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ABSTRACT 
 

One property of student growth data that is often overlooked despite widespread 

prevalence is incomplete or missing observations. As students migrate in and out of 

school districts, opt out of standardized testing, or are absent on test days, there are many 

reasons student records are fractured. Missing data in student growth models can bias 

model estimates and growth inferences. This study presents empirical explorations of 

how well missing data methodologies recover attributes of would-be complete student 

data used for teacher evaluation. Missing data methods are compared in the context of a 

Student Growth Percentiles (SGP) model used by several school systems for 

accountability purposes. Using a real longitudinal dataset, this study evaluates the 

sensitivity of growth estimates to missing data and compares the following missing data 

methods: listwise deletion, likelihood-based imputation using an expectation-

maximization algorithm, multiple imputation using a Markov Chain Monte Carlo 

method, multiple imputation using a predictive mean matching method, and inverse 

probability weighting. Methodological and practical consequences of missing data are 

discussed. 
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CHAPTER ONE 

INTRODUCTION 

Now more than ever, policymakers and researchers alike are interested in 

measuring a teacher’s contribution to student learning.  This attention stems from the 

basic notion that teacher quality drives student achievement.  Historical frameworks for 

teacher evaluation resulted with a majority of teachers receiving the top proficiency 

rating; as the secretary of education highlights, “99% of our teachers are above average 

(Gabriel, 2010).” Despite consistent educator ratings, student experiences vary 

considerably by location, demographics, and socioeconomic status, among other factors 

(Aud et al., 2011). When every educator receives the same rating it becomes impossible 

to make decisions based on evaluations, making the evaluation process a formality 

instead of a tool for continuous improvement.  Recognizing differences among districts, 

schools, and teachers is essential in making informed decisions about best pedagogical 

practices and adequate student progress.  As school systems look for ways to better 

identify effective teachers, conversations around accountability are increasingly centered 

on standardized test scores and the inferences that can be made from them.    

Measurement approaches broadly categorized as “value-added” growth models 

(VAMs) attempt to quantify teacher effectiveness while accounting for baseline 

characteristics like prior achievement through advanced statistical techniques.  

Economists first used value-added models to explore the effect of class size and other 
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controllable factors on student achievement (Koedel, Mihaly, & Rockoff, 2015).  VAMs 

were used to identify the most impactful way to spend limited resources by quantifying 

school systems’ return on investment.  VAM methodology has since extended to teacher 

evaluation.  Often VAMs are meant to partial out a teacher’s contribution towards a 

student’s growth, with the difference between a student’s actual and predicted score 

representing their teacher’s value added contribution.   

Despite the prominence of VAMs, there are competing views on appropriate 

value-added measurement and inference (Amrein-Beardsley, 2008).  Methodologists 

continually highlight model limitations and refine statistical techniques.  Some worry 

unmeasured variables may result in biased models and unfair evaluation systems, 

particularly for teachers of disadvantaged groups if not accounted for by the model.  

Others worry setting differential expectations can sustain or even contribute to the 

achievement gap (Ballou, Sanders, & Wright, 2004).  However, the conceptual appeal of 

VAMs perpetuates their use across the nation. 

Decisions regarding VAMs are complicated and multifactorial.  Given the wide 

variety of methods and uses for value-added modeling, it is difficult to arrive at a set of 

best practices for specifying a model or evaluation system.  Addressing this issue, in 

November 2015 the American Educational Research Association (AERA) released a 

statement outlining 8 technical requirements to guide use of VAM in educator 

evaluations ("AERA Statement on Use of Value-Added Models (VAM) for the 

Evaluation of Educators and Educator Preparation Programs," 2015).  In response, the 

Brookings Institute suggests the educational community “must view the value of any 
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particular performance measure in the context of all other measures, not relative to a 

nirvana that does not exist (Hansen, 2015).”  

In 2010, the LA Times released school and educator effectiveness rankings 

derived from a district-wide VAM ("Los Angeles Teacher Ratings," 2010). This sparked 

controversy as schools and teachers expressed concern over making these ratings public 

given the methodology used to rate schools and teachers is an imperfect science (Briggs 

& Domingue, 2011). One concern centers on the variation in VAM estimates attributable 

solely to model specification.  Re-analyzing the LA student achievement data, the 

National Education Policy Center reported using the same VAM but controlling for 

additional factors resulted in a .92 correlation between the two model estimates 

(Goldhaber, Walch, & Gabele, 2014).  However, applying this change to the evaluation 

framework resulted in inconsistent effectiveness ratings for 40% of math teachers 

between the two VAMs.  A relatively small statistical adjustment could translate to 

drastically different evaluation inferences.  

Due to the high-stakes nature of evaluation, inference decisions should be 

grounded in sound methodology.  The accuracy of any statistical model relies on the 

extent to which certain assumptions are met, and the same is true of VAMs.  The 

complex school environment, students’ non-random assignment to classrooms, and 

immeasurable variables that influence student learning all make it important to closely 

investigate the statistical properties of each model to accurately interpret its results.  One 

property of assessment data that is often overlooked despite widespread prevalence is 

incomplete or missing student observations.  
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Most VAMs are designed for complete datasets.  Consequently, analyzing student 

achievement data prone to missing observations may impact model findings and 

subsequent data-driven decisions. As students migrate in and out of school systems, leave 

high school, or are absent from testing, there are many reasons student records are 

fractured. If not properly accounted for, incomplete student data may be an invisible 

covariate affecting evaluation inferences in student growth models. Further research is 

necessary to ensure student growth models mitigate bias due to missing data.  

Though there is still healthy debate regarding VAM methodology and best 

practices, The American Statistical Association points out “under some conditions, VAM 

scores and rankings can change substantially when a different model or test is used, and a 

thorough analysis should be undertaken to evaluate the sensitivity of estimates to 

different models (American Statistical Association, 2014).”   This dissertation will 

evaluate the sensitivity of VAM estimates to missing data and methods used to account 

for missing data. 

Research Questions 

The purpose of this dissertation is to present empirical explorations of how well 

missing data methodologies recover attributes of would-be complete student data used for 

teacher evaluation.  In studying this topic, both methodological and practical 

consequences of missing data are of interest.  Using a longitudinal dataset of student 

records, this research will address the following: 

1. How sensitive are growth estimates to missing data? 

2. Does the choice of missing data methodology result in different growth 

inferences when used in an educator evaluation framework? 
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This dissertation will not advocate for a single missing data handling technique, 

nor will it present evidence demonstrating the superiority of a particular method for 

universal use in every VAM application.  Further, it will not quell or ignite the larger 

debate surrounding VAM methodology.  Missing data procedures and value-added 

growth modeling procedures in general are inherently neutral.  Users must subjectively 

derive meaning from objective statistical output, as models alone cannot produce a 

central argument favoring one decision or another.  Rather, VAMs produce evidence, and 

methodologists and school systems are left to evaluate the quality of evidence before 

making inference decisions. This study will contribute to the growing body of evidence 

around value-added growth models with respect to missing data. 
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CHAPTER TWO 

LITERATURE REVIEW 

Teachers are evaluated for tenure, promotion, compensation, contract renewal, 

corrective-action and dismissal. Historically principal observations were the most popular 

method of evaluating teacher effectiveness.  Like any evaluation system, observational 

methods require adequate data to make evidence-based decisions.  Often teachers aren’t 

observed regularly and without this data the evaluation system is unproductive. 

Reviewing the frequency of teacher observations in Boston, only 53% of teachers 

received an evaluation over a two year period (National Council on Teacher Quality, 

2010).  This figure speaks only to the presence or absence of an evaluation, not to its 

thoroughness.  Observations can be highly subjective and often produce very little 

variation.  Analyzing teacher evaluations in four states, the New Teacher Project found 

99% of educators received satisfactory ratings for evaluations based solely on classroom 

observation (Weisberg et al., 2009). This is problematic as both excellence and 

ineffectiveness are indistinguishable.  An evaluation framework with little variation 

misses the opportunity for feedback as most teachers receive the same evaluation despite 

different pedagogy.  This system devalues the evaluation process, failing students and 

teachers.   

In search of a more objective evaluation approach, many states incorporate 

student achievement data to supplement other evaluation components. No Child Left 



7 

	

Behind (NCLB) set requirements for assessment and accountability, requiring students in 

grades 3-8 to take annual standardized tests.  Thresholds must be met for schools to 

demonstrate adequate yearly progress (AYP) towards the goal of demonstrating 

proficiency for all students in reading and math.  Failure to meet adequate progress 

resulted in serious consequences and mandatory corrective action.  Though NCLB was 

recently replaced by the Every Student Succeeds Act (ESSA), its legacies are carried 

forward in the current educational landscape (United States Department of Education, 

2015).  To this end, school systems are under increasing pressure to demonstrate their 

“value added” for student achievement, conceptualized primarily by gains in standardized 

tests.   

Unconditional achievement scores, or status metrics, provide valuable information 

regarding a student’s absolute standing defined by an assessment rubric. Status-based 

accountability systems evaluate teachers and schools based on the percentage of students 

that meet minimum scores for proficiency status on state-mandated exams with the goal 

of eventually reaching 100%.  However, various factors outside a teacher’s control can 

influence student achievement (Hoff, 2003; Jeynes, 2007; Lee & Burkam, 2002).  

Because socioeconomic status and other environmental factors play a role in learning, 

some argue a fair evaluation framework must take background information and prior test 

scores into account for an evaluation system to be equitable.  Without these 

considerations, teachers in the most high-risk classrooms would be unfairly penalized.  

Lower-achieving students of highly effective teachers may go unrecognized if they fail to 

meet proficiency despite making substantial progress. Additionally, it is more difficult to 
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bring a child up to proficiency than it is to maintain proficiency, placing a heavier burden 

on schools of disadvantaged student populations (Neal & Schanzenbach, 2010).   

Furthermore, there is mixed evidence that status-based accountability systems 

incentivize schools to target students on the cusp of meeting proficiency standards at the 

expense of their counterparts on the fringe (Ballou & Springer, 2008).  Under 

proficiency-based systems, schools generate greater return on investment with programs 

aimed at modest gains for students in the middle with potential to cross the proficiency 

threshold, as opposed to programs for low- or high-scoring students who aren’t likely to 

affect the overall proficiency rating.  For these reasons, school systems turned to growth 

metrics to supplement status measures in demonstrating AYP. Most evaluation 

frameworks include multiple components in addition to student growth, acknowledging 

growth models aren’t designed to measure every contribution a teacher makes toward 

student learning.   

Defining Growth 

Achievement scores are meant to quantify a student’s attainment at a single point 

in time.  Conditional achievement scores, or growth metrics, are meant to provide 

information about progress over time. Unlike status, however, the concept of growth is 

less concrete.  Growth can be challenging to define and even more challenging to 

measure.  Given the abundance of definitions and measurement approaches in use, 

growth model terminology is often ambiguous, contributing to the confusion and 

controversy surrounding VAM implementation. Since there is no common definition for 

the term “value-added model,” for the purpose of this paper VAMs represent a broad 

category of statistical models used to evaluate growth.  Examples include Student Growth 



9 

	

Percentiles models developed by Damian Betebenner and the National Center for the 

Improvement of Educational Assessment (NCIEA), Multivariate Response Models 

developed by SAS, and value-added models developed by the Value-Added Research 

Center (VARC).    

Because growth metrics serve a variety of purposes, it is first necessary to settle 

on a desired end goal.  Purposes for modeling can be descriptive or inferential in nature, 

but should be explicit in either case (Seltzer, Frank, & Bryk, 1994).  Some are designed 

to project future performance (e.g. projection to proficiency 3 to 5 years out) whereas 

others aim to quantify past student growth. Some frameworks measure growth relative to 

a criterion and others measure a student’s standing relative to their peer group. 

Criterion-referenced growth measures anchor progress to a specific content area 

or domain. The underlying construct of any assessment is achievement, which can be 

conceptualized as a latent variable (e.g. reading proficiency) indirectly observed through 

test items and summarized by assessment scores (Cyr & Davies, 2005).  To measure 

growth over time, vertically linked assessments are a series of tests designed to quantify a 

student’s achievement across grades (Lissitz & Huynh, 2003).  Raw scores are 

standardized and equated to a common scale.  Though tests administered to different 

grades cover different content (e.g. mathematics concepts), they measure the underlying 

concept of mathematics proficiency.  Cross-scaling techniques allow for continuous 

tracking of student achievement as they advance to different grades. Since it is expected 

students will increase in mathematics proficiency each year, we would expect 

mathematics scores on vertically linked assessments to increase as well. Because vertical 
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scales are interval measurements, a student’s prior grade score could be subtracted from 

their current score to calculate their gain from one year to the next. 

Though vertical scaling provides a framework to interpret student scores, many 

parents, teachers, and administrators are left wondering what gain is considered normal or 

adequate. Test publishers provide recommendations and experts can answer these 

questions qualitatively, but there is no definite answer for stakeholders.  Instead, it can be 

helpful to frame growth relative to student peers.  

Norm-referenced growth measures provide information about an individual’s 

achievement compared to students of a similar test history or background. Betebenner 

analogizes achievement growth to pediatric weight or height growth to answer questions 

about what constitutes typical or average growth (D. W. Betebenner, 2008).  A 2-pound 

weight gain may not mean as much to parents without knowing this places their child at 

the 99th percentile for weight.  Similarly, what does a 5-point scale score achievement 

gain represent in terms of content mastery?  Knowing a student’s 5-point increase places 

them at the 95th percentile and translates to performance equal or better than 95% of their 

peer group provides stakeholders a reference point.   

Both normative and criterion-based measurement frameworks should be 

thoughtfully explored to avoid dangerous misinterpretations. For example, moving from a 

score of 15 to 20 may be more difficult than moving from 10 to 15 on the same 

assessment despite equal 5-point gains in both scenarios.  The magnitude of achievement 

growth may be imprecisely captured by an equal interval scale score gain.  Since the 

underlying construct is latent this idea is difficult to confirm, though methodologists can 

establish an unequal likelihood to achieve equal gains from different starting points along 
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the baseline distribution. Gain score calculations assume constant variance and are often 

negatively correlated with a student’s initial standing.  This phenomenon occurs with 

widely administered assessments like ACT® as students with a lower baseline score tend 

to show greater gains than students starting in the middle or high end of the baseline 

assessment (Andrews & Ziomek, 1998). Similarly, in a normative framework the 50th 

percentile for the lower end of the distribution may represent a 3-point scale score 

increase whereas the 50th percentile for the middle of the distribution may represent a 1-

point scale score increase. Despite these nuances, when statistical underpinnings of 

growth models are clearly defined and understood, the information yielded can be a 

valuable tool for identifying effective programs and pedagogy. 

Growth for Accountability 

Regardless of definition, growth is increasingly relevant to school and educator 

evaluations to paint a more complete picture of student progress. This movement gained 

momentum when the Obama administration incentivized states to link student 

achievement outcomes to teacher evaluations under the Race to the Top (RttT) initiative 

(McGuinn, 2011).  The RttT announcement coincided with the financial crisis, further 

incentivizing schools with limited or diminishing resources to compete for government 

funding.  Following NCLB, RttT, Teacher Incentive Fund (TIF) grants, and other state 

mandates, student achievement data now plays a more prominent role in teacher 

evaluation than ever before (Linn, Baker, & Betebenner, 2002). However, states were 

given the flexibility to decide how student achievement data should factor into larger 

evaluation systems, resulting in a plethora of approaches.  New ESSA legislation further 
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emphasizes state and local responsibility for accountability measures (United States 

Department of Education, 2015). 

Proponents of VAMs believe complex statistical modeling brings objectivity to 

the evaluation process instead of relying solely on subjective observational ratings.  Just 

as principal observations may be biased in identifying effective teachers, VAMs must 

have valid, reliable student achievement data in order for the model to accurately quantify 

growth and facilitate evaluation inferences.  Given the high-stakes decisions made from 

growth data, critics of VAMs point out several methodological limitations about the 

value-added modeling process.  As is true of any statistical model, growth models are 

only as good as their predictors.  Many standardized assessments built to demonstrate 

school accountability under status models may not be useful assessments to measure 

student growth (e.g., Steering Committee of the Delaware Statewide Academic Growth 

Assessment Pilot, 2007).  Critics of growth models often view computationally intense 

analyses as lacking transparency (Ladd & Lauen, 2010).  Most relevant to this paper, 

statisticians point out that growth models, like most statistical procedures, were designed 

to analyze complete data. 

Compared to status metrics alone, VAMs can provide a more complete 

understanding of a teacher’s impact by measuring student progress in comparison to a 

student’s predicted trajectory.  An ideal model accounts for the relationships between 

student characteristics and growth, so that growth scores are not correlated with 

demographics or initial achievement levels.  However, prior research demonstrates 

VAMs are sometimes correlated with status measures (McCaffrey & Castellano).  Nor 

are growth and status competing frameworks. Raising the minimum proficiency for all 
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students will remain the ultimate goal of any school system that implements a growth 

model.   

Approaches to Measuring Growth 

If a school system chooses to include growth data in their accountability system, 

there are a number of models available to measure progress.  Rather than devote 

resources to develop new models, many implement or modify existing VAMs to measure 

growth.  Ranging from conceptually simple fixed-effects models to more complex 

longitudinal mixed models, the statistical underpinnings of each model varies. This 

leaves many considerations for specifying a model. Some include demographic 

information while others deliberately leave this information out as not to set differential 

expectations based on ethnicity or other student attributes.  School systems must also 

make decisions regarding how many years of historical data to include in the model and 

the length of time for measuring growth (e.g. spring to spring models vs. fall to spring).  

VAMs also differ in how they establish teacher effects (e.g. aggregating student gains or 

including a teacher term in model).  Then they must decide how to incorporate growth 

data into an evaluation framework by determining acceptable growth thresholds and then 

weighting the growth component with other evaluation data so they can derive meaning 

from the information gained through value-added modeling.  The focus of this study is 

the choice of missing data method to account for incomplete student records in value-

added models. 

Student Growth Percentiles 

 The Student Growth Percentiles (SGP) model developed by Betebenner (D. W. 

Betebenner, 2011) was selected as a focus of this review since over 30 states have chosen 
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to adopt it in some capacity.  This model is normative in nature and produces student 

percentile ranks as its growth metric.  As illustrated in Figure 1, students’ current year 

performance is evaluated by their relative performance to peers with similar assessment 

histories (in this example, a prior year score of 200). 

Figure 1: An Illustration of the Student Growth Percentiles Framework 

 

In this example, a score of 250 translates to an SGP of 50, or median performance among 

similar students.  A normative growth framework presents unique challenges for missing 

data, as it measures a student’s growth in relation to other students.  As shown in Figure 

2, the systematic exclusion or omission of students due to incomplete score histories 

could impact growth scores for all students, including those with a fully complete student 

record. 
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Figure 2. Changes in SGP due to Systematic Exclusion of Students 

 

 

In this demonstration, excluding students due to missing data (or any other reason) could 

shift SGP values for the remaining students despite the same academic performance.  

Although this review explores missing data in the context of an SGP model, many 

concepts are applicable to the broader category of VAMs. 

The SGP model implements quantile regression techniques to model the complex 

relationship between historical and future achievement trajectories.  Quantile regression 

is similar to ordinary least squares regression, but instead of fitting the conditional mean 

of current scores on prior scores it fits conditional quantiles of current scores on prior 

scores (Koenker, 2005).  Figure 3 displays deciles of ACT performance conditioned on 

Explore performance. 
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Figure 3. Quantile Regression Lines by Decile 

 

SGP models build upon this framework by estimating quantile regression equations for 

the 1st through 99th percentiles.  Rather than implementing a linear model, student 

growth percentiles are computed by fitting basis-spline, or B-spline, regression curves 

since educational data can be nonlinear.  As demonstrated in Figure 4, nonlinearities are 

usually more pronounced in the low and high ends of the distribution.  B-splines model 

the tails of the distribution more precisely. 

Figure 4. Penalized Spline Model 
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This process is accomplished using Betebenner’s “studentGrowthPercentile” function in 

the R programming environment (D. V. Betebenner, Adam;  Domingue, Ben; Shang,Yi 

2014).  From this data, a matrix of scale scores and corresponding quantiles can be 

created for each percentile band.  One strength of the SGP model is the percentile metric 

is easily interpreted compared to outcome measures of other VAMs. Student growth 

percentiles are defined as: 

          SGP = Pr (Current achievement | Prior Achievement)*100 (1) 

A student’s growth percentile is determined by identifying the quantile with the 

value closest to the student’s observed score.  Using the previous example, Table 1 

displays a subset of possible ACT growth percentiles conditioned on Explore scores. As 

some assessments like ACT have discrete scale score ranges, typically the highest 

percentile value for each observed score is used to record a student’s SGP if the same 

ACT score falls under multiple percentile bands.   

Table 1. SGP Matrix 

Explore Score ACT score by Growth Percentile 
P1 P10 P20 P30 P40 P50 P60 P70 P80 P90 P99 

10 12 13 14 14 14 14 15 15 15 16 20 
11 12 13 14 14 14 14 15 15 15 16 20 
12 12 13 14 14 14 14 15 15 16 16 20 
13 12 13 14 14 15 15 15 16 16 17 21 
… … … … … … … … … … … … 
29 15 26 28 28 29 29 30 31 32 33 34 
30 11 28 29 29 30 30 31 32 33 34 35 
31 5 30 30 31 32 32 33 34 34 35 36 
32 1 31 33 33 34 34 35 36 36 36 36 
 

For demonstration, percentile values are displayed for deciles, though in practice 

additional percentile values are calculated.  In this example, a student with an Explore 
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score of 30 and an ACT score of 32 would fall under the 70th percentile band in the 

matrix above.   A student with an Explore score of 32 and an ACT score of 34 would 

receive an SGP of 50 as this is the highest percentile band for a 34 ACT score. As much 

of the controversy surrounding growth models lies in model inferences, SGPs offer 

community members, policy makers, parents, teachers, and administrators a familiar 

metric to base inferences.  Though the SGP model was designed to provide a descriptive 

measure of student progress relative to their peers, these measures facilitate inferential 

decisions in practice, including educator evaluations.  

Teacher growth scores are most commonly defined as the median growth 

percentile among his or her students. Some school systems define teacher growth scores 

as the mean SGP for his/her students, although this method is criticized because the 

difference between percentiles may not translate to equal growth among equally spaced 

percentile values.  Theoretically, growth between the 50th and 55th percentile bands may 

be greater than growth between the 90th and 95th percentile bands.  This nuance is lost 

when averaging SGPs.   

Growth Inferences 

Much of the controversy surrounding value-added modeling focuses on the 

inferences each type of model can support.  Accurate growth interpretation is crucial, as 

ambiguities within growth model terminology often cloud the inferences derived from the 

statistical output.  A fundamental challenge for VAM creators is balancing scientifically 

rigorous procedures (technical complexity) with easily interpretable results 

(transparency).  This idea extends to each component of VAMs, including growth 

inference and missing data methodology.  Complicated models may produce more 
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accurate results, but they will have limited utility if they are not easily communicated to 

educators and the general public. 

Sometimes model outcomes are used to infer causality, implying teacher effects 

are not just attributable to a teacher but also caused by a teacher.  There is substantial 

debate about whether or not these claims are supported by the design of various VAMs 

(D. W. Betebenner, 2009).  The classic framework for causal inference typically includes 

random assignment; however value-added methodology is sometimes regarded as “an 

attempt to capture the virtues of a randomized experiment when one has not been 

conducted (Chudowsky, Koenig, & Braun, 2010).” Many school systems take this 

concept one step further to conceptualize projected scores as a student’s performance 

under a typical learning environment and actual scores as the effect of their current 

learning environment.  In this framework, a student serves as his or her own control – 

either intentionally or unintentionally implying causality.  

In 2014 the American Statistical Association recommended increased discussion 

of VAM assumptions and limitations before interpreting outcome measures, specifically 

cautioning most VAMs quantify correlation and not causation (American Statistical 

Association, 2014).  Further, they emphasized model limitations “are particularly relevant 

if VAMs are used for high-stakes purposes.” The focus of this study is not whether 

VAMs support causal inferences but rather the effect of missing data on VAM inferences. 

However, sensitivity to missing data may be a consideration when discussing causality in 

the broader context of growth modeling. 

Rubin suggests, “causal inference can be thought of as a missing data problem, 

with at least half of the potential outcomes missing” (D. Rubin, Stuart, & Zanutto, 2004).  
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Since we cannot observe the counterfactual (e.g. what would have occurred if a student 

participated in a different classroom or intervention), VAMs that attempt to estimate an 

unobserved, alternative outcome can be conceptualized as missing data models.  Missing 

data within VAMs add an additional layer of complexity.  As we continue to research the 

reliability and validity of VAMs, missing data methodology must be explored.   

Missing Data in Growth Models 

Students may have incomplete data for a variety of reasons including 

absenteeism, student information systems errors, inconsistent test administration, 

alternative testing tracks, medical emergencies, and exclusion of English-Language 

Learners (ELL) or Individualized Education Program (IEP) groups to name a few.  For 

models that explicitly state how missing scores are accounted for, typically a minimum 

number of prior year scores are necessary to generate a predicted criterion score that is 

later evaluated to determine value-added growth.   Some do not differentiate missing 

predictors (historical scores), even though not all past scores contribute equally to a 

student’s predicted future performance. When predicting future math performance, a 

prior year math score is likely to carry much more predictive information than a reading 

score or a math score from earlier years.  As a result, the pattern of missingness should 

inform the choice of missing data methodology. 

In practice, several statewide growth models discard incomplete or partially 

complete student records when modeling student achievement.  Records are excluded 

from data processing due to mismatches, out of range values, and problems with student 

records. Merging multiple sources of data across districts and statewide systems makes it 

difficult to preserve intact student records.   In collaboration with American Institutes for 
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Research, New York state flagged missing prior year test scores and documented a 

greater effect for missing observations than indicators of economic disadvantage 

(American Institutes for Research, 2015).  

A number of states including Pennsylvania and Ohio use the SASÒ Education 

Value-Added Assessment System (EVAAS) model to measure growth.  SAS advertises a 

key feature that sets EVAAS apart is its ability to “[accommodate missing data] without 

introducing major biases by either eliminating the data for students with missing scores 

or by using overly simplistic imputation procedures” (SAS Insititute Inc., 2015).  The 

SAS model, like other models, is criticized for lack of external review (Amrein-

Beardsley, 2008).  To date, the only study of missing data methodologies used by SAS 

models was conducted by its developer, potentially biasing findings (Amrein-Beardsley, 

2008; S. P. Wright, 2004).  

Though discussion of missing data in VAMs is limited, it is even rarer in the 

context of SGPs.  Missing data is not formally addressed in SGP technical manuals. To 

date there are no routinely implemented missing data methodologies in use within SGP 

models, providing an opportunity for further methodological work.  Though some school 

systems using the SGP model outline safeguards to account for missing student data in 

their evaluation system, most do so at the teacher level instead of the model level (Diaz-

Bilello & Briggs, 2014).  This ensures teachers do not receive an evaluation score based 

on too few observations.  The danger is the SGP model is a normative growth measure, 

so non-random missing observations may bias the overall model used to provide a 

reference for each student’s growth.   
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An analysis of student data in 2012 revealed significant differences in median 

growth percentiles of students eligible for free or reduced lunch and their ineligible 

academic peers of similar prior performance (Colorado Department of Education, 2013).  

These findings were replicated in Missouri when researchers used an SGP approach to 

model student growth (Ehlert, Koedel, Parsons, & Podgursky, 2012).  Because there is 

variation among subgroups, if missing student observations do not adequately represent 

the population of students, the resulting model estimates could be biased.  Assessment 

completion rates fluctuate by district, impacting the representativeness of the aggregate 

data (Brundin, 2014). These reasons and others warrant further investigation of SGP 

properties when modeling incomplete student observations.   

Overview of Missing Data 

Missing data is a frequent problem for most researchers. In theory, the best way to 

mitigate the consequences of missing data may be to prospectively design a study that 

minimizes the likelihood of incomplete observations.  In practice, often the data 

collection process is a balance of cost, control, and feasibility that results in an imperfect 

final product with missing observations.  Large and small-scale research projects alike 

are susceptible to missing data due to attrition, participant error, data collection glitches, 

and data entry problems.  Longitudinal data utilized in student growth models is 

especially vulnerable to missing observations as the reasons above are compounded over 

multiple years, in addition to mobility in and out of the district.  As there are likely 

unobserved covariates in every student achievement data set (e.g. student motivation), 

missing data methodology is relevant to all educational researchers (D. Rubin et al., 

2004). 
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Concern about missing data is warranted given how prevalent this issue tends to 

be.  In a review of missing data in VAMs, McCaffery found large school districts were 

missing at least one score from between 42 – 80% of students (D. F. McCaffrey & J. 

Lockwood, 2011). The distribution of missing student scores was inconsistent across 

teachers.  On average, 37% of teacher rosters contain fully complete student records but 

this varies from 0 to 100% in every grade. Additionally, missing data occurred in non-

random patterns that are especially relevant when selecting a missing data methodology.   

Rather than discarding incomplete student records from analysis and potentially 

introducing bias into the sample, we wish to salvage as much data as possible to avoid 

loss of statistical power.  Moreover, excluding students with missing data from analysis 

creates an issue estimating standard errors.  The formula for standard error is dependent 

upon sample size, so reducing the sample size by even a few students adds instability to 

growth estimates that are then aggregated to the teacher level.  This problem is 

particularly relevant to elementary teachers as they typically teach one class, whereas 

middle and high school teachers may teach several classes (P. S. Wright, 2010).  Many 

models specify a minimum number of students that must be rostered to a teacher before 

an aggregated growth estimate can be calculated to avoid dramatic consequences of a 

reduced standard error.  Still, models perform better with more students. 

Fortunately, statistical packages make many missing data handling techniques 

readily available to researchers.  Unfortunately, the most common default procedure, 

listwise deletion (or complete case analysis), is only appropriate for specific situations 

which are unverifiable and will be discussed further in subsequent sections (Peugh & 

Enders, 2004; Roth, 1994).  This can be troubling as some researchers may not be aware 
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of the bias they introduce by accepting default settings.  Either explicitly or implicitly, all 

researchers account for missing data and should be aware of the consequences of their 

chosen method. 

Missing data methodology is a highly developed field, with seminal works 

produced by Rubin in the 1970s.  Before that time, researchers implemented several ad 

hoc methods to account for missing observations.  Mean imputation, regression 

imputation, and other single imputation procedures are still in use today, as they are easy 

to understand and implement despite their well-documented shortcomings.  As 

computing technologies expanded, advanced procedures such as multiple imputation and 

maximum likelihood estimation came to be the preferred methods of missing data 

handling for most situations.   

Despite these advancements, a gap remains between best practices and common 

practices, as ad hoc methods are still the most widely implemented procedures in 

educational research. Gaining attention in 1999, the American Psychological Association 

Task Force on Statistical Inference discouraged use of ad hoc methods, specifically 

referencing listwise and pairwise deletion as “among the worst methods available for 

practical application” (Wilkinson, 1999). Reviewing popular education and psychology 

journals, in 2004 Peugh and Enders found that most authors do not explicitly state how 

missing data was handled (Peugh & Enders, 2004).  Of the studies where the missing data 

handling could be identified, 96% of articles employed a deletion method to account for 

missing observations.  The remaining studies implemented either mean or regression 

imputation, and none used multiple imputation or maximum likelihood estimation.  In 

2006, Peng et. al conducted a similar review of 11 education journals and found that 97% 
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of identifiable data-handling techniques were deletion methods (Peng, Harwell, Liou, & 

Ehman, 2007). This is troubling because methodological issues from ad hoc missing data 

handling have been documented well before these studies were carried out.   

One barrier preventing applied researchers from adopting modern missing data 

techniques is the somewhat complicated, highly technical language of modern missing 

data literature.  However, given the serious bias that inappropriate methods may 

introduce, researchers have an obligation to account for missing observations as 

accurately as possible. This study aims to demonstrate differences in various approaches 

and tie those differences to practice decisions to emphasize the impact of missing data 

methodologies. 

Just as statisticians examine descriptive statistics of the sample before moving to 

analysis, it is necessary to have a sense of the amount of missing observations and 

patterns of missingness present in the data before deciding how to account for missing 

data. Patterns may shed light on the missing data mechanism or highlight errors in data 

collection that can be corrected. Exploratory analyses of missing observations usually 

include the percent and frequency of missing observations, and whether or not missing 

values are clustered among variables. The more that is known about missing values, the 

more confident the researcher can be in the choice of missing data method (Honaker, 

King, & Blackwell). 

Some missing data methods perform better when monotone missingness patterns 

are observed, particularly those that model the missingness in conjunction with the 

outcome measure (Carpenter & Kenward, 2012). A monotone pattern exists when 

missing observations for a particular variable are always missing in subsequent 
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observations.  Figure 5 illustrates the frequency (left panel) and pattern (right panel) of 

missing observations. 

Figure 5. Missing Data Patterns 

 

The histogram shows no data are missing in Grade 3, though the percent of missing data 

increases in grades 4 through 6.  The pattern of missing observations displayed in the 

right panel of Figure 3 show these values are missing in a monotone fashion.  In the 

pattern plot (right panel), blue represents complete data and red represent missing or 

incomplete data. In this demonstration, all 3rd grade scores are complete, indicated by all 

blue squares in the bottom row of the pattern plot.  The next row shows complete scores 

for 3rd and 4th grade, but missing scores for 5th and 6th grade.  Remaining rows show 

complete data for third grade only, and then complete data for grades 3-5 but missing in 

grade 6.  This scenario qualifies as a monotone pattern because cases with missing values 

at a given point in time are also missing values for subsequent observations. Monotone 
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patterns common for longitudinal studies (due to attrition) and in survey research (when 

participants decide to stop). 

Enders defines a general missing data pattern as “missing values dispersed 

throughout the data matrix in a haphazard fashion” (Enders, 2012).  However, he cautions 

that the patterns of missingness should not signal causality, in that the reasons for 

missingness may not be random even if the pattern appears so.    

Missing Data Mechanisms 

Rubin’s taxonomy of missing data mechanisms has become the standard 

classification scheme cited in most research (Donald B. Rubin & Wiley, 1987).  He 

specified three mechanisms: Missing Completely at Random (MCAR), Missing at 

Random (MAR), and Missing Not at Random (MNAR).  To demonstrate each condition, 

Table 2 presents all three missing data mechanisms imposed on fictitious student test 

data.  Free/reduced lunch participation is also included, as it commonly serves as a proxy 

for socioeconomic status in educational research. 

Table 2. Student Test Scores with MCAR, MAR, and MNAR Mechanisms 
Free/Reduced Lunch 

Participation 
Complete MCAR MAR MNAR 

No 99 99 99 99 
No 95 -- 95 95 
No 95 95 95 95 
No 92 -- 92 92 
Yes 90 90 -- 90 
No 89 89 89 89 
No 85 85 85 85 
Yes 76 76 -- -- 
No 67 67 67 -- 
Yes 55 -- -- -- 
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Data are MCAR when the probability of missing observations is independent of 

any other variable (latent or observed).  Essentially, data are arbitrarily missing and thus 

the observed data can be considered a random sample of the complete dataset.  In the 

example in Table 1, missing test scores in the MCAR condition are scattered randomly 

and are unrelated to free/reduced lunch participation or the test score itself.  This situation 

is ideal as it lends itself to the most methods to account for missing data.  Though 

estimates derived from a MCAR dataset will largely be unbiased if missing data are 

omitted from analysis, the main drawback of a MCAR mechanism is loss of statistical 

power.   

Data are MAR when the probability of missing observations is independent of the 

missing variable itself, but related to another variable.  In the example in Table 2, missing 

observations in the MAR conditions are not a function of test scores, but are related to 

free/reduced lunch participation.  As the missingness is conditional on another variable in 

the dataset, there are a variety of methods available to restore attributes of the would-be 

complete dataset using information from other non-missing variables.  More relaxed than 

the MCAR condition, most missing data procedures require data to be MAR.  There are 

no formal diagnostic tests to detect a MAR mechanism.  

Data are MNAR when the probability of missing observations is a function of the 

missing variable itself.  In the example in Table 2, all test scores below 85 are missing.  

Missing data are said to be “non-ignorable” or “inaccessible” if the missing data 

mechanism is MNAR.  This mechanism is most problematic for researchers, and requires 

specific analysis techniques (e.g. selection models, pattern mixture models) that are 

beyond the scope of this study.  
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Missing data mechanisms apply both to individual data points as well as the 

analysis.  For example, outcome variable Y is predicted by student test scores (X1) 

conditioned on free and reduced lunch participation (X2).  Assuming missing test score 

data is attributable to free and reduced lunch participation, this analysis would fit a MAR 

mechanism as long as both X1 and X2 are included in the model. However, a model 

where X1 is the only predictor of Y (not conditioned on X2, the cause of the missingness) 

may be defined as MNAR (Graham, 2009).  As all three mechanisms can exist 

concurrently within the same dataset, at best we can “make plausible guesses about 

[their] relative contributions and examine the probable effect of inaccessible missingness 

given a range of plausible assumptions (Graham, Taylor, & Cumsille, 2001).” Because 

missingness mechanisms cannot be verified, statisticians can conduct sensitivity analyses 

assuming different mechanisms to determine how robust their findings are. 

Missing Data Methodologies 

After considering the missing data pattern and mechanism, there are countless 

methods available to analyze data sets with incomplete observations. This review focuses 

on common techniques applicable to VAMs. The goal of implementing any missing data 

handling technique should be to produce unbiased parameter estimates with accurate 

variability (e.g. standard error) while retaining as much statistical power as possible. 

Most fall under deletion methods, imputation methods, or likelihood-based methods and 

have tradeoffs in terms of assumptions and efficiency.   

Methods specific to MNAR contexts are omitted from this discussion for several 

reasons. Situating missing data methods within a framework of missingness mechanisms 

is an important thought exercise, but the practical implementation of these procedures is 
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less straightforward given mechanisms are unverifiable and can occur simultaneously.  

MNAR is the most extreme of the 3 mechanisms, potentially limiting its application.  

Most VAMs assume MAR, and teacher effects assuming MAR and MNAR have been 

shown to be similar (D. F. McCaffrey & J. R. Lockwood, 2011). Last, some methods 

presented below do not require the researcher to make any assumptions about missing 

values.  

Deletion Methods 

Listwise deletion, or complete case analysis, is the default missing data handling 

approach for most statistical packages and is the most popular method cited in 

educational research (Peugh & Enders, 2004).  Only cases with full information are 

included in the analysis.  In the context of student growth models, a listwise deletion 

approach would eliminate any student without a complete set of historical achievement 

scores from the model.  Though this approach is attractive because it requires no 

additional computations to account for missing observations, its major drawback is that it 

can result in biased parameter estimates unless data are MCAR. Allison warns if the data 

vary across subgroups, “any nonrandom restriction of the sample (e.g. through listwise 

deletion) may weight the regression coefficients toward one subset or another (Allison, 

2002).”  

Even assuming MCAR, this approach is not preferable as it results in a smaller 

effective sample with reduced statistical power.  At worst, using a data set of 1,000 

observations across 5 variables with 5% missing values for each variable, the effective 

sample size is reduced to 774, as .955 x 1,000 = 774.  These calculations assume unique 

cases are only missing one variable.  Similarly, using a data set of 1,000 observations 
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across 5 variables with 20% missing values for each variable, the effective sample size is 

reduced to 328.  If cases have multiple variables with missing values, the effective 

sample sizes will be larger as fewer cases are omitted per missing value. 

Pairwise deletion, or available case analysis, salvages more data than listwise 

deletion by estimating correlations between variables using as many observed cases as 

possible.  This allows a correlation matrix to be computed with different sample sizes for 

different combinations of variables.   The SPSS statistical package is “by far the most 

dominant package” cited in journal articles today (Muenchen, 2015).  SPSS defaults to 

pairwise deletion when producing correlations and allows pairwise deletion as an option 

for other analyses as well.  Pairwise deletion is detectible when published studies produce 

different sample sizes for different procedures conducted on the same data set (Enders, 

2012). A key problem with this approach is that a standard error cannot be accurately 

estimated as sample size is part of the equation, and sample size varies depending on the 

parameter estimated.  As with listwise deletion, this method is only appropriate for 

MCAR conditions because if observed data differ systematically from missing data, 

estimates derived from available case analysis may be biased (Gelman & Hill, 2006). 

Imputation Methods 

Missing data approaches that estimate either individual missing values or 

distributions of plausible missing values all fall under the category of imputation 

methods.  Unlike deletion methods, these techniques retain all of the data collected. The 

imputation process prepares data for the substantive primary analysis, giving the 

researcher flexibility to conduct a broad range of post-imputation analyses since missing 
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data are accounted for in the imputation phase.  However, substantive analyses are 

contingent upon proper specification of the imputation model.  

Among the simplest imputation models widely used in practice is mean 

imputation.  Mean imputation, or mean substitution, replaces missing values with the 

variable mean, and has been a popular method for estimating missing observations 

because it is conceptually simple and easy to implement.  Imputing the mean salvages 

incomplete data and will not distort mean estimates. However these benefits are offset by 

its deficiencies.  Imputing missing values with the average value for that variable will 

constrict its variance as well as its covariance with other variables.  This method is not 

suited for any missing data mechanism. Often dummy variable adjustment is used in 

conjunction with mean imputation. After dummy coding imputed cases (e.g. complete 

cases=0 and imputed cases=1) and regressing a dependent variable on a set of 

independent variables, in theory, variation attributable to missing observations should be 

accounted for, however this method still results in variance underestimation (Cohen, 

Cohen, West, & Aiken, 2013).  However, this method generally results in biased 

parameter estimates even when the data are MCAR. Under no circumstances (MCAR, 

MAR, or MNAR) is this method appropriate (Allison, 2002). 

Conditional mean imputation, or regression imputation, replaces a missing value 

with the average value conditioned on other observed variables in the form of a 

regression equation. Because all missing observations will be imputed with values on the 

regression line, imputed cases have no residual variance.  This process shrinks the 

standard error and overestimates the association between the variable with missing 

observations and other variables in the model.  If the researcher has information about 
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what data are missing, weighted least squares regression (weighted on population 

distributions to correct for a disproportionate observed sample) may improve parameter 

estimates.  Though weighting can compensate for a systematic exclusion of 

subpopulations, it requires the researcher to specify the population distribution and 

assumes subpopulations responses are representative (e.g. no response bias causing 

missing observations).   

Another improvement on this process is stochastic regression, which adds 

randomly distributed residual error to each imputed case.  Stochastic regression is the 

only single imputation technique found to produce unbiased parameter estimates under 

MAR conditions (Enders, 2012).  Adding error may seem counterintuitive at first, but this 

approach works because the focus is not accurate predicted values for individual cases.  

Instead, imputing data points with error preserves the variability of the would-be 

complete dataset resulting in accurate parameter estimates. 

Whereas single imputation methods estimate individual values for missing 

observations that are then treated as observed values in the analysis, multiple imputation 

(MI) techniques estimate a distribution of plausible values. The purpose of MI is not to 

estimate individual data points, but instead to preserve properties of the would-be 

complete dataset had there been no missing observations (Enders, 2012).  Building on the 

underlying principles of stochastic regression and Bayesian estimation, MI generates 

multiple plausible values for each missing observation and then pools estimates derived 

from the primary analysis of interest (in this study, growth estimates), as demonstrated in 

Figure 6.  MI is performed iteratively until the specified number of imputations is met or 

convergence is reached.
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Figure 6. Multiple Imputation Process 

 
 
There are several imputation algorithms available, but the most widely used 

method in many statistical packages is described here.  First, stochastic regression is used 

to generate regression equations for imputation.  The Markov Chain Monte Carlo 

(MCMC) technique first simulates a random independent draw from the conditional 

distribution of missing values given the observed. Next, Bayesian methodology is used to 

estimate parameter values of the posterior distribution.  These values are then used to 

inform repeated-imputation inference (Schafer, 1999). Each iteration refines the 

estimation as the mean and covariance vectors from the previous imputation are used to 

construct new regression equations for the next round of imputation.  Random draws of 

residual error are added to each element. This process is an MCMC procedure as the 
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initial estimate is a random imputation, thus a Monte Carlo technique, and each 

subsequent step is dependent only on the previous step, thus a Markov Chain, defined by 

the following: 

(𝑌!"#
(!) , 𝜃(!)),  (𝑌!"#

(!) , 𝜃(!)), … (𝑌!"#
(!) , 𝜃(!)),  (2) 

where Ymis represents missing observations and θ represents the current parameter 

estimate of interest (Liang, Liu, & Carroll, 2011).  Several datasets are generated with 

different parameter estimates.  Finally, the results are pooled into a single set of 

parameter estimates that reflect our uncertainty about missing observations and ordinary 

variability among samples. 

An alternative method for multiple imputation uses a predictive mean matching 

approach to match observed and missing cases before imputing missing data.  Predictive 

mean matching (PMM) is an alternative, semi-parametric imputation approach.  Missing 

observations are replaced with “donor” values in the form of the closest observed value to 

the regression-predicted score (Landerman, Land, & Pieper, 1997).  To impute m number 

of imputations, the researcher imputes m=n random draws from the k donor values 

closest to the predicted value. There are several methods for specifying the donor pool, 

including 1) a fixed approach where k possible donor values are specified (e.g. k=5); 2) a 

caliper matching approach defined by a specified caliper width; and 3) an approach that 

sets the number of donor values to the number of observed values, but assigns closer 

donor values a higher probability of selection.  

Unlike other imputation algorithms, all imputed values are within the observed 

score range since they must come from other cases in the data set.  As the number of 
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missing observations increases (and subsequently the pool of donor values increases), the 

variability of point estimates increases (Morris, White, & Royston, 2014).  A potential 

pitfall for PMM is “donor sparseness,” when few donors are similar to predicted values. 

However, the main advantage of PMM is this approach is robust to violations of joint-

normality assumptions required by other parametric imputation procedures.  

While MI applications are readily accessible to researchers through popular 

statistical packages, this process cannot be automated to the extent that the researcher 

need not make decisions for each specific application.  Common misspecifications 

include omitting the outcome variable from the imputation model, and improperly 

modeling non-normal distributions (Sterne et al., 2009).  With every imputation strategy, 

the imputation model must be compatible with the analysis model.  Complicated analyses 

require equally complex imputation models to preserve attributes of the would-be 

complete distribution.  If the analysis model includes squared terms, interactions, or other 

transformations, the imputation model must include the same terms as not to impute bias 

into the model (Carpenter & Kenward, 2012). Though this sounds intuitive, the analysis 

model may not be clearly defined before the imputation model is developed.  

Specifying an imputation model is as much art as it is science. Often imputation 

models are constructed with a large number of predictor variables to utilize as much 

information as possible.  Overly simple imputation models may downwardly bias 

correlation estimates in the analysis model if they do not adequately capture 

dependencies between variables in the imputation model (Sterne et al., 2009). Other 

situations lend themselves to more parsimonious, slimmer models.  Since MAR is an 

assumption rather than an attribute of the data, the researcher must determine whether or 
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not this assumption is satisfied and if MI is appropriate.  No imputation approach is 

appropriate for every context, requiring researchers to carefully consider each phase of 

model specification.  

Some researchers face resistance when implementing imputation methods, 

fighting the perception they “make up” data points to benefit their hypothesis (Wayman, 

2003). This perspective overlooks the main goal of imputation: to recover attributes of 

the complete sample.  All data is measured with error and models routinely make 

predictions that could be conceived as “made up” estimates of future performance.  Even 

complete test score data carries error when students repeat an exam and receive different 

scores.  Similar to test-retest reliability, statisticians largely regard imputation procedures 

as a routine element of statistical practice (Fichman & Cummings, 2003).  Still, 

communicating model results to a wider audience may be challenging if data are imputed, 

evident in communication from the Pennsylvania Department of Education (PDOE) 

highlighting statistical properties of the Pennsylvania Value-Added Assessment System 

(PVAAS).  In a document debunking common misconceptions about PVAAS, the PDOE 

explains their model accounts for missing data without imputation techniques so that 

“…no values are explicitly imputed (statistically “made up”) for the missing scores! 

(PDE, 2015)” 

Likelihood-based Methods 

Maximum Likelihood (ML) is a procedure to estimate parameters by finding the 

most probable values for missing observations given observed distributions. By retaining 

information about other variables, ML techniques improve model accuracy by 

“borrowing” information from observed attributes to estimate missing attributes (Enders, 



38 

	

2012). As each variable relates to other variables in the model, improving the predictive 

ability of one variable can affect parameter estimates of other variables.  Assuming 

reading, science, and math scores have a joint normal distribution and are all correlated, 

missing reading test scores can be estimated by borrowing information from math and 

science scores.  Different “auditions” are compared by their log-likelihood values, with 

the smallest value indicating the highest likelihood (Enders, 2012).  Log-likelihood 

computations use only complete data, creating a different formula for each missing data 

pattern.  Mixed models employ a restricted maximum likelihood technique that accounts 

for missing observations.  

As computing technology advanced, MI and ML grew in popularity 

simultaneously.  However, they should not be framed as competing approaches; each 

produce consistent estimates when implemented appropriately. Both procedures require 

multivariate normal data and MAR assumption, and produce asymptotically equivalent 

results as sample sizes increase (Enders, 2012).  Though they share attractive properties, 

MI and ML methodologies are fundamentally different.  The MI process relies on 

posterior probability.  Posterior probability is the opposite of maximum likelihood in that 

it represents the probability of parameter estimates occurring given evidence from the 

data, whereas ML techniques represent the probability of observed outcomes occurring 

given parameter estimates. Unlike MI, traditional likelihood-based models account for 

missing data and perform the analysis of interest simultaneously, meaning ML methods 

only use information from variables included in the analysis (no auxiliary variables). 

Another drawback of maximum likelihood based methods is they cannot accommodate 

outcome-dependent missingness.  In contrast, multiple imputation procedures can impute 
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missing data among the outcome variable as well as use outcome variable information as 

a predictor when imputing missing data in other variables.  

Inverse Probability Weighting 

Again, the more information the researcher has about missing data, the easier it is 

to account for missing observations. In situations where the researcher has prior 

information about a population distribution, inverse probability weighting (IPW) can be 

useful to upweight subgroups that are underrepresented due to missing data (Seaman & 

White, 2013).  Similar to selection sampling techniques, IPW re-weights data to create a 

desired pseudo-population that mirrors known population characteristics.  IPW is a 

complete case analysis that weights cases by the inverse of their probability of being 

complete.  For example, if school district enrollment documents a known percentage of 

low-income students, but student achievement data is only available for a subset of this 

group, IPW can account for the discrepancy between observed and missing student 

achievement scores by assigning a greater weight for low-income students. Unlike MI 

and ML, this approach requires the researcher to specify a model for the probability of 

missingness but makes no assumptions about the analysis model. Therefore it is not 

limited to a joint normal distribution.  Similar to MI, analyses incorporating IPW occur in 

two phases.  This allows the researcher to take advantage of information provided by 

auxiliary variables when specifying the missingness model. The inverse of the predicted 

probabilities for a complete record then provide analysis weights.   

If the probabilities of missingness are accurately accounted for, IPW estimators 

are consistent regardless of the mechanism (MAR, and MNAR).  Weights are generally 

more precise in larger samples, though corrections can be used for small sample 
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estimation (e.g. SAS PROC G).  There are also methods to stabilize weights (Carpenter 

& Kenward, 2012). While previous literature documents the inefficiencies of IPW 

compared to MI and ML, it trades efficiency for robustness. IPW requires fewer 

assumptions and can be applied to a variety of circumstances. 
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CHAPTER THREE 

METHODS 

As described in detail in chapter 2, VAMs present methodological challenges in 

regards to missing data.  Therefore missing data methodologies are explored in the 

context of the Student Growth Percentiles (SGP) model.  It is not a goal of this analysis to 

document the validity of the SGP model for measuring student achievement growth or 

educator effectiveness.  Instead, the primary goal of this analysis is to quantify the 

variability in educator evaluations due to missing student data.  The following research 

questions are addressed: 

1. How sensitive are growth estimates to missing data? 

2. Does the choice of missing data methodology result in different growth 

inferences when used in an educator evaluation framework? 

To assess the adequacy of each methodology in recovering Student Growth Percentiles 

(SGPs), Median Growth Percentiles (MGPs), and teacher proficiency ratings, estimates 

were compared using the following: listwise deletion, likelihood-based imputation using 

an Expectation-Maximization (EM) algorithm, multiple imputation using a Markov 

Chain Monte Carlo (MCMC) method, multiple imputation using a Predictive Mean 

Matching (PMM) method, and Inverse Probability Weighting (IPW).  Additionally, this 

study explores how results of each approach translate to evaluation inferences.   
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SGP Model Specification  

Before artificially censoring observations, SGP estimates were calculated and 

aggregated to the teacher level to serve as a benchmark for comparing missing data 

methods.   Five copies of the censored dataset were used to impose each of the 5 missing 

data methods in this study.  After preprocessing data using each missing data method, 

growth was calculated using a student growth percentiles model.  No demographic 

characteristics are used in the growth analysis; 3rd and 4th grade mathematics scores are 

the only variables used in the SGP model. To generate student growth estimates, the τth 

quantile of 4th grade mathematics achievement, represented as 𝑄 𝜏  𝑋 = 𝑥 = 𝑥′!𝛽(𝜏)  is 

solved by the following: 

                              𝛽(𝜏)  = 𝑎𝑟𝑔min!∈!! 𝑃! 𝑦! − 𝑥!!𝛽!
!!!   (3) 

where 0 < τ < 1 (Chen, 2005).  This means τ = .25 represents the 25th percentile, τ = .5 

represents the median or 50th percentile, and τ = .75 represents the 75th percentile. The 

SGP model estimates quantiles 1 through 99 so comparisons to fitted values can be made.  

A student’s SGP was determined by the closest quantile curve to their actual score given 

their prior test history.  

The SGP model implemented in this study sets four interior knots and two 

boundaries.  Regression quantiles are estimated for quantiles 1 to 99 given current and 

prior achievement, however not all quantiles may be observed when calculating SGP 

scores.  For example, if only two students received a 3rd grade baseline score of 180, a 

maximum of two distinct SGPs would be observed for this part of the conditional 

distribution though quantiles 1 through 99 are estimated.  SGPs are generated comparing 

predicted values based on a prior year score to expected values to find the closest 
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percentile value.  As shown in Table 3, a student that had a 3rd Grade Score of 240 and a 

4th Grade Score of 255 would receive an SGP of 75 as this percentile is the closest 

predicted value. 

Table 3. Example SGP Matrix 
3rd Grade 

Score 
4th Grade Mathematics Percentile 

P5 P25 P50 P75 P95 
160 160 160 160 170 185 
171 160 165 166 175 225 
… … … … … … 
239 240 242 245 250 250 
240 240 245 250 255 260 

 

A student that received both a 160 for both 3rd and 4th grade would receive an SGP of 50, 

as this is the highest of several quantiles that produce the same predicted score value.  

Estimated quantiles that are close in their predicted value for 4th grade scores are 

noticeable in Figure 9 (below) in areas of the distribution where quantile regression 

curves are either close in proximity or overlapping. 

Sample and Data 

To illustrate the consequences of different missing data handling techniques for 

student growth data, this study analyzes Measures of Academic Progress (MAP) 

mathematics achievement scores.  Actual test scores were chosen over simulated data to 

ensure the relationship between past and future performance accurately reflects what 

exists in practice.  Though simulating scores could provide additional statistical control 

over missing data patterns/mechanisms, teacher effect sizes, and other variables, these 

controls may not translate to practice settings where data is often more complicated.  

  In general, more test score data usually translates to greater predictive 

information.  Because the SGP model can accommodate several prior years of data and 
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not all missing observations contribute equally to a student’s predicted future 

performance, arguably teachers of later grades may be less affected by missing 

observations than their counterparts who teach elementary grades with less historical 

data.  To isolate the effect of missing data from confounding variables (e.g. different 

number of predictors, different measurement error across assessments, etc.), this analysis 

concentrates on evaluations across a single subject and grade.  For an evaluation scenario 

with one prior year of data, 4th grade mathematics growth was evaluated using 3rd grade 

math achievement as the single predictor.  Since this dataset contains missing data like all 

large educational datasets, missing observations were removed to arrive at a pseudo-

population of complete scores for analysis.   Analysis of the full set of 415 students with 

all scores in tact serves as the basis for comparison for missing data methods and is 

hereafter referred to as the benchmark analysis. 

Mechanism to Assign Censoring 

Since missingness mechanisms cannot be verified to inform our choice of missing 

data methodology, a reference population was used to simulate a pattern of incomplete 

records instead of specifying a missingness mechanism.  Missing student data occur for a 

variety of reasons, perhaps because multiple missingness mechanisms are at work 

simultaneously. Patterns of missingness observed in from 6th grade student records 

outside the analytic sample were used to inform the missingness mechanism imposed on 

the analysis sample of 4th grade students.  This reflects our uncertainty about why student 

records are missing yet mirrors complex patterns that occur in practice. Propensity score 

matching of complete and incomplete student records in the reference population was 

conducted using the following variables: IEP status, LEP status, gender, ethnicity, free or 
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reduced lunch eligibility, and a standardized prior mathematics achievement score.  

Equations generated were used to artificially censor 4th grade scores in the analysis 

sample. As students are non-randomly assigned to teachers, student rosters were not 

manipulated.  It is important to note that student growth is the outcome of interest in the 

primary analysis model (the SGP model) used in this study.  Growth was calculated using 

4th and 3rd grade mathematics scores only; demographic variables were not included in 

the SGP analysis.   

Benchmark Analysis and Listwise Deletion 

 Both the benchmark (pre-censored) analysis that serves as a comparison group for 

all other missing data methodologies and the listwise deletion analysis do not require any 

additional computations to preprocess data before conducting the SGP analysis.  Since 

listwise deletion is itself a complete cases analysis, these two models were identical in all 

but their inputs.  As described in subsequent sections, other missing data procedures 

account for missing data before implementing the same SGP analysis.  

Likelihood-based Imputation using an EM Algorithm 

 The EM algorithm does not impute scores directly.  Instead, it estimates 

parameters by maximizing the observed data log likelihood function iteratively, using an 

E-step and M-step.  Using Q to denote the statistic of interest, the probability of Q given 

observed values Yobs can be expressed using the following: 

𝑃 𝑌 𝑄 = 𝑃 𝑌!"#,𝑌!"# 𝑄 = 𝑃 𝑌!"# 𝑄 𝑃(𝑌!"#|𝑌!"#,𝑄),   (4) 

The log likelihood function of the above equation is: 

𝑙 𝑄 𝑌 = 𝑙 𝑄 𝑌!"# + log𝑃 𝑌!"# 𝑌!"#,𝑄  (5) 
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To estimate Ymis, this technique first calculates model parameters (e.g. means, variances, 

and covariances) given the complete data.  Maximum likelihood techniques produce 

regression equations for each variable given its relationship with observed variables.  

These equations are then used to produce estimates for missing observations.  Using the 

newly complete dataset of imputed and observed scores, parameter estimates are re-

calculated as more data is available.  This process is repeated iteratively until 

convergence is reached. To reflect our uncertainty about the missing observations, 

normally-distributed stochastic error is introduced to parameter estimates. For application 

in this study, these resulting parameter estimates were used to impute individual missing 

values through linear regression.  Maximum likelihood estimates of the mean vector and 

covariance matrix were obtained at the final iteration and were used to estimate single 

values for each missing 4th grade mathematics score.  The newly “complete” data set was 

then used for the computation of student growth percentiles. 

Multiple Imputation by Markov Chain Monte Carlo (MCMC) 

 This technique uses a stochastic model to produce m number of imputations with 

m corresponding parameter estimates, reflecting our uncertainty of the missing 

observations.  Through an imputation step (i-step) and posterior step (p-step), MCMC 

iterates between likely imputation values and the resulting posterior distribution.  Again, 

using Q to denote the statistic of interest, the probability of Q given observed values Yobs 

is expressed using the following: 

𝑃 𝑄 𝑌!"# =  𝑃 𝑄 𝑌!"#,𝑌!"# 𝑃 𝑌!"# 𝑌!"# 𝑑𝑌!"#       (6) 
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Next, the I-step is expressed as: 

𝑌!"#
(!!!)~𝑃 𝑌!"# 𝑌!"#,𝑄(!),𝑈(!) ,       (7) 

where U is the estimated variance of Q, and t is an indicator of time used to order each 

step.  In this study a non-informative prior was used.  Once the first set of estimates were 

computed, new values were drawn from the posterior distribution of the newly complete 

dataset (using observed and imputed values).  The p-step is expressed by the following: 

𝑄(!!!),𝑈(!!!)~𝑃(𝑄,𝑈|𝑌!"#,𝑌!"#
(!!!))   (8) 

The posterior distribution of Q is an average of repeated draws from  P(Ymis|Yobs), 

posterior predictive distributions of missing data given observed data.   

The analysis produced five imputed datasets (m=5) to analyze separately using the SGP 

model to calculate student growth percentiles.  After m=5 imputations were calculated, 

SGPs were converted to normal curve equivalents (NCEs) for pooling using the 

following equation: 

𝑄 =  !
!

𝑄!!
!!!   (9) 

This was necessary since the SGP metric is not suitable for pooling given it is not of an 

equal interval property.  Pooled NCEs were then converted back to the SGP metric to 

arrive at the final estimates used for growth inferences and evaluation purposes.  

Multiple Imputation by Predictive Mean Matching (PMM) 

 This method is similar to the linear regression-based MCMC in its methodology 

but generates final imputation values from donor values of similar observed scores. First, 

regression equations are used to estimate parameters given observed values.  Parameter 
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estimates are used to create predicted values for both observed and missing values.  A 

pool of potential donor values (k) is formed using the closest observed predicted values to 

each predicted missing value.  In this study, k was set to 1 (the default value for SPSS and 

the mi command in Stata) meaning predicted values of missing cases are matched to the 

observed case with the closest predicted value. Imputations are random draws from the 

donor pool and are imputations are matched to missing observations via their predicted 

values.  In this study, imputations derived from a PMM algorithm were calculated using 

the following: 

1. Obtain 𝑌!"#=   𝑌𝑖 =  𝑥!!𝛽 ∶ 𝑖 ∊  𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑  

2. Obtain 𝑌!"# =  𝑌𝑗 =  𝑥!!𝛽 ∶ 𝑗 ∊  𝑀𝑖𝑠𝑠𝑖𝑛𝑔, 𝑖 ∊ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑  

3. Locate 𝑌!"# observations with predicted values closest to 𝑌𝑗 for all 𝑗 ∊  𝑀𝑖𝑠𝑠𝑖𝑛𝑔. 

4. For m=n, impute random draws from k observations from donors closest to the 

predicted values of  𝑌!"#. 

Last, similar to other MI approaches, after analyzing imputed datasets separately to 

produce different sets of SGPs, SGP estimates were converted to normal curve 

equivalents (NCEs) and pooled.  Pooled NCEs were then converted back to the SGP 

metric. 

Inverse Probability Weighting 

Unlike the other methods explored in this study, inverse probability weighting 

(IPW) methods re-weight data to create a pseudo-sample that mirrors known population 

characteristics. IPW methods do not estimate or impute missing observations, and are a 

complete case analysis similar to listwise deletion in that they omit any cases with 

incomplete data. Instead, IPW procedures upweight cases that may be underrepresented 
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due to missing data. Similarly, overrepresented student groups are assigned a lower 

weight to make the observed sample more proportionate to the population.    

First, in order to derive probabilities necessary to calculate analysis weights, 

logistic regression was used to model complete or incomplete record status.  An indicator 

variable, Ri, denotes a fully complete student record.  Inverse probability weighting 

methods weight the ith observation by  Ri / πi0 (the inverse of its probability of being 

observed).  For example, a student with complete data and πi0 = .2 is given the weight of 

five students in an attempt to make the sample more representative of the would-be 

complete population.   

In this study, the probability of inclusion was determined by modeling 

missingness in a reference population of 6th grade students outside the analytic sample of 

4th grade students.  The following terms were used as predictors in the logistic regression 

model: gender, ethnicity, LEP status, IEP status, free or reduced lunch eligibility, and 

standardized prior year mathematics achievement score.  Coefficients derived from the 

missingness model were then used to generate a predicted probability of inclusion for 

each student in the analytic sample of 4th grade students.  

 Next the primary analysis of interest, the SGP analysis, was carried out using the 

weighted dataset to produce quantile estimates of 4th grade growth from 3rd grade 

baseline mathematics achievement.  After estimating growth quantiles using the weighted 

data, a student’s SGP was determined by identifying the quantile with closest predicted 

value to the student’s actual 4th grade score.  The process of assigning an SGP remains 

the same for IPW data as it was for all other study scenarios; a matrix of SGP quantiles 

was used as a lookup table to identify the closest expected and actual 4th grade score 
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values given a student’s 3rd grade achievement score. 

Weights were used to create a pseudo-sample representative of the would-be 

population in creating the SGP matrix, however they were not used to assign a growth 

score. The SGP growth metric itself was not weighted in subsequent calculations, 

meaning each student received one growth score and no student’s SGP is weighted more 

than any other student’s.  The goal of IPW was to rebalance an unrepresentative sample 

of students when generating quantile estimates.  Thus, weights were only utilized to 

generate a matrix of SGP quantiles and corresponding predicted scores; weights were not 

used in any other calculation (e.g. aggregating growth scores).   

Evaluation Classification Methods 

Part of any successful data analysis is extracting meaning from a dataset.  

Evaluation inferences derived from VAMs are the most controversial aspect of growth 

modeling; therefore, documenting changes among teacher proficiency categories is 

essential.  The frequency of misclassifications within the VDOE evaluation framework 

and overall magnitude of rating bias will be explored.  This element grounds the 

methodological findings, as differential model precision may not be relevant to practice.  

Conversely, seemingly negligible differences in parameter estimates could translate into 

unacceptable inference fluctuations given the high-stakes environment of teacher 

evaluations.   

Thresholds were needed to determine the magnitude of teacher evaluation 

misclassifications that are attributable to missing data, so the approach by the Virginia 

Department of Education (VDOE) was adopted.  The extent to which these proficiency 

categories represent differences in educational effectiveness is beyond the scope of this 
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study.  Rather, documenting movement among these categories is intended to 

demonstrate the practical consequences of missing data on teacher evaluations.  VDOE 

uses the following framework to determine teacher evaluation scores (Jonas): 

Table 4. Growth Classifications 
Student Growth Categories 

Low growth SGPs of 1 to 34 
Moderate growth SGPs of 35 to 65 
High growth SGPs of 66 to 99 

Teacher Evaluation Categories 
Exemplary More than 50 percent of students demonstrated 

high growth and no more than 10 percent 
demonstrated low growth 

Proficient At least 65 percent of students demonstrated 
moderate or high relative growth (the 
percentage of students with high growth + 
moderate growth > 65 percent) 

Developing/ Needs Improvement < 65 percent of students demonstrated moderate 
or high growth; AND < 50 percent of students 
demonstrated low growth. 

Unacceptable > 50 percent of students demonstrated low 
growth 

 

The VDOE framework is one of many evaluation frameworks used in practice.  Others 

use the Median Growth Percentile metric for educator evaluation purposes.  To consider 

the impact of each missing data method on MGP estimates used for accountability 

purposes, the Massachusetts Department of Elementary & Secondary Education (MDOE) 

framework was also considered.  MGPs below or equal to 35 are categorized as low, 

MGPs above or equal to 65 are categorized as high, and MGPs between 35 and 65 are 

categorized as moderate.  

Criteria for Comparisons 

 Since missing data techniques have different goals (producing unbiased parameter 

estimates, estimating accurate variability, and retaining statistical power), several 
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methodological properties were explored. Correlations between MGP estimates for each 

condition are compared.  Rank correlation coefficients between MGPs and 

complete/incomplete student observations statuses (frequency of student missingness) 

were calculated. Mann-Whitney tests were used to detect differences in MGP 

distributions derived from each missing data methodology compared to the complete 

distribution.  To compare the magnitude of growth differences, mean absolute errors in 

growth percentiles were compared. 



	
 

53 
	

CHAPTER FOUR 

RESULTS 

The results of this study are organized by the two overarching research questions, 

first exploring the methodological impact of missing data in estimating student growth, 

and then considering practical implications for implementing missing data methods in 

practice.  Chapter V discusses findings from both research questions as they relate to 

education policy. 

Research Question 1 

How sensitive are growth estimates to missing data? 

Data 

Students in this study consist of a single cohort of 4th grade public school 

students from one school (n=415) over two academic years.  Growth from 3rd to 4th 

grade was evaluated using Student Growth Percentile (SGP) methodology.  Assessment 

data include 3rd and 4th grade Measures of Academic Progress® (MAP) mathematics 

achievement scores.  The sample means for 3rd and 4th grade MAP scores were 205.4 

and 213.8 respectively, slightly higher than the national norms estimated by the publisher 

(203.1 for 3rd grade and 212.5 for 4th grade). Classroom rosters were used to link 

mathematics teachers to students as part of an accountability framework.  In addition to 

student achievement scores, data include the following demographic characteristics: Free 

and Reduced Lunch eligibility, LEP status, IEP status, Gender, and Ethnicity.  
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Descriptive statistics for student demographic characteristics are provided in subsequent 

sections.   

Assigning Artificial Missingness 

A reference population of 6th grade students from the same school was used to 

explore missing data patterns found in practice.  Propensity scores were calculated by 

regressing an indicator variable for a complete or incomplete student record (1=complete, 

0=incomplete) on student assessment history and demographic characteristics. While 

propensity score methodology is commonly used to process quasi-experimental data for 

causal inference, its primary function in this study is to distill a multidimensional 

covariate profile into a single dimension. By matching students on demographic and 

achievement variables, propensity scores allow comparisons to be made between students 

of similar propensity scores while retaining information from multiple dimensions used 

in their calculation.  

Propensity scores were calculated for 4th grade students in the study sample using 

the regression coefficients derived from the reference population. Students with the 

lowest predicted probabilities for complete data were flagged for censored status, and 

their 4th grade mathematics scores were removed from the analytic sample.  This step 

was implemented to adjust for differential probabilities of observing complete data 

among various student groups when assigning artificial missingness in the analysis 

sample.   Figures 7 and 8 present student characteristics and their associated predicted 

probabilities for complete data. 
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Figure 7. Propensity Scores Disaggregated by Student Ethnicity 

 

Figure 8. Propensity Scores Disaggregated by Student Characteristics 

 

In general, LEP students were less likely to have complete student records (X2 

=26.451, p<.001), along with students with IEPs (X2=14.049, p<.001), and students 

eligible for Free or Reduced Lunch (X2=25.316, p<.001).  Female students were more 

likely to have complete records (X2= 9.620, p=.002).   Black and Hispanic students were 

more likely than White students to have incomplete records (Wald=48.866, p<.001; and 
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Wald=12.752, p<.001, respectively).  These differences suggest missingness occurred 

systematically.  

Missingness was assigned to 4th grade students in the analysis sample to mimic 

the patterns of missingness that were observed in the reference population.  As it is likely 

multiple missingness mechanisms are in place simultaneously, the choice was made to 

assign missingness using all available student information.  This design does not 

explicitly condition missingness on theoretical parameters determined by the researcher 

to fit MAR, MCAR, or MNAR assumptions.  Though missing data mechanisms are 

unverifiable, a discussion about the plausibility of a MAR mechanism is presented in 

Chapter V along with implications for statistical methodology and educational policy. 

Censored Sample 

To determine the magnitude of missingness to impose on the complete dataset, 

the amount of missingness was examined in the reference population of 6th grade 

students.  7% of students had incomplete mathematics achievement data in the reference 

population; therefore 7% of current year mathematics scores were also censored in the 

analytic sample of 4th grade students. For the missing data methods that do not impute 

scores (listwise deletion and inverse probability weighting), students with censored 

current year mathematics scores are in effect censored at the unit level since the SGP 

analysis in this study uses only two variables (3rd and 4th grade mathematics scores).   

Several differences were observed between censored and non-censored students.  

Figure 9 illustrates the relationship between the 3rd and 4th grade mathematics scores; 

concentration ellipses are plotted at .5 and .8 and OLS regression lines are overlaid for 

censored and observed student cohorts. 
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Figure 9. Complete Data Distributions of 3rd and 4th Grade Scores 

 
Censored students tend to be lower in both baseline and evaluation year 

achievement scores, suggesting data are not missing completely at random.  Missing data 

concentrated at the lower end of the joint distribution does not automatically imply model 

estimates will be biased, however it does suggest that missing data have the potential to 

skew estimates if not accounted for since missingness is systematic and non-ignorable.   

In addition to differences in mathematics achievement data, the censored and non-

censored student groups showed differences in demographic composition. Tables 5 

through 9 provide frequency distributions of demographic characteristics among censored 

and non-censored students.  
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Table 5. Gender Frequencies of Censored and Non-Censored Students 

Gender 
Censored Status 

Total 
Censored Non-censored 

Female 7 (23.3%) 203 (52.7%) 210 (50.6%) 
Male 23 (76.7%) 182 (47.3%) 205 (49.4%) 
Total 30 (7.2%) 385 (92.8%) 415 (100%) 
Note: Column percentages are reported.  

As expected, gender differences between censored and non-censored student were 

observed since gender was a factor in the propensity score model used to assign artificial 

missingness.  Female students tended to have higher propensity scores for complete data, 

resulting in a greater proportion of male students in the censored group. 

Table 6. Free or Reduced Lunch Eligibility of Censored and Non-Censored Students 
Free or Reduced  
Lunch Eligibility 

Censored Status 
Total 

Censored Non-censored 
Eligible 15 (50%) 55 (14.3%) 70 (16.9%) 
Not eligible 15 (50%) 330 (85.7%) 345 (83.1%) 
Total 30 (7.2%) 385 (92.8%) 415 (100%) 
Note: Column percentages are reported.   

It is notable that half of FRL students were censored, despite comprising only 16.9% of 

the total student body.  Free or Reduced Lunch eligibility is often used as a proxy for 

socio-economic status.  As a greater percentage of censored students were FRL eligible, 

missing data has the potential to disproportionally impact or misrepresent low-income 

students. 	  
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Table 7. LEP Status of Censored and Non-Censored Students 

LEP Status 
Censored Status 

Total 
Censored Non-censored 

LEP 4 (13.3%) 3 (0.8%) 7 (1.7%) 
Not LEP 26 (86.7%) 382 (99.2%) 408 (98.3%) 
Total 30 (7.3%) 385 (92.7%) 415 (100%) 
Note: Column percentages are reported.  

 
A relatively small number of total students were Limited English Proficient 

(1.7%); however more LEP students were censored from the analysis sample.  LEP 

students tended to have lower propensity scores for complete data and this manifested in 

in greater proportions of LEP students in the censored student group. 

Table 8. IEP Status of Censored and Non-Censored Students 

IEP Status 
Censored Status 

Total 
Censored Non-censored 

IEP 9 (30%) 33 (8.6%) 42 (10.2%) 
No IEP 21 (70%) 352 (91.4%) 373 (89.9%) 
Total 30 (7.3%) 385 (92.8%) 415 (100%) 
Note: Column percentages are reported.  

Students with Individualized Education Plans (IEPs) comprised a greater proportion of 

the censored student group than the non-censored group. 	

Table 9. Ethnicities of Censored and Non-Censored Students 

Ethnicity 
Censored Status 

Total 
Censored Non-censored 

Asian 0 (0%) 8 (2.1%) 8 (1.9%) 
Black 12 (40%) 5 (1.3%) 17 (4.1%) 
Hispanic 8 (26.7%) 44 (11.4%) 52 (12.5%) 
Other 1 (3.3%) 20 (5.2%) 21 (5%) 
White 9 (30%) 308 (80%) 317 (76.4%) 
Total 30 (7.2%) 385 (92.7%) 415 (100%) 
Note: Column percentages are reported.  

Censored and non-censored were dissimilar in ethnic composition, as non-white 

students were a majority of the censored group (70%) and comprised only 20% of the 



60 

	

non-censored group.   Though demographic variables are not modeled in the SGP 

analysis, these characteristics are used as to pre-process missing data in each method in 

this study with the exception of listwise deletion.  Disparities in demographic 

distributions are important in that they distort the representativeness of auxiliary or 

weighting variables.  

 Benchmark Analysis 

The benchmark/complete data analysis serves as a benchmark comparison for the 

five missing data methods explored in this study.  To determine how well missing data 

methods recover attributes of the hypothetically complete data, student growth 

percentiles (SGPs) derived using the complete data are compared to observed SGPs 

derived with each missing data method.  Complete case SGPs are operationally defined to 

represent true or benchmark growth scores in that these are the scores that would have 

been observed had there been no missing data.  
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Figure 10. Benchmark Data: Conditional Quantile Regression Curves 

 

Figure 10 displays complete case conditional quantile regression estimates for the 

5th, 25th, 50th, 75th and 95th student growth percentiles (τ= .05; .25; .5; .75; and .95).  

These quantiles are selected to visualize model estimates, however the SGP model 

estimates 99 quantiles total.  Regression curves are particularly sensitive to extreme 

scores in both tails where data are sparse.  There is a prominent pattern in which the 

quantile curves in the middle of the distribution are closer together, resembling a 

bottleneck.  Due to this structure small differences in 4th grade scores can translate to 

large differences in percentile values in this part of the distribution.  When data are more 
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compact, scores are in closer proximity to several quantile curves and thus are closer to 

several estimated growth percentiles.  This concept is illustrated in Figure 8 (above) as 

the 75th and 95th quantile curves are further apart at a baseline score of 180 than they are 

at 200.   As a result, greater gains are necessary to move from the 75th to 95th growth 

percentiles for students with a baseline score of 180 compared to their peers with a 

baseline score of 200. 

Analysis of Missing Data 

Listwise deletion (LD) 

 The listwise deletion method ignores entire records with missing values and 

makes no additional adjustments for missing data before proceeding with the primary 

analysis of interest (in this case, the SGP model).  Though missing data estimation 

techniques are a focus of this study, the listwise deletion method that does not estimate 

missing data is arguably the most important condition to investigate. This method is the 

default method implemented in practice.   

In this study, the listwise deletion method produces SGPs for the subset of 

students with fully observed data only.  Since a student’s 3rd grade mathematics score is 

the single predictor variable used in the SGP model, no other academic indicators are 

available to help preserve attributes of the true growth distribution in the growth model. 

Figure 11 presents residual values produced by listwise deletion that were calculated by 

subtracting the true/benchmark SGP from the observed SGP.   
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Figure 11. Listwise Deletion: SGP Residuals by 3rd Grade Mathematics Score 

 

No student shifted more than 19 percentile values, though missing data did cause 

deviations from benchmark scores visible as SGPs stray from the 0 residual line in the 

plot above.  This dispels the notion that missing data are only an issue for teachers with 

missing student scores, as SGP values fluctuate among students with complete data when 

missing data are ignored.  Negative residual values that indicate the LD model 

underestimated the true SGP are evident across the 3rd grade score distribution.  The 

average residual value for the LD model was -1.19.   Overall, students with higher prior 

achievement scores were more robust to shifting growth percentiles due to missing data 

as residuals for baseline scores below 200 show greater variation.  

Imputation using an Expectation-Maximization (EM) Algorithm 

This method takes advantage of partially complete data rather than discarding it to 

incrementally improve parameter estimates over several rounds of approximating missing 

scores. The first step in the EM imputation process is to estimate the conditional expected 

values for missing data using the mean vector and covariance matrix of observed data.  
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Observed and expected values are used to collectively update the mean vector and 

covariance matrix.  Then, new parameter estimates are used in the next iteration to 

generate new expected values for missing observations, and this process repeats itself 

until convergence is reached.  While the EM algorithm does not explicitly impute values, 

in this study the final parameter estimates are used to generate likely achievement scores 

for students with missing data given their other known information.   

To arrive an imputation dataset for the SGP analysis, maximum likelihood 

procedures are used to estimate regression equations that predict the means, variances, 

and covariances with a higher accuracy than traditional regression methods.  Both types 

of imputation models assume a multivariate normal distribution and impute values 

through linear regression.  Similarly, both methods underestimate standard errors and 

require adding error to each estimate to preserve variability.  Auxiliary variables 

including demographic characteristics and prior assessment history were used in the 

imputation models to “recover” the 4th Grade test scores needed to compute SGPs.   

Figure 12 shows SGP residuals produced by the EM imputation model across the 

baseline score distribution.   
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Figure 12. EM: SGP Residuals by 3rd Grade Mathematics Score 

 

Noticeable in the plot above, residuals for students with higher baseline scores 

were smaller on average.  There are several important observations to make from this 

plot.  The EM imputation data showed a greater range in residual values than did the 

listwise deletion method.  No student shifted more than 50 percentile values under the 

EM imputation method compared to 19 with listwise deletion.  Unlike the listwise 

deletion method, residuals in this plot show less consistent bias down, as residual values 

bounce around the 0 residual line with both positive and negative values.   

The mean residual value was .118, and the average absolute error was 2.348.  

Though the EM residuals show more average variability compared to the LD scenario, as 

baseline scores move beyond a 3rd grade score of 215, EM residuals tend to gravitate 

toward 0.  EM model showed fairly consistent SGP estimates for higher-achieving 

students.  Students with censored observations tended to have lower initial achievement 

status, where the model showed more uncertainty and less accuracy in SGP estimates.  
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Multiple Imputation using a Markov Chain Monte Carlo (MCMC) Method  

Similar to other imputation methods, multiple imputation using a linear 

regression-based MCMC method utilizes incomplete data to “fill in” holes in the data to 

refine parameter estimates.  The mean vector and covariance matrix of observed data 

form the prior distribution, and are used to generate initial starting values for missing data 

in the first iteration of the MI procedure. Imputed values are predicted using the mean 

and covariance matrix, and random residual error is added in to preserve variability. 

Alternate parameter estimates are generated using the newly-complete data, and these 

estimates define the posterior predictive distribution.  Monte Carlo simulation draws new 

mean and covariance estimates from the posterior distribution generate new imputations 

in the next imputation step, where estimates from prior steps do not impact the current 

analysis (as they are “memoryless”).   

In this study, 5 imputation datasets were generated via a MCMC method and were 

independently analyzed through the SGP model.  Resulting SGPs were converted to 

normal curve equivalents (NCEs) to pool imputation estimates since NCEs hold equal 

interval properties unlike percentiles.  Pooled NCEs were then converted back to 

percentiles to arrive at the final growth estimates for the MCMC method.  A key 

advantage of multiple imputation is several imputation datasets preserve variability in 

estimates, as displayed in Figure 13 as there are 5 curves estimated for each quantile 

(m=5 imputed datasets).  
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Figure 13. MI via MCMC: Conditional Quantile Regression Curve Estimates 

 

Regression splines for the 95th quantile illustrate the variability this method produces in 

particular.  Distance between 95th percentile estimates (designated by light blue curves) 

is more pronounced at a baseline score of 180 than in other parts of the distribution.  At a 

baseline score 220, curves almost overlap signifying the corresponding SGP estimates 

will be are similar as well.  Variability in imputation estimates is also apparent in Figure 

14. 
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Figure 14. Scatterplot of Imputed Values using a MCMC Method 

 

Observed scores are indicated by blue dots and imputed scores are indicated by 

red dots.  Observed data points are static whereas the imputed data change in each 

imputation sequence in the matrix above, reflecting the uncertainty that exists about the 

estimates. To evaluate the degree that these estimates reflect the complete data, residuals 

are plotted in Figure 15.  
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Figure 15. MCMC: SGP Residuals by 3rd Grade Mathematics Score 

 
 

Multiple imputation estimates generated via a linear model using a MCMC 

method typically showed the most error at the lower end of the baseline score 

distribution.  The mean residual SGP this method produced was 0.047.  

The linear relationship between 3rd and 4th grade mathematics scores is an 

important attribute of the study data that should be considered when evaluating the model 

estimates.  Since linear regression is the basis of this imputation method, non-linear data 

may be less compatible and could impute a linear bias.  The SGP analysis models 

curvilinear relationships between 3rd and 4th grade scores, so discordant assumptions of 

linearity between the imputation and analysis models could present issues with less linear 

data. 

Multiple Imputation using a Predictive Mean Matching (PMM) Method 

To generate MI estimates using a semi-parametric approach, a predictive mean 

matching method was implemented.  A total of 5 datasets were imputed and 
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independently analyzed using the SGP methodology to generate 5 different growth 

percentile estimates for each student.  Similar to the MCMC multiple imputation model, 

SGP estimates were converted to NCEs for pooling and were later transformed back to 

the percentile metric.  Figure 16 shows the variability in imputation values for each 

imputation dataset. 

Figure 16. Scatterplot of Imputed Values using a PMM Method  

 

Unlike estimates generated via the linear imputation model using a MCMC 

method, all imputations were values that originated in similar donor cases.  This 

procedure resulted in restricted a score range (limited to that of non-censored cases) that 

is apparent in the plot of residual values in Figure 17.  Increasing the pool of donor values 

to k=5 or k=10 would increase the variation in residual values, though given a small 
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sample, this may also result in many cases that are dissimilar to cases they are matched 

to, and there are no definitive guidelines to specifying a PMM model.  

Figure 17. PMM: SGP Residuals by 3rd Grade Mathematics Score 

 

 

Inverse Probability Weighting 

Inverse probability is the final method posited in this study for handling missing 

observations.  Instability of very high probabilities is a known problem of inverse 

probability weighting.  This was not an issue in this study, as cases with high predicted 

probabilities of missingness were the ones that were censored from the weighted analysis. 
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Figure 18. IPW: SGP Residuals by 3rd Grade Mathematics Score 

 
 

This model appeared to be the most similar to the listwise deletion method given 

the pattern of residuals.  This is not surprising as both LD and IPW methods do not 

impute scores and only estimate SGPs for students with no missing data.  In contrast, 

imputation methods showed less deviation from the benchmark SGP for students with 

higher 3rd grade achievement.  One potential explanation for the dissimilarities between 

the IPW and imputation models is that this method is inherently different in its 

methodology and sample.  Weighting prioritizes observations based on their likelihood of 

being observed in an effort to make the sample more representative of the complete data.  

This procedure shifts the distribution of observed values but does not attempt to fill the 

void left by incomplete observations, whereas imputation estimates augment the dataset 

and deliberately introduce stochastic error to preserve variability. 
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Overall Model Comparisons 

Table 10 provides correlations between student growth percentiles derived from 

each missing data method, and Figure 19 (below) visualizes the relationship between true 

and observed SGPs for each missing data method.  In calculating correlations, pairwise-

deletion was implemented so the listwise deletion (LD) and inverse probability weighting 

(IPW) correlations are included.  Since LD and IPW procedures utilize only a subset of 

the sample, these scenarios include fewer students (n=385).  

Table 10. Correlations between Missing Data and Complete/Benchmark Model SGPs 

  
Complete 

data 
(benchmark) 

Listwise 
Deletion EM MCMC PMM IPW 

Complete data 
(benchmark)  0.996*** 0.978*** 0.947*** 0.968*** 0.979*** 

Listwise 
Deletion 0.996***  0.997*** 0.997*** 0.997*** 0.983*** 

EM 0.978*** 0.997***  0.941*** 0.992*** 0.979*** 
MCMC 0.947*** 0.997*** 0.941***  0.927*** 0.980*** 
PMM 0.968*** 0.997*** 0.992*** 0.927***  0.981*** 
IPW 0.979*** 0.983*** 0.979*** 0.980*** 0.981***  
Note: Computed correlation used spearman-method with pairwise-deletion. 
***p<.001 
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Figure 19. True and Observed SGPs by Missing Data Method 

 

All models demonstrate a high correlation between the complete case benchmark.  

Listwise deletion produced the highest correlation with complete case SGPs.  Since the 

goal of imputation and other missing data handling techniques is to preserve underlying 

properties of the would-be complete data as a whole, correlations calculated using the 

total sample of 415 students (30 partially-observed, 385 fully-observed) may not be the 

best indicator for overall model performance.  The stochastic process of adding residual 

error to imputation estimates serves the purpose of preserving variability, but by design it 

will reduce the prediction accuracy of individual student estimates.  Limiting the 

correlation to the 385 non-censored students increases the correlation between complete 

case SGPs and imputation method estimates presented in Table 11.  
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Table 11. SGP Correlations, Censored Observations Excluded 

  Complete 
(benchmark) LD EM MCMC PMM IPW 

Complete 
(benchmark)  0.996 *** 0.997 *** 0.997 *** 0.996 *** 0.979*** 

LD 0.996 ***  0.997 *** 0.997 *** 0.997 *** 0.983*** 
EM 0.997 *** 0.997 ***  0.995 *** 0.998 *** 0.979*** 
MCMC 0.997 *** 0.997 *** 0.995 ***  0.995 *** 0.980*** 
PMM 0.996 *** 0.997 *** 0.998 *** 0.995 ***  0.981*** 
IPW 0.979*** 0.983 *** 0.979 *** 0.980 *** 0.981 ***  
Note: Computed correlation used spearman-method with listwise-deletion. 
***p<.001 

 

Correlation results in Table 11 show all 3 imputation models (EM, MCMC, and 

PMM) are more comparable to the benchmark SGP values for the non-censored cases.  

Imputed values were used to estimate growth quantiles of the overall distribution of 4th 

grade students. SGPs were not reported for students with imputed scores since predicting 

individual scores is not the purpose of imputation. This may represent a more useful 

application of imputation methods in real-world settings, as imputed scores may be 

misunderstood by as falsified data by parents and the larger community.   

Next, the impact of each missing data method on the overall distribution of MGP 

estimates is explored.  In the context of teacher evaluation, the median growth percentile 

of a teacher’s students is often used as the primary summary statistic for SGP analyses. 

Non-parametric Wilcoxon signed rank tests (sometimes referred to as Mann-Whitney) 

were conducted to compare the complete/benchmark MGPs and estimates derived under 

each missing data method.  This is a paired-sample test (analogous to the parametric 

equivalent of a paired-samples t-test) of the differences between benchmark MGPs and 

the MGPs observed under each missing data method; results are displayed in Table 12.   
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Table 12. Test Statistics for Observed and Benchmark MGP Differences 

 LD EM MCMC PMM IPW 
Z -1.050b -.338a -.037a -.380b -.640a 
Asymp. Sig.  
(2-tailed) .294 .735 .970 .704 .522 

aBased on negative ranks.  bBased on positive ranks. 

 
Differences did not reach statistical significance for any missing data method.  Findings 

suggest that aggregate growth scores produced by each missing data method did not 

result in significant deviations from the benchmark/complete data values.  These results 

are consistent with the high correlations observed between benchmark and missing data 

MGPs presented in Table 13.  

Table 13. Correlations between Missing Data and Complete/Benchmark Model MGPs 

  Complete 
(benchmark) LD EM MCMC PMM IPW 

Complete 
(benchmark)  0.900*** 0.963*** 0.973*** 0.907*** 0.918*** 

LD 0.900***  0.909*** 0.903*** 0.939*** 0.994*** 
EM 0.963*** 0.909***  0.922*** 0.949*** 0.930*** 
MCMC 0.973*** 0.903*** 0.922***  0.904*** 0.910*** 
PMM 0.907*** 0.939*** 0.949*** 0.904***  0.948*** 
IPW 0.918*** 0.994*** 0.930*** 0.910*** 0.948***  
Note: Computed correlation used spearman-method. 
***p<.001 
 
 

Listwise deletion (LD) resulted in the lowest MGP correlation, though the PMM 

correlation is only slightly better by .007 compared to the benchmark data.  Multiple 

imputation using a MCMC method showed the most similarity to benchmark MGP 

values, producing a correlation of .973.  All methods produced a correlation of .9 or 

higher, showing comparable estimates of the MGP metric, through correlations using the 

SGP metric were slightly higher.  Since MGPs are aggregated at the teacher level, one 
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potential explanation for somewhat deflated MGP correlations is that not all teachers 

were linked to students with missing data, and teachers had varying amounts of censored 

students. The SGP estimate is calculated at the student level and is invariant to changes in 

the classroom roster.  

To further explore the relationship between MGPs and the frequency of censored 

students, rank correlation coefficients were calculated and compared.   As censored 

student observations were not assigned randomly, the number of censored students for 

each teacher ranged from 0 to 4. MGPs were ranked to represent their relative standing in 

the overall distribution of MGP values, and then correlations were calculated between a 

teacher’s ranking and the number of censored students in his or her class.  Results of this 

analysis are presented in Table 14, and show relatively weak relationships between 

MGPs and the frequency of censored students.  

Table 14. Rank Correlations between MGPs and Number of Censored Students 

Rank MGP  
Correlation with # of 
Censored Students  

Complete (Benchmark) 0.00  
LD -0.11  
EM -0.22  
MCMC 0.10  
PMM -0.25  
IPW -0.11  
*p<.05    
 

No correlations reached statistical significance setting α at the .05 level, indicating 

a teacher’s MGP was not significantly related to the number of censored student 

observations linked to each teacher.   Significant findings would imply estimates are 

biased by the frequency of missing data (e.g. teachers with higher ranked MGPs were less 

prone to missing student observations or vice versa). 
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Absolute Growth Differences  

Correlations are not the only criteria for comparing growth estimates derived 

under each missing data method.  Models with profound universal differences in 

observed and expected values error can still produce a high correlation.  Though 

correlations are one measure of comparability, they do not provide information about the 

absolute differences in growth scores between models.   The correlation metric ranges 

from -1 to 1 and the SGP metric ranges from 1 to 99.   By itself, a correlation does not 

indicate how many percentile values students change (e.g. the same correlation value 

could represent a shift from the 1st to 2nd growth percentile values or a shift from the 1st 

to 52nd growth percentile).   

Framing model differences using the actual SGP metric provides additional 

context.  To supplement correlation findings, Table 15 provides the average absolute 

values for SGP residuals for each missing data method.  Table 15 also provides the 

percentage of student growth scores that deviated from their corresponding benchmark 

SGP obtained through the complete case analysis. 

Table 15. Magnitude and Frequency of Differences in SGP Estimates 

  N students Mean Absolute 
Residual 

% students retaining 
Benchmark SGP 

LD 385 1.764 28.8 
EM 415 2.347 36.9 
MCMC 415 3.199 28.0  
PMM 415 2.388 47.5 
IPW 385 1.948 24.4  

 

Listwise deletion resulted in the smallest mean absolute error.  Examining the frequency 

of SGPs that deviate from the benchmark SGP, multiple imputation via PMM produced 
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the greatest percentage of matching student growth scores.  In the case of listwise 

deletion, 28.8% of SGPs matched the benchmark values despite sharing 96.4% of the 

same 3rd and 4th grade mathematics scores (30 of 830 scores were censored among 415 

total students).  Since the LD and IPW methods only produce growth percentiles for the 

subset of students with no missing data, Table 16 presents differences in residuals among 

censored and non-censored student groups so comparisons can be made using the same 

students.   

Table 16. Differences in SGP Estimates for Censored and Non-Censored Students 
   Mean Absolute 

Residual 
% students retaining 

Benchmark SGP 

All students  
(n=415) 

EM 2.347 36.9 
MCMC 3.199 28.0  
PMM 2.388 47.5 

Non-censored 
students only 
(n=385) 

LD 1.764 28.8 
EM 1.203 39.7 
MCMC 1.558 40.3 
PMM 0.968 50.4 
IPW 1.948 24.4  

 
Again, prediction accuracy for individual estimates is not the primary goal of the 

imputation process.  Residual error is deliberately added to imputed values to preserve 

standard error.  Though imputed scores show larger residuals than observed scores, there 

is evidence that imputation methods more accurately reflect the expected 4th grade scores 

for quantiles 1 to 99 of the complete data determine SGP values.  Since we would expect 

a certain amount of residual error in imputation score estimates, separating imputed 

residual values from fully-observed residuals clarifies the mean absolute error (MAE) 

comparisons presented in Table 16 (above).  Limiting the analysis to non-censored data, 
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inverse probability weighting and listwise deletion methods produced the highest MAE 

and the lowest percentages of students with matching true and observed SGPs.   

Research Question 2 

Does the choice of missing data methodology result in different growth inferences 

when used in an educator evaluation framework? 

The strong level of correlation observed between model estimates could obscure 

substantive differences in accountability ratings for individual teachers.  Though absolute 

residual errors were compared to supplement correlation findings, these differences may 

or may not translate to different evaluation inferences when embedded in an 

accountability framework.  Therefore, the purpose of the second research question is to 

document the practical implications of missing data model specification.  The growth 

classification scheme used by the Virginia Department of Education (VDOE) was 

selected to demonstrate how growth scores are impacted by missing data when 

implemented in an evaluation context.  

First it is important to consider how the evaluation scheme used in this study may 

impact classification rates.  Similar to other frameworks, this evaluation categorization 

scheme is structured so that proficient ratings will be more frequent than exemplary or 

unacceptable ratings in most circumstances.  Figure 20 shows the distribution of 

evaluation ratings observed in the complete case scenario.  
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Figure 20. Distribution of Complete/Benchmark Teacher Evaluation Ratings 

 
 

In order to receive an exemplary rating, over 50% of a teacher’s students would 

need to be classified in the highest 33% of the SGP range (“high growth” = SGPs of 66 to 

99) with no more than 10% of SGPs falling within the SGP range of 1 to 34 (defined as 

“low growth”).  Similarly, to receive an unacceptable evaluation rating, over 50% of 

students would need to fall in the lowest third of the SGP growth range.  The proficient 

category requires at least 65% of student growth ratings to fall within the highest 65 SGP 

values (“moderate + high growth” defined as SGPs of 35 to 99).  This rating scheme may 

reflect safeguards in place to ensure an exemplary or unacceptable classification is more 

difficult to obtain, analogous to giving preference to Type II error (failing to reject the 
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null hypothesis that growth is within the expected/mid-range when it is really low or 

high) versus risking the Type I error of a false positive. 

Overview of Evaluation Findings 

A total of 20 teachers were included in the analysis; teachers with less than 10 

students in their roster were excluded.  The number of censored students linked to each 

teacher ranged from 0 to 4.  Misclassification rates for each missing data method are 

listed in Table 17 (calculated by row).  

Table 17. Misclassification Rates 
 False Positive 

for Unacceptable or 
Needs Improvement 

False Negative 
for Unacceptable or 
Needs Improvement 

LD 3 (15%) 1 (5%) 
EM 1 (5 %) 0 
MCMC 0 0 
PMM 1 (5%) 0 
IPW 1 (5%) 1 (5%) 

Note: Parentheses represent proportions of the total sample.  

Listwise deletion resulted in the most frequent number of misclassifications, with  

most biased toward a lower evaluation category.  This is consistent with results from the 

first research aim that show the absolute residuals for the LD scenario tend to be negative 

(underestimating the benchmark SGP).   The linear multiple imputation model (MCMC 

method) scenario produced the most accurate growth classifications and also had the 

highest correlation to benchmark MGPs.   

Misclassification Tolerance 

Under the growth classification scheme used in this study, the MCMC estimates 

were robust to missing data in that no teachers resulted in a different evaluation rating as 

a result of model specification.  The other missing data methods showed between 1 and 4 
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evaluation misclassifications among the 20 teachers in this study.  Interpreting the 

practical significance of misclassification rates is less straightforward than determining 

statistical significance.  Listwise deletion resulted in the most misclassifications, although 

determining whether or not this is an acceptable level requires a value judgment and is 

context-dependent.   

Alternative evaluation frameworks use the MGP metric to define growth 

thresholds for evaluation.  Figure 21 plots MGP estimates for each teacher across missing 

data scenarios.  

Figure 21. Median Growth Percentile Comparisons among Teachers 

 

Distance between coordinates along the x-axis show the dispersion of MGP estimates and 

could inform cut points for categorization.  To consider a fixed-cut approach in 

categorizing growth, Table 18. presents the Massachusetts Department of Elementary & 

Secondary Education (MDOE) guidance for educator evaluation. 
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Table 18. Massachusetts DOE Growth Determinations 
Evaluation Category Growth Threshold 

Low MGP  ≤ of 35 
Moderate 35 < MGP < 65 

High MGP  ≤  65 
 

This framework results in 3 misclassified teachers of the 20 teachers in this study.  

One teacher’s MGP was misclassified by listwise deletion and IPW methods as Low; 

another teacher was misclassified by both multiple imputation methods as High, and one 

teacher was misclassified by LD, MI via MCMC, and IPW methods as High.  In each of 

these three misclassifications, the benchmark MGP indicated Moderate growth.   Using 

this classification approach, the only method that produced no misclassified MGPs was 

the imputation model using an EM algorithm.   

Though the VDOE and MDOE frameworks do not indicate a superior missing 

data method for both contexts, they are similar in that listwise deletion was the only 

method to produce more than one misclassification.  School systems implement plethora 

of different evaluation systems.  Some pool MGP estimates across academic years, some 

weight MGPs, some set inclusion criteria for student attendance, etc., providing countless 

options to implement growth scores in accountability systems.  The growth specification 

frameworks presented in this study are intended to illustrate examples of two systems and 

are not exhaustive. 
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CHAPTER FIVE 

DISCUSSION 

Overview 

Missing student data occur for a variety of reasons, and present challenges for 

estimating student growth.  Identifying and resolving the causes for missingness may not 

be realistic in practice; however several methods are available to account for missing 

observations when they occur.  This process is especially important when student data are 

used in accountability frameworks and growth inferences impact evaluation decisions.  

The literature on missing data methodologies for student growth models is sparse.  

Patterns of missingness were explored using a real dataset of mathematics achievement 

scores and student characteristics, and provide evidence data were not missing 

completely at random.  This dissertation addressed two aspects of missing data in the 

context of student growth: 1) the comparability of missing data methods, and 2) how 

differences manifest when embedded in an accountability framework.  These scenarios 

highlight the importance of both statistical and practical significance.   

Summary of Findings 

Research Question 1 

High correlations between complete case (benchmark) growth values and 

estimates derived under each method act as a sensitivity analysis with respect to missing 

data.  In general, the results favored imputation methods over deletion and weighting



86 

	

approaches when the criteria are 1) the correlation to benchmark SGP values, 2) the 

correlation to benchmark MGP values, and 3) the smallest mean absolute error.   Multiple 

sources of evidence suggest listwise deletion is not the best method for retaining 

properties of the benchmark growth distribution, though all models showed reasonably 

high correlations in estimates.  Similarities between models are not surprising since a 

relatively small amount of missingness was imposed.  Still, this study demonstrates the 

utility of missing data methods in improving growth estimates when the amount of 

missing observations is as small as 3.5% of achievement scores used to model student 

growth.    

By definition, missingness is a difficult concept to measure and the reasons for 

missingness in any data set is largely speculated. Modeling complete and incomplete 

status in the reference population provides an example of how missing data manifests in 

the field; these findings may be useful beyond the estimation of student growth for 

accountability purposes.  In this particular case, there is some evidence in favor of a 

Missing at Random mechanism rather than Missing Completely at Random since 

students with missing observations differed from students with complete data on some 

demographic characteristics.   

Distinguishing a Missing Not at Random mechanism from MAR is less 

straightforward.  MNAR models carry a different set of assumptions and require a joint 

model of the missingness mechanism and student growth.  Misspecification of the 

missingness mechanism carries a different set of consequences, and it is impossible to 

definitely specify the cause(s) of missingness except in a simulated environment.  It is 

possible missing student achievement data modeled in the reference population were a 
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function of the missing scores themselves after accounting for all other student 

characteristics and thus constitute MNAR.  Nevertheless the missing data methods that 

assume MAR in this study were reasonably successful in recovering growth data.   

It should also be noted that a MAR mechanism might become more plausible as 

additional variables are added to the model.  Even if missingness can be conditioned on 

auxiliary variables to perfectly fulfill the assumptions of MAR, the pattern of missingness 

will not present as MAR if these variables are not utilized.  In this study, a MAR 

assumption may be less plausible if fewer auxiliary variables were used to account for 

missing information in the imputation models.  For example, not using free or reduced 

lunch status or other variables related to missingness in the imputation strategies may 

make MAR less plausible. Though each missing data method was implemented on 

identical datasets with the same underlying pattern of missingness, they degree to which 

each method supports an assumption of MAR is not the same because MAR is an 

assumption rather than an attribute of the data.  As more is known about the nature of 

missing student data, we can be more confident in which variables missingness can be 

conditioned on and thus more confident a MAR assumption is justifiable.      

To guide decisions regarding which method to use and what assumptions are 

supported, sensitivity analyses can be conducted to compare several approaches.  If 

different methods produce similar findings, we can be more confident in their results.  

Divergent findings may highlight violated assumptions and inform the choice of missing 

data method moving forward or the reporting practices for student growth scores and 

educator evaluation ratings.  
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Research Question 2 

Grounding methodological decisions with practical implications can inform 

designers of educational evaluation frameworks as they weigh tradeoffs of each method.  

Much of the conversation around teacher evaluation centers on the statistical 

methodologies that produce growth scores.  Issues of reliability, measurement error, and 

other technical properties of student growth models are commonly addressed.  However, 

findings related to the second research aim motivate increased attention to categorical 

evaluation schemes used in practice.  Growth categorization can exacerbate the bias 

introduced by missing data. Despite the similarities reported in the first research aim, 

growth classifications between models were less consistent when implemented in an 

accountability framework.   

The routine practice of implementing listwise deletion as the default method for 

missing data resulted in the most misclassifications for both evaluation frameworks 

explored in this study.  Models with stricter inclusion criteria in the SGP analysis (e.g. 

setting minimum attendance rates) are a logical extension of this analysis to determine 

whether or not they result in less misclassifications.  Alternatively, systematically 

removing students from the analysis may mirror listwise deletion, based on 

inclusion/exclusion criteria rather than missing data, and may bias the model in other 

ways.  Careful consideration of each decision in estimating and categorizing growth is 

warranted. 

Results from both research questions highlight ways missing data can impact 

teachers even if they are not missing student test scores in their classroom.  Framing 

missing data discussions around bias in the overall model is important, as opposed to 
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limiting the discussion to cases with missing observations or teachers with missing 

student data.  Exploring the extent to which growth estimates can shift due to missing 

data is important at both the individual and system levels. 

Limitations and Future Research 

Given the complex nature of school systems, results from this study may not 

generalize across different growth models, assessments, grades, magnitudes of 

missingness, or teacher effect sizes.  As each school system is unique, it is not expected 

findings from this study can support automated missing data handling techniques for 

widespread adoption by other school systems. Instead, decisions regarding missing data 

must be constantly evaluated for the local context that necessitates their use.  Rather than 

generalizing specific study findings, more broadly, this study motivates increased 

attention to the issue of missing data.  

SGP models are most commonly implemented with much larger samples than the 

one used in this study, and this limitation is a threat to the generalizability of study 

findings.  In particular, this study examined student growth and educator accountability 

ratings in one school, and this setting is fundamentally different from a statewide system 

comprised of many schools and districts. An important follow-up study is needed to 

explore the impact of missing data in larger samples where missingness may manifest in 

different ways.  However, as testing opt-outs, absenteeism, student illness, and other 

reasons for missing data are present in school systems of all sizes, the findings from this 

study may generate starting points for discussion when implementing growth models that 

rely on incomplete student records.   
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As educational policy changes, the use of growth models changes in tandem. For 

example, growth models sometimes incorporate end of course exams and other 

assessments that are administered to a smaller subset of students. Future studies can 

investigate the impact of missing data in situations where the sample is restricted by 

design. Beyond the scope of this study, accountability ratings are assigned to schools and 

districts in addition to educators. Additional work can inform whether or not school or 

district effectiveness ratings fluctuate as educator ratings and student growth scores did in 

this study.  Another logical extension of this work would be to manipulate the percent of 

missingness imposed on the analysis to determine if missing data methods perform 

differently with different amounts of available information.  This information can guide 

practitioners as they choose a method for their specific context.  

The choice was made to use real data in this study, however future simulation 

studies are necessary to explore the impact of missing data in different settings and 

circumstances.  Simulation studies can isolate or manipulate certain characteristics of the 

data to further disentangle the impact of missing data from other attributes of student data 

when evaluating growth.  Developing missing data methodologies and implementing 

them in practice are two separate procedures.  Some methods may work in theoretical 

situations or simulations but not in practice with real, imperfect datasets.  For this reason, 

simulation studies should be paired with evidence generated using real data.  

The widespread and continued use of growth models for educator evaluation 

underscores the motivation for methodological research on missing data as it relates to 

student growth in all types of settings.  Though this dissertation discusses practical and 

technical details of different model specifications, often these details are dissected and 
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debated in lieu of the philosophical rationale behind each component of VAM 

methodology.  If paradigmatic conflict is the centerpiece of the growth discussions, future 

work must focus on theoretical arguments of missing data methodologies or VAMs.  

Even after reaching consensus on a missing data procedure from methodological and 

theoretical perspectives, improper implementation can undermine performance, as even 

the best methods can be poorly implemented.   

This study emphasizes one component of value-added methodology: choice of 

missing data procedure.  As many components collectively determine the overall validity 

and precision of the model, developing a general indicator of VAM fit may be useful to 

evaluate model adjustments (such as choice of missing data procedure).  Demonstrating 

different missing data methodologies produce similar results that then inform similar 

practice decisions may give users more confidence in their implementation.  On the other 

hand, demonstrating approaches to handling missing data lead to different results may 

prompt more methodological focus before making growth inferences.  Sensitivity 

analyses using multiple missing data methods that produce either converging or diverging 

findings may further advance methodological research. 

 

 



 

 92 

REFERENCE LIST 
 
AERA Statement on Use of Value-Added Models (VAM) for the Evaluation of Educators 

and Educator Preparation Programs. (2015). Educational researcher. 
doi:10.3102/0013189x15618385 

 
Allison, P. D. (2002). Missing Data: SAGE Publications. 

American Institutes for Research. (2015). 2013–14 Growth Model for Educator 
Evaluation: Technical Report.  

 
American Statistical Association. (2014). ASA statement on using value-added models 

for educational assessment. Alexandria, VA: Author. Retrieved from https://www. 
amstat. org/policy/pdfs/ASA_VAM_Statement. pdf.  

 
Amrein-Beardsley, A. (2008). Methodological concerns about the education value-added 

assessment system. Educational researcher, 37(2), 65-75.  
 
Andrews, K. M., & Ziomek, R. L. (1998). Score Gains on Retesting with the ACT 

Assessment. ACT Research Report Series 98-7.  
 
Aud, S., Hussar, W., Kena, G., Bianco, K., Frohlich, L., Kemp, J., & Tahan, K. (2011). 

The Condition of Education 2011. NCES 2011-033. National Center for 
Education Statistics.  

 
Ballou, D., Sanders, W., & Wright, P. (2004). Controlling for Student Background in 

Value-Added Assessment of Teachers. Journal of Educational and Behavioral 
Statistics, 29(1), 37-65. doi:10.2307/3701306 

 
Ballou, D., & Springer, M. G. (2008). Achievement trade-offs and no child left behind. 

Manuscript. Peabody College of Vanderbilt University. En: www. caldercenter. 
org.  

 
Betebenner, D. V., Adam;  Domingue, Ben; Shang,Yi (2014). SGP: An R Package for the 

Calculation and Visualization of Student Growth Percentiles & Percentile Growth 
Trajectories.: R package version 1.2-0.0. 

 
Betebenner, D. W. (2008). A primer on student growth percentiles.  
 
 



 

 

93 
Betebenner, D. W. (2009). Norm‐and criterion‐referenced student growth. 

Educational Measurement: Issues and Practice, 28(4), 42-51. 
 
Betebenner, D. W. (2011). A technical overview of the student growth percentile 

methodology: Student growth percentiles and percentile growth 
projections/trajectories. The National Center for the Improvement of Educational 
Assessment. 

 
Briggs, D., & Domingue, B. (2011). Due Diligence and the Evaluation of Teachers: A 

Review of the Value-Added Analysis Underlying the Effectiveness Rankings of 
Los Angeles Unified School District Teachers by the" Los Angeles Times". 
National Education Policy Center.  

 
Brundin, J. (2014). Thousands of students protest Colorado standardized tests.   

Retrieved from http://www.cpr.org/news/story/thousands-students-protest-
colorado-standardized-tests 

 
Carpenter, J., & Kenward, M. (2012). Multiple imputation and its application: John 

Wiley & Sons. 
 
Chen, C. (2005). An introduction to quantile regression and the QUANTREG procedure. 

Paper presented at the Proceedings of the Thirtieth Annual SAS Users Group 
International Conference. 

 
Chudowsky, N., Koenig, J., & Braun, H. (2010). Getting Value Out of Value-Added:: 

Report of a Workshop: National Academies Press. 
 
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied Multiple 

Regression/Correlation Analysis for the Behavioral Sciences: Taylor & Francis. 
 
Colorado Department of Education. (2013). Colorado Growth Model - Brief Report, 

Student Growth Percentiles and FRL Status. Retrieved from 
https://www.cde.state.co.us/accountability/cgm_sgp_frl_brief 

 
Cyr, A., & Davies, A. (2005). Item Response Theory and Latent variable modeling for 

surveys with complex sampling design The case of the National Longitudinal 
Survey of Children and Youth in Canada. Paper presented at the conference of 
the Federal Committee on Statistical Methodology, Office of Management and 
Budget, Arlington, VA. 

 
Diaz-Bilello, E. K., & Briggs, D. C. (2014). Using Student Growth Percentiles for 

Educator Evaluations at the Teacher Level: Key Issues and Technical 
Considerations.  

 



 

 

94 
Ehlert, M., Koedel, C., Parsons, E., & Podgursky, M. (2012). Selecting growth measures 

for school and teacher evaluations. National Center for Analysis of Longitudinal 
Data in Education Research (CALDAR). Working Paper, 80.  

 
Enders, C. K. (2012). Applied Missing Data Analysis. Australian & New Zealand 

Journal of Statistics, 54(2), 251-251. doi:10.1111/j.1467-842X.2012.00656.x 
 
Fichman, M., & Cummings, J. N. (2003). Multiple imputation for missing data: Making 

the most of what you know. Organizational Research Methods, 6(3), 282-308.  
Gabriel, T. (2010). A Celebratory Road Trip for Education Secretary. New York Times, 

A24.  
 
Gelman, A., & Hill, J. (2006). Data analysis using regression and 

multilevel/hierarchical models: Cambridge University Press. 
 
Goldhaber, D., Walch, J., & Gabele, B. (2014). Does the model matter? Exploring the 

relationship between different student achievement-based teacher assessments. 
Statistics and Public Policy, 1(1), 28-39.  

 
Graham, J. W. (2009). Missing Data Analysis: Making It Work in the Real World. 

Annual Review of Psychology, 60(1), 549-576. 
doi:10.1146/annurev.psych.58.110405.085530 

 
Graham, J. W., Taylor, B. J., & Cumsille, P. E. (2001). Planned missing-data designs in 

analysis of change. In L. M. Collins, A. G. Sayer, L. M. Collins, & A. G. Sayer 
(Eds.), New methods for the analysis of change. (pp. 335-353). Washington, DC, 
US: American Psychological Association. 

 
Hansen, M. G., Dan. (2015). Response to AERA statement on value-added measures: 

Where are the cautionary statements on alternative measures?   Retrieved from 
http://www.brookings.edu/blogs/brown-center-chalkboard/posts/2015/11/19-
aera-value-added-measures-hansen-goldhaber 

 
Hoff, E. (2003). The Specificity of Environmental Influence: Socioeconomic Status 

Affects Early Vocabulary Development Via Maternal Speech. Child 
Development, 74(5), 1368-1378. doi:10.1111/1467-8624.00612 

 
Honaker, J., King, G., & Blackwell, M. Amelia II: A program for missing data.  
 
Jeynes, W. H. (2007). The relationship between parental involvement and urban 

secondary school student academic achievement a meta-analysis. Urban 
education, 42(1), 82-110.  

 



 

 

95 
Jonas, D. Student Growth Percentile Model: What should we know when including 

student growth percentiles in a teacher’s performance evaluation? : Virginia 
Department of Education. 

 
Koedel, C., Mihaly, K., & Rockoff, J. E. (2015). Value-added modeling: A review. 

Economics of Education Review.  
 
Koenker, R. (2005). Quantile regression: Cambridge university press. 
 
Ladd, H. F., & Lauen, D. L. (2010). Status versus growth: The distributional effects of 

school accountability policies. Journal of Policy Analysis and Management, 
29(3), 426-450.  

 
Landerman, L., Land, K., & Pieper, C. (1997). An Empirical Evaluation of the 

Predictive Mean Matching Method for Imputing Missing Values. Sociological 
Methods & Research, 26(1), 3-33. doi:10.1177/0049124197026001001 

 
Lee, V. E., & Burkam, D. T. (2002). Inequality at the starting gate: Social background 

differences in achievement as children begin school: ERIC. 
 
Liang, F., Liu, C., & Carroll, R. (2011). Advanced Markov chain Monte Carlo methods: 

learning from past samples (Vol. 714): John Wiley & Sons. 
 
Linn, R. L., Baker, E. L., & Betebenner, D. W. (2002). Accountability systems: 

Implications of requirements of the no child left behind act of 2001. Educational 
Researcher, 31(6), 3-16.  

 
Lissitz, R. W., & Huynh, H. (2003). Vertical Equating for State Assessments: Issues and 

Solutions in Determination of Adequate Yearly Progress and School 
Accountability. Practical Assessment, Research & Evaluation, 8(10), n10.  

 
Los Angeles Teacher Ratings. (2010). Retrieved from: http://projects.latimes.com/value-

added/ 
 
McCaffrey, D. F., & Castellano, K. E. A Review of Comparisons of Aggregated Student 

Growth Percentiles and Value-Added for Educator Performance Measurement.  
 
McCaffrey, D. F., & Lockwood, J. (2011). Missing data in value-added modeling of 

teacher effects. The Annals of Applied Statistics, 5(2A), 773-797.  
 
McCaffrey, D. F., & Lockwood, J. R. (2011). Missing data in value-added modeling of 

teacher effects. 773-797. doi:10.1214/10-AOAS405 
 



 

 

96 
McGuinn, P. (2011). Stimulating reform: Race to the top, competitive grants and the 

Obama education agenda. Educational Policy, 0895904811425911.  
 
Morris, T. P., White, I. R., & Royston, P. (2014). Tuning multiple imputation by 

predictive mean matching and local residual draws. BMC Medical Research 
Methodology, 14, 75-75. doi:10.1186/1471-2288-14-75 

 
Muenchen, R. A. (2015). The Popularity of Data Analysis Software.   Retrieved from 

http://r4stats.com/articles/popularity/ 
 
National Council on Teacher Quality. (2010). Human capital in Boston Public Schools: 

Rethinking how to attract, develop, and retain effective teachers. Retrieved from 
http://www.nctq.org/dmsView/Human_Capital_in_Boston_Public_Schools_NCT
Q_Report 

 
Neal, D., & Schanzenbach, D. W. (2010). Left behind by design: Proficiency counts and 

test-based accountability. The Review of Economics and Statistics, 92(2), 263-
283.  

 
PDE, P. S. T. f. (2015). Response to PVAAS Misconceptions: District/School Reporting.   

Retrieved from http://www.education.pa.gov/Documents/K-
12/Assessment%20and%20Accountability/PVAAS/Professional%20Developme
nt/PVAAS%20Misconceptions%20Booklet.pdf 

 
Peng, C.-Y. J., Harwell, M., Liou, S.-M., & Ehman, L. (2007). Real data analysis / 

edited by Shlomo S. Sawilowsky. Charlotte, N.C: Information Age Publishing. 
 
Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of 

reporting practices and suggestions for improvement. Review of Educational 
Research, 74(4), 525-556.  

 
Roth, P. L. (1994). Missing data: A conceptual review for applied psychologists. 

Personnel psychology, 47(3), 537-560.  
 
Rubin, D., Stuart, E., & Zanutto, E. (2004). A potential outcomes view of value-added 

assessment in education. Journal of Educational and Behavioral Statistics, 103-
116.  

 
Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of the American 

statistical Association, 91(434), 473-489.  
 
Rubin, D. B., & Wiley, I. (1987). Multiple imputation for nonresponse in surveys.  
 



 

 

97 
SAS Insititute Inc. (2015). SAS® EVAAS® for K-12.   Retrieved from 

http://www.sas.com/en_us/industry/k-12-education/evaas.html 
 
Schafer, J. L. (1999). Multiple imputation: a primer. Statistical Methods in Medical 

Research, 8(1), 3-15.  
 
Seaman, S. R., & White, I. R. (2013). Review of inverse probability weighting for 

dealing with missing data. Statistical Methods in Medical Research, 22(3), 278-
295. doi:10.1177/0962280210395740 

 
Seltzer, M. H., Frank, K. A., & Bryk, A. S. (1994). The metric matters: The sensitivity 

of conclusions about growth in student achievement to choice of metric. 
Educational Evaluation and Policy Analysis, 16(1), 41-49.  

 
Sherwood, B., Wang, L., & Zhou, X. H. (2013). Weighted quantile regression for 

analyzing health care cost data with missing covariates. Statistics in medicine, 
32(28), 4967-4979.  

 
Sterne, J. A., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., 

Carpenter, J. R. (2009). Multiple imputation for missing data in epidemiological 
and clinical research: potential and pitfalls. Bmj, 338, b2393.  

 
United States Department of Education. (2015). Every Student Succeeds Act (ESSA).   

Retrieved from http://www.ed.gov/essa 
 
Wayman, J. C. (2003). Multiple imputation for missing data: What is it and how can I 

use it. Paper presented at the Annual Meeting of the American Educational 
Research Association, Chicago, IL. 

 
Weisberg, D., Sexton, S., Mulhern, J., Keeling, D., Schunck, J., Palcisco, A., & Morgan, 

K. (2009). The widget effect: Our national failure to acknowledge and act on 
differences in teacher effectiveness. New Teacher Project.  

 
Wilkinson, L. (1999). Statistical Methods in Psychology Journals. American 

Psychologist.  
 
Wright, P. S. (2010). An Investigation of Two Nonparametric Regression Models for 

Value-Added Assessment in Education. Retrieved from 
https://education.ohio.gov/getattachment/Topics/Data/Report-Card-
Resources/Ohio-Report-Cards/Value-Added-Technical-Reports-1/An-
Investigation-of-Two-Nonparametric-Regression-Models-for-Value-Added-
Assessment-in-Education-S-Paul-Wright-1.pdf.aspx  

 



 

 

98 
Wright, S. P. (2004). Advantages of a Multivariate Longitudinal Approach to 

Educational Value-Added Assessment Without Imputation. Paper presented at the 
National Evaluation Institute, Colorado Springs, Colorado.  

 
Yoon, J. (2010). Quantile regression analysis with missing response with applications to 

inequality measures and data combination. Retrieved from 
http://economics.ucr.edu/seminars_colloquia/2010/econometrics/Yoon%20paper
%20for%2010%2025%2010%20seminar.pdf 

 
 
 
 
 



 99 

VITA 

Katherine M. Wright was born and raised outside of Houston, Texas.  She 

completed a Bachelor of Science in Psychology at Michigan State University before 

matriculating at the University of Illinois at Chicago to pursue a Master of Public Health.  

Throughout her tenure, she was funded through a research assistantship and was awarded 

a Director’s Scholarship.  After graduating in 2010, she accepted a position at 

Northwestern University in the Department of Family & Community Medicine where she 

is currently engaged in public health and medical education research.   

Katy began the doctoral program in Research Methodology at Loyola University 

Chicago in 2012.  During her time at Loyola, she continued to work as a research 

coordinator and teaching assistant for the Intermediate and Advanced Biostatistics 

courses in the Master of Science in Clinical Investigation program at Northwestern.  She 

authored papers in Family Medicine and the Centers for Disease Control and Prevention’s 

Preventing Chronic Disease, and co-authored several papers that focus on education and 

training for individuals with psychiatric conditions.  Additionally, she presented work at 

various national conferences including the American Public Health Association, the 

American Evaluation Association, and the Joint Statistical Meetings.  

She currently resides in Chicago, Illinois with her boyfriend, Mark Ghesquiere, 

and her much-loved dog, Lizzie-bear. 

 


	Missing Data in the Context of Student Growth
	Recommended Citation

	Wright_title and copyright 103116.pdf
	TABLE OF CONTENTS 103116.pdf
	List of Tables 103116 FINAL.pdf
	List of Figures 103116 FINAL.pdf
	Wright_chapter 1 103116.pdf
	Wright_chapter 2 103116.pdf
	Wright_chapter 3 103116.pdf
	Wright_chapter 4 103116.pdf
	Wright_chapter 5 103116.pdf
	REFERENCE LIST 103016.pdf
	VITA 103016.pdf

