
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Such is not the case with Pc and its estimates how­

ever, which give all misclassifications equal weight. 

These measures do not take into account all the available 

information, and in addition, were seen to lead to a deci­

sion regarding the reliability of mastery/nonmastery clas­

sifications quite contrary to that reached on the basis of 

the coefficient iota estimates. It was concluded therefore 

that, in that coefficient iota estimates are calculated in 

a manner consistent with the approach taken to the estima­

tion of reliability within traditional test theory, such 

estimates meet the need for an index of the reliability of 

the mastery/nonmastery classifications resulting from 

scores obtained from CRM tests. 



CHAPTER V 

S~~y AND CONCLUSIONS 

This final chapter is divided into two major sec­

tions. The first provides a brief summary of the first 

four chapters. The second section is devoted to the final 

conclusions of this study. 

SUMHARY 

Purpose of Study 

At the beginning of Chapter I, it was stated that 

most decisions within the field of Education are based on 

the evaluation of the results of tests, which are adminis­

tered with the purpose of determining whether some learning 

experience of interest has had any effect on a particular 

ability level of the students involved. Quite obviously, 

a great deal of time, money, and effort goes into this 

testing process. As a result, in order to justify this 

process there must be some evidence that the information 

obtained from such testing is accurate. 

The issue of estimating the accuracy of test re­

sults within traditional test theory is the concern of the 

172 
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topic of reliability. It was additionally noted that 

although a number of methods of estimating reliability 

existed, each attempted to estimate reliability of test 

results on the basis of the value of a numerical coeffi­

cient. The purpose of the present study was then identi­

fied to be an attempt to develop a coefficient of relia­

bility for criterion-referenced mastery (Cru4) tests. 

Before being able to explore the need for the 

development of such a reliability coefficient, it was seen 

as necessary to examine further the concept of test relia­

bility, and also the notion of a CRM test. It was decided 

upon to deal first with the issue of reliability. 

Classical Theory of Test Reliability 

Test reliability was conceptually defined, as 

stated by Ebel (1968), as the proportion of observed score 

variance which can be accounted for by true score variance. 

That is, student scores on a particular test can vary from 

one another for a variety of reasons, only one of which is 

the actual ability levels of the individual students on the 

theoretical construct being measured. Unfortunately, a 

number of extraneous variables also exert influence over 

the obtained values of test scores. 

Observed score variance is therefore seen to be 
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made up of two main parts, true score variance and error 

variance. And the less error present in the obtained 

scores, the more accurate the scores and the closer the 

resulting proportion of true score variance to observed 

score variance would be to unity. However, due to the fact 

that some error always exists in measurements of this type, 

and because this error is due to chance elements, in reali­

ty all measures of reliability must be considered as esti­

mates. 

In order to adequately address why a need existed 

for the development of a reliability coefficient to be used 

specifically with CRM tests, it was necessary to summarize 

the manner in which an operational definition of test re­

liability had been developed within traditional test theo­

ry. 

An Operational Definition of Classical Test Reliability 

After a detailed analysis of the nature of the the­

oretical definition of test reliability as the ratio of 

true score variance to observed score variance, the need 

for an operational definition became evident. Since it 

will never be the case that true score values will be known, 

the variance of these scores can not be calculated. There­

fore, an expression was required that could be used opera-
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tionally applied to distributions of test scores. 

Ebel (1972) was cited as providing a definition of 

the traditional operational definition of test reliability 

as the correlation coefficient derived from two sets of 

scores, obtained independently, on equivalent test forms 

given on each occasion to the same group of examinees. It 

was noted that this can be accomplished in any one of three 

different ways: 1.) having the examinees retake the same 

instrument; 2.) administer equivalent or parallel forms of 

the same test; or, 3.) sub-divide the items of a particular 

test into two or more equivalent forms. It was further 

noted that the operational definition of reliability ap­

proached the issue conceptually from the standpoint of con­

sistency, the notion being in this case that the less the 

variability from one equivalent measure to the next, the 

more reliable or accurate is the measuring instrument. 

An implication of this operational definition of 

test reliability that was of immediate interest was next 

discussed. The issue related to the reliability coeffi­

cient as an index of correlation. One of the factors which 

influences the relative size or magnitude of a correlation 

coefficient is the range of talent, or put simply, the 

score distance from the lowest score in the distribution 

to the highest score. All other factors being equal, the 
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larger the range of talent, the larger the value of the 

correlation coefficient. The result of this relationship 

is that the relative size of any correlation coefficient 

is dependent upon score variance. Although another reason 

would be cited later, this result provided the operational 

reason as to why traditional reliability coefficients 

should not be used in the case of CRM tests. 

Issue of CRM Tests in Relation to Classical Test Theory 

In order to fully understand the above difficulty, 

the basic differences between CRM and NR tests were ex­

amined. It was stated that during the period of time when 

traditional methods of test analysis were being developed, 

the major mode of testing was NR. As a result, the methods 

of analysis which were developed focused upon the charac­

teristics and objectives of the NR approach to testing. 

NR tests have the basic objective of yielding a 

distribution of scores which would approach the familiar 

bell-shaped normal curve. Relatively small percentages of 

scores would be located at the extreme ends of the curve, 

while the bulk of the scores would be located near the cen­

ter of the distribution. Those items which are of optimum 

use to this type of test have the characteristic of maxi­

mizing the variability between individual responses. Items 
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which are either too easy or too difficult for the tested 

group are undesirable. It was readily seen therefore, that 

the concept of a reliability coefficient as an index of 

correlation is quite compatible for use with NR tests, 

which have the basic objective of maximizing score varia­

bility. 

Possibly as an offshoot of the general move toward 

accountability, it was stated that the emphasis in educa­

tional testing has recently shifted from NR tests toward 

what have been termed CRM tests. The basic conceptual dif­

ference between these two types of measures is that, while 

NR tests judge individual performance in relation to the 

performance of the group as a whole, CRM tests judge indi­

vidual performance in relation to a specified set of stan­

dards or objectives. In evaluating the individual results 

of a CRM measure, it is of no interest how others in the 

group did. All that is of issue is the degree to which 

the individual answered correctly the items on the CRH 

test which were designed to measure performance in relation 

to a specified set of objectives. A judgment as to the 

degree to which the individual had "mastered" the measured 

objectives could then be made on the basis of the number 

of items answered correctly. 

Hence, as Millman and Popham (1974) have stated, 
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score variability is an unnecessary characteristic of CRM 

tests. In fact, if a particular group of students have 

done an exceptional job of mastering a specified criterion, 

there may be little, if any, score variance. And, if there 

is little score variability, a measure of test reliability 

derived from a correlation coefficient would be quite 

small, perhaps even zero, despite the fact that the CRM 

test might be doing an extremely accurate job of measuring 

the objectives of interest. Thus, it can be seen that not 

only is it possible for a traditional reliability coeffi­

cient to yield inaccurate information concerning the con­

sistency of the results of CRM tests, the approach itself 

is conceptually inconsistent with the purpose of a CRM 

measure. 

Estimation of the Reliability of CRM Classifications 

The next step in this discussion was to develop an 

approach to reliability which would be both operationally 

and conceptually consistent with the purpose of CRM tests. 

A number of sources were cited which identified the purpose 

of CRN measures as the determination of the degree to which 

the examinees had mastered the objectives of interest. 

This determination is made on the basis of whether the in­

dividual examinees scored above or below a pre-chosen cut­

off or criterion score. Those examinees scoring at or 
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above the criterion level are labeled "masters" while those 

sc9ring below the cut-off point are classified as "nonmas­

ters". The values or the raw scores o:r the individuals 

are of interest only in leading to mastery/nonmastery clas­

sifications. And, an individual mastery/nonmastery classi­

fication is in no way affected by the number of other ex­

aminees who were classified as either masters or nonmasters. 

Of course it would be desirable to know the extent 

of the accuracy of such mastery/nonmastery classifications, 

but to approach this issue from the point of view of the 

variability of raw scores avoids addressing the nature of 

CRM test results. As Thorndike (1951) has stated, methods 

of reliability must first address what is to be accomplished 

by the type of measure of interest. Traditional methods of 

estimating test reliability do not satisfy this condition 

in the case of CRM measures. Consistency is still a viable 

concern of what is to be accomplished by such measures, but 

this issue must be approached within the framework of the 

mastery/nonmastery classifications and not from the stand­

point of the variability of raw scores. 

Conceptual Similarity between Reliability and Information 

Basic to the approach taken within this paper is 

the notion that mastery/nonmastery classifications, and 
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the raw scores from which they are derived are a form or 

information. Such information, tor example, can lead to a 

decision as to whether a particular examinee has mastered 

a specific level or material and should then proceed to the 

next higher level. It was thus assumed that an index or 

the consistency or information obtained from two indepen­

dent CRM measures, based upon the mastery/nonmastery clas­

sifications, would be synonymous with the traditional no­

tion of test reliability. It was then noted that statis­

tical expressions or information have been developed within 

the field of information theory, and that the approach to 

.the development or a reliability coefficient for CRM mea­

sures would be taken from this perspective. 

The common sense notion or information is that this 

is something obtained from a message source which relieves 

to some extent the uncertainty that was previously associ­

ated with some matter of interest. The theoretical basis 

of information theory was seen to be much the same. The 

difference is that information theory provides mathematical 

expressions for information and uncertainty which allow for 

the quantification of the extent to which information re­

lieves the uncertainty present in a particular situation. 

From this standpoint, two similarities between the 

concepts of information and reliability were identified. 
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First of all, information can be either useful or useless 

to one's particular needs or intent. In the same way, 

test results can have a high degree of reliability while 

having a relatively low degree of validity. Therefore, 

just as the issue of test reliability can be considered 

apart from the issue of test validity, the extent to which 

the information obtained relieves the uncertainty present, 

can be considered apart from the usefulness of that infor­

mation. 

The second similarity, and the most important one, 

is the relationship between information and uncertainty as 

compared to that between true score variance and observed 

score variance. The amount of true score variance con­

tained in a set of test scores cannot exceed the amount of 

obtained score variance, and as had been previously seen 

the conceptual definition of reliability was the ratio of 

true score variance to observed score variance. In the 

same context, it would not be possible to obtain more in­

formation from a message or set of messages, than the amount 

of uncertainty present. And, just as the reliability of a 

set of test scores is traditionally considered to be the 

extent to which true score variance "covers" the amount of 

obtained score variance, test reliability could also be 

considered as the extent to which the information obtained 
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"covers" the uncertainty present. The concept of informa­

tion is seen to be analogous to that of true score vari­

ance, just as uncertainty is analogous to the concept of 

obtained score variance. The task that remained was the 

development of a reliability coefficient which estimates 

the degree of consistency of obtained information, and 

which is also logically consistent with the decision-making 

process involved in CRM testing. 

Current Estimates of the Reliability of CRH Classifications 

In order to put the present study within a frame 

of reference of what has already been suggested in terms 

of reliability coefficients for CRM tests, the first sec­

tion of Chapter II was devoted to a review of the major 

indices which have appeared. It had been earlier stated 

that Stanley (1971) has mentioned that there are two as­

pects to the issue of reliability, one is logical and the 

other is statistical. It had already been noted that tra­

ditional reliability coefficients are logically inconsis­

tent with the purposes of CRI·1 measures. And before review­

ing the above-mentioned suggested coefficients, attention 

was devoted to a statistical inconsistency of the tradi­

tional approaches to reliability which has been identified 

by Hambleton and Novick (1973). 
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These authors state that one of the basic differ­

ences between NR and CRM measures is that the former rank 

individuals according to a "fixed quota", while the latter 

are "quota free" in terms of selection and classification. 

For example, if a normal distribution of scores from a NR 

measure is assumed, and one standard deviation above the 

mean is decided upon as the cut-off point at which those 

students scoring above Will receive a grade of "A", there 

will never be more than 15.87% of the students receiving 

such a grade. On the other hand, there is no such restric­

tion on the percentage of students in a tested group who 

can be classified as "masters" on the basis of a CRM mea­

sure. Now, it was also mentioned previously, that all val­

ues obtained from reliability coefficients are estimates. 

However, such values when correctly reported also include 

some type of estimate of error contained in the estimates. 

For traditional reliability coefficients, this error esti­

mate is the standard error of measurement, which can be 

used to construct a confidence interval around an individ­

ual's obtained score. It is the application of the stan­

dard error of estimate to CRM measures which the authors 

believe is the most serious objection to the application 

of traditional estimates of reliability on the results of 

such measures. 
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This objection was seen to stem from the fact that 

the use of the standard error of estimate With the results 

of CRM measures would result in an incorrect choice of 

"loss function". In short, error estimates obtained from 

the standard error of measurement are in the metric of 

score units. However, although raw scores serve to yield 

mastery/nonmastery classifications, an error estimate in 

terms of an interval of raw score units would not readily 

yield the information as to whether a mastery/nonmastery 

misclassification had resulted. Hambleton and Novick term 

such misclassifications as "threshold loss", and state that 

any reliability coefficient to be used with CRM measures 

must yield an error estimate which reflects this loss in 

information due to misclassification. Keeping this and the 

previous objections regarding traditional reliability esti­

mates in mind, a review was provided of the major estimates 

of CRM reliability which have been suggested. 

The first coefficient presented was an index sug­

gested by Carver (1970) which was simply the proportion of 

consistently classified masters and nonmasters obtained for 

the same group of examinees, on the basis of scores ob­

tained from equivalent forms of a CRM measure. It was not­

ed that this index has been described in the literature as 

being "crude" (Crehan, 1974), and should be used only for 
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quick "thumb-nail" estimates of consistency. An estimate 

based on the procedures of classical test theory which has 

been proposed by Livingston (1972), was next reviewed. 

Livingston's index is based on score deviations not from 

the mean of the distribution, but rather from the value of 

the cut-off score. It was noted, that like traditional 

estimates of reliability, such a measure would also be 

rendered useless in the case of restricted score variabili­

ty. 

An estimate of reliability that has been given 

considerably more attention in the literature has been the 

index kappa (K) developed by Cohen (1968, 1972). Cohen's 

K has the advantage over Carver's proportion of consistent 

mastery/nonmastery classifications of incorporating into 

the analysis the proportion of consistent classifications 

which can be expected to occur by chance. swaminathan, 

Hambleton, and Algina (1974) who have suggested kappa's 

use in estimating the reliability of CRM mastery/nonmastery 

classifications, were seen to note that reported values of 

kappa can be substantially influenced by test-length and 

the particular value of the cut-off score chosen. The in­

fluence of these factors were noted through the findings 

both of the present report and Subkoviak's 1978 study. 

It was also noted at this point that although kappa 
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estimates mastery/nonmastery classification consistency 

within the dimension of "threshold loss", it would be 

desirable to have such an estimate that was relatively 

insensitive to changes in test-length and criterion score 

location. 

The next index reviewed is an estimate of kappa 

derived from a single CRM testing which has been developed 

by Huynh (1976). Huynh's index begins with a KR21 value 

obtained from the test results, and uses this value to 

estimate the parameters of a beta-binomial distribution. 

This distribution provides the mathematical model from . . 
which the estimate of kappa is derived. It was noted that 

due to the nature of the calculations, whenever test-length 

approached 10 or more items, a computer would almost cer­

tainly be required for convenience. 

The final index reviewed is that submitted by 

Subkoviak (1976). This author's "coefficient of agreement" 

was seen to be based on a sum over the population of exam­

inees, of the individual probabilities that each individ­

ual i had scored at or above some chosen cut-off score. 

In similarity to Huynh's estimate, Subkoviak's coefficient 

of agreement was likewise "situation specific" in that re-

ported values would depend upon the factors of test-length 

and cut-off score. 
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A second study by Subkoviak (1978) was then cited 

which compared the Swaminathan et al., Huynh, and Subkoviak 

procedures for estimating CRM test reliability. As re­

ported, this study compared these three procedures on the 

basis of their estimation of Fe at each of three different 

item-length levels, for each of four mastery criteria. It 

was found that each procedure produced estimates of Pc 

which were reasonably and consistently close to the popu­

lation parameter. As a recommendation, Subkoviak noted 

that the Huynh procedure required only one testing, was 

mathematically sound, and produces "reasonably accurate 

estimates". 

In a summary of this section, it was stated that 

while the indices compared by Subkoviak meet the criteria 

of being within the appropriate dimension of "threshold 

loss", they each have two major disadvantages. First of 

all, the techniques are highly "situation specificn. This 

is illustrated in the Subkoviak (1978) study which reveals 

a quite marked change in the values of Pc and its estimates 

as either the test length or particularly the criterion 

level changes. Secondly, for each technique errors in 

classification are treated equally. This would become a 

major point in the discussion of the results of the analy­

sis involving coefficient iota. 



188 

Basic Concepts of Information Theory 

Following the above review, the discussion shifted 

to an introduction of the basic concepts of information 

theory, upon which the present methodology was based. In­

formation theory was seen to be a statistical approach to 

the quantification of the amount of information obtained 

from some form of communicative act. The primary concern 

of information theory is to quantify the amount of infor­

mation transmitted from a sender to a receiver. And, just 

as validity is an issue of itself apart from reliability, 

the usefulness of the information obtained is also an issue 

apart from the quantification of the information. In the 

present context, test scores would be viewed as messages 

from testees to an examiner regarding the level of achieve­

ment of a particular subject matter. 

Conceptually stated, when information is received 

from a particular source, the uncertainty contained in the 

situation of concern is to some degree relieved. Indeed, 

information is not possible if some degree of uncertainty 

does not exist a priori in regard to the outcome of the 

sent message. The amount of uncertainty present in a par­

ticular context was then seen to depend in part on the num­

ber of outcomes that were possible. However, as was il­

lustrated in the presentation of the development of an 
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operational definition of information, what is perhaps 

most important is the probability of occurrence associated 

with the individual possible outcomes. 

Statistical Definition of Information 

In that information is seen as something derived 

from a message transmitted from a sender to a receiver, it 

was seen as not surprising that early work in the quantifi­

cation of information was conducted within the field of 

electrical engineering. Huch of this early work was con­

ducted in the 1920's. However, a detailed statistical 

model was not formulated until Shannon's and Weaver's 1948 

publication. 

It had been previously hypothesized that any mea­

sure of information or uncertainty must be logarithmic in 

nature. A practical illustration of the basis for this 

assertion was provided through the game of "Twenty Ques­

tions". In this instance all alternatives are considered 

to possess equal probability of occurrence, with the ques­

tioner selectively reducing the number of alternatives 

through a series of inquiries which can be answered either 

"yes" or "no", until the correct choice remains. In order 

to correctly proceed, each asked question must reduce the 

remaining alternatives by half, until only two remain. The 
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number of questions required to complete this process cor­

responded to the amount of uncertainty contained in the 

original question, as measured in units termed "bits". It 

was then demonstrated that a general measure of uncertainty 

could be expressed as the logarithm to the base 2 of the 

number of possible alternatives. The value thus obtained 

would be the amount of uncertainty measured in bits, and 

the solution to the particular question would contain ex­

actly that number of bits of information. 

Consideration was next directed to the situation 

wherein the possible alternatives do not have equal proba­

bilities of occurrence. The basic concept here, was that 

the least likely that a particular alternative was to oc­

cur, the greater the amount of information that would be 

conveyed if it did occur. It was seen here, that the con­

cept of information does not apply to the individual mes­

sages themselves, but rather to the situation as a whole. 

Further evidence for the logarithmic nature of a function 

of information was provided, and this combined with the 

notion of probability of occurrence of the alternatives and 

the inverse relationship between probability of occurrence 

and obtained information to lead to an operational defini­

tion of information. 

Before concluding Chapter II, the concept of 



191 

uncertainty as expected information was introduced. This 

expected value was expressed as a sum of the information 

that would be provided by each of the possible alternatives, 

with each alternative being weighted by being multiplied by 

its respective probability of occurrence. This expected 

information can also be expressed as the amount of uncer­

tainty contained in a particular message set. 

Conceptual Basis of Methodology 

It was noted at the beginning of Chapter III, that 

the statistical framework of information theory will be 

used in a conceptual approach, involving the estimation of 

the degree to which a tested hypothesis has been confirmed, 

on the basis of the informational strength of the obtained 

evidence. The hypothesis in the situation at hand, is of 

course, that two tests constructed to be equivalent in 

form, will yield consistent decisions regarding the classi­

fication of examinees as either masters or nonmasters. The 

evidence that would be used to estimate the degree to which 

this hypothesis has been confirmed would be a sample obser­

vation of the extent of the consistent mastery/nonmastery 

decisions yielded by the two instruments. The conceptual 

basis of the suggested methodology then, was that the con­

cept of information and uncertainty as expressed in the 

relationship between evidence and hypothesis, form an 
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analogy to the ratio of true score variance to observed 

score variance. 

Relationship between Evidence and Hypothesis 

The next step in the methodology was to express 

the conceptual relationship between the notions of evidence 

and hypothesis, in the form of a statistical expression. 

And, in order for this statistical expression to be com­

patible with the concepts of information theory, and also 

with the traditional concepts of hypothesis testing, it 

was seen as necessary that this statistical expression be 

in the form of a probability measure. A study by Hilpinen 

(19?0) was cited as the model for this statistical expres­

sion. 

Based on the definition that, "probability is a 

logical relation between two sentences", Hilpinen first 

posits that the hypothesis under study can be expressed 

as sentence "H", and the evidence upon which the credibili­

ty of "H" is decided is defined as sentence "E". Using 

these definitions, Hilpinen predicates a probability state­

ment designed to express the degree of credibility of "H" 

on the basis of "E" as, "P(H/E) = R". In this relation­

ship, "R" is an estimate of probability, and represents the 

"justified degree of belief" in "H", on the basis of "E". 
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This relationship between hypothesis and evidence was seen 

to be analogous to the expression of a reliability coeffi­

cient as an estimate of the ratio of true score variance 

to observed score variance. Such an estimate can also be 

interpreted as "justified degree of belief". 

In the instance under present consideration, the 

evidence consists of consistent mastery/nonmastery deci­

sions made on the basis of test scores, as interpreted in 

light of some cut-off score criterion, and the same types 

of decisions on the same group of examinees derived from 

scores obtained ·from a second administration of the same 

test or a test designed to be equivalent to the first. 

Such evidence is then used to test the credibility of the 

hypothesis that the two tests yield consistent mastery/ 

nonmastery decisions. And, just as a reliability coeffi­

cient estimates the ratio between true score variance and 

observed score variance, it would be advantageous to have 

an index which reflects the degree to which the above type 

of evidence "justifiesn or "confirms" the hypothesis that 

the two instruments yield consistent mastery/nonmastery 

decisions. 

There is uncertainty involved in the statement of 

any hypothesis, and the evidence gathered to test a hypothe­

sis contains some amount of information concerning the 
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reliability of that hypothesis. It was next seen as neces­

sary to develop a statistical formula which would express 

the relationship between hypothesis and evidence, in terms 

of uncertainty and information. 

Reliability as Rypothesis Confirmation 

In beginning the development of this statistical 

formula, reference was made to two articles by Tornebohm 

(1966, 1968). Tornebohm's technique of estimating the 

degree to which a hypothesis is confirmed on the basis of 

obtained evidence, expressed in the above two articles as 

"degree of coverin~', was identified as the basis upon 

which a reliability coefficient for CRM tests would be 

developed. 

Tornebohm's model was seen as beginning with the 

assumption that there exists a state space of objects, 

termed R, and that there is a desire to find the location 

of these various objects as they occur in R. As applied 

to the current study, this is the true state space of a 

group of individuals who have been exposed to some educa­

tional activity, and either have or have not, on the basis 

of a pre-chosen criteria, mastered the content of that 

activity. In order to estimate the true location of these 

individuals, that is, as being either in the state space 
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of masters or the state space of nonmasters, a measurement 

instrument Z is used. The administration of Z to each 

individual in R thus results in a vector representing that 

particular measurement. The state space of all such vec­

tors formed by the administration of Z to the individuals 

in R creates a second state space designated as M. The 

instrument Z thus produces a functional relationship be­

tween R and Ivi, which creates M as an image of the state 

space R. However, the degree to which H will be an accu­

rate image of R will of course to a great extent depend 

upon the accuracy of the instrument z. A hypothesis re­

garding the reliability of mastery/nonmastery classifica­

tions obtained from a measurement instrument, could there­

fore be expressed as the extent to which the assigned mas­

tery/nonmastery regions of the examinees as determined by 

their test scores, reflects their true mastery/nonmastery 

states. 

The Concept of "Degree of Covering" 

In developing a statistical index of the degree 

to which a hypothesis is confirmed by obtained evidence, 

reference was again made to the work of Tornebohm. The 

index developed by this author incorporates the concepts 

of information theory, and yields a value referred to as 

an estimate of "degree of covering". The index is quite 
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similar, as first stated, to an expression of conditional 

probability. This index was later simplified to a ratio 

of the information received in evidence E, to the expected 

information, or uncertainty, contained in hypothesis H. 

If the information provided by the obtained evidence ex­

actly covers the uncertainty or expected information exis­

tent in the hypothesis, the value of the ratio will equal 

a maximum of 1. On the other hand, if the information 

received from the obtained evidence to no extent covers 

the uncertainty contained in the hypothesis, then it is 

seen that the numerator of the ratio cancels to 0, resulting 

in the minimum of the range of values of the index. There­

fore, the index has the closed interval of 0 to 1 as a range 

of possible values. 

The next step was to use Tornebohm's index of hy­

pothesis confirmation as a model in the development of a 

reliability coefficient for CRM measures. 

Development of Coefficient Iota (i) Ratio 

At this point in Chapter III the frame of reference 

involved in CRM testing was recalled. It was also noted 

that in regard to Ebel's operational definition of relia­

bility, the only difference between CRM testing and NR 

testing is that in the latter case results are in the form 
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of score values while ~n the former, the results of con­

cern are classification decisions. Reliability coeffi­

cients applied to either case would need to take into ac­

count these characteristics if such estimates were to be 
' 

consistent with Novick's concept of "threshold loss". 

The first step in the development of the desired 

coefficient was to define a number of necessary terms. 

Assuming a group of students had been exposed to some ed­

ucational experience, and then tested and retested with CRM 

instruments A and B, which are designed to be parallel, the 

following six proportions would be needed: 1.) th·e propor­

tion of students classified as masters on Form A (xA); 2.) 

the proportion of students classified as nonmasters on 

Form A (x'A); 3.) the proportion of students classified as 

masters on Form B (xB); 4.) the proportion of students 

classified as nonmasters on Form B (x'B); 5.) the propor­

tion of the entire group of students who are consistently 

classified as masters on both Forms A and B (x
0

); and, 6.) 

the proportion of the entire group of students who are con­

sistently classified as nonmasters on both Forms A and B 

(x 1
0
). Symbols were also defined for an individual examinee 

classified consistently as a master on both Forms A and B 

(ci)' and for an individual classified consistently as a 

nonmaster on both Forms A and B (cj). 
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The goal of this section then, was the develoP­

ment of an index which would estimate the degree to which 

the evidence obtained from the mastery/nonmastery clas­

sifications made on the basis of the score results of 

Forms A and B, support the hypothesis that the two CRM 

measures yield consistent mastery/nonmastery decisions. 

Tornebohm's index of "degree of covering" thus was seen 

to be an appropriate model to apply to this situation. It 

was also seen as important to demonstrate the conceptual 

compatibility between the relationship of evidence to hy­

pothesis, and, that of true score variance to observed 

score variance as reflected in traditional test theory. 

Beginning with the application of the statistical 

definition of information to the expressions for an indi­

vidual consistent master and an individual consistent non­

master, amounts of information obtained independently from 

Forms A and B were defined as the summation across all such 

consistent classifications for each type of classification. 

The numerator of Tornebohm's "degree of covering" model 

thus, was in this case simply the addition of these two 

independent amounts of information. This then was a sta­

tistical expression of the amount of information received 

from the evidence provided by the CRM test classifications 

on the two parallel forms, and would therefore represent 
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the numerator of the desired reliability coefficient. 

The next step was to develop a statistical defini­

tion for the expected information or uncertainty contained 

in the hypothesis. It was necessary that this definition 

express the total amount of expected or potential informa­

tion contained in the test-retest situation. Remaining 

consistent with the concepts of information theory, this 

was done by expressing, for each of the parallel forms, 

the contained expected information as a sum of the uncer­

tainty resulting from the proportions of masters and non­

masters. As stated, this amount of expected information 

or uncertainty was expressed for each of the parallel forms. 

~~d again, because the two sources of expected information 

are assumed to be independent, these two quantities can be 

added to obtain an expression for total amount of expected 

information in the test-retest situation. 

Finally, after the cancellation of a like term and 

further simplification, the development of the desired coef­

ficient was completed upon the designation of the above 

referred to statistical expression as the denominator of 

the index. This index, as an estimate of the degree to 

which the evidence obtained from the administration of CRM 

measures which are designed to be parallel, relieves the 

uncertainty created by statement of a hypothesis that these 
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parallel forms yield consistent mastery/nonmastery clas­

sifications, was designated as coefficient iota (i). At­

tempts were then made from both mathematical and philo­

sophical perspectives to justify the form of coefficient 

iota. 

The Range of Possible Values of Coefficient Iota (i) 

It was noted at the beginning of this section that 

it would be conceptually advantageous if coefficient iota 

would be found to have a range of possible values consis­

tent with that of traditional reliability coefficients. 

Additionally, these minimum and maximum values should be 

assumed under conditions similar to those which yield mini­

mum and maximum values for such traditional coefficients. 

Analysis of these minimum and maximum values for iota was 

approached separately from two different perspectives: 

first, within the framework of information theory; and 

secondly, on the basis of iota as a mathematical expres­

sion. 

From the perspective of information theory, the 

range of possible values of iota was considered on the ba­

sis of the coefficient being a measure of evidential 

strength. In this respect, the values which are entered 

into the coefficient iota ratio were considered solely on 
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the basis of their being amounts of information and uncer­

tainty, derived from particular sources. Based on the 

concept of evidential strength, it was reasoned that the 

range of possible values for iota should be at a minimum 

when, in a particular test-retest situation, there are 

neither any consistent masters nor any consistent nonmas­

ters. In such a case, no information was transmitted by 

the evidence in regard to the hypothesis being tested. On 

the other hand, the range of possible iota values should 

be at a maximum when all the examinees are classified con­

sistently as either masters or nonmasters. In this second 

case, the information provided by the evideuce would total­

ly cover the uncertainty contained in the hypothesis. 

In analyzing iota's range cf possible values from 

this perspective, the work of Tornebohm and the work of 

Hilpinen were again cited. On the basis of an examination 

of the quantities of information which are represented in 

an index of degree of covering, it was determined that iota 

did indeed assume a value of 0 at its minimum, and a value 

of 1 at its maximum. It was therefore concluded that coef­

ficient iota, as a measure of evidential strength, has a 

maximum of 1 in the case in which the evidence E logically 

confirms the hypothesis H, and a minimum of 0 in the case 

in which the evidence E is logically independent with the 
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expected information contained in hypothesis H. 

The analysis of the ratio of possible values from 

a mathematical perspective, considered the actual manner 

in which the various quantities involved in the coeffi­

cient iota ratio are calculated. It was possible to deter­

mine by inspection that under the conditions which would be 

the case when iota assumes the minimum in its range of val­

ues, that the ratio would reduce to 0/-oo, which would of 

course further reduce to o. Therefore, it was relatively 

easy to determine from this second perspective that the 

minimum of iota's range of values was o, as desired. The 

examination of the maximum value of iota as a mathematical 

expression, was not as straightforward. 

Thus, it was noted that there are generally two 

conditions under which iota may assume a maximum. In the 

first case it is necessary that on the basis of Form A, 

there are some examinees classified as masters and some as 

nonmasters, and that all of these examinees are classified 

in the same relative manner on the basis of scores obtained 

from Form B. In such a case, there is perfect consistency 

in classification on the basis of the two test forms. 

Again on the basis of inspection, it was relatively simple 

to determine that under such circumstances the iota ratio 

would reduce to 1/1. Thus, under such circumstances, the 
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maximum value of iota would indeed be 1. However, there 

exists a second set of conditions under which iota assumes 

a maximum, which does not readily submit to conclusion from 

inspection. 

This last condition arises when the examinees are 

consistently classified as either all masters or all non­

masters. The factor which makes interpretation of the co­

efficient's maximum value under these conditions difficult, 

is that the ratio reduces to 0/0, a form which is consid­

ered to be indeterminate. However, upon application of the 

methods of calculus, it was found that the coefficient iota 

ratio approaches a limit of 1 under these conditions. 

Therefore, it was demonstrated that coefficient 

iota assumes a range of values that is consistent with both 

an index of evidential strength, and a traditional relia­

bility coefficient. 

Method of Analysis 

The data base upon which the sample analysis using 

coefficient iota was conducted, consisted of the responses 

of 2182 eighth and ninth grade students on a mathematics 

mastery instrument. out of the instrument, which consists 

of 120 items evaluating 40 objectives, parallel test forms 

were created at each of 30, 20, and 10 item-length levels. 
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The items which make up these parallel forms were paired 

off on the basis of content, difficulty, and discriminat­

ing power. 

At each of these item-length levels then, mastery 

criterion levels of 5~~, 6~fo, 70%, and 80% were considered. 

Thus, 12 item-length by mastery criterion levels were cre­

ated. The first step in the actual analysis consisted of 

computing the population values of iota at these various 

12 levels. The next step in the analysis was then to se­

lect from the population 50 random samples of 30 students 

each, at each of the 12 item-length by mastery criterion 

levels, and to compute iota for each of the drawn random 

samples. The means and standard deviations of the 50 iota 

values computed at each of the 12 levels, as well as the 

parameter values of iota for each of the levels were then 

reported. 

Discussion of Results 

Results of the present analysis were compared to 

those reported by Subkoviak (1978) in his study of four 

types of suggested reliability coefficients for CRM mea­

sures. One of these coefficients, that developed by 

Swaminathan et al., (1975), was the value of the propor­

tion of examinees who were consistently classified as 
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either masters or nonmasters (Pc) as calculated from a 

sample. This value is then considered as an estimate of 

the population value of Pc• The remaining three coeffi­

cients, those developed by Subkoviak (1976), Marshall and 

Haertel (1976), and Huynh (1976), are all estimates of 

Pc based on a single testing. 

The major difference of note at this point between 

coefficient iota and the measures reported on in the 

Subkoviak study is, that while iota estimates remained 

relatively stable across changes in both item-length and 

mastery criterion, the latter measures varied quite mark­

edly. The measures in the Subkoviak study were explained 

to vary in the manner in which they do, precisely because 

they are estimates of Pc• Therefore, it is quite logical 

to assume, that as the criterion level changes to either 

extreme, Pc will necessarily begin to approach unity. For 

the tests are either becoming too difficult or too easy for 

the examinees, and most will be either consistently clas­

sified as nonmasters or consistently classified as masters. 

Iota however, although it involves proportions of consis­

tent masters and nonmasters, takes more into consideration 

than Pc• 

In expressing this difference, the analogy between 

variance and uncertainty was again focused upon. The 
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standard deviation, as a measure of variance, does not 

take all scores in a distribution into equal account in 

formulating an estimate of variance. The relative amount 

of information contributed by an individual score depends 

upon its relative distance from the mean of the distribu­

tion. Compatible with this approach is the fact that with­

in information theory, the relative amount of information 

provided by an event depends upon its relative probability 

of occurrence. The further toward the extremes of a 

distribution, the greater the amount of variance an indi­

vidual score contributes to the total variance of the dis­

tribution. Similarly, the more improbable the likelihood 

of an event's occurrence, the greater its contribution to 

the total uncertainty contained in the situation as a 

whole. The models are analogs of one another. 

This aspect of the nature of iota was illustrated 

by analysis of the individual probabilities which are in­

volved in the coefficient's formula. Initially, it was 

noted that the respective proportions of masters and non­

masters on the two parallel forms were approaching the 

proportions of consistent masters and nonmasters, as the 

criterion level increased. Thus, on this basis, it might 

be assumed that iota, like Pc and its estimates, should 

also approach unity. However, when these proportions were 
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expressed in terms of bits of uncertainty and information 

in Table 4.8, the reason for the difference in the trend 

of iota values became evident. 

As the proportions of masters and nonmasters on 

the two Forms approach certainty, as they do when the 

mastery criterion level increases, there is less and less 

uncertainty involved in these classifications. And, this 

situation is reflected in the above-mentioned Table. Nev­

ertheless, there is seen to be a decline in the degree to 

which the information provided by the consistent mastery/ 

nonmastery decisions covers the existent uncertainty. This 

was seen to be a result of the fact that, although the in­

formation received from the consistent nonmasters does an 

increasingly better job of covering the relative uncertain­

ty associated with those types of classifications, the in­

formation received from the consistent masters is seen to 

do an increasingly poorer job of covering the amounts of 

uncertainty associated with this latter source. The over­

all result is that at the 80% criterion level, the value 

of coefficient iota indicates that the parallel test Forms 

yield less reliable mastery/nonmastery classifications than 

at the three lower criterion levels. This is a conclusion 

exactly opposite to what would have been concluded on the 

basis of Pc• 



CCNCLUSIONS 

The purpose of this dissertation has been the de­

velopment of an index of the degree of reliability of the 

mastery/nonmastery classifications yielded from the scores 

obtained from CRM measures. In that the equivalence of 

parallel forms is extremely important in a mastery instruc­

tional context, the analogy between reliability and consis­

tency found in traditional test theory, was seen to be es­

pecially applicable to the problem at hand. However, as 

expressed by Stanley (19?1), both logical and statistical 

aspects should be considered in evaluating issues of relia­

bility. And, on the basis of these issues, it was demon­

strated that traditional reliability coefficients run into 

difficulties in regard to both of the above when applied to 

CRM measures. 

while a number of authors have recognized these 

difficulties, and various estimates of reliability have 

been developed for CRM measure classifications, there re­

mains considerable discussion as to their relative merits. 

This researcher is of the position that the technique de­

veloped herein, and labeled coefficient iota, satisfacto­

rily addresses the above issues, and therefore merits 
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consideration and further investigation as a possible 

approach to be adopted in the estimation of the reliabili­

ty of CRM classifications. Indeed, coefficient iota has 

been seen to avoid certain disadvantages, and perhaps even 

errors in interpretation, which are encountered when using 

indices of CR11 reliability which are based on the propor­

tion Pc• Discussion of these disadvantages will focus on 

three specific points. 

First of all, in discussing the disadvantages of 

previously suggested CRl1 measure reliability coefficients, 

it was noted that the values obtained from these coeffi­

cients tend to fluctuate, sometimes markedly, as the mas­

tery criterion level changes. In this way, such measures 

are considered to be "situation specific". That is, a CRH 

measure would not have a single reported degree of relia­

bility associated with its results, as is the case with NR 

test scores. Rather, it is necessary to report a number 

of coefficient values, one for each criterion and item­

length level. As was noted in Chapter IV, this was seen 

to be at least in part due to the fact that these CRH re­

liability estimates are based on the proportion of consis­

tent mastery/nonmastery classifications in the sample (Pc). 

It is not being suggested here that only a single 

value of a reliability coefficient should be reported for 
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a CRM measure. This researcher agrees that a CRM measure 

cannot have a "single" degree of reliability, since this 

property of the measure will likely vary as the criterion 

level is changed. However, on the basis of the sample re­

sults of this study, it appears that coefficient iota val­

ues may vary to a less degree across changes in criterion 

and item-length levels than do the indices reported upon 

by Subkoviak (1"978). As a direction for possible further 

investigation, coefficient iota should be applied to sam­

ples of mastery/nonmastery classifications which are based 

on scores which exhibit a more rapid fluctuation of Pc 

across changes in these levels. Indeed, it may prove of 

interest to also apply the coefficient iota technique to 

~S test scores to observe the manner in which these values 

compare to those yielded by classical reliability measures. 

The second major disadvantage of the CR~·f relia­

bility coefficients which were reviewed in Chapter II is 

that the mathematics involved would render them virtually 

unusable by most classroom teachers. In fact, even if one 

were familiar with the calculus involved, once tests con­

sist of about 10 items or more in length, access to a com­

puter is almost necessary. In comparison, about all that 

is required to make use of coefficient iota is the ability 

to calculate a proportion, and access to a table of log 
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values as is reproduced here in Appendix B. 

The third point to be discussed here is not simply 

a disadvantage of the coefficients reviewed in Chapter II, 

but rather, the seeming likelihood that the values which 

they yield can lead to errors in the interpretation of the 

reliability of the examined CRM measure classifications. 

It was noted in Chapter IV that because these coefficients 

are based on the proportion Pc' they will necessarily ap­

pear to become more reliable as the measures become either 

too difficult or too easy for the group being tested. All 

one would apparently need to do to obtain more reliable 

mastery/nonmastery classifications is to either increase 

or decrease the criterion cut-off score. This is not the 

case with coefficient iota. 

Interpretation of the results in Table 4.7 would 

seem to indicate that the involved parallel forms yield 

quite reliable mastery/nonmastery classifications at each 

of the 5ry~, 60%, and 7ry~ criterion levels. And, the degree 

of reliability is approximately the same at each of these 

levels. If one were attempting to decide which criterion 

level to use, the choice could be made solely on the basis 

of how difficult a measure was desired. Any of the three 

cut-off points could be chosen based on evidence that high­

ly reliable classifications are likely for each. 
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However, as the criterion level rises above 7~~, 

it is indicated that the classifications obtained become 

less reliable. As mentioned previously, this is the OP­

posite conclusion that would be reached from the estimates 

obtained from coefficients based on the proportion Pc• 

And, the position is taken here that this property of the 

coefficients based on Pc runs contradictory to the clas­

sical concept of reliability. 

The present researcher has attempted to stress, 

it is hoped not overly so, the analogy between the con­

cepts of uncertainty and variance. It was noted in ChaP­

ter I that in the case of NR measures, reliability is de­

pendent upon variability. To be specific, as variability 

increases, and other things remain the same, reliability 

will likewise tend to increase. From the standpoint of 

uncertainty as an analog of variance, this relationship 

is not maintained in the case of CRM reliability estimates 

based on Pc• As uncertainty decreases as the measures be­

come either too easy or too difficult for the population 

being tested, the values obtained from these coefficients 

would lead to the conclusion that the measures become more 

reliable. But do they really? 

One might reasonably counter this criticism by 

arguing that reliability is defined within classical test 
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theory as the degree of consistency of a set of measures. 

And certainly, C&~ measures that are either relatively too 

difficult or too easy will tend to yield consistent mas­

tery/nonmastery classifications. Therefore, such classi­

fications should be considered to have a relatively higher 

degree of reliability as compared to situations in which 

? is less. c 

This argument however, overlooks one of the basic 

aspects of the concept of reliability as expressed by 

Stanley (1971). He states that in considering reliability, 

"one must first determine what is to be accomplished and 

what purposes are to be served by a measure of reliability" 

(p. 359). The purpose of a CRM measure is to provide evi-

dence, or information, in regard to the mastery of a par­

ticular set of instructional objectives. Establishing 

either a relatively high cut-off criterion, resulting in a 

situation in which most of the examinees are classified as 

nonmasters, or a relatively low cut-off criterion, resul­

ting in a situation in which most of the examinees are 

classified as masters, would not seem to provide a substan-

tial amount of information for the purpose at hand. And, 

this is the conclusion that would be arrived at on the ba-

sis of the trend in coefficient iota values across cri-

terion levels. 
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It is concluded therefore, that the findings of 

this study indicate that coefficient iota not only avoid~ 

some of the disadvantages of CRM reliability estimates 

thus far suggested, but also to a greater extent addresses 

the empirical utility of the consistency of mastery/non­

mastery classifications. It is clear from the present 

literature that considerable debate remains regarding both 

the appropriateness and utility of the types of CRM relia­

bility estimates that have up to now appeared. The pre­

sent author believes, that although further investigation 

is required, coefficient iota deserves consideration as a 

means of estimating the reliability.of CRM measure clas­

sifications. 
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Science Research Associates, Inc. 
155 North Wacker Drive 
Chicago, Illinois 60606 

To Whom It Hay Concern: 

Richard E. Sherman 
2930 N. Commonwealth Ave. 
Apt. 509 
Chicago, Illinois 60657 
25 September, 1980 

I am writing to request permission for the use of test 
score data gathered by your corporation. 

The data requested needs to be of a criterion-referenced 
nature, and would be desirably have been obtained from 
either a test of arithmetic or reading skills. 

It would also be necessary to have the data collected over 
a rather large sample of students having taken the same 
items. 

If this data is made available, I intend to use these 
scores in the analysis section of the doctoral dissertation 
which I am currently writing. 

The topic of my dissertation is the development of relia­
bility coefficient for criterion-referenced mastery tests. 

In the analysis section of the dissertation I intend to use 
the requested sample of data as a bank from which to draw 
random samples to estimate the standard error of the sta­
tistic. 

In addition, upon its completion, I would forward a copy of 
my dissertation to your corporation. 

Your consideration of my request is greatly appreciated. 

Sincerely, 

~~f.~ 
Richard E. Sherman 
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Ms. Rita Bode 
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Richard E. Sherman 
2930 N. Commonwealth Avenue 
Apt. 509 
Chicago, Illinois 60657 
20 October, 1980 

Science Research Associates, Inc. 
155 North Wacker Drive 
Chicago, Illinois 60606 

Dear ?·Is. Eo de: 

I am writing this letter in regard to the issue of confi­
dentiality of the source of the scores contained on the 
computer tape which I requested in my letter to you dated 
25 September, 1980. 

You have my full assurance that both the individuals and 
school districts from which these scores were obtained will 
remain anonymous. 

Indeed, I am aware of the fact that such identifying infor­
mation will be removed from the tape which I would receive. 

Additionally, since my dissertation is of a statistically 
theoretical nature, there would be no need to report such 
information. 

Your continued consideration of my request is greatly ap­
preciated. 

Sincerely, 

t0 n Q IJ 01 
)~cl'-'~ t . 6 U+-'--
Richard ~. Sherman 



APPENDIX B 



Values of -log2 p for Selected p(Probability) Levels 

p Level -log p p Level -log p p Level -log p 

• 01 6.640 .35 1.515 .68 .556 
.02 5.645 .36 1.474 .69 .535 
.03 5.060 .37 1.434 .70 .515 
.04 4.645 .38 1.396 .?1 .494 
.05 4.322 .39 1.358 .?2 .474 
.06 4.058 .40 1.322 .?3 .456 
.07 3.837 .41 1.286 .?4 .434 
.08 3.644 .42 1. 251 .?5 .415 
.09 3.474 .43 1.218 .?6 .396 
• 10 3.322 .44 1.184 .?? .377 
• 1 1 3.184 .45 1.152 .?8 .358 
• 12 3.059 .46 1.120 .?9 .340 
• 13 2.943 .47 1.089 .80 .322 
• 14 2.836 .48 1.059 .81 .304 
• 15 2.737 .49 1.029 .82 .286 
• 16 2.643 .50 1.000 .83 .269 
• 17 2.556 .51 .971 .84 .252 
• 18 2.474 .52 .943 .85 .234 
• 19 2.396 .53 .916 .86 .218 
.20 2.322 .54 .888 .87 .201 
• 21 2.251 .55 .863 .88 .184 
.22 2.184 .56 .836 .89 .168 
.23 2.120 .57 .811 .90 • 152 
.24 2.059 .58 .?86 .91 .136 
.25 2.000 .59 .761 .92 .120 
.26 1.943 .60 .737 .93 .105 
.27 1.888 .61 .713 .94 .089 
.28 1.836 .62 .690 .95 .074 
.29 1. 786 .63 .666 .96 .059 
.30 1. 737 .64 .644 .97 .044 
.31 1.690 .65 .622 .98 .029 
.32 1.644 .66 .600 .99 .014 
.33 1.600 .67 .578 1.00 o.ooo 
.34 1.556 

225 



APPROVAL SHEET 

The dissertation submitted by Richard E. Sherman has been 
read and approved by the following committee: 

Dr. Samuel T. Mayo, Director 
Professor, Foundations of Education, Loyola 

Dr. Jack A. Kavanagh 
Associate Professor, Chairperson, 
Foundations of Education, Loyola 

Dr. Ronald R. Morgan 
Associate Professor, Foundations of Education, 
Loyola 

The final copies have been examined by the director of the 
dissertation and the signature which appears below verifies 
the fact that any necessary changes have been incorporated 
and that the dissertation is now given final approval by the 
Committee with reference to content and form. 

The dissertation is therefore accepted in partial fulfill­
ment of the requirements for the degree of Doctor of Philos­
ophy. 

Jate 

226 


	An Application of Information Theory in the Development of a Reliability Coefficient for Criterion-Referenced Mastery Tests
	Recommended Citation

	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img136
	img137
	img138
	img140
	img141
	img142
	img143
	img144
	img145
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239

