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CHAPTER I 

INTRODUCTION 

Hereditary lysosomal S-glucosidase deficiency (Gaucher dis­

ease), an autosomal recessive disorder, is characterized by accumula­

tion of the neutral glycosphingolipid glucosylceramide in the reticulo­

endothelial system--especially spleen, liver and the bone marrow (Brady 

& Barranger, 1983). This lipid abnormality arises due to a deficiency 

of the specific catabolic lysosomal enzyme glucosylceramide:S-gluco­

sidase (glucocerebrosidase) (Brady et al., 1965). Clinically, Gaucher 

disease can be subclassified into three types: type 1 (adult non­

neuronopathic form), type 2 (infantile neuronopathic form) and type 

3 (juvenile subacute neuronopathic form) (Desnick, 1982). 

Although the lipid accumulated in the reticuloendothelial 

system for all three types of Gaucher disease is glucosylceramide, 

the lipid content in cultured human skin fibroblasts from subjects 

with Gaucher disease is somewhat different. In cultured fibroblasts, 

there is not an increased amount of glucosylceramide, but there is a 

higher quantity of the ganglioside sialosylgangliotriaosylceramide 

(GMz) in type 2 Gaucher disease as compared to normal, and sialosyl­

gangliotetraosylceramide (GM1), and disialosylgangliotetraosylceramide 

(GD1a> in type 1 Gaucher disease (Saito & Rosenberg, 1984a,b). At 

this moment, however, it is not known if there are any other lipid 
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abnormalities in cultured human skin fibroblasts from Gaucher disease. 

Since there is alteration of lipid composition in Gaucher 

disease, it might be suspected that there may be alteration in membrane 

fluidity of diseased fibroblast membranes. This alteration in membrane 

fluidity could possibly have a significant role in the pathogenesis 

and pathology of Gaucher disease. Therefore, it is important to under-

stand membrane structure in terms of membrane fluidity. 

Fluidity specifically refers to properties of the hydrophobic 

region of the membrane--in particular the physical state of the fatty 

acyl chains comprising the bilayer structure (Stubbs & Smith, 1984). 

Phenomena relevant to fluidity encompass unsaturation and acyl chain 

length of fatty acids, lateral and rotational mobility of phospho-

lipids, changes in the frequency of trans-gauche isomerization of 

contiguous methylene groups (C-C bonds) in the phospholipid acyl 

chains, changes in the swinging motion of the phospholipid fatty acyl 

chains, changes in phospholipid headgroup conformation, changes in 

interaction of cholesterol with other lipids, and changes in the inter-

action of proteins with lipids (Houslay & Stanley, 1982). 

There are both chemical and physical effectors which can be 

natural modulators of membrane lipid fluidity. The main chemical . 
modulators are cholesterol content as compared with phospholipids, 

the degree of unsaturation of phospholipid acyl chains, the content 

of sphingomyelin as compared with phosphatidylcholine, and the content 

of membrane proteins as compared with lipids. The physical effectors 

of lipid fluidity are temperature, pressure, pH, membrane potential 

and Ca2+ concentration (Shinitzky & Yuli, 1982). 



There are several techniques for investigating fluidity of 

biological membranes--including nuclear magnetic resonance (NMR), 

electron spin resonance (ESR), and steady-state fluorescence polariza­

tion. NMR is useful in determining motional characteristics of each 

c-H bond along the acyl chain. ESR gives information on degree of 

disorder in membranes. Steady-state fluorescence polarization gives 

information regarding overall motion of acyl chains adjacent to the 

fluorescent probe (Stubbs & Smith, 1984). Fluorescence polarization 

has several advantages over ESR and NMR in that it can be readily 

applied to complex systems such as biological membranes, the polar­

ized signal is highly sensitive and reproducible, and the data obtained 

are promptly interpretable. It is to be noted, however, that the 

common steady-state approach is an overall average of all membranes 

involved and does not reflect only one aspect of the membranes (Shin­

itzky & Barenholz, 1978). 

A considerable number of fluorescent probes are available for 

fluidity measurements; however, l,6-diphenyl-1,3,5-hexatriene (DPH) 

is the most efficient probe for investigating membrane fluidity of 

biological systems. DPH is a hydrophobic, rigid, elongated molecule 

with cylindrical symmetry (Zannoni et al., 1983). It aligns norm-

ally with its long axis parallel to the lipid chains in the middle 

of the membrane bilayer (Lentz et al., 1976a,b). It has no fluores­

cence signal when in an aqueous environment; however, when incorporated 

into the lipid bilayer, it displays a sharp fluorescence signal 

(Shinitzky & Barenholz, 1974). It is to be noted, again, that DPH 

can only give some average value of fluidity in the heterogenous lipid 
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domains present in cell membranes (Shinitzky & Barenholz, 1978). 

Owing to its many useful and well-defined properties, DPH 

has been used to evaluate membrane fluidity, via fluorescence polar­

ization, of a variety of cell membranes. In particular, it has been 

used on cultured human skin fibroblasts from subjects with various 

diseases with interesting results. Using DPH as a probe in whole cells 

or plasma membranes of familial hypercholesterolemia (Haggerty et 

al., 1978), and Duchenne dystrophy plasma membranes (Shaw et al., 

1983), it has been shown that there is an increased fluidity of mem­

branes as compared to matched controls; whereas, whole cells or plasma 

membranes of cultured fibroblasts from Huntington's disease do not 

exhibit any significant difference in membrane fluidity from controls 

(Lakowicz & Sheppard, 1981; Schroeder et al., 1984). Even though 

this technique of determining membrane fluidity has not been used 

considerably in various diseases with membrane lipid abnormalities 

in cultured human skin fibroblasts, it has a useful potential in in­

vestigating inherited metabolic disorders-- especially Gaucher disease. 

It is known that glycosphingolipidsare altered in Gaucher 

disease; however, since glycosphingolipids make up only approximately 

3 percent of total cell membrane lipids (Dawson et al., 1972), they 

possibly do not contribute significantly to the average membrane flu­

idity. The major contributors to the lipid fluidity in membranes 

seem to be cholesterol and phospholipids (Borochov et al., 1977; Cooper 

et al., 1977, 1978; Shinitzky & Barenholz, 1978; Van Blitterswijk et 

al., 1981). It is not known at present whether the content of neutral 

lipids and phospholipids are also altered along with glycosphingolipids 
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in cultured skin fibroblasts from subjects with Gaucher disease. 

It is known that cholesterol and phospholipids may be altered 

in red blood cells of patients with Gaucher disease (Balint et al., 

1963). Along with this, there is evidence that phospholipid content 

may be abnormal in Gaucher fibroblasts. When glucosyl (3H) ceramide 

(labeled in sphingosine as well as fatty acid moiety) was administered 

to normal human fibroblasts, it was catabolized, and subsequently, 

(3H) labeled products were found in phospholipids--especially sphingo­

myelin, phosphatidylcholine and phosphatidylethanolamine; whereas, 

in Gaucher cells, this process is greatly reduced (Barton & Rosenberg 

1974). 

Any neutral lipid or phospholipid abnormality in Gaucher dis­

ease would imply that even though there is only a deficiency of one 

enzyme, namely 8-glucocerebrosidase, leading to decreased catabolism 

of glucosylceramide, the metabolic consequences are more widely felt, 

affecting a variety of membrane lipids. Such a finding has not been 

reported and would be of great interest. 

The objective of this dissertation is to evaluate the effect 

of hereditary lysosomal S-glucosidase deficiency in cultured human 

skin fibroblasts on membrane fluidity and correlate this with changes 

in lipid composition. Membrane fluidity in Gaucher disease and in 

normal controls has been evaluated via the technique of steady-state 

fluorescence anisotropy using the fluorescent hydrocarbon probe 1,6-di­

phenyl-1,3,5-hexatriene. In addition, neutral lipid and phospholipid 

composition of fibroblasts were evaluated and correlated with membrane 

fluidity measurements. Attention has been given to cholesterol, 
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sphingomyelin and phosphatidylcholine content of normal and diseased 

fibroblasts and their fatty acid composition. The amount of ceramide 

has also been determined in normal and Gaucher diseased fibroblasts. 

The effect of monensin on fibroblast lipids was also investigated 

and correlated in terms of Gaucher disease lipid abnormalities. 
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CHAPTER II 

REVIEW OF RELATED LITERATURE 

Gaucher Disease 

Clinical Disease 

Gaucher disease is an autosomal recessive lysosomal disorder 

characterized by deficiency of S-glucocerebrosidase activity with ac­

cumulation of neutral glycosphingolipid glucosylceramide in the reticu­

loendothelial system and possibly brain. Clinically, Gaucher disease 

can be classified into three major types as shown in Table 1 (Desnick 

et al., 1982). Type 1, chronic nonneuronopathic or "adult" form of 

the disease is the most prevalent ( 1/2000 in United States Ashkenazi 

Jews) among patients with Gaucher disease. These patients usually 

exhibit signs of hepatosplenomegaly along with symptoms of thrombo­

cytopenia, anemia, and bone involvement. Of the three types of the 

disease, type 1 is probably least in degree of severity. However, 

in each individual patient, the severity of the disease varies greatly 

along with the age of the individual (Brady & Barranger, 1983). 

Type 2 Gaucher disease, also known as acute neuronopathic 

or "infantile" form of the disease is the most severe in its presenta­

tion. It is usually apparent before six months of age and fatal by 

two years. Not only is there massive hepatosplenomegaly but the 

nervous system is heavily involved--exhibiting muscular hypertonicity 
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TABLE 1.--Gaucher Disease--Clinical Subtypes 

Type 1-Non- Type 2-Acute Type 3-Subacute 
Clinical Features Neuronopathic Neuronopathic Neuronopathic 

Clinical onset Childhood/adulthood Infancy Childhood 

Hepatosplenomegaly + + + 

Hematologic complications 
Secondary to hypersplenism + + + 

Skeletal deterioration + + + 

Neurodegenerative course +++ ++ 

Death Variable By 2 yr 2nd-4th decade 

Ethnic predilection Ashkenazi Jewish Panethnic Swedish 

Adapted from Desnick et al., (1982). 
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and persistent retroflexion of the head. This form of the disease 

is not restricted to Jewish individuals but is pan-ethnic (Brady & 

Barranger, 1983). 

Type 3 Gaucher disease, also known as subacute neuronopathic 

or "juvenile" form of the disease is also characterized by hepato­

splenomegaly and neurologic involvement. The neurologic damage, how­

ever, occurs later in life and is usually fatal (Brady & Barranger, 

1983). The ethnic predilection seems to be of non-Jewish individuals 

involving Swedish people in particular Norbottnian types (Svennerholm 

et al. , 1982) • 

Pathology and Pathogenesis 

One of the pathognemonics for Gaucher disease is the presence 

of Gaucher cells in the reticuloendothelial system. These are large 

macrophage like cells, having a "wrinkled tissue paper" appearance 

(Brady & Barranger, 1983). Along with the presence of Gaucher cells 

in the reticuloendothelial system, there is a considerable hepato­

splenomegaly encountered in this disease. Along with this, there is 

a frequent skeletal involvement in patients with types 1 and 3 Gaucher 

disease. In types 2 and 3 Gaucher disease, there is extensive neuro­

logic involvements. The cranial nerves and brainstem are heavily 

involved. There is minimal storage of glucocerebroside in ganglion 

cells, but there is loss of neurons, neuronophagia, and deposition 

of this neutral glycolipid in periadventitial cells. 

It seems logical to conclude that most of the pathology that 

arises in Gaucher disease is due to an accumulation of glucosyiceramide 
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in the reticuloendothelial system. It seems, however, that there is 

some accumulation of glucosylsphingosine in the brains of patients with 

Gaucher disease leading to the acute severity of type 2 and type 3 

disease (Nilsson & Svennerholm, 1982). This then could be similar 

to Krabbe's disease in which there is a deficiency of the enzyme 

galactocerebroside:S-galactosidase leading to an increased amount of 

galactosylceramide and the toxic galactosphingosine (Suzuki & Suzuki, 

1983). The involvement of glucosylsphingosine in the pathogenesis 

of Gaucher disease is a very preliminary finding and would have to 

be reconfirmed. 

Diagnosis 

There are several ways to arrive at the diagnosis of Gaucher 

disease once it is suspected in a particular patient. Not only is 

there hepatosplenomegaly and Gaucher cells in the bone marrow aspirates 

but there is elevation of serum nontartarate-inhibitable acid phos­

phatase. The most sensitive method of establishing the diagnosis is 

the measurement of the enzyme S-glucosidase in tissues obtained from 

liver biopsies, cultured amniotic fluid cells, white blood cell prep­

arations or cultured skin fibroblasts (Brady & Barranger, 1983). 

There are various methodologies, utilizing various substrates 

and activators, available to assay the activity of 8-glucosidase. 

The two most widely used substrates are radioactively labeled gluco­

sylceramide and the artificial fluorogenic substrate 4-methylumbel­

liferyl-S-glucoside. The labeled glucosylceramide is the best method 

for diagnosis of the disease; however, 4-methylumbelliferyl-S-glucoside 
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is an inexpensive and efficient way to measure the S-glucosidase activ­

ity (Daniels & Glew, 1982). There are several activators for this 

enzyme which can be used in the assay of S-glucosidase activity--in­

cluding negatively charged phospholipids, gangliosides, sodium tauro­

cholate, Triton X-100, oleic acid and cutscum (Mueller & Rosenberg, 

1977, 1979; Wenger & Olson, 1981; ; Saito et al., 1982; Vaccaro et 

al., 1983). It should be noted that there is reduced activity of 

S-glucosidase in samples obtained from patients with Gaucher disease 

as compared to matched controls. Currently, there is no way to dis­

tinguish the clinical severity of the disease from the enzyme activity 

data (Mueller & Rosenberg, 1979; Wenger & Olson, 1981). 

Properties of S-Glucosidase 

The reaction catalyzed by S-glucosidase for cleaving gluco­

sylceramide into glucose and ceramide is as shown in Figure 1. The 

structural gene for S-glucosidase has been assigned to chromosome 1 

using somatic cell hybridization techniques (Shafit-Zagardo et al., 

1981). Using artificial substrate 4-methylumbelliferyl-S-D-glucoside, 

two major S-glucosidases have been identified--"acid" and "neutral" 

S-glucosidase (Shafit-Zagardo et al., 1980). In cultured human skin 

fibroblasts, there is only the "acid" form of S-glucosidase present 

in the lysosomes. Also, in the various Gaucher subtypes only the 

acid isozyme is deficient in fibroblasts and other organs (Desnick, 

1982). This acid form of S-glucosidase is a lysosomal membrane-bound 

enzyme or is very hydrophobic requiring detergents for optimum activity 

(Mueller & Rosenberg, 1979; Desnick, 1982; Desnick et al., 1982). 
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Fig. 1. Schematic representation of hydrolysis of gluco­
sylceramide into glucose and ceramide by S-Glucosidase. Adapted from 
Desnick (1982). 
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Using an antibody raised against placental glucocerebrosidase, 

cultured skin fibroblasts have been identified to have two major 

isozymes with molecular weights (Mr) of 63,000 and 56,000 and a minor 

component with Mr of 61,000 (Ginns et al., 1982). In type 1 Gaucher 

disease, the major S-glucosidase isozyme exhibits Mr of 56,000 with 

minor bands occurring at Mr of 63,000 and 61,000. There is cross­

reacting material to Mr of 63,000 in type 3 disease; whereas, there 
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is no crossreacting material found in type 2 Gaucher fibroblasts (Ginns 

et al., 1983). 

There seems to be no difference in the pH optima, and Km values 

of S-glucosidase in Gaucher fibroblasts (all three types) as compared 

to normal cells. However, the Vmax for S-glucosidase from Gaucher 

fibroblasts is decreased as compared to normals (Desnick et al., 1982; 

Saito et al., 1982). Based on inhibitor and activator studies, the 

active site of the enzyme has been proposed to have three components 

(Gatt et al., 1982): 

1. Catalytic site--which recognizes S-glucosyl moiety of its 

substrates and conduritol s-epoxide (an irreversible inhibitor of 

the enzyme). 

2. Substrate binding site--which binds the aglycon moiety of 

inhibitors and substrates. 

3. Hydrophobic site--which can bind lipids and other hydrophobic 

molecules such as phosphatidylserine, glucosylsphingosine and 

taurocholate. 

Ho and O'Brien (1971) and Peters et al. (1977) have also iden­

tified a heat stable, soluble, acidic glycoprotein devoid of S-glu-



cosidase activity as an activator protein for S-glucosidase. 

Lipid Abnormalities 

Glucosylceramide--consisting of sphingosine, a long-chain 

fatty acid, and glucose--is considerably elevated in the reticulo­

endothelial system of patients with Gaucher disease. The amount of 

glucocerebroside in normal human spleens varies between 60-280 µg/gram 

wet weight (Brady & Barranger, 1983). The values in Gaucher spleens 

are considerably raised ranging from 3-40.S mg per gram wet weight. 

Along with increased glucosylceramide, there are increased amounts of 

GM3 but not lactosylceramide in the spleen (Kuske & Rosenberg, 1972). 

The amount of glucosylceramide in brain of Gaucher disease patients 

is somewhat variable. In type 2 disease, there are increased amounts 

of glucosylcermide in gray matter (Sudo, 1977); this lipid is also 

increased in plasma in Gaucher disease (Vance et al., 1969). However, 

there may not be any increased amounts of glycolipids in brains from 

types 1 and 3 patients. 
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The accumulated glucosylceramide in the reticuloendothelial 

system arises from several sources. Erythrocytes, which contain glu­

cosylceramide (GlcCer), lactosylceramide (LacCer), trihexosylceramide 

and globoside, are catabolized via the reticuloendothelial system; 

thereby, originating a source for GlcCer. The turnover of leukocytes 

is the major source of GlcCer along with LacCer (Suzuki, 1982). Also, 

it seems probable that this lipid could also arise from normal cellular 

turnover (Brady & Barranger, 1983). 

Unlike the accumulation of above mentioned lipids in the 



reticuloendothelial system, cultured human skin fibroblasts from 

Gaucher disease have a different lipid accumulation as compared to 

normal fibroblasts. There is a higher quantity of the ganglioside 

sialosylgangliotriaosylceramide (GM2) in type 2 Gaucher disease as 

compared to normal, and sialosylgangliotetraosylceramide (GM1) and 

disialosylgangliotetraosylceramide (GD1a> in type 1 Gaucher disease 

(Saito & Rosenberg, 1984a,b). Along with this, there is evidence that 

phospholipid content may be abnormal in Gaucher fibroblasts. When 

glucosyl (3H) ceramide (labeled in sphingosine as well as fatty acid 

moiety) was administered to normal human fibroblasts, it was catabo­

lized, and subsequently, (3H) labeled products were found in phos­

pholipids--especially sphingomyelin, phosphatidylcholine and phos­

phatidylethanolamine; whereas, in Gaucher cells, this process was 

greatly reduced (Barton & Rosenberg, 1974). Cholesterol levels in a 

Gaucher fibroblast cell line has been determined and there seems to 

be no difference as compared with normal cells (Warren et al., 1976). 

There also seems to be an indication that erythrocyte neutral 

lipid and phospholipids may be altered in Gaucher disease. Balint 

et al. (1963) have shown that there is probably a decreased amount 

of cholestrol, cephalins (PS & PE), and sphingomyelin in an adult 

patient with Gaucher disease as compared to normal adult erythrocyte 

lipids. 

Treatment 

Recently, a bone-marrow transplant was performed in a patient 

with type 3 Gaucher disease with no change in clinical status post-
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transplantation. The plasma glucocerebroside concentration, however, 

returned to normal implying that the enzymatic abnormality in hemato­

paietic cells in Gaucher disease may be correctable by bone-marrow 

transplantation (Rappeport & Ginns, 1984). 

Several trials of enzyme replacement via placental S-gluco­

sidase infusion have also been tried but to no avail since the enzyme 

was not taken up by the appropriate macrophage. Thus, the only treat­

ment available for Gaucher disease is in the form of supportive treat­

ment (Brady & Barranger, 1983). 

Membrane Fluidity 

Concept of Membrane Fluidity 
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Fluidity specifically refers to the physical state or dynamics 

of the fatty acyl chains comprising the membrane bilayer (Chapman, 

1983; Stubbs & Smith, 1983). Phenomena relevant to fluidity encompass 

unsaturation and acyl chain length of fatty acids, lateral and rota­

tional mobility of phospholipids, changes in the frequency of trans­

gauche isomerization of C-C bonds of methylene groups in the phospho­

lipid acyl chains, changes in the swinging motion of the phospholipid 

fatty acyl chains, changes in phospholipid headgroup conformation, 

changes in interaction of cholesterol with membrane lipids, and changes 

in the intera~tion of proteins with lipids (Shinitzky & Barenholz, 

1978; Houslay & Stanley, 1982; Chapman, 1983; Stubbs & Smith, 1983). 

The extent of unsaturation and chain length of fatty acids 

is an important determinant of biomembrane fluidity. The exact cor­

relation with membrane fluidity to the unsaturation and fatty acyl 



chain length seems varied and complex depending on the number, posi-

tion, and type of the double bonds, the nature of membrane under in-

vestigation and the method used to probe the membrane physical state 

(Stubbs, 1983). Using model membranes it has been concluded that 

the effect of increasing the unsaturation results in only a slight 

increase in acyl chain mobility (Stubbs & Smith, 1984). A decrease 

in double bond index/saturated fatty acid ratio, defined as: 

(number unsaturated mol x no. double bonds) 
(number saturated mol) 

has been used as a chemical measure of membrane fluidity (Farias et 

al., 1975). This assumption is valid when other parameters such as 

cholesterol/phospholipid ratio remain constant and the fatty acid 
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double bonds of compared membranes have the same cis structure (Castuma 

& Brenner, 1983). Studies with biological membranes show that a sig-

nif cant change in level of unsaturation and chain length does not 

necessarily lead to changes in fluidity as measured with fluorescent 

or ESR probes (Gilmore et al., 1979a,b; Herring et al., 1980; Stubbs 

et al., 1980; Stubbs & Smith, 1984). 

Various head groups, lateral and rotational mobility, trans-

gauche isomerization, and fatty acyl chain swinging motions of phos-

pholipids are relevant to membrane fluidity. Similar to the data 

for unsaturation and fatty acyl chain length mentioned previously, 

the influence of the phospholipid head groups on the motion of the acyl 

chain (and thus fluidity) in cell membranes is complex and varied 

(Gilmore et al., 1976b; Stubbs, 1983). Although it is clear that 

the head group region has an influence on acyl chain motion, it is 



difficult to assess its importance in biological membranes due to 

the fact that the phospholipids in membranes have differing fatty 

acid composition (Stubbs, 1983). With respect to the lateral and 

rotational mobility, trans-gauche isomerization and fatty acyl chain 

swinging motions of phospholipids, it is known that they all can in­

fluence the membrane fluidity; however, the fluorescence method util­

ized in this dissertation cannot discern the effects of these param­

eters (Stubbs, 1983; Stubbs & Smith, 1984). 

Cholesterol is a principal modulator of membrane fluidity. 

This lipid has rigid, planar, wedge-shaped structure which orients 

perpendicular to the membrane bilayer, with the hydroxyl group in 
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the vicinity of the fatty acyl carbonyls, as shown in Figure 2 (Houslay 

& Stanley, 1982; Stubbs, 1983). Cholesterol has the ability to con­

dense phospholipid bilayers (Kitajima & Thompson, 1977). A variety 

of physical techniques have demonstrated that cholesterol has a small 

fluidizing effect below the phase transition temperature (gel phase) 

of phospholipids and a large rigidizing effect above this temperature 

(Oldfield & Chapman, 1972; Kawato et al., 1978; Chapman, 1983). 

Presence of large amounts of cholesterol prevents lipid chain crystal­

lization and removes phase transition characteristics (Chapman, 1983). 

In general, therefore, the effect of cholesterol in biological mem­

branes is to decrease fluidity (Kawato et al., 1978; Hildenbrand & 

Nicolau, 1979). The cholesterol/phospholipid ratio has been used to 

represent the amount of order (rigidity, inverse of fluidity) in mem­

branes (Shinitzky & Barenholz, 1978; Van Blitterswijk et al., 1981; 

Houslay & Stanley, 1982). 
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Fig. 2. Schematic representation of a cholesterol molecule 
with a phospholipid in a lipid bilayer. Adapted from Houslay and 
Stanley (1982). 
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Proteins also have translational and rotational movements in 

the membrane. This has been investigated on the bacterial protein 

rhodopsin; where it was shown by electron spin resonance that proteins 

have specific rotational diffusion rates (Barrion et al., 1977) and, 

by fluorescence photobleaching recovery, that proteins have a specific 

lateral diffusion rates as well. The estimation of the contribution 

of membrane proteins to membrane fluidity depends on the type of mem­

brane involved and the method used to determine membrane fluidity. 

In contrast to electron spin resonance and fluorescence photobleaching 

recovery, steady-state fluorescence anisotropy of proteins using the 

probe diphenylhexatriene gives virtually no contribution to fluidity 

in lymphoid, liver, hepatoma, and erythrocyte membranes (Van Blitter­

swijk et al., 1981). 
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Along with nature of fatty acyl composition, cholesterol, 

phospholipid structures, and proteins there are various physical ef­

fectors of lipid fluidity including pressure, pH, membrane potential, 

Ca2+ concentration and temperature (Shinitzky & Yuli, 1982). Of these, 

temperature plays an important role in membrane fluidity; and it can 

be generally stated that fluidity increases with increasing temperature 

and this corresponds to an overall increase in molecular motion 

throughout the membrane bilayer. 

With respect to the effect of temperature on membrane fluidity, 

one can observe various phases of lipids as the temperature is varied 

in biological membranes (phase transition). This phase transition 

occurs at characteristic temperatures for a particular phospholipid 

species. Phase transition detects lipid phase separations in the 
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biological membranes, where lipid phase separation can be defined as 

spontaneous coexistence of membrane domains with different composition 

(Grant, 1983). The two phases for phospholipids are: crystalline-

solid state where the acyl chains of phospholipid are fully extended 

parallel to the bilayer with their C-C bonds in the all-trans position, 

and liquid-crystalline (fluid) state in which there are rotational 

isomers about the C-C bonds of the fatty acyl chains (Houslay & 

Stanley, 1982). 

At the lipid phase transition temperature the bilayer changes 

from solid to the fluid state. The nature of the headgroup, the length 

of the fatty acyl chain, and the number, position and type of double 

bonds in the acyl chain of a phospholipid determine its phase transi-

tion temperature (Houslay & Stanley, 1982; Chapman, 1983). It should 

also be noted, however, that since cholesterol increases the rigidity 

of fluid-state lipid bilayers and increases the fluidity of solid-

state lipid bilayers, it may tend to cancel or dampen the lipid phase 

transition in biological membranes (Oldfield & Chapman, 1972; Houslay 

& Stanley, 1982; Chapman, 1983). As a theoretical consideration, 

the evidence for lateral phase separation comes from studies showing 

non-linear Arrhenius plots of the temperature dependence of fluores-

cence anisotropy (Shinitzky & Yuli, 1982; Stubbs, 1983). 

Techniques for Determining 
Membrane Fluidity 

NMR 

Nuclear magnetic resonance (NMR) studies of membrane structure 

employ the (2H) NMR method with high field superconducting magnets to 



investigate the organization of polar headgroups and backbone and 

hydrocarbon chain regions in phospholipids and glycolipids (Smith & 

Oldfield, 1984). With the deuterated species of interest incorporated 

into the membrane, motional characteristics of C-H bond can be deter­

mined by this technique. From this, it has been possible to obtain 

an order profile for phospholipid acyl chains (Seelig & Seelig, 1977). 

The drawback of performing NMR studies is the expensive apparatus 

required and the need to synthesize specially deuterated lipids in 

relatively large amounts. Also the calculations and assumptions in 

deriving the rate of motion are very complex and may be less reliable 

than those obtained in fluorescence studies (Stubbs, 1983). 

ESR 
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Electron spin resonance of a nitroxide probe in the membrane 

bilayer can give information on relaxation (mobility) of the probe, 

orientation of the probe with respect to its environment, concentration 

of the label in a given phase, order of the system, and the lateral 

diffusion of the probe in the plane of the bilayer (Jain & Wagner, 

1980). Much of the information on membrane structure has arisen from 

ESR studies. The theory behind ESR is similar to that of NMR and has 

been reviewed extensively elsewhere (Cantor & Schimmel, 1980). One 

of the major drawbacks for .this technique is similar to that of NMR 

in which the equipment is expensive. Also, one needs to synthesize 

spin-labeled probes,and the probe perturbs the system. 

Raman Spectroscopy 

Raman spectroscopy is a relatively new technique for deter-



mining acyl chain motions in membranes by looking at the vibrational 

states of C-C bonds. Even though it is a non-perturbing technique 

which has provided information on model lipid bilayers, interference 

from bonds in the phosphate and protein regions occurs with biological 

membranes (Stubbs, 1983). It is still in its infancy stages and much 

more experimentation is needed in order for this to be a major tool 

in membrane fluidity investigations of biological membranes. 

Fluorescence Spectroscopy 

Fluorescence spectroscopy is based on the phenomenon that 

when a fluorophore is excited by light, the fluorophore absorbs the 

energy and emits photons of lower energy. This phenomenon then can 

be adapted to give information on the orientation or range and rate 

of motion of the fluorophore and its adjacent environment. There 

are several fluorescence techniques which give information on lipid 

rotational motion including fluorescence photobleaching recovery and 

fluorescence anisotropy. 

In fluorescence photobleaching recovery, membrane lipids are 

labeled with a fluorescent compound and a small area of labeled cell 
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is exposed to a laser pulse. The time dependence of fluorescence 

recovery in the bleached area is followed over time and from it lateral 

diffusion constants can be obtained (Golan et al., 1983; Stubbs, 

1983). This has been used to determine lateral diffusion of proteins 

as well as lipids and the way lipid-protein interaction may occur 

(Golan et al., 1984; Spiegel et al., 1984). 

Fluorescence anisotropy techniques can include both time-
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resolved decay and steady-state anisotropy measurements. Time-resolved 

fluorescence anisotropy decay gives information on the range of acyl 

motion and the rate of motion. Investigators using the fluorescent 

probe DPH, a rod shaped molecule which aligns parallel to the acyl 

chains in the middle of the membrane bilayer, have assumed the range 

of acyl chain motion to be contained within a volume approximating 

to a cone which has an half angle (8c) (Kawato et al., 1977; Kinosita 

et al., 1977; Kawato et al., 1978)--also known as "wobbling-in-cone" 

model. From the half angle, one can determine the order parameter 

(S): 

S = [1/2 cos 8c (1 + cos 8c)J2. 

The rate of probe motion is described as the wobbling diffusion con­

stant CDw), which is obtained from the apparent rotational relaxation 

time (¢): Dw = o/¢, where a has been experimentally determined (Kawato 

et al., 1978; Stubbs et al., 1984). 

Steady-state fluorescence anisotropy gives information on 

rate of rotational diffusion of the probe as well as range of motion 

of the probe (Van Blitterswijk et al., 1981; Stubbs & Smith, 1984). 

Steady-state fluorescence measurements give information on the micro­

viscosity as well as the order parameter in relation to decay measure­

ments--to be discussed in the next section in considerable detail. 

Fluidity parameters of lipids in biomembranes are usually determined 

via this method and the information obtained is an overall average 

of all lipid domains present in cell membranes. Fluorescence ani­

sotropy measurements have several advantages over ESR and NMR in that 

it can be readily applied to complex systems such as biological mem-
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branes, the polarized signal is highly sensitive and reproducible, 

and the data obtained are promptly interpretable (Shinitzky & Baren-

holz, 1978). Whereas, fluorescence anisotropy decay measurements 

take longer and require complex apparatus and analysis (Stubbs, 1983). 

Steady-State Fluorescence Anisotropy 

Theory 

When a fluorophore is incorporated into biomembranes and it 

is excited by a continuous source of plane polarized light (along 

z-axis in figure 3), the steady state fluorescence anisotropy (rs) 

and polarization (p) can be determined by the emission intensities 

through an analyzer oriented parallel ( I 11 ) and perpendicular (IJ_) 

to the direction of polarization of the excitation light. Generally, 

the emission is detected at a right angle to the excitation, and the 

direction of polarization of I 11 is along z-axis and IJ_ is along y-axis 

in the figure. From this, the values for fluorescence polarization 

and anisotropy can be calculated as: 

p II I - IJ. (1) = + IJ. Ill 

I11 - Il. 2P 
(2), rs = 

I11 + 2IJ. 3 - p 

where the range of P is -1/3<P<l/2 and rs is -1/5<rs<2/5. The total 

fluorescence intensity (F) can be calculated as: 

F = I1 I + 2Il. (3). 

From the steady-state fluorescence anisotropy determinations of the 

membrane in question, there are two ways to evaluate and interpret 

membrane fluidity. One interpretation is that the anisotropy reflects 
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Fig. 3. Schematic representation of various parameters 
utilized in fluorescence polarization. Adapted from Cantor and 
Schimmel (1980). 
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the rate of rotational diffusion of the probe, or microviscosity. Note 

that the average fluidity of the membranes can then be calculated as 

the reciprocal of the apparent microviscosity {n). The apparent micro-

viscosity of the membrane interior is estimated by comparing the flu-

orescence anisotropy in the system with that observed in a macroscopic-

isotropic system {reference mineral oil) and applying the classical 

hydrodynamic system of Perrin to yield the Perrin equation: 

n = c TT{:_o -1)-l 
(r ) rs 

s 
{ 4) • 

where C(r ) is a parameter which relates to the molecular shape and 
s 

the location of the transition dipoles of the fluorophore as expressed 

in the determined anisotropy {rs) values, T is the absolute tempera-

ture, T is the excited state lifetime of the probe, and r 0 is the 

limiting value of rs at infinite viscosity. The units for n is dyne-

s-cm-2 which is defined as 1 P {poise) {Shinitzky & Barenholz, 1978). 

The values for C(r )' r 0 and T can be determined 
s 

for the individual probe in question. However, the values for DPH, 

a widely used and efficient probe, have been determined to yield r 0 

= 0.362 and C TT remains relatively constant in liposomes and model 
(r) 

membranes yielding a value of 2.4 poise for temperatures between 0-40°C 

{Shinitzky & Barenholz, 1978). From this, an approximate value of n 
can be calculated for DPH in membranes to yield: 

0.362 - rs = 2P (5). n = 
0.46 - p 

It can be seen from this modified empirical Perrin equation that as 

the value of anisotropy increases, the apparent microviscosity in-

creases and, thus, the fluidity decreases. 



From the microviscosity, phase transitions and thus phase 

separation in lipids can be determined by the Arrhenius plot of log 

n versus 1/ T. If there are any phase separations of lipid domains, 

the Arrhenius plot will be non-linear; whereas, if there is a straight 

line in the Arrhenius plot, it implies that there are no phase transi­

tions of the lipid under investigation and thus the steady-state flu­

orescence polarization technique cannot detect phase separations of 

lipid domains (Shinitzky & Barenholz, 1978). 

One of the major assumptions in the Perrin type calculations 

for apparent microviscosity is that the probe is localized in an iso­

tropic medium; whereas, membranes have an anisotropic environment. 

Although the apparent microviscosity calculated may not be absolute, 

it is useful in comparing membrane fluidities. The second interpreta­

tion of the steady-state fluorescence anisotropy data comes from time­

resolved fluorescence polarization decay measurements. From this, 
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it was interpreted that it is mainly the degree to which the fluoro­

phore rotations are restricted by the molecular packing of the lipids 

(a static factor), rather than its rotational rate (a dynamic factor), 

which determines the steady-state fluorescence anisotropy in lipid 

membranes. Thus, rs can be resolved into a static part r
00 

(propor­

tional to the square of lipid order parameter), and a dynamic parameter 

rf (related to the rotational relaxation time of the fluorophore--which 

in turn is proportional to the microviscosity) (Van Blitterswijk et 

al., 1981; Pottel et al., 1983). As an equation, 

rs= rf + roo (6). 

Also, for the probe DPH, the limiting fluorescence anisotropy, r
00

, 
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is proportional to the square of the lipid order parameter, S 

O<S<l (7) 

where r 0 is the fluorescence anisotropy value in th~ absence of a 

rotational motion of the probe and is 0.362 for DPH in biological mem-

branes. 

From experimental data for the steady state fluorescence ani-

sotropy (rs) and the limiting fluorescence anisotropy (r00 ) of a variety 

of artificial and biological membranes, an empirical relationship can 

be arrived: 

(8) 

in the region 0.13 < rs <0.28--which is the value for most biological 

membranes. From equations 7 and 8, the order parameter can be calcu-

lated 

4 1/2 
Sopff = C -

3 
rs_ 0.28 ) 
ro 

( 9) • 

As can be seen from equation (9), as the anisotropy increases, so 

does the order parameter. 

It is believed by Van Blitterswijk et al. (1981) that the 

structural order of membrane lipids is related to the degree of molec-

ular packing. Lipid fluidity may then be defined as the reciprocal 

of the lipid structural order parameter (Sopff) rather than apparent 

microviscosity. The physical state of the biological membrane can thus 

be suitably described by the order parameter (Pottel et al., 1983). 

In this theory, also, lateral phase separation can be determined by 

the non-linear Arrhenius plots of the steady-state fluorescence ani-

sotropy versus the temperature (Stubbs, 1983). 



Although the apparent microviscosity is not in an absolute 

scale and the lipid order parameter (Sopff) only takes into account 

the static component of rs, both of these parameters can be considered 

to define the inverse of lipid fluidity. It is not certain at this 

point which interpretation of steady-state fluorescence anisotropy 

data is appropriate; however, they both imply that an increase in 

steady-state anisotropy value of the membrane is due to a decrease 

in membrane fluidity (Castuma & Brenner, 1983). 

Fluidity Probes 

There are several probes utilized in studying membrane fluid­

ity. Of the many examples, fluorescent probes can be divided into 

two major classes. The first class includes fluorescent compounds 

which can incorporate spontaneously into a well defined lipid region 

of membranes--thus, directly reflecting the membrane fluidity from 
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its fluorescence anisotropy values. The other class includes flu­

orescent dyes which are covalently attached to fatty acids or phos­

pholipids (Shinitzky & Barenholz, 1978). Examples of the first class 

include l,6-diphenyl-1,3,5-hexatriene (DPH) and perylene; whereas, 

examples of the latter class include parinaric acid and its phospho­

lipid derivatives,l-acyl-2-N-4-nitrobenzeno-2-oxa-1,3-diazole-amino­

caproyl phospholipid (NBD-phospholipid), and DL-12-(9-anthroyl) stearic 

acid. In the context of membrane fluidity, the most efficient probes 

are perylene and DPH and thus shall be discussed in some detail. 

Perylene 

Perylene is a flat aromatic molecule with an approximate shape 
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of a disk with a diameter of 0.8 nm, as shown in Figure 4 (Zannoni 

et al., 1983). The absorption and emission spectrum of perylene over­

lap somewhat and exhibit a good mirror symmetry. It is a stable flu­

orophore with a considerably shorter fluorescence decay time of 'o = 

7.2ns; whereas •o for DPH = 11.4 ns. Also, the excited state lifetime 

of perylene is much more sensitive to temperature or fluidity changes 

--thus, this probe is used similar to DPH in high fluidity systems 

(Shinitzky & Barenholz, 1978). 

DPH 

DPH is one of the most useful and efficient probes for studying 

membrane fluidity. It is a rigid, rod shaped molecule, approximately 

1.3 nm long, with cylindrical symmetry, as shown in Fig. 5 (Zannoni 

et al., 1983). DPH absorbs light in near uv and emits with very high 

quantum yield in the blue region of visible spectrum. The absorption 

spectrum of DPH in various organic solvents is shown in Figure 6. 

It can be noted that the absorption spectrum changes as the polarity 

of the solvent changes. The absorption maximum occurs around 355 nm 

with an extinction coefficient of 80,000 M-lcm-1 (Shinitzky & Baren­

holz, 1978). In contrast to the absorption spectrum, the emission 

spectrum of DPH changes very little with a change in solvent. Particu­

larly, the emission maximum is relatively insensitive to changes in 

polarity, viscosity and temperature (Zannoni et al., 1983). The ab­

sorption and emission spectra do not show a good "mirror symmetry." 

This probe in membranes has a high and constant value of r 0 of 0.362 

and a fluorescence decay time of •o = 11.4 ns. 
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Fig. 4. (a) The molecular structure of perylene. (b) The 
disk-like shape assumed for perylene. Adapted from Zannoni et al. 
(1983). 
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Fig. 5. The molecular structure of DPH with the rod-like 
shape. Adapted from Zannoni et al. (1983). 
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Fig. 6. The absorption and fluorescence spectrum of DPH in 
various organic solvents: ethanol (~-); dioxane (---);hexane (···). 
Also shown is the polarization of fluorescence as a function of wave­
length determined in polypropylene glycol at T = -50°C. Adapted from 
Zannoni et al. (1983). 
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There are certain favorable properties of DPH which allow it 

to be an excellent membrane fluidity probe. It has no fluorescence 

signal when in an aqueous environment; however, when incorporated 
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into the lipid bilayer, it displays a sharp fluorescence signal 

(Shinitzky & Barenholz, 1974, 1978). Its high extinction coefficient 

and fluorescence quantum yield allow the detection of a fluorescence 

signal even at very low concentration (approximately lµM). The sepa­

rated absorption and emission reduce the possibility of energy transfer 

between DPH molecules and facilitate the elimination of excitation 

light scattering. The rod like shape aligns itself normally with 

the long axis parallel to the lipid chains (Lentz et al., 1976a,b). 

One of the more debated questions regarding the probe DPH is 

its location in the membrane bilayer. Owing to its property that 

DPH in bilayers is similar to that in apolar organic solvents, and 

it is relatively insoluble in water implies that DPH is located in 

the hydrocarbon region of the bilayer. The orientation of the long 

axis of DPH is believed to be parallel to that of the lipid chains 

(Lentz et al., 1976a,b; Thulburn, 1981; Zannoni et al., 1983). Once 

DPH has been incorporated into the bilayer, it partitions equally well 

into fluid or solid lipid domains (Lentz et al., 1976a,b). The derived 

fluidity represents the weight average of all lipid domains (Shinitzky 

& Barenholz, 1978). 

DPH in Biological Membranes 

DPH has been extensively used as a probe in model membranes 

such as liposomes and micelles as well as biological membranes. With 



35 

respect to the biological membranes, DPH has been used both in isolated 

cell membranes and in intact cells. When DPH is introduced into vari­

ous membrane lipids of intact cells, the dye is dissolved in the sur­

face membrane lipid·layer within minutes (Shinitzky & Barenholz, 

1978). The fluorescence of the labeled cells is initially confined 

to the plasma membrane; however, with time the probe molecules parti­

tion into the cell inner membranes until an equilibrium distribution 

is reached. Pagano et al. (1977) have shown using autoradiographic 

methods that DPH, when incubated with intact fibroblasts locates itself 

not only on the cell surface membrane but also in the cytoplasmic 

regions. It should be noted, however, in this method the labeled 

cells are treated with cross-linking agents and ethanol, and the ex­

posure time is days or weeks. The conditions are non-physiological 

and thus may increase the rate of partitioning of the probe. Also, 

Bouchy et al. (1981) have analyzed the evolution of DPH fluorescence 

polarization following incubation in living cells. They found a de­

crease of rs and r~ with time, a decrease not present in isolated 

plasma membranes. This is also questionable since Haggerty et al. 

(1977) found no difference between plasma membrane and cell micro­

viscosity using fibroblasts. However, it is important to note that 

the fluidity of the whole cell gives physiologically important informa­

tion which may be used in comparing disease states with normal con­

trols. One can also determine the lipid fluidity in plasma membranes 

of intact cells by selective quenching (Grunberger et al., 1982). 

As stated previously, the steady-state fluorescence anisotropy 

using DPH has been measured in diseased states and there are several 



r 

36 

lipid abnormalities which correlate with an altered anisotropy values. 

It is known that the cholesterol/phospholipid ratio is related to the 

inverse of fluidity. In red cells of patients with liver disease, 

the cholesterol/phospholipid (mol/mol) ratio is increased to 1.0-1.6 

from normal values of 0.9-1.0 with the concomitant decrease in membrane 

fluidity in the diseased state (Cooper et al., 1972, 1978; Owen et al., 

1982). As another example, the cholesterol/phospholipid ratio is 

decreased in mouse thymus derived ascitic leukemic (GRSL) cells as 

compared to normal thymocytes (GRSL = 0.22-0.30, normal thymocyte = 

0.37). This is correlated with the increased fluidity observed in 

the GRSL cells <nGRSL = 1.73P,n thymocyte = 3.24P) (Van Blitterswijk 

et al., 1977). Also, the cholesterol/phospholipid ratio is signif­

icantly elevated (0.52 + 0.045 versus 0.129 + 0.012) in cord mono­

nuclear leukocytes as compared to adult cells and this is again cor­

related with increased microviscosity values (polarization values of 

0.339 + 0.030 versus 0.186 + 0.019) (Neufeld & Carbo, 1984). 

Another factor important in fluorescence anisotropy values 

is the sphingomyelin to phosphatidylcholine ratio. There is an in­

crease in the phosphatidylcholine/sphingomyelin (mol/mol) ratio in 

sheep red blood cells treated with EGTA as compared to non-treated 

red blood cells (0.14 :t_0.01 versus 0.030 :t_0.005); this increase in 

phosphatidylcholine/sphingomyelin ratio is concomitant with an increase 

in lipid fluidity ((r 0 /rs - 1)-l values at 25°C of 2.22 + 0.004 versus 

2.58 + 0.004). In this study, however, there was no increase in the 

ratio of cholesterol/phospholipid noted (Borochov et al., 1977). 

Also, the microviscosity of erythrocyte membranes from patients with 
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abetalipoproteinemia was increased compared to normal erythrocytes 

(nacanthocyte = 4.01 - 4.14, nnormal = 3.2 + O.lP) which then is ex­

plained in terms of an excess amount of sphingomyelin in acanthocyte 

membranes with a concomitant increase in the sphingomyelin/phospha­

tidylcholine ratio (0.84 :t_ 0.08 in normals, 1.45-1.61 in acanthocytes) 

(Cooper et al.,1977). Van Blitterswijk et al. (1981) have also stated 

that sphingomyelin/total phospholipid ratio is an important determinant 

in fluidity of membranes. They show that for certain membranes, cho­

lesterol/phospholipid ratios remain constant but there is an altered 

structural order parameter; and this could be due to an altered 

sphingomyelin/phospholipid ratio. The authors stipulate that the 

sphingomyelin/phospholipid ratio is directly proportional to the order 

parameter (and thus inversely to fluidity). 

It is interesting to note that cholesterol/sphingomyelin ratio 

may also be important since it has been theoretically proposed that 

cholesterol tightly associates with sphingomyelin (Patton, 1970). 

The existence of a strong preferential interaction between cholesterol 

and sphingomyelin has been proven in artificial membranes (Barenholz 

& Thompson, 1980). At this moment, the exact ratio of cholesterol/ 

sphingomyelin has not been correlated with any fluidity change, but 

the literature does point to it (Barenholz et al., 1981; Barenholz & 

Thompson, 1980; Van Blitterswijk et al., 1981). 

When cholesterol/phospholipid ratio and sphingomyelin/ phos­

phatidylcholine ratio are constant but there is an altered membrane 

fluidity, the double bond index/saturated fatty acid ratio can be 

correlated with the changes in fluidity. A decrease in this ratio 
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leads one to conclude that there might be a decrease in lipid bilayer 

fluidity (Farias et al., 1975). As an example, this has been done 

with livermicrosomal membranes from guinea-pigs on a fat-free diet 

in which there was a decrease in membrane fluidity with no change in 

cholesterol/phospholipid ratio. However, there was a decrease in 

the double bond index/saturated fatty acid ratio corresponding to the 

decreased membrane fluidity. 

It is known that certain organisms can adapt to changes in 

their environmental temperature by altering their lipid composition 

and a constant lipid fluidity is maintained--termed homeoviscous adapt-

ation. Cultured cells have a limited ability to exhibit the property 

of homeoviscous adaptation. A transformed murine fibroblast cell 

line, LM cells, grown in a defined synthetic medium with supplements 

of choline or its analogues N,N'-dimethylethanolamine or N-monomethyl-

ethanolamine, was able to maintain plasma membrane fluidity constant 

by altering the degree of saturation of acyl chains in all classes 

of phospholipids. Only an ethanolamine supplement caused a decrease 

in the fluidity of the plasma membrane; again, alterations in the 

fatty acid composition of phospholipids was seen (Schroeder, 1978). 

This method of supplementation cannot be used to assess any changes 

in fluidity but it is a useful means of manipulating membrane lipid 

composition and testing for the sensitivity of membrane probes to 

changes in their lipid environment (Houslay & Stanley, 1982). 

Abnormalities in Cultured Human 
Skin Fibroblasts 

Owing to its many useful and well defined properties, DPH 



has been used to evaluate membrane fluidity, via fluorescence an­

isotropy, of a variety of cell membranes. In particular, it has been 

used on cultured human skin fibroblasts from subjects with various 

diseases with interesting results. This information is summarized in 

Table 2. 

As shown in Table 2, there is decreased polarization value 
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in fibroblasts obtained from homozygous familial hypercholesterolemia 

as compared to controls in both the intact cells and plasma membranes. 

It is interesting to note that there is no difference in the polari­

zation values of intact fibroblasts as compared with plasma membranes. 

Shaw et al. (1983) have shown that the difference or no difference 

observed between the total cell membrane fluidity and plasma membrane 

fluidity could be due to the way a plasma membrane is prepared. They 

seem to suggest that the method of membrane preparation is an essential 

step in determining membrane fluidity. Using a sucrose-step gradient, 

they have isolated plasma membranes from fibroblasts obtained from 

normal subjects as well as fibroblasts from subjects with Duchenne 

muscular dystrophy; and on these isolated membranes, membrane fluidity 

measurements using DPH revealed an increased fluidity of membranes as 

compared to matched controls. Fluidity in Huntington disease fibro­

blasts has also been evaluated and there is no difference observed 

between controls and diseased membranes--either in intact cells, plasma 

membranes, microsomes or mitochondrial membranes. Even though this 

technique of determining membrane fluidity has been used only in a 

few disease states using cultured human skin fibroblasts, it has a 



TABLE 2.--Fluorescence Polarization (25°C) of Cultured Human Skin Fibroblasts from Various Diseases 

Description of Various 
Cell Lines 

1. a. Normal Control 
Caucasian (n=2) 
Negro (n=4) 

b. Homozygous familial 
hypercholesterolemia (n=4) 

2. a. Control, 22°c (n=9) 
b. Duchenne dystrophy 

fibroblasts, 22°c (n=9) 
3.*** a. Control (n=lO) 

b. Huntington fibroblasts 
(n=ll) 

4.*** a. Control (n=9,8,8) 

b. Huntington fibroblasts 
(n=9,8,8) 

Fluorescence Polarization 

Intact Cells 

0.242 + 0.003 
0.238 + 0.005 
0.206 + 0.006 

0.2639 + 0.0085 
0.2625 + 0.0179 

Plasma 
Membranes 

0.242 + 0.013 
0.259 + O.Oll 
0.208 + O.Oll 

0.306 + 0.016 
0.289 + 0.008 

0.299 + 0.010 

0.301 + 0.006 

Values represent mean + standard deviation. 

*microsomes; **mitochondria; ***mean + standard error of mean. 

Other 
Organelles 

0.308 + 0.010* 
0.266 + O.Oll** 
0.313 + 0.007* 
0.278 + 0.012** 

Ref. 

Haggerty et al. 
(1978) 

Shaw et al. 
(1983) 

Beverstock & 
Pearson 0981) 

Schroeder 
(1984) 



very useful potential in investigating inherited metabolic disorders 

--especially Gaucher disease. 

Lipid Composition of Cultured Human 
Skin Fibroblasts 

It is important to know the composition of lipids in fibro-

blasts in order to correlate this with the membrane fluidity measure-

ments. The amount of neutral lipids have been determined in normal 

human cultured skin fibroblasts and the major constituents seem to 

be cholesterol, cholesterol esters, and triglycerides. Some of these 

values are summarized in Table 3 (Chatterjee et al., 1976). 

Along with neutral lipids, one of the major lipid classes 

found in fibroblasts are the glycerophospholipids. In normal human 
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fibroblasts, there seem to be several important phospholipids including 

sphingomyelin, phosphatidylcholine, phosphatidylinositol, phosphatidyl-

serine, phosphatidylethanolamine, and some disphosphatidylglycerol 

and lysophosphatidylcholine (Chatterjee et al., 1976; Malkiewicz-

Wasowicz et al., 1977; Schroeder et al., 1984). The results of a 

typical phospholipid analysis in cultured fibroblasts is presented 

in Table 4 (Schroeder et al., 1984). 

Along with neutral lipids and phospholipids, fibroblasts also 

contain glycosphingolipids. Glycosphingolipids make up approximately 

3 percent of total membrane lipids (Dawson et al., 1972). Glyco-

sphingolipids can be divided up into neutral glycosphingolipids and 

acidic glycosphingolipids (gangliosides). Neutral glycosphingolipids 

in human fibroblasts consist of glucosylceramide (GlcCer), lactosyl-

ceramide (LacCer), globotriaosylceramide or trihexosylceramide 



TABLE 3.--Neutral Lipid Composition of Cultured Human 
Skin Fibroblasts 

Neutral Lipid µg lipid/mg of Protein 

Cholesterol 30 

Cholesterol Ester 18 

Triglyceride 34 

Data adapted from Chatterjee et al. (1976) 
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TABLE 4.--Phospholipid Composition of Cultured Human 
Skin Fibroblasts 

Phospholipid Composition (mole %) 

Phosphatidylcholine 50 + 5 

Phosphatidylethanolamine 19 + 3 

Phosphatidylinositol + 10 + 1 
Phosphatidylserine 

Sphingomyelin + 10 + 1 
Lysophosphatidylcholine 

Cardiolipin 6 + 1 

Data adapted from Schroeder et al. (1984). Number of 
samples was 4, values represent the mean :t..SEM. 
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TABLE 5.--Glycosphingolipid and Ceramide Composition of 
Cultured Human Skin Fibroblasts 

Glycosphingolipid 

Neutral 
Glycosphingolipid 

GlcCer 
LacCer 
GbOse3Cer 
GbOse4Cer 

Gangliosides 
GM3 
GHz 
GM1 
GD3 
GD1a 

Cerami de 

nanomol/mg of protein 

1.11 + 0.48 
0.41 + 0.17 
2.50 ±. 0.56 
1. 40 + o. 29 

3.13 + 0.32 
1.10 + 0.16 
0.26 + 0.03 
o. 71 + 0.24 
0.47 + 0.18 

5* 

Ref. 

Saito & 
Rosenberg 
(1984a) 

Chen et al. 
( 1981) 

*Concentration of ceramide expressed as µg/mg of protein. 
Values represent the mean ±_SD. 
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(GbOse3Cer) and globotetraosylceramide or tetrahexosylceramide 

(GbOse4Cer). Gangliosides in fibroblasts consist of sialosyl lactosyl 

ceramide (GM3), sialosyl gangliotriaosyl ceramide (GHz), sialosyl 

gangliotetraosyl ceramide (GM1), disialosyl lactosyl ceramide (GD3), 

and disialosyl gangliotetraosyl ceramide (GD1a> (Saito & Rosenberg, 

1984a). The actual amount is represented in Table 5. Ceramide also 

is a constituent of cultured human fibroblasts and it has been deter­

mined that its concentration is approximately Sµg ceramide/mg of pro­

tein (Chen et al., 1981). 

The lipid composition of cultured human fibroblasts may be 

altered by a disease process (due to an enzymopathy), such as Gaucher 

disease, or it may be altered by culturing the cells in the presence 

of chemical modulators. Monensin, a carboxylic monovalent cationo­

phore, is such a chemical which can modify membrane lipid structure. 
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It has been shown that monensin decreases activity of lysosomal enzymes 

by increasing the pH (Tartakoff, 1983) and may influence glycosphingo­

lipid biosynthesis in the Golgi apparatus (Saito et al., 1984). Using 

monensin, Saito et al. (1984) have shown that there is increased ac­

cumulation of the neutral glycosphingolipids GlcCer and LacCer in 

normal cultured human skin fibroblasts; and this accumulation is in­

creased in Gaucher diseased fibroblasts which then may be explained 

in terms of cation regulation. At this time, however, the effects 

of monensin on neutral lipids, phospholipids, and ceramide is not 

known. 



CHAPTER III 

MATERIALS AND METHODS 

Cell Culture 

Normal cultured human skin fibroblasts (Human Genetic Mutant 

Cell Repository GM 3440 [adult], GM 302A [infant]), type 1 Gaucher 

disease fibroblasts (GM 4394 [infant non-neuronopathic]), and type 2 

Gaucher disease fibroblasts (GM 877 [infant neuronopathic]) were ob­

tained from the Institute for Medical Research (Camden, N.J.). Other 

fibroblasts were obtained from Dr. David Wenger, University of Colorado 

Medical Center, Dr. A Beaudet, Baylor College of Medicine and Dr. 

A. Milunsky, E. K. Shriver Center (Waltham, Mass.)--type 1 Gaucher 

fibroblasts (AdG 1470, AdG 119a [adult non-neuronopathic]), type 2 

Gaucher fibroblasts (InG 1247 [infant neuronopathic]), and type 3 

Gaucher fibroblasts (JuvG [juvenile neuronopathic]). One normal adult 

fibroblast cell line was established from biopsy in our laboratory 

(NmlF) (Barton & Rosenberg, 1974; Mueller & Rosenberg, 1977; Saito 

et al., 1984}. 

All cell culture was performed according to well established 

methods using 10 ml of growth medium containing 88% Dulbecco's modified 

Eagle's medium (GIBCO}, 10% heat inactivated fetal calf serum (GIBCO, 

heated at 56°C for 30 min}, and 2% penicillin-streptomycin (5000 

I.U. and 5 mg/ml, respectively, Flow Laboratories} in 75-cm2 plastic 
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tissue culture flasks (Falcon) at 37°C in a 5% C02 atmosphere in air. 

Change of media was performed every 5-6 days until the cells were 

confluent. Approximate time for confluency is 10-14 days after seeding 

of fibroblasts. Unless otherwise noted, fibroblasts were between 

the fifth and nineteenth passage in this study. Total cell protein 

was determined by the method of Hartree (1972). 

Fluorescence Labeling of Cells 

The fluorescent hydrocarbon l,6-diphenyl-1,3,5-hexatriene (DPH, 

Aldrich) was used as a probe for monitoring the degree of fluidity 

of normal and diseased fibroblasts. Labeling of fibroblast membranes 

was done according to the modified procedures of (Shinitzky & Baren­

holz, 1974; Shinitzky & Inbar, 1974; Fuchs et al., 1975; Haggerty et 

al., 1978; Van Hoeven et al., 1979) where 2mM DPH in tetrahydrofuran 

was diluted 100-fold with vigorously stirred calcium and magnesium 

free phosphate buffered saline (PBS, pH 7.2) and was further stirred 

for 30 minutes under a nitrogen stream to evaporate the tetrahydro­

furan. Confluent fibroblasts, in 75 cm2 flasks, were then incubated 

with 10 ml of 20µM DPH for 1 hour; whereas, the controls were incubated 

with 10 ml of PBS for the same period of time at 37°C. After incuba­

tion, the cells were detached from the flask substratum, via trypsin 

(type III from bovine pancreas, Sigma) treatment (0.05% in PBS for 5 

min), and the trypsin activity was neutralized by the growth media. 

The cells were recovered by centrifugation (500 xg, 5 min) and sus­

pended in 2 ml of PBS and approximately 50 µl of it was taken to be 

counted in a hemocytometer (ultra plane Spotlite counting chamber, 



S/P). The cells were again centrifuged and resuspended in PBS, using 

the appropriate volumes to get the same cell numbers for labeled and 

unlabeled cells (: 1-5 x 106 cells/ml). These were then immediately 

used for fluorescence measurements. 

For some of these cells, trypan blue exclusion test was also 

performed to check the viability of the fibroblasts. After the label-

ing of cells and collecting the suspension, O.lml of 0.01% trypan 

blue in PBS was added to the 1 ml suspension of cells and incubated 

for 1-5 min and the cells were counted with a hemocytometer. The 

percentage of viable cells is calculated as: 

% viable cells=lOO[l- no. cells with trypan blue uptake] 
total no. cells counted 

Fluorescence Anisotropy Measurements 

Fluorescence anisotropy and intensity were measured with an 

MPF-44B Perkin-Elmer spectrofluorophotometer equipped with Polacoat 

polaroid polarizers and a thermostatically controlled cuvette holder 

attached to a Fisher Model 90 Refrigerated bath. Temperature was 

maintained by circulating water-methanol (1:1) through the cuvette 

chamber. The excitation wavelength used was 360 nm and emission wave-

length of 426 nm with slits 5 nm each along with a filter cutoff of 

390 nm. Fluorescence polarization (P) and anisotropy Crs)is obtained 

from fluorescence measurements via the equations: 
I - I h(Ih /Ih h) 

p = v,v v, ,v , 
I + I h(Ih /Ih h) v,v v, ,v , 

I - 1v
2
h( 1h

2
v11h

2
h) 2P r = V 2V = s 

I + 21 h(Ih /Ih h) 3-P v,v v, ,v , 

where Iv,v is the corrected fluorescence intensity with the polarizers 
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parallel (excitation and emission polarizers set both at 0°) and Iv h 
' 

is the corrected fluorescence intensity with the polarizers horizontal 

(excitation polarizer set at o0 and emission polarizer at 90°). The 

factor in parenthesis, Ih,v/Ih,h is the transmission efficiency cor-

rection factor of the emission monochromator both parallel and per-

pendicular to the grooves of the grating. The corrected fluorescence 

intensity was determined by subtracting the intensity of polarized 

light measured with unlabeled control cells from the intensity observed 

with the labeled cells. For each of the intensity measurements a 20 

second integration is taken. For each experimental anisotropy, three 

independent readings were performed and averaged. 

For the different cell lines, anisotropy measurements were 

performed at 2s 0 c. In performing the temperature scan studies, the 

initial temperature was 4°C with an incremental increase of 4°C until 

40°C was reached. The temperature was monitored inside the cuvette 

with an YSI thermistor probe. 

From the fluorescence anisotropy (rs) measurements the apparent 

microviscosity (n) with units of Poise was calculated from the ex-

press ion 

-n = 2.4 rs 
o.362 - rs 

as shown by Shinitzky and Barenholz (1978) and discussed in Review 

of the Related Literature. The order parameter values were calculated 

according to the procedure of Van Blitterswijk et al. (1981): 

S - ( 4 rs 0 28) 112 - 3Q.362-. • 

For the temperature scans, Arrhenius plots of log rs versus l/tem-



perature (°K) were performed and analyzed for non-linear break points. 

Monensin Treatment and (3H) Acetate 
Labeling of Fibroblasts 

Confluent fibroblasts (GM 3440, normal adult) were incubated 

with 1 µM monensin (in ethanol, Calbiochem) in 10 ml culture medium 
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for 18 hrs. Equal volumes of ethanol were added to cells not incubated 

with monensin according to Saito et al. (1984). Along with this, 

all the cells were incubated with (3H) sodium acetate (New England 

Nuclear, specific activity of 685 mCi/mM). 50.0 µCi was used in 10 

ml growth medium. 

The amount of lipid was quantitated as described below by 

high performance silica gel G thin-layer chromatography (HPTLC). 

Radioactivity was determined by scraping each band of interest, trans-

ferring the samples into scintillation vials adding 5ml of Aquasol 

(New England Nuclear) and counting in a Beckman LS 1800 Scintillation 

Counter. External standards were established in the scintillation 

counter memory to determine the amount of quenching and counting ef-

ficiency; thus, from the actual counts per minute (cpm) the disintegra-

tion per minute (dpm) are reported. 

Lipid Isolation and Quantitation 

Confluent cells in 75 cm2 culture flasks were washed with 5 

ml cold PBS (4oc, pH 7.2, calcium and magnesium free) three times 

and harvested with a home-made rubber policeman. Total lipids were 

then extracted from the cells three times with 2 ml each of chloro-

form-methanol (2:1, v/v). The samples were then dried under nitrogen 
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(99.99% pure) and redissolved in chloroform and applied to a Unisil 

Column (activated silicic acid, 100-200 mesh, Clarkson Chemical Co., 

Pa.). Unisil column was prepared according to Saito & Rosenberg (1982) 

using glass wool in a 5-3/4" length pasteur pipet with silicic acid 

added up to 2 cm and pre-washed with chloroform-methanol (2:1, v/v). 

Neutral lipids were eluted first from the column with chloroform (3 

times with 2 ml) and then phospholipids with methanol (3 times with 

2 ml) after redissolving the sample in methanol and reapplying to 

the column. These lipids were then dried under nitrogen (99.99% pure) 

and are ready to be quantitated. 

The isolated neutral lipids were spotted on a 10 x 20 cm HPTLC 

(E. Merck, Darmstadt, Germany) plate along with 5 µl, 10 µl, 15 µl, 

and 20 µl of a standard neutral lipid mixture (consisting of 0.4 

µg/µ1 cholesterol, 0.06 µg/µl oleic acid, 1 µg/µ1 triglyceride and 

0.8 µg/µl cholesterol ester dissolved in dioxane and all chemicals 

obtained from Sigma). The plate was then developed in diethyl ether­

hexane-acetic acid (35:65:2, v/v) until the solvent front ascends to 

about 4-5 cm above the bottom edge of the plate. Following develop­

ment, excess solvent was evaporated in a fume hood for 15 minutes 

and then in a vacuum desiccator for 15 minutes. Then it was rechro­

matographed using diethyl ether-hexane-acetic acid (2:98:1, v/v) until 

the solvent front ascends to 1 cm of the top of the HPTLC plate. 

After drying the plate·several minutes in air, the lipids 

were charred for densitometry with 3% cupric acetate (w/v) in 8% phos­

phoric acid (v/v) solution and heated at 180°C for 15 minutes (Fewster 

et al., 1969) and scanned according to Macala et al. (1983) at 350 



nm (slit = 0.2 nm, width = 3 nm) in a Kratos model SD 3000 spectro­

densitometer (Kratos, Shoeffel Instrument Corp., N.J.) attached with 

a Hewlett-Packard 3390A integrator (Hewlett-Packard Co., Pa.). The 

scan was done in the "fast" mode on the densitometer along with the 

settings on the integrator as follows: attenuation = 6, chart speed 

= 6 cm/min, peak width = 0.04 min, threshold = 5, and area rejection 

= O. The lipids were then quantitated from comparison with the 

standard. Standard linear plots were determined for cholesterol, 

free fatty acid, triglycerides, and cholesterol ester separately as 

amount of lipid versus area under the curve and from it, the amount 

of sample lipid was determined. 

One-fourth the amount of isolated phospholipids were also 

spotted on a 10 x 20 cm HPTLC plate along with 5 µl, 10 µl, 15 µl, 

and 20 µl of a standard phospholipid mixture (consisting of 2 µg/µl 

sphingomyelin, 3 µg/µl phosphatidylcholine, 0.1 µg/µ1 phosphatidyl 

serine, 0.05 µg/µl phosphatidylinositol, and 0.5 µg/µl phosphatidyl 

ethanolamine dissolved in dioxane and all chemicals obtained from 

Sigma). The plate was then developed in chloroform-methanol-water 

(60:35:4, v/v) until the solvent front reached to 1 cm from the top 

of the plate. After drying the plate for several minutes in air, 
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the phospholipids were visualized and quantitated similarly as for 

neutral lipids (Macala et al., 1983; Schmitz et al., 1983, 1984; Gopelt 

& Resch, 1984). The scan on the densitometer was in the "slow" mode 

with the settings on the H-P 3390A integrator as follows: attenuation 

= 6, chart speed = 2 cm/min, peak width = 0.04 min, threshold = 5, 

and area rejection = O. 



Initially, to verify that the methanol elution from Unisil 

column did indeed give the phospholipids, phospholipids were plated 

and then sprayed with the Dittmer-Lester reagent (Dittmer & Lester, 

1964) specific for phospholipid, which gave a positive blue spot for 

the fibroblast phospholipids. They were also visualized with iodine 

stain to make sure no other lipids were present. Each phospholipid 

was then identified by comparing it with a standard spotted alongside 

it and noting the distance migrated. Each neutral lipid was also 

identified by comparing it with a standard. 

The yield of the phospholipid and neutral lipid was checked 

by densitometry. For example, the amount of neutral lipid isolated 

by chloroform elution from Unisil column was compared against neutral 

lipid content in total lipids and the result was approximately 95-99% 

of the neutral lipids were recovered, as judged via densitometry. 

This was also true for the phospholipids. 
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Ceramide was also quantitated in cultured human skin f ibro­

blasts. The total lipids were isolated as stated previously and dried 

under nitrogen. The lipids were then applied to a Unisil column by 

dissolving in chloroform-methanol (9:1, v/v) and eluted three times 

with 2 ml of this chloroform-methanol (9:1, v/v) mixture. This ceramide 

containing fraction was then dried under nitrogen and then applied 

to a HPTLC plate along with 5 ]J]., 10 ]J]., 15 ]J]., and 20 Ul of standard 

ceramide (0.05 ig/]J]. in C-M 2:1) obtained from Sigma (from brain 

sphingomyelin) and developed in chloroform-methanol-water (60:25:8, 

v/v) until the solvent front reached to approximately 3-3.5 cm from 

the bottom edge of the plate according to Selvam and Radin (1981). 
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Following development, excess solvent was evaporated in a fume hood 

for 15 minutes and then in a vacuum desiccator for 15 minutes. Then, 

it was rechromatographed using chloroform-methanol-acetic acid 

(90:2:8, v/v) until the solvent front ascends to 1 cm of the top of 

the HPTLC plate. The percentage recovery of ceramide was estimated 

to be approximately 90-95%, as judged by HPTLC plating and densitometry 

of the fraction containing chloroform-methanol (9:1) eluant versus 

total lipid fraction. The visualization and quantification of the 

ceramide was done exactly as that described for neutral lipids and 

phospholipids. This plate was then scanned with the densitometer in 

the "fast" mode with the settings on the H-P 3390A integrator as fol-

lows: attenuation = 6, chart speed = 7 cm/min, peak width = 0.04 

min, threshold = 5, area rejection = O. 

Fatty Acid Analysis of Phospholipids 
and Cholesterol Ester 

The phospholipids were isolated as described in the previous 

section. They were then plated onto a 10 x 20 cm plate (prewashed 

in the developing solvent system of chloroform-methanol-water [60:35:4, 

v/v]) and developed as before. Afterwards, the plate was air dried 

for a few minutes and visualized with iodine. Appropriate phospho-

lipids were marked along with blank regions and the iodine was evap-

orated under nitrogen. It was determined using standard phosphatidyl-

choline that the best way to keep unsaturated fatty acids from being 

degraded is to evaporate the iodine immediately with nitrogen, and, 

not in a vacuum desiccator. The marked spots were then scraped and 

dissolved in methanol and sonicated for 30 seconds. The individual 



lipids were then applied to a pasteur pipet, containing glass wool, 

and collected in 13 x 100 mm test tubes. The tubes were centrifuged 

to pellet any silica gel that may have been carried through with the 

methanol. The supernatant containing the phospholipid of interest 

was then placed into teflon capped 1/2 dram vials (Supelco, Inc., 

Bellefonte, Pa.) and then dried under nitrogen. The fatty acids were 

derivatized to their methyl esters by using either MeOH-HCl (0.5 N, 

Supelco) according to Zanetta et al. (1972) or BF3-MeOH (14% w/v, 

Supelco) according to Morrison and Smith (1964). 

55 

With respect to the MeOH-HCl (0.5 N) as the derivatizing agent, 

0.5 ml was added to the teflon capped vials and the vials were flooded 

with nitrogen for a few seconds, to replace the air, and the vials 

were then tightly capped. The vials were placed in a Multi-Blok Heater 

(Lab-Line Instruments, Inc., Melrose Park, IL) at 100°C for 20 hrs. 

After the said period of heating, the vials were cooled to room temper­

ature and the fatty acyl methyl esters were extracted twice with 0.5 

ml of hexane. The hexane was dried and a final volume of 50 µl hexane 

was added, and, 5 µl of this was subjected to gas chromatography. 

Similar to MeOH-HCl, 0.5 ml of BF3-MeOH was added to the teflon 

capped vials and the vials were placed under nitrogen for a few 

seconds. For all phospholipids, except sphingomyelin, the samples 

were heated at 100°C for 15 minutes. Sphingomyelin containing samples 

were heated at 100°C for 75 min. After cooling to room temperature, 

the fatty acid methyl esters were extracted twice with 0.5 ml hexane 

and dried under nitrogen. Afterwards, 50 µl of hexane was added, and, 

5 µl of this injected into the gas chromatograph. 



The fatty acids of cholesterol esters were examined similar 

to that of phospholipids. Neutral lipids from fibroblasts were ex­

traced as described in the previous section. These were then spotted 

on an HPTLC plate (prewashed in the solvent system of ether-hexane­

acetic acid [2:98:1]) and developed as described previously. After­

wards, the plate was air dried for a few minutes and visualized with 

iodine. The cholesterol ester bands were marked, along with the ap­

propriate blank, and the iodine was evaporated under nitrogen. The 

marked spots were then scraped and dissolved in chloroform and soni­

cated for 30 seconds. These then were applied to a pasteur pipet 

containing glass wool and collected in 13 x 100 mm tubes. The tubes 

were centrifuged (500 xg, 5 min) to pellet any silica gel that may 

have been present after passing through with chloroform. The super­

natant containing cholesterol ester was placed in a 1/2 dram teflon 

capped vial and dried under nitrogen. Then the fatty acids from cho­

lesterol esters were derivatized with BF3-MeOH (14% w/v, 0.5 ml/vial) 

at l00°C for 75 min. After cooling, the fatty acid methyl esters 

were extracted twice with 0.5 ml hexane and dried under nitrogen. A 

final volume of 50 µl was added to the dried lipids, and, 5 µl of 

this was injected into the gas chromatograph. 
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The fatty acid methyl esters were analyzed using a Perkin-Elmer 

990 Gas Chromatograph equipped with a flame ionization detector. The 

prepacked column was obtained from Supelco, Inc. containing 5% Ov-210 

on Supelcoport. The conditions used for gas-liquid chromatography 

are summarized in Table 6. 

The peaks obtained were identified using authentic standards 



TABLE 6.--Conditions for Gas Liquid Chromatography 
Using a Perkin-Elmer Model 990 G-C 

Condition 

Column Temperature: 
Initial 
Final 

Temperature Program Rate 
Manifold Temperature 
Injector Temperature 
Gas Flow Rates (All gases of Zero Grade) 

Hydrogen 
Air 
Nitrogen 

Sample volume injected 
Attenuation 
Cool Rate 
Hewlett Packard 3390A Integrator: 

Attenuation 
Chart Speed 
Peak Width 
Threshold 
Area Rejection 

Value 

90°c 
200°c 

4°C/min 
200°c 
240°c 

30 ml/min 
300 ml/min 
7.5 ml/min 

5 µl 
8 
fast 

2 
0.3 cm/min 

0.04 min 
1 
0 
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obtained from Sigma or Supelco. The weight percentage of each fatty 

acid was determined with respect to an external standard obtained 
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from Supelco (Supelco Standard F containing 12% C14:0, 4% C16:0, 7% 

Cl8:0, 14% C20:0, 25% C22:0, and 47% C24:0). Cholesterol ester fatty 

acids were analyzed with the G-C attached to a Hewlett-Packard inte­

grator, which predetermined the areas; whereas, phospholipid fatty 

acids were analyzed with a Fisher Recordall Series 5000 Chart recorder 

(0.01 volts, 1 cm/min chart speed) from which the area of each indi­

vidual peak was obtained by taking the product of height x base at half 

height. 

Hydrogenation 

For an unidentifiable peak in the fatty acids of cholesterol 

esters, the fatty acid methyl esters were subjected to platinum reduc­

tion using Adam's catalyst (Pt20) according to the method of Christie 

(1982). All of fatty acid methyl esters in hexane, as obtained above, 

were taken and dried under nitrogen. To this sample, 150 µl of meth­

anol (anhydrous) was added along with 1 mg of Adams' catalyst in a 

sealed pasteur pipet. The sample was then placed in a hydrogenation 

bottle and connected to a two-way tap reservoir of hydrogen. The sample 

was alternatively evacuated and flushed with hydrogen three or four 

times to remove any air, and then was vigorously shaken for two hours 

at a hydrogen pressure of 21 psi. After this time, the catalyst turned 

black; and the methanol containing reduced fatty acid methyl esters 

was transferred to another sealed pasteur pipet and an additional 

100 µ1 of methanol was added. From this, the fatty acid methyl esters 



were extracted twice with 400 µl hexane and placed into teflon capped 

vials. This was then dried under nitrogen and a final volume of 50 

µ1 hexane was added, of which, 5 µ1 was injected into the gas chrom­

atograph for identification. 
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CHAPTER IV 

RESULTS 

Fluorescence of DPH Incorporation into Cells 

A time course study was performed on normal and Gaucher dis­

eased fibroblasts at 25°C and it was noted that the steady-state flu­

orescence anisotropy value was constant up to the times investigated 

(Fig. 7). The fluorescence intensity was linear up to one hour for 

both normal and diseased cells (Fig. 8). The viability of the cells 

was also checked, using the trypan blue exclusion test, and almost 

95-99 percent of all the cells were viable up to 1 hr. In order to 

check that the DPH probe was incorporated into the fibroblasts, an 

emission spectrum of the labeled and unlabeled cells (excitation wave­

length = 360 nm) was performed for the different cell lines and the 

spectra showed the incorporation of probe into the cell membranes 

with a relative emission maximum at 426 nm (Figs. 9-15) for the normal 

and Gaucher diseased cell lines. Also, excitation spectra for one 

of the cell lines, GM 302A, is shown in Fig. lO(emission wavelength 

= 426 nm). Culture media's intrinsic autofluorescence was also checked 

and it was noted there was some probe incorporated into the media 

but not to a significant degree that would interfere with the subse­

quent anisotropy measurements. It can be noted that the labeled cells 
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Fig. 7. Time course study of fluorescence anisotropy of 
Normal, NmlF (e),and Gaucher, InG 1247 (O),fibroblasts. 
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Fig. 9. Emission spectra of DPH in normal infant fibroblasts 
(GM 302A). Curve (a) depicts fibroblasts labeled with DPH and curve (c) 
non-labeled cells at the same sensitivity of the fluorometer. Curve (b) 
is the same as for (c) except at a higher gain (30x). Excitation 
wavelength was 360 nm. 
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Fig. 10. Excitation spectra of DPH in normal infant fibro­
blasts (GH 302A). Emission wavelength was 426 nm. 
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Fig. 11. Emission spectra of DPH in type 1 infant Gaucher 
fibroblasts (GM 4394). Curve (a) depicts fibroblasts labeled with 
DPH and curve (c) non-labeled cells at the same sensitivity of the 
fluorometer. Curve (b) is the same as for (c) except at a higher 
gain. Excitation wavelength was 360 nm. 
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Fig. 12. Emission spectra of DPH in type 2 infant Gaucher 
fibroblasts (InG 1247). Curve (a) depicts fibroblasts labeled with 
DPH and curve (c) non-labeled cells at the same sensitivity of the 
fluorometer. Curve (b) is the same as for (c) except at a higher 
gain. Excitation wavelength was 360 nm. 
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Fig. 13. Emission spectra of DPH in type 3 juvenile Gaucher 
fibroblasts (JuvG). Curve (a) depicts fibroblasts labeled with DPH 
and curve (c) non-labeled cells at the same sensitivity of the 
fluorometer. Curve (b) is the same as for (c) except at a higher 
gain. Excitation wavelength was 360 nm. 
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Fig. 14. Emission spectra of DPH in normal adult fibroblasts 
(GM 3440). Curve (a) depicts fibroblasts labeled with DPH and curve 
(c) non-labeled cells at the same sensitivity of the fluororneter. 
Curve (b) is the same as for (c) except at a higher gain. Excitation 
wavelength was 360 nm. 
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Fig. 15. Emission spectra of DPH in type 1 adult Gaucher fibro­
blasts (AdG 1470). Curve (a) depicts fibroblasts labeled with DPH and 
curve (c) non-labeled cells at the same sensitivity of the fluorometer. 
Curve (b) is the same as for (c) except at a higher gain. Excitation 
wavelength was 360 nm. 
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have greater than 20-30 times the intensity as compared to non-labeled 

cells. 

Fluorescence Anisotropy of Normal and Diseased Cells 

Table 7 shows the steady-state polarization and anisotropy, 

measurements for the various cell lines at 2s 0 c. This ~able also 

has calculated average values for the apparent membrane microviscosity 

(n), limiting fluorescence anisotropy (r
00

), and the lipid order param­

eter (S) from the steady-state fluorescence anisotropy values as shown 

in Materials and Methods, and Review of the Related Literature. It 

can be seen that as compared to normal infant fibroblasts, type 2 

and type 3 Gaucher cells had significantly increased anisotropy 

values. Also, from the order parameter and apparent microviscosity, 

it can be concluded that there was decreased membrane fluidity for 

the neuronopathic (acute and subacute) forms of Gaucher disease. In 

the infant form of type 1 disease investigated, there was no signif­

icant difference in anisotropy, and thus membrane fluidity, from normal 

cells. As compared to normal adult fibroblast membranes, type 1 

Gaucher cells exhibited a variability of data with respect to ani­

sotropy measurements and thus membrane fluidity. On the average, 

type 1 Gaucher cells exhibit no difference in membrane fluidity as 

compared to normal cells; however, for one of the cell lines (AdG 

1470), there was significant increase in anisotropy value as compared 

to normal cells. This difference in steady-state fluorescence ani­

sotropy in the various type 1 Gaucher cells could be reflecting the 

heterogeneity found among adult non-neuronopathic forms of Gaucher 



TABLE 7.--Fluorescence Polarization (P), Anisotropy <rs), Membrane Viscosity (n), Limiting Anisotropy(r
00

), 

and Order Parameter (S) of Normal and Gaucher Diseased Fibroblasts at 25°C 

Nml Infant 
GM 302A (n=3) 

Type 1 Infant 
GM 4394 (n=3) 

Type 2 Infant 
a. InG 1247 (n=5) 
b. GM 877 (n=3) 

Type 3 Juvenile 
JuvG (n=3) 

Nml Adult 
a. GM 3440 (n=4) 
b. NmlF (n=3) 

Type 1 Adult 
a. AdG 119a (n=3) 
b. AdG 1470 (n=4) 

p 

0.251 + .007 

0.263 + .012 

0.303 + .016** 
0.311 + .019* 

0.294 + .006* 

0.270 + .015 
0.279 + .010 

0.262 + .006 
0.301 + .010*** 

0.182 + .006 

0.192 + .009 

0.225 + .013** 
0.231 + .016* 

0.216 + .005* 

0.198 + .012 
0.205 + .008 

0.191 + .004 
0.223 + .009*** 

-n (Poise) 

2.43 

2. 71 

3.94 
4.23 

3.55 

2.90 
3.13 

2.68 
3.85 

r 
00 

0.143 

0.156 

0.200 
0.208 

0.188 

0.164 
0.173 

0.155 
0.197 

s 

0.628 

0.656 

0.743 
0.758 

o. 721 

0.673 
0.692 

0.654 
0.738 

Each value represents mean + standard deviation, n represents the number of separate determinations. 

*P<0.01 
**P<0.001 as compared with normal infant 

***P<0.01 as compared with normal adult using Student's two-tailed t test. 



disease. Note, there also existed a difference between the normal 

adult and infant cell lines, where there was a significant increase 

of fluidity in normal infants as compared to normal adults. 

Figures 16 and 17 show the effect of increasing temperature 

on fluorescence anisotropy values for normal and diseased cells and 
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it can be seen, as a general result, that as the temperature increases, 

the anisotropy value decreases. Therefore, the membrane fluidity 

increases with increasing temperature for all membranes. As the first 

figure shows, type 2 and type 3 Gaucher cells, which had a significant 

difference from normal inf ant cells with respect to anisotropy values 

at 2soc, also exhibited a difference in fluidity at all the tempera­

tures. Each point on the curve represents an average of two different 

experiments at the specified temperature. The determination for type 

2 Gaucher cells was done using both the cell lines InG 1247 and GM 

877; for type 3 Gaucher cells, the cell line labeled Juv G was used. 

This figure then shows that at all temperatures between 4-40°C, there 

was decreased fluidity of type 2 and type 3 Gaucher cells. This con­

clusion also holds true for the type 1 Gaucher cell line (AdG 1470) 

which had a significant difference from normal adult cells with respect 

to anisotropy value at 2s 0 c. Therefore, there was decreased membrane 

fluidity in type 1 Gaucher fibroblasts at all temperatures between 

4-40°C. From these temperature studies, one can evaluate if there 

are any bulk lipid phase transitions by looking at the Arrhenius plots 

of log (anisotropy) versus l/temperature. This is as shown in figures 

18 and 19. Figure 18 shows that there were no identifiable breaks· 

in the Arrhenius plots of normal infant fibroblasts, type 2 and type 
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3 Gaucher cells; thus implying that, between 4-40°C, there were no 

bulk lipid phase transitions in fibroblast membranes as judged by 

steady-state fluorescence anisotropy using the probe DPH. 
d (log r ) 

The slope (d (l/T) 8 
), as derived from linear least square fit 

(Table 8), and the intercept on the ordinate for the Arrhenius curve 

for normal infant fibroblasts were different from that of type 2 and 

type 3 Gaucher cells. Figure 19 shows that using normal adult cells 
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(GM 3440) and type 1 Gaucher cells (AdG 1470) there were no bulk lipid 

phase transitions. Again, the slope and the ordinate intercept were 

different in normal adult cells as compared with type 1 Gaucher cells. 

Neutral Lipid Content of Normal and 
Diseased Cells 

Figure 20 shows the HPTLC plate obtained using the separation 

system listed in Materials and Methods. From this, the total amounts 

of cholesterol, free fatty acid, triglycerides, and cholesterol ester 

were determined. It is to be noted that once the area was obtained 

for each spot for the standard, a standard curve was determined for 

total area versus amount of lipid spotted and linear least square 

fit was used to determine the best fit, and from it the sample amount 

was determined. A densitometric pattern for one of the lanes is given 

in the same figure. Each neutral lipid is expressed as µg/mg of 

protein. As can be seen from Table 9, there were no differences be-

tween normal and Gaucher cells with respect to cholesterol and free 

fatty acid content. There was a considerably decreased amount of 

cholesterol ester in all three types of Gaucher disease fibroblasts 

as compared with normal fibroblasts. It seems that type 1 Gaucher 



TABLE 8.--Slope, Ordinate Intercept, and Correlation Coefficient 
Derived from Arrhenius Plots of Log (Fluorescence Anisotropy) 

versus [Temperature (OK)]-1 

Cell Type Slope Intercept Corr. Coe ff. 

Nml Infant -2.68 0.0059 0.99 

Type 2 Infant -2.40 0.0051 0.99 

Type 3 Juvenile -2.30 0.0048 0.97 

Nml Adult -2.98 0.0065 0.99 

Type 1 Adult -2.44 0.0052 0.98 
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Fig. 20. HPTLC chromatogram of neutral lipids isolated from 
fibroblasts. 

(a) Lanes 1-4, 5-20 µl standard neutral lipid mixtures (see Methods). 
Lane 5, sample from normal adult fibroblasts (GM 3440). Lane 6, 
sample from type 1 adult Gaucher diseased fibroblasts (AdG 1470). 
Lane 7, sample from normal infant fibroblasts (GM 302A). Lane 8, 
sample from type 1 infant Gaucher diseased fibroblasts (GM 4394). 
Symbols used: A, cholesterol; B, free fatty acid; C, triglyceride: 
D, cholesterol ester. 

(b) Densitometric scan of lane 7 in (a). Symbols defined as above. 
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TABLE 9.--Neutral Lipid Composition of Normal and Gaucher Diseased Fibroblasts 

Cholesterol Fatty Acid Triglycerides Cholesterol Ester 

Nml Infant 
GM 302A (n=3) 39.63 + 15.75 1.52 + 0.58 35.09 + 4.24 28. 38 + 9.02 -

Type 1 Inf ant 
GM 4394 (n=3) 29.39 + 12.20 1.07 + 0.69 14.22 + 6.31** 9.46 + 4.94* - -

Type 2 Infant 
a. InG 1247 (n=3) 35.12 + 19.42 1.19 + 1.16 21. 75 + 16.65 14.35 + 9.97 
b. GM 877 (n=3) 66.12 + 20. 85 1.64 + 0.84 29.64 + 19.44 10.92 + 11.60 

Type 3 Juvenile 
JuvG (n=3) 44.66 + 27.52 0.62 + 0.37 32.77 + 15.52 13.13 + 6.75 

Nml Adult 
GM 3440 (n=4) 35.62 + 13.41 0.99 + 0.95 32.04 + 18.07 22.24 + 14.91 

Type 1 Adult 
a. AdG 119a (n=2) 20.36 - 22.45 0.16 - 0.18 9.22 - 12.34 1.91 - 3.86 
b. AdG 1470 (n=3) 37.39 + 23.53 0.62 + 0.65 12.20 + 6. 77 9. 71 + 1.89 - -

Each neutral lipid is expressed as µg/mg of protein. Each value represents mean ±.. standard deviation. 

*P<0.05, **P<0.01 as compared with normal infant using Student's two-tailed t test. 

n represents the number of separate determinations. 
co 
00 



cells had a much more decreased content of cholesterol ester content 

as compared to type 2 and type 3 Gaucher fibroblasts. It is also 

interesting to note that only in type 1 Gaucher disease cells there 

was also a decrease in the triglyceride content as compared to normal 

cells; whereas, both type 2 and type 3 Gaucher cells had triglyceride 

content within the normal range. With respect to the type 1 Gaucher 

infant cell line (GM 4394), there was a significant decrease in both 

the triglyceride and cholesterol ester content as compared to normal. 

Phospholipid Content of Normal and Diseased Cells 
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Figure 21 shows the HPTLC plate of phospholipids obtained 

using the separation system listed in Materials and Methods. It can 

be seen that the major lipids in fibroblasts were sphingomyelin, phos­

phatidylcholine, phosphatidylserine, phosphatidylinositol, and phos­

phatidylethanolamine. From the standards spotted, standard least­

linear curves (total area versus amount of lipid) were determined, 

and from it the amount of unknown lipids quantitated. A densitometric 

pattern for one of the lanes is shown in the same figure. The results 

for the phospholipid content for various cell lines are summarized in 

Table 10. As can be seen from this table, there seemed to be no dif­

ference between normal and Gaucher cells with respect to phosphatidyl­

serine, phosphatidylinositol, and phosphatidylethanolamine. As com­

pared to normal infant cells, type 1 Gaucher infant cells did not 

have an altered sphingomyelin content; however, there seemed to be a 

trend for decreased phosphatidylcholine content. Type 2 Gaucher cells 

had, on the average, a decreased amount of sphingomyelin and phospha-



Fig. 21. HPTLC chomatogram of phospholipids isolated from 
fibroblasts. 

(a) Lanes 1-4, 5-20 µl standard phospholipid mixtures (see Methods). 
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Lanes 5 and 6, samples from normal adult fibroblasts (GM 3440). 
Lane 7, sample from normal infant fibroblasts (GM 302A). Lane 8, 
sample from type 1 adult Gaucher diseased fibroblasts (AdG 1470). 
Symbols used: A, sphingomyelin; B, phosphatidylcholine; C, 
phosphatidylserine; D, phosphatidylinositol; E, phosphatidyl­
ethanolamine. 

(b) Densitometric scan of lane 7 in (a). Symbols defined as above. 



A B CD E 91 
I I I 

b 

E 

D - D 
c 
B 

c 
B- • A-

A 
,~ 

2 3 s 6 7 8 
a 



TABLE 10.--Phospholipid Composition of Normal and Gaucher Diseased Fibroblasts 

SPM PC PS PI PE 

Nml Inf ant 
GM 302A (n=3) 101.62 + 32.56 257.37 + 72.00 24.54 + 18.13 7.18 + 1.93 103.5 + 62.30 -

Type 1 Inf ant 
GM 4394 (n=3) 90.70 + 6. 71 126.30 + 55.30 10.47 + 2.17 4.46 + 0.60 69.31 + 18.03 -

Type 2 Infant 
a. InG 1247 (n=3) 24.39 + 4.62 122.93 + 48.82 11.35 + 7.05 8.04 + 5.75 71.87 + 6.33 - -
b. GM 877 (n=3) 82.24 + 8.32 116.47 + 51.09 12.10 + 6.76 3.40 + 1.32 152.40 + 111.62 -

Type 3 Juvenile 
Juv G (n=3) 43.18 + 21.89 172.60 + 101.62 20.15 + 5.16 5.14 + 2.51 53.79 + 16.86 -

Nml Adult 
GM 3440 (n=3) 100.59 + 37.90 212.23 + 33.52 13.42 + 14.31 3.47 + 2.32 102.97 + 46.29 -

Type 1 Adult 
a. AdG 119a (n=2) 19.92 - 33.9 65.5 - 81.6 12.5 - 21.52 3.84 - 10.8 20.76 - 56.80 
b. AdG 1470 (n=3) 108.45 + 70.57 208.37 + 58.28 37.46 + 39.98 10.85 + 7.24 128.84 + 45.29 - -

Each Phospholipid expressed as µg/mg of protein. Each value represents mean + standard deviation. Control 
and Gaucher phospholipid values did not differ significantly by Student's two-tailed t test. Definition 
of symbols: SPM, sphingomyelin; PC, phosphatidylcholine; PS, phosphatidylserine; PI, phosphatidylinositol; 
PE, phosphatidylethanolamine. n represents the number of separate determinations. \.0 
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tidylcholine content as compared to normal infant cells. In type 3 

Gaucher cells, there was no change in phosphatidylcholine content; 

however, there seemed to be decreased amounts of sphingomyelin. It 
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is interesting to note that the phospholipid content of both normal 

adult and normal inf ants were approximately the same. As compared to 

normal adult cell lines, one of the cell lines (AdG 119a) had decreased 

amounts of sphingomyelin and phosphatidylcholine; whereas, the AdG 

1470 cell line had approximately the same phospholipid composition as 

that of normal cells. This variability in type 1 cells could possibly 

be due to the heterogeneity that is found among this disease. 

Ceramide Content of Normal and Diseased Cells 

Figure 22 shows the HPTLC plate of ceramide obtained using 

the separation system listed in the Materials and Methods. From this 

technique, we were able to quantitate the ceramide content of normal 

and Gaucher diseased fibroblasts. It can be seen from Table 11 that 

as compared to normal infant cells, types 1, 2, and 3 Gaucher cells 

had approximately the same content of ceramide. This also held true 

for type 1 adult Gaucher cells as compared to normal adult fibro­

blasts. Ceramide content in cells was 1/10 to 1/50 the concentration 

of cholesterol levels. 

Effect of Monensin on Normal Fibroblast Lipids 

Table 12 shows the effect of monensin on neutral lipids, phos­

pholipids, and ceramide as compared to control cells (methodology 

described as previously). This table describes both the total amounts 

of each lipid as well as the counts observed after labeling with (3H) 



Fig. 22. HPTLC chromatogram of ceramide containing lipid 
fraction, isolated from fibroblasts. Lanes 1-4, 5-20 ~l standard 
ceramide (see Methods). Lane 5, sample from type 1 adult Gaucher 
diseased fibroblasts (AdG 1470). Lanes 6-8, samples from type 3 
juvenile Gaucher diseased fibroblasts (JuvG). Symbols used: A, 
phospholipids; B, ceramide; C, cholesterol; D, cholesterol ester 
(migrating with the solvent front). 
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TABLE 11.--Ceramide Composition of Normal and Gaucher Diseased 
Fibroblasts 

Ceramide 

Nml Infant 
GM 302A (n=3) 2.75 + 1.66 

Type 2 Infant 
GM 877 (n=3) 1.17 + 0.81 

Type 3 Juvenile 
JuvG (n=3) 2.73 + 0.49 

Nml Adult 
GM 3440 (n=3) 0.98 + 0.08 

Type 1 Adult 
AdG 1470 (n=3) 2.33 + 1.62 

Amount of ceramide expressed as µg/mg of protein. Each value repre­
sents mean + standard deviation. Control and Gaucher ceramide values 
did not differ significantly by Student's two-tailed t test. n repre­
sents number of separate determinations. 
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TABLE 12.--Effect of Monensin on Normal Fibroblast (GM 3440) Lipids 

Total Lipid (µg/mg of protein) Radioactivity (dpm/mg of protein) 

M+ M- M+ M-

Neutral Lipids 
Cholesterol 60.94 + 7.42 76.67 + 12.24 14313 + 4004** 2948 + 844 - - -Free Fatty Acids 2.65 + 0.46* 1. 70 + 0.38 10341 + 799* 3663 + 1185 
Triglycerides 39.55 + 3.44 50.64 + 11.26 61834 + 12726 38700 + 12892 
Cholesterol Ester 4.15 + 2.18** 14.91 + 3.84 482 + 111 ** 3275 + 790 -

Phospholipids 
Sphingomyelin 65.13 + 6.85 78.33 + 29.12 12723 + 3234 11125 + 2947 -Phosphatidylcholine 136.23 + - 6.67* 224.13 + 44.41 137013 + 7730** 55424 + 13277 
Phosphatidylserine 14.99 + 1.33** 4.76 + 2.28 10909 + 1214** 5012 + 1880 - -
Phosphatidylinositol 5.16 + 0.65 4.83 + 2.56 1259 + 298* 627 + 248 -
Phosphatidylethanolamine 235.33 + 52.14 247.52 + 67.81 18657 + 3074** 7677 + 1716 

Ceramide 0.45 + 0.20 0.41 + 0.07 44.94 + 17.33 46.32 + 15.00 

Each value represents mean of three separate trials ±.. standard deviation. M+ represents monensin treated 
cells; whereas, M- represents non-monensin treated cells. 

*P<0.05; **P<0.01 as compared with non-monensin treated cells using Student's two-tailed t test. 
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acetate for 18 hours in the same cells labeled with either monensin 

(in ethanol) or without monensin (but an equal amount of ethanol). 

With respect to total lipids, there was a significant decrease 

in the amount of cholesterol ester and phosphatidylcholine content 

in monensin treated cells. There was significant increase in the free 

fatty acid and phosphatidylserine content of monensin treated f ibro-

blasts. The amounts of other lipids in monensin treated cells were 

comparable to that of non-monensin treated cells. In relation to 

incorporation of (3H) acetate into neutral lipids, there was decreased 

incorporation of the label into cholesterol ester; whereas, there 

was increased incorporation into cholesterol, free fatty acids, and 

triglycerides. The incorporation of the tritiated label was increased 

in phosphatidylcholine, phosphatidylserine, phosphatidylinositol and 

phosphatidylethanolamine; whereas, there was no change in sphingomye-

lin. Similar to sphingomyelin, ceramide did not have an altered incor-

poration of the label when treated with monensin. Some of the values 

in Table 12 differ from the previous tables since even the controls 

are treated with ethanol. 

Phospholipid and Cholesterol Ester Fatty 
Acid Analysis 

The fatty acid methyl esters of individual lipids were deter-

mined as described in Materials and Methods. Table 13 shows the fatty 

acid composition of phosphatidylcholine of fibroblasts of normal and 

diseased subjects. As can be seen from this table, the major saturated 

fatty acids for phosphatidylcholine were C14:0, C16:0, C18:0, and 

C22:0, whereas, the unsaturated fatty acids were mainly C16:1, C18:1, 
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TABLE 13.--Fatty Acid Composition of Phosphatidylcholine of Fibroblasts 

(Weight %) 

Adult Infant 

GM 3440 AdG 1470 GM 302A InG 1247 GM 877 
Fatty Acid (Nml) (Type 1) (Nml) (Type 2) (Type 2) 

14:0 1.3 0.8 2.7 3.4 2.7 

16:0 24.6 26.4 39.7 25.7 29.6 

16:1 4.7 5.8 1. 7 7.8 3.6 

18:0 25.3 25.0 26.7 22.9 19.4 

18:1 30.9 25.3 16.5 25.8 24.9 

18:2 1.3 0.7 0.9 1.9 1.1 

18:3 1.3 0.7 1.5 1.6 1.3 

20:4 9.8 13.3 9.5 8.3 2.7 

22:0 0.8 2.3 0.5 2.4 2.0 

24:0 -a 10.0 

aTrace amounts. 
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the same; this was also true for type 2 Gaucher cells (InG 1247) as 

compared with normal infants. In GM 877, type 2 Gaucher cells, there 

was increase in amounts of C24:0 as compared to normal cells. 

Table 14 shows the fatty acid composition of phosphatidyl-

ethanolamine of the various cell lines. It can be seen in this table 

that there was increased amount of Cl8:1 in normal adult fibroblast 

as compared with type 1 Gaucher cells. Whereas, there was considerable 

increased amount of Cl6:0, Cl8:0 and decreased amount of Cl8:1 and 

C20:4 in normal cells as compared with type 2 Gaucher cells (InG 

1247). In another type 2 Gaucher cell line, GM 877, there was de-

creased amount of Cl8:1 and decreased amount of Cl8:0 as compared 

with normal infant cells. It should also be noted that the fatty 

acid composition of phosphatidylethanolamine was different from that 

of phosphatidylcholine. 

Table 15 shows the fatty acid composition of sphingomyelin of 

the various fibroblastic cell lines. Type 1 Gaucher fibroblasts 

sphingomyelin had a decreased amount of C16:0 and an increased amount 

of Cl8:0 and C22:0 as compared to normal adult sphingomyelin fatty 

acids. Sphingomyelin from Type 2 Gaucher fibroblast (InG 1247) had 

a considerable increased amount of C16:1 and C24:0 and a decreased 

amount of C16:0 and Cl8:0 as compared to normal. In another type 2 

Gaucher cell line, GM 877, there was an increase in amount of Cl6:1 

and some decrease in C18:0. It is also to be noted that there was a 

difference between normal adult and infant cells with respect to their 

sphingomyelin fatty acid content. And also, the fatty acid composition 

Iii 
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TABLE 14.--Fatty Acid Composition of Phosphatidylethanolamine of 
Fibroblasts 

(Weight %) 

Adult Infant 

GM 3440 AdG 1470 GM 302A InG 1247 GM 877 
Fatty Acid (Nml) (Type 1) (Nml) (Type 2) (Type 2) 

14:0 -a 1.9 2.4 

16:0 9.3 6.6 19.7 18.0 

16:1 0.8 1.4 2.4 

18:0 27.9 36.0 42.6 28.9 32.2 

18:1 23.6 14.2 15.5 23.5 30.0 

18:2 4.5 3.2 1.9 

18:3 5.2 1.3 

20:4 38.4 43.2 9.2 29.5 8.8 

Other 6.7 8.3 3.0 

8 Trace amounts. 
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TABLE 15.--Fatty Acid Composition of Sphingomyelin of Fibroblasts 

(Weight %) 

Adult Inf ant 

GM 3440 AdG 1470 GM 302A InG 1247 GM 877 
Fatty Acid (Nml) (Type 1) (Nml) (Type 2) (Type 2) 

16:0 52.8 23.7 48.7 27.2 49.2 

16:1 2.7 -a 31.3 13.9 

18:0 18.8 42.6 18.1 4.4 10.9 

18:1 10.5 4.2 

22:0 15.2 29.5 13.8 9.8 9.3 

24:0 19.4 27.4 16.7 

aTrace amounts. 



of sphingomyelin was different from that of phosphatidylcholine and 

phosphatidylethanolamine. 

103 

Table 16 shows the fatty acid composition of phosphatidylserine 

of various fibroblastic cell lines. It can be seen from the table 

that type 1 and type 2 Gaucher fibroblast phosphatidylserine fatty 

acids had an increased amount of Cl4:0, Cl6:0, Cl6:1, and Cl8:1 as 

compared to normal adult; whereas, there was decreased amounts of 

Cl8:0 and C20:4. Table 17 shows the fatty acid composition of phos­

phatidylinositol and it can be seen that there was an increased amount 

of Cl6:0, Cl6:1, and Cl8:1, whereas, there was decreased amount of 

Cl4:0 and Cl8:0 in type 2 Gaucher cells. 

The fatty acids of cholesterol esters were also analyzed for 

normal and Gaucher diseased cell lines. Table 18 shows that the major 

saturated fatty acids for cholesterol ester were Cl4:0, Cl6:0, and 

Cl8:0, and the major unsaturated fatty acids were Cl6:1, Cl8:1, Cl8:2, 

and Cl8:3. As compared to normal adult cells, type 1 Gaucher cells 

(AdG 1470) had a dramatic increase in the amount of Cl4:0 and a reduc­

tion of Cl8:1. As compared with normal infant cholesterol ester fatty 

acid, type 1 infant Gaucher cells had a relative increase in Cl6:0, 

and Cl8:1. Type 2 infant Gaucher cells had an increased amount of 

Cl6:0, Cl6:1, Cl8:0 and Cl8:1. Type 3 juvenile Gaucher cells had an 

increased amount of Cl8:1 and Cl8:2. 

In Table 18 it is also shown that there was an unidentified 

peak in cholesterol ester from normal cell lines which was not observed 

in all three types of Gaucher disease. Hydrogenation on the fatty 

acid methyl esters of normal infant cholesterol ester was performed 
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TABLE 16.--Fatty Acid Composition of Phosph~tidylserine of Fibroblasts 

(Weight %) 

Adult Infant 

GM 3440 AdG 1470 GM 302A InG 1247 GM 877 
Fatty Acid (Nml) (Type 1) (Nml) (Type 2) (Type 2) 

14:0 -a 3.2 

16:0 14.1 n.d.b 29.6 18.4 

16:1 5.8 1.9 11.6 

18:0 49.0 32.4 24.7 34.2 

18:1 5.0 14.4 25.6 13.5 

20:4 45.0 30.1 18.2 22.3 

aTrace amounts. 

bn.d. denotes not determined. 



TABLE 17.--Fatty Acid Composition of Phosphatidylinositol of 
Fibroblasts 

(Weight %) 

Adult Infant 

GM 3440 AdG 1470 GM 302A InG 1247 
Fatty Acid (Nml) (Type 1) (Nml) (Type 2) 

14:0 -a n.d.b 19.S 

16:0 7.0 39.6 

16:1 6.0 

18:0 50.0 60.2 36.3 

18:1 2.4 4.3 

20:4 47.6 13.2 13.7 

aTrace amounts. 

bn.d. denotes not determined. 
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TABLE 18.--Fatty Acid Composition of Cholesterol Ester of Fibroblasts 

(Weight %) 

Adult Inf ant 

Fatty GM 3440 AdG 1470 GM 302A GM 4394 InG 1247 JuvG 
Acid (Nml) (Type 1) (Nml) (Type 1) (Type 2) (Type 3) 

14:0 1.9 26.7 10.2 15.1 11.9 15.2 

16:0 23.5 21.9 16.2 21.3 24.7 11.5 

16:1 7.3 1.4 2.4 5.9 7.3 4.3 

18:0 16.8 26.3 23.6 21.5 31.3 22.5 

18:1 39.4 4.9 10.2 21.5 17.9 21.2 

18:2 2.7 9.7 10.7 14.1 6.8 25.2 

18:3 2.9 9.2 _a 0.5 

Other 6.5 --b 26.7 

aTrace amounts. 

b Not detectable. 
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to check if this unidentified fatty acid had any double bonds. Hydro-

genation yielded a peak in the C24:0 region. Thus, it is most likely 

that cholesterol ester of normal fibroblasts have a unique unsaturated 

fatty acid, C24 (number of double bonds unidentifiable), which is 

not found in Gaucher Disease. 

Membrane Fluidity and Correlation with 
Various Lipid Ratios 

Table 19 shows the cholesterol/phospholipid (mole/mole) and 

cholesterol/sphingomyelin (mole/mole) ratio for individual cell lines, 

along with the fluorescence anisotropy values. It can be seen that 

there was an increase in the aforementioned lipid ratios of cells 

from type 2 and type 3 Gaucher disease, along with significant decrease 

in fluidity; whereas, for type 1 infant cells, there was no alteration 

in membrane fluidity, along with relatively little change in the rel-

evant lipid ratios. With respect to normal adult cells, type 1 adult 

Gaucher cells exhibited a variability of data with respect to membrane 

fluidity as well as the lipid ratios. In the cell line AdG 119a, 

there was no altered membrane fluidity; however, there seemed to be 

an increase in cholesterol/phospholipid and cholesterol/sphingomyelin 

ratios. With respect to the cell line AdG 1470, which had an increased 

anisotropy (decreased membrane fluidity), there was no increased 

cholesterol/phospholipid or cholesterol/sphingomyelin ratio encoun-

tered. Sphingomyelin/phosphatidylcholine as well as sphingomyelin/ 

phospholipid ratios were also determined and no correlation with the 

fluidity measurements could be observed. It is interesting to note 

that even though there was decreased fluidity in normal adult fibro-



TABLE 19.--Fluorescence Anisotropy Values with Relevant Lipid Ratios 

rs C/PL C/SPM SPM/PL SPM/PC 

Nml Inf ant 
GM 302A 0.182 + .006 0.164 0.78 0.206 0.395 

Type 1 Infant 
GM 4394 0.192 + .009 0.166 0.64 0.301 o. 718 -

Type 2 Infant 
a. InG 1247 0.225 + .013 0.300 2.88 0.102 0.198 
b. GM 877 0.231 + .016 0.361 1.61 0.224 0.706 -

Type 3 Juvenile 
JuvG 0.216 + .005 0.300 2.06 0.146 0.250 -

Nml Adult 
a. GM 3440 0.198 + .012 0.164 0.70 0.232 0.474 
b. Nml F 0.205 + • 008 n.d • n.d. n.d. n.d. 

Type 1 Adult 
a. AdG 119a 0.191 + .004 0.260 1.60 0.166 0.373 
b. AdG 1470 0.223 + .009 0.152 0.68 0.220 0.520 

Definition of symbols: 

C/PL, Cholesterol (mol); C/SPM, Cholesterol (mol) ; SPM/PL, SEhingomielin (mol) 
Phospholipid (mol) Sphingomyelin (mol) Phospholipid (mol) 

SPM/PC, SEhingomielin (mol) f--' 
Phosphatidylcholine (mol) 0 

00 

Each ratio is the ratio of the means. 
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blasts as compared with normal infant fibroblasts, there was no alter­

ation in the cholesterol/phospholipid or cholesterol/sphingomyelin 

ratios. 



CHAPTER V 

DISCUSSION 

Relevance of Membrane Fluidity 

DPH Incorporation 

Cultured human skin fibroblasts have a measurable membrane 

fluidity via steady-state fluorescence anisotropy using the fluorescent 

hydrocarbon probe DPH. DPH gets incorporated into fibroblast membranes 

and gives characteristic excitation and emission spectra with a rel­

ative excitation maximum at 360 nm and emission maximum at 426 nm. The 

lipid-probe molar ratio is calculated to be approximately 104-105, 

which is well above the range to avoid energy transfer and excimer 

formation between probe molecules; this is since Kawato et al. (1977) 

have recommended a lipid-probe molar ratio of at least 103 to avoid 

these fluorescence phenomenon. It can also be seen in this study 

that fibroblasts have an intrinsic fluorescence which is similar in 

all the cell lines (normal and Gaucher) investigated. The emission 

and excitation spectra are similar for both normal and diseased f ibro­

blasts. They are also comparable to spectra obtained by other in­

vestigators on fibroblasts as well as other types of cells (Shinitzky 

& Inbar, 1974; Van Blitterswijk et al. 1977; Lakowicz & Sheppard, 

1981; Schroeder et al., 1984). 

It is believed that once DPH gets incorporated into biological 
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membranes, it aligns itself parallel to the fatty acyl chains in the 

middle of the bilayer (Lentz et al., 1976a,b). In intact cells, the 

fluorescent probe gets incorporated not only in plasma membranes, 

but also in cytoplasmic membranes. The exact amount of probe into 

each membrane component is not known at this moment. However, it is 

believed that in short term incubation (few minutes), fluorescence 

parameters of DPH characterize the plasma membrane; whereas, long 

term incubation (up to 90 minutes) characterize both the plasma mem­

brane and intracellular membrane lipid characteristics (Pagano, et 
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al., 1977; Bouchy et al., 1981). It is possible to calculate plasma 

membrane fluidity in intact cells labeled with DPH by selective quench­

ing, nonradiative energy transfer, of the fluorescence emitted from 

the plasma membrane after tagging the cell with an impermeable membrane 

electron acceptor such as 2,4,6-trinitrobenzene sulfonate (TNBS) (Grun­

berger et al., 1982). 

Fluorescence Anisotropy 

In this study, the objective was to determine the membrane 

fluidity of physiological viable Gaucher cells and to compare them 

to normal fibroblasts and relate this to the lipid abnormalites which 

occur. As can be seen from Figure 7, the fluorescence anisotropy of 

both normal and diseased cells remain relatively constant for the 

times investigated implying that once the probe gets incorporated 

into the lipid pools, the average distance between the embedded DPH 

molecules is high enough to avoid intermolecular transfer of excitation 

energy (Shinitzky & Inbar, 1974, 1976). It also implies that for 
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all the times investigated, the compartmentalization of DPH in plasma 

membrane as well as the cytoplasmic membranes is approximately the 

same in the cell. It can also be concluded that the probe incorpora­

tion in normal and diseased cells is approximately the same in each 

compartment since there is no change in fluorescence anisotropy 

measurements with respect to time of incubation of DPH,taking into 

account the freely diffusing property of DPH (Shinitzky & Barenholz, 

1978). 

There are several methods which can be used to measure the 

fluorescence anisotropy of intact cells. One of the ways in which 

one can measure the anisotropy of intact cells is to treat the cells 

with the fluorei£ent probe and then detach them from the surface of 

the flask with EDTA or trypsin (Fuchs et al., 1975; DeLaat, et al., 

1977; Haggerty et al., 1978) and then use the suspension for fluidity 

measurements. It is possible that this may impair the lipid-protein 

interactions within the cell membrane. Therefore, another method 

has been set up for cultured cells where fluorescence polarization 

can be determined for cells attached to a glass substratum (DeLaat 

et al., 1977). Measurements of neuroblastoma cells with this method­

ology suggest that EDTA and trypsin detachment decrease the apparent 

membrane fluidity. The problem with this type of measurement seems 

to be that it does not correct for scattering which might occur due 

to the cells on the glass substratum. In this study, trypsinization 

treatment for detaching the cells was chosen since we wanted to compare 

the average fluorescence anisotropy of Gaucher fibroblasts with that 

of normal cells. Even though this might give an apparent fluidity 
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measurement, it is useful for comparison. Along with this, it is 

suspected that DPH in most biological membranes gives information 

regarding lipid-lipid interaction and, thus, trypsin treatment which 

destroys lipid-protein interactions may not have a significant effect 

on the fluidity measurements (Van Blitterswijk et al., 1977, 1981; 

Pottel et al, 1983). 

In relation to the discussion above, steady-state fluorescence 

measurements were performed on several fibroblastic cell lines from 

both normal and Gaucher disease subjects. At zs 0 c, as compared with 

normal infant cells (GM 302A), type 1 Gaucher cells (GM 4394) did 

not exhibit any difference in the fluorescence anisotropy value; thus, 

no change in microviscosity or order parameter was seen. In contrast 

to this, type 2 Gaucher cells (InG 1247 and GM 877) and type 3 Gaucher 

cells (JuvG) had a significant increase in the fluorescence anisotropy 

values and, thus, an increase in the apparent microviscosity as well 

as order parameter. As compared with normal adult fibroblasts, type 

1 Gaucher cells exhibited a variability of data. One of the cell 

lines, AdG 119a, did not exhibit any difference in the fluorescence 

anisotropy value; whereas, AdG 1470 did have a significantly increased 

fluorescence anisotropy value and thus the apparent microviscosity and 

order parameter were increased. 

Cholesterol/Phospholipid and 
Cholesterol/Sphingomyelin Ratios 

The decreased fluidity in type 2 and type 3 Gaucher disease 

cells also correlated well with the increased cholesterol/phospholipid 

and cholesterol/sphingomyelin ratios. With respect to type 1 infant 



Gaucher cells, there was no altered membrane fluidity as well as no 

change in the aforementioned lipid ratios. This finding of altered 

membrane fluidity correlating with altered cholesterol/phospholipid 

ratio agrees well with several investigators (Pottel et al., 1983; 

Shinitzky & Barenholz, 1978; Owen et al., 1982). The correlation 

of altered membrane fluidity with cholesterol/sphingomyelin ratio 

has not been presented previously. This correlation, however, seems 

justified in the sense that Patton (1970) has theoretically proposed 

a tight association between cholesterol and sphingomyelin in various 

biological membranes. The tight association between cholesterol and 

sphingomyelin has been shown to occur in model membranes (Barenholz 
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& Thompson, 1980). Also, Van Blitterswijk et al. (1981) have cor­

related an increased fluidity with a decreased cholesterol/phospho­

lipid ratio and, when this lipid ratio was constant, this was attribu­

ted to a decrease in sphingomyelin/total phospholipid ratio. These 

authors have also suggested that cholesterol is the primary important 

parameter and sphingomyelin is the secondary important factor deter­

mining structural order in biomembranes. Association of cholesterol 

and sphingomyelin also seems important in acanthocytes (which have 

decreased fluidity) as shown by Barenholz et al. (1981). These authors 

treated acanthocytes and normal erythrocyte membranes with cholesterol 

oxidase and noted that the fluidity of normal and diseased cells was 

approximately the same. This was then interpreted to mean that mem­

brane fluidity is dependent upon normal interactions of cholesterol 

with phospholipids (especially sphingomyelin and phosphatidylcholine). 

The association between cholesterol/phospholipid and choles-
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terol/ sphingomyelin ratios to membrane fluidity in adult type 1 

Gaucher cells did not follow the same pattern as that for the infant 

cells. For one of the cell lines which had no alteration in membrane 

fluidity as compared to normal adult cells, there seemed to have been 

some increase in the relevant lipid ratios. Whereas, for the type 1 

Gaucher cell line which had a significant increase in the fluorescence 

anisotropy measurement, there was no change in the lipid ratios. This 

could be explained in several ways. One explanation for the cell 

line AdG 119a having a constant anisotropy value with an increased 

cholesterol/phospholipid ratio could be that these cells have adapted 

their lipid concentration and phospholipid fatty acid such as to attain 

a "homeoviscous" state. This homeoviscous adaptation phenomenon has 

been observed in murine fibroblasts ( LM cells) where alteration in 

phospholipid polar headgroups led to alteration in fatty acid content 

of the phospholipids and along with this, no change in membrane flu­

idity occurred (Schroeder, 1978). 

It is useful to note that there was a significant difference 

between the steady-state fluorescence anisotropy value between normal 

infant fibroblasts and normal adult fibroblasts. The data presented 

in Table 7 show that normal infant fibroblasts had an increased mem­

brane fluidity, since there was a decreased value of fluorescence an­

isotropy. The decreased membrane fluidity of aged cells has been 

investigated previously in red blood cells by monitoring the electron 

paramagnetic resonance spectra of fatty acid spin labels incorporated 

into the membranes (Shiga et al., 1979). In this study by Shiga, 

et al., there was decreased membrane fluidity in aged human erythro-



cytes and it is suggested that this was in part due to lipid/protein 

ratio, the modified protein-lipid interaction and/or the influences 
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of diminished ATP content. There was no change in cholesterol/phos­

pholipid ratio observed. As another example of decreased membrane 

fluidity of aging membranes, Nagy et al. (1983) have shown by electron 

spin resonance, using modified stearic acid as a probe of synaptosomal 

membranes of rat brain cortex, that there is significantly decreased 

fluidity in older rat brain synaptosomes. Therefore, in this study, 

it is not surprising to find decreased fluidity in fibroblast membranes 

from adults as compared with normal infant cells. As can be seen 

from Table 19, there was no difference in the lipid ratios for normal 

adult and infant cells. The reason for the altered fluidity could 

possibly be altered lipid-protein interactions, amount of ATP changes 

(Shiga et al., 1979) or altered fatty acids of phospholipids. It is 

also to be noted that there was no passage effect observed in the 

evaluation of membrane fluidity of fibroblasts and is consistent with 

the findings of Haggerty et al. (1978). It is believed that fibro­

blasts have a limited lifetime in culture and they "age" with increas­

ing passage. However, this "aging" did not contribute significantly 

to alter the membrane fluidity (Table 20). 

Temperature Scans and Arrhenius Plots 

Along with the changes observed in fluorescence anisotropy 

and membrane fluidity of different fibroblastic cell lines at 2s 0 c, 

temperature studies also revealed the same results as that for 25°C. 

As compared with normal infant fibroblasts, type 2 and type 3 Gaucher 



TABLE 20.--Passaging of Fibroblasts and Its Effect on Fluorescence 
Anisotropy (rs) 

GM 3440 & Nml F 
(Nml Adult) 

Passage 
Number 

13 

14 

14 

17 

33 

34 

37 

0.287 

0.259 

0.277 

0.256 

0.269 

0.279 

0.289 

GM 302A 
(Nml Infant) 

Passage 
Number 

17 

18 

19 

0.259 

0.247 

0.247 
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cells had an increased fluorescence anisotropy values between 4-40°C. 

For the type 1 adult cell line which had an increased value of an-

isotropy at 25°C temperature scan study revealed the same phenomena 

occurring between 4-40°C. It is interesting to note that as the 

temperature increases, the fluorescence anisotropy decreases--which 

agree well with the observation that as the temperature increases, 

membrane fluidity increases as well. 

From the temperature scans and anisotropy values, Arrhenius 

plots (log rs versus I/temperature [°K]) were determined for normal 

and diseased cells. As could be determined from the Arrhenius plots, 

there were no phase transitions detectable in either normal or Gaucher 

diseased fibroblast membranes. This result is in accordance with that 

of Haggerty et al. (1978). It is not clear from literature which 

type of Arrhenius plots reveal the maximum information--e.g., log 
r 

rs, log n, log P or log (r
0 

-1)-l versus 1/T (Shinitzky & Baren-

holz, 1974; Fuchs et al., 1975; Haggerty et al., 1978; Shinitzky & 

Barenholz, 1978; Boitema et al., 1983; Berlin & Sainz, 1984; Nagatomo 

et al., 1984). In this report, log rs versus 1/T curves were plotted 

and no phase transitions could be detected. Log n, log P, and log 
r 

(r0 -1) were also used in the ordinate value for Arrhenius plots 

and, again, no phase transitions could be detected. The possible 

reason for not detecting any phase transition, and thus lipid phase 

separation could be that DPH gives some average information of the 

molecular heterogenous bilayer (Shinitzki & Barenholz, 1978). Also, 

Ladbroke et al. (1968) have shown that cholesterol diminishes and 

eventually abolishes the endothermic lipid phase transition of phos-
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pholipids. Concentration of 10 mole percentage cholesterol eliminates 

the pre-transition of phosphatidylcholines. In biological membranes, 

therefore, cholesterol could be interacting with phospholipid fatty 

acyl chains in such a way as to abolish phase transition (Barenholz 

et al., 1981). It also seems worth to note that cholesterol and phos­

pholipids are probably interacting in a similar fashion in both normal 

and Gaucher diseased cells such as to give no lipid phase transitions 

between 4-40°C. 

The differences of slopes in Arrhenius plots of normal from 

Gaucher diseased fibroblasts probably implies that the flow activation 

energy of lipids in membranes is different (Shinitzky & Barenholz, 

1978). The change in the intercept of normal versus Gaucher cells 

reflects the fact that Gaucher cells have an increased microviscosity 

at all temperatures between 4-40°C. 

As an interesting further study, it would be useful to study 

the fluidity of various fibroblast membranes from normal cells and 

compare this to membranes from Gaucher fibroblasts. In particular, 

attention must be given to plasma membrane fluidity since much of 

the intact cell membrane fluidity arises from these membranes. Also, 

lysosomal membrane fluidity should be discerned since Gaucher disease 

is a lysosomal membranous enzymopathy. Lipid composition of plasma 

membranes and lysosomal membranes must also be investigated and cor­

related with membrane fluidity measurements. The fluidity measurements 

should also be carried out in several related lysosomal enzymopathy 

of sphingolipids to determine if there are membrane abnormalities in 

these diseases and if any correlations occur. 



Relevance of Neutral Lipid, Phospholipid, 
and Ceramide Composition of Fibroblasts 
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It has been reported by Saito and Rosenberg (1984a) that Gaucher 

disease fibroblasts do not have an increased accumulation of gluco-

sylceramide as compared with normal cells (1.23 :!:_0.08 nmole/mg of 

protein for Gaucher cells, 1.11 + 0.48 nmole/mg of protein for normal 

infant cells). However, there is some alteration of higher neutral 

glycosphingolipids as well as gangliosides in Gaucher cells. Until 

recently, the quantity of other lipids in Gaucher diseased fibroblasts 

(neutral lipids, phospholipids, and ceramide) has not been investi-

gated. Abnormalities in phospholipid have been suggested by Barton 

and Rosenberg (1974) and cholesterol content in one of the cell lines 

from Gaucher disease has been determined by Warren et al. (1976) as 

discussed previously. 

Neutral Lipid Composition 

Table 9 shows the neutral lipid analysis for normal and Gaucher 

diseased cells. Neutral lipids were analyzed by high performance 

thin-layer chromatography and densitometry. The developing solvent 

system used has not been reported previously and it was able to discern 

between cholesterol, free fatty acids, triglycerides, and cholesterol 

ester. From this methodology, the amount of each neutral lipid was 

determined. As compared with normal infant fibroblasts, type 1 Gaucher 

cells had significantly decreased values of triglycerides and choles-

terol ester; whereas, there was no difference with respect to the 

cholesterol and free fatty acid content. Type 2 inf ant cells had 

approximately the same content of cholesterol, free fatty acid, and 
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triglycerides; whereas, there may have been some decrease in the cho­

lesterol ester content (not statistically significant). Type 3 cells 

had a similar neutral lipid content as that of type 2 fibroblasts. 

Normal adult cells did not exhibit any difference, in neutral lipid 

content, from normal infant cells. Type 1 adult cells had decreased 

triglyceride and ~holesterol ester content as compared to normal 

adult. This finding that cholesterol ester may be decreased in all 

three types of Gaucher cells, and triglyceride decreased in type 1 

Gaucher disease has not been reported previously. Therefore, even 

though there is decrease in activity of only one enzyme (S-glucosidase) 

in Gaucher disease which leads to abnormal glycosphingolipid content, 

there are other lipid abnormalities which can also occur. This is 

similar to Niemann-Pick disease, type D, in which there is deficiency 

of lysosomal sphingomyelinase which leads to increased accumulation 

of the phospholipid sphingomyelin in the spleen as well as other 

tissues; along with this, cholesterol, cholesterol ester, total phos­

pholipids and bis-(mono-acylglyceryl) phosphate are also increased 

above the normal range (Rao & Spence, 1977). 

Phospholipid Composition 

The major phospholipids in fibroblasts were sphingomyelin, 

phosphatidylcholine, phosphatidylserine, phosphatidylinositol and 

phosphatidylethanolamine as represented in Table 10. As compared 

with normal infant fibroblasts, there seemed to be somewhat decreased 

amounts of phosphatidylcholine in type 1 cells. Type 2 cells possibly 

had both a decreased amount of sphingomyelin and phosphatidylcholine. 
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Type 3 cells had on the average, decreased amounts of sphingomyelin. 

With respect to normal adult cells, type 1 adult cells exhibited a 

variability of data. AdG 119a seemed to have decreased amounts of 

sphingomyelin and phosphatidylcholine; whereas, there was no difference 

in the phospholipid content of AdG 1470 as compared with normal adult 

cells. 

The decrease in sphingomyelin, phosphatidylcholine and cho­

lesterol ester of Gaucher cells could possibly be due to the fact 

that since there is deficiency of the lysosomal enzyme S-glucosidase 

in Gaucher diseased fibroblasts, there may be a compensatory increase 

in the other lysosomal enzymes such as sphingomyelinase, phospholipases 

and cholesterol esterase. It has been suggested by Rappeport and 

Ginns (1984) and Besley and Moss (1984) that there is an increase in 

activity of lysosomal sphingomyelinase in the cells of patients with 

Gaucher disease. It is also possible that neutral sphingomyelinases 

(non-lysosomal) could have an increased activity, thereby, leading 

to increased degradation of membrane sphingomyelin. However, Sutrina 

and Chen (1984) have shown that in normal cellular metabolism of plasma 

membrane-associated sphingomyelin, majority of it is hydrolyzed by 

lysosomal sphingomyelinases and a minor fraction is degraded by non­

lysosomal neutral sphingomyelinases. It'is possible, with respect 

to decreased phosphatidylcholine content in Gaucher diseased cells, 

that plasma membrane phospholipases could be altered such as to have 

increased activity. It is also possible that the synthesis of phos­

phatidylcholine in Gaucher cells is inhibited, since there is de­

creased amount of sphingomyelin; and thus, the direct enzyme-mediated 
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transfer of phosphorylcholine from sphingomyelin to diglyceride does 

not occur (Spence et al., 1983). The increased activity in cholesterol 

esterase could be due to the general compensatory increase in enzymes. 

If it is the case that lysosomal sphingomyelinase, phospholipases, 

and cholesterol esterase are relatively increased in Gaucher diseased 

cells this would then imply that there is a tight association between 

S-glucosidase and the aforementioned enzymes. The fact that there 

is also decreased amounts of triglycerides in type 1 Gaucher disease 

could be that there is some type of S-glucosidase isozyme deficiency 

or a presence of a factor which is stimulating the activity of tri­

glycerol lipase. 

Ceramide Composition 

The data obtained that the content of ceramide is virtually 

the same in normal and Gaucher diseased fibroblasts implies that the 

activity of lysosomal ceramidase is probably not altered in diseased 

cells. It is also to be noted that the levels of ceramide could be 

important in cell homeostasis (Kannagi et al., 1982) similar to cho­

lesterol, and thus a constant level has to be established. It seems 

interesting that ceramide, a precursor to all the glycosphingolipids, 

is constant in Gaucher cells; whereas, glycosphingolipids are increased 

in Gaucher cells (Saito & Rosenberg, 1984a). This constant ceramide 

level in Gaucher cells are most likely occurring due to increase syn­

thesis of ceramide from sphingosine and fatty acids. Thus, even though 

the catabolic pathway of glucosylceramide is decreased, the anabolic 

starting substrate, ceramide, is tightly controlled. 
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Effects of Monesin 

The finding that monensin treated normal cells give rise to 

decreased cholesterol ester and phosphatidylcholine leads one to sus­

pect that monensin could serve as a chemical modifier which gives 

rise to effects similar to Gaucher disease. This is since monensin 

leads to increased glucosylceramide (Saito et al., 1984) and decreased 

cholesterol ester and phosphatidylcholine in normal fibroblasts. 

These lipid abnormalities do not arise from increased lysosomal enzyme 

activities since it is believed that lysosomal functions are inhibited 

by monensin by increased pH (Tartakoff, 1983). It is possible that 

the activity of acyl coenzyme A:cholesterol 0-acyltransferase (ACAT), 

which catalyzes the formation of cholesterol ester from cholesterol 

and fatty acyl coenzyme A (Chang & Doolittle, 1983), is decreased. 

This then would lead to decreased cholesterol ester and increased 

fatty acids. The (3H) acetate labeling data agrees well with the 

decreased ACAT activity hypothesis. The increased incorporation of 

labeled acetate in cholesterol possibly implies that the activity of 

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which leads 

to increased cholesterol synthesis in the cells (Chang, 1983), is 

increased. Also, other lipids had increased label incorporation pos­

sibly due to stimulation of other microsomal enzymes. 

In relation to decreased phosphatidylcholine content and in­

creased label in this phospholipid, it is possible that monensin, 

which is a cationophore increasing sodium levels in fibroblasts and 

possibly calcium levels, increases activity of membrane-bound phospho­

lipases and, thus, increased phospholipid degradation occurs. This 
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is similar to accelerated phospholipid degradation, which occurs in 

ischemic liver disease due to increased activity of membrane-bound 

phosphalipases activated by Ca2+ increase (Chien et al., 1978). The 

increased incorporation of (3H) acetate label into phospholipids could 

be possible ifmonensin induces microsomal enzyme activity. The pos­

sible reason for increased phosphatidylserine content in monesin 

treated cells could be that the activity of microsomal phosphatidyl­

ethanolamine serine transferase, which catalyzes a calciwn-dependent 

exchange between L-serine and the ethanolamine moiety or phosphatidyl­

ethanolamine (Esko & Raetz, 1983), increases considerably. The rel­

ative stability of ceramide with respect to monesin treatment again 

implies that even though glucosylceramide and higher glycosphingolipids 

are increased, the starting substrate is highly regulated. 

Fatty Acid Composition 

Not only are there differences observed in the quantity of 

neutral lipids and phospholipids in Gaucher disease, but there are 

some differences in the fatty acid components of phospholipids, espec­

ially sphingomyelin, and cholesterol ester. It has been shown by 

Kudoh et al. (1983) that if [stearoyl-1-14c] sphingomyelin is intro­

duced into normal cultured skin fibroblasts, it is degraded in lyso­

somes to [l4C] stearoyl-sphingosine and [l4C] stearic acid. This free 

fatty acid then enters a fatty acid pool for synthesis of the major 

lipids found in cultured skin fibroblasts. These lipids are identified 

to be phospholipids, including phosphatidylcholine and sphingomyelin, 

cholesterol ester, ceramide, and the ganglioside GM3 (Kudoh & Wenger, 
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1982). It has been shown by Warren et al. (1976) that Gaucher cells 

glucosylceramide fatty acids have an increase in C16:0 and ClB:O and 

a decrease in C20:0 and C22:0. From this, it is possible that cera-

mide, phospholipids, and cholesterol ester in cultured skin fibroblasts 

utilize fatty acids from a common pool; and when the pool is depleted, 

such as in Gaucher disease where more fatty acid are used up to main-

tain a normal level of ceramide and an increased quantity of glyco-

sphingolipids, there will be alteration in fatty acid composition of 

related lipids. The association of abnormalities in glycosphingolipid, 

sphingomyelin and cholesterol ester fatty acids could be summarized 

diagrammatically as follows: 

Phospholipids 

Tl Sphingosine 
Fatty Acid \I '> Ceramide ( "' 

Cholesterol~ 1 T 1 T a 

Cholesterol Ester Sphingomyelin 

). GlcCer( ) Higher 
Glyco­
sphingo­
lipids 

In normal fibroblasts, glucosylceramide is catabolised in a normal 

fashion (pathway a) and thus enough fatty acid is available in the 

"pool" for incorporation into other lipids. However, in contrast, 

Gaucher diseased fibroblasts have decreased catabolism of glucosylcer-

amide and thus the fatty acid pool is disturbed, leading to alterations 

in glucosylceramide, sphingomyelin, cholesterol ester and phospholipid 

fatty acid composition. As a further study, it would therefore be 

useful to study fatty acid metabolism in normal and Gaucher diseased 

cultured skin fibroblasts. 

The finding that the cholesterol ester in Gaucher fibroblasts 



do not have the unsaturated C24 fatty acid implies, again, that the 

metabolism of fatty acids is different from that of normal cells. 

127 

This fatty acid was not observed by Goldstein et al. (1975) in normal 

cultured skin fibroblasts. The only C24 unsaturated fatty acid in 

cholesterol ester has been identified as C24:4 in pork testis by Holman 

and Hofstetter (1965). Thus, it is possible that normal fibroblasts 

have the ability to synthesize C24:4; whereas, Gaucher cells cannot 

synthesize this polyunsaturated fatty acid. 



CHAPTER VI 

SUMMARY 

Membrane fluidity measurements, via steady-state fluorescence 

anisotropy of l,6-diphenyl-1,3,5-hexatriene, were performed on cultured 

human skin fibroblasts from normal and hereditary lysosomal S-gluco­

sidase deficient (Gaucher disease) subjects. At 25°C, type 2 and 

type 3 neuronopathic Gaucher diseased fibroblasts displayed decreased 

membrane fluidity as compared with normal fibroblasts. Type 1 non­

neuronopathic Gaucher cells exhibited variability. Of the three cell 

lines with the type 1 (non-neuronopathic) variety of Gaucher disease, 

only one had decreased membrane fluidity as compared with normal fibro­

blasts. Abnormality in membrane fluidity of the diseased cells was 

correlated with an increase in cholesterol/phospholipid and choles­

terol/sphingomyelin ratios. 

Temperature scan studies of fluorescence anisotropy, between 

4-40°C, on normal and Gaucher diseased fibroblasts gave the same re­

sults as at 25°C. From the temperature scans, Arrhenius plots were 

constructed to determine bulk lipid phase transitions. As could be 

determined from the Arrhenius plots, there were no phase transitions 

detectable over this range in either normal or Gaucher diseased fibro­

blast membranes. 

Neutral lipid, phospholipid and ceramide composition of normal 
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and Gaucher diseased fibroblasts were determined. The major neutral 

lipids were observed to be cholesterol, free fatty acid, triglyceride 

and cholesterol ester. Types 1, 2 and 3 Gaucher diseased fibroblasts 

exhibited a significant decrease in cholesterol ester as compared 

with appropriate controls. Type 1 Gaucher cells also had a lower 

content of triglyceride. Analysis of the fatty acids in cholesterol 

esters of normal and Gaucher diseased cells was performed, and it 

was determined that there was a major difference between the normal 

and the diseased cells. 

The major phospholipids of cultured skin fibroblasts were 

sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidyl­

inositol and phosphatidylethanolamine. As compared with normal infant 

cells, there seemed to be a decreased content of phosphatidylcholine 

in type 1 Gaucher cells and, in type 2 Gaucher cells, possibly a de­

creased amount of sphingomyelin and phosphatidylcholine. Type 3 

Gaucher cells had a remarkably decreased amount of sphingomyelin. 

Type 1 adult Gaucher cells exhibited variability. Fatty acid analysis 

of individual phospholipids were also performed, and it was determined 

that there was a significant difference in fatty acid composition of 

diseased cells--especiallly sphingomyelin. The content of ceramide 

was virtually the same in normal and Gaucher diseased fibroblasts. 

Normal cultured skin fibroblasts were treated with the car­

boxylic monovalent cationophore monensin to determine its effect on 

neutral lipid, phospholipid and ceramide composition. Treatment with 

monensin decreased the amount of cholesterol ester and phosphatidyl­

choline, and increased the content of free fatty acid and phosphatidyl-
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serine. When the cells were also labeled with [3H] acetate, there 

was increased incorporation of the label into all lipids except into 

cholesterol ester, where it was decreased, and sphingomyelin and 

ceramide, where the incorporation was relatively constant. The pattern 

due to monensin treatment seems to be similar to that observed in 

Gaucher disease. 

The findings that membrane fluidity and various lipids, inclu­

ding glycosphingolipids, are altered in Gaucher disease indicates that 

even though there is hereditary deficiency of only one lysosomal en­

zyme, 8-glucosidase, this leads to more generalized membrane effects. 

These pronounced metabolic effects are seen in altered membrane fluid­

ity and neutral lipid, phospholipid and fatty acid composition of 

Gaucher diseased fibroblasts. 
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