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INTRODUCTION 

Lysogeny is the hereditary property of a given bacterium to produce 

bacteriophage without further infection by external particles. Lysogenic 

bacteria carry the phage genome as an integral part of their chromosome 

which they can transmit to their progeny (27). This additional genetic 

material can. alter the properties of the host. The first evidence for this 

was the discovery that diphtheria phage s was responsible for toxin pro

duction in Cozrynebaote'Z"ium diphtheztiae. Freeman in 1951 isolated a phage 

from c. diphthe'Z"iae and demonstrated that only diphtheria bacilli lysogenic 

for phage s or closely related bactetiophage are toxigenic (13). He 

attributed toxin production to transduction, but evidence accumulated in

dicating that the phage genome itself, and not transfer of a chromosomal 

segment from an earlier host, caused the change (3, 15 through 18). 

Groman (16) used the phage isolated by Freeman, but passed it through 

non-toxigenic strains before lysogenizing another set of non-toxigenic 

strains. He confirmed that only lysogens were capable of producing toxin, 

but dispelled the idea that it was due to transduction (17,18). Groman 

used the tenn conversion {16) to avoid repeating the phrase "the change 

from the non-toxigenic to the toxigenic state" (18), but the tenn 11 conversion 



by bacteriophage 11 subsequently was used to refer to all modifications of 

the host resulting from infection by phage (4) and the phage that caused 

the change was termed a 11converting phage 11 (4). In a more restricted sense, 

phage conversion uappeared to be the result of the addition of infonnation 

to the host genome 11 (18), in the case of diphtheria toxin production the 

addition of a nucleotide base sequence necessary to code for the protein 

toxin (11). In tysogenio aonveFsion the hereditary modification of the 

host chromosome requires integration of the phage genome. Barksdale et at. 

(3) used ultraviolet irradiation to induce the lytic cycle of phage in 

lysogenic strains of c. diphtheFia~ They showed that lytic propagation 

of the phage could lead to higher levels of toxin production than was found 

in lysogenic strains. They concluded that the phage genome was solely 

responsible for toxin production in toxinogenic diphtheria strains (4). 

Miller et at. (29) have shown, on the other hand, that the enzymatic machinery 

of the host plays a role in toxin production, and that in bacteria which 

had defective cytochrome oxidase metabolism, toxin production was greatly 

diminished. However, the phage released from lysogenic strains with de

fective metabolism produced nonnal levels of toxin when used to infect 

diphtheria bacilli with intact enzymatic apparatus. 

Other examples of lysogenic conversion are: erythrogenic toxin pro

duction in group A streptococci (42), changes of phage type in Staphyloooocus 

auzoeue (6,31), and serotype changes in SaZmonetta (19,35-37). 
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With respect to lrfycobacterium, Bon1cke reported loss of a-n1cot1nic 

acid oxidase activity and ga1n of malachite green reductase activity in 

Mycobacterium smegma.tis SN2 lysogenized w1th mycobacteriophage Bl (9). 

Jones and White found changes in nitrate reduction, Tween-80 hydrolysis 

and colonial morphology in M. smegmatis ATCC 607 following lysogenization 

with phage 026 or phage 84 (20). Juhasz observed decreased growth rate, 

altered colonial morphology, and inability to synthesize thiamine in 

M. phtei F89 lysogenized with phage B2h (22). Mankiewicz et aZ. found 

several changes in ATCC 607 lysogenized with phage Roy {28). They reported 

decrease in growth rate, paraffin utilization, acetamidase, catalase and 

nitrate reductase activity, and 1n the ability to "transform" ammonium 

ferroc1trate. 

The enzymes chosen for the present study were amidases, phenolphthalein 

sulfatase, nitrate reductase, and malachite green reductase. The amide 

series introduced by Bonicke {7,8) consists of ten amides (Fig. 1), the 

hydrolysis of which is of taxonomical significance (8,23). These are 

acetamide, benzamide, urea, isonicotinamide, nicotinamide, pyrazinamide, 

salicylamide, allantoin, succinamide, and malonamide. 

Nitrate reductase reduces nitrate to nitrite (38). 

Phenolphthalein sulfatase hydrolyses the phenolphthalein disulfate to 

free phenolphthalein (41). 
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+2H20 
Phenolphthalein disulfate Phenolphthalein Phenolphthalein 

Sulfatase 3,3-Bis(p-hydroxyphenyl) 
phthal 1de 

Phenolphthalein is an indicator since at pH ~ 8 the red dimetallic 

ion is fonned. This makes its presence easily detectable. 

The choice of these enzymatic activities for study was based on the 

following considerations: 

1. There are easily reproducible tests available for studying 

these enzymes (7,8,38,41}. 

2. The amidase, phenolphthalein sulfatase, and nitrate reductase 

activities of mycobacteria have previously been extensively studied for 

taxonomic purposes (7,8,23,38). Changes in well established patterns may 

therefore have taxonomic implications. 

3. The ability to reduce nitrate to nitrite (20,28} and malachite 

green to its leucoform (9) have been previously compared for wild and 

lysogenic mycobacteria. 

In the course of this study Myoobaateriwn smegmatis strains SN2, SNlO 

and SN14 have been lysogenized with mycobacteriophage B1 (21} and their 

enzymatic activity was determined before and after lysogenization. 
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MATERIALS AND METHODS 

a. Bacterial strains. Mycobactel"ium smegmatis strains SN2, SNlO, 

and SN14 of the Borstel Collection, Borstel, West Germany, served as hosts 

for this study. The original designation of SNlO was ATCC 607, considered 

for a long time to be an original Koch strain of Bacillus tubePoulosis (2). 

b. I'hage str>ain. Mycobacteriophage smegmatis Bl {21) harvested from 

its propagating host ivtycobacterium smegmatis SN2 was used to infect and 

lysogenize all M. smegmatis strains. 

c. Media. Bacterial cultures were maintained on Loewenstein-Jensen 

slants and plates (courtesy of Hines V.A. Hospital, Hines, Ill.). Phage 

cultures were kept and phage dilutions were made in heart infusion broth 

(Difeo, Detroit, Mich.}. Lysogenization experiments were performed on 

nutrient agar {Difeo, 1.5%) plates; the agar overlay was prepared from 

nutrient broth (Difeo} by the addition of 0.7% Bacto-agar (Difeo). Nutrient 

agar {Difeo, 1.5%) was used for the purification of wild strains and lysogens. 

d. Pha.ge propagation and counting of pha.ge panicles. The phage was 

assayed by the plaque count method of Gratia (1) using the modification 

of Froman et ai. {14). Indicator Mycobacterium smegmatis SN2 organisms 

were inoculated into melted and cooled agar and then poured· ·on top of a 

nutrient agar base plate. After solidification of the top agar layer, 

0.05 ml of ten-fold serial dilutions of the phage were dropped in duplicate, 

one sample on each half of a plate. After 5 days incubation at 37 C, the 
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plates were assayed. The titer was determined as the number of individual 

plaques multiplied by the dilution and extrapolated for 1.0 ml of the 

undiluted phage suspension. The bacteriophage suspension was subsequently 

d4luted to contain 109 PFU (plaque forming units) per ml. 

e. Purification of pa:ztent strains. Parent strains were purified by 

six serial single colony transfers on nutrient agar. 

f. P:reparution of tysogens. A suspension prepared from the sixth 

passage of the parental strain was inoculated into top agar and infected 

with 0.05 ml of phage using the agar overlay method described earlier. 

Colonies which appeared in the lytic zones were purified by six serial 

single colony transfers on nutrient agar. They were then tested for 

lysogeny on the basis of two criteria: (a) their ability to produce plaques 

when plated on a phage-susceptible parental M. smegmatis strain and (b) 

their immunity to superinfection by phage Bl (1). 

g. 'Prepa:t.'ation of suspensions fozt en81J11latio studies. Those strains 

which conformed ·to the two previously mentioned criteria of lysogeny, and, 

for control purposes, their parent strains, were heavily inoculated on 

Loewenstein-Jensen plates and incubated for 12-15 days at 37 C. The bac

teria were then harvested by using sterile scalpel blades to scrape the 

growth off the surface of the plate, taking special care to exclude any 

medium. They were weighed after being suspended in tared tubes containing 

physiological saline. They were washed by centrifugation for 20 min at 
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3000 rev/min {International Equipment Company [Boston, Mass.], size two, 

clinical centrifuge) and resuspended in pH 7.2 M/15 sodium-potassium 

phosphate buffer to give 10.0 mg dry weight per ml. This suspension was 

then used for all the enzymatic tests. 

h. Amidase test. BHn1cke's amide series (7,8) was employed to test 

for amidase activity. One ml buffered suspension of a given strain was 

mixed with 1.0 ml of 0.00164 M solution of each of the following amides: 

acetamide, urea, isonicot1namide, benzamide, nicot1namide, salicylarnide, 

succinamide, malonamide, pyrazinamfde, and allantoin. These were prester-

111zed by heating at 100 C in a water bath for 30 min, except for urea which 

was filtered through a 0.45 µ membrane filter, type HAWP, 4700 (Millipore 

Corp., Bedford, Mass.). Each amide-bacterium mixture was incubated for 

22 hr at 37 C. Liberation of a111110nia resulting from the hydrolysis of a 

given amide was detected by the phenol-hypochlorite method described by 

Russell (32). One-tenth ml of 0.003 M NnS04·H2o, 1.0 ml of phenolate 

reagent, and 0.5 ml of KClO, was added to each tube, in the given order, 

with a minimum delay between the phenolate and the hypcrchlorite. Since 

this method, originally reported by Berthelot (5), does not produce a stable 

colored complex, time is critical when determining the concentration of 

the complex (40). Color development was obtained by heating the tubes in a 

water bath at 100 C for 15 min. Five min were allowed for cooling at room 

temperature. The tubes were then estimated visually inwnediately by 

-9-



comparison with standards containing known concentrations of NH3, as 

described by Bonicke (7,8) and Juhlin (23). Subsequently, parallel tests 

were measured spectrophotometrically using a Gilford model 2000 spectro

photometer to measure the absorbance of the complex at 550 nm after removal 

of bacteria by centrifugation at 2500-3000 rev/min. The standards used for 

these tests were O, 2, 4, 6, and 8 µg NH3/m1 added as (NH4)2so4• The con

trols employed were amide solutions without bacteria, and bacteria without 

amides. Two ml of physiological saline plus reagents were employed as the 

blank for the spectrophotometric determination. The intensity of color 

in the visual estimatei was expressed by a O to +++ scale which is based 

on the µg of NH3 produced by hydrolysis of a given amide per ml. 

Reagents for the amidase test and their pl'Bparation. The phenolate 

was prepared by suspending 25 g of phenol (ACS reagent, J. T. Baker Chemicals, 

Phillipsburg, N.J.) in 10 ml distilled water, adding 54 ml of 5 N NaOH and 

adjusting the solution to a final volume of 100.0 ml. This solution had 

to be prepared freshly. The hypochlorite (Eau d'Javel, Gennany} was pro

vided by Dr. R. Bon1cke, Research Institute for Experimental Biology and 

Medicine, Borstel, West Germany. MnS04·H2o (ACS reagent), benzamide, 

nicotinamide, salicylamide, succinamide, malonamide, and (NH4)2so4 (ACS 

reagent) were all obtained from J. T. Baker Chemicals; acetamied, urea, 

and isonicotinamide, from Sigma Chemical Co., St. Louis, Mo.; allantoin 

and pyrazinamide from Dr. R. Bonicke. The former was a product of Fluka 

A.G., Buchs S.G., Switzerland, and the latter of Krugman and Co., Hamburg, 

Germany (7). 
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i. Nitr-ate reducta.se teat. Virtanen's nitrate reductase test for 

mycobacteria (38) was used to detect the reduction of nitrate to nitrite. 

A 0.04 ml sample of a suspension containing 0.4 mg dry weight of bacteria 

was inoculated into nitrate broth (Difeo) and incubated at 37 c for 2 hr. 

The color reaction of Shinn (33) was used to detect the amount of nitrite 

produced. After incubation, 0.1 ml of a 1:1 dilution of concentrated HCl 

was added to each tube and mixed in a vortex mixer for approximately 30 sec. 

A 0.1 ml sample of aqueous 0.2% sulfanilamide and 0.1 m:l of aqueous 0.01% 

N-1-naphthylethylenediamine were then added to each tube and mixed on a 

vortex mixer. Color developed to its maximum after approximately five min 

at room temperature. 

The color reaction based on the fonnation of a diazocomplex can be 

measured either by visual comparison of the experimental tubes with standards 

of known concentration (23,38) which is more accurate than comparison with 

arbitrary color standards (23,25,38), or colorimetrically (30). The color 

reaction indicating reduction of nitrate to nitrite is based on the forma

tion of a red azo compound. This involves, first, the reaction fn acid 

solution of a primary amine, such as sulfanilic acid or sulfanilamide,with 

nitrite to form a diazonium salt. The latter is then coupled to an aromatic 

amine to yield the red azo dye. The concentration of the azo dye can be 

determined on a Klett-Sunmerson colorimeter employing a 540 nm (green) 

filter. Using the quantity of reagents specified, 10 Klett units equal 

1 mµmole of nitrite. This was calibrated by preparing a 35 mµmolar aqueous 
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solut1on of NaN02 (69.0 mg/1) to see 1f th1s produced a read1ng of 350 

Klett un1ts. The relat1onsh1p between µg of nitr1te/ml as measured by the 

standards and ~moles/ml as determ1ned colorimetrically is given in figure 2 

so that a direct comparison of the methods can be made. 

Initially the v1sual method of comparison with standards was used for 

all strains. Subsequently representative strains of each group were 

selected for the color1metric detennination employing a Klett-SUtmlerson 

photoelectric colorimeter. The standards prepared for comparison were O, 

0.1, 1.0, 5.0, 10.0, and 50.0 µg nitrite/ml. Sterile nitrate broth served 

as the control and was used as the blank, after addition of reagents for 

the colorimetric detennination. Negative results were tested for technical 

error by addition of zinc dust (38) which reduced nitrate to nitrite chem

ically and produced a positive color reaction if all necessary reagents 

had been added. 

Reagents foP nit~ate Peductase test. Sulfanilamide was obtained from 

Eastman Organic Chemicals, Rochester, N.Y.; N-1-naphthylethylenediamine 

from Mann Research Laboratories, New York, N.Y. NaN02 (ACS reagent) was 

obtained from Merck and Co., Rahway, N.J. The standard nitrite solution 

was prepared by adding 69.0 mg NaN02 to 1 1. distilled water. This gave 

an absorbance of 350 Klett units (30). 

j. lhenoZphthaZein suZfatase test. Wayne's modification (39) of the 

arylsulfatase test of Whitehead et aZ. (41) was employed for this test. 
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Dubas oleic acid agar {Difeo) containing 650 mg of phenolphthalein disulfate, 

tripotassium salt per liter was distributed in 2.0 ml amounts into tubes. 

Tubes inoculated with a suspension containing 0.4 mg dry weight of bacteria 

were subsequently incubated at 37 C for 3, 14, and 21 day periods. The 

quantity of phenolphthalein liberated by hydrolysis of the substrate was 

detected by the addition of 0.2 ml of 2 N Na2co3• The tubes were kept at 

4 C to permit diffusion of the color through the medium and then visually 

compared with standards containing known amounts of phenolphthalein. The 

standards proposed by Sommers and Russell {34) were employed. The concen

tration of phenolphthalein in the standards was as follows: O, 2, 6, 16, 

and 40 µg/ml. A· strain of Myoobactel'iwn fozttuitum SN203, from the Borstel 

Collection, was used as the positive control for the 3 day test. Uninocu

lated tubes served as negative controls in all tests. 

Reagents for phenotphthatein sulfatase test. Phenolphthalein disulfate 

tripotassium salt was obtained from Eastnmn Organic Chemicals, Rochester, 

N.Y.; phenolphthalein from Merck and Co., Inc., Rahway, N.J., Na2co3 (ACS 

reagent) from J. T. Baker Chemicals, Phillipsburg, N.J. 

Pzaepar>ation of starula.I'ds for phenotphthalein sulfatase test (26). 

1. 1 ml stock solution 
2. 5 ml of tube #1 
3. 2 ml of tube #1 
4. 1.5 ml of tube #1 
5. 0.5 ml of tube #1 

* 

Distilled H2Q_ 

to 50 ml 
to 25 ml 
to 25 ml 
to 50 ml 
to 50 ml 

* 0.1 g phenolphthalein in 10.0 ml of 95% ethanol. 
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Solutions lacking Na2co3 were stored at 4-10 C for several months. 

After addition of 2.0 ml of 2 N Na2co3 the solutions were stable for 2-4 

weeks at 4-10 C. 

k. Malachite gPeen reduotase test. Malachite green reduction can 

be detected by the ability of an organism to decolorize Loewenstein-Jensen 

medium when propagated on the latter (9). The range of the indicator made 

it unlikely that the reaction was a reversible reduction of the malachite 

green due to change in pH. Therefore, an additional test was perfonned 

in liquid medium in order to study the pH changes, if any, caused by growth. 

Liquid Loewenstein-Jensen medium was prepared in which the egg constituent 

of the Loewenstein-Jensen medium was replaced by an equal volume of pH 7.0 

M/15 sodium potassium phosphate buffer. The solution obtained was autoclaved 

at 120 C for 30 min instead of being insp1ssated and was distributed in 

2.0 ml amounts into tubes. A sample containing 0.4 mg of each strain was 

inoculated into duplicate sets of tubes and incubated at 37 C until de

coloration of the medium occurred or for 14 days. Uninoculated tubes of 

the liquid medium were used as controls. After decolorization of the medium, 

bacteria were removed by filtration using a 0.45 µ Millipore filter type 

HAWP, 4700 and the filtrate was tested for pH indicator properties by 

adjusting its pH with 2 N HCl and 2 N NaOH ranging from a pH of 0 to a 

pH of 10. 
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RESULTS 

Wh11e all four of the lifyoobaoteriwn smegmatis SN2 Bl [hereafter re

ferred to as SN2 (Bl}] lysogens resulted from a s1ngle lysogenic event, 

the M. smegmatis SNlO (Bl) [hereafter referred to as SNlO (Bl)] and 

M. smegmatis SN14 (Bl) [hereafter referred to as SN14 (Bl)] lysogens used 

for th1s study were obtained in two d1fferent lysogen1c events. For 

example, SNlO (Bl) 2 and SNlO (Bl) II were isolated in d1fferent experiments. 

This is 1ndicated 1n the tables by the use of arabic and roman numerals. 

Amidase aativity. The results of the amidase tests are presented in 

Tables 1-4. Triplicate tests were made whenever duplicate tests were not 

in good agreement. All strains were tested by comparison with standards 

of known concentration (Tables 1-3}. Selected strains were also retested 

spectrophotometr1cally, along with their parental strains (Table 4). For 

th1s purpose two representative lysogens were chosen from each set. 

Tables 1, 3, and 4 show that the most significant change, a change of 

> 3 µg NH3/ml, that was noticeable in strains SN2 and SN14 upon lysogeny, 

was a drastic decrease in their salicylamidase activity. This change could 

not be observed 1n SN10 lysogens, since in contrast to wild SN2 and SN14, 

SNlO does not possess appreciable salicylamidase activity (Tables 2 and 4). 

The only other amidase which was affected by lysogenization was isonico

tinamidase in SN2 (Bl) 4 (Tables 1 and 4). Readings by the visual comparison 

method indicated that varying degrees of reduction in benzam1dase and iso

nicotinam1dase activity occurred in several strains of SN2 (Bl) and SN14 (Bl} 
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lysogens, but this was not tested for all st~ains using the more precise 

spectrophotometric assay (Table 4). The difference in salicylamidase 

activity as measured spectrophotometrically was an average of 3.5 µg NH3/ml 

produced by SN2 as compared to a maximum of 0.5 µg NH3/ml produced by the 

SN2 (Bl) lysogens, and 4.0 µg NH3/ml produced by SN14 as compared to a maxi

mum of 0.5 µg NH3/ml produced by SN14 (Bl) lysogens. This represents a 

difference of nearly 0.400 00550 corresponding to a difference of + compared 

with O in the evaluation system of Bonicke (7,8) as su11111arized in Table 5. 

The difference in 1son1cotinamidase activity between SN2 and SN2 (Bl} 4 is 

not as significant, with the former producing 6.0 µg NH3/ml as compared to 

3.0 produced by the latter. This however corresponds to a relative dif

ference of ++ to +. Differences between the two methods are sunrnarized 

by comparison of Tables 5 and 6. The values obtained by the spectrophoto

metric method are generally lower than that obtained by visual comparison 

to standards. The range of NH3 produced per ml was within the Beer's law 

region as demonstrated by the linear relationship between 00550 and 

µg NH3/ml (Figure 3). 

Nit~ate reduota.se activity. The results of the nitrate reductase tests 

are presented in Table 7. In all lysogens of SN2 and SN14 a decrease in 

nitrate reductase activity was observed when compared to the parental strains. 

This was more striking fn SN14 (Bl) than in SN2 (Bl) strains because wild 

SN2 produced only 4 µg nitrate/ml while SN14 produced 10 µg nitrite/ml. 
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In SN2 (Bl) strains the decrease was from 4 µg nitrite/ml produced by wild 

SN2 to undetectable quantities in the lysogens except for SN2 (Bl) 2 which 

showed an activity of l µg nitrite/ml. With the exception of SN14 (Bl) 3 

all SN14 lysogens appeared to have lost the ability to reduce nitrate to 

nitrite. 

In SNlO (Bl) lysogens on the other hand, varying degrees of nitrate 

reduction could be shown. One strain, SNlO (Bl) II retained the same 

nitrate reductase activity as wild SNlO, which produced 10 µg nitrite/ml; 

two strains, SNlO (Bl) 2 and SNlO (Bl) I, showed a somewhat reduced 

activity, while one strain, SNlO (Bl) 1, exhibited a substantial increase 

in activity, producing over 50 µg nitrite/ml instead of 10 µg nitrite/ml 

of wild SNlO. These results were confirmed by colorimetric readings of 

the nitrate reductase activity of representative strains (Table 8). 

Phenotphthatein sutfataae aativity. The results of the phenolphthalein 

sulfatase tests are presented in Table 9. The three day test used in the 

identification of rapidly growing mycobacteria (39), was negative for all 

strains except the positive control, M. fortuitum, and was not repeated. 

The twenty-one day test, in contrast, was positive to essentially the same 

degree for all strains. Differences were observed only in the fourteen 

day test which was performed in triplicate. Three out of the four 

SN2 (Bl) lysogens exhibited only trace activity as compared to the parent. 

Only SN2 (Bl) 1 was similar to wild SN2 and produced 6 µg phenolphthalein/ml 
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as compared to 8 µg/ml of the latter. All of the SN14 lysogens exhibited 

decreased phenolphthalein sulfatase activity as compared to the parent SN14. 

SN14 (Bl) 1 and SN14 (Bl) 3 displayed no detectable activity, but SN14 (Bl) I 

and SN14 (Bl} 2 showed an activity resulting in the production of 4 µg 

phenolphthalein/ml and 6 µg/ml respectively. 

SNlO lysogens gave varying results. SNlO {Bl) I showed an increased 

activity, production of 20 µg phenolphthalein/ml, as compared to only 5 µg 

phenolphthalein/ml produced by wild SNlO. SNlO {Bl) II, in contrast, dis

played no detectable activity, while SNlO (Bl) 2 behaved as the wild SNlO. 

MaZaahite gl'Ben veduction tests. The results of the malachite green 

reduction tests are presented in Table 10. With the exception of SNlO {Bl) 1, 

all lysogens decolorized malachite green when grown on Loewenstein-Jensen 

medium. Furthermore, all strains, parental and lysogens, decolorized 

n2lachite green in a medium in which egg was replaced by a pH 7.0 phosphate 

buffer. Decolorization occurred in all tubes except the uninoculated con

trol after 7-10 days {Table 10). Growth of all strains, including the 

parents, seemed retarded. Visible growth could be observed after 7 days 

as compared to 3 days on solid medium (Table 10). The sterile filtrates 

of these tubes of liquid medium revealed that the malachite green had been 

either degraded or complexed since no pH indicator properties could be 

detected. 
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Co'L<miaZ moPphoZogy and appeazrance of {Jl901.t1th in bzroth. The growth of 

the lysogens on nutrient agar, Loewenstein-Jensen medium, and in nutrient 

broth differred substantially from that of the parent strains in most cases. 

Colonies of the SN2 lysogens were smaller and more mucoid than parent SN2 

on both Loewenstein-Jensen medium and on nutrient agar. They also had a 

smooth glistening appearance on these media as compared to the rough 

colonies of the parent. In broth, SN2 lysogens fonned thin films on the 

surface of the broth while the parent fonned a granular suspension which 

settled rapidly to the bottom of the flask. Colonies of the SNlO lysogens 

were of the same size as wild SNlO but were more mucoid on solid media. 

SNlO lysogens did not fonn films in liquid media, but rather fomned fine 

threads which when shaken settled to the bottom. The SN14 lysogens were 

smaller and more mucoid than parent SN14; furthermore, they were less 

pigmented. While the parent SN14 colonies were tan, the lysogens were 

grey resembling wild SN2 or SNlO. In broth, SN14 lysogens produced the 

same granular growth as the parent. 

All lysogens examined grew deep into Loewenstein-Jensen medium which 

made removal difficult. Parent SN2, SNlO, and SN14 strains, in contrast, 

grew only at the surface and could easily be removed with a wire loop. 
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! j Ami des 

I Acetamide 
i 
j 
i Benzami de 
l 
! 

I Urea 
I 

TABLE l 

Amidase Activity of SN2 and Its Lysogenic Derivatives 
by Visual Comparison to Standards 

SN2 

8,5,5.5 
6 

7,5,4.5 
6 

8,8,5.5 
7 

SN2(Bl)l 

4.5,8,4 
6 

4,3,2.5 
3 

9,6,7 
7 

SN2{Bl)2 

8,6 
7 

4,3 
4 

10,8 
9 

SN2(Bl)3 

4,5,7 
5 

3 ,2, l 
2 

7,6,7.5 
7 

! j Isoni co ti nami de 7,8,5.5 
7 

4,2,3.5 
3 

8,4 
6 

2.5,4,2.5 
3 

! 
I . l Ni co ti nami de 

l 
l Pyrazi nami de 
' ~ 

l Salicylamide 

' I A 11 antoin 
'~ 
~ I Succi nami de 

I 
I 
i. Ma 1 onami de 
! 

8,8,8 
8 

-,6.5,6.5 
6 

4.5,2.5,4 
4 

2,1.5,0 
1 

8,8.5,7.5 
8 

2,2.5,1.5 
2 

6,6,6 
6 

-,-,5.5 
6 

1,0,l.5 
1 

1,0,0.5 
0 

9,8,7 
8 

l ,2 ,0 
l 

8,7 
8 

-,6 
6 

1.5,l.5 
2 

1.5,0.5 
l 

9,7.5 
8 

l ,0 
0 

6.5,3.5,4 
4 

-,-,5.5 
6 

2,1,0.5 
l 

0,0,0 
0 

7.5,6,7· 
7 

0.5,l ,2 
l 

SN2(Bl)4 

4.5,3 
4 

4,3.5 
4 

7,7 
7 

2. 5 'l 
2 

6,6 
6 

5.5,6 
6 

l ,0. 5 ,0 
l 

0 .5, l 
l 

7.5,8 
8 

0,0 
0 

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

i . 
' Results are expressed in µg NH3 produced per ml of the bacterium-amide 
l mixture after incubation for 22 hr at 37 C. Pyrazinamide was not available 
! for the first series of experiments. Preliminary experimentation showed, 
; hovJever, no differences between the pyrazinamidase activity of lysogens and 
: their parents. The mean value rounded off to the nearest µg is shown under 
j the actual data for each amide of each strain. 
I ; 
l 
i 
l 
~ 
I 
1 
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~ 
I 
! 

I 
j 
' 
I 
I I Substrate 
! 
!, Acetamide 

I I Benzamide 
j 
! 
! 
~Urea 

I 

TABLE 2 

Amidase Activity of SNlO and Its Lysogenic Derivatives 
by Visual Comparison to Standards 

SNlO 

3,4,6 
4 

6,7,6 
6 

7,8,7 
7 

SNlO(Bl)l 

7.5,4.5,6 
6 

5.5,4,4 
4 

7 ,8 '10 
8 

SNlO(Bl )2 

4.5,4.5 
4 

4.5,4 
4 

7,8 
8 

SNl 0 (Bl) I 

4,5.5 
5 

3.5,5.5 
4 

7.5,10 
9 

! Isoni co ti nami de 6.5,6,6.5 
6 

3.5,3.5,5 
4 

3,3 
3 

4,8 
6 j 

IN. t" .d ! 1 1 co rnam1 e 

I, Pyrazi nami de 
I 
' I I Sal i cyl amide 
~ 

lAllantoin 

I 
I Succi nami de 

i 
j i Mal onami de 
~ 
f: 
~ 

6,7,6 
6 

5.5,5.5 
6 

0.5,1,1 
1 

2,2,0 
1 

6.5,7,6.5 
7 

2,0'1 
l 

6,4,7 
6 

5.5,7 
.6 

0 ,O, l 
0 

1 ,0 ,0 
0 

7.5,5.5,8 
7 

0.5,0,1 
0 

5.5,3.5 
4 

5.5,5.5 
6 

0,0 
o 

0,0 
o 

7,5.5 
6 

0,0 
0 

5.5,6 
6 

4.5,6 
5 

0,0 
o 

0,0 
0 

6.5,6 
6 

0,0 
0 

SNlO(Bl)II 

4.5,6 
5 

3.5,5.5 

7,8 
8 

4 

4,7.5 
6 

5.5,7.5 
6 

6,7 
6 

0 ,l 
0 

0,0 
o 

6.5,8 
7 

0,0 
0 

',--------------------~-----------

' 
~Results are expressed in µg NH3 produced per ml of bacterium-amide ·mixture 

~after incubation for 22 hr at 37 C. The mean value rounded off to the 
l 

!nearest µg is shown under the actual data for each amide of each strain. 
! 
z 
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I 
I Substrate 
I 
' I Acetamide 
i 

I I Benzami de 

I Urea 

TABLE 3 

Amidase Activity of SN14 and Its Lysogenic Derivatives 
by Visual Comparison to Standards 

SN14 

5,8,8 
7 

7,7,6 
7 

7,8,7.5 
8 

SN14(Bl)l SN14(Bl)2 SN14(Bl)3 SN14(Bl)I 

4.5,7 3,2 4,5,5 3,4 
6 2 5 4 

4.5,5 3,2 3,2,4.5 4,5 
5 2 3 4 

7,7 6.5,4 7,5.5,7 7,8 
7 5 6 8 

Isonicotinamide 7,7,7 
7 

4,3.5 2,2 2,5,6 3.5,5 

Nicotinamide 

I Pyrazi nami de 
• 

Sal icylamide 

i Allantoin 

Succinamide 

; Mal onami de. 

7,8,7.5 
8 

-,6,6 
6 

5.5,4,2 
4 

1 ,0 ,0 
0 

6,8,7.5 
7 

1,3,0.5 
2 

4 2 4 4 

4,6 3.5,3 5,3.5,6 4.5,7 
5 3 5 6 

6,5.5 6.3.5 6,5.5,6 5,7 
6 5 6 6 

0,0 l.5,0 2,1,0.5 0,1 
0 0.7 1 0 

0,0 0,0 0,0 0,0 
0 0 0 0 

6,7 6.5,4 5,6.5,10 4,8 
6 6 7 6 

0,0 
0 

0,0 
0 

0,0 
0 

0,0 
0 

I 
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Results are expressed in µg NH produced per ml of bacterium-amide mixture 
3 

after incubation for 22 hr at 37 C. Pyrazinamide was not available for the 
i I first series of experiments. The mean values rounded off to the nearest 

µg are shown under the actual data for each amide of each strain. 
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TABLE 4 

Amidase Activity of Representative Strains 
· Spectrophotometrically Determined 

Substrate SN2 SN2(Bl)3 

Acetamide OD .643, .690 . 480' . 413 
µg 6.0 4.0 

Benzamide OD .502, .475 • 320' . 384 
µg 4.5 3.5 

Urea OD .677, .652 .764, .741 
µg 6.0 7.0 

Isonicotinamide OD .643, .735 .637' .600 
µg 6.0 4.0 

Nicotinamide OD • 712' . 795 .527, .550 
µg 6.0 5.0 

Pyrazinamide OD .546, .551 .610, .564 
µg 5.0 5.0 

Salicylamide OD . 367' . 380 .066' .070 
µg 3.5 0.5 

Allantoin OD .082, .075 .072, .080 
µg 1.0 1.0 

Succinamid~ OD .787, .770 . 846' . 831 
µg 7.0 7.5 

Malonamide OD . 223' .180 .060, .072 
µg 1.5 0.0 

SN2(Bl)4 

.574, .609 
5.5 

• 347' . 390 
3.5 

.831, .708 
7.5 

. 399' . 220 
3.0 

.572, .478 
5.0 

. 570' . 430 
4.5 

.000' . 013 
0.0 

.000' . 000 
0.0 

.866, .900 
8.0 

.000, .020 
o.o 

Top numbers in each column represent the actual O.D. 550 read in 
duplicate experiments. Bottom numbers represent average NH 3 pro
duction i~ µg/ml (for the exact relationship between µg/ml and 
O.o. 550 , see Fig. 3). Figures are rounded off to the nearest 

0.5 µg which is the limit of sensitivity of the Berthelot reaction 
(40). To convert 00550 into µg NH3/ml, Beer's law was applied: 

00550 = e:CL L = 1.0 cm for the Gilford-2000 00550 
e: x 1 .0 = c 

e: = .110 ml/µg (from Fig. 3) 
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TABLE 4a 

Amidase Activity of Representative Strains 
Spectrophotometrically Determined 

Substrate SNlO SNlO (Bl) l SNlO(Bl) I 

Acetamide OD • 572' .482 .464' .490 .452, .334 
µg 5.0 4.0 4.0 

Benzamide OD .552, .468 .462, .294 • 447' . 512. 
µg 4.5 4.5 4.0 

Urea · OD .825' . 71 l .847, 1761 .862' . 776 
µg 7.5 7.5 7.5 

Isonicotinamide OD .672' . 740 .461' .604 .474' .690 
µ9 6.5 5.0 5.0 

Nicotinamide OD .595, .590 .602, .579 . 508' . 435 
µg 5.5 5.5 4.5 

Pyrazi nami de OD .592, .575 .507' .520 . 550' . 586 
µg 5.0 5.0 5.0 

Salicylamide OD .173, .113 .132, .084 .000' .120 
µg l.O 1.0 0.5 

All antoi n OD • 165' . 000 .000, .000 .096, .040 
µg 1.0 0.0 0.5 

Succinamide OD .772, .947 . 750' .830 . 787' .826 
µg 7.5 6.5 7.0 

Malonamide OD . 217' . l ll .092' .012 .000' . 011 
µg 1.5 0.5 0.0 

Legend same as in Table 4. 
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TABLE 4b 

Amidase Activity of Representative Strains 

Spectrophotometrically Determined 

Substrate SN14 SN14(Bl)l SN14(Bl) I 

Acetamide OD .627, .392 .524, .430 .617, .405 
µg 4.5 4.5 5.0 

Benzamide OD .492' .484 .474' . 480 .391' .452 
µg 4.5 4.5 4.0 

Urea OD .883, .810 .896' . 816 . 931 ' • 702 
µg 8.0 8.0 8.0 

Isonicotinamide OD .492, .495 . 297' 1484 .534, .450 
µg 4.5 4.0 4.5 

Nicotinamide OD • 772, . 537 .474, .660 .623, .660 
µg 6.0 5.0 6.0 

Pyrazi nami de OD . 552, . 540 .597' .670 .455, .641 
µg 5.0 5.5 5.0 

Salicylamide OD .455' . 336 .000, .000 .074, .. 040 
µg 4.0 0.0 0.5 

Allantoin OD .091' .000 .000' .000 .009' .000 
µg 0.0 0.0 0.0 

Succinamide OD .892, .786 . 786' .. 678 .880' . 842 
µg 7.5 7.0 8.0 

Malonamide OD .097' . 128 .000, .000 .000' .000 
µg 1.0 0.0 0.0 

Legend same as in Table 4. 
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TABLE 5 

Surmnary of All Amidase Tests by 

Comparison to Standards 

Substrate SN2 SN2(Bl}l SN2(Bl)2 SN2(Bl)3 SN2(Bl)4 

Acetamide ++ ++ ++ ++ + 

Benzamide ++ + + (+) + 

Urea ++ ++ ++ ++ ++ 

Isonicotinamide ++ + ++ + (+) 

Nicotinamide ++ ++ ++ + ++ 

Pyrazi nami de · ++ ++ ++ ++ ++ 

Salicylamide + 0 0 0 0 

A llantoin 0 0 0 0 0 

Succinamide ++ ++ ++ ++ ++ 

Malonamide (+) 0 0 0 0 

Results are expressed according to the evaluation system of Btinicke 
(7,8) and Juhlin (25): 

0 - <2 µg NH3/ml = 0 

2· - <3 µg NH 3/ml = (+) 

3 - <5 µg NH 3/ml = + 

5 -<10 µg NH3/ml = ++ 

> 10 µg NH3/ml = +++ 

Mean values of results are represented. 

Standards prepared were: 2.0 µg NH3/ml, 4.0 µg NH3/ml, 6.0 µg NH3/ml, 
and 8.0 µg NH

3
/ml. 
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TABLE Sa 

Su1T111ary of All Amidase Tests by 
Comparison to Standards 

Substrate SNlO SNlO(Bl)l SN10(Bl)2 SNl 0 (Bl) I SNlO(Bl)II 

Acetamide + ++ + + ++ 

Benzamide ++ + + + + 

Urea ++ ++ ++ ++ ++ 

Isonicotinamide ++ ++ + ++ ++ 

Nicotinamide· ++ ++ + ++ ++ 

Pyrazi nami de ++ ++ ++ ++ ++ 

Salicylamide 0 0 0 0 0 

All antoi n 0 0 0 0 0 

Succinamide ++ ++ ++ ++ ++ 

Malonamide 0 0 0 0 0 

Legend same as in Table 5. 
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TABLE 5b 

Summary of All Amidase Tests by 
Comparison to Standards 

Substrate SN14 SN14(81)1 SN14(Bl)2 SN14 (81)3 SNl 4(81) I 

Acetamide ++ ++ (+) + + 

Benzamide ++ + (+) + + 

Urea ++ ++ ++ ++ ++ 

Isonicotinamide ++ + ( +) + + 

Nicotinamide ++ ++ + + ++ 

Pyrazi nami de ++ ++ + ++ ++ 

Salicylamide + 0 0 0 0 

All antoin 0 0 0 0 0 

Succinamide ++ ++ ++ ++ ++ 

Malonamide 0 0 0 0 0 

Legend same as in Table 5. 
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TABLE 6 

Summary of Amidase Tests Read 
Spectrophotometrically 

Substrate SN2 SN2(Bl)3 SN2(Bl)4 

Acetamide ++ + ++ 

Benzamide + + + 

Urea ++ ++ ++ 

Isonicotinamide ++ + + 

Nicotinamide ++ ++ ++ 

Pyrazi nami de , ++ ++ + 

Salicylamide + 0 0 

Allantoin 0 0 0 

Succinamide ++ ++ ++ 

Malonamide 0 0 0 

Results are expressed according to the evaluation system of 
Bonicke (7,8) and Juhlin (25). 

0 - <2 µg NH3/ml = 0 
2 - <3 µg NH

3
/ml = (+) 

3 - <5 µg NH3/ml = + 

5 -<10 µg NH
3
/ml = ++ 

>10 µg NH3/ml = +++ 

Mean values (Table 4) are represented. 
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TABLE 6a 

Summary of Amidase Tests Read 
Spectrophotometrically 

Substrate SNlO SNlO(Bl)l SNlO(Bl)I 

Acetamide ++ + + 

Benzamide + + + 

Urea ++ ++ ++ 

Isonicotinamide ++ ++ ++ 

Nicotinamide ++ ++ ++ 

Pyrazinamide ++ ++ ++ 

Salicylamide 0 0 0 

All antoi n 0 0 0 

Succi nami de ++ ++ ++ 

Malonamide 0 0 0 

Legend same as in Table 6. 

-31-



• 

TABLE 6b 

Summary of Amidase Tests Read 
Spectrophotometrically 

Substrate .fil!J.! SN14(Bl)l SN14(Bl)l 

Acetamide + + ++ 

Benzamide + + + 

Urea ++ ++ ++ 

Isonicotinamide + + + 

Nicotinamide ++ + ++ 

Pyraz i nami de ++ ++ ++ 

Salicylamide + 0 0 

A 11 antoin 0 0 0 

Succi nami de ++ ++ ++ 

Malonamide 0 0 0 

Legend same as in Table 6. 

·-32-



TABLE 7 

Nitrate Reductase Activity 
(by Comparison to Standards) 

Test Number 
• Strains l 2 3 Ave. 

SN2 4 5 3 4 
SN2 (Bl ) l l l l l 
SN2 (Bl) 2 0 0 0 0 
SN2 (Bl) 3 0 0 0 0 
SN2 (Bl) 4 0 0 0 0 

SNlO 10 >10 > 5 10 
SNlO (Bl) l 50 50 >50 50 
SNlO (Bl) 2 5 5 5 5 
SNlO (Bl) I l l 5 2 
SNlO (Bl) II 10 10 >10 10 

SN14 10 10 10 10 
SN14 ~Bl) l l I 0 0 0 
SN14 Bl) 2 0 0 0 0 
SNl 4 (Bl) 3 l 5 l 2 
SN14 (Bl) I 0 0 0 0 

Results are expressed in µg (N02)- produced per ml of suspension 
after incubation for 2 hr at 37 C. 

The average value is the mean value rounded off to the nearest 
µg . 

. Standards prepared were: 0.1 µg (N02)-/ml, 1.0 µg (N02)-/ml, 
5.0 µg (N02)-/ml, 10.0 µg (N02)-/ml, and 50 µg (N02)-/ml. 
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TABLE 8 

Nitrate Reductase Activity 
(Colorimetric Determination) 

Test Number Ave. 
l 2 {to nearest .5 µg} 

Strains mµmoles/ml µg/ml mµmoles/ml µg/ml 111µmoles/ml µg/ml 

SN2 16.8 3.4 18.0 3.5 17.4 3.5 
SN2 (Bl). 3 0.0 0.0 0.0 0.0 0.0 0.0 
SN2 (Bl) 4 0.0 0.0 0.0 0.0 0.0 0.0 

SNlO 55.0 10 .1 52.0 10.0 53.5 10.0 
SNlO (Bl) 1 >100.0 >20.0 > 100.0 >20.0 > 100.0 >20.0 
SNlO (Bl ) I 2.8 0.5 1.4 0.3 2. 1 0.4 

SN14 47. 7 ' 9.6 38.6 7.8 44.6 8.8 
SN14 (Bl) 0.0 0.0 0.0 o.o 0.0 
SN14 (Bl) I 0.0 0.0 0.0 0.0 0.0 

To convert mµmoles (N02)- produced/ml to µg (N02)- produced/ml, Beer's law 

was used: O.D. = k1AKlett ='£CL 

.021 (from Fig. 2) 

C = .021 AKlett 

Where C = µg (N02)-/ml 

AKlett = Klett units = 10 111µmoles/ml 
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TABLE 9 

Phenolphthalein Sulfatase Activity 

Time of Incubation at 37 C 
Strain 3 day 21 dal 14 dal 14 dal {Ave.} 

1!.l #2 #3 

SN2 0 20 >6 8 8 8 
SN2(Bl)l 0 16 6 6 6 6 
SN2(Bl)2 0 16 0 0 0 0 
SN2(Bl)3 0 20 l 1 0 l 
SN2(Bl)4 0 20 l 0 l l 

SNlO 0 16 <6 <6 >2 5 
SNlO(Bl)l 0 16 2 l 2" 2 
SNlO(Bl )2 0 16 <6 <6 <6 5 
SNlO(Bl)I O· 20 >16 20 20 20 
SNlO(Bl )II 0 16 0 0 0 0 

SN14 0 20 16 8 16 12 
SN14(Bl)l 0 T6 0 0 0 0 
SN14(Bl)2 0 20 6 >6 6 6 
SN14(Bl)3 0 16 0 0 0 0 
SN14(Bl)I 0 20 6 2 <6 4 

Results are expressed in µg phenolphthalein produced per ml of solid 
medium. 

The average value is the mean rounded off to the near~st µg. 

Standards used were: 0.0 µg, 1.0 µg, 2.0 µg, 6.0 µg, 16.0 µg, and 
40.0 µg phenolphthalein per ml. 
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TABLE 10 

Malachite Green Reductase Activity 

Time Required for Decolorization 
Growth {Da.}'.s} Abi lit.}'. 

Strains Solid Liquid .Sol id Liquid 

SN2 3 7 + 
SN2~Bl)l · 3-4 10 + + 
SN2 81)2 3-4 10 + + 
SN2(Bl)3 5-6 10 + + 
SN2(Bl)4 5-6 . 10 + + 

SNlO 3 7 + 
SNlO{Bl)l 3-4 7 + 
SNlO(Bl )2 5-6 10 + + 
SNlO(Bl)I 5-6 10 + + 
SNlO(Bl) II 5-6 10 + + 

SN14 3 7 + 
SN14(Bl)l 5-6 10 + + 
SN14{Bl)2 5 ... 6 10 + + 
SN14(Bl}3 5-6 10 + + 
SN14(Bl)I 5-6 10 + + 

+ Indicates ability to convert malachite green to its 
leuco form (9) as indicated by the color of the medium 
after noticeable growth had occurred. 

The tests were performed in duplicate. The results of the 
duplicate tests were identical. 
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DISCUSSION 

The amidase spectra of parent strains herein reported were qualitatively 

in good agreement wfth previously published data (8). 'Myaobaoterium 

smegma.tis was earlier reported to have variable salfcylamfdase activity 

{8,23). The unstability of the character invalidates any proposition that 

decrease of salicylamidase activity of strains M. s-.gmatis SN2 and SN14 

due to Bl lysogeny was of taxonomical significance. 

It was difficult to compare results concerning the nitrate reductase 

activity of parental strains with previous reports, since either a different 

method was employed or different species were tested. Neither Virtanen {38) 

nor Kubica and Dye {25) related their results to standards of specific con

centration, but rather compared enzymatic activity in different species 

to arbitrary standards, 11 photometer drum readings" and color standards, 

respectively. Juhlin (23) used a four hr incubation period but found 

variable activity in M. smegmatis similar to the present work. Jones and 

White (20) used M. smegmatis ATCC 607, referred to in the present work as 

SNlO, and found a reductase activity of over 30 mµmoles nitrate/ml. This 

roughly corresponds to 10 µg nitrite/ml, the value obtained for SNlO and 

SN14 in this work {Tables 7, 8). They also found that lysogenization of 

M. smegmatis ATCC 607 with mycobacteriophage 029 increased nitrate reduc

tion only in 50% of the strains while lysogenization of the same strains 

with ltlYCObacteriophage 84 increased the nitrate reductase activity of nearly 
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all strains. In the course of this study a similar increase was found only 

1n one Bl-lysogenic strain of SNlO. On the contrary, decreased activity 

as reported by Mankiewicz (28), was the rule following lysogenization of 

all the other strains. 

Even greater difficulty was encountered in trying to compare phenol

phthalein sulfatase activity of parent strains with previously published 

data on M. smegmatie. Sommers (34) stated that M. emegmatis gave a positive 
11arylsulfatase 11 test in 14 days. He did not elaborate further. Whitehead 

et al. (41) compared rapidly growing mycobacterial species but did not 

report the amount of phenolphthalein produced. Juhlin (23) used an altogether 

different method than this author for his test. Jones and White (20), as 

well as Wayne (39), used the three day test and both agreed that 

M. smegma.tis was negative. 

In both the amidase and nitrate reductase tests the use of a spectro

photometer or colorimeter to evaluate the concentration of reaction products, 

proved much superior to the rather subjective method of visual comparison 

of color reaction with standards of known concentration. In the fonner 

case bacteria had to be removed by centrifugation and the supernatant alone 

was tested. This is the probable explanation for the generally lower values 

of NH3'ml reported by Juhlin (23) using a spectrophotometric method. The 

presence of bacteria tended to make the suspension "mfl Icy" in the test tubes, 

thus rendering visual comparison to standards especially subjective when 

low amounts of NH3 (1-3 µg/ml) were produced. 
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Evaluation of the changes in enzymatic activity upon Bl-lysogeny sug

gested that some correlation exists between nitrate reductase and phenol

phthalein sulfatase activity on the one hand, and salicylamidase activity 

on the other hand. Lysogeny for phage Bl in strains SN2 and SN14, which 

originally possessed detectable salicylamidase activity, resulted in the 

decrease of both nitrate reductase, phenolphthalein sulfatase and salicyl

amidase activity. On the other hand, 1n SNlO which did not show any 

detectable salicylamidase activity, lysogenization with phage Bl had 

variable effects on these activities. This phenomenon could not be explained 

by transduction since the propagating host for phage Bl was M. smegmatis 

SN2 and the above mentioned changes were observed not only in strain SN14 

but in SN2 as well. 

One may speculate that if the locus detennining salicylamidase 

activity served as the integration site for phage Bl on the bacterial 

chromosome, its absence may have caused the phage to integrate in a dif

ferent manner or at different sites. Unfortunately, however, nothing is 

known about the chromosome map of either mycobacter1a or mycobacterio

phages, or the exact mechanism of integration of the mycobacteriophage 

genome into the host chromosome. 

The results of the malachite green reduction tests showed that the 

egg constituent of the Loewenstein-Jensen medium affected this activity 

(Table 10). They also showed that, while no mechanism for the reaction 
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can be presently proposed, the decolor1zation of the Loewenstein-Jensen 

medium by M. smegmatis lysogenized with Bl involved more than just a 

reversible reduction of malachite green which this tenninology {9) seemed 

to imply. 

Altered colonial morphology as a result of Bl lysogeny in M. smegmatis 

was reported for i~ smegmatis ATCC 607 lysogenized with 029 or 84, by Jones 

and White (20). Similar alteration of morphology could be observed even 

in non-lysogenic strains (20). Several strains tested in the present work 

which did not produce phage but were resistant to phage also possessed a 

similar altered morphology. Consequently altered morphology may have been 

a manifestation of phage resistance, without lysogeny. However in the course 

of the present work lysogens were observed with colonial morphology char

acteristic of the parental strain, and in Bonicke's studies, loss of prophage 

did not effect reversion to the original morphology (9). Therefore neither 

resistance to phage nor lysogeny seemed to be strictly related to altered 

colonial morphology. It appeared to be a reasonable conclusion therefore 

that the relationship between altered colonial morphology and lysogeny at 

present is unclear. 

Lysogenization of M. siaegmatis strains SN2, SNlO, and SN14 thus has 

been shown to affect to a considerable degree the enzymatic activity of 

these strains. In addition to decreased salicylamidase, nitrate reductase 

and phenolphthalein sulfatase activity, and positive malachite green 
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reduction reported by this author, decrease in the catalase and acetamidase 

activity as well as in the ability to "transform" arm10nium ferrocitrate, 

and to utilize paraffin as a sole carbon source were attributed to lysogeny 

by Mankiewicz and others (28). If various phages can produce such radical 

changes in their lllYCObacterial hosts under laboratory conditions, it is not 

unreasonable to assume that they play an important role in the natural 

variability of Myoobaote:rium species, possibly a greater one than in any 

other genera. 

The significance of this research is that it can explain the difficulty 

encountered in classifying certain mycobacterial strains which are isolated 

from time to time in diagnostic laboratories. Most often these isolates 

show resistance to the known lllYCObacteriophages and display enzymatic 

activities different from that of the known rapidly growing mycobacterial 

species. Although attempts to isolate phage from them usually fail, the 

non-availability of susceptible indicator strains or the defectiveness of 

the prophage they carry may account for this failure. 
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SUMMARY 

MyoobaoteP'lurn smegmatis strains SN2, SNlO, and SN14 were lysogenized 

with mycobacteriophage smegmatis Bl. Lysogeny was detennined by two cri

teria: i111J1unity to superinfection by phage Bl, and production of plaques 

by the lysogen when plated against its phage-susceptible parent strain. 

Lysogens and their parents were then tested for acetamfdase, benzamidase, 

urease, fsonicotinamidase, nfcotinamidase, pyrazinamidase, salicylamidase, 

allantoinase, succinamidase, and malonamidase activity using a 22 hr amidase 

test. They were also tested for phenolphthalein sulfatase activity upon 

incubation for 3, 14, and 21 days, for nitrate reductase activity using 

a 2 hr test, ~nd, for the reduction of malachite green in Loewenstein-Jensen 

medium. Lyeogeny in strains SN2 and SN14, which originally possessed 

appreciable salicylamidase activity, resulted in decreased salicylamidase, 

phenolphthalein sulfatase, and nitrate reductase activity as well as in the 

ability to decolorize malachite green in Loewenstein-Jensen medium. However 

in lysogens derived from strain SNlO, which showed no appreciable salicyl

amidase activity, changes varied in nitrate reduttase and phenolphthalein 

sulfatase activity and one strain did not decolorize malachite green at all. 

Since no ch"8110some map has been constructed for mycobacteria or their 

phages and the exact mechanism of mycobacteriophage integration is not 

known, it can only be hypothesized that phage Bl integrates at or near the 

salicylam1dase locus. Absence of a salicylamidase locus thus may cause 
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the phage to integrate in a different manner or at alternate sites. 

Transduction could not have accounted for the observed variations since 

the reported changes have been observed not only in strain SN14 but in 

SN2 as well and SN2 served as the host for lytic propagation of phage Bl 

ever since its isolation. Altered colonial morphology was observed in 

some lysogenic strains but could not be directly related to lysogeny. 
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