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CHAPTER I 

INTRODUCTION 

Bone resorption involves the degradation and removal of both the 

mineral and organic components of the bone matrix. Physiologic bone 

resorption, which occurs in normal bone development and remodeling, is 

considered to be the primary responsibility of the osteoclast (Holtrop 

and King, 1977; Marks, 1983). This multinucleated cell contains the 

specialized structural and enzymatic machinery necessary to affect 

bone resorption, and its resorbing activities are regulated in a pre­

dictable manner by known osteotropic hormones (Holtrop et al., 1974; 

Bonucci, 1981). Observations that macrophages and monocytes accumu­

late near areas of bone resorption in vivo (Rifkin and Heigl, 1979; 

Stanka and Bargsten, 1983), respond chemotactically to the products 

of normal bone resorption and components of bone matrix (Mundy et al., 

1978; Malone et al., 1982), and appear capable of bone resorption in 

vitro (Mundy et al., 1977; Kahn et.al., 1978; Teitelbaum et. al., 

1979) have prompted speculation that mononuclear phagocytes may also 

play a role in normal bone resorption. In addition, mononuclear phag­

ocytes, specifically macrophages and monocytes, have been proposed as 

osteoclast precursors (Owen, 1980; Loutit and Nisbet, 1982). Based on 

functional similarities, a putative ontogenic relationship, and their 

1 
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ready availability for experimentation, monocytes, macrophages, and 

macrophage polykaryons have been advocated as appropriate investiga­

tional surrogates for the study of osteoclasts (Teitelbaum and Kahn, 

1980). Viewed in this way, osteoclasts would then be considered as 

macrophage polykaryons specialized to resorb a specific substrate­

bone, implying that the mechanisms of osteoclastic and macrophage­

monocyte-induced bone resorption may be the same. 

The formation of macrophage polykaryons can be elicited by the 

introduction of a variety of materials into the subcutaneous tissues 

of experimental animals (Mariano and Spector, 1974; van der Rhee et 

al., 1979). One approach to the investigation of osteoclast­

macrophage polykaryon relationships involves the~~ implantation 

of bone matrix into ectopic sites followed by the recovery and eval­

uation of the morphological and resorptive characteristics of the 

cells found adjacent to the implants. Devitalized bone powder 

implanted into calvarial defects (Glowacki et al., 1981; Glowacki, 

1982; Holtrop et al., 1982) resulted in the formation of multi­

nucleated cells surrounding the bone fragments. The resorptive 

activity of the cells within the calvarial defects was evaluated by 

morphometric analysis. Results indicated that resorption had occurred 

in this system. Ultrastructural assessment of the multinucleated 

cells, however, failed to reveal the presence of ruffled borders, the 

hallmark characteristic of the active osteoclast, in areas of bone­

cell contact. Despite this deficit, the use of this implant system 
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was advocated as a model for osteoclastic lineage studies on the basis 

of the similiarities between osteoclasts and macrophage polykaryons 

(Holtrop et al., 1982). 

The primary purpose of this series of investigations was to eval­

uate the premise that multinucleated cells elicited by ectopically 

implanted bone matrix are cells functionally, morphologically and 

histochemically equivalent to the osteoclast, and therefore, appro­

priate cells for the study of osteoclastic differentiation and func­

tion. Studies were conducted at subcutaneous sites in both normal and 

osteopetrotic (ia) rats using normal and osteopetrotic bone prepara­

tions. Mammalian osteopetrosis, a disease characterized by excessive 

accumulation of bone caused by decreased bone resorption, has provided 

a model for the study of osteoclastic lineage and function (Marks, 

1984). The bone resorbing defect in the~ rat mutation of osteo­

petrosis is due to faulty osteoclasts. Osteopetrotic osteoclasts are 

distinguishable from their normal counterparts~~ by their 

inability to form ruffled borders, the site of active bone resorption, 

or to release normal amounts of lysosomal enzymes which accumulate in 

their cytoplasm (Marks and Walker, 1976; Marks, 1984). 

The first and second studies in this dissertation were designed 

to assess the resorptive and morphological characteristics of cells 

found surrounding bone implants in.!!_ and normal littermates to 

determine if the usual functional and structural disparities between 

.!!_ and normal osteoclasts were mimicked in this system, lending 
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validity to its use as an osteoclastic model. An evaluation of the 

amount of bone resorption occurring during a two week implantation 

period was achieved through 45ea release assays. Quantitation of 45ca 

released from pre-labeled bone into surrounding tissue fluids or 

culture medium is commonly used as an indirect index of bone resorp­

tion. We developed a new release assay, permitting more direct 

assessment of 45ea loss, for use in our bone implant system. This 

technique employs the individual members of uniformly labeled bone 

chip pairs as control and experimental implant halves. Recovery of 

the implant half and subsequent comparison of its 45ca content with 

that of the control was used to assess the total label loss over the 

implant period. Label content of bone chips sealed in diffusion 

chambers prior to implantation indicated the quantity of passive or 

non-cell mediated 45ea release over a similar two week interval. The 

amount of cell-mediated label release was determined by subtracting 

the release from diffusion chambers from that of direct implantations. 

The first two studies also included a light and electron micro­

scopic evaluation of the cell populations found at the bone surface at 

3, 7 and 14 days post-implantaion focusing on the morphology of bone­

induced multinucleated cells. In addition, the second study compared 

the structures of suture-elicited macrophage polykaryons and bone­

induced multinucleated cells with those of normal and osteopetrotic 

osteoclasts. 

The final portion of the dissertation examined the tartrate-
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resistant acid phosphatase (TRAP) staining characteristics of the 

osteoclast, the suture-elicited macrophage polykaryon and the bone­

induced multinucleated cell. Tartrate-resistant acid phosphatase has 

been proposed as a histochemical marker for the osteoclast (Minkin, 

1982; Hammarstrom et al., 1983) and, as such, TRAP has been used for 

the cytochemical identification of proposed osteoclastic precursors 

(Roodman et al., 1985; Baron et al., 1986; Jilka, 1986). Appendix B 

outlines the development of an improved technique for the localization 

of tartrate-resistant acid phosphatase in skeletal tissues. This pro­

cedure permits glutaraldehyde fixation, decalcification and plastic 

embedding. The description of the technique also includes an evalua­

tion of two isomers of tartaric acid as effective inhibitors of 

tartrate-sensitive acid phosphatases. In the third study, this histo­

chemical procedure was used to compare TRAP localization in the cells 

surrounding bone and suture implants with that of normal and osteo­

petrotic osteoclasts at 3, 7 and 14 days after implantation. Osteo­

petrotic osteoclasts have been shown to possess increased acid phos­

phatase activity when compared to their normal counterparts (Handelman 

et al., 1964; Schofield et al., 1974); most of this increased activity 

is expressed as tartrate-resistant acid phosphatase (Hammarstrom et 

al., 1983). Reproduction of this pattern of TRAP localization within 

bone-induced multinucleated cells in ia rats would support the use of 

these cells as osteoclastic surrogates. 

Because access to bone mineral may be necessary for the induc-
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tion and activation of osteoclasts (Chambers et al., 1984; Chambers 

and Fuller, 1985), we included within these studies an evaluation of 

the effects of increased mineral exposure on the recruitment of cells 

to the bone implant surface. The calvarial and trabecular bone 

present in rat pups is undergoing extensive turnover and remodeling. 

Because mineralization of organic bone-matrix lags behind its 

formation, bone surfaces undergoing remodeling in young rats are 

characterized by the presence of an osteoid seam (8-lOum) between the 

bone lining cells and the mineralized bone (Jee, 1983; Jaworski, 

1983). Quiescent or "resting" bone also exhibits a similar, though 

thinner, osteoid layer (lum) (Jee, 1983). Chambers et al. (1985) have 

proposed that this osteoid layer acts as a barrier to osteoclastic 

contact with the underlying bone mineral and that exposure of the 

osteoclast to bone mineral may be important for the initiation of 

osteoclastic resorptive behavior. We evaluated this hypothesis by 

using freeze-thawed, bleached or collagenase-treated bone chips as 

implant substrates. Bone chips which were harvested and subjected to 

devitalization only (freeze-thawed) were used to represent primarily 

osteiod (unmineralized or organic) exposed bone surfaces, while 

bleached and collagenase treated bone chips represented primarily 

mineral-exposed bone surfaces. Abe et al (1983) and Abe et al (1984) 

employed 5% sodium hypochloride (bleach) to remove organic material 

from bone surfaces during SEM studies of bone resorption. Incubation 

of bone chips with collagenase also removes the organic (osteoid) 
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phase of bone, providing a primarily mineral-exposed substrate for 

implantation (Green et al., 1985; Chambers et al., 1985). In the 

first study, both bleached and collagenase-treated bone chips tended 

45 to demonstate more Ca release than did freeze-thawed implants. 

Because the results of functional studies were very similar and the 

use of collagenase as a mineral-exposing agent is more frequently 

documented in the current literature, incubation in bleach was 

eliminated from the second and third studies to simplify the the 

number of treatment groups. Osteopetrotic bone served as another type 

of mineral altered implant matrix. Metaphyseal bone isolated from ia 

rat tibiae exhibits elevated hexosamine levels and mineral content 

when compared to normal age-matched controls (Boskey and Marks, 1985). 

Similar, though less significant findings are noted between normal and 

.!!_ calvarial bone (Boskey and Marks, 1985). Through the implantation 

of normal and osteopetrotic trabecular or calvarial bone chips 

(freeze-thawed, bleached or collagenase-treated), we evaluated the 

effects of substrate composition on the differentiation of cells found 

adjacent to the bone matrix in an effort to define the most effective 

implant matrix for the induction of osteoclast-like multinucleated 

cells. 

In summary, this dissertation describes an~~ model for the 

study of cell-mediated bone resorption. An evaluation of the func-

tional, morphological and histochemical features of the cell popula-

tions attracted to various preparations of devitalized bone implants 
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was conducted to delineate the relationship between the implant­

induced cells, the osteoclast and the mononuclear phagocyte sytem. 

This work also evaluates the effects of substrate composition on the 

differentiation and functional capabilities of the cells elicited to 

the implanted matrix. This model may reflect true osteoclastic 

resorption and may, therefore, be used to study osteoclastic lineage 

and function or, alternatively, it may define a system for the study 

of macrophage-monocytic bone resorption which has been implicated in 

chronic inflammatory disorders involving pathological osteolysis i.e. 

periodontal disease, some forms of osteoporosis, osteomyelitis, and 

rheumatoid arthritis. 



CHAPTER II 

REVIEW OF LITERATURE 

Osteoclast Biology - General Review 

Bone resorption and its relationship to the osteoclast have been 

surrounded by controversy since the nineteenth century. Tomes and de 

Morgan, 1853, were the first to propose a cellular mechanism for bone 

resorption, although they were unable to cytologically characterize 

the bone resorbing cell itself. While making no suggestions as to 

function, Robin in 1864 was able to differentiate between two types of 

giant cells inhabiting bone--one belonging to the marrow (megakaryo­

cyte) the other associated with the bone itself which he termed 

"myeloplaques" (Hancox, l949a, 1972). Koelliker, 1873, named and 

identified the osteoclast as the active agent of bone resorption. 

Basing his predictions on the presence of a "brush border" in areas of 

cell-bone contact and on observing bone-like material inside the 

cells, he proposed that the osteoclast resorbed bone by releasing 

chemical substances capable of bone degradation into the region of the 

brush border with subsequent phagocytosis of the degradative products 

(Kroon, 1954). This hypothesis, however, was just one of many pro­

posed to explain bone resorption (Abrey, 1920; Jaffe, 1930; Kirby­

Smith, 1933) and its validation had to await the arrival of technical 

9 
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advancements such as the electron microscope and autoradiography. 

Pioneering studies by Scott and Pease (1956) on the ultrastructure of 

the epiphyseal plate in young kittens and by Arnold and Jee (1957) on 

plutonium incorporation and removal from osseous surfaces into osteo­

clasts provided definitive evidence that osteoclasts are active agents 

of bone resorption. More recently, Takagi et al. (1982) and Blair et 

al. (1986) have demonstrated that rodent and avian osteoclasts are 

capable of degrading both the organic and mineral components of bone, 

biochemically confirming the bone resorptive status of the osteoclast. 

Time-lapse cinematography of cultured avian and murine osteo­

clasts reveals that they are highly mobile cells with an active and 

extensive undulating peripheral membrane capable of exploring its 

environment by extending and retracting cytoplasmic processes. These 

cells also exhibit vigorous pinocytotic activity as evidenced by the 

appearance, fusion, and discharge of vacuoles of various sizes by the 

undulating membrane. Bone matrix can be seen to dissolve beneath the 

osteoclasts providing additional evidence of their active participa­

tion in bone resorption (Hancox, 1949b; Gaillard, 1959; Hancox and 

Boothroyd, 1961). 

Observations made by scanning electron microscopy (SEM) reveal 

a wide range of osteoclastic appearances which may reflect different 

functional states. At one end of the spectrum are flat osteoclasts 

with fimbrillated borders and a microvillus covered dorsal surface. 

Because osteoclasts displaying this structure are difficult to dissect 
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from the bone, it is postulated that they are involved in active bone 

resorption (Jones and Boyde, 1977). In contrast, a second group of 

elongated and extensively branched osteoclasts with smooth dorsal 

surfaces can be removed from the bone quite easily. Osteoclasts with 

these features are considered to be resting or inactive with regard to 

bone resorption. Both phenotypes have been observed at different 

locations on the same cell implying varying functional states may 

exist within the same cell (Jones and Boyde, 1977). Osteoclasts are 

presumed to dissolve bone as they move, etching their paths into its 

surface. Bone resorption surfaces, as identified by SEM, demonstrate 

a variety of roughened areas, trenches and concavities--three dimen­

sional illustrations of osteoclastic activity (Abe et al., 1983). 

Under the light microscope, osteoclasts can be located in 

shallow depressions of the bone or investing a bony trabecula. They 

vary in size from 20 to lOOum in diameter. True multinucleated cells, 

osteoclasts can contain as many as 100 or as few as 2 nuclei. These 

nuclei are round or oval and tend to cluster away from the bone appos 

apposed surface. Mitotic figures are not usually observed in osteo­

clasts (Gonzales and Karnovsky, 1961; Hancox, 1972; Gothlin and 

Ericsson, 1976; Chambers, 1978). The osteoclastic cytoplasm is vari­

able in appearance from moderately basophilic to acidophilic and at 

times exhibits a "foamy" or highly vacuolated region adjacent to the 

bone. The characteristic histological feature of the osteoclast at 

the light microscopic level is the presence of a "brush or striated" 
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border at the bone-cell interface (Gothlin and Ericsson, 1976; 

Chambers, 1978; Bonucci, 1981). Kroon (1954), in a thorough investi­

gation of changes in the staining properties of parathyroid hormone 

(PTH) stimulated avian osteoclasts and the surrounding bone matrix, 

concluded that the striated border represented a region in which the 

osteoclast was actively penetrating the bone with cytoplasmic pro­

cesses and that its degree of development was a reflection of the bone 

resorbing status of the cell. 

Ultrastructurally, osteoclasts exhibit areas of nuclear concen­

tration. Osteoclastic nuclei are seen to vary in shape from smooth 

regular ovals to highly irregular outlines. They possess normal 

nuclear membranes with dense chromatin concentrated along the inner 

leaflet and one prominent nucleolus (Gonzales and Karnovsky, 1961; 

Gothlin and Ericsson, 1976). Ribosomes are abundant throughout the 

cytoplasm while rough endoplasmic reticulum is relatively scarce and 

located in regions distant from the bone surface. Other prominent 

cytoplasmic inclusions are: multiple perinuclear Golgi apparatus; 

high concentrations of mitochondria often containing crystalline 

granules and tubular or fenestrated cristae; numerous primary and 

secondary lysosomes and a variety of dense core vacuoles (Scott, 

1967a; Cameron, 1972; Holtrop and King, 1977; Marks, 1983). A giant 

centrosphere containing multiple pairs of centrioles can often be 

identified in the nucleus-free areas of the cytoplasm (Matthews et 

al., 1967; Lucht, 1973). Although it has been proposed as an exclu-
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sive feature of the osteoclast, Sapp (1976) reported the presence of 

similar giant centrospheres in a variety of multinucleated cells 

including foreign body giant cells, casting doubt on its use as a 

definitive osteoclastic marker. The significance of this centro­

sphere, however, lies in the fact that centrioles located in a common 

pool some distance from the nuclei would not be readily available for 

nuclear division, providing an explanation for the absence of mitotic 

figures in the osteoclast. 

Actively resorbing osteoclasts can be differentiated ultrastruc­

turally from inactive osteoclasts and other types of multinucleated 

cells by the presence of a ruffled border at the bone-cell interface 

(Gothlin and Ericsson, 1976; Bonucci, 1981; Marks, 1983, 1984). The 

ruffled border, a complex series of cytoplasmic infoldings, is con­

sidered to be the site of osteoclastic bone resorption (Scott and 

Pease, 1956; Dudley and Spiro, 1961; Bonucci, 1974; Holtrop, 1975). 

The bone underlying the ruffled border is disrupted as illustrated by 

disaggregation of collagen exposing individual fibrils. Free crystals 

of bone mineral are found between the infoldings and channel expan­

sions of the ruffled border as well as within cytoplasmic vacuoles of 

the osteoclast (Dudley and Spiro, 1961; Gonzales and Karnovsky, 1961; 

and Lucht, 1972). The exocytosis of lysosomal enzymes and hydrogen 

ions necessary for bone degradation as well as the endocytosis of 

degradation products are believed to occur at the ruffled border 

(Vaes, 1968; Holtrop and King, 1977; and Marks, 1983). Baron et al. 
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(1985) have localized a 100-kD protein within the membranes of the 

ruffled border and secondary lysosomes of the osteoclast. Antibodies 

to the 100-kD protein cross-react with a proton pump ATPase from pig 

gastric mucosae, suggesting participation of this protein in acidifi­

cation of both intracellular organelles and extracellular compart­

ments. The authors propose that an acidified extracellular compart­

ment is produced between the plasma membrane of the ruffled border and 

the underlying bone matrix by exportation of hydrogen ions from inside 

the osteoclast. Directional secretion of lysosomal enzymes (acid 

hydrolases) by the osteoclast into this compartment may then create 

the functional equivalent of a secondary lysosome containing the 

appropriate environment for matrix degradation. The authors go on to 

suggest that the products of this extracellular digestion could dif­

fuse through the ruff led border plasma membrane as they would through 

lysosomal membranes intracellularly and may not require endocytosis 

for further degradation inside the osteoclast. However, the presence 

of a coated membrane in the region of the ruffled border implies that 

endocytosis may also play a role in the resorptive process (Kallio et 

al., 1971). 

The relative activity of the osteoclast is reflected by the 

degree of development of its ruffled border. In bone organ cultures 

stimulated with parathyroid hormone (PTH), 64% of the osteoclasts 

exhibited ruffled borders, while in non-stimulated cultures only 11% 

of the osteoclasts had ruffled borders, and these consisted of a few 
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shallow infoldings. Calcitonin administration to the PTH-stimulated 

cultures decreased the proportion of ruffled area significantly by one 

45 hour; this was followed by a decrease in Ca release indicative of 

decreased resorption (Holtrop et al., 1974). Similarly,~ vivo 

studies of the egg laying cycle in Japanese quail indicate that med-

ullary bone osteoclasts modulate their activity to accommodate the 

changing calcium requirements imposed by egg shell formation. The 

osteoclasts appear to be active only during the period of shell calci-

fication and inactive during the rest of the cycle. Active osteo-

clasts exhibit ruffled borders apposed to the bone surfaces; their 

cytoplasm is rich in mineral containing vacuoles. At the completion 

of the egg shell calcification the ruffled borders and vacuoles move 

away from the bone surface, although the osteoclast may remain at­

tached to the bone along a clear zone. Associated with the disap-

pearance of the ruffled border is the appearance of extensive inter-

digitated cell processes along the peripheral surfaces of the osteo­

clast away from the bone (Miller, 1977, 1981). PTH stimulation of 

inactive osteoclasts during the non-calcifying period of the cycle 

results in ruffled border formation within 15 minutes. By 30 minutes 

the ruffled borders are well developed and large endocytic vacuoles 

appear (Miller et al., 1984). 

The clear zone, an actin containing (King and Holtrop, 1975) 

organelle free area surrounding the ruffled border, is believed to 

function in the adhesion of the cell to the bone and in limiting the 
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area of osteoclastic bone resorption (Malkani et al., 1973; Holtrop 

and King, 1977; and Ryder et al., 1981). Vimentin-like intermediate 

filaments, vinculin, actinin and fimbrin have been localized within 

paramarginal adhesion sites, probably clear zones, in cultured avian 

osteoclasts, supporting the proposal that clear zones may serve as 

specific adhesion devices in osteoclasts in vivo (Marchisio et al., 

1984). Clear zones can also be seen in actively resorbing human 

monocytes and mouse macrophages cultured with devitalized bone 

particles (Teitelbaum and Kahn, 1980). A "transitional region", 

relatively free of organelles, has been identified in lamellopodia 

and in areas of cell adhesion to the substratum in foreign body giant 

cells (Sutton and Weiss, 1966; Papadimitriou and Archer, 1974). How­

ever, ruffled borders have not been observed in any of these other 

cell types. 

Indicative of their resorptive function, osteoclasts are meta­

bolically active cells exhibiting high levels of oxidative and hydro­

lytic enzyme activity. Metabolic pathways are well developed for 

utilization of NADP and NADPH, succinic, malic, lactic, and isocitric 

acids, beta-hyroxybutyrate and glucose-6-phosphate, the reactions 

mediated by diaphorases and dehydrogenases. The activities of hydro­

lytic enzymes, such as acid and neutral phosphatases, non-specific 

esterases, and leucine napthylamidase are high in these cells 

(Addison, 1978). Acid phosphatase was the earliest of the hydrolytic 

enzymes to be demonstrated histochemically in bone tissue (Burstone, 



17 

1959a) and localized to osteoclasts (Schajowicz and Cabrini, 1958; 

Burstone, 1959b). Ultrastructurally, it was found in the lysosomes, 

cytoplasmic vacuoles, and ruffled border of the osteoclast and within 

the extracellular space between the osteoclast and the underlying bone 

(Lucht, 1971; Doty and Schofield, 1972). Doty et al., 1968, demon­

strated that the amount of acid phosphatase activity increased under 

the influence of parathyroid extract and decreased with calcitonin, 

correlating with known osteoclastic activity (Cameron, 1972). On the 

basis of sensitivity or resistance to tartrate inhibition, two types 

of bone acid phosphatase have been identified biochemically (Wergedal, 

1970; Anderson and Toverud, 1979). Histochemically, tartrate­

resistant acid phosphatase can be localized predominantly within 

osteoclasts while tartrate-sensitive activity is associated primarily 

with bone cells other than osteoclasts (Hammarstrom et al., 1971; 

Minkin, 1982). Consequently, tartrate-resistant acid phosphatase has 

been proposed as a biochemical marker for the study of osteoclasts 

(Minkin, 1982). The enzyme carbonic anhydrase is also being explored 

as a suitable biochemical probe for osteoclastic studies (Anderson et 

al., 1982). Highly sensitive immunohistochemical methods reveal the 

presence of the C isoenzyme of carbonic anhydrase exclusively in rat 

calvarial and human trabecular osteoclasts (Vaananen and Parvinen, 

1983; Vaananen, 1984). While its exact function is unknown, carbonic 

anhydrase may act to facilitate co
2 

diffusion from the cell or to 

provide hydrogen ions for secretion into the surrounding bone matrix 
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to create the acidic environment necessary for lysosomal enzyme act­

ivation and mineral resorption (Cao and Gay, 1985; Hall and Kenny, 

1985). 

Origin of the Osteoclast 

Osteoclasts originate through the fusion of postmitotic mono­

nuclear cells. The exact nature of the osteoclastic precursor cell 

has been, and is, the source of much controversy. Koelliker regarded 

the osteoblast as the cell source; Jordan (1921) advocated the marrow 

reticulum; Mallory and Haythorn in 1911 and 1929 respectively proposed 

the monocyte as the precursor (Hancox, 1946). From this debate two 

hypotheses arose to explain osteoclastic lineage--the monophyletic and 

the polyphyletic theories (Krukowski et al., 1983). 

The monophyletic or skeletal scheme proposed that all the cells 

responsible for the formation and resorption of bone and cartilage 

arose from a common progenitor or stem cell population and through 

modulation could transform from one cell type to another, even re­

joining the stem cell pool. According to this theory, the osteoblast 

and osteoclast were physiological expressions of the same undifferent­

iated stem cell, and the course of stem cell differentiation was reg­

ulated by the local environment surrounding it (Rasmussen and Bordier, 

1974; Krukowski et al., 1983). Evidence in support of the monophy­

letic theory was based on interpretations of the size and shape of 

cells seen in histological sections at the light level. Autoradio-
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graphic studies of the uptake of tritiated thymidine by rodent bone 

cells were also used to bolster the monophyletic view (Tonna and 

Cronkite, 1961; Young, 1962). Following the injection of tritiated 

thymidine, the first bone cells to be labeled were osteoprogenitor 

cells, followed by osteoblasts. Labeled osteoclasts were not observed 

until 36-40 hours post injection and usually only 1 or 2 nuclei were 

involved. The authors concluded that osteoprogenitor cells can divide 

while osteoblasts and osteoclasts do not and osteoclasts and osteo­

blasts arise by modulation from the osteoprogenitor pool. Hall (1975) 

in his review on the origin and fate of the osteoclast, however, 

points out that both studies involved the injection of label system­

ically which would label dividing cells all over the body, some of 

which could have migrated to the bone providing an extraskeletal 

source of label. He also points out that these experiments do not 

exclude the possibility of more than one type of osteoprogenitor cell 

within the bone--one for osteoblasts and another for osteoclasts-­

either of which could have incorporated label while in the S phase of 

the cell cycle. These criticisms illustrate a shortcoming in the 

monophyletic theory: it viewed bone as a "closed cell system" 

presuming that labeled cells were bone bound; thus cells could possi­

bly leave the bone, but no potential precursor cells could enter it. 

With the realization that bone is not an isolated cell system, the 

monophyletic scheme was abandoned in lieu of the polyphyletic theory 

of bone cell lineage. 
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The polyphyletic theory of bone cell lineage proposes that dif­

ferent stem cells give rise to osteogenic cell lines and to osteo­

clasts (Krukowski et al., 1983). Osteogenic cells are derived from 

the marrow stromal populations while the osteoclast originates from a 

hemopoietic stem cell via a blood-borne mononuclear cell (Owen, 1980). 

There appears to be no transformation between the cells of the hemo­

poietic and stromal systems, nor a pluripotent stem cell capable of 

giving rise to both tissues (Owen, 1980). The first definitive evi­

dence of an extraskeletal source for osteoclastic precursors was pro­

vided by Fischman and Hay (1962) who studied the incorporation of 

tritrated thymidine into regenerating newt limbs. This model system 

was useful because suspected precursors could be labeled selectively 

by administration of the isotope at different intervals before or 

during regeneration. When animals were injected and their regener­

ating limbs fixed the same day, no radioactive osteoclasts were 

observed. When animals were injected at 5, 10, or 15 days of regen­

eration and their limbs fixed at daily intervals, labeled mesenchymal 

cells were present, but no labeled osteoclasts were seen. In animals 

injected one day prior to amputation and the limbs fixed at intervals 

during regeneration, labeled osteoclasts were seen in the limb stumps 

between 10 and 20 days post-amputation. Prior to the appearance of 

labeled osteoclasts, the only radioactive cells present in the inner 

limb tissues were macrophages and monocytes. From these findings, the 

authors concluded that osteoclasts do not divide by mitosis and that 
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osteoclasts were not formed by the fusion of mesenchymal elements of 

the limb, but rather from circulating mononuclear leukocytes, probably 

monocytes. Jee and Nolan (1963) observed that charcoal particles, 

injected into rats, appeared at 4 days in the macrophages and spindle 

shaped mesenchymal cells of the bone, and after 15 days in osteo­

clasts. They, like Fischman and Hay, proposed that osteoclasts form 

by fusion of mononuclear phagocytes. 

Scott (1967b) described two types of labeled precursor cells 

through the use of tritiated thymidine electron microscopic auto­

radiography. Type A cells (preosteoblasts) were spindle-like with 

characteristics associated with matrix production--large well devel­

oped endoplasmic reticulum and large intracellular accumulations of 

glycogen. Type B cells (preosteoclasts) had rounded profiles and 

resembled mononuclear leukocytes and osteoclasts in their cytoplasmic 

inclusions: an abundance of free ribosomes and mitochondria, complex 

Golgi apparatus associated with dense specific granules and morpho­

logically identifiable primary lysosomes. 

Gothlin and Ericsson (1973) in studies of fracture repair in 

parabiotic rats, obtained further evidence that local progenitor cells 

of the host produce osteoblasts whereas a separate migratory cell 

population produces osteoclasts. Rats were joined in pairs by estab­

lishing cross-circulation through their body walls via skin flaps. 

The rat pairs were then lethally irradiated except for the left hind­

limb of one animal which was shielded. The right femur of each animal 
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was fractured one day post irradiation and tritiated thymidine admin­

istered to the protected rat at intervals of 4 days. Results of these 

experiments showed that all bone cells were labeled in the fracture 

callus of the protected rat whereas only the osteoclasts were labeled 

in the unprotected animal, confirming the origin of osteoclasts from 

migratory cells and the separate origin of osteogenic cells from local 

precursors. 

Bone cell lineage was also studied through the use of quail­

chick chimeras. The interphase nucleus of the quail possesses one or 

more large nucleolus-associated heterochromatic masses while that of 

the chick has diffuse heterochromatin. These two types of nuclei can 

easily be identified and used as markers to follow cell migration. 

Quail embryonic limb rudiments were harvested and grafted onto chick 

chorioallantoic membranes. After an appropriate period of time, the 

explants were removed and the nuclear characteristics of the cells 

surrounding it were evaluated. In this implant system, osteoclasts 

were found to be predominantly of host (chick) origin indicating a 

vascular migration of precursor cells, whereas osteoblasts were de­

rived primarily from local grafted (quail) tissues (Kahn and Simmons, 

1975; Jotereau and LeDouarin, 1978; Simmons and Kahn, 1979). Kahn et 

al. (1981), using quail bone explants grafted onto younger chick 

embryos, demonstrated that chick osteoclastic precursor cells are 

present in the circulation and can be induced to form osteoclasts in 

the graft before osteoclasts are formed in the chick embryo itself. 
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Similarly, Thesingh and Burger (1983) found osteoclastic precursors 

present in mouse mesenchyme 6 days before osteoclasts actually 

appeared. These findings indicate that osteoclastic precursors are 

present in the circulation long before they migrate into the mesen­

chymal tissues to become osteoclasts. 

Osteopetrosis, a disease characterized by reduced bone resorp­

tion, has also been used as a model for the study of osteoclastic 

lineage. Mammalian osteopetrosis is most commonly inherited as an 

autosomal recessive trait in a number of species including man. The 

clinical manifestation of the disease in each mutant is an increase in 

skeletal mass associated with retarded bone growth and abnormal bone 

shape. Marrow cavities fail to develop and anemia is often present 

despite increases in extramedullary hematopoiesis. The skeletal ab­

normalities can interfere with dentition, cause neurological defects 

and may be associated with pigmentation changes (Marks and Walker, 

1976). The bone resorbing defect in some forms of osteopetrosis is 

due to faulty osteoclasts. Osteoclasts from ia rats, .!!!. and~ mice, 

and os rabbits do not form ruffled borders (Marks, 1984). Histo­

chemical studies have provided evidence of reduced production of 

lysosomal enzymes by osteoclasts from gl, mi, ~' and 2.f. mice (Marks, 

1984). In contrast,...!.! osteoclasts are capable of normal lysosomal 

enzyme production, but are unable to release these enzymes which 

accumulate in the cytoplasm (Handelman et al., 1964; Marks, 1973). 

In addition, the clear zones of ia osteoclasts, unlike those of their 
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normal counterparts, are extensive, covering most of the bone-cell 

interface, preventing lysosomal contact with the bone surface (Marks, 

1983). 

Walker (1972, 1973) was able to restore bone resorption in 

osteopetrotic mice by parabiotic union with normal siblings, sug­

gesting a blood-borne factor for the cure of osteopetrosis. As a 

result, hematopoietic transplants from the spleens of osteopetrotic 

(~) into lethally irradiated normal littermates and, conversely, 

transplants of normal spleens or bone marrow into irradiated osteo­

petrotic littermates were performed. Normal mice that had received 

osteopetrotic spleen cells gave evidence of skeletal sclerosis indic­

ative of osteopetrosis, while osteopetrotic mice that received infu­

sions of normal spleen or bone marrow cells showed restoration of 

resorptive activities with clearing of marrow cavities and near normal 

bone remodeling (Walker, 1975). Similarly, spleen cells were also 

found to cure the disease in the.!!. rat mutation (Marks, 1976). This 

restoration of bone resorption in the _!! rat by normal spleen cells 

was accompanied by the transformation of osteoclasts from mutant to 

normal phenotype (Marks and Schneider, 1978; 1982). 

Ash et al. (1980) provided direct evidence of the extraskeletal 

source of the osteoclast through the use of radiation chimeras. The 

granular leukocytes, monocytes, and osteoclasts of beige mice contain 

giant lysosomes which can serve as cytoplasmic markers. Lethally 

irradiated osteopetrotic (mi) mice received infusions of bone marrow 
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or spleen cells from non-osteopetrotic beige mice. This resulted in 

complete regeneration of the lymphomyeloid complex. Osteoclasts dis­

playing giant lysosomes of donor origin were observed. Giant lyso­

somes were absent from osteogenic cells whose precursors were of host 

origin. In human chimera studies, female patients cured of juvenile 

osteopetrosis by bone marrow transplants from HLA matched male sib­

lings demonstrated osteoclasts of donor (male) origin and osteoblasts 

of host (female) origin as evidenced by fluorescent Y body analysis 

(Coccia et al., 1980; Sorell et al., 1981). 

Mononuclear Phagocyte System (MPS) 

In accordance with the evidence provided by these investiga­

tions, the origin of the osteoclast from a hemopoietic stem cell has 

been confirmed. Hemopoietic stem cells give rise to several proli­

ferating precursors each of which is committed to a specific cell 

line. The cell line to which the osteoclast belongs has not been 

definitively established. The candidate most often proposed is that 

of the mononuclear phagocyte series (Owens, 1980; Loutit and Nisbet, 

1982). 

Cell types included in the mononuclear phagocyte system (MPS) 

meet the following criteria: 

(1) Common derivation from bone marrow precursor cells 

(2) Strong trypsin resistant adhesion to glass surfaces 

(3) Avid phagocytosis 
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(4) Characteristic cell structure: a highly convoluted plasma 

membrane with abundant finger-like projections, numerous primary and 

secondary lysosomes, mitochondria, variable amounts of endoplasmic 

reticulum and round, oval, or reniform nuclei with a thin rim of dense 

chromatin and a prominent nucleolus 

(5) Presence of surface receptors for F fragment of IgG and the c 

third component of complement {Spector, 1974; Weiss, 1983). 

Mononuclear phagocytes can be divided into two groups of cells: 

the circulating blood monocytes and the tissue macrophages of various 

organs such as the spleen, lymph nodes, liver, lung, peritoneal cavity 

and subcutaneous tissues (van Furth and Cohn, 1968). While it may 

have a role in antigen processing in the immune response, the blood 

monocyte appears to primarily represent a transit form of macrophage 

which upon emigration from the peripheral circulation differentiates 

into the tissue macrophage appropriate to its environment (Krause and 

Cutts, 1981). The tissue macrophage through phagocytosis is mainly 

involved in the clearance and destruction of bacteria, foreign mate-

rials and damaged tissue cells or debris from its surroundings. Epi-

thelioid cells and multinucleated giant cells are included in the MPS 

as macrophage derivations (Spector, 1974). The proposed sequence of 

cell lineage of the MPS is : 



27 

Pluripotent stem cells---Committed stem cell---monoblast--­

promonocyte---monocyte---tissue macrophage---multinucleate giant cells 

(Weiss, 1983). 

The hypothesis that the osteoclast is derived from the MPS is 

based on the common characteristics shared by osteoclasts and mono­

nuclear phagocytes. Osteoclasts and mononuclear phagocytes demon­

strate mobility, possess an active, undulating plasma membrane, and 

stain supravitally with neutral red (Carrel and Ebeling, 1926; Hancox, 

1946; Barnicot, 1946; Hancox and Boothroyd, 1961). Osteoclasts and 

macrophages are both capable of trypsin resistant glass adherence 

(Chambers, 1979). Zallone et al. (1983) observed that cultured osteo­

clasts and monocytes have similar arrangement and distributions of 

cytoskeletal structures as well as similar adhesion patterns to fibro­

nectin free areas. Both osteoclasts and members of the MPS are func­

tionally specialized for the uptake and degradation of biological sub­

stances as indicated by cytoplasmic concentrations of mitochondria and 

lysosomes (Chambers, 1978). Macrophage polykaryons share many of the 

enzymatic properties of osteoclasts (Cabrini et al., 1962) and while 

exhibiting less phagocytic potential than their macrophage precursors 

relative to size, are capable of lysosomal enzyme secretion (Papadi­

mitriou et al., 1975; Papadimitriou and Wee, 1976). 
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There is mounting evidence for the participation of mononuclear 

phagocytes in the process of bone resorption. Macrophages are known 

to secrete collagenase, lysosomal enzymes, and prostaglandins all of 

which are believed to be fundamental to bone resorption (Teitelbaum 

and Kahn, 1980). Resorbing bone has been shown to be chemotactic for 

monocytes (Mundy et al., 1978). Human monocytes, mouse macrophages, 

and mononuclear cells isolated from avian peripheral blood have been 

shown to resorb labeled devitalized bone in vitro (Mundy et al, 1977; 

Kahn et al., 1978; Teitelbaum et al., 1979; McArthur et al., 1980; 

Chambers, 198la). Osteoclasts and mononuclear phagocytes appear to 

exhibit the same functional preference toward the resorption of min­

eralized bone matrix as opposed to demineralized matrix (Chambers, 

198lb; Chambers et al., 1984). Peritoneal macrophages have been 

reported to possess cell surface receptors for calcitonin and para­

thyroid hormone (Minkin et al., 1977). However, Perry et al. (1984) 

report that monocytes do not bind PTH, but are capable of degrading 

the hormone. Calciferol (vitamin D) has been shown to induce 

monocytic-macrophage differentiation in the U937 (Rigby et al., 1984) 

and HL60 monoblastic cell lines and in the latter, enhance the cells' 

ability to bind and degrade bone matrix (Bar-Shavit et al., 1983). 

These observations coupled with the already cited studies of Fischman 

and Hay and Jee and Nolan have prompted the proposal that monocytes, 

macrophages, and macrophage polykaryons might serve as appropriate 
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osteoclastic surrogates for studies of cellular bone resorption 

(Teitelbaum and Kahn, 1980). 

Implantation Studies 

~~implantation of bone matrix into ectopic sites may pro-

vide a method to evaluate the relationship between osteoclastic and 

MPS-mediated bone resorption. Implantation procedures were among the 

first techniques applied to the study of bone cells, their lineage and 

functions. While most commonly used as models of bone formation 

(Rohde, 1925; Sandison, 1928; Levander, 1938; Urist, 1980), they have 

also been employed to study bone resorption. Koelliker drove ivory 

pegs into living bones. Upon examination of the recovered material, 

he found extensive pitting of the pegs and named the multinucleated 

cells occupying those pits "ostoklasts" (Jordan, 1921). Groves (1918) 

used implant techniques to study bone formation in adult cats. He 

found that transplanted bone chips induced bone formation in bony 

defects while ground bone was resorbed in a few weeks resulting in 

nonunion. This finding was supported by Keith (1934) through the use 

of bone shavings as grafting material in dogs. He concluded that it 

was "fallacious to fragment a bone graft more than is necessary since 

fragmentation lowers both its supporting and osteogenic functions". 

Bujard, 1946, using bone powder, and Ham and Gordan (1952) employing 

bone chips demonstrated the presence of multinucleated cells adjacent 

to the implants in subcutaneous and intramuscular sites, respectively. 
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Irving and Handelman (1963) implanted dead decalcified or rachitic 

osteoid into the subcutaneous tissue of rats in experiments designed 

to study bone destruction by multinucleated giant cells. On the basis 

of similar acid phosphatase profiles and evidence of bone resorption 

as evaluated by light microscopy, the authors classified the giant 

cells as osteoclasts despite indications that they were nonresponsive 

to parathyroid extract administration or parathyroidectomy. Buring 

(1975) combined the techniques of parabiosis, autoradiography, and 

implantation to provide evidence in support of the polyphyletic origin 

of bone cells. Implantation of devitalized bone powder into calvarial 

defects (Glowacki et al., 1981; Glowacki, 1982: Holtrop et al., 1982) 

or chick chorioallantoic membranes (CAM) (Krukowski and Kahn, 1982) 

resulted in the formation of multinucleated cells adjacent to the bone 

fragments. While results indicated that bone resorption had occured 

in both of these systems, the presence of ruffled border formation by 

these multinucleated cells could not be consistently demonstrated. 

The use of these implant systems as models for the study of osteo­

clasts was still advocated based on the similiarities between osteo­

clasts and macrophage polykaryons (Holtrop et al., 1982). 

Osteoclasts and the MPS 

There is, however, growing evidence that osteoclasts and macro­

phages differ in significant ways and that macrophage-mediated bone 

resorption may not be equivalent to osteoclastic resorption. Osteo-
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clasts, but not macrophages or monocytes, form ruffled borders at the 

bone surface (Kahn et al., 1978; Rifkin et al., 1979). Members of the 

mononuclear phagocyte family failed to resorb bone as detected by 

changes in the bone surface by scanning electron microscopy (Horton et 

al., 1986), even under the influence of macrophage activators 

(Chambers and Horton, 1984). Macrophages and macrophage polykaryons 

do not show a morphological response to calcitonin (Chambers and 

Magnus, 1982). Osteoclasts lack the Fe and c
3 

receptors character­

istic of all mononuclear phagocytes (Hogg et al., 1980; Jones et al., 

1981) and fail to express monocyte-macrophage, granulocyte or lympho-

cyte surface antigens (Horton et al., 1984; Horton et al., 1985a; 

Horton et al., 1985b). While macrophages readily fuse to form poly-

karyons, formation of osteoclasts from macrophages has not been demon-

strated (Marks, 1983). Injection of cell suspensions of macrophages 

into ia rats does not effect the cure of osteopetrosis, but injections 

of pluripotent hemopoietic stem cells of bone marrow origin are 

capable of curing the skeletal sclerosis and results in the formation 

of normal osteoclasts (Schneider and Byrnes, 1983; Schneider, 1985). 

In an effort to further define the nature of the osteoclast precursor, 

Schneider and Relfson (1986) evaluated the ability of cells more 

mature than pluripotent stem cells to differeniate into normal osteo-

clasts at 3 weeks post-transplantation into!,! rats. They report that 

granulocyte colony-forming cells and granulocyte-macrophage colony-

forming cells were capable of curing the ia resorptive defect while 
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macrophage colony-forming and GM-cluster forming cells were not. The 

results of these studies suggest that osteoclast precursors and mem-

hers of the mononuclear phagocyte system in this osteopetrotic mutant 

may share a very early common stem cell ancestor, but once definitive 

MPS maturation has begun, the MPS cells lose the ability to de­

differeniate into osteoclast precursors. Burger et al.(1982) studied 

the origin of the osteoclast using mouse long bone primordia. This 

culture system does not contain osteoclasts, nor do they develop in 

these tissues when cultured. Osteoclasts developed in fetal bones 

co-cultured with embryonic liver or weakly adherent radiosenitive bone 

marrow mononuclear cells, but not with strongly adherent cells, resi-

dent or elicited peritoneal macrophages or monocytes. These findings 

also suggest that osteoclast precursors are not mature monocytes or 

macrophages and support the premise that cells of the monoblast, pro-

monoblast or even earlier stages contain the stem cell population for 

osteoclastic lineage. Ibbotson et al.(1984) and Roodman et al. (1985) 

report the formation of osteoclast-like cells from long term cultures 

of feline and primate marrow-derived mononuclear cells. These multi-

nucleated cells contained large numbers of mitochondria, clear zones, 

and displayed extensive membrane ruffling in the presence of bone. 

They exhibited tartrate-resistant acid phosphatase, the activity of 

which was increased by PTH administration and inhibited by calcitonin. 

PTH, PGE , and 1,25(08) -vitamin n3 increased formation of the 
2 2 

osteoclast-like cells, while calcitonin inhibited the stimulatory 
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effects of PTH. The bone marrow mononuclear precursors of these cells 

were nonadherent to plastic, stained heavily with nonspecific esterase 

and appeared to be immature monocytes histologically. The multi­

nucleated cells were able to resorb bone in vitro as demonstrated by 

the release of 45ca from devitalized bone powder, but addition of PTH 

and calcitonin had little or no effect on the bone resorption. This 

is in contrast to more recent studies by Burger et al. (1984) who 

found that osteoclasts developed from precultured bone marrow mono­

nuclear phagocytes (BMMP) in the presence of live, but not devital­

ized, bone and that only live bone was resorbed by osteoclasts. 

Devitalized bone powder was resorbed but, according to the authors, 

most probably by mature macrophages which comprised 50% of the BMMP. 

They concluded that this type of bone resorption was different from 

osteoclast-mediated resorption. 

While the use of mononuclear phagocytes as osteoclastic surro­

gates has been called to question, the nature and role of macrophage­

monocyte bone resorption remain open to speculation. Localized bone 

loss is frequently associated with chronic inflammatory conditions 

such as rheumatoid arthritis, periodontal disease, and chronic osteo­

myelitis (Deporter, 1979; Minne et al., 1984). The role of the osteo­

clast in these pathological processes is unclear. In laboratory ani­

mals, the inflammation-linked osteopenia appears to occur independent 

of PTH secretion or vitamin D metabolism and to be mediated by local­

ized accumulations of inflammatory cells (Minne et al., 1984), of 
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which macrophages and monocytes form a large part. While these cells 

may participate directly in the resorptive process, macrophage­

monocyte contributions to bone loss may also be mediated indirectly 

through the osteoclast itself. Modulation of osteoclastic activities 

could occur through a variety of means including: (a) production of 

prostaglandins, potent stimulators of bone resorption (Dominguez and 

Mundy, 1980), (b) regulation of the production of osteoclast activat­

ing factor by activated lymphocytes, a monocyte dependent process 

(Yoneda and Mundy, 1979a,b) and (c) phagocytosing bone matrix debris 

left after osteoclastic bone resorption (Heersche, 1978). Therefore, 

it appears that there are both direct and indirect means by which 

mononuclear phagocytes could influence normal and pathologic bone 

resorption, and that osteoclastic bone resorption and macrophage­

monocyte-mediated bone resorption may not be equivalent processes. 
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ABSTRACT 

Subcutaneous implantation of bone chips into normal and 

osteopetrotic (~) rats results in the formation of multinucleate 

giant cells (MNGC's) adjacent to the bone surface. In this study the 

resorptive and morphological characteristics of the cells surrounding 

these implants were assessed to determine if the bone resorbing 

defects seen in ia animals would be mimicked in this implant system, 

and thus lend validity to its use as a model for the study of 

osteoclastic lineage and function. Direct measurement of in vivo bone 

resorption was achieved through the use of 45ea labeled primarily 

osteoid exposed, freeze-thawed (FT), and primarily mineral exposed, 

bleached (B) and collagenase-treated (CT) bone chip pairs. The high 

degree of uniformity in label content between individual members of 

each pair permitted one chip to be designated as the implant and the 

other as the control. Comparison of the 45ea content of the implant 

to that of the control (corrected for half-life) indicated the total 

45 Ca release during a 2 week implantation period. Similar comparison 

of the 45ea content of bone chips implanted inside diffusion chambers 

with that of controls measured the non-cell mediated 45ca release over 

the same time period. Results showed normal recipients with mean 45ca 

releases of 17.7%, 19.1%, and 21.5% from FT, B, and CT bone chips 

respectively. Similarly, ia animals had mean releases of 17.4% from 

FT, 24.4% from B, and 22.4% from CT implants. Both normal and ia rats 

showed 23% greater total 45ca release from mineral versus osteoid 
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exposed matrix. Cellular events occurring on the bony substrate were 

evaluated by light and electron microscopy. At 3 days, bone chips 

were surrounded primarily by mononuclear cells. By 14 days, MNGC's 

were present at the bone surface in both ia and normal animals. In 

mineral exposed implants, 40 to 50% of the bone surface was covered by 

MNGC's as compared to 20% of the osteoid exposed surface. These 

MNGC's possessed occasional clear zones, but did not exhibit ruffled 

borders; therefore, they could not be classified as osteoclasts. 

The results of this study indicate that the defects seen in ia mutants 

were not reproduced in this implant system. The 45ea release that 

occurred was probably due to the action of mononuclear phagocytes and 

macrophage polykaryons rather than by true osteoclastic bone 

resorption. 

INTRODUCTION 

An osteoclast is defined as a multinucleate giant cell (MNGC) 

adjacent to resorbing bone. Ultrastructurally, the osteoclast is 

differeniated from other types of MNGC's by the presence of both a 

clear zone and ruffled border at the bone-cell interface (Bonucci, 

1981; Gothlin and Ericsson, 1976; Marks, 1983). The ruffled border, a 

complex series of cytoplasmic infoldings, is considered to be the 

major site of active osteoclastic bone resorption. The exocytosis of 

lysosomal enzymes necessary for bone degradation as well as the 
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endocytosis of degradation products occur at the ruffled border 

(Holtrop and King, 1977; Marks, 1983). The relative activity of the 

osteoclast is reflected by the degree of development of its ruffled 

border. In cultures stimulated with parathyroid hormone, 64% of the 

osteoclasts demonstrated large and highly developed ruffled borders 

while in nonstimulated cultures only 11% of the osteoclasts had 

ruffled borders and these consisted of a few shallow infoldings 

(Holtrop, et al., 1974). The clear zone, an organelle free area 

surrounding the ruffled border, is believed to function in the 

adhesion of the cell to the bone and in limiting the area of 

osteoclastic bone resorption (Holtrop and King, 1977). Clear zones 

can also be seen in actively resorbing human monocytes and mouse 

macrophages cultured with devitalized bone particles (Teitelbaum and 

Kahn, 1980). A "transl tional region", relatively free of organelles, 

has been identified in lamellopodia and in areas of cell adhesion to 

the substratum in foreign body MNGC's (Papadimitriou and Archer, 1974; 

Sutton and Weiss, 1966). However, ruffled borders have not been 

observed in any of these other cell types. 

The osteoclast originates through the fusion of blood-borne 

mononuclear precursor cells. The exact nature of this precursor cell 

is still unknown (Marks, 1983). Osteopetrosis, a disease 

characterized by the excessive accumulation of bone, has provided a 

model for the study of osteoclastic lineage and function. The primary 

defect in some forms of osteopetrosis is faulty osteoclasts. 
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Osteoclasts from osteopetrotic (.!.,!) rats do not form ruffled borders 

nor are they able to release normal amounts of lysosomal enzymes which 

accumulate in the cytoplasm. Their clear zones, unlike those of 

normal osteoclasts, are extensive, covering most of the cell-bone 

interface. This may prevent lysosomal contact with the bone surface 

(Marks, 1983). Bone resorption is reduced, resulting in increased 

skeletal mass associated with abnormal bone growth and shape (Marks 

and Walker, 1976). 

Bone implants have been used in attempts to develop an~ vivo 

model for osteoclastic differentiation and function. Bone powder 

implanted into calvarial defects (Glowacki, et al., 1981; Holtrop, 

1982) or onto chick chorioallantoic membranes (Krukowski and Kahn, 

1982) resulted in the formation of MNGC's surrounding the bone 

fragments. The resorptive activity of the chick MNGC's was indirectly 

assessed by liquid scintillation counting of samples of amniotic fluid 

taken from embryos implanted with 45ea labeled bone powder. These 

studies report that mineralized implants more readily induced the 

formation of osteoclast-like MNGC's. Recent work on the effects of 

substrate composition on bone resorption by rabbit osteoclasts implies 

that contact with bone mineral may be necessary to initiate 

osteoclastic resorption (Chambers, et al., 1985). 

We have found that subcutaneous implantation of recoverable bone 

chips into osteopetrotic(ia/ia) and normal(ia/:t) rats results 

initially in the migration and attachment of mononuclear cells to the 
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bony substrate. At seven and fourteen days post-implantation, bone 

surfaces show increasing numbers of MNGC's. This series of 

experiments was designed to (1) assess the resorptive capabilities of 

cell populations adherent to the implanted bone, (2) to determine the 

effect of presenting mineral versus primarily osteoid exposed bone 

matrix on the differeniation and resorptive activity of these cells, 

and (3) to characterize morphologically the cell types adjacent to the 

bone implant. Implantation into both osteopetrotic and normal animals 

was performed to determine if the usual disparity between 

osteopetrotic and normal bone resorption was present, and if so, was 

this disparity reflected by morphological differences similar to those 

found between ia and normal osteoclasts. Finding such differences in 

the resorption of implanted bone matrix and in the morphology of the 

cells surrounding the implants between ia rats and normal littermates 

would validate the use of this implant system as a model for the study 

of osteoclastic lineage and function. 

MATERIALS AND METHODS 

Animals 

Rats were obtained from our colony bred to maintain the 

osteopetrotic(.!!_) mutation. Breeding groups were established to 

produce litters of ia/ia and .!:f!/+ genotypes. The former can be 

identified on the tenth day after birth by failure of eruption of the 
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incisors (Greep, 1941). The latter are phenotypically identical with 

+/+ rats of this stock (Marks, 1973) and were used as normal controls. --

Calcium Release Assay 

Radioactively labeled bone chips were prepared in the following 

Ten day old rats were injected with 40uCi 45ea (in O.lml manner. 

distilled water). To insure adequate label retention in calvaria 

assigned to mineral exposed studies, other rats received injections of 

40uCi at both 7 and 10 days of age. Three days later, the animals 

were killed by ether inhalation, the calvaria removed and the 

pericrania stripped. The calvaria were devitalized by freeze-thawing 

x 3 in liquid nitrogen and sonication in distilled water for 7 

minutes. Following devitalization, calvaria designated for mineral 

exposed matrix studies were either immersed in bleach for one minute 

or incubated in 5mg/ml crude collagenase (Lot #113F-6831, 245 U/mg dry 

wt collagenase, .10 U/mg dry wt clostripain, <.01 U/mg dry wt trypsin, 

85 U/mg dry wt neutral protease, Sigma, St. Louis, Mo.) in phosphate 

buffered saline for 2 hours at 37°c. All calvaria were divided into 

frontal, parietal and occipital sections; these were bisected along 

the midline suture resulting in three pairs of labelled bone chips per 

calvarium. 0 The chips were dried at 60 C. for 20 minutes and then 

weighed. After overnight exposure to ultraviolet light, the three 

types of bone chip pairs (freeze-thawed, bleached, and 

collagenase-treated) were allocated to experimental groups. 
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Group 1 Uniformity of labeling within each bone chip pair 

Each member of the bone chip pair was digested in an individual 

vial with 0.5 ml concentrated formic acid at l00°c. for 30 minutes. 

After cooling, lOml of aqueous scintillation cocktail was added to 

each vial. The vials were vortexed and their radioactivity assessed 

by liquid scintillation counting. 45 Comparison of the Ca content 

(counts/mg) of the members of each bone chip pair was performed to 

determine the uniformity of 45ea label within the pair. 

Group 2 Diffusion chamber implants 

Materials to be used in preparation of the diffusion chambers 

were sterilized by overnight exposure to ultraviolet light. A 0.45um 

Millipore filter was glued to one side of a 13mm plexiglass 0 ring. 

One half of each bone chip pair was placed in the chamber after which 

the chamber was completed by gluing a second Millipore filter to the 0 

ring. Two chambers per animal were implanted into the dorsal 

subcutaneous tissue of 6 week old normal rats. A total of 15 rats (5 

per bone chip preparation) received implants. The remaining bone chip 

half was digested and the 45ea content determined. Two weeks 

following implantation the chambers were removed and their contents 

examined by light microscopy to determine whether they had remained 

intact and cells had been excluded. Those chambers which were not 

intact were eliminated from this study. The devitalization process 

was repeated, the bone chips digested and the 45ea content determined. 
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45 The implant Ca content was then compared to that of the control chip 

(corrected for natural radioactive decay over the two week period). 

This theoretical (calculated) 45ea content of the control chip was 

accurate to within 1% of the actual measured 45ea content. 

Group 3 Direct bone chip implantation 

One member each of 3 freeze-thawed and 3 collagenase-treated 

bone chip pairs was implanted directly into the dorsal subcutaneous 

tissue of 6 week old ia or normal rats. Six bleached bone chip halves 

were placed in a single ~ or normal animal. A total of 18 rats (10 ia 

and 8 normal) received implants. The remaining control calvarial half 

45 was digested and Ca content determined. Two weeks after 

implantation, the bone chips were recovered, devitalized, digested, 

and the 45ea content measured. Comparison of the 45ea content of the 

calculated control versus the implant was done as in the diffusion 

chamber studies. 

Morphology 

Two non-radioactive freeze-thawed, bleached, and collagenase-

treated bone chips, prepared from 13 day old normal rat calvaria, as 

previously described, were implanted into the dorsal subcutaneous 

tissue of 3 ia and 3 normal rats. Bone chips were recovered from 1 ia 

and 1 normal rat at 3, 7, and 14 days post-implantation. The bone 

chips were fixed in 2.5% gluteraldehyde in cacodylate buffer (pH 7.2) 
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for 2 hours, post-fixed in 1% Oso
4 

for 1 hour, decalcified in 10% EDTA 

(pH 7.3) for 48 hours, dehydrated in ethanol, and embedded in Epon. 

The tissue was sectioned at 2um, stained with toluidine blue, and 

evaluated by light microscopy. Areas warranting further investigation 

were thin sectioned, stained with uranyl acetate and lead citrate for 

viewing with the Hitachi H600 electron microscope. 

Morphometric Analysis 

A total of 33 toluidine blue-stained sections taken from bone 

chips recovered from _!! and normal recipients were analyzed using a 

Zeiss videoplan to determine the percentage of freeze-thawed, 

bleached, or collagenase-treated bone surface lined by MNGC's 14 days 

post-implantation. Percentage of bone length lined by MNGC's was 

calculated as follows: 

Length of bone covered by MNGC's 
Total length of bone surface x 100 = % 

The statisical comparison of these percentages was performed using the 

unpaired Students t-test. 

RESULTS 

Uniformity of label within bone chip pairs 

Comparison of the 45ea content of corresponding bone chip halves 

(counts/mg) showed mean variations in label of 1.7% + 1.2%, 2.2% + 
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1.1%, and 1.7% .± 1.6% for freeze-thawed (Table 1), bleached (Table 2), 

and collagenase-treated (Table 3) pairs respectively. This degree of 

uniformity in label content between members of individual pairs 

allowed their use as control and implant chips in subsequent 

experiments • 

Diffusion chamber implants (Figure 1) 

These studies were conducted to establish the baseline amount of 

in vivo non-cell mediated 45ea release for each type of bone chip 

preparation. As indicated in materials and methods, chambers were 

examined by light microscopy to determine whether the chamber seal had 

been maintained and cells excluded. The results illustrated in Figure 

1 were tabulated from chambers found to be cell-free. There was a 

mean 4.1% + 0.5% 45ca loss from freeze-thawed pairs over the two week 

implantation period. In this same period, bleached bone chips showed 

a mean decrease of 6.7% + 3.0% in 45ea label and collagenase-treated 

bone chips a mean of 7.1% + 4.1%. This additional 45ca loss from 

bleached and collagenase-treated chips may be due to increased mineral 

exposure to fluids found within the diffusion chambers. In chambers 

that did contain cells, label loss from implanted bone chips 

approached that of directly implanted bone chips. 

Direct implantation studies 

Figure 2 illustrates the results of the direct implantation 
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studies. Normal recipients had mean 45ea releases of 17.7% + 4.8%, 

19.1% .±. 3.5%, and 21.5% :!: 1.9% from freeze-thawed, bleached, and 

collagenase-treated bone chips respectively. A mean release of 17.4% 

:!: 3.7% from freeze-thawed, 24.4% :!: 2.1% from bleached, and 22.4% + 

1.3% from collagenase-treated bone chips occured in ~ animals. The 

45 45 mean percent Ca release reflects the total Ca loss from implanted 

bone chips over the two week period. This percentage minus the 

appropriate non-cell mediated 45ea release from diffusion chamber 

studies reflects the amount of cell mediated 45ea loss. Both ia and 

normal animals were capable of 45ea release over and above that of the 

baseline. Although the data presented are for normal bone implants, 

osteopetrotic recipients appeared to be capable of 45ea release 

greater than or equivalent to that of their normal counterparts 

whether ..!!_ or normal bone chips were implanted. Appendix A includes 

the results of uniformity, diffusion chamber and direct implantation 

studies using osteopetrotic calvarial bone as the implant substrate. 

Figure 2 also indicates that both normal and ia animals tend to 

demonstrate greater 45ea release when presented with a mineral exposed 

bone surface (bleached or collagenase-treated) rather than a primarily 

osteoid exposed surface (freeze-thawed). 

Morphometric Analysis (Figure 3) 

An equivalent percentage of the total freeze-thawed bone chip 

surface was covered by MNGC's in ia (mean 18.1% :!: 6.4%) and normal 
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recipients (mean 24.7% .± 13.0). Similar results were found for 

bleached (39.4% ± 13.0% vs 46.6% + 10%) and collagenase-treated (53.3% 

+ 10% and 46.6% ± 10%) bone chips. Mineral exposed matrix (bleached 

and collagenase-treated) showed significantly more surface covered by 

MNGC's than did primarily osteoid exposed matrix (freeze-thawed) in ia 

(freeze-thawed to bleached p ~ .04 and to collagenase-treated p ~ 

.015) and normal (freeze-thawed to bleached p ~ .006 and to 

collagenase-treated p ~ .0001) animals. 

Morphology 

At three days post-implantation, regardless of bone chip 

treatment, mononuclear cells could be seen surrounding and aligning 

themselves along the implanted bone surface in both normal and ia 

animals (Fig. 4, a,b,c,d,). Ultrastructurally, these cells possessed 

irregularly shaped nuclei with heterochromatin uniformly dispersed 

along the nuclear membrane. The cytoplasm was unremarkable with the 

exception of lipid droplets and what appeared to be phagosomes. Their 

surfaces were covered by numerous cytoplasmic processes that 

interdigitated extensively with those of adjacent cells (Fig. 5). The 

occasional multinucleated cell observed was usually binucleate, 

possessed a rather uniform cytoplasm and did not display clear zones 

or ruffled borders. 

By fourteen days, much of the bone surface, particularly in 

mineral exposed implants was covered by large MNGC's. At the light 
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microscopic level, these MNGC's presented two different morphological 

appearances. One was an elongated cell extending over much of the 

bone surface. Its nuclei were usually oval and linearly arranged 

within the cell. The second type of MNGC presented a more rounded 

profile and was often seen to lie in shallow depressions on the bone 

or to surround cut edges of the bone. The nuclei were round or 

irregular in shape and arranged in clusters {Fig. 6a). Frequently 

this second type of MNGC exhibited highly vacuolated cytoplasm 

adjacent to the bone {Fig. 6b). Ultrastructurally no apparent 

difference, other than nuclear arrangement, was noted between these 

two types of cells. MNGC's at 14 days were larger, contained more 

nuclei than 3 day old MNGC's, and displayed the usual complement of 

cytoplasmic organelles {Fig. 7). Clear zones were seen infrequently 

adjacent to the bone and at no time was a distinctive ruffled border 

observed. Samples of implants removed at 7 days revealed cell 

populations intermediate to those found at 3 and 14 days. There was 

no apparent morphological difference between cell populations 

generated in the normal versus ia animals or in mineral versus oateoid 

exposed implants at the light or electron microscopic level. 

DISCUSSION 

Bone resorption involves both the removal of bone mineral and the 

degradation of organic bone matrix. Quantitation of the amount of 
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45ea label released from bone into surrounding tissue fluids or 

culture medium is commonly used as an indirect index of bone 

resorption. We have found that 45ca, when injected into 10 day old 

rat pups, is uniformly incorporated into the calvaria. Labeled 

calvaria can be divided into three bone chip pairs; individual members 

of which can be designated as control and experimental halves. These 

bone chips are large enough to be recovered easily allowing the 

remaining 45ea content of each experimental chip to be determined 

accurately. The comparison of label content of control and 

experimental halves results in a direct assessment of total 45ea 

release over a given period of time. This technique offers a 

45 practical alternative to other Ca release assays. It was 

successfully applied in our study of the MNGC's found adjacent to 

implanted bones in ia and normal animals. 

Osteopetrosis is a disease characterized by reduced bone 

resorption due to defective osteoclasts, yet results from 45ea release 

assays over the two week implant period indicate that_!! animals are 

as capable of cell-mediated resorption of the implanted bone as normal 

animals. Both types of animals show increased 45ea release when 

presented with a mineral exposed matrix versus one having a primarily 

osteoid exposed matrix. Therefore, the usual reduction in bone 

resorption seen in the ia mutants was not reproduced at this ectopic 

implantation site. 

Morphologically, ia and normal cell populations surrounding the 
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implants appeared to be similar. Presenting these cells with a 

mineral exposed matrix increased the amount of bone surface covered by 

MNGC's in addition to increasing 45ea release, but it did not alter 

their structural characteristics. 

At three days post-implantation mononuclear cells were aligned 

along the bone surface. These cells demonstrated the extensive 

pattern of cytoplasmic processes typical of macrophages and 

epithelioid cells activated in response to an inflammatory stimulus 

(Sutton and Weiss, 1966). Although actual cell fusions were not 

observed, by 14 days MNGC's extensively covered the bone surface. At 

the light microscopic level, these MNGC's appeared to be actively 

engaged in bone resorption, however, ultrastructurally, they did not 

exhibit the typical chararcteristics of active osteoclasts. Only an 

occasional clear zone was seen and no ruffled borders were observed 

45 despite evidence, Ca release, that bone resorption had occurred. 

Instead, these MNGC's resembled foreign body giant cells which arise 

from the fusion of mononuclear phagocyctes in response to a variety of 

stimuli (Sutton and Weiss, 1966; Mariano and Spector, 1973; Chambers, 

1978). The 45 ca label loss seen in this study may have occurred as a 

result of a chronic inflammatory reaction involving macrophages and 

macrophage polykaryons rather than by true osteoclastic resorption. 

Resorbing bone has been shown to be chemotactic for monocytes, 

macrophage precursors (Mundy, 1978). Mouse macrophages appear to be 

able to resorb labeled devitalized bone in vitro (Teitelbaum et al., 
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1979). Macrophage polykaryons, while exhibiting less phagocytic 

potential than their macrophage precursors relative to size, are 

capable of lysosomal enzyme secretion (Papadimitriou et al., 1975 and 

Papadimitriiou and Wee, 1976). Holtrop, et al. (1982) reached similar 

conclusions about MNGC's surrounding bone fragments implanted into rat 

calvarial defects. She proposes that foreign body giant cells release 

degradative enzymes which exert their action within the canaliculi of 

dead bone. Macrophages act secondarily to remove the bone fragments 

produced by the enzymatic action of MNGC's. She suggests the use of 

this implant system as a model for osteoclastic lineage studies. 

Marks (1983) in his review of the origin of osteoclasts, provides 

strong evidence against the use of such a model. He points out that 

the osteoclast and macrophage differ in significant ways. 

Osteoclasts, but not macrophages, form ruffled borders at the bone 

surface. Osteoclasts do not exhibit all the same enzyme or receptor 

characteristics of monocytes and macrophages; nor do they respond to 

the same hormonal stimuli (Marks, 1983). Injection of cell 

suspensions of macrophages into .!:,! rats does not affect the cure of 

osteopetrosis, but pluripotent hemopoietic stem cells of bone marrow 

origin are capable of curing the skeletal sclerosis, resulting in the 

formation of normal osteoclasts (Schneider and Byrnes, 1983; 

Schneider, 1985). Members of the mononuclear phagocyte family failed 

to resorb bone, as detected by changes in the bone surface by scanning 

electron microscopy, even under the influence of macrophage activators 
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(Chambers and Horton, 1984). Therefore, there appears to be mounting 

evidence against the use of macrophages, monocytes, and macrophage 

polykaryons as models for the study of osteoclastic function and 

lineage. 

As a result of our investigation of MNGC's adjacent to 

subcutaneously implanted bone chips in normal and ia rats we conclude 

the following: 

(1) The use of uniformly labeled bone chip pairs is a valid and 

practical method for the assessment of 45ea release in~· 

(2) The osteopetrotic implant recipients were able to release 45ea 

via cellular means in equal or greater amounts than their normal 

counterparts. 

(3) Both ia and normal animals showed an increase in 45ea release and 

percent of bone surface covered by MNGC's in the presence of 

mineral exposed matrix over that of primarily osteoid exposed 

matrix. 

(4) The cell populations surrounding the bone implants appeared to be 

morphologically the same in both types of animals. 

(5) The MNGC's adjacent to the bone implants could not be 

characterized as osteoclasts because they did not display ruffled 

border formation despite evidence of 45ea release. Instead, they 

appeared to be foreign body giant cells. 

(6) Because the resorbing and morphological defects in the ia rat 

45 were not mimicked in this study, the Ca release probably 
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occurred as a result of the action of mononuclear phagocytes and 

polykaryons rather than by true osteoclastic resorption. 
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Table 1. Uniformity of 45ea Label Within Freeze-Thawed Bone Chip Pairs 

Bone Chips a Weight (mg) Counts/mg Mean b Percent Error c 

Frontal 

Left 5.5 53,969 54,154 ± 261 0.5 
Right 5.4 54,338 

Left 6.,6 33,423 33,188 ± 333 1.0 
Right 6.7 32,952 

Left 5.8 53,575 54,017 ± 625 L2 
Right 4.9 54,459 

Parietal 

Left 4.8 48,330 49,572 ± 1756 3.5 
Right 5.0 50,814 

Left 7.1 30,566 30,344 :t 313 LO 
Right 6.4 30,122 

Left 5.5 47,481 47,821 ± 480 LO 
Right 5.1 48,161 

Occipital 

Left 6.3 59,029 59,850 ± 1161 1.9 
Right 6.0 60,671 

Left 6.6 34,938 34,300 ± 902 2.6 
Right 5.8 33,662 

Left 5.3 55,164 56,537 ± 1941 3.4 
Right 5.1 57,909 

a Samples taken from three 13-day-old rats. 

b Mean + standard deviation in counts/mg. 

c Percent error • (standard deviation x 100)/mean. 
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Table 2. Uniformity of 45ea Label Within Bleached Bone Chip Pairs 

a 
Bone Chips 

Frontal 

Left 
Right 

Left 
Right 

Left 
Right 

Parietal 

Left 
Right 

Left 
Right 

Left 
Right 

Occipital 

Left 
Right 

Left 
Right 

Left 
Right 

Weight (mg) 

2.5 
2.7 

3.2 
2.7 

3.1 
2.3 

4.6 
5.0 

4.7 
4.5 

4.1 
4.0 

3.3 
3.3 

2.8 
2.9 

2.5 
2.9 

Counts/mg 

281,934 
273,882 

305,174 
301,989 

301,901 
317,877 

258,497 
250,421 

255,264 
247 ,972 

271,083 
275,723 

268,853 
262,322 

262,908 
272,589 

334,376 
316,067 

b 
Mean 

277,908 ± 5694 

303 ,581 ± 2252 

309,889 ± 11,297 

254,459 ± 5711 

251,618 ± 5156 

273,403 ± 3281 

265,588 ± 4618 

267,749 ± 6846 

325,222 ± 12,946 

a Samples taken from three 13-day-old rats. 

bMean + standard deviation in counts/mg. 

Percent Errorc 

2.0 

0.7 

3.6 

2.2 

2.0 

l.2 

l.7 

2.6 

4.0 

cPercent error • (standard deviation x 100)/mean. 
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Table 3. Uniformity of 45ea Label Within Collagenase-Treated Bone Chip Pairs 

a Bone Chips 

Frontal 

Left 
Right 

Left 
Right 

Left 
Right 

Parietal 

Left 
Right 

Left 
Right 

Left 
Right 

Occipital 

Left 
Right 

Left 
Right 

Left 
Right 

Weight (mg) 

3.1 
4.1 

5.3 
5.1 

3.3 
3.2 

8.4 
7.5 

7.9 
8.0 

6.0 
7.0 

6.1 
6.0 

5.9 
6.3 

5.3 
6.3 

Counts/mg 

95,369 
98;531 

95,183 
94,968 

90,926 
91,720 

89,348 
88, 717 

74,812 
74,845 

84,072 
81,037 

123,499 
115,150 

92,444 
90,712 

102,341 
98,382 

b Mean 

96,950 .:!: 2236 

95,076 .:!: 152 

. 91,323 .:!: 561 

89,033 .:!: 446 

74,829 .:!: 23 

82,555 .:!: 2146 

119,325 .:!: 5904 

91,578 .:!: 1225 

100,361 .:!: 2799 

a Samples taken from three 13-day-old rats. 

bMean + standard deviation in counts/mg. 

Percent Errorc 

2.3 

0.2 

0.6 

o.5 

o.o 

2.6 

4.9 

1.3 

2.8 

cPercent error • (standard deviation x 100)/mean. 
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Figure 1. 

45 Mean percent + S.D. Ca release over a two week period from 

freeze-thawed, bleached, and collagenase-treated bone chips in 

diffusion chambers implanted into normal rats. 
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Figure 2. 

45 Mean percent + S.D. Ca release over a two week period from 

freeze-thawed, bleached, and collagenase-treated bone chips 

implanted into normal and ia rats. 
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Figure 3. 

Hean percent.± S.D. of total bone surface covered by MNGC's two 

weeks after implantation of freeze-thawed, bleached, and 

collagenase-treated bone chips into normal and ia rats. 
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Figure 4. 

At 3 days, mononuclear c.ells adhering to the bone (b) surface. 

x 400 

a) Freeze-thawed bone into normal rat 

b) Freeze-thawed bone into ia rat 

c) Collagenase-trea ted bone into normal. rat 

d) Collagenase-treated bone into ia rat 

Figure 5. 

Electron micrograph of mononuclear cells surrounding a 

devitalized bone (b) at three days in an ia rat. Note the 

extensive interdigitation with nearby mononuclear cells. 

x 10,000 
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Figure 6. 

MNGC's (arrows) adjacent to the bone (b) at 14 days. x 400 

Figure 7. 

a) Collagenase-treated bone into normal rat 

b) Collagenase-treated bone into ia rat. A vacuolated 

cytoplasm is present at the bone-cell interface. 

At 14 days, MNGC contacting a bleached bone (b) surface in a 

normal rat. The MNGC shows no plasma membrane specializations at 

its surface in contact with the bone. x 6100 
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CHAPTER IV 

CELLULAR RESPONSE TO ECTOPICALLY IMPLANTED 

SILK SUTURES AND OSTEOPETROTIC BONE 

69 
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ABSTRACT 

Faulty osteoclasts, charcteristic of the ia rat mutation of 

osteopetrosis, cause a bone-resorbing defect which results in the 

persistence of immature, highly mineralized bone matrix. We implanted 

osteopetrotic (ia) bone subcutaneously into normal and ia rats to 

determine if ia bone could induce functionally active and morpholog-

ically identifiable osteoclasts at the implant surface. Results of 

functional studies, 45ea assays, showed that normal and ia recipients 

were capable of equivalent cell-mediated label release over a 2-week 

implant period, indicating that the.!! resorptive defect was not 

reproduced at this ectopic site. Osteopetrotic freeze-thawed bone 

45 demonstrated a 2-fold increase in Ca release over that of normal 

bone. This difference was eliminated by collagenase treatment. Cells 

attracted to bone and suture implants were subjected to light and 

electron microscopic examination. Cellular profiles were similar in 

both normal and ia animals regardless of the implant preparation. At 

3 days, both bone and suture were surrounded by mononuclear cells. By 

14 days, multinucleated cells were observed at the implant surfaces. 

Morphological comparison of the implant-induced multinucleated cells 

and tibial osteoclasts indicated that bone-elicited multinucleated 

cells did not exhibit ruffled borders characteristic of the active 

osteoclast and more closely resembled suture-induced macrophage poly­

karyons. We conclude that ectopically implanted _!.! bone elicits a 
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different functional response as compared to normal bone from struc-

turally similar cell populations. Morphologically, bone-elicited 

multinucleated cells could not be classified as active osteoclasts 

45 despite evidence that Ca release had occured. Thus, the label 

release which occurred was probably due to the action of mononuclear 

phagocytes and macrophage polykaryons rather than to osteoclastic 

resorption. 

INTRODUCTION 

Osteopetrosis is a disease characterized by excessive bone 

accumulation (Marks and Walker 1976). The primary defect in the 

incisors-absent (,!!) rat mutation of osteopetrosis is reduced bone 

resorption due to non-functional osteoclasts (Marks 1973). Osteo-

clasts from ia rats do not form ruffled borders or release normal 

amounts of lysosomal enzymes. In addition, ia osteoclasts have 

extensive clear zones at the bone-cell interface, which may prevent 

enzymatic contact with the bone surface (Marks 1983). As a result, 

bone resorption is reduced, normal remodeling does not take place, and 

a generalized skeletal sclerosis occurs (Marks 1984). Biochemically, 

deficencies in remodeling are expressed as alterations in matrix 

composition (Boskey and Marks 1985). Metaphyseal bone isolated from 

~ rats, exhibits elevated hexosamine levels as compared to normal 

age-matched controls, an indication of persistant cartilage within the 
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bone. The ~ metaphyseal bone also contains a higher mineral content 

than its normal counterpart. Similar, though much less significant 

findings were noted between normal and ia calvarial bone (Boskey and 

Marks 1985). 

In previous studies involving the subcutaneous implantation of 

calvarial bone chips into normal and osteopetrotic (,,!!) rats {Walters 

and Schneider 1985), we examined the premise that the multinucleated 

giant cells (MNGC's) elicted by the implanted bone matrix were cells 

equivalent to osteoclasts and, therefore, are appropriate investiga­

tional surrogates for the study of osteoclastic lineage and function 

(Teitelbaum and Kahn 1980; Holtrop et al. 1982). Our results indi­

cated that at this ectopic site, calvarial bone chips were unable to 

elict morphologically identifiable osteoclasts despite evidence that 

bone resorption had occured. 

The present series of experiments was designed to determine if ia 

trabecular bone isolated from the tibial metaphysis could provide a 

more suitable substrate for the induction of osteoclast-like cells on 

the basis of its altered matrix composition and elevated mineral 

content. We assessed the results of.!!_ versus normal metaphyseal bone 

implantation by examining the functional responses and morphological 

characteristics of the cells found adjacent to the bone implants. 

Because contact with bone mineral may be necessary to induce and 

activate osteoclasts (Chambers et al. 1984), we evaluated the effects 

of increased mineral exposure on this implant system by incubating 
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some of the bone fragments with collagenase prior to implantation 

(Green et al., 1985). The formation of macrophage polykaryons (MK's) 

was also induced in the recipient animals by the introduction of silk 

suture into adjacent subcutaneous sites, permitting comparison of the 

morphological characteristics of tibial osteoclasts from the metaphy­

seal area, suture-induced macrophage polykaryons, and bone-elicited 

multinucleated giant cells from the same recipient animal. This 

comparison was done to reveal any similarities or differences in the 

structures of these three categories of multinucleated cells which may 

be important in defining the relationship between them. In addition, 

implantation into both normal and ia rats was performed to determine 

if the usual osteopetrotic resorptive defect was mimicked at this 

subcutaneous site and if present, was it accompanied by morphological 

differences between bone-elicited multinucleated giant cells similar 

to those found between normal and ia osteoclasts. If both the resorp­

tive defect and morphological discrepancies could be duplicated at 

this site, these findings would help define the nature of the bone­

elicited multinucleated giant cells and support their use as approp­

riate investigational surrogates for the study of osteoclastic lineage 

and function. 
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MATERIALS AND METHODS 

Animals 

Rats were obtained from our colony bred to maintain the osteo­

petrotic (ia) mutation. Breeding groups were established to produce 

litters of J:.!./ia and J:.!../± genotypes. The former can be identified on 

the tenth day after birth by failure of eruption of the incisors 

(Greep 1941). The latter are phenotypically identical with±/±. rats 

of this stock (Marks 1973) and were used as normal controls. 

Calcium-release assay 

Radioactively labeled bone chips were prepared in the following 

manner. Seven-day-old normal and osteopetrotic (_!!) rats were 

injected with 40uCi 45ea (in O.lml distilled water). To insure 

adequate label uptake, the injections were repeated at ten days of 

age. Three days later, the animals were killed by ether inhalation, 

the tibiae removed and the adherent soft tissues stripped. The bone 

marrrow was,extracted by repeated flushing with distilled water. Each 

tibia was divided, retaining the proximal metaphysis and a small 

portion of the adjacent diaphysis, but excluding the epiphysis. The 

tibiae were devitalized by freeze-thawing x3 in liquid nitrogen and 

sonication in distilled water for 7 minutes. Tibiae designated for 

mineral-exposed matrix studies were incubated in 5mg/ml crude 

collagenase (Lot lll3F-6831, 245 U/mg dry wt collagenase, .10 U/mg dry 
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wt clostripain, <.01 U/mg dry wt trypsin, 85 U/mg dry wt neutral 

protease, Sigma, St. Louis, Mo.) in phosphate buffered saline for 2 

0 hours at 37 C followed by thorough rinsing. All tibiae were bisected 

resulting in one pair of bone chips per tibia. The chips were dried 

at 60°C for 20 minutes and then weighed. After overnight exposure to 

ultraviolet light, the four types of bone chip pairs (.!,! freeze-

thawed, ia collagenase-treated, normal freeze-thawed, and normal 

collagenase-treated) were allocated to experimental groups. 

Group 1: uniformity of labeling within each bone chip pair 

Each member of the bone chip pair was digested in an individual 

vial with 0.5 ml concentrated formic acid at l00°c for 30 minutes. 

After cooling, lOml of aqueous scintillation cocktail was added to 

each vial and radioactivity assessed by liquid scintillation counting. 

Comparison of the 45ca content (counts/mg) of the members of each bone 

45 chip pair was performed to determine the uniformity of Ca label 

within the pair. 

Group 2: diffusion chamber implants 

Materials to be used in preparation of the diffusion chambers 

were sterilized by overnight exposure to ultraviolet light. A 0.45um 

Millipore filter was glued to one side of a 13-mm plexiglass 0 ring. 

One half of each bone chip pair was placed in the chamber, after which 

the chamber was completed by gluing a second Millipore filter to the 0 
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ring. Two to four chambers per animal were implanted into the dorsal 

subcutaneous tissue of (7) four week old normal and (9) _!! rats. The 

45 remaining bone chip half was digested and the Ca content was deter-

mined. Two weeks following implantation the chambers were removed and 

their contents were examined by light microscopy to determine whether 

they had remained intact and cells had been excluded. Those chambers 

which were not intact were excluded from this study. The devitaliza­

tion process was repeated, the bone chips were digested, and 45ca 

content determined. The implant 45ea content was then compared to 

that of the control chip (corrected for natural radioactive decay over 

the 2 week period). 

Group 3: direct bone chip implantation 

One member each of 3 normal freeze-thawed (+ F-T) and 3 normal 

collagenase-treated (+ C-T) bone chip pairs was implanted directly 

into the dorsal subcutaneous tissue of a four week old ia or normal 

rat. The same procedure was followed using..!! freeze-thawed (..!! F-T) 

and ia collagenase-treated (_!! C-T) bone chip pairs. A total of 4 

rats (2 _!! and 2 normal) received implants. The remaining control 

tibial half was digested and the 45ea content determined. Two weeks 

after implantation, the bone chips were recovered, devitalized, 

45 digested, and the Ca content measured. Comparison of the 45ea 

content of the calculated control versus the implant was done as in 

the diffusion chamber studies. 
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Morphology 

Two each of nonradioactive freeze-thawed and collagenase-treated 

bone chips, prepared from 13 day old normal and ia rat tibia as 

previously described, were implanted into the dorsal subcutaneous 

tissue of 6 ia and 6 normal rats. In addition small pieces of 

multiple strand silk suture (5-0, ETHICON, INC.) were also implanted. 

At 3, 7, and 14 days postimplantation, bone chips, suture, and the 

metaphyseal portions of recipient tibia were recovered from 2 ia and 2 

normal rats, fixed in 2.5% glutaraldehyde in cacodylate buffer (pH 

7.2) for 2 hours, decalcified in 10% EDTA (pH 7.3) at 4°c for 48 

hours, postfixed in 1% Oso
4 

for 1 hour, dehydrated in ethanol, and 

embedded in Epon. The tissue was sectioned at 2 um, stained with 

toluidine blue, and evaluated by light microscopy. Areas warranting 

further investigation were thin sectioned and stained with uranyl 

acetate and lead citrate for viewing with the Hitachi H600 electron 

microscope. 

Morphometric analysis 

Sixty-seven individual fields from 14 day old implanted bone 

chip sections were photographed, magnified to 670x, and analyzed to 

determine the percentage of bone surface lined by multinucleate giant 

cells (MNGC's). All measurements were taken with a BQ CAM computer 

aided morphometry image analysis system (rand m Biometrics Corp., 
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Nashville, Tn.). Percentage of bone length lined by MNGC's per field 

was calculated as follows: 

Length of bone covered by MNGC's 
Total length of bone surf ace x 100 = % 

The statistical comparison of these percentages was performed using 

the unpaired Student's t-test. 

RESULTS 

Uniformity of label within bone chip pairs 

Tables 1 and 2 record the results of our comparison of label 

uniformity between corresponding members of each bone chip pair 

(counts/mg). The mean variation in 45ea content for each category of 

bone preparation was calculated from each group's individual percent 

errors. Mean variations in label of 4.8% + 0.7% for normal and 2.2% + 

1.6% for ia freeze-thawed pairs and 3.2% .± 1.9% and 5.1% .± 2.3% for 

normal and ~ collagenase-treated pairs respectively were determined. 

This degree of uniformity in label content between members of 

individual pairs allowed their use as control and implant chips in 

subsequent experiments. 

Diffusion chamber implants 

These studies were performed to assess the amount of in vivo 

non-cell mediated 45ca release occuring over a 2 week implantation 
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peroid for each bone chip preparation. The results (Fig. l) were 

tabulated from chambers found by light microscopic examination to be 

cell-free. There was a mean 4.2% + 1.6% 45ea loss from+ F-T bone 

chips, and a mean decrease of 7.18% + 4.4% from ia F-T chips, while 

+C-T and ia C-T had mean label releases of 7.2% + 1.8% and 3.4% + 2.5% 

respectively over the same implant period. 

Direct implantation studies 

Figure 2 illustrates the results of the direct implantation 

studies. Normal recipients responded to + F-T and + C-T bone chips 

with mean 45ca losses of 11.0% + 2.7% and 30.4% ± 11.4%, respectively. 

Osteopetrotic recipients showed similiar 45ea releases from + F-T 

(12.8% + 3.8%) and+ C-T (32.1% ± 3.7%) implants. Implantation of 

freeze-thawed ia tibial bone resulted in mean label decreases of 23.8% 

+ 4.7% in normal recipients and 25.5% ± 3.7% in ia rats while ia 

collagenase-treated implants showed label losses of 30.8% + 9.4% in 

normal animals and 41.5% + 10.1% in osteopetrotic recipients. The 

45 mean percent Ca release reflects the total label loss from the 

implanted bone chips over the 2 week implant period. This percentage 

minus the appropriate non-cell mediated 45ea release from diffusion 

chamber studies reflects the net amount of cell mediated 45ea loss. 

These results show that the amount of 45ea released from direct 

subcutaneous implantation exceeded that of the non-cell mediated 

baseline, indicating that a large portion of the label release from 
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the direct implants was due to a cell-mediated process rather than a 

passive diffusion event. Both normal and osteopetrotic recipients 

were capable of equivalent 45ea releases, implying that the osteo­

petrotic resorptive defect was not mimicked at this ectopic site. In 

addition, both types of recipients showed increased label release from 

collagenase-treated bone implants over that of freeze-thawed implants. 

Figure 2 also illustrates that both types of recipient animals 

responded to freeze-thawed osteopetrotic bone with a two-fold increase 

in 45ea release over that of normal freeze-thawed implants. This 

difference was eliminated by collagenase treatment. 

Morphometric analysis 

Because normal and ..!!_ recipients showed similar functional 

responses to + freeze-thawed bone implants, the individual percentages 

of bone length lined by MNGC's for each field were summated and a mean 

+ S.E. determined. This procedure was also followed for the ia 

freeze-thawed and collagenase-treated implants. Normal freeze-thawed 

implants showed a mean of 38.9% ± 2.6% bone length covered by MNGC's, 

while la freeze-thawed and collagenase-treated demonstrated means of 

45.6% + 2.1% and 45.6% ,:t 2.7% respectively( Fig. 3). There was a 

tendency for both ia freeze-thawed and collagenase-treated implants to 

be more extensively covered by MNGC's when compared to normal freeze­

thawed implants (P = .05). No significant difference between the 
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percentage of bone length covered by MNGC's was noted between ia 

freeze-thawed and collagenase-treated bone implants. 

Morphology 

Osteoclasts, from normal recipient tibiae at 3, 7, and 14 days 

post-implantation, were identified as multinucleated cells demonstra­

ting a striated border with associated vacuolation of the cytoplasm 

adjacent to the bone surface (Fig. 4a). In osteopetrotic (ia) osteo­

oclasts, the striated region and vacuolation were reduced or lacking 

(Fig. 4b). Ultrastructurally, at the bone-cell interface, normal 

active osteoclasts displayed an area of extensive cytoplasmic infold­

ing called the ruffled border which was surrounded by an organelle­

free region, the clear zone (Fig. Sa). Osteopetrotic osteoclasts 

lacked ruffled borders, but did exhibit extensive clear zones along 

the bone surface (Fig. Sb). 

Implanted suture and bone matrices were recovered at 3, 7, and 

days. At 3 days, the suture and bone implants were surrounded by a 

variety of mononuclear cell types (Figs. 6a and b), predominately 

neutrophils and monocyte-macrophages. At the transmission electron 

microscope level, both neutrophils and macrophages were observed in 

tissues surrounding the implants, however, macrophage-like mononuclear 

cells were most frequently found adjacent to the implant surface. 

These cells possessed irregularly shaped nuclei with a thin rim of 

heterochromatin distributed along the nuclear envelope and a prominent 
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nucleolus. The cytoplasm contained the usual complement of organelles 

which included numerous lysosome-like bodies and what appeared to be 

phagosomes. The non-bone apposing surfaces of these cells were often 

thrown into elaborate cytoplasmic folds that interdigitated with those 

of adjacent cells (Fig. 7). 

By 7 days, the connective tissue surrounding the implants had 

organized into a fibrous capsule. There was a marked decrease in the 

number of neutrophils present on and around the implants. Although 

mononuclear cells similar to those seen at 3 days continued to be the 

predominate cell type found along both the bone and suture implant 

surfaces, occasional multinucleated cells were also seen at this time 

(Fig. Ba and b). 

Fourteen days post-implantation, multinucleate giant cells 

(MNGC's) could be found covering much of the implanted bone and 

suture. The bone-elicited MNGC's were often seen to occupy shallow 

depressions on the bony surface. The 14 day MNGC's were larger and 

contained more nuclei than did the MNGC's observed at 7 days. At the 

light microscope level in both bone and suture implants, two types of 

MNGC's could be distinguished on the basis of nuclear arrangement. In 

the first type of MNGC's, the nuclei were aligned at the periphery of 

the cell, whereas in the second type of MNGC's, the nuclei were more 

centrally located and grouped in clusters (Figs. 9a and b). Ultra­

structurally, no difference, other than nuclear arrangement, could be 

noted between these two MNGC profiles. Both types of MNGC's contained 
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numerous mitochondria, ribosomes and variable amounts of rough endo-

plasmic reticulum (Fig. 10). Occasionally the MNGC's exhibited rel-

atively organelle-free regions of cytoplasm at the implant surface. 

These areas contained large numbers of polyribosomes, but did not 

display the perpendicular arrangement of filamentous material typical 

of clear zones (Fig. 11). At no time was a ruffled border, character-

istic of the actively resorbing osteoclast, observed within either 

bone-elicited MNGC's or suture-induced macrophage polykaryons (MK's). 

No morphological distinction could be made between the MNGC's found 

adjacent to bone or suture, regardless of the bone chip preparation or 

the type (normal or ia) of implant recipient. 

DISCUSSION 

This investigation was designed to assess the resorptive capabil-

ities and morphological characteristics of the cells found adjacent to 

subcutaneously implanted trabecular bone, in general, and osteopet-

rotic (_!!) trabecular bone, in particular. It also compared, on a 

structural basis, the osteoclast, the suture-induced macrophage poly-

karyon, and the bone-elicited multinucleated giant cell in an effort 

to define the relationship between these three multinucleated cells. 

45 Results of the functional studies, Ca release assays, show that 

both osteopetrotic and normal implant recipients were capable of equi-

valent label release over the two week implant period and that a large 
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portion of the observed label loss occurred as the result of a cell­

mediated process. Quantitation of the amount of 45ea released from 

bone is commonly used as an index of bone resorption, therefore, the 

results of these studies, indicate that the reduced bone resorption 

typical of the ia rat was not dupicated at this ectopic site by trab-

ecular bone implants. Generally, both~ and normal rats responded to 

mineral-exposed bone (C-T) implants with increased label releases over 

that of osteoid-exposed (F-T) implants. These findings are in agree-

ment with our previous studies using calvarial bone as the implant 

substrate (Walters and Schneider 1985). The functional response of 

the recipient animals to ~ F-T trabecular bone, however, differed 

from that observed in ia F-T calvarial bone studies in which similar 

amounts of 45ca were released from +F-T and ia F-T calvarial bone 

implants. In the present investigation both ia and normal animals 

responded to ia F-T bone with almost two-fold increases in label 

release over that of + F-T bone. 45 The increase in Ca release may 

reflect the significantly higher mineral content of osteopetrotic 

trabecular bone over that of normal trabecular bone (Boskey and Marks 

1985). Morphometric analysis demonstrated that~ F-T and collagenase 

treated implants had similar percentages of bone length covered by 

MNGC's profiles while+ F-T implants tended to have less total length 

lined by MNGC's. These data suggest that mineral exposure may be a 

factor in the induction of MNGC's at the bone surface and that ia F-T 

and collagenase-treated bone may share similar patterns of increased 
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mineral exposure. The elevation in ia trabecular bone mineral content 

may be expressed as a greater amount of surface-exposed mineral when 

compared to normal trabecular bone which has undergone mineral removal 

during remodeling. Exposed bone mineral appears to provide a stimulus 

that is capable of initiating bone resorptive behavior in the normal 

osteoclast (Chambers et al. 1984; Chambers and Fuller 1985). The 

activated osteoclast is then believed to resorb the bone located in 

the mineral-exposed area. Osteopetrotic (ia) osteoclasts, though 

recruited to the mineral-exposed surface, are faulty and unable to 

resorb the bone effectively, resulting in greater amounts of surface­

exposed mineral in osteopetrotic trabecular bone. Osteopetrotic bone 

may more closely resemble collagenase-treated bone which also ex­

presses greater than normal surface-exposed mineral (Green et al. 

1985; Chambers et al. 1985), providing an explanation for the rela­

tively high levels of 45ea release from ia F-T bone which approach 

that of collagenase-treated bone. The discrepancy in mineral content 

is much less apparent between normal and .!:,! calvarial bone (Boskey and 

Marks 1985) which may account for the difference in results obtained 

in our previous study. 

Morphologically, the ia and normal cell populations found adja­

cent to the bone and suture surfaces appeared to be the same. The 

suture-induced macrophage polykaryons (MK's) and bone-elicited multi­

nucleated cells (MNGC's) displayed similar morphological features at 

the light and electron microscope levels. At no time did the bone-
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elicited MNGC's exhibit ruffled borders, characteristic of active 

45 osteoclasts, despite evidence, Ca release assays, that bone mineral 

had been removed from the bone implants; nor did the bone-elicited 

MNGC's demonstrate the extensive clear zones typically observed in the 

ia osteoclast. Based on their structural similarities to suture-

induced MK's and their lack of definitive osteoclastic morphology, 

bone-elicited MNGC's could not be classified as osteoclasts, but may 

instead represent macrophage polykaryons like those formed in response 

to the chronic inflammatory stimulus provided by the implanted silk 

suture (Van der Rhee et al. 1979). Macrophages and monocytes have 

been found to respond chemotactically to the products of normal bone 

resorption and components of bone matrix (Mundy et al. 1978; Malone et 

al. 1982) and appear capable of bone resorption in vitro (Mundy et al. 

1977; Kahn et al. 1978; Teitelbaum et al. 1979). Bone-elicited macro-

phage polykaryons or other members of the mononuclear phagocyte system 

do appear to be capable of cell-mediated bone resorption in our im-

plant system as well as others. Devitalized bone powder implanted 

into calvarial defects (Glowacki et al. 1981) induced the formation of 

multinucleated cells around the bone fragments. As in our study, 

ultrastructural assessment of these multinucleated cells failed to 

reveal the presence of ruffled borders in areas of bone-cell contact 

despite morphometric evidence that bone resorption had taken place. 

These findings imply that members of the mononuclear phagocyte system 

(MPS), like osteoclasts, are capable of bone resorption~ !.!.!2' but 
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that MPS-mediated osteolysis may occur through a different mechanism 

than that of osteoclastic-mediated resorption. Osteoclasts, but not 

macrophages or their derivatives, form ruffled borders at the bone 

surface. Osteoclasts do not exhibit all of the same enzyme or recep­

tor characteristics of monocytes and macrophages, nor do they respond 

to the same hormonal stimuli (Marks 1983; Horton et al. 1984). 

Members of the mononuclear phagoctye family placed on a smooth bone 

surface failed to demonstrate the resorption lacunae typical of the 

active osteoclast, as detected by scanning electron microscopy 

(Chambers and Horton 1984). Burger et al. (1984) in their~ vitro 

studies of osteoclastic lineage, found that functional osteoclasts 

could only be formed from precultured bone marrow mononuclear cells in 

the presence of live, but not devitalized bone, and that only live 

bone was resorbed by osteoclasts. Devitalized bone, placed into the 

cultures, was resorbed, but according to the authors, most probably by 

mature macrophages which comprised 50% of the bone marrow mononuclear 

cells. They concluded that this type of bone resorption was different 

from osteoclast-mediated resorption. These data, therefore, appear to 

provide evidence in support of a difference in the mechanisms involved 

in MPS-mediated versus osteoclastic-mediated bone resorption. 

In summary, we were able to conclude the following from our 

present investigation of the MNGC's found adjacent to ectopically 

implanted bone matrix and suture: 
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1) Ectopically implanted freeze-thawed osteopetrotic bone 

elicits a different functional response when compared to 

normal bone from the cells recruited to the implant surface. 

2) The ia and normal cell populations surrounding the bone and 

suture implants appear to be morphologically identical, 

regardless of the bone chip preparation. 

3) Osteopetrotic (.!.!) and normal animals are capable of 

equivalent cell-mediated 45ea releases over the two week 

implant period, indicating that the typical reduction in bone 

resorption seen in this osteopetrotic mutation is not 

reproduced at this ectopic site. 

4) The MNGC's found adjacent to the implanted bone surface can 

not be classified as active osteoclasts, despite evidence of 

45 Ca release, but more closely resemble the macrophage 

polykaryons induced by the implanted suture. 

5) Based on (3) and (4), the cell-mediated 45ca release which 

occured in this study is probably the result of action by 

members of the mononuclear phagocyte system rather than from 

true osteoclastic activity. 
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Table 1. Uniformity of 45ea label within freeze-thawed bone chip pairs 

1 Bone chips 

Normal 

1 

2 

3 

4 

5 

6 

Osteopetrotic 

1 

2 

3 

4 

5 

6 

Weight(mg) 

3.0 
3.3 

2.4 
3.5 

1.8 
2.3 

4.3 
2.6 

3.0 
3.0 

3.2 
3.1 

3.6 
3.7 

3.4 
2.8 

4.6 
2.1 

2.9 
1.9 

3.7 
3.3 

2.4 
2.2 

Counts/mg 

154,975 
164,708 

170,745 
161,221 

190,296 
179,534 

177,402 
164,331 

202,678 
187,960 

117, 156 
108,128 

167,736 
170, 231 

170,390 
166, 776 

156,822 
165,229 

283·, 112 
278,185 

128,859 
137 ,561 

284,333 
281,663 

2 Mean 

159 ,842 ± 6 ,882 

165,983 ± 6,734 

184,915 ± 7,610 

170,867 ± 9,243 

195,319 ± 10,407 

112,642 ± 6,384 

168,984 ± 1,764 

168,583 ± 2,555 

161,026 ± 5,945 

280,949 ± 3,908 

133,210 ± 6,153 

282,998 ± 1,888 

3 Percent error 

4.3 

4.1 

4.1 

5.4 

5.3 

5.7 

LO 

1.5 

3.7 

1.4 

4.6 

0.1 

1 Samples taken from the tibia of 13-day-old rats. 

2Mean + standard deviation in counts/mg. 

3Percent error • (standard deviation x 100)/mean. 
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Table 2. Uniformity of 45ea label within collagenase-treated bone chip pairs 

1 Bone chips 

Normal 

1 

2 

3 

4 

5 

6 

Osteopetrotic 

1 

2 

3 

4 

5 

6 

.Weight( mg) Counts/mg 2 Mean 3 Percent error 

3.7 
1.9 

2.4 
3.5 

2.8 
2.8 

2.3 
3.1 

3.0 
2.3 

2.4 
2.7 

5.9 
1.8 

4.6 
2.8 

4.4 
2.9 

4.2 
3.5 

2.1 
6.1 

4.3 
3.0 

116,000 
114,504 

178,326 
190,536 

204,564 
202,929 

188,784 
176,719 

181,601 
193,879 

191,851 
181,914 

184,557 
205,696 

191,875 
208,279 

202,761 
218,922 

195,189 
197,255 

210,661 
193,833 

218,407 
203,444 

115,252 ± 1,058 

184,431 ± 8,634 

203,747 ± 1,156 

182,752 ± 8,531 

187,740 ± 8,682 

186,883 ± 7,027 

195,127 ± 14,948 

200,077 ± 11,599 

210,842 ± 11,428 

196,222 ± 1,461 

202,247 ± 11,899 

210,926 ± 10,580 

1samples taken from the tibia of 13-day-old rats. 

2Mean + standard deviation in counts/mg. 

3Percent error • (standard deviation x 100)/mean. 

0.9 

4.7 

0.6 

4.7 

4.6 

3.8 

7.7 

5.8 

5.4 

0.7 

5.9 

5.0 
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Figure 1. 

45 Mean percent+ S.D. Ca release over a 2 week period from 

freeze-thawed and collagenase-treated normal or osteopetrotic 

bone chips in diffusion chambers implanted into 4 week old normal 

and ia rats. 
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Figure 2. 

45 Mean percent + S.D. Ca release over a 2 week period from 

freeze-thawed and collagenase-treated normal or osteopetrotic 

bone chips implanted into normal and ia rats. 



50 

40 

30 

Percent 

Calclum-45 20 

Release 

10 

0 

Normal Into 
Normal 

Recipient 

Normal Into 
Osteopetrotlc 

Recipient 

Osteopetrotlc Into Osteopetrotlc Into 
Normal Recipient Osteopetrotlc 

Recipient 

• Freeze-thawed 

IJJ Collagenase-treated 
l.O 

°' 



97 

Figure 3. 

Mean percent± S.E. of total bone length covered by multi­

nucleated giant cells (MNGC's) from normal (+) freeze-thawed, ia 

freeze-thawed, and collagenase-treated bone chips 2 weeks after 

implantation into normal and ia rats. 
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Figure 4. 

In situ osteoclasts adjacent to bone from normal and ia recip­

ients 3 days post~implantation. Original magnification x 100 

Bar = lOum 

Figure 5. 

a. Normal osteoclast (arrows) exhibiting a striated 

border with associated vacuoles at the bone surface. 

b. Osteopetrotic osteoclasts (arrows) lacking 

specializations at the bone-cell interface. 

Electron micrographs of normal and osteopetrotic osteoclasts from 

recipient rats 3 days after implantation. 

a. Normal osteoclast displaying a ruffled border 

(arrows) surrounded by a clear zone (c) at the bone 

(b) surface. Original magnification x 5000 

Bar = lum 

b. Osteopetrotic osteoclasts with an extensive clear 

zone (arrows) adjacent to the bone (b) matrix. 

Original magnification x 8000 Bar = lum 
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Figure 6. 

Mononuclear cells adhering to bone and suture implants at 3 days 

post-implantation. Original magnification x 100 Bar = !Oum 

Figure 7. 

a. Suture (s) implanted into an.!,! rat. 

b. Freeze-thawed osteopetrotic bone (b) into a normal 

rat. 

Electron micrograph of mononuclear cells surrounding a freeze­

thawed normal bone (b) at 3 days after implantation into an.!,! 

rat. Note the extensive interdigitation with adjacent mono­

nuclear cells. Original magnification x 5000 Bar = lum 
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Figure 8. 

Multinucleated cells (arrows) at bone and suture surface 7 days 

post-implantation. Original magnification x 100 Bar = lOum 

a. Suture (s) into normal rat. 

b. Collagenase-treated osteopetrotic bone (b) into ia 

rat. 

Figure 9. 

At 14 days, multinucleated giant cells (arrows) covering much of 

the suture and bone implants. Original magnification x 100 

Bar = lOum 

a. Suture (s) into ia rat. 

b. Freeze-thawed normal bone (b) into a normal rat. 
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Figure 10. 

Macrophage polykaryon adjacent to suture (s) implanted into 

normal rat 14 days after implantation. No plasma membrane 

specializations are present at its surface in contact with the 

suture. Original magnification x 3000 Bar = lum 

Figure 11. 

Bone-elicited multinucleated giant cell 14 days post-implantation 

adjacent to the freeze-thawed normal bone implant in a normal 

recipient. Note the relatively organelle-free region of cyto­

plasm (arrows) at the bone surface (b). Original magnification x 

4900 Bar = lum. 
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CHAPTER V 

TARTRATE-RESISTANT ACID PHOSPHATASE 

ACTIVITY IN TIBIAL OSTEOCLASTS AND CELLS 

ELICITED BY ECTOPIC BONE AND SUTURE IMPLANTS 

IN NORMAL AND OSTEOPETROTIC RATS 

107 
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ABSTRACT 

Bone-induced multinucleated cells have been suggested as surro­

gates for the study of osteoclastic lineage and function. This study 

evaluates this proposal by comparing acid phosphatase localization in 

tibial osteoclasts with that of cell populations elicited by subcutan­

eous implantation of bone and suture into normal and osteopetrotic 

(_!!) rats, emphasizing tartrate-resistant acid phosphatase, an osteo­

clastic marker. The ia rat mutation of osteopetrosis is characterized 

by defective osteoclasts which typically express enhanced TRAP activ­

ity when compared to normal; ia macrophage populations do not share 

the same osteoclastic defect and demonstrate normal amounts of acid 

phosphatase reactivity. The majority of the acid phosphatase activity 

expressed by implant elicited mononuclear cells was sensitive to tar­

trate. An increase in the percentage of tartrate-sensitive, but not 

TRAP-positive, mononuclear cells was observed during the 14-day 

implantation period, suggesting the mononuclear cells did not undergo 

osteoclastic differentiation. Both normal and ia osteoclasts con­

tained high concentrations of TRAP reaction product while bone and 

suture-induced multinucleated cells examined at 14 days post­

implantation were only mildly TRAP reactive. We conclude that devit­

alized bone matrix implanted at this ectopic site is capable of the 

formation of TRAP-positive multinucleated cells, but when compared on 

the basis of strength of TRAP activity, the bone-induced multi-
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nucleated cells do not resemble active osteoclasts, but are similar to 

suture-elicited macrophage polykaryons. Therefore, we suggest caution 

in the use of bone-induced multinucleated cells as surrogates for the 

study of osteoclasts. 

INTRODUCTION 

Based on functional similarities, a proposed precursor relation-

ship and ready availability for experimentation, macrophages, mono-

cytes and macrophage polykaryons have been suggested as investiga-

tional surrogates for the study of osteoclastic differentiation and 

function (Teitelbaum and Kahn, 1980). This premise implies that mono-

cytes and macrophages, when confronted with a bone matrix, are capable 

of fusion into multinucleated cells functionally and morphologically 

equivalent to the osteoclast. Such a proposal also equates the mech-

anism involved in macrophage-monocyte osteolysis with that of osteo-

elastic bone resorption. 

One ~ vivo method used to examine the relationship between the 

osteoclast and the macrophage polykaryon involves implantation of 

mineralized bone matrix into a variety of ectopic sites. Ultra-

structural assessment of the multinucleated cells generated in 

response to ectopically implanted bone matrix failed to identify them 

as osteoclasts despite evidence that cell-mediated bone resorption had 
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occurred (Holtrop et al.,1982; Walters and Schneider, 1985). In 

addition, morphological comparison of bone-induced multinucleated 

cells with suture-elicited macrophage polykaryons showed them to be 

structurally similar. At no time did either type of implant-induced 

multinucleated cell exhibit a ruffled border, characteristic of the 

active osteoclast (Walters and Schneider, 1986). The lack of demon­

strable ruffled borders denies the equivalency of bone-induced multi­

nucleated cells with osteoclasts and also implies that the osteolysis 

which occured in this implant system may be the result of a different 

resorptive mechanism than that employed by the osteoclast. 

Tartrate-resistant acid phosphatase (TRAP) has been proposed as 

an osteoclastic marker (Hammarstrom et al., 1971; Minkin, 1982; 

Chappard et al., 1983) and, as such, has been used to study osteo­

clastic differentiation in..!!!.£ (Baron et al., 1986) and in vitro 

(Jilka, 1986). In the present study we compared TRAP localization in 

cells found adjacent to subcutaneously implanted bone and suture with 

that of the osteoclast to determine if these three categories of 

multinucleated cells possess similar or distinctive TRAP profiles. 

Because exposure to bone mineral may be important in the induction and 

activation of osteoclasts (Chambers et al., 1985), we incubated some 

of the bone chips with collagenase prior to implantation (Green et 

al., 1985). Implantation into both normal and osteopetrotic (ia/ia) 

rats was performed, using normal and osteopetrotic bone. The bone 

resorbing defect in the ia osteopetrotic mutation is due to non-
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functional osteoclasts that are unable to form ruffled borders or 

release normal amounts of lysosomal enzymes which accumulate in their 

cytoplasm (Marks, 1973). Osteoclasts from ia rats demonstrate in­

creased acid phosphatase activity when compared to normals (Handelman 

et al., 1964; Schofield et al., 1974), most of this increase in enzyme 

activity appears to be tartrate-resistant (Hammarstrom et al., 1983). 

Reproduction of the intense pattern of TRAP localization within bone­

induced multinucleated cells at this ectopic site in_!! rats would 

lend support to the use of such cells for the study of osteoclastic 

lineage and function. 

MATERIALS AND METHODS 

Animals 

Rats were obtained from our colony bred to maintain the 

osteopetrotic (_!!) mutation. Breeding groups were established to 

produce litters of !!_/ia and ia/+ genotypes. The former can be 

identified on the tenth day after birth by failure of eruption of the 

incisors (Greep, 1941). The latter are phenotypically identical with 

+/+ rats of this stock (Marks, 1973) and were used as normal controls. 

Preparation and implantation of implant substrates 

Tibial and calvarial bone chips were prepared in the following 

manner. Thirteen day old normal and osteopetrotic rats were killed by 
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ether inhalation, the tibiae and calvaria removed and adherent soft 

tissues and periosteum stripped. The bone marrow was extracted from 

the tibiae by repeated flushing with distilled water. Each tibia was 

divided, retaining the proximal metaphysis and a small portion of 

adjacent diaphysis, but excluding the epiphysis. Both tibiae and 

calvaria were devitalized by freeze-thawing x3 in liquid nitrogen and 

sonication in distilled water for 7 minutes. Following devitaliza-

tion, tibiae and calvaria designated for mineral-exposed studies were 

incubated in 5 mg/ml crude collagenase (Lot lll3F-6831, 245 U/mg dry 

wt collagenase, .10 U/mg dry wt clostripain, <.01 U/mg dry wt trypsin, 

85 U/mg dry wt neutral protease, Sigma, St. Louis, Mo.) in phosphate 

buffered saline for 2 hours at 37°c. All tibiae were bisected result-

ing in one pair to bone chips per tibiae. Calvaria were divided into 

frontal, parietial and occipital sections; these were bisected along 

the midline suture, resulting in 3 pairs of bone chips per calvarium. 

0 The chips were dried at 60 C for 20 minutes after which they were 

exposed to ultraviolet light overnight. This resulted in 8 different 

bone chip prepartions: ia trabecular freeze-thawed, ..!! calvarial 

freeze-thawed, ..!! trabecular collagenase-treated, ia calvarial 

collagenase-treated, normal trabecular freeze-thawed, normal calvarial 

freeze-thawed, normal trabecular collagenase-treated and normal 

calvarial collagenase-treated. One each of the 8 types of bone chip 

preparations was implanted into the dorsal subcutaneous tissue of 6 ia 

and 6 normal rats. In addition small pieces of sterile multiple 
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strand silk suture (5-0 black-braided, ETHICON, INC.) were also 

implanted into the same animals. 

Fixation and embedding procedures 

Except were indicated, all of the following prodecures were 

0 conducted at 4 C. Bone chips, suture and the metaphyseal portions of 

recipient tibia were recoverd from 2 ia and 2 normal rats at 3, 7, and 

14 days post-implantation. The tissue was fixed for 2 hours in 2.5% 

cacodylate-buffered gluteraldehyde (pH 7.4) containing 7% sucrose, 

rinsed 3 times, stored overnight in cacodylate buffer, decalcified in 

10% EDTA (pH 7.3) for 48 hours, dehydrated through 95% in acetone, 

infiltrated overnight in JB-4 solution A with catalyst (Polysciences, 

Inc., Warrington, PA) and embedded in complete JB-4 medium in BEEM 

capsules. During embedding, the capsule trays were placed on cracked 

ice to reduce the high temperature which accompanies JB-4 

polymerization at room temperature. The blocks were allowed to 

polymerize for several days at 4° c. Sections (3um) were cut dry at 

room temperature and placed on ice cooled slides which had been 

alcohol cleaned and gelatin-subbed. The sections were air dried at 

0 4 C for 5-7 days. 

Histochemical staining (Cole and Walters, 1986; Appendix B) 

Burstone's complete medium for acid phosphatase (Pearse, 1968) 

was prepared by dissolving 4mg naphthol AS-BI phosphate substrate 
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(Sigma, St. Louis, MO) in 0.25ml N,N-dimethyl formamide followed by 

the addition of 25ml of 0.2M acetate buffer (pH 5.0), 35mg Fast Red 

Violet LB (Sigma) as the coupling agent, and 2 drops (60ul) 10% Mgc12• 

The media was then filtered into acid-cleaned Coplin jars. As a 

control, the substrate was omitted from some Coplin jars. For 

inhibition studies, 50mM L(+)-tartaric acid (Sigma) was added to 

Coplin jars containing 25ml of filtered, complete media. Tissue 

sections were allowed to come to room temperature and were then 

incubated for 45 minutes at 37°c. Following incubation, the slides 

were washed for 30 minutes, air-dried at room temperature and 

counterstained with 1% aqueous Fast Green FCF (Fisher Scientific Co., 

Chicago, IL, C.I. 42053). Cover slips were mounted with Euparol 

(Gallard-Schlesinger Chem. Mfg. Corp., Carle Place, N.Y.). The tissue 

sections were examined for the presence of absence or reaction pro­

duct. The percentage of acid phosphatase-positive and tartrate­

resistant mononuclear cells per 200 cells counted in sections of bone 

and suture implants at 3, 7 and 14 days post-implantation were calcu­

lated. The percentage of bone or suture-induced multinucleated cells 

exhibiting reaction product in the presence or absence of tartrate 14 

days after implantation was also determined. 
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RESULTS 

Acid phosphatase localization demonstrated by this histochemical 

procedure results in a granular red-maroon reaction product distri­

buted throughout the cell cytoplasm. Occasional diffuse staining of 

the tibia and implanted bone surface, often near multinucleated cells, 

was observed. Generally, the addition of tartrate to the incubation 

medium decreased the concentration, but not the intensity, of the 

reaction product within the cells. No difference was detected in the 

histochemical response of ia and normal implant recipients to any of 

the 8 bone matrix preparations. For this reason, results of mono­

nuclear cell counts obtained from sections of the bone implants were 

summated. 

Osteoclasts 

Osteoclasts observed in sections taken from normal and ia rat 

tibiae were strongly positive for acid phosphatase. The high concen­

tration of reaction product was not diminished by the presence of 

tartrate during incubation. A significant increase in the amount of 

TRAP localization in ia osteoclasts as compared to normal osteoclasts 

could not be consistently demonstrated (Figs. la and b). 

Three day samples 

At 3 days post-implantation, the bone and suture implants were 

surrounded by mononuclear cells typical of an acute inflammatory 

reaction. Morphologically, these cell populations appeared similar; 
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however, a difference in the percentage of acid phosphatase-positive 

mononuclear cells localized in sections of bone when compared with 

suture implants was observed in both normal and ia recipients. Table 

1 illustrates that at 3 days 12% of the (400) suture-elicited and 

29.7% of the (2800) bone-induced mononuclear cells counted were acid 

phosphatase-positive. Similar counts from adjacent sections of bone 

and suture implants, incubated in the presence of tartrate, showed 

less than 1% of the mononuclear cells present to be reactive. These 

data indicate that tartrate-sensitive acid phosphatase is largely 

responsible for the 2-fold increase in acid phosphatase activity 

generated in response to bone implants as compared to suture implants. 

Suture-elicited mononuclear cells generally contained fewer and more 

sparsely distributed granules of tartrate-sensitive reaction product 

(Fig. 2a and b) than did bone-induced mononuclear cells (Figs. 3a and 

b). 

Seven day samples 

Although occasional small multinucleated cells were observed, 

mononuclear cells continued to be the predominate cell type adjacent 

to the implants. Acid phosphatase was localized in 42.1% of the (400) 

suture and 48.5% of the (2000) bone mononuclear cells counted (Table 

1). Collectively, less than 3% of the implant-generated mononuclear 

cells exhibited TRAP activity. By 7 days the suture-elicted and 

bone-induced mononuclear cells demonstrated similar patterns of acid 

phosphatase localization. Seven-day mononuclear cells contained more 
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numerous and intensely stained granules of reaction product than their 

3-day counterparts (Figs. 4a and b; Figs. Sa and b). 

Fourteen day samples 

By 14 days the implants were surrounded by an organized con­

nective tissue capsule. Table 1 shows that 64.8% of the (450) 

mononuclear cells adjacent to suture at 14 days contained acid 

phosphatase reaction product; of these cells 3.0% were found to be 

TRAP-positive. Fifty-four percent of the (2600) bone mononuclears 

counted exhibited acid phosphatase reactivity while less that 1% of 

similar cells from adjacent sections retaining activity in the 

presence of tartrate. No difference in the pattern of enzyme 

reactivity between ia and normal mononuclear cells was noted. 

At 14 days multinucleated cells covered a large portion of the 

bone and suture implant surface. These multinucleated cells were 

larger and contained more nuclei than 7-day multinucleated cells. 

Table 2 illustrates that 80.5% of (132) bone-induced multinuceated 

cells in normal recipients were acid phosphatase-positive whereas only 

56.1% of (114) suture-elicited macrophage polykaryons were reactive. 

Similarly, 77.1% of (126) bone-induced multinucleated cells in osteo­

petrotic rats exhibited acid phosphatase activity as compared to 69.5% 

of (131) suture-elicited macrophage polykaryons. Although..!!_ recip­

ients when compared to normal recipients demonstrated a higher per­

centage of acid phosphatase reactive suture-induced macrophage poly­

karyons, bone implanted into both ia and normal rats generally gener-
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ated a stronger acid phosphatase response from adjacent multinucleated 

cells than did implanted suture. This enhancement of acid phosphatase 

activity appeared to be due in part to increased levels of TRAP within 

the multinucleated cells found in both types of recipient animals. In 

normal rats 52.2% of (125) bone-induced multinucleated cells were 

TRAP-positive as compared to 22.3% of (130) suture-elicited macrophage 

polykaryons. TRAP reaction product was demonstrated in 68.4% of (130) 

bone-induced multinucleated cells and 61.8% of (163) suture-elicited 

macrophage polykaryons counted in samples taken from ia rats. 

Results of these cell counts suggest that bone matrix implanted 

at this ectopic site is capable of inducing the formation of TRAP 

positive multinucleated cells. However, the concentration of TRAP 

reaction product in suture and bone implant multinucleated cells 

differed markedly from that observed in the osteoclast. Acid phospha­

tase positive bone and suture multinucleated cells were only mildly 

reactive, displaying a sparce distribution of reaction product which 

was often diminished or eliminated by the addition of tartrate to the 

incubation medium (Figs. 6a and b; Figs. 7a and b). At no time did 

suture or bone-induced multinucleated cells exhibit the highly con­

centrated TRAP profile consistently demonstrated by normal and ia 

osteoclasts. Therefore, when compared on the basis of strength of 

TRAP activity, bone-induced multinucleated cells did not resemble 

osteoclasts, but were similar to suture-elicited macrophage poly­

karyons. 
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DISCUSSION 

Tartrate-resistant acid phosphatase (TRAP) has been localized 

within osteoclasts (Hammarstrom et al., 1971; Chappard et al., 1983) 

while macrophages and monocytes typically exhibit tartrate-sensitive 

acid phosphatase activity (Seifert, 1984; Cole and Walters, 1986; 

Appendix B). In the present study, this dicotomy in the acid phos­

phatase isoenzyme expressed by osteoclasts and mononuclear phagocytes 

was used to examine the relationship between the osteoclast, the 

bone-induced multinucleated cell and the macrophage polykaryon. We 

compared the acid phosphatase profiles of cells found adjacent to bone 

and suture implanted into normal and osteopetrotic (ia) rats with 

tibial osteoclasts from the same animals. 

Both normal and ia osteoclasts were heavily stained with TRAP 

reaction product; however, the presence of excessive amounts of acid 

phosphatase in ia osteoclasts (Hammarstron et al., 1983) could not be 

consistently demonstrated. Diffuse staining of the bone adjacent to 

osteoclasts was occasionally observed. Handelman et al (1964) des­

cribed similar bands of concentrated acid phosphatase activity at the 

junction of osteoclasts and bone. They postulated that these junc­

tional bands represent sites into which lysosomal enzymes are secreted 

during the resorptive process. Ultrastructurally, acid phosphatase 

has been localized within the extracellular channels of the ruffled 

border, the bone-cell interspace and matrix underlying the active 
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osteoclast (Lucht, 1971; Doty and Schofield, 1972). Miller (1985) 

demonstrated the appearance of extracellular acid phosphatase 

activity, which was confined to the developing ruffled border and 

adjacent bone matrix, in quail medullary bone osteoclasts stimulated 

by parathyroid hormone (PTH). Collectively, these studies indicate 

acid phosphatase, particularly the tartrate-resistant form, may play 

an important role in the resorptive function of the osteoclast. 

Histochemical evaluation of cell populations found surrounding 

implanted bone and suture indicated that the majority of acid phos­

phatase activity expressed by mononuclear cells was tartrate­

sensitive. Only occasional tartrate-resistant cells were observed. 

Monocyte and macrophages are known to be major constituents of the 

mononuclear cell populations elicited by bone and suture implants 

(Holtrop et al., 1982; Walters and Schneider, in press), therefore, a 

preponderance of tartrate-sensitive acid phosphatase activity in the 

mononuclear cells adjoining such implants is predictable. Nilsen and 

Magnusson (1981) described a similar pattern of tartrate-sensitive 

acid phosphatase localization in guinea pig macrophages surrounding 

intramuscular implants of dentin. 

An increase in the percentage of tartrate-sensitive acid 

phosphatase-positive mononuclear cells found adjacent to the implants 

was observed during the 14-day implantation period. Initially, bone 

implants elicited larger numbers of acid phosphatase reactive cells 

than did suture, however, at seven days post-implantation this 
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discrepancy in acid phosphatase induction was no longer apparent. A 

similar enhancement of TRAP localization in implant mononuclear cell 

populations was not observed, suggesting that macrophages and mono­

cytes activated under these implant conditions did not undergo osteo­

clastic differentiation. These results differ from those of in vitro 

in which the acquisition of TRAP activity has been demonstrated. 

Snipes et al. {1986) reported that monocytes incubated with 1,25 

dihydroxyvitamin o
3 

and monocyte-derived macrophages cultured for 

three to seven days expressed TRAP activity while freshly isolated 

monocytes and vitamin D-stimulated 0937 monocytic cells exhibited only 

tartrate-sensitive acid phosphatase. These findings reflect the 

heterogenity of the monocyte-macrophage populations often used for in 

vitro investigations and the diversity of their responses in culture 

to osteotropic agents such as 1,25 dihydroxyvitamin o
3

• 

No significant difference in the acid phosphatase profiles 

between normal and ia mononuclear cells surrounding the implants was 

noted. These observations concur with those of Schneider et al. 

{1981) and Seifert {1984) in their individual investigations of the 

biology of macrophage populations in osteopetrosis. The authors 

demonstrated that, unlike the osteoclast populations, no significant 

differences in structure, acid phophatase content or phagocytic 

activity were present in ia macrophages when compared with those from 

normal littermates. These results suggest that macrophages may be a 

cell type distinct from the osteoclast and that less mature monocytic 
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cells may represent better choices for the study of osteoclast­

mononuclear phagocyte linkage. Investigations evaluating the charac­

teristics of less differentiated mononuclear cell populations have 

also employed TRAP as an index of osteoclastic differentiation. The 

formation of TRAP-positive multinucleated cells, possessing some of 

the morphological characteristics and hormonal responsiveness of the 

_osteoclast, was observed in long-term cultures of feline and primate 

bone marrow-derived mononuclear cells (Ibbotson et al., 1984; Roodman 

et al., 1985). Data from these and similar studies using mouse marrow 

cells (Burger et al., 1982; Burger et al., 1984) demonstrated that the 

osteoclast-like multinucleated cells were formed by fusion of non­

adherent monocytic progenitor cells. These results suggest that 

osteoclasts and mononuclear phagocytes may be related through an early 

common stem cell, but, subsequently, take separate differentiation 

pathways. 

In studies of human monocytes cultured in the presence of Y 

interferon, the formation of macrophage polykaryons was accompanied by 

increasing levels of TRAP activity, leading to speculation that Y 

interferon may be capable of the transformation of monocytes into 

osteoclasts (Weinberg et al., 1984). Morphologically, the interferon­

stimulated polykaryons resembled multinucleated cells observed during 

inflammatory reactions.!!!~ (Weinberg et., 1984). No direct com­

parison of the TRAP profiles of these cultured multinucleated cells 

with those of similarly stimulated osteoclasts was conducted. Our 
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present study allows the comparison of the acid phosphatase activity 

present in inflammation-elicited multinucleated cells with that 

present in osteoclasts from the same animal. Results indicated that 

bone implants induced the formation of larger numbers of acid 

phosphatase-positive multinucleated cells than did suture implants. 

In addition, a greater proportion of bone multinucleated cells, part­

icularly in ia recipients, retained this activity in the presence of 

tartrate; however, the concentration of reaction product in both bone 

and suture-induced TRAP-positive cells differed markedly from that of 

the osteoclast. Implant-induced cells could only be described as 

mildly reactive, exhibiting sparcely scattered granules of TRAP 

reaction product throughout their cytoplasms, while both normal and ia 

osteoclasts demonstrated intense TRAP activity. Therefore, although 

bone implants were capable of inducing the formation of TRAP-positive 

cells, the bone multinucleated cells shared a similar concentration 

and pattern of TRAP distribution with suture-elicited macrophage 

polykaryons, suggesting that these two categories of multinucleated 

cells may be distinct from or not equivalent to the osteoclast. 

Alternatively, the maturation of the bone-induced multinucleated cells 

into histochemically identifiable osteoclasts may have been prevented 

at this ectopic site by the absence of a specific inductive matrix 

component, humoral agent or cellular population required for com­

pletion of the differentiation process. Burger et al. (1984), 

studying the origin of the osteoclast in mouse long bone primordia, 
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reported that osteoclasts developed only in the presence of live bone. 

This finding indicates that environmental factors found within living 

bone may be necessary for osteoclastic differntiation. Thus, the 

devitalized bone matix used in the present study may not provide the 

appropriate substrate for the elaboration of typical osteoclastic TRAP 

profiles in bone-induced multinucleated cells. 

In summary, this investigation was conducted to compare the TRAP 

characteristics of bone-induced multinucleated cells with those of the 

osteoclast and suture-elicited macrophage polykaryon to define more 

clearly the relationship between these three categories of multinuc­

leated cells. In this study, bone implants were capable of inducing 

the formation of TRAP-positive multinucleated cells, however, the 

distribution of TRAP reaction product within these cells did not 

resemble that of the osteoclast, but was similar to that found within 

suture-elicited macrophage polykaryons. These results imply that the 

bone-induced multinucleated cells, formed under these implant condi­

tions, may not be equivalent to the osteoclast, but may, in fact, be 

macrophage polykaryons elicited during an inflammatory response to the 

implanted bone matrix. Based on the results of this investigation and 

others which have also demonstrated morphological differences between 

bone-induced multinucleated cells and osteoclasts (Walters and 

Schneider, 1985; Walters and Schneider, in press), we suggest caution 

in the use of bone-induced multinucleated cells as surrogates for the 

study of osteoclastic lineage and function. 
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Table L Percent Acid Phosphatase-Positive Mononuclear Cells 

3-day 7-day 14-day 

Implant 1 AcP2 TR3 AcP TR AcP 

Suture 12.0 <LO 42.1 <LO 64.8 

Bone 29.7 <LO 48.5 <LO 54.0 

1samples taken from normal and ia rats 

2 Percent acid phosphatase-positive mononuclear cells in 

sections incubated without tartrate 

3 Percent tartrate-resistant mononuclear cells 

TR 

<3.0 

<LO 
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Table 2. Percent Acid Phosphatase-Positive Mul tinuclea ted Cells 

Normal ia 

Implants 1 AcP2 TR3 AcP TR 

Suture 56.1 22.3 69.5 61. 3 

Bone 80.5 52.2 77 .1 68.4 

1 Samples taken from normal and ia rats 14 days post-implantation 

2Percent acid phosphatase-positive multinucleated cells in 

sections incubated without tartrate 

3Percent tartrate-resistant multinucleated cells 
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Figure 1. 

Osteoclasts (arrows) from normal and ia tibiae, containing high 

concentrations of granular TRAP reaction product, located 

adjacent to the bone surface (b). 

a. Normal osteoclasts. x 700 

b. Osteopetrotic osteoclasts. x 720. 
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Figure 2. 

Adjacent sections of mononuclear cells surrounding suture (s) 

implanted into a normal rat 3 days post-implantation. x 513 

Figure 3. 

a. Acid phosphatase-positive cells (arrows) exhibiting 

a few granules of reaction product. 

b. In the presence of tartrate, fewer cells show enzyme 

activity. 

At 3 days mononuclear cells located near normal freeze-thawed 

trabecular bone (b) implanted into a normal recipient. x 475 

a. Reactive mononuclear cells (arrows) in tissue 

surrounding the implanted bone matrix. 

b. Complete tartrate inhibition of mononuclear cells 

similar to those present in Fig. 3a located in an 

adjacent tissue section. 



133 

• 



134 

Figure 4. 

Acid phosphatase activity of cell populations elicited by 

suture (s) implanted into an ia rat 7 days after implantation. 

x 475 

Figure 5. 

a. Mononuclear cells demonstrating reaction product 

(arrows). Note small non-reactive multinucleated 

cells immediately adjacent to strands of suture. 

b. With tartrate, the acid phosphatase activity within 

mononuclear cells is complelely inhibited in this 

section. Multinucleated cells remain non-reactive. 

At 7 days histochemical response of cells located near normal 

freeze-thawed trabecular bone (b) implanted into an ia rat. 

x 388 

a. Acid phosphatase reaction product localized within 

mononuclear cells in tissue adjoining bone matrix. 

Multinucleated cells (arrows) at the bone surface do 

not exhibit activity. 

b. Tartrate inhibition of an adjacent section through 

the same bone implant. 
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Figu~e 6. 

Acid phosphatase staining characteristics of mononuclear and 

multinucleated cells present around suture (s) implanted into an 

ia rat 14 days post-implantation. x 500 

Figure 7. 

a. Numerous strongly reactive mononuclear cells lie 

within the connective tissue capsule. A mildly 

reactive multinucleated cell (arrows) is also 

present adjacent to the suture. 

b. An adjacent tissue section incubated with tartrate. 

Mononuclear cells do not demonstrate reaction 

product. The multinucleated cell retains mild 

activity. 

At 14 days normal collagenase-treated trabecular bone (b) 

implanted into a normal rat. x 500 

a. Acid phosphatase localization within mononuclear and 

multinucleated (arrows) cells at or near the bone 

surface. 

b. With inclusion of tartrate, reaction product within 

mononuclear cells is almost completely eliminated 

while the multinucleated cell retains mild 

reactivity. 
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CHAPTER VI 

DISCUSSION 

Osteoclasts play a principal role in the degradation of both the 

organic and inorganic components of bone; however, the exact mechanism 

by which osteoclasts resorb bone is unknown. Because they comprise 

only a small percentage of the cells present in bone, isolation of 

homogeneous populations of osteoclasts in sufficent numbers for in 

vitro experimentation has been difficult, limiting the use of such 

techniques in defining the nature of osteoclastic bone resorption. 

Discovery that mononuclear phagocytes, putative .osteoclast precusors, 

are capable of contact-mediated bone resorption in culture has led to 

speculation that monocytes, macrophages, and macrophage polykaryons 

could serve as investigational surrogates for the study of osteo­

oclastic lineage and function (Teitelbaum and Kahn, 1980). This 

proposal suggests that, in the presence of bone, monocytes and macro­

phages undergo fusion and subsequent differentiation into multinucle­

ated cells which are equivalent to osteoclasts, equating the mech­

anisms involved in monocyte-macrophage osteolysis with those of osteo­

clastic bone resorption. Numerous in vitro investigations, co­

culturing various mononuclear phagocyte populations with devitalized 

bone matrix often in the presence of osteotropic agents such as 

138 
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vitamin n
3

, have been conducted (Mundy et al., 1977; McArthur et al., 

1980; Bar-Shavit et al., 1983). These studies often do not consider 

the heterogeneity of the mononuclear phagocytes used for experimenta­

tion or the diversity of their responses in culture to osteotropic 

agents. In addition, they rarely include direct comparisons of cul­

tured mononuclear phagocytes with similarly stimulated osteoclasts, 

making correlation to in~ situations difficult. 

The present series of investigations evaluated the premise that 

macrophages and monocytes may serve as osteoclast surrogates in an in 

vivo setting. A functional, morphological and histochemical assess­

ment of the cell populations found adjacent to devitalized bone im­

plants was conducted to determine if the formation of multinucleated 

cells equivalent to osteoclasts could be induced at a subcutaneous 

site. Implantation was performed into both normal and osteopetrotic 

(~) rats to determine if the usual resorptive defect seen in this 

mutant (Marks, 1973) could be duplicated at this ectopic site, and if 

so, was this defect reflected by morphological differences between 

normal and ia bone-induced multinucleated cells similar to those found 

between normal and ia osteoclasts. Duplication of such differences 

would lend validity to the use of bone-induced multinucleated cells as 

osteoclastic surrogates. In the morphological and histochemical 

studies, silk sutures were also implanted, allowing comparison of 

cells found adjacent to both bone and suture implants with tibial 

osteoclasts from the same recipient animal. The effects of substrate 
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composition on the recruitment, differentiation and function of cells 

to the implant substrate was also performed through the use of pri-

marily mineral-exposed (collagenase-treated) and primarily osteoid-

exposed (freeze-thawed) normal and osteopetrotic bone matrix. 

45 The functional assessment ( Ca assays) of the resorptive capa-

abilities of the implant-elicited cell populations permitted quanti-

tation of passive and cell-mediated label releases. Results showed 

45 that significant cell-mediated Ca loss had occurred in both normal 

and..!.!_ rats during the implantation period, suggesting a large part of 

the bone resorption which takes place in this implant system is an 

active cell-related process rather than a passive diffusion event. 

Primarily mineral-exposed implant matrix exhibited more label release 

than did primarily osteoid-exposed matrix. Osteopetrotic and normal 

45 animals demonstrated similar patterns of Ca release, indicating that 

the typical ia resorptive defect was not mimicked at this ectopic 

site. This finding implies that the cells involved in bone resorption 

under these implant conditions may not be osteoclasts which are 

defective in the ia animal or, alternatively, that this ectopic site 

may provide cues, missing in the~ bone environment, which are 

necessary for the normal diffferentiation of osteoclasts. Morpho-

logical assessment of the cells recruited to the implant surface was 

conducted to determine which of these alternatives might be occurring. 

Light and electron microscopic evaluation showed that the 

cellular events occurring around bone and suture implants were similar 
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in both normal and ia animals regardless of the bone matrix prepartion 

implanted. At 3 and 7 days post-implantation, monocytes and macro­

pahges were the predominant mononuclear cells surrounding the im­

plants, while multinucleated cells extensively covered much of the 

bone and suture surfaces at later stages in the implantation period. 

No morphological differences were observed between multinucleated 

cells generated in response to primarily mineral-exposed versus 

primarily osteoid-exposed implants; however, the results of morpho­

metric analysis indicated that mineral-exposed bone implants tended to 

have more total length covered by multinucleated cells than did 

osteoid-exposed implants, suggesting that mineral-exposure may play a 

role in the induction of multinucleated cells. Chambers et al. (1984) 

have suggested that contact with bone mineral may be important in the 

initiation of resorptive behavior by osteoclasts; however, in the 

present study, increased mineral exposure at the implant surface did 

not promote the phenotypic expression of osteoclast-like morphology in 

cells adjacent to the bone matrix. Ultrastructural assessment of 

bone-induced mononuclear and multinuclear cells failed to reveal the 

presence of ruffled borders, hallmarks of actively resorbing osteo­

clasts, at the bone-cell interface. Osteoclastic bone resorption is 

believed to occur in a well defined extracellular compartment, the 

ruffled border. Recent studies by Baron et al. (1985) suggest that 

the region between the ruffled border and the bone surface is actively 

acidified by the osteoclast. This acidification may assist in the 
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solubization of bone mineral and provide pH optima for the actions of 

lysosomal enzymes (acid hydrolases), secreted by the osteoclast into 

the pericellular space, which then degrade the organic components of 

bone. The clear zone, an organelle-free, actin-rich region of the 

osteoclast, is believed to form a tight seal around the ruffled border 

to maintain the specialized resorptive environment created by the 

osteoclast. The observation that bone resorptive cells in this 

implant system did not exhibit structures similar to ruffled borders 

implies that the cells are either inactive osteoclasts, which is not 

45 supported by the Ca release data, or they are cells other than 

osteoclasts. Possibly mononuclear phagocytes and polykaryons were 

responsible for releasing the radioactive label from the implanted 

bone matrix. Bone-induced multinucleated cells structurally resembled 

suture-elicited macrophage polykaryons, providing evidence in support 

of this hypothesis. 

Histochemical localization of tartrate-resistant acid phos-

phatase (TRAP), a proposed osteoclatic marker (Minkin, 1982), in cells 

surrounding bone and suture implants also revealed significant differ-

ences between implant-induced cell populations and tibial osteoclasts, 

furnishing additional evidence that cell populations recruited to this 

ectopic site may not form cells equivalent to osteoclasts. The major-

ity of acid phosphatase-reactive mononuclear cells adjacent to both 

bone and suture implants exhibited tartrate-sensitive activity. Only 

occasional TRAP-positive mononuclear cells were observed. The per-
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centage of tartrate-sensitive mononuclear cells increased over the 

implant period. A corresponding increase in TRAP-positive cells was 

not seen, suggesting that the mononuclear cells elicited under these 

implant conditions did not undergo osteoclastic differentiation, but 

remained macrophages as histochemically defined. Generally, bone 

matrix implanted into both normal and ia rats generated a stronger 

acid phosphatase response from adjacent multinucleate cells than did 

suture. In addition, a larger number of bone-induced multinucleated 

cells retained this activity in the presence of tartrate; however, the 

concentration of TRAP reaction product in both bone and suture-

elicited multinucleated cells differed significantly from that found 

in osteoclasts. Both normal and osteopetrotic osteoclasts demon-

strated high concentrations of TRAP reaction product, while bone and 

suture-elicited multinucleated cells could only be classified as 

mildly TRAP reactive. These results suggest that bone matrix is 

capable of inducing the formation of TRAP-positive multinucleated 

cells, but when compared on the basis of strength of TRAP reactivity, 

bone-induced multinucleated cells more closely resembled suture-

elicited macrophage polykaryons than they did osteoclasts. 

The overall results of the present series of investigations have 

45 shown that cell-mediated bone resorption, as assessed in Ca release 

assays, occurs in this implant system. However, multinucleated cells 

exhibiting the morphological and histochemical characteristics of 

osteoclasts could not be demonstrated at the bone implant surface in 



144 

either normal or ia rats. Instead, bone-induced multinucleated cells 

shared similar structural and enzymatic features with suture-elicited 

macrophage polykaryons, implying that bone-induced multinucleated 

cells, formed under these implant conditions, may not be equivalent to 

osteoclasts, but may, in fact, be macrophage polykaryons generated 

during an inflammatory response to the implanted devitalized bone 

matrix. The results of these studies, therefore, suggest that under 

the conditions imposed by this implant system, mononuclear phagocytes 

do not appear capable of forming osteoclasts as morphologically and 

histochemically defined, despite evidence that cell-mediated bone 

resorption has occurred. 

One explanation for the findings of this study may be that the 

devitalized bone matrix used as the implant substrate in these experi­

ments did not provide the factors necessary for the differentiation of 

osteoclasts from mononuclear phagocytes at this ectopic site. Burger 

et al. (1984) have suggested that devitalized bone may not be an 

appropriate substrate for the formation of osteoclasts. The authors, 

using cultured embryonic bone rudiments, reported that osteoclasts 

developed in the presence of live, but not devitalized, bone, indi­

cating that factors within the vital bone environment may be necessary 

for the differentiation of osteoclasts. They propose that the pres­

ence of osteogenic cells may be required for osteoclast formation from 

mononuclear progenitors. Evidence in support of this hypothesis has 

been provided by Osdoby (1986) who demonstrated that chick monocytes 
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or bone marrow cells cultured with osteoblasts formed multinucleated 

cells which expressed osteoclastic antigens while similar cells cul­

tured alone or with fibroblasts did not. He concluded that osteo­

blastic expression, possibly contact-mediated, may be involved in 

osteoclastic differentiation. Studies by Rodan and Martin (1981) and 

McSheehy and Chambers (1986) have also shown that osteoblasts may play 

a role in the hormonal control of bone resorption by mediating the 

effects of osteotropic agents such as vitamin n
3 

and parathyroid 

hormone on osteoclasts. The results of these investigations suggest 

that the presence of environmental factors or cells such as osteo­

blasts within vital bone, may be important for the formation, acti­

vation and function of osteoclasts. Thus, the absence of these 

factors or cells from the implantation site in the current studies may 

have limited the ability of the mononuclear cells recruited to the 

bone matrix to differentiate into osteoclasts or prevented the 

expression of active osteoclastic morphological and histochemical 

profiles by multinucleated cells covering the bone surface. An 

evaluation of the importance of vital bone and osteogenic cells in the 

formation of osteoclasts at this ectopic site might be accomplished 

through the use of demineralized bone matrix as an implant substrate. 

Subcutaneous implantation of demineralized bone powder into experi­

mental animals induces de nove bone formation (Reddi and Huggins, 

1972; Sampath and Reddi, 1984). By days 10-12 post-implantation, 

osteoblasts can be identified on the newly formed bone surface (Reddi, 
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1985). Co-implantation of demineralized bone powder and mineralized 

bone chips, therefore, may provide a means by which osteogenic cells 

and vital bone could be introduced at the implantation site in our 

model system, permitting evaluation of their roles in osteoclastic 

differentiation of cells recruited to mineralized implants at this 

ectopic site. 

Another plausible explanation for the failure of mononuclear 

phagocytes to form morphologically and histochemically identifiable 

osteoclasts under these implant conditions may be related to the 

maturity of the monocyte and macrophage cell populations elicited at 

the implant site. The mononuclear phagocytes present at the site of 

inflammatory reactions, like those generated by the bone and suture 

implants in the present study, represent cells which have undergone 

extensive structural, enzymatic and receptor modification from their 

unactivated counterparts in response to the inflammatory stimulus 

(Mariano and Spector, 1974; van der Rhee et al., 1979; Treves, 1984). 

There is mounting evidence that such mature or activated monocytes and 

macrophages may not be capable of forming osteoclasts. Burger et al. 

(1982) have demonstrated that osteoclasts developed in fetal mouse 

long bone co-cultured with embryonic liver or weakly adherent radio­

sensitive bone marrow cells, but not with strongly adherent cells, 

resident or elicited peritoneal macrophages. Ibbotson et al. (1984) 

reported similar findings in long-term cultures of feline marrow­

derived cells. Injection of cell suspensions of mature macrophages 
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into ~ rats does not effect the cure of osteopetrosis whereas 

injections of pluripotent stem cells were capable of reversing the ia 

resorptive defect and generating normal osteoclasts within ia long 

bones. These investigations suggest that immature or less differ­

entiated mononuclear phagocytes may be able to give rise to osteo­

clasts while mature monocytes and macrophages cannot, but instead, 

fuse to form macrophage polykaryons, cells which are not equivalent to 

osteoclasts. 

Macrophages and monocytes are associated with the breakdown and 

remodeling of connective tissues in general. They are involved in the 

involution of organs, such as the post-partum uterus and the mammary 

gland after the cessation of lactation, and participate in the events 

of wound debridement and repair (Vaes, 1985). Mononuclear phagocytes 

exert their effects either by direct contact with cell or tissue 

targets or, alternatively through a variety of soluble mediators 

(Davies et al., 1980; Vaes, 1985). Werb et al. (1980), studying the 

degradation of insoluble smooth muscle extracellular matrix~ vitro, 

postulated that macrophage-mediated degradation of connective tissue 

matrices could occur at three sites: (1) extracellularly by secretion 

of neutral proteases, (2) intracellularly through the actions of 

lysosomal hydrolases and (3) at the cell surface and adjacent peri­

cellular space by cell-surface bound enzymes. Evidence in support of 

this hypothesis has been provided by numerous investigations. In 

vitro studies have shown that resident and elicited macrophages 
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secrete neutral proteases such as plasminogen activator, elastase, and 

collagenase which are capable of degrading the glycoprotein, elastin 

and collagen found in most connective tissues (Jones and Werb, 1980; 

Werb et al., 1980; Vaes, 1985). Lysosomal enzymes such as cathepsins 

B and D, which are capable of collagen and proteoglycan digestion, 

have also been demonstrated within macrophages (Vaes, 1985). Roberts 

and Dean (1986) reported that a cell-surface associated enzyme, 

probably a neutral protease, may participate in the degradation of 

bovine nasal cartilage in vitro. Wright and Silverstein (1984) have 

shown that phagocytosing macrophages exclude proteins from the zone of 

contact with opsonized targets implying that clear zone-like regions, 

previously described in macrophages (Rifkin et al., 1979) may function 

to isolate the area of phagocytosis from the surrounding extracellular 

space. 

Although macrophage-mediated tissue degradation and osteoclastic 

bone resorption do share many similar features, some important differ­

ences do exist. Osteoclasts appear to preferentially employ the 

actions of lysosomal acid hydrolases to affect bone resorption rather 

than those of neutral proteases such as collagenase which have been 

implicated in mononuclear phagocytic tissue degradation (Vaes, 1985; 

Blair et al., 1986). The addition of calcitonin to cultures of 

peripheral blood monocytes and elicited peritoneal macrophages has no 

effect on macrophage-mediated bone dissolution (McArthur et al., 

1980); however, low concentrations of calcitonin induce dramatic 
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changes in osteoclasts (Holtrop et al., 1974; Chambers and Magnus, 

1982). Monocytes, macrophages and macrophage polykaryons incubated on 

slices of human cortical bone or seeded onto whale dentine failed to 

demonstrate morphological signs of resorptive activity, as detected by 

scanning electron microscopy, whereas osteoclasts, cultured under 

similar conditions, carved out classical resorption lacunae on the 

underlying matrix (Chambers et al., 1984; Ali et al., 1984). Another 

important structural difference between macrophage-mediated and 

osteoclastic bone resorption appears relevant to the present study. 

Ruffled borders, previously described as sites of active osteoclastic 

bone resorption, have not been observed at the macrophage-bone inter­

face, indicating that macrophages and osteoclasts may not employ all 

of the same structural machinery to affect bone degradation. Chambers 

(1985) suggests that mononuclear phagocytes may release calcium and 

hydroxyproline through the digestion of phagocytosed whole bone part­

icles rather than by true extracellular resorption of bone surfaces. 

Therefore, the mechanisms by which mononuclear phagogytes degrade bone 

matrix may not be equivalent to those of osteoclast-mediated bone 

resorption. 

The implant system employed in this investigation does not 

appear to be an appropriate model for studying osteoclastic differ­

entiation from mononuclear phagocytes or for examining the· process of 

normal bone resorption. However, it may represent an in~ model 

for the study of inflammation-related skeletal tissue destruction, a 
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topic of clinical importance. Case reports of bone foreign body 

granulomas and destructive arthritis, elicited by silicone prostheses 

used as joint replacements, describe inflammatory reactions which 

extend into bone and articular cartilage, causing extensive bone and 

joint damage (Rosenthal et al., 1983; Manes, 1985). Cartilage 

destruction and subchondral bone loss are associated with chronic 

inflammatory diseases, such as rheumatoid arthitis and periodontitis 

(Mergenhagan et al., 1975; Bromley et al., 1985). Macrophage-like 

cells, containing abundant lysosomes, mitochondria and vacuoles, are 

seen in the invading soft tissue pannus in rheumatoid joints and are 

the predominant cell type present at the cartilage surface undergoing 

degradation. These cells often send cytoplasmic extensions deep into 

the eroding cartilage matrix (Shiozawa et al., 1983; Bromley and 

Woolley, 1984). Macrophage-like cells are also believed to secrete 

the cartilage degrading enzymes such as collagenase and cathepsin D 

which have been localized at the rheumatoid cartilage-pannus junction 

(Kobayashi and Ziff, 1975; Woolley et al., 1977). Mononuclear and 

multinuclear phagocytic cells can also be identified in areas of 

active periodontal disease, characterized by inflammation of the 

gingiva and loss of supporting bone and connective tissue and at site 

of pressure induced necrosis in experimental models of tooth movement 

(Rifkin and Heijl, 1979; Cohen et al., 1985; Nixon and King, 1985). 

Many of the salient features commonly observed in these osteolytic 

diseases are mimicked by the implant system described in the present 
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investigation (generation of an inflammatory reaction, significant 

cell-mediated bone loss, and the presence of mononuclear phagocytes at 

the implant surface and in surrounding connective tissues). An 

evaluation of tissues taken from subjects with these diseases might be 

conducted to determine if cell populations in the tissue samples share 

similar morphological and histochemical profiles with implant-induced 

cells. The demonstration of such similarities would provide further 

validation for the use of this implant system as a model for the study 

of inflammation-related osteolysis. 

In conclusion, the premise that macrophages and monocytes are 

capable of undergoing fusion and differentiation to form morphologi­

cally and histochemically identifiable osteoclasts is not supported by 

the results of the in~ implantation system described in this 

dissertation. The bone resorption which occurred during the implanta-

45 tion period, as indicated by Ca assays, most probably occurred 

through the osteolytic actions of members of the mononuclear phagocyte 

system. This implantation system does not, therefore, appear to 

represent a model for the study of osteoclastic lineage and function, 

but may reflect an appropriate technique for the examination of 

inflammation-related bone loss. 
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APPENDIX A 

The material in this appendix supplements Chapter 3. It 

reports the results of label unifomity, diffusion chamber, 

and direct implantation studies using freeze-thawed and 

collagenase-treated osteopetrotic calvarial bone matrix as the 

implant substrate. Bleached osteopetrotic bone was not 

evaluated. These data indicate that label uniformity and label 

releases from the osteopetrotic bone implants were similar to 

those from normal bone implants in both normal and ia rats. 
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Uniformity of 45ca label within osteopetrotic freeze-thawed bone chip 
pairs 

Bone chips1 Weight(mg) Counts/mg 

Frontal 
left 1.9 127,877 
right 1.9 123,984 

left 2.7 249,577 
right 2.1 262,506 

left 2.2 217,040 
right 2.1 220,224 

Parietal 
left 4.0 120,105 
right 3.7 119,264 

left 3.4 231,136 
right 4.0 224,690 

left 
right 

Occipital 
left 3.8 119,868 
right 3.6 125,908 

left 3.0 239,383 
right 3.1 229,760 

left 2.3 196,090 
right 2.0 199,680 

1samples taken from 13-day-old rats. 

2Mean ±standard deviation in counts/mg. 

Mean2 

125,931 ±2,753 

256,042±9,142 

218,632 ± 2,251 

119,685 ± 595 

227,913 ± 4,558 

122,888 ± 4,271 

234,572 ± 6,804 

197,885 ± 2,539 

3Percent error .. (standard deviation x 100)/mean. 

Percent error3 

2.2 

3.6 

1.0 

0.5 

2.0 

3.5 

2.9 

1.3 
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Uniformity of 45ca label within osteopetrotic collagenase-treated bone 
chip pairs 

Bone chips1 Weight(mg) Counts/mg 

Frontal 
left 1.9 195,993 
right 1.8 204,737 

left 2.3 191,460 
right 1.8 200,805 

left 1.6 205,106 

right 1.4 214,525 

Parietal 
left 2.9 168,867 
right 3.3 173,835 

left 3.0 167,4n 

right 3.0 161,762 

left 1.7 169,231 
right 2.6 170,794 

Occipital 
left 2.4 194,275 
right 2.4 202,712 

left 2.3 185,005 
right 2.5 201,975 

left 2.1 186,157 
right 2.0 194,709 

1samples taken from three 13-day-old rats. 

2Mean ±standard deviation in counts/mg. 

3Percent error = (standard deviation x 100)/mean. 

Mean2 Percent error3 

200,365 ± 6, 183 3.1 

196, 133 ± 6,608 3.4 

209,816 ± 6,660 3.2 

171,351 ±3,513 2.1 

164,620 ± 4,041 2.5 

170,013±1,105 0.6 

198,494 ± 5,966 3.0 

193,490 ± 11,999 6.2 

190,433 ± 6,047 3.2 
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Figure 1. 

Mean percent ~ S.D. 45 ea release over a two week period from 

freeze-thawed (5.7% ± 2.1%) and collagenase-treated (6.8% ± 3.2%) 

osteopetrotic calvarial bone chips in diffusion chambers 

implanted into normal rats. 
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Figure 2. 

45 Mean percent + S.D. Ca release over a two week period from 

freeze-thawed and collagenase-treated osteopetrotic bone chips 

implanted directly into normal and ia rats. Normal recipients 

demonstrated mean label releases of 15.9% + 5.3% and 30.9% + 2.8% 

from freeze-thawed and collagenase-treated bone chips respec­

tively. Osteopetrotic rats had mean 45 ea releases of 25.9% + 

5.3% from freeze-thawed and 26.3% + 6.7% from collagenase-treated 

bone implants. 
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APPENDIX B 

This Appendix represents data obtained through the combined 

efforts of the author and Ada A. Cole, a fellow graduate student. 

Because this document will be included in both disserations, the 

Graduate School has ruled that this work can be included within the 

dissertation of each student, but only in an Appendix, separate from 

the main body of each dissertation. 
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TARTRATE-RESISTANT ACID PHOSPHATASE IN BONE AND CARTILAGE 

FOLLOWING DECALCIFICATION AND COLD-EMBEDDING IN PLASTIC 

ABSTRACT 

Tartrate-resistant acid phosphatase (TRAP) has been proposed as 

a cytochemical marker for osteoclasts. We have developed an improved 

technique for the localization of TRAP in rat and mouse bone and cart­

ilage. This procedure employs JB-4 plastic as the embedding medium, 

permits decalcification, and results in improved morphology compared 

with frozen sections. Peritoneal lavage cells were used to determine 

the appropriate isomer and concentration of tartrate necessary for 

inhibition of tartrate-sensitive acid phosphatase. Following incuba­

tion in medium containing 50 mM L(+)-tartaric acid, osteoclasts and 

chondroclasts were heavily stained with reaction product. On the 

basis of their relative sensitivity to tartrate inhibition, three 

populations of mononuclear cells could also be distinguished. These 

three populations may represent: (1) heavily stained osteoclast/ 

chondroclast precursors, (2) sparcely stained osteoblast-like cells 

lining the bone surface, and (3) unstained cells of monocyte/macro­

phage lineage. Our results are consistent with the use of TRAP as a 

histochemical marker for study of the osteoclast. 
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INTRODUCTION 

On the basis of sensitivity to tartrate inhibition, two types of 

acid phosphatase can be identified in bone. Both forms have been bio­

chemically characterized with respect to substrate specificity, pH 

optima, and have been shown to be functionally responsive to osteo­

tropic hormones~ vitro (Anderson and Toverud, 1982; Ibbotson et al., 

1984; Minkin, 1982; Wergedal, 1970). The tartrate-sensitive acid 

phosphatase has been cytochemically localized in osteoblasts, osteo­

cytes, and osteoclasts, while the tartrate-resistant acid phosphatase 

(TRAP) is present in osteoclasts (Hammarstrom et al., 1983; Minkin, 

1982). Osteoclasts have been identified primarily by morphological 

criteria as large multinucleated cells which contact calcified bone 

matrix and exhibit ruffled borders surrounded by clear zones (Gothlin 

and Ericsson, 1976). Tartrate-resistant acid phosphatase as a histo­

chemical and biochemical marker for the osteoclast would provide an 

additional experimental tool for studying osteoclastic differentiation 

and function. Baron et al. (1986) employed TRAP as such a marker for 

the cytochemical identification of proposed osteoclast precursors at 

both the light and electron microscopic levels. 

Various investigators have used different techniques to localize 

TRAP within tissues making comparison of the results of the studies 

difficult. Unfixed, frozen sections have been used to localize bone 

TRAP in~ (Hammarstrom, et al, 1983; Minkin, 1982). These methods 
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demonstrate enzyme product, but lack of fixation results in a loss of 

morphological detail. Chappard et al. (1983) describe a TRAP proce­

dure which includes cold-embedding in a mixture of glycol and methyl 

methacrylates. This technique requires sectioning of undecalcified 

bone and the purification of methacrylates. We have incorporated 

glutaraldehyde fixation into a histochemical procedure based on the 

cold-embedding method of Namba et al. (1983) which utilizes commmer­

cially available JB-4 (Polysciences, Inc.) as the embedding medium 

eliminating the need for purification of methacrylate. In addition, 

our procedure permits the use of EDTA decalcified bone and cartilage 

for ease in sectioning. The description of this technique includes an 

evaluation of two isomers of tartaric acid, L(+)- and D(-)-, as 

effective inhibitors of tartrate-sensitive acid phosphatases. This 

evaluation was accomplished through the use of peritoneal lavage 

cells, the majority of which are macrophages known to contain 

tartrate-sensitive acid phosphatase (Schneider et al., 1981; Seifert, 

1984). Rodent peritoneal macrophages appear to be capable of bone 

resorption~ vitro and have been repeatedly investigated as a poss­

ible cell source of osteoclast precursors (McArthur et al., 1980; 

Teitelbaum et al., 1979). The use of peritoneal lavage cells, there­

fore, provides not only a means to evaluate the effective inhibition 

of tartrate-sensitive acid phosphatase, but also a means to compare 

the acid phosphatase characteristics of these proposed osteoclast 

precursors with those of in situ osteoclasts. Our procedure is an 
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attempt to provide a convenient and reproducible method for TRAP 

localization within skeletal tissues. 

MATERIALS AND METHODS 

Animals 

All animals used for this study were obtained from breeding 

colonies housed in a centrally located, fully accredited animal care 

facility. 

Fixation and Embedding 

Except where indicated, all of the following procedures were 

conducted at 4°C (Namba et al., 1983). Proximal tibiae from 2 week 

old rats and proximal femurs including growth plates from 1 week old 

mice were removed and dissected free of adherent soft tissue. Tissues 

were fixed for 2 or 4 hours in either 3.7% formalin in phosphate 

buffer (pH 7.4) (Lillie, 1965) with 7% sucrose or in 2.5% cacodylate­

buffered glutaradehyde (pH 7.4) containing 7% sucrose, rinsed 3 times, 

and stored overnight (17-19 hr) in the appropriate buffer. Both bones 

and growth plates were decalcified for 48 hours in 10% EDTA in Tris 

buffer, pH 7.4 (Pearse, 1968). Undecalcified tissue was used as a 

control. The formalin-fixed tissue was dehydrated in 50, 75 and 95% 

(2 changes) acetone for 15 min each; the glutaraldehyde-fixed tissue 

was dehydrated in either 50, 75, and 95% (2 changes) ethanol or ace-
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tone for 15 min each. The tissue was infiltrated overnight in JB-4 

solution A with catalyst (Polysciences, Inc., Warrington, PA) and· em­

bedded in complete JB-4 medium in BEEM or gelatin capsules. During 

embedding, the capsule trays were placed on cracked ice to reduce the 

high temperature which accompanies JB-4 polymerization at room tem­

perature. The blocks were allowed to polymerize overnight at 4°c. 

0 Sections (3 um) were cut dry at 25 Con a Dupont Sorvall JB-4 micro-

tome with glass knives and placed on ice-cooled slides which had been 

alcohol-cleaned and gelatin-subbed. The sections were allowed to 

0 air-dry at 4 C for 5-7 days. 

Preparation of Peritoneal lavage cells 

Cells obtained by peritoneal lavages from adult mice and 4 week 

old rats were used as a control to determine the appropriate isomer 

and concentration of tartrate for inhibition of tartrate-sensitive 

acid phosphatase. The abdominal cavity was injected with 10 ml of 

0.9% saline and massaged for 2 min. The peritoneal fluid was removed 

and centrifuged. The cell pellets were resuspended in 0.5 ml of 0.9% 

saline. The cells were smeared onto gelatin-coated glass slides, air~ 

0 dried at 4 C, fixed in 3.7% formalin fumes for 5 min, and stored at 

Histochemical Staining 

Burstone's complete medium for acid phosphatase (Pearse, 1968) 
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was prepared by dissolving 4 mg naphthol AS-BI phosphate substrate 

(Sigma, St. Louis, MO) in 0.25 ml of N,N-dimethyl formamide followed 

by the addition of 25 ml of 0.2M acetate buffer (pH 5.0), 35 mg of 

either Fast Red Violet LB or Fast Garnet GBC diazonium salt (Sigma) as 

the coupling agent, and 2 drops (60ul) of 10% MgC1
2

• The media was 

then filtered into acid-cleaned Coplin jars. As a control, the 

substrate was omitted. In addition, sodium tartrate (Mallinckrodt, 

Paris, KY), L(+)-tartaric acid, disodium salt (Sigma), or D(-)-

tartaric acid (Sigma) at concentrations of 1, 32.5, 50, or 100 mM were 

added to individual Coplin jars containing 25 ml of filtered, complete 

0 media in media prewarmed to 37 C. Both tissue sections and peritoneal 

lavage preparations were allowed to come to room temperature and incu-

bated for 30 min to 3 hr. Following incubation, the slides were wash­

ed for 30 min in running water, allowed to air-dry at 25°c, counter-

stained with 1% aqueous Fast Green FCF (Fisher Scientific Co., 

Chicago, IL, C.I. 42053) for approximately l min. Cover slips were 

mounted with Euparol (Gallard-Schlesinger Chem. Mfg. Corp., Carle 

Place, N.Y.), and preparations were examined for the presence or 

absence of reaction product. For each isomer and concentration of 

tartrate, the percentage of stained peritoneal lavage cells per 1000 

cells was calculated. 
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RESULTS 

The red-maroon acid phosphatase reaction product was granular 

and confined to the cell cytoplasm in all tissues, except for some 

diffuse staining of the bone matrix adjacent to osteoclasts. No 

difference in reaction product or intensity was observed between 2 or 

4 hour fixation or between phosphatate-buffered formalin or cacodylate 

buffered glutaraldehyde. The 4 hour glutaraldehyde fixation demon­

strated superior morphological preservation and is the preferred 

fixative. Using cacodylate-buffered glutaraldehyde also eliminates 

possible artifactual staining due to the presence of phosphate in the 

buffer. Decalcification of bone and growth plate for 48 hours at 4°c 

did not decrease the reaction product. When Fast Garnet GBC was used 

as the capture agent, the tissue non-specifically stained yellowish­

orange, and a heavy, red precipitate often covered the sections. With 

Fast Red Violet LB, there was no non-specific staining of the tissue 

and very little precipitate adhered to sections incubated up to 90 

min. Rat bone, incubated for 45 min, gave a strong reaction product; 

in mouse bone and growth plate a 90 min incubation was required to 

give the same intensity. No difference in reaction product was noted 

in sections from tissue blocks stored up to four months; however, 

after six months of storage, decreased reaction product was noted. 

An attempt was made to define the inhibitory concentration of 

each isomeric form of tartrate by determining the concentration at 
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which reaction product was absent from peritoneal lavage cells. At 50 

mM L(+)-tartaric acid, no reaction product was seen in peritoneal 

lavage cells (Table I) or in a population of bone marrow mononuclear 

cells located adjacent to blood vessels. Reaction product localized 

within tissue sections incubated with 50 mM L(+)-tartaric acid 

reflected the presence of TRAP in those tissues. Multinucleated cells 

immediately adjacent to bone or calcified cartilage matrix contained a 

heavy concentrated reaction product uniformly distributed throughout 

the cytoplasm (Fig. 1). The majority of mononuclear cells along the 

bone surface contained a few granules of reaction product which was 

not inhibited even at concentrations as high as 100 mM L(+)-tartaric 

acid (Fig. 2). In addition, small populations of mononuclear cells 

within the bone marrow and perichondrium (Fig. 3) exhibited a staining 

pattern similiar to that of the multinucleated cells (Fig. 1). 

DISCUSSION 

This study describes a technique for TRAP localization in bone 

and cartilage based on a modification of the acid phosphatase 

technique of Namba et al. (1983). The recommended technique is: 

1) fixation in 2.5% cacodylate-buffered glutaraldehyde, 

2) decalcification in 10% buffered EDTA, 3) dehydration in acetone, 

4) embedding in JB-4 medium, and 5) incubation in medium containing 

Naphthol AS-BI phosphate as substrate, Fast Red Violet as capture 
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agent and L(+)-tartaric acid (50 mM) to inhibit tartrate-sensitive 

acid phosphatase. This method results in an easily distinguished 

granular TRAP reaction product within the cells which remained stable 

over a period of months. The enzyme preservation in this technique 

may be due to cold polymerization in JB-4 (Namba et al. 1983), decal­

cification with cold buffered EDTA (Pearse, 1968) or the inclusion of 

sucrose in the solutions used in tissue processing. The addition of 

sucrose has been shown to prevent osmotic damage to cells during pro­

cessing (Pearse, 1968) and is recommended for enzyme preservation 

(Holt, 1959). 

In frozen sections of bone, Hammarstrom et al. (1983) described 

an intense TRAP reaction in osteoclasts and a weak TRAP reaction in 

osteoblasts following incubation with 100 mM sodium tartrate. 

Chappard et al. (1983), using glycol and methyl methycrylate embedded 

sections and 1 mM L(+)-tartaric acid, localized TRAP in osteoclasts 

but not in osteoblasts. Baron et al. (1986) employing an alveolar 

bone model to study osteoclastic lineage, identified TRAP positive 

osteoclasts and mononuclear cells with 10 mM sodium tartrate inhibi­

tion. The authors describe the TRAP containing mononuclear cells as 

members of the mononuclear phagocyte system and probable osteoclast 

precursors. Our study using plastic embedded sections and 50 mM 

L(+)-tartaric acid also demonstrated the intense localization of TRAP 

in osteoclasts. Our results differ from those of Chappard et al. 

(1983) in that mononuclear cells lining bone also contained granules 
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of reaction product although in decreased amounts as compared to that 

found in the osteoclasts. We were able to distinguish populations of 

mononuclear cells present in the bone marrow and perichondrium exhib­

iting the same concentration of reaction product as found in osteo­

clasts. These cells may represent osteoclast/chondroclast precursors. 

A third type of mononuclear cell can be identified based on complete 

inhibition by tartrate. These tartrate-sensitive cells, like the 

peritoneal lavage macrophages, may represent members of the monocyte­

macrophage lineage. Walters and Schneider (1986) examined the TRAP­

staining characteristics of the cell populations recruited to subcu­

taneously implanted bone and suture. The tissue from the implant 

studies was processed through gluteraldehyde fixation, EDTA decal­

cification and JB-4 embedding procedures identical to those used in 

processing the bone and cartilage sections of the present study. They 

found that the macrophage populations surrounding the implants dis­

played similar acid phosphatase inhibition with 50 mM L(+)-tartaric 

acid. Peritoneal lavage cells, tissue macrophages and some bone 

marrow mononuclear cells, therefore, exhibit similar patterns of 

tartrate inhibiton with 50 mM L(+)-tartaric acid while the osteoclast 

does not. With our technique, then, we are able to distinguish the 

osteoclast from some members of the mononuclear phagocyte system. Our 

findings, therefore, differ from those of Baron et al. (1986) who were 

unable to distinguish between members of the mononuclear phagocytic 

system and osteoclasts. This difference could possibly be explained 
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by their use of 10 mM tartrate rather than our higher 50 mM concen­

tration. On the basis of these observations, our studies are con­

sistent with the use of TRAP as a histochemical marker for the study 

of osteoclastic differentiation and lineage. 
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TABLE I. PERITONEAL LAVAGE CELLS STAINED WITH TARTRATE-RESISTANT ACID 

PHOSPHATASE 

INCUBATION MEDIA % STAINED CELLS* 

Control o.oo 

Complete Media 87.60 

with 1.0 mM Sodium Tartrate 74. 77 

32.5 mM 1.20 

50.0 mM 0.20 

with 1.0 mM L(+)-tartaric acid 48.70 

32.5 mM 1.00 

50.0 mM o.oo 

with 1.0 mM D(-)-tartaric acid 80.96 

32.5 mM 80.22 

50.0 mM 82.70 

*Determined from samples of 1000 cells 
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Figure 1. 

Section of 2 week old rat tibia, counterstained with Fast Green, 

demonstrating osteoclasts (arrows) stained intensely with 

granular TRAP reaction product. Original magnification xl60 

Bar = ll.3um 

Figure 2. 

Trabecular bone (rat) with calcified cartilage core (CC) lined by 

mononuclear cells containing a few intensely stained TRAP 

granules (arrows). Note the heavily stained osteoclastic profile 

at the bottom of the field. Counterstained with Fast Green. 

Original magnification xl60 Bar = l0.4um 

Figure 3. 

Heavily stained mononuclear cells (arrows) located in mouse 

perichondrium (P) adjacent to cartilage matrix (C). Chondrocytes 

are negative for reaction product. Counterstained with Fast 

Green. Original magnification xl60 Bar = 13.Sum 
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