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I. INTRODUCTION 

Ll Sickle Cell Anemia 

Sickle cell anemia is a fatal disease prevalant mainly among the black 

population in the United States and Africa. It is also found in parts of Latin 

America, Greece, Italy and India. The sickled erythrocytes are more fragile 

than normal cells, hemolyze readily and consequently have a shorter life than 

normal cells (1 ). The chronic course of the disease is punctuated by crises in 

which the proportion of the sickled cells in blood capillaries is very high (2). 
Aili 

The major manifestations of the sickle cell disease are a chronic hemolytic 

anemia and vaso-occlusive crises that cause severe pain as well as long term 

and widespread organ damage (2). Sickle cell patients have been found to 

have impaired growth and development and are highly susceptible to infections 

(3 ). 

The disease results from the homozygous expression of a mutant globin 

gene (2). Individuals who receive the abnormal gene from both parents have 

sickle cell anemia. Those who receive the abnormal gene from one parent but 

its normal allele from the other have sickle cell trait. Such heterozygous 

individuals are usually not symptomatic since only I % of the red cells in their 

venous circulation are sickled (compared to 50 % in the homozygous) (2). As a 

result of this hemoglobin chain mutation, the solubility of the deoxygenated 

sickle hemoglobin (HbS) is markedly reduced, but the solubility of the 

oxygenated sickle hemoglobin is not affected (I). The mutation leads to 

"sticky" patches in both deoxy and oxy HbS. The sticky patches from two 

deoxy hemoglobin molecules interact to form long aggregates of deoxy HbS 

that distort the morphology of the red cells (I). 



Abnormalities of membrane transport have also been found in sickle red 

cells. Deoxygenation of the sickle cells leads to an increase in passive sodium 

and potassium movements a.cross the sickle cell membranes (4). This has been 

associated with water loss and cell dehydration. There are some investigations, 

however, that report no change in cell water content upon deoxygenation of 

sickle cells (5). Sickle cells have been found to contain high levels of calcium 

(6). This has been suggested to be responsible for triggering cell dehydration 

by creating a selective potassium-loss pathway (the Gardos phenomenon) (7). 

Recently, Berkowitz and Orringer found that during short periods of 

deoxygenation, sickling caused a balanced sodium gain and potassium loss 

without a change in cell water content (8). They also found that passive 

movements of both sodium and potassium in oxygenated sickle cells differed 

significantly from those in normal cells. They suggest a permanent acquired 

defect in the sickle cell membrane, and that potassium and water loss may not 

be direct consequences of deoxygenation. Tosteson and coworkers (9) found 

that sickle cells exposed to oxygen or carbon monoxide decrease their potassium 

content through a pa th way for potassium transport that is activated by both 

cell swelling and decrease in internal pH. They also found that the same 

pathway was responsible for the loss of water in sickle cells and that this 

pathway was independent of the polymerization of sickle hemoglobin (9). 

Although the above findings about the mechanism of dehydration of sickle cells 

differ, they, nevertheless, demonstrate that membrane transport abnormalities 

exist. 

Ll Antisickling Agents 

Although some of the molecular defects of sickle cell anemia are quite 
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well characterized, there is at present no specific treatment for its cure or 

prevention. The presence of either normal adult hemoglobin or elevated levels 

of fetal hemoglobin seems to protect the patients from the manifestations of 

the disease (2). The protective effect of the fetal hemoglobin however, is 

variable, and the prognostic value for measuring the levels of fetal hemoglobin 

is limited (2). Modifying the hemoglobin synthesis by azacytidine has been 

suggested to be useful (10). Of the numerous antisickling agents that have 

been proposed for sickle cell anemia, only few have been found to be clinically 

useful over the years (11). Most of the antisickling agents act by modifying 
.ill;< 

the sickle hemoglobin molecule (HbS) either covalently, like potassium cyanate 

(12) and carbamyl phosphate (13), or noncovalently, like urea (14) and 

L-phenylalanine (15), to prevent deoxygenated hemoglobin from forming 

polymers. Since the concentration of hemoglobin is high inside the red blood 

cells, rather high concentrations of these agents are required in order for 

them to be effective. Under such conditions these reagents may be toxic. 

Therefore, less toxic and more effective drugs, such as the drugs affecting the 

red blood cell membranes may offer an alternative or supplemental therapeutic 

approach to the disease. Some of the membrane active drugs, like procaine 

hydrochloride (J 7) and zinc (16) inhibit sickling of the sickled erythrocytes by 

diluting the intracellular hemoglobin concentration through cell volume change. 

3 



1.3 Cetiedil 

Cetiedil, (a-hexa h ydro-1 H-a zepin yl-1-yl) e thyl-2-cyclohexyl -3-

thiophenacetate, 

f H2COi 

llO-,-C02H . H20 

CH2C02H 

2- OIEXAllYDRO- J!J-AZEP I N-1-YL }[ TllYL o-(YCL011£XYL - 3-Ttl J OP11£NACE TA H 2-m UllOXY-
1, 2, 3-PROPANE TR I CARDOXYLA H liYDllAH (J:J:Jl 

belongs to the class of noncovalent, membrane active drugs. Cetiedil is a 

multifunctional drug that has been available in Europe since the early 70's for 

the treatment of ischemic leg pain due to vascular disease (18). Other 

pharmacological properties of the drug include vascular smooth muscle relaxation 

(19), inhibition of phosphate diesterase activity (20), blockade of the effects of 

bradykinin and serotonin (21 ), analgesia (22), and inhibition of platelet 

aggregation (23). It has also been used to inhibit the sickling of sickle 

erythrocytes (24). 

1.3.1 Clinical Jnvestiirntions on the Effects of Cetiedil on Human 

Erythrocyte 

The use of cetiedil as an antisickling agent was first explored by Cabannes 

(25). He ·found out that cetiedil could diminish the duration and intensity of 

painful crises in sickle cell anemia patients. Chromium-51 survival studies of 

canine erythrocytes treated with 166 µM cetiedil had a T 1; 2 of 16 days, 

compared to 18 days for cells incubated in buffer alone. Similar experiments 

on sickle cells showed that, for control cells, the T 112 was 8.9 days, and that, 

for the cells treated with 166 M cetiedil, it was 9.4 days (~6). This indicates 

4 



that cetiedil is not toxic to the sickle erythrocytes. Furthermore, intravenous 

infusion of cetiedil to male volunteers indicated development of tolerance (27). 

Thus, cetiedil is considered as a potentially unique antisickling drug by some 

physicians. 

1.3.2 The Effects of Cetiedil on Sickle Cell Morphology 

Benjamin and coworkers observed a decrease in the irreversible sickle 

cells (JSC) count at 100 - 200 µM concentrations of cetiedil, but observed no 

effect at concentrations less than 50 µ_w, or greater than 500 µM (26). In 

another study, 400 µM cetiedil decreased the number of sickle cells under 

deoxygenated conditions, whereas 10 mM cetiedil decreased ISC counts and the 

cells became spheroidal, suggesting that ISC's as well as other cells became 

swollen (24). Marked (80 %) reduction of sickle cells at 100 - 500 µM cetiedil 

and 3 % oxygen concentration has also been reported (24). However, no 

significant effect was reported when 500 µM to I mM concentration of cetiedil 

was added to serum at 50 % oxygen saturation (I I). 

1.3.3 Current Understanding of the Antisickling Mechanism of Cetiedil 

The detailed mechanism of cetiedil action on the erythrocyte is not 

clear. Cetiedil does not appear to affect, or to bind, to HbS. Asakura and 

coworkers observed a 20 % increase in hematocrit and over 10 % increase in 

the cell volume after incubating cells with 400 µM cetiedil at 37 °C (24). 

Schmidt and coworkers observed an increase in the cell sodium and water 

contents after incubating cells with I 00 to 500 µ M cetiedil (28, 29). The net 

sodium gain exceeded the net potassium loss. Furthermore, Berkowitz and 

Orringer found that cetiedil inhibits a specific increase in the 
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calcium-dependent potassium permeability across the red cell membrane (30, 

31). They also found that cetiedil did not prevent calcium accumulation or 

inhibit the anion movement. It was therefore suggested that cetiedil inhibited 

Gardos phenomenon by preventing the opening of the potassium-specific gate 

in the erythrocyte membrane. Cetiedil has been found to inhibit ca++_ 

dependent calmodulin interactions with membranes (32) and also calmodulin-

stimulated 3', 5'- nucleotide phosphodiesterase and ca++. ATPase activities 

(33). Recently, cetiedil has been found to affect the trigger mechanism of the 

plasma membrane to inhibit the activation of NADPH oxidase (34). In brief, 

cetiedil appears to interact with erythrocyte membranes to increase cell volume. 

The present study was therefore undertaken in order to better understand 

the molecular mechanism of cetiedil-membrane interaction. 

IA Some Biophysical Methods Used In the Study of Small Molecule Interaction 

with Membrane Components 

Detailed studies of the interactions of small molecules with membrane 

components give useful information about the binding sites and the mechanism 

of interactions. Some common methods that are available to study such 

interactions include isotopic labeling, equilibrium dialysis, ultraviolet difference 

spectrometry, fluorescence spectrometry, nuclear magnetic resonance and spin 

label electron paramagnetic resonance spectroscopy. Each of these methods 

has its own usefulness and gives specific information about the interaction. 

Many of these methods may be used concurrently to provide supplementary and 

complementary information about the system. Some of the major methods that 

were used in this study to obtain both qualitative and quantitative information 

about the interaction of cetiedil with the human erythrocyte membrane 
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components are discussed in the following sections. 

I.4.1 Spin Label Electron Paramagnetic Resonance CEPR) 

The EPR technique is based on the magnetic moment of an unpaired 

electron. Most biological systems, including erythrocyte membranes, give no 

obvious intrinsic EPR signal, because they have no easily detectable unpaired 

electrons. In order to probe the structure of biomembranes and to study their 

interactions with small molecules, the spin label approach is generally used (35). 

Spin labeling generally refers to the introduction of stable nitroxide 
.ii!' 

radicals to biological systems, such as proteins and lipids (36). Different 

membrane components can be selectively labeled with different nitroxide spin 

labels. Generally, the protein spin labels are covalently attached to the protein 

molecules by alkylating, acylating, sulfonylating, or phosphorylating reactions 

(37). The lipid spin labels intercalate amongst the lipid bilayers (38). 

In this study, human erythrocyte membrane proteins were covalently 

la be led by the commercially available piperidinyl nitroxide derivatives of 

sulfhydryl reagent, N-(l-oxyl-2,2,6,6-tetramethyl 4-piperidinyl) maleimide 

(Mal-6). By monitoring the spectral changes of the spin labeled membranes in 

the presence of the interacting species, information about the binding 

interaction such as the equilibrium dissociation constant can be obtained (39). 

Under specific conditions, the labeled proteins exhibit a two-component 

spectrum consisting a narrow and a broad component (40). The narrow line is 

from the weakly immobilized (W) component and the broad line is from the 

strongly immobilized (S} component. The amplitude ratios of these components, 

(W/S), can be measured easily. The high sensitivity of the W/S ratio (41) has 

been used to study hemoglobin binding to membrane. This approach was used 
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m the present study to monitor the interaction of cetiedil with the human 

erythrocyte membrane proteins. 

In order to study the effect of cetiedil on membrane lipids, the fatty acid 

spin label, (3-carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxyl (5-doxyl stearate) 

was used and the change in the hyperfine separation of the extreme peaks (35) 

was monitored as a function of cetiedil concentration. The measured hyperfine 

separation values were used to derive information about the effect of cetiedil 

on the mobility or the environmental polarity of the spin label. 

1.4.2 Nuclear Ma2netic Resonance Spectroscopy (Nl\1R) 

The NMR technique is based on the detections of magnetic moments of 

nuclei with finite spin I, such as 13C and 1H. NMR techniques are widely 

used to provide structural information about molecules in solution. From the 

chemical shift values, the conformation of a molecule or of a particular moiety 

in the molecule can be assigned. Accordingly, for the present study, to obtain 

molecular and structural information about cetiedil in solution, the 13C NMR 

chemical shifts of the carbon atoms of cetiedil in 0 20, methanol and buffer 

were measured. The proton chemical shifts of different concentrations of 

cetiedil in buffer were also measured to obtain additional molecular information 

about cetiedil. 

The observation of binding of a small molecule to membranes by NMR 

methods depends largely on the existence of a measurable change in at least 

one NMR parameter of the system resulting from binding. A change in the 

relaxation times, linewidths, chemical shifts or coupling constants of any 

observable nucleus may be employed (42). By this technique, it is possible to 

monitor the spectrum of either the small molecule or the membrane component 
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and their interactions. Accordingly, to obtain molecular information about the 

cetiedil-erythrocyte membrane interaction, the change in the chemical shifts 

and the linewidths of the carbon and proton resonances of cetiedil in buffer, 

glycerol and membranes were measured in order to monitor the parts of cetiedil 

molecule that were affected upon interaction with the membranes. 

NMR studies may also be used to provide information about the exchange 

of a molecule between two different environments (43). The proton relaxation 

time of water has been used to study the exchange of water between the 

erythrocytes and plasma (44). Water molecules inside red blood cells constantly 
~ 

exchange with water molecules outside (plasma). The exchange time for this 

process is about IO msec at 37 °C (44). The NMR relaxation time of the 

protons of water inside the erythrocytes is longer than that of plasma. When 

plasma is doped with impermeable paramagnetic ions, such as Mn++, the water 

protons of plasma relax faster (<< IO msec) by interacting with the 

paramagnetic ions. When this plasma water enters the cell, it would have 

already relaxed and when the excited water molecule inside the cell enters the 

plasma it would relax faster due to the presence of manganese. This would 

reduce the population of the excited water molecules inside the cell. By 

measuring the relaxation time of cell water in the presence and absence of 

Mn++, and from the population of water outside the cell, the exchange time for 

water can be calculated (44). Thus, for the present study, to investigate the 

effect of cetiedil on water transport across the red cell membranes, cell water 

exchange times were measured in the presence and absence of cetiedil. 

1.4.3 Ultra,·iolet (UV) Difference Spectroscopy 

The partitioning of amphiphilic molecules between hydrophobic and 
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hydrophilic phases is determined by the affinity of the molecule toward a 

particular environment. Several methods are available to measure the 

partitioning properties of these amphiphilic molecules. Some of the methods 

include the separation of the two phases by centrifugation (45), by filtration 

(46) or by dialysing out the free amphiphiles from the amphiphiles in the 

hydrophobic phase and determining the concentration of the free amphiphiles 

in the aqueous phase (47). One should exercise extreme caution in determining 

the free amphiphile concentration in these methods. For example, if the 

amphiphile solubilizes the lipid componeJ!tS (as in the case of chlorpromazine 

and methochlorpromazine (48)), then the lipid bound amphiphiles will also show 

up as the free amphiphile. This could lead to erroneous results in the estimates 

of partition coefficients (49). 

Recently, a UV difference spectrometric technique was developed to 

determine the water/lipid partition coefficients of amphiphilic molecules (50). 

This method takes advantage of a shift in the absorption spectra of the 

amphiphilic molecule upon going from an aqueous to a hydrophobic 

environment. It is an equilibrium technique that does not require the 

separation of the bound and free amphiphile as do the separation methods of 

determining the membrane-buff er partition coefficients. The UV difference 

method is useful for any amphiphile that has an appreciable absorbance below 

its critical micelle concentration and whose absorbance is sensitive to change 

in the environment. Lower amphiphilc concentrations are used in order to 

avoid the formation of mixed micelles with the membrane lipids (46). Partition 

coefficients of amphiphilic molecules such as chlorpromazine, 

methochlorpromazine, cis and trans parinaric acids have been obtained by this 

method and have been shown to be in good agreement with the values obtained 
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by other methods (50). Cctiedil has several chromophores that absorb UV 

light. The UV difference spectrometric method was used to obtain the partition 

coefficient of cetiedil in membranes. 
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II. ST A TEMENT OF THE PROBLEM 

11.1 Specific Alms of the Project 

The primary goal of this dissertation project was to study cetiedil's 

molecular structure and properties in solution, and its interactions with the 

erythrocyte membrane in order to understand its mode(s) of action with 

erythrocyte membrane components and to evaluate the effectiveness of cetiedil 

as an antisickling agent. More specifically, experiments were designed to 

investigate the following four major areas . 
.ii!' 

The Optical and Structural Properties of Cetiedil In Solution 

Does cetiedil contain chromophores so that the optical properties of 

cetiedil in solution can be characterized by UV spectroscopic technique and 

used to determine the concentration of cetiedil in solution? Can we determine 

the structural details of cetiedil in solution and the critical micelle 

concentration of cetiedil in aqueous solution? 

The Partitioning Properties of Cetiedil between the Membranous 

Lipid and Aqueous Phases 

How do cetiedil molecules partition between the lipid and the aqueous 

phases? Using UV difference spectroscopy the partition coefficient of cetiedil 

in the lipid bilayer can be obtained. 

The Binding Properties of Cetiedil to Membrane Proteins and Lipids 

If cetiedil interacts with membrane, what are the binding properties of 

ccticdil to membrane proteins and lipids? Can we determine the equilibrium 
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dissociation constant, Kd, for cetiedil-membrane proteins? Does cetiedil affect 

membrane lipids? Which part(s) of the cetiedil molecule are affected upon 

binding to the membranes? 

11.1.4 The Effect of Cetledil on Water Transport across Red Cell Membranes 

How does cetiedil affect the water transport across the red cell 

membranes? 1H NMR relaxation time measurements can be carried out to 

investigate the problem. 

IT.2 Significance of the Project 

Very little is known about the detailed mechanism of drug action. Clinical 

investigations on cetiedil have shown an increased amount of cell cations like 

Na+ and K +. As a result of this, the cell water content increases leading to 

cell swelling. Since these effects are direct consequences of the alterations in 

membrane transport properties, it is very important to understand the specific 

interaction of cetiedil with red cell membranes. Although existing clinical and 

laboratory investigations have given some phenomenological and biochemical 

explanation about the drug effects on the whole blood cells, investigations with 

more sensitive physical methods are necessary to provide molecular 

understanding of the specific interactions and mode(s) of action of cetiedil in 

the erythrocytes. With the advent of sensitive and/or sophisticated biophysical 

techniques, such as spin label EPR and NMR spectroscopy, it is possible to 

monitor the cellular events at the molecular level. Information on the specific 

interactions of cetiedil with the membrane components and its effects on water 

transport across cell membranes may lead to the development of a more 

effective and more specific drug therapy for sickle cell anemia. This 

13 



investigation also serves as a model system for the general study of drug-cell 

membrane interactions. 
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III. MATERIALS AND METHODS 

Sample Preparation 

111.1.1 Buffers 

The various buffers used in this study included the commonly used 5 mM 

sodium phosphate buffer at pH 8.0 (5P8), and 5 mM phosphate buffer with 

150 mM NaCl at pH 7.4 (5P7.4/NaCI), or at pH 8.0 (PBS). A pH 4 solution, 

5P4/NaCI, was obtained by adding a small amount of HCl to a 5 mM monobasic 

sodium phosphate solution containing 150 mM NaCl to give a pH value of 4.0. 
·~ 

A 0.3 mM phosphate buffer at pH 7.6 (0.3P7.6) was used for spectrin-actin 

extraction. 

111.1.2 Cetiedil Solution 

Cetiedil was obtained from McNeil Pharmaceuticals (Spring House, PA) in 

the form of the citrate salt, and used without further purification. 

Cetiedil is only slightly soluble in water, with a solubility of 0.5 g/dL 

(51). For experiments that required cetiedil concentrations higher than 

0.5 g/dL, a 30 mM stock solution was prepared. For volumetric measurements, 

the Oxford Adjustable Sampler Micropipetting system (Lancer, St.Louis, MO) 

was used. The accuracy of measurement was within one microliter. 45 mg of 

cetiedil was added to 1 mL 5P7.4/NaCI buffer, followed by sonication for about 

2 min and centrifugation at 1,075 g for 5 min to give a clear supernatant. We 

found that the concentration of the supernatant was much higher than 0.5 g/dL 

and was generally about 2.5 - 3.0 g/dL (45 - 54 mM), as determined by UV 

absorption measurements. Without sonication, the supernatant was cloudy. 

The fin al pH of the 30 mM stock solution was 4.0. 
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For the extinction coefficient determination, a precise amount of cetiedil 

was weighed to prepare a 150 IJM solution in buffer, which was subsequently 

diluted with buffer to give cetiedil solutions of various concentrations, ranging 

from 10 to 150 1-1M. 

For 13C and 1H NMR studies, cetiedil was prepared in deuterated 

5P7.4/NaCI buffer. High purity D 20 (99.9 % D) (Norell, NJ) was used to 

prepare the deuterated buffer solutions. For the NMR studies of cetiedil in 

methanol solvent, cetiedil was dissolved in non-deuterated, reagent grade 

methanol. The sample of cetiedil in glycerol was prepared by adding glycerol 

(Baker, N.J.) to a solution of cetiedil in buff er. The viscosity of the solution 

was checked with a Brookfield Synchro - Lectric viscometer (Model L VT -

C/P, Stoughton, MA). 

111.1.3 Red Blood Cells Preparation 

Homozygous sickle blood cells were obtained from the Outpatient Clinic 

of the University of Illinois hospital (Chicago, ILL.) and from Dr. M. Westerman 

of the Mount sinai Hospital of Chicago. Normal adult human packed red blood 

cells were obtained from the Chicago chapter of the American Red Cross 

Society. The red blood cells were washed twice with 40 volumes of PBS at 

1,750 g for 6 min at 4 °C. 

llJ.1.4 Spin Labeled Membrane Samples 

Hemoglobin-free white membrane ghosts in 5P8 were prepared from normal 

or homozygous sickle cells, according to the methods of Dodge et al (52). 

Washed red blood cells were lysed and repeatedly washed (4 to 5 times) with 

5P8 until white membrane ghosts were obtained. Membrane samples (usually 4 
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mg/mL in protein concentration) were incubated with the protein spin label 

N-(I-oxyl-2,2,6,6-tetramethyl 4 piperidinyl) maleimide (Mal-6) (from Aldrich, 

WI) at a concentration of 30-50 g Mal-6 per miJJigram of protein in the dark 

at 4 °C for 1 hour (35). Excess spin label was removed by washing with 5P8 

buffer until the samples gave constant EPR signals. 

Mal-6 spin labeled, spectrin-actin depicted membranes were prepared by 

incubation of labeled membranes at 37 °C in 0.3P7.6 buffer, to solubilize 

spectrin-actin, which was then removed by centrifugation (53). Modified Lowry 

protein assays (54) were used to determine protein concentrations. The assays 

were done on the intact membrane and the supernatant from centrifugation. 

Generally, about 30 ± 5 % of the proteins were removed from the membranes 

to give simplified membranes, which were depleted of the spectrin-actin 

network. The proteins of this simplified membrane sample were mainly Band 3 

protein, as shown by 5 % SDS polyacrylamide gel electrophoresis (Figure 1). 

using the methods of Fairbanks et al (55). 

A fatty acid spin probe, (3-carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxyl 

(5-doxyl stearate) (from Syva, CA) was also used to probe lipids in membrane 

ghost samples. Membrane samples in 5P8 buffer were dialyzed in 5P7.4/NaCI 

buffer before incubation with 5-doxyl stearate at a concentration of 100 g/mg 

protein for 30 min at room temperature (35). Since the membranes have about 

equal amounts of proteins and lipids by weight, the spin label to lipid molar 

ratio was about 1:6. 

Jll.1.5 Preparation of Homogeneous Phospholipid Vesicles 

Homogeneous dipalmitoyl phosphatidyl choline (DPPC) vesicles were 
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Figure I. SOS gel (5.0 % polyacrylamide) electrophoresis of human erythrocyte 

membranes (A) and simplified membranes (B). 
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prepared by the method of Barenholz et al. (56). According to this procedure, 

20 mg of DPPC was first dissolved in 5 mL of acetone and then dried by 

rotary evaporation. The sample was then lyopholized to remove all traces of 

organic solvent. The dry phospholipid was suspended in 5 mL of HEPES buffer 

(20 mM HEPES, 150 mM NaCl; pH 7.4) and vortexed vigorously for IO minutes. 

To make small unilamellar vesicles, the lipid suspension was sonicated with a 

probe sonicator (Model W-10, Ultrasonics, N.Y.), intermittantly (power level 

1.5) at 0 °C for 4 minutes, followed by a 2-minute cooling period for a 

maximum sonication time of 30 minutes. Following sonication, the vesicle 
·~ 

dispersion was centrifuged at 101,000 g for 55 minutes to remove large 

multilamellar liposomes and any probe particles. The clear supernatant, which 

contained the population of homogeneous minimal size vesicles, was removed. 

The concentration of the DPPC vesicles was determined by phosphate assay 

developed by Rouser et al. (57) using ammonium molybdate. Monosodium 

phosphate in distilled water was used to obtain calibration curve for the 

assay. The vesicles were stored at 4 °C and used within 3 days of preparation. 

111.1.6 Cetiedil-Membrane Samples 

The Mal-6 spin labeled membrane and the simplified membrane samples 

were dialyzed in 5P7.4/NaCl overnight. Samples of 5-doxyl stearate spin 

labeled membrane samples were used directly since they were already in 

5P7.4/NaCI. The protein concentrations of these samples were determined, and 

adjusted to 4 mg/mL for the Mal-6 labeled samples, and 6 mg/mL for the 

5-doxyl stearate labeled samples. Various volumes (0 - 200 µL) of 30 mM 

cetiedil stock solution were added to 100 µL membrane samples. Appropriate 

volumes of 5P4/NaCl solution (since the phosphate solution is not a good 
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buffer at pH 4, we simply used this as a control solution, not buffer for the 

acidic cetiedil solution) were added to each of the spin labeled membrane and 

cetiedil mixture to give a constant final volume of 300µL. The final pH of all 

the samples was 6.3. The mixtures of membrane and cetiedil were then 

centrifuged at 38,750 g for 5 min. The supernatant of each sample was 

removed, and the free cetiedil concentrations in the supernatants were 

determined by UV absorption at 233 nm. The pellet membrane samples were 

used for EPR measurements. 

Due to the relatively low sensitivity in the EPR studies, the concentrations 

of cetiedil (in the millimolar range) and of membrane proteins (in the mg/mL 

range) needed in this study were higher than those used clinically or in cellular 

studies, in which µM concentrations of cetiedil per µg/mL proteins were used 

(32, 33). However, the cetiedil-to-protein ratios in both cases are mmoles of 

cetiedil per gram proteins. In a simple equilibrium process, the interaction 

depends on the absolute concentrations of cetiedil rather than on the 

cetiedil-to-protein ratios. This is because the equilibrium will be shifted more 

toward the cetiedil-membrane association state at higher cetiedil concentration, 

and toward the dissociation state at lower cetiedil concentration. In the case 

of limited solubility of cetiedil in the buffer, a precise description of the 

cetiedil-membrane equilibrium in the buffer requires detailed information on the 

partitioning of cetiedil between the membrane and buffer phases. For 

comparison with other studies, simply the "cetiedil added-to-protein" ratio was 

used as a point of reference for comparison. 

111.1.7 Cetiedil-RBC Samples for N~1R Studies 

To 350 µ L of the washed RBC in PBS (85 % hematocrit), 360 µL of PBS 
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and 40 L of cetiedil at 7.26 mM, or 400 L of PBS as controls were added. The 

samples were incubated at 37 °C for 2 hours and then centrifuged at 1750 g 

for 6 min. 300 l.IL of th.e supernatant was removed from the vials and 20 l.IL 

of 20 mM MnC1 2 or PBS was added l hour before the NMR measurements. 

The final concentration of MnC1 2 in the NMR samples was 2 mM, as suggested 

by Pirkle et al. (58). The samples were allowed to equilibrate for half an hour 

before NMR measurements to allow interaction of manganese with water 

molecules outside the cells (59). The hematocrits of the samples at various 

stages of preparation were measured. 

IIJ.2 

III.2.1 

Experimental Measurements 

Cetiedll Extinction Coefficient Measurements 

The UV absorption spectra, in the region of 190 to 400 nm, of cetiedil 

solutions of known concentrations (from IO to 150 µM of cetiedil in 5P7.4/NaCl 

buffer) were obtained on a double beam UV-Vis spectrophotometer (Varian 

DMS 90, CA), and showed a maximum absorption at 233 nm. The absorption 

values at 233 nm (A 233) were measured as a function of cetiedil concentration. 

A simple linear regression analysis was used to determine the extinction 

coefficient of ceticdil. 

IIJ.2.2 Critical Micelle Concentration Determination 

Since cetiedil is an amphiphilic molecule, its solubility in water is limited 

(51). At high concentration, the molecules appear to form micelles in water, 

with monomers and micelles in equilibrium. The critical micelle concentration 

(cmc) of cetiedil was defined and determined according to the method of 

Phillips (60). A mass-action model of mice lie for ma ti on was used. At the cmc, 
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the third derivative of an ideal colligative property of the amphiphile, A 233 of 

cetiedil for this work, with respect to concentration ([C]) is zero (d 3A 233/d[C] 3 

= 0). The A 233 of cetiedil solutions in the concentration range of I - 15 mM 

were measured using a narrow path length, 1.0 or 0.2 mm, optical cell. The 

absorbance values at different concentrations were fitted to polynomial 

equations of varying order: A 233 = a(C] + b[C]2 + c[C]3 + ... + n(C]m, where a, 

b, c, ·etc., were parameters to be determined from experimental data, and m 

was the order of the polynomial equation. The third derivatives of these 

polynomial equations with respect to concentration were set to zero to solve 

for cmc values. 

111.2.3 pH Measurements 

For the pH effect studies, various amounts of 30 mM cetiedil stock 

solution in PBS were added to PBS, or to blood scrum, to give a concentration 

range of cetiedil of 4.3 µ M to 20 mM. The pH was measured at room 

temperature, in an open system exposed to air by Beckman Digital pH meter 

(model 3500) with Ingold (Andover, MA) combination pH electrode (model 

18513). After adding cetiedil to serum, the contents were constantly stirred. 

During this time, the dissolved carbon dioxide escaped from the acidified 

serum. The pH values stabilized usually 5 minutes after the addition of 

cetiedil. 

II 1.2.4 UV Difference Spectroscopic Measurements 

The UV difference spectral measurements were made following the 

procedure of Welti et al. (50). The Varian DMS 90 spectrophotometer was used 

for all measurements. Regular absorption spectra were obtained in 1-cm light 
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path quartz cuvettes with the appropriate reference of either 5P7.4/NaCl buffer 

or erythrocyte ghost membrane (4 mg/mL) in 5P7.4/NaCI buffer. Difference 

spectral titrations were done in tandem cuvettes with buffer in a 0.45 - cm 

compartment and a solution of cetiedil in another equal light path compartment 

of both the reference and sample cuvettes. With this setup, first a baseline 

spectrum was recorded and stored. The baseline correction mode was activated 

to avoid baseline drifts in the subsequent measurements. 

A titration was performed by adding various amounts of membrane ghost 

(4 mg/mL) in 5P7.4/NaCI buffer to the compartment containing cetiedil solution 
A!' 

in the sample cuvette and to the compartment containing buffer in the 

reference cuvette. The solution was mixed by repeated pipetting with a pasteur 

pipet. Equal volumes of buffer were added to the compartments not containing 

membranes. The lipid concentration of the membrane ghosts (0.50 µmol of 

phospholipid per mg of proteins as calculated by Welti et al., (50)) in the 

sample mixture ranged from 6.7 to 113.2 µM. The concentration of cetiedil in 

all sample mixtures was 400 µM. After the addition of membrane ghosts, the 

samples were allowed to equilibrate for 5 min at room temperature before the 

spectrum was recorded. The difference spectra were recorded between 220 and 

290 nm. No settling of the membrane ghosts was detected during the 

measurements. The positive amplitude of the difference spectra was measured 

to obtain A values. This was done by measuring from the baseline of the 

difference spectrum to the maximum of the spectrum (250 nm). 

111.2.5 Nf\1R Absorption Spectra Measurement 

111.2.5. l 13C Nf\1R 
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isc NMR spectra were recorded at 90 MHz and 50 MHz using a Nicolet 

NIC 360 and Nicolet NIC 200 (Nicolet Magnetics Corporation, WI) spectrometers 

with 12 mm sample tubes. The "Bilevel" pulse sequence (one-pulse with 

two-level decoupling) was used to record the spectra (61 ). The pulse sequence 

is written as [03, P2, A, 0 2, 0 6), where 0 3 is a delay time that is allowed for 

relay switching times (usually 1 µsec), P 2 is an excitation pulse, A is the 

acquisition trigger, 0 2 is the aquisition time. A delay time of 0 6 was allowed 

before repeating the pulse sequence. 

The "Bilevel" pulse sequence is used typically for heteronuclear broadband 
... !> 

decoupling, where high decoupler power is needed during data acquisition, but 

a lower power level can be used between scans to maintain the nuclear 

Overhauser enhancement (nOe). 

For spectra of cetiedil in different solvents at 26.5 mM, 1000 scans 

(about 3 hours) were collected. The time averaged free induction decays (FID) 

were Fourier transformed to give the spectra in the frequency domain. 

For the spectrum of cetiedil in methanol, the solvent signal was used as 

the internal reference to obtain the chemical shifts of cetiedil carbons. As for 

cetiedil in 0 20 and in deuterated buff er solutions, the chemical shifts were 

obtained by direct comparison to the methanol spectrum. For this, the same 

offset value of the pulse carrier frequency was used as in the case of the 

methanol spectrum (62). 

For cetiedil in the presence of membranes, more scans were required in 

order to improve the signal-to-noise. Usually, 20 blocks of 1000 FID/block 

(about 60 hours) were collected. Typical parameter settings for 13C NMR 

experiments are given in Table l. 

The linewidths of the carbon resonances were measured by fitting the 
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data points to a Lorentzian line shape function and reported in units of hertz 

(Hz). No line broadening factor was used. 

111.2.5.2 lH NMR 

Proton NMR spectra were recorded at 200 MHz using a Nicolet NIC 200 

spectrometer with 5 mm sample tubes. The PRESA T (one-pulse with decoupler 

presaturation) pulse sequence was used to record the spectra (61). According 

to this pulse sequence, the decoupler is turned on for D8 seconds before 

pulsing, so that the solvent peak can be saturated. After a delay of D4 
.ii!> 

seconds, the excitation pulse, P2 is set followed by data aquisition, A and 

delay for acquisition, D 2• The pulse sequence is written as, [D8, P2, A, D2, 

0 6]. Typical parameter settings for the 1H NMR experiments are given in 

Table I. 

Ill.2.6 EPR Experiments 

EPR samples were introduced into 50 L microhematocrit capillary tubes 

(nonheparinized, Type II glass, American Scientific, ILL.) following the 

procedures used in this laboratory (35). An EPR spectrometer (Varian model 

£109) interfaced with a time averager (Nicolet model 535) and a variable 

temperature set up (Varian), was used to obtain the EPR spectra. The 

temperature of each EPR measurement was controlled and monitored with copper 

- constantan thermocouple placed inside the sample tubes to within 0.1 °C. 

The EPR spectrometer settings used for measuring the spectra are given in 

Table 2. 
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Table 1, Spectral Parameters for NMR Experiments 

Parameter llC NMR 

Spectrometer Frequency (MHz) 9o.soa 

50.02b 

Spectral Width (Hz) 20,000 

Excitation Pulse, P2 (µsec) 13.00 

Memory Size 16 K 
,,jj!' 

Data Aquisition Time, A (sec) 0.410 

Delay Time, D2/D3 (sec) 0.0001 

Pulse Delay D6 (sec) 10.00 

Number of Scans 1oooc 

20 x loooe 

a Nicolet NIC 360 spectrometer. 

b For spectra taken with Nicolet NIC 200 spectrometer. 

c 

d 

e 

f 

For cetiedil in D 20, methanol, buffer, and glycerol solvents. 

For cetiedil in buffer. 

For cetiedil in membrane. 

For cetiedil in membrane. 
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200.07b 

2000 

5.50 

SK 

2.05 

3.00 

0.10 

600d 

20 x 600{ 



Table 2. Spectral Parameters for EPR Experiments 

Parameter Samples 

Mal-6 l,abeled 5-Doxyl Stearate 

Labeled 

Microwave Power Attenuation 16 16 

(decibals) 

Modulation Frequency (KHz) 100 100 

Modulation Amplitude (Gauss) 
~ 

Time Constant (sec) 0.128 0.128 

Scan Time (min) 2 2 

Number of Scans 4 

Field Set (Gauss) 3181 3205 

Microwave Frequency (GHz) 8.65 8.65 

Scan Range (Gauss) 25 100 
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Jll.2.7 Water Exchanee Time Measurements 

111.2.7. 1 Cell Volume Measurements 

111.2.7.1.1 Determination of Hemoglobin Concentration 

The procedure devised by Tentori and Salvati (63) was followed for 

determining the total hemoglobin concentration. According to this procedure, 

20 µL of the blood sample (NMR sample after NMR measurements) was treated 

with· 5 mL of the cyanide reagent which contained 607 µM potassium 

f erricyanide (K 3Fe(CN)6), 768 µM potassium cyanide (KCN), mM potassium 

dihydrogen phosphate (KH 2PO") and a non-ionic detergent (1 mL/L, Triton 
.ti!i 

X-100). Potassium ferricyanide oxidized the hemoglobin to methemoglobin with 

cyanide as ligand to give Hb+ - CN-. The detergent enhanced hemolysis and 

prevented turbidity introduced by the membrane proteins. The absorbance of 

the resulting solution was read at 540 nm after letting the mixture equilibrate 

for half an hour. The hemoglobin concentration was calculated from the 

equation, 

A 640 x F x M 

[H b] (g % ) = ------------------------.... ---------

where, F =dilution factor; M = molecular weight of hemoglobin chain (16 KDa); 

L = light path in cm; A640 = absorbance of Hb+ - cN- solution at 540 nm; 

£ 540 = molar extinction coefficient of the cyanomet hemoglobin at 540 nm 

(11,000 M-1 cm-1). 

Ill. 2. 7. 1. 2 Cell Volume 

The total number of cells was obtained by di' iding hemoglobin 
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concentration, obtained by the above method, by the mean corpuscular 

hemoglobin concentration (MCHC, 29 ± 2 pg/cell for normal cells (59), and 32 

± 2 pg/cell for sickle cells (2)). The average cell volume (in mL) was 

determined by dividing the hematocrit value by the total number of cells. The 

cell volume measurements were done after each NMR measurement. 

Jll.2.7.2 Soin - Spin Relaxation Time 

Water proton spin-spin relaxation times, T 2, of the blood samples were 

measured at 37 °C in a Nicolet NIC 200 spectrometer (Nicolet Magnetics 
,..~ 

Corporation, WI) using the Carr-Purcell-Meiboom-Gill pulse sequence (90-i-180, 

where i is the delay between the 90 and 180 degree pulses) (64, 65). Sample 

points were taken on the top of each echo. This was achieved by using a 

continuously variable delay trigger after the 180 degree pulse of the CPMG 

sequence. 16 scans were signal averaged for each sample. Independent T 2 

measurements were made on packed red blood cells (control) by fitting the 

relaxation data to a single exponential function which relates the decay of 

magnetization to T 2• For Mn - doped samples, the decay of the echo 

amplitudes was resolvable into two exponential components; a fast component 

and a slow component. The time constant characteristic of the slower 

component, which is related to the water diffusion exchange time, Tex• was 

determined from the decomposition of this decay by a non-linear least squares 

computer program (section IIl.3.3). The experimental parameters used for 

measuring the T 2 values are given in Table 3. 

111.2.7.3 Measurement of Change in the Intracellular Water Content 

In order to determine the effect of cetieedil on intracellular water 
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Table 3. Experimental Parameters for lH of Water Relaxation Time 

Measurements 

Spectrometer Frequency (MHz) 

Spectral Width (Hz) 

Scans 

90° Pulse (usec) 

180° (µsec) 

Acquisition (mscc) 

Recycle Time (msec) 

a For cells with Mn++. 

b For cells without Mn++. 
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200.07 

1000 

16 

7.5 

15.00 

,MtJ 512.00 

o.1ooa 

0.200b 



content, the changes in the cell water content were measured. This was done 

by two methods: the NMR method and the hematocrit measurement method. 

In the NMR method, a~ discussed in the previous section, the spin - spin 

relaxation data of the packed cells were fitted to a single exponential 

function. The intercept (the echo amplitude) of the CPMG decay curve at 

t = 0, which is directly proportional to the amount of cell water, was 

measured. From the difference in the echo amplitudes of the samples before 

and after treatment with cetiedil, the change in the cell water content was 

determined. 
""~ 

Although the hematocrit measurement is not a direct method of 

determining cell water content, it could still be used to determine changes in 

water content. Thus for the present study, the hematocrit values of RBC 

before and after treatment with cetiedil were measured. From the difference 

in the hematocrit values of samples before and after treatment with cetiedil, 

the change in the cell water content was determined. 

l!L1 

111.3.1 

Data Analysis 

UV Difference Spectral Data Analysis 

In order to determine the concentration of cetiedil bound to the 

membranous lipids accurately, the change in the absorbance of cetiedil in the 

membranous lipid phase, 6A, was measured (50). 6A is proportional to the 

amount of lipid-associated cetiedil. At high membrane lipid concentrations, 6A 

approaches 6Amax• the value corresponding to JOO % cetiedil bound. Then 

f:A/f:Amax• at a given membrane lipid concentration, is the fraction of total 

cetiedil associated with membrane lipid. From the knowledge of the fraction 

of cetiedil in the membrane lipid phase and in the buffer phase, the molar 
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partition coefficient of cetiedil between buffer (water) and membrane lipid was 

defined as 

or, 

mot of cetiedil in lipid/mot of lipid 

I( = --------------------------------------------p 

mot of cetiedil in water /mot of water 

fraction of cetiedil in lioid/[lipid] 
,J!> 

I( = --------------------------------------------p 

fraction of cetiedil in water /[water] 

(I) 

(2) 

where [lipid] and [water] are expressed as molar concentrations. Since the 

fraction of cetiedil in lipid and the fraction of cetiedil in water added up to 1, 

(6A/6Amax)/[lipid] 

I( = -----------------------p (3) 

(I - 6A/6Amax)/[water] 

The above equation was rearranged to give 

[water] 

l/oA = + ------- (4) 

[lipid] 

The above equation was used to obtain 6Amax and I<.P from the plot of l/oA vs 

l /[lipid]. 
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III.3.2 EPR Data Analysis 

III.3.2. 1 S-Doxyl Steara te La be led Samples 

The hyperfine separation (HFS) of the high field and low field EPR 

signals of labeled membrane samples were measured as a function of cetiedil 

concentration (35). 

ITT.3.2.2 Mal-6 Labeled Samples 

The W /S ratios (39) of membrane samples without cetiedil, (W /S)
0

, and of 

membranes with a certain amount of cetiedil present, (W /S)cet• were 

measured. (W /S)cet• the difference between 
.""l/ 

(W /S)
0 

and (W /S)cet• was 

calculated and used to obtain quantitative information on the interaction 

between cetiedil (C) and membranes (M). 

A general cooperative binding model was first assumed for membranes 

with n binding sites, M + nC ---> MC
0

• For this model the equilibrium 

dissociation constant, Kd, was equal to [C] 0 [M]/[MC
0
], where [M] was the 

final membrane concentration, [C] was the concentration of free ceteidil, in 

equilibrium with the bound cetiedil, and [MC
0

] was the concentration of the 

membrane-cetiedil complex. If f b was the membrane fraction that interacted 

with cetiedil, then, f b = [MC
0
]/([MC

0
) + [M]). Combining the Kd and f b 

expressions given above, the following expression was obtained: 

(5) 

Assuming that the changes in the W /S ratio observed upon addition of cetiedil 

to the membrane were the direct results of cetiedil interacting with the 

membrane to reduce the spin label mobility, the EPR data could be related to 

f b to obtain values for the Kd. Assuming (W/S)b as the W /S value for 
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membrane bound with cetiedil, then (W /S)cet = f b(W /S)b + (l - f b)(W /S)
0

, or 

6 (W /S)cet = f i{i(W /S) ... (6) 

where 6(W /S) ... = (W /S)0 - (W /S)b. Substituting equation (5) into equation (6), 

the following equation was obtained: 

(7) 

~ 

When n = I, this equation became the equation for the two-state binding model 

for membranes with multiple independent binding sites, M + C ---> MC. 

6(W/S)cet and [C] values were experimental data. Kd• 6(W/S) ... and n could be 

obtained from equation (7) using nonlinear regression methods. The n values, 

which indicate the cooperativity of binding, were also obtained by Hill plots. 

The half saturation concentration, C112, was the cetiedil concentration that 

gave a t:J...W/S)cet value that was half of the 6(W/S) ... value, and was obtained 

from the nonlinear regression analysis. 

111.3.3 Water £xchane.e Time Data Analysis 

The measured relaxation time of water protons of RBC results from the 

water exchange across the cell membranes which is superimposed on the 

ordinary spin-spin relaxation of water in the cell (66). In order to obtain the 

exchange time of water across the cell membranes, the relaxation data of the 

Mn - doped samples were analyzed using the theory of two-site exchange (58). 

Assuming no significant chemical shift difference between the water molecules 

inside and outside the cell, Woessner (67) has derived the following normalized 
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expression for the effect of two-site exchange on the CPMG decay: 

(8) 

where, M(t) represents the magnetization at time t, B is a baseline correction 

factor, T 2a' and T 2b' are the apparent relaxation times of water molecules 

inside and outside the cell, respectively and Pa• and Pb' are the apparent 

fractions of the echo amplitudes from the intra- and extra- cellular water 

molecules, respectively. 
~ 

The relaxation data of Mn-doped sample were first fit by Equation (8) by 

non-linear least squares method to obtain Pa'. T 2a' and T 2b' 

where, 

1/T2a' = C1 - C2 

l/T2b'=C1+C2 

where, 

Pb' = 1 /2 - I /4[(Pb - P a)(I /T 2a - I /T 2b) +I/Tex + I /tb1/C2 

C1 = l/2[1/T2 + l/T2b + I/Tex +l/tb] 

C2 = 1 /2[(1/T2b -1/T2 + I /tb - 1 /T ex) 2 + 4/T extb]112 

pa= I - Pb 

pa/Tex = Pb/tb 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

In the above equations, T 2 is the spin - spin relaxation time of water inside 
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the cell (packed cells), T 2b is the relaxation time of water outside the cell, tb 

is the residence time of water outside the cell,and Pa and Pb are the fractions 

of the echo amplitudes of water molecules inside and outside the cell 

respectively. The values of Pa'. T 2a' and T 2b'were then used in Equations 9-

16 and the values of T 2b, Tex• tb, Pa and Pb were calculated. The exchange 

time is related to the diffusional water permeability constant, P w• by the 

equation (44), 

(17) 

where, V is the cell volume and A is the surface area of RBC. For the 

calculation of the permeability constants, the cell surface area was taken as 

140 x 10-8 cm2 (68). P w is expressed in cm/sec. Equation 17 was then used 

to obtain the diffusional permeability constant. 
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IV. RESULTS AND DISCUSSION 

l\'.1 Molecular Properties of Cetiedil 

IV.1.1 pH Effects 

Figure 2 shows the pH of the drug molecule, cetiedil citrate, in PBS and 

in blood serum as a function of cetiedil concentration. In PBS, addition of 500 

iM cetiedil causes the pH of the buffer to drop from 8.0 to 7.7. At 20 mM 

ccticdil, the pH is about 6.3, and at 30 mM, the pH is 4.0. 

This sharp change in pH upon addition of sgtiedil to buffer was probably 

due to the citrate moiety that was present with cetiedil as a counterion. The 

pK 2 of citric acid is 4.76 and pK3 is 6.4 at 25 °C (69). The first ionizable 

proton (pK 1 = 3.1) of the three carboxylate groups in citrate is neutralized by 

the positive charge on the tertiary ammonium group of azepine ring, which has 

a pKa of about 10. Various concentrations of citric acid solutions in PBS were 

also prepared and their pH values were compared with those of cetiedil 

solutions. The pH profiles of cetiedil citrate and citric acid in PBS were 

similar. 

The pH effect of the drug molecule was also tested on blood serum in a 

similar manner. Although the pH profile of ceticdil in serum in Figure 2 looks 

similar to that in PBS, the curve is slightly right shifted, indicating that the 

buffering capacity of blood serum is somewhat better than that of PBS. The 

pH of the scrum remains constant upon addition of cetiedil up to about 0.5 mM, 

and it drops to about 6.5 at 20 mM ceticdil. Thus the pH titration experiments 

clearly showed that the drug molecule became acidic at concentrations greater 

than 500µM. 
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' figure 2. pH profile of cetiedil in blood serum (plus) and in PBS (triangle). pH 

measurements were made on a Beckman Model 3560 Digital pH meter 

using an Ingold Micro pH Electrode at room temperature. The pH of 

the blood serum was 7.78. The lines shown through the data are 

spline fits and have no theoretical significance. 
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Extinction Coefficient of Cetiedil 

The maximum UV absorption of cetiedil in 5P7.4/NaCl buffer is at 233 nm 

(inset of Figure 3). The molar extinction coefficient at 233 nm (E 233) 

determined from the slope of a linear plot of A 233 versus cetiedil concentration 

over the range of 10 to 150 M was 2796 M- 1 cm-1 (Figure 3). The 

chromophores in cetiedil appear to be the thiophene (sulfur-containing 5 

membered ring) and the azepine (nitrogen-containing 7 membered ring) groups, 

both of which absorb in the UV region. For thiophene, the maximum 

absorption is at 231 nm, and the E 231 is 7, IO~M-1 cm-1 (70), and for azepine, 

the maximum absorption is at 226 - 229 nm, and the E 227 is 13,780 M-1 cm-1 

(71). The low value of the extinction coefficient of cetiedil compared to that 

of its components suggested that the absorption is less efficient in the case of 

cetiedil (72). The nitrogen atom of azepine ring in cetiedil is protonated in 

buffer and so the absorption due to that moiety is affected. Therefore, the 

spectrum was basically due to the absorption by the substituted thiophene 

moiety. The observed molar extinction coefficient, 2796 M-1 cm-1 for cetiedil, 

however, is much less than 7100. The absorbtion characteristics of substituted 

heteroaromatic compounds depend on the substitiuents present in the ring and 

also on the solvent (70). The presence of electron withdrawing substituents in 

thiophene ring such as nitro group (-N0 2) causes a red shift in the absorption 

maximum to 268 - 272 and the extinction coefficient decreases to 6,300 M- 1 

cm-1 (70). Thus in cetiedil the decrease in extinction coefficient may be due 

to the substituent on thiophene ring, the substituted ester group (cyclohexyl 

and azepinyl). 
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Figure 3. Plot of A 233 versus concentration of cetiedil in 5 mM phosphate 

buffer with 150 mM NaCl. Inset shows the UV spectrum of cetiedil 

with maximum absorption at 233 nm. The molar extinction coefficient 

was determined from the slope of the line. 

~. 
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IV.1.3 Cetiedil Micelles 

Figure 4 shows that the A 288 (I mm light path) values of cetiedil in 

SP7.4/NaCl buffer level off at higher cetiedil concentrations, above 8 mM. The 

instrument performance at high absorbance was checked to ensure linear 

response. Straight lines were obtained for absorbance versus concentration 

plots for benzoic acid at 230 nm (Figure SA), and for hemoglobin solutions at 

280 nm (Figure SB). Light scattering at 233 nm was also checked by monitoring 

the absorbance of membrane solutions. A linear response was also obtained at 

high absorbance (2 - 3) (Figure SC). The Jewelling off phenomenon in cetiedil 

solutions at high concentration is then attributed to micelle formation. The 

relationship between the absorbance and concentration was fit to polynomial 

equations to determine the critical micelle concentration as discussed in section 

IJJ.2.2. Polynomial equations with orders equal to 4, 5, 6, 7, and 8 all gave 

reasonably good fits to the experimental data. The average value of the cmc 

from these fitted polynomial equations was 8.8 ± 0.3 mM. 

Solvent Effects on the Conformation of Cetiedil Molecules in 

Solution 

In all the solvent systems studied, the 18C NMR spectra of cetiedil 

consisted of three distinct regions: the downfield carbonyl region (172 - 180 

ppm), the middle region of the aromatic thiophenyl carbons (120 - 139 ppm), 

and the upfield region of the azepinyl and cyclohexyl carbons and also of the 

carbons from the rest of the molecule including the citrate moiety 

(20 - 7S ppm). For cetiedil in D 20 solvent (Figure 6), based on published 

spectra of the compounds that are close structural anologs 
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Figure 4. Critical micelle concentration of cetiedil. A233 versus cetiedil 

concentration in 5 mM phosphate buffer with 150 mM NaCl. Optical 

cells with a J mm light path were used to obtain the A 233 values. 
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Figure 5. Plot of absorbance versus concentration to check the linearity of the 

instrument. A: A230 versus benzoic acid concentration. B: A280 

versus hemoglobin concentration. C: A233 versus concentration of 

membrane lipids. The concentration is expressed in terms of 

phospholipids (4.8 x l 08 phospholipids per membrane ghost; 0.5 µmol 

lipid per mg of membrane protein). 
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Figure 6. 90 MHz 13C NMR spectrum of cetiedil citrate in 0 20 at 23 °C. 

Concentration 26.5 mM; number of scans 1000 (about 3 hours); spectral 

width 20,000 Hz. The numbered peaks correspond to the cetiedil 

carbons (see section 1.3) and the peaks with asterisks correspond to 

the citrate moiety. 
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of the different groups present in cetiedil, the peak assignments were 

determined. Accordingly, the carbonyl carbons of the citrate moiety were 

assigned to the peak at 175.62 p·pm using the published spectrum of sodium 

citrate (73) and the carbonyl carbon of the cetiedil moiety (C-7) was assigned 

to the peak at 178.52 ppm using the spectrum of ethyl acetate (74). The 

thiophenyl carbons (C-2 to C-5) were assigned using the published spectrum of 

3-substituted thiophene (75). Thus the peaks at 127.57 ppm, 137.12 ppm, 123.33 

ppm, and 126.44 ppm were assigned to the thiophenyl carbons, C-2, C-3, C-4, 

and C-5 respectively. The resonances of cyclohijyl carbons (C-18 to C-23) 

were assigned using the published spectrum of methyl cyclohexane (76). Thus, 

C-18 of cetiedil was assigned to the peak at 29.81 ppm; C-19 and C-23 were 

assigned to the peak at 31.24 ppm and carbons 20 and 22 were assigned to the 

peak at 25.67 ppm. The chemical shifts of cyclohexyl carbons of cetiedil were 

very similar to the chemical shifts of the chair form of methyl cyclohexane 

(77). So, it was concluded that the cyclohexyl group of cetiedil is in the chair 

conformation. Using N-methyl piperidine as the model compound (78), C-12 

and C-17 were assigned to the peak at 55.18 ppm, C-13 and C-16 were assigned 

to the peak at 25.67 ppm, and C-14 and C-15 were assigned to the peak at 

23.10 ppm. The C-6, C-9 and C-10 of cetiedil were assigned to the peaks at 

40.15 ppm, 59.43 ppm, and 53.12 ppm respectively, based on the published 

spectrum of ethyl acetate. The chemical shift assignments of the cetiedil 

spectra in methanol, buff er and glycerol were made by comparison with the 

spectrum of cetiedil in D 20. 

The chemical shift assignments of all the cetiedil carbons in methanol, 

and buffer are also shown in Table 4. The chemical shift values have an 

estimated precision of ±0.014 ppm for individual runs. There is a general 
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Table 4. Carbon Chemical Shifts (6) of Cetiedil In Different Sohents • 

Model Carbon 6 fonml 
{;omnound 
Reference D20. Methanol SP7.4/NaCI 

71 2 127.57 127.87 128.22 
71 3 137.12 138.29 137.98 
71 4 123.33 123.40 124.23 
71 5 126.44 126.42 127.25 
70 6 40.15 41.56 40.96 
70 7 178.52 178.94 179.53 
"70 9 59.43 59.86 60.28 
70 10 53.12 54.18 53.93 
74 12,17 55.18 55.69 56.07 
72,74 l 3, 16,20,22 25.67 26.91 26.49 
74 14,15 23.10 _l,4.03 23.95 
73 18 29.81 30.85 30.62 
73 19,23 31.24 32.36 32.04 

Cetiedil concentration in all solvents except membrane was 26.5 mM. In 
the membrane system, the cetiedil concentration was 19.5 mM (in 
5P7.4/NaCl with a final pH of 6.3). All spectra were taken at room 
tempera tu re (23 ± 1 °C). 
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trend in the chemical shifts of cetiedil carbons. The chemical shift of a 

particular carbon is most upfield in D20, and is downfield shifted in methanol 

solvent, as the polarity of the solvent decreases from that of D 20. 

Comparing the 13C NMR chemical shifts of cetiedil in different solvents 

showed that cetiedil probably undergoes overall conformational change as the 

polarity of the solvent changed. For example, the chemical shift of the 

carbonyl carbon (C-7) of cetiedil is more upfield in D 20 solvent than in the 

presence of methanol. The hydrogen bonding capability in water is more than 

that in methanol. For carbonyl carbons, in the absence of other effects, 
. ..rtJ 

hydrogen bond formation usually leads to downfield shifts (79, 80). In the 

case of cetiedil however, the hydrogen bond formation seems to lead to upfield 

shifts. Therefore, there may be other effects such as hydrophobic interactions 

that mask the effect of hydrogen bonding. Hydrogen bond formation is usually 

accompanied by a change in the dipole moment of the interacting species. 

According to the charge-transfer theory, the proton-donor group tends to 

acquire excess electronic density directly from the basic electron-donor 

complement (81). In the case of cetiedil, the proton-donor H of water molecule 

gains electron density from the electron-donor group, carbonyl, of cetiedil. 

Since cetiedil is an ester, the ester oxygen can also hydrogen bond with 

water. In the case of amide bonds (peptide linkage), the polarizability of the 

bond is such that the effects from these two hydrogen bonds (carbonyl oxygen 

and the amide nitrogen) lead to an upfield shift of the carbonyl carbon (82, 

83). A similar effect is thus suggested for the observed upfield shift of 

carbonyl carbon resonance. At the concentrations of cetiedil used in the 

present 13C NMR studies (26.5 mM), cetiedil would exist as micelles in D 20 

solvent (Section IY.1.3). Since methanol is a less polar solvent than D 20, the 
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molecular properties of cetiedil may be different which may be responsible for 

the observed changes in the 13C NMR chemical shifts. 

The 1H NMR spectra of ce.tiedil at different concentations are shown in 

Figure 7. Two distinct regions could be observed in all the cetiedil spectra; 

the aromatic region that consists of the thiophenyl protons is about 2.5 ppm 

downfield from the solvent (HOD) peak and the aliphatic region is upfield from 

the solvent peak. Proton chemical shifts were referenced with respect to the 

water signal, which was 4.75 ppm downfield from the proton resonance of 

tetramethyl silane (TMS) at the ambient temperature of the probe. Chemical 
.<.' 

shifts downfield from water were assigned positive values and the chemical 

shifts upfield from water were assigned negative values. As in the case of the 

carbon spectra, the chemical shifts were assigned by using the published 

spectra of the analogous compounds. The spectrum of 3-methylthiophene was 

used to assign the peaks from the thiophenyl protons in the aromatic region 

(84). Thus, the peaks in the region 2.38 - 2.70 ppm were assigned to the 

thiophenyl protons of cetiedil, H-2, H-4, and H-5. For assigning the azepinyl 

protons, the spectrum of chloroethyl derivative of azepine hydrochloride was 

used (84). Methylcyclohexane spectrum (84) was used to assign the chemical 

shifts of the cyclohexyl protons (H-13 to H-16) of cetiedil to the peak at -3.10 

ppm. By comparing the spectrum of sodium citrate, the methylene protons of 

the citrate moiety were assigned. The broad envelope around -1.5 ppm was 

assigned to the azepinyl protons H-12 (2 protons) and H-17 (2 protons). H-10 

(2 protons ) were assigned to the peak at -0.35 ppm. 
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Figure 7. 200 MHz 1H NMR spectra of the aliphatic region of cetiedil citrate at 

different concentrations: A) 5 mM, B) 6 mM, C) 6.5 mM, D) 7 mM. 

For each spectrum, 600 FID's were collected and then Fourier 

transformed. 
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By spectral integration of the aliphatic region, 28 of the 33 aliphatic 

protons were accounted for (Table 5). The proton attached to nitrogen was 

probably broadened due to the quadrupolar coupling by nitrogen (85). The 

integration of the peaks close to the water signal was difficult because of the 

relatively large intensity of the water signal. The chemical shifts of the 

protons and their assignments are shown in Table 5. 

Comparison of the proton NMR spectra of cetiedil at different 

concentrations showed that as the concentration was increased to about 6.5 

mM, a new peak was observed at -1.60 ppm~ Spectral integration of the 5 mM 

cetiedil spectrum showed 4 protons (H-12 and H-17) under the -1.5 ppm peak. 

For the 6.5 mM or higher concentration samples, spectral integration showed 2 

protons each under the peaks at -1.5 ppm (H-12 or H-17) and -1.6 ppm (H-17 

or H-12). Thus, at higher concentrations of the drug, the molecule seems to 

be in equilibrium with two forms. These two forms may be the cetiedil 

aggregates and the monomers. The UV data however, showed that cetiedil 

formed micelles only above 8 mM. Thus the peak at -1.6 ppm may be 

suggesting the involvement of the protons H-12 and/or H-17 in the formation 

of cetiedil aggregates. Further investigation of this property of cetiedil 

molecules might give more useful information. 

IV.2 Binding Properties of Cetiedil to Membrane 

Membrane Effects on Cetiedil Conformation 

The 13C NMR spectra of membrane, cetiedil in membrane and that of the 

difference spectrum after subtracting the contribution from the membranes are 

shown in Figure 8. The difference in chemical shifts of cetiedil in buffer and 

in the presence of membranes are shown in Table 6. In general, the 
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Figure 8. 50 MHz spectra of cetiedil citrate in the presence of membranes at 23 

0 C. A: difference spectrum of cetiedil after subtracting from spectrum 

B (membrane + cetiedil), spectrum C, the contribution due to the 

membrane components. 
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Table 5. Proton Chemical Shifts (6 ppm) of Cetiedil 

Proton 6(ppm) Number of Protons 
Expected Observed~ 

2,4,5 2.38 - 2.70 3 (3) 
6 · 1.00 I 1.oa 

I.Ob 
9 -1.30 2 2.oa 

2.0b 
10 -0.35 2 (2) 
l l I ( l)C 
12, 17 -1.50 4 4.oa 

2.0b 
12,17 -1.60 (2) o.oa 

2.3b 
13-16 & -3.10 11 

-~ 
10.oa 

(19-23) l l.3b 
18 -2.80 a 

o.8b 
(19-23) -3.4 to -4.2 7 5.5a 

5.0b 
Citrate -2.10 4 4.5a 

• 
a 

b 

c 

4.3b 

From the spectral integration of the aliphatic region 
For 5.0 mM cetiedil solution in 5 mM phosphate buff er with 150 mM NaCl 
with a final pH of 6.3. 
For 7.0 mM cetiedil solution in 5 mM phosphate buffer with 150 mM NaCl 
with a final pH of 6.3. 
The number in parenthesis means that the peak was either not integrable 
or not integrated. All spectra were taken at room temperature 
(22 ± 1 °C). 
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resonances of cetiedil in buffer and in membranes are shifted downfield 

compared to methanol and 0 20 solvents. For the samples of cetiedil in buffer 

and in membranes, the ionic strength of the medium is much higher than that 

of water. Under high ionic strength conditions, the carbonyl carbon chemical 

shifts of esters have been shown to be shifted by up to ±2.0 ppm (83). 

Compared to cetiedil in water (0 20), the chemical shift of the carbonyl carbon 

(C-7) of cetiedil in buffer is shifted downficld by about 1.0 ppm (Table 4) and 

the chemical shift of cetiedil in membranes is shifted downfield by about 2.2 

ppm (Table 6). Thus, the chemical shift chal)&es of carbonyl carbon of cetiedil 

in buffer and in membranes are attributed to ionic strength effects. Overall, 

the conformation of the cetiedil molecules in the presence of membranes seems 

to be affected. 

Figure 9 shows the linewidth correlation diagram of cetiedil carbons m 

solvents of different polarities and in membranes. For a particular carbon of 

cetiedil, the linewidth is broader in the presence of membrane compared to the 

other systems. The linewidths in general increase in the order: methanol < 

0 20 < buff er < membrane. For the thiophenyl carbons 2 and 4, the linewidths 

increase from about 2 - 3 Hz in methanol to about 7.5 Hz in membrane. For 

C-5 the increase is about 4 Hz, in going from methanol to membrane. For the 

cyclohexyl carbons (C-18 to C-23), the linewidth is in the range 14 - 18 Hz in 

membrane, compared to about 2 Hz in methanol. Similarly, for the azepinyl 

carbons, the linewidths are broader in membranes compared to methanol. In 

general, the linewdths of cetiedil carbons arc broadened in the presence of 

membranes. In order to test whether the line broadening in the presence of 

membranes is due to viscosity effects, a sample of cetiedil in buff er with 

glycerol was prepared, with viscosity slightly 
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Figure 9. Linewidth correlation diagram of cetiedil carbons. Linewidths (Hz) of 

cetiedil carbons are plotted versus different solvent systems and 

membranes. Y-axis: l refers to membrane, 2 refers to glycerol, 3 

refers to D 20 and 4 refers to methanol. Each plot corresponds to the 

assigned pea ks in Table 5. 

62 



IUllUlllCIUllm• 

C2 

11---.-------<----+-------.... pa I.II J.11 I.ti I.II U I.II I.II I.II I.II I.• 
UlllUIJlll1I 

LlllDlllD CllllUll• 

( 3 

I '--~-~--~-.~~-.-~~--
f • Ill I.II I.Ii Ill I.• I.II I.II I.II I.II I.Ill 

LlilWlll ll1J 

IUllUlll (11111.111111 

C4 

I -------------...--..----. f• tit I~ Lii Lii t• I.II Lii Lii tll I~ 
UIDIUll Cid 

IJlllJjllfl Cfllll.llllll 

c 5 

1--------.--------+---,. I.II I.II I.II I.II I.• I.II I.II I.II I.II I.• 
llllDlllllll1J 

63 

UlllUlll CIWJ.111• 

.. c 6 

I 1------.-------+---+-~----! · • I.II I.II I.II I.II 1111 I.II I.II I.II I.II I.Ii 
Ullllllll11111 

UlllUlll CllllUlllll 

C7 

I 1----------<-----~-.-~-I · • IH UI I.ti l.ll Ull UI "'' U• UI IW 
lllllUlll ll1J 

11101111uuwm11 

C9 

1--------;-------.---
, .• Ill I.II I.II I.II t• I.II 111 I.II I.II lllll 

UlfllJlll 1111 

um1111 u1111.111111 

CIC• 

• 

I ,__ __ --;_...,.......,. __ --+ _____ _ 
!Ill I.II I.II I.II I.II Ill I.Ii I.II I.II I.Ii I.Ill 

IUGJUlll 1111 



• . C IZ 

• 
• 

• 
I ._ ......... ~....._......_~,__-+---+~---+~+-...... 
f·• I.II I.II I.• I.II I.• 11.H II.II 11.• II.II 11.H 

111mm1h1 

u111111m11111Ut1• 

• Cl3 

• 
• 

• 
1 ..... .-.~ ............... ~-------~ ....... --~---
!·• l.H I.II I.• I.II 1.H 11.H II.II lU 11.11 11.H 

·1111111m1h1 

11111111mtt1111.11111 

• Cl4 

• 
• 

• 
I,__ __ __,~---+~---+~+-........ ~--.... 

!·• l.H I.II I.• I.II I.• 11.H II.It lU II.II II.II 
ll1111111111hl 

UllllllOClllllATlll 

• Cl8 

• 
• 

• 
11--......... ~...._ __ __.~ ....... -..~---+~+--< 
!·• J.H I.II I.• I.II t.• II.II II.II II.• II.II 11.H 

1111D11mlhl 

• Cl9 

• 
• 

• 
I+-~_..~----~~-----~-----!·• J.H I.II I.• I.II I.• 11.H II.II 11.• II.II 11 .• 

1111111m1111 

.~ 

64 



Table 6. Chemical Shift Differences of Cetiedil In Buffer and Membrane 
Compared to D20 

Carbon 

2 
3 
4 
5 
6 
7 
9 
10 
12, l 7 
13, 16,20,22 
14, l 5 
18 
19,23 

Difference (6-6 0201-.nrun. 

Buffer 

0.65 
0.86 
0.90 
0.81 
0.81 
1.0 l 
0.85 
0.81 
0.89 
0.82 
0.85 
0.81 
0.80 
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Membrane 

0.59 
0.73 
0.75 
0.72 
0.69 
2.21 
0.73 
0.77 
0.74 
0.68 
0.74 
0.72 
0.71 



greater than that of the membrane-cetiedil sample. If the line broadening 

observed in the case of membrane is simply due to viscosity effects, then the 

linewidths in the glycerol sample should be similar or larger than those in 

membrane. Since the linewidths in the glycerol sample is narrower than in the 

membrane samples, the linebroadening is probably due to the interaction of 

cetiedil with the membrane components and not because of the viscosity effects. 

Analysing the linewidths of cetiedil carbons in the presence of membrane 

shows that the carbonyl carbon of the molecule is relatively less affected than 

the rest of the molecule (3.2 Hz increase)~ and the cyclohexyl and the 

thiophenyl carbons arc affected more (5.5 - 13.5 Hz increase). This may be 

indicative of the involvement of the nonpolar regions of the molecule in the 

interaction with the membrane components. In the proton spectra, the effects 

were even more drastic. At very low membrane concentrations (cet/membrane 

molar ratio 5I1 ), the line broadening in the cetiedil proton resonances was 

very significant. 

The presence of a single broad resonance for the peak means that the 

bound and the free molecules are probably in a fast exchange process (exchange 

rate greater than 106 to 1012 sec-1) (43). A similar effect was also observed 

when the proton NMR spectra of cetiedil in buffer and cctiedil in the presence 

of membranes were compared. Thus, both carbon and proton spectra of cetiedil 

provided information about the parts of cetiedil molecule that were affected 

upon interaction with membranes. 

Cetiedil - Membrane Interaction 

The free cetiedil concentration in the presence of membrane ghosts was 

determined with UV absorbance method on supernatant after centrifugation, as 
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discussed in section 111.1.5. Figure 10 shows the concentration relationship 

between free cetiedil and total cetiedil added in the presence of 1.33 mg/mL 

membranes. The slope of the fitted line is 0.88. About 88 % of cetiedil 

remains in solution as free cetiedil. For example, at 5 mM cetiedil 

concentration, about 0.6 micromoles of cetiedil associate with 1.33 mg 

membranes or 1.6 x 108 cetiedil molecules per ghost (assuming 5.7 x 10-10 mg 

protein per ghost (68)), which is an enormous amount of cetiedil associated 

with membranes. 

IV.2.3 

IV.2.3.1 

..Q 

Cetiedil Partitioning between the Membranous Lipid and Buffer 

Phases 

Absorntion Spectral Changes Induced by Membrane Lipids 

When DPPC vesicles were added to a solution of cetiedil (100 uM) in 

buffer, some of the cetiedil molecules partitioned into the lipid phase. This 

produced a spectrum that included both the absorbance of cetiedil in buffer 

(with a maximum at 233 nm) and the absorbance of cetiedil in the lipid phase 

(with a maximum at a higher wavelength). The difference in the wavelength 

maxima for the two systems was too small for the two peaks to be resolved . 

Instead, the two peaks appeared as one with an increasing wavelength maximum 

on lipid addition. A plot of lipid concentration versus wavelength maximum 

(nm) is shown in Figure 11. After adding 90 µM DPPC, the wavelength 

maximum shifted to 237 nm. In this range of lipid concentration, the extinction 

coefficient of cetiedil remained constant. 

Next, the shift in wavelength maximum of cetiedil was followed after 

adding erythrocyte membrane. A similar shift in the wavelength maximum of 
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Figure IO. The relationship between the total and the free cetiedil 

concentrations in a membrane sample (1.33 mg/mL) in 5 mM 

phosphate buff er with 150 mM NaCl. 
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Figure 11. Plot of Amax of 100 µM cctiedil versus lipid concentration. The 

spectra were scanned in the region 290 - 220 nm to determine 

the absorption maxima. 
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cetiedil was observed as in the case of DPPC vesicles. This suggested that the 

shift in the wavelength maximum of cetiedil in the presence of erythrocyte 

membranes was due to the partitioning of cetiedil in the lipid phase in 

membrane. An isosbestic point was observed at about 235 nm, which indicated 

that there were only two spectrally distinct forms of cetiedil. These forms 

were assumed to be the free form and the lipid associated form of cctiedil. 

IV.2.3.2 Partition Coefficient of Cetiedil in Membrane Lipid 

Figure 12 shows a typical difference spg9tral titration of 400 µM cetiedil 

with erythrocyte membrane lipids in 5P7.4/NaCl buffer at room temperature. 

As the lipid concentration increased, the spectral amplitude also increased, 

indicating increased partitioning of cetiedil into the membranous lipid phase 

(51 ). From the double reciprocal plot of I /[Lipid] vs I/ A (Figure 13), KP, the 

partition coefficient of 400 M cetiedil was determined as 3.51 ± 0.85 x 105 

(n=5 runs and 53 data points). 

Using the KP value of cctiedil, the number of molecules of cetiedil 

associated with the lipids can be calculated. Accordingly, the number of 

cctiedil molecules associated with 665 µM lipids (equivalent to 1.33 mg/ml 

protein concentration used to calculate bound ccticdil in section IV.2.2) was 

calculated as 3.8 x 108. From the centrifugation method, under similar 

conditions, the number of ccticdil molecules bound to the membrane (both 

proteins and lipids) was calculated as 1.28 x 107 (Section IY.2.2). 

The calculated number of cetiedil molecules associated with the lipid 

phase docs not agree with the total number of ceticdil molecules assosiated 

with the membrane. Although the double reciprocal plot gave a good fit, 
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Figure 12. Difference spectral titration of 400 µM cetiedil with human 

erythrocyte membranous lipids in 5 mM phosphate buffer with 150 

mM NaCl, pH 7.4 at room temperature. Increasing size curves 

correspond to increasing lipid concentrations. 
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Figure 13. Double reciprocal plot of the UV difference data, l/cSA vs 

l/[Lipid]. 
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there is 24% error associated with the estimated KP value. One of the possible 

sources of error in the KP estimate is in the accuracy of the lipid 

concentration used in the spectral titrations. A 10% error in the lipid 

concentration significantly changes the slope and intercept of the double 

reciprocal plot, which in turn affects the KP. With this variation in the lipid 

concentration, the KP value is in the range 104 to 106• If KP is 104 rather 

than 3.5 x 106, the calculated bound cetiedil would be 1.09 x 107• Another 

source of error could be from the centrifugation method. Amphiphilic molecules 

such as chlorpromazine are known to solubµ_jze membrane lipids (50). Since 

the centrifugation method is a separation technique, it is possible that some of 

the lipid - associated cetiedil may be in the supernatant. This would reflect 

as somewhat higher free cetiedil concentration in the aqueous phase. Thus, 

the value for the number of cetiedil molecules associated with the membrane 

lipids calculated from the partitioning experiments (107 to 108) is a maximum 

estimate. The number of cetiedil associated with ghosts is about I x 107 

(probably an underestimate) and the number of cetiedil associated with Band 3 

is about 2 x 106• Thus most of the cetiedil that are associated with the 

ghosts are distributed among the lipid phase in the membrane. 

Effect of Cetiedil on Lipid Spin Label Mobility 

The fatty acid spin probe, 5-doxyl stearate, intercalates amongst the lipid 

molecules in the membrane, with the nitroxide moiety of the 5-doxyl stearate 

located near the carbonyl group of phospholipid molecules, and has been used 

to monitor the behavior of the lipid molecules near the polar head groups 

(86). Although these spin probes are easy to use, there has been some criticism 

of their uses in membrane studies since the spectral data are often over 
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interpreted (87). In this study, the label was simply used to find out whether 

cetiedil affected the lipid component in membrane, and no attempt was made to 

obtain quantitative information on the dynamics of the lipid molecules. 

Figure 14 shows a plot of the hyperfine separation as a function of total 

cetiedil concentration in the membrane sample. As the concentration of cetiedil 

increased, the HFS values decreased indicating a change in the mobility or 

environmental polarity of the spin probe upon addition of cetiedil to the 

membrane. This change may be due to the effect of cetiedil on the organzation 

of the lipid molecules. At a pH of about 6.~in 5P7.4/NaCl buffer) and 37 °C, 

the HFS values decrease from about 52 G to about 45 G when 10 to 15 mM 

cetiedil was present in the membrane sample that had a protein concentration 

of 2 mg/mL. The effect appears to level off at about 6 mM cetiedil. This 

suggests that the interaction of cctieil with the membrane lipids is a saturablc 

process under the conditions of the present study. 

Effect of Cetiedil on Membrane Proteins 

Mal-6 spin label was used to monitor the effect of cctiedil on membrane 

proteins of both normal and sickle cells. The Mal-6 spin labels alkylate 

primarily the sulfhydryl (SH) groups of the protein molecules (40). Our earlier 

finding shows that about 20 % of the erythrocyte membrane protein SH groups 

arc alkylated by Mal-6, and about 80 % of the spin label intensity arises from 

label sites at the cytoplasmic membrane surface, with most of the spin labels 

attached to the peripheral proteins, the spectrin-actin complex (88), and one 

spin label to the Band 3 molecule. The amplitude ratio, W/S, of the EPR 

spectrum of Mal-6 labeled membranes is very sensitive to such experimental 

conditions as temperature, ionic strength and pH as well as to molecules 
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Figure 14. The effects of cetieil on the hyperfine separation of 5-doxyl 

stearate labeled erythrocyte membrane samples in 5 mM phosphate 

buffer with 150 mM NaCl at 37 °C. 
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binding to the cytoplasmic surface of the membranes (40, 41). The W/S values 

of Mal-6 labeled membranes were measured, in the presence of various amounts 

of cetiedil in 5 mM phosphate buffer with 150 mM NaCl at 20 ° and 37 °C. 

As shown in Figure 15, the initial addition of cetiedil to both membrane and 

simplified membrane samples of normal cells gave a gradual increase in (W/S) 

at both 20 °C and 37 °C. The four curves shown in Figure 15 were 

qualitatively similar to each other. They demonstrated that the binding of 

ccticdil molecules to membranes caused immobilization of some of the spin 

labels on these membrane samples. In our pr~ious studies, we have shown 

that changes in the W /S ratios can be directly related to the membrane binding 

process. The addition of bovine scrum albumin, for example, causes no change 

in the W/S ratios, whereas the addition of hemoglobin causes the W/S values 

of membrane to decrease ( 40). The t:.(W /S)cet values approached constant 

values at high concentrations of cctiedil, suggesting that the interaction of 

cctiedil with membrane proteins was a saturable process under the conditions 

we studied. Similar data were obtained on membranes from sickle cells at 

37 °C. 

We also interacted cetiedil with the spectrin-actin sample in 5P7.4/NaCl 

buffer, and monitored the W /S ratios of the spectrin-actin samples as a 

function of cetiedil added. Although we observed decreases in the W /S ratios, 

we also found protein aggregation upon addition of cetiedil, probably due to 

the acidity of ccticdil causing spcctrin-actin precipitation. The pl of 

spcctrin-actin is about 4.5. Thus little quantitative information was obatincd 

by directly interacting spcctrin-actin with ccticdil. We have found that 

the association of ccticdil with the erythrocyte membrane was reversible. The 

EPR signals of the membrane samples with and without ceticdil were first 
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Figure 15. Change in (W /S) of Mal-6 labeled erythrocyte membranes as a 

function of free cetiedil concentration in a typical run of paired 

samples of intact membrane (o) and simplified membrane (+) 

interacted with cetiedil at 20 °C (top panel) and 37 °C. The 

smooth curves arc obtained by a nonlinear regression method 

using the equation discussed in the text. 
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measured. These samples were then dialyzed overnight in buffer solutions with 

buffer to sample ratio volume ratios of at least 1,000. The EPR signals of the 

dialyzed samples were measured again after dialysis. Both samples gave W /S 

ratios similar to that of the membrane sample without cetiedil before dialysis, 

indicating that the cetiedil - membrane interaction was non-covalent in nature, 

and did not cause irreversible changes in the erythrocyte membrane. This is 

in good agreement with the previous finding that the the effect of cetiedil on 

the erythrocyte is reversible (29). 

To obtain quantitative information on cetiedil and membrane binding, such 

as the apparent Kd values, from the W /S data, the free cetiedil concentration, 

[C], in cetiedil - membrane mixtures, as shown in Figure 9 was used. After 

substituting [CJ and (W /S)cet into Equation 5, Kd, n and I!. (W /S)m could be 

obtained. The n values obtained from these data, both by non-linear regression 

methods and by the Hill plot were all about l, indicating that a simple 

two-state model with multiple independent binding sites that we have previously 

used was adequate to describe the binding of cetiedil to membrane proteins. 

Table 7 shows the values of apparent Kd, 1!.(W/S)..; and C 112 for cetiedil -

membrane, cetiedil - simplified membrane systems at 20 °C and 37 °C. All the 

Kd values arc about 2 mM. The half saturation concentration ranges from 1 

to 3 mmoles cetiedil per gram membrane proteins. 

By using the protein spin label, Mal-6, ceticdil was shown to bind to 

membranes as well as to simplified membranes (Figure 15). Direct comparison 

84 



CX> 
V1 

Table 7. Eguilibrium Bindin2 Parameters in 5 mM Phosphate Buffer with 
150 mM NaCl at pH 6.3 

S:imple MW/S) ~+S.D.(mM) C (µM/ g) N • ... 1 Q.-

~02~ 

Membrane 1.92±0.15 2.95±0.64 2.5 7 
3.186 <0.02 

Simplified 3.34±0.57 1.89±0.27 1.1 7 
Membrane 

372~ 

l\kmbrane 3.06±0.43 2.34±0.74 1.4 7 
t 2.682 <0.05 

Simplified 5.30±0.85 1.57±0.56 0.9 7 
Membrane 

• The p values were obtained from paired sample student t-test by null
h ypothesis. 



of the averaged Kd values of the membrane and the simplified membrane 

samples in Table 7 indicated a slightly lower Kd values for the simplified 

membrane samples than those for intact membrane samples. However, a paired 

sample Student's t-test of the Kd values indicated that the differences in the 

Kd values between membrane and simplified membrane samples were not 

statistically significant either at 20 °C (p < 0.02) or at 37 °C (p < 0.05), as 

shown in Table 7. Removal of the spectrin-actin network from the membrane 

thus did not significantly affect the binding of cetiedil to erythrocyte 

membrane. The spectrin-actin network is the Il!J,l.jor component m maintaining 

the shape of the erythrocyte. The lack of interaction between cetiedil and the 

spectrin-actin network, as observed by EPR data, suggested that the action of 

cetiedil in returning sickle to normal shapes was not accomplished by modifying 

the spectrin-actin network in sickle cells. Other studies indicate that cetiedil 

inhibits calmodulin-stimulated calcium ATPase activity (34). Calmodulin is 

present in the erythrocyte, but does not appear to bind to spectrin molecules 

(89, 90). These findings arc consistent with our EPR data. 

The simplified membrane sample consists of lipid bilayer and Band 3 

protein and other proteins, including ATPases (91). However, the major protein 

component is the Band 3 molecule. Most of the protein spin labels, if not all, 

in the simplified membranes are on the Band 3 molecules. Therefore our data 

suggested interaction of cetiedil with the Band 3 proteins in membranes, with 

an apparent Kd of about 2 mM at 37 °C. However, these results did not 

exclude the interaction of cetiedil with other minor proteins in the simplified 

membranes. The spin label EPR approach will not be sensitive enough to 

detect such interactions. Additional information on the partitioning of cetiedil 

in membranes will provide quantitative information on the concentrations of 
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cetiedil interacting with individual membrane components. 

Band 3 is an anion transport protein (92), and may have a role in the 

membrane to regulate water movement in erythrocyte (93-96). More detailed 

studies of interactions between cetiedil and Band 3 molecules and interactions 

between cetiedil and A TPases, for example, may provide insight toward 

understanding its various drug actions in affecting erythrocyte water contents 

and Na+ and K + movements across cell membranes. 

Since Band 3 seems to be the major protein that interacts with cetiedil, 

the Kd value of cetiedil-simplified membrane Lq,teraction (Table 7) can be used 

to calculate the number of cetiedil (C) molecules bound to the membrane 

proteins (P) under the equilibrium conditions, P + C <----> PC. From this 

equation and using the value of Kd, PC, the equilibrium concentration of bound 

cetiedil was evaluated. Accordingly, at equilibrium, at 400 M cetiedil 

concentration, the number of cetiedil molecules associated with the membrane 

proteins was calculated to be 2.06 x 106 (PC = (I/Kd)/[([P] - [PC]) - ([C] -

[PC])], where P and C are the initial concentrations of protein and cetiedil, 

respectively). Comparing this value with the number of cetiedil molecules 

associated with the membrane lipids showed that cetiedil preferentially 

associated with the membrane lipids than with the proteins. 

Effect of cetiedil on Water Transport across Red Cell Membranes 

Treatment of normal RBC with 390 µM cetiedil increases the hematocrit 

value of the RBC samples from 60.3 to 67.7 % (Table 8). This indicates that 

there is an increase in hematocrit value of the samples by 12.3 %. The cell 

volume of normal control samples was (9.6 ± 0.2) x 10-11 mL and that of the 

samples treated with cetiedil was (10.6 ± 0.2) x 10-11 mL. For sickle cells, the 

cell volume of the control samples was (11.4 ± 0.8) x 10-11 mL and that of 
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Table 8. Effect of Cetiedil on the Hematocrlt Values of RBC 

Sample! 

Hematocrit 

Before Incubation 
After Incubation at 
3 7 °C for 2 hours. 

NMR Sample 

Cell Volume 
(I0-11 mL) 

1 Sec section III. l.6 

36.7±.0.5 
36.7±.0.5 

60.3±.1.0 

9.6±.0.2 

88 

RBC + 
Cetiedil 

36.7±.0.5 
41.7±.0.5 

67.7±.l.O 

l 0.6±.0.2 

~ 

SRBC + 
Cetiedil 

55.0±.l.O 63.5±.0.5 

11.4±.0.8 12.7±.0.9 



cells treated with cetiedil was (12.7 ± 0.9) x 10-11 mL (Table 8). Thus cetiedil 

increased cell volume by 10.4 % for normal cells and 11.4 % for sickle cells, m 

good agreement with published values of 10 % (24). 

Table 9A gives the results of the NMR relaxation measurements of both 

normal and sickle cells. All the relaxation measurements were performed, as 

mentioned in the Methods section, on the 200 MHz spectrometer. 

Measurements of normal cells were made on different batches of samples, 

whereas for sickle cells, the sample was from a single patient. Hence, the 

statistics for the comparison of normal a.ad sickle cells would only be 

qualitative at best. 

The relaxation time of water protons decreased for both normal and 

sickle cells, after treatment with 390 µM cetiedil. The T 2 of normal cells is 

0.168 ± 0.0165 sec and that for the sickle cells is 0.056 ± 0.003 sec. The Tex 

value of normal control cells is 0.0247 ± 0.0028 sec whereas for sickle cells is 

0.0529 ± 0.0036 sec. The paired sample Student's t-test of the relaxation times 

of normal and sickle cells showed that the difference in the relaxation times is 

significant (p < 0.0001) (Table 9B). After incubating the samples with cetiedil, 

the T 2 of normal cells decreased to 0.152 ± 0.0093 sec and that for the sickle 

cells decreased to 0.0442 ± 0.0022 sec. The difference between the decreased 

T 2 values for both normal and sickle cells was also found to be statistically 

significant. Similarly comparing the Tex values of both normal and sickle cell 

samples before and after treatment with cetiedil showed a significant decrease 

in the exchange times after addition of cetiedil (Table 9A and 9B). A decrease 

in the exchange time of water would mean an increase in the water 

permeability (Equation 17). Water permeability of sickle cells was significantly 

less than that of normal cells, as shown by Student's t-test (p < 0.001). The 
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Table 9A. Effect of Cetiedil on the Water Exchan2e Time across RBC 

Sample I2W Lxlil fw(cm/s) N 

RBC 0.1680 0.0247 0.00281 8 
±0.0165 ±0.0028 ±0.0003 

RBC 0.1520 0.0152 0.0050 8 
w/Cet ±0.0093 ±0.0018 ±0.0006 

Sickle 0.0560 0.0529 0.00155 4 
±0.0028 ±0.0036 ±0.0001 

Sickle 0.0442 0.0393 0.00232 4 
w/Cet ±0.0022 ±0.0023 ±0.0001 

-.ii.I 

Table 9B. t and p Values of Student's t- test of paired samples on Data Given 
in Table 9A 

RBC & SRBC1 & RBC & RBC+Cet & 
RBC+Cet SRBC+Cet SRBC SRBC+Cet 

T2 t 5.25 26.36 5.51 5.88 
p 0.0006 0.0001 0.0004 0.0002 

Tex t 5.53 17.10 4.71 6.17 
p 0.0004 0.0001 0.0011 0.0002 

1 SRBC refers to sickle RBC. 
p values were obtained from paired sample Student's t-test by null- hypothesis. 
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diffusional water permeability of normal control cells was 0.00281 ± 0.00029 

cm/sec and that for sickle cells was 0.00155 ± 0.00011 cm/sec, at 37 °C. 

Treatment of sickle cells with cetiedil however, seemed to enhance the 

permeability. The permeability of cetiedil-treated sickle cells was comparable 

to that of normal control cells. The diffusional permeability of normal cells 

after incubating with cetiedil was 0.00504 ± 0.00059 cm/sec and for the sickle 

cells - was 0.00232 ± 0.00014 cm/sec. Comparison of the permeability values 

showed that addition of cetiedil to RBC significantly enhances the water 

permeability of membranes (p <0.001). ...., 

As indicated by previous studies (24), an increase in the cell volume of 

RBC was observed after treatment with 390 µM cetiedil (10.4 % for normal 

cells and 11.4 % for sickle cells). This increase in cell volume was attributed 

to the increase in cell sodium and cell water contents (29). 

The observed decrease in the relaxation time of water in RBC treated 

with 390 µM cetiedil indicates a change in the water environments upon 

addition of cetiedil. A similar examination of the water exchange times also 

indicated that water exchange was faster in the presence of cetiedil in both 

normal and sickle cells. Therefore, cetiedil seems to facilitate the water 

movements across red blood cell membranes in both cases. 

The NMR data showed that the exchange time for sickle cells is greater 

than that of normal cells. This means that the exchange rate of water in 

sickle cells is slower compared to normal cells. Previous studies, using a 

three-state model for cell water, comparing the correlation times of water in 

the sickle and normal cells indicated that there were more bound water 

molecules in sickle cells than in normal cells with the correlation time of 

water molecules of sickle cells greater (10"6 sec) than that of normal cells 
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(I0-9 sec) (97,98). Osmotic permeability studies on sickle and normal cells 

showed reduced water permeability in sickle cells (99). Decreased osmotic or 

diffusional water permeability of sickle cells is being speculated as being due 

to increased amounts of sickle hemoglobin bound to the cell membrane which 

affect the aqueous channels that transport water across the membranes (100, 

101). Fung and coworkers have shown that sickle hemoglobin has a higher 

affinity toward membrane surface than does normal hemoglobin (102). The 

altered ion and water transport in sickle cells are also attributed to permanent 

changes in the sickle cell membrane such as ir.u;versibly modified membrane 

proteins (9), and increased amounts of bound intracellular calcium (7), compared 

to the normal membranes. Thus, the decreased diffusional water permeability of 

sickle cell membranes observed in the present study may be due to the bound 

water molecules inside the sickle cells in addition to the above-mentioned 

membrane abnormalities. 

There seems to be some correlation between the cell volume increase and 

the corresponding permeability increase, upon addition of cetiedil. Cetiedil has 

been shown to increase cell sodium and cell water contents. At 300 µM cetiedil 

concentration Schmidt and coworkers observed a 11 % increase in the cell 

water (28). From the hematocrit measurements of the normal RBC samples, 

comparison of the volume of water inside the cells indicated a 12.3 % increase 

after incubating the cells with 395 µM cetiedil, at 37 °C for 2 hours. The 

hematocrit value increased from 60.3 before incubation to 67.7 after incubation. 

Similarly, for sickle cells, the increase in water content inside the cells after 

incubating with cetiedil was 15.5 % (Table IO). 

In order to correlate the increase in water content inside the cells with 

the changes in the relaxation behavior of water, the echo amplitude of the 
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water before and after incubating the cells with cetiedil was measured. The 

packed cells were used for this purpose, since the echo amplitude represented 

mainly the contribution from intracellular water. For normal cells, there was 

a 12.3 % increase in the echo amplitude after incubating the cells with cetiedil, 

which is the same as the increase measured from the hematocrit values. For 

sickle cells, the increase in the echo amplitude was 28.7 %, compared to 15.5 % 

increase from the hematocrit values (Table 10). The source of the discrepancy 

between these two values is not known. These increases in amplitudes for 

both normal and sickle cells suggested that the water content of the cells .. .., 
increased after incubating with cetiedil. 

· Water transport across the red cell membranes is usually explained in 

terms of "channels" or "pores" (94 - 96). Although the mechanism of water 

transport is far from clearly understood, the presence of aqueous channels at 

the interface between the Band 3 subunits has been suggested (95). Water 

transport by "leak" pathway (diffusion through lipids) also has been suggested 

and observed (66). For the present study, the "composite" diffusional 

permeability (both channel as well as leak) was measured. The increase in the 

diffusional permeability of the membranes to water after incubating with 

cetiedil suggests that these pathways are affected. 
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Table 10, Effect of celiedil on the cellular water content 

Sample w.1 -· % increase! A~ % lncrease 4 

( mL) 

RBC 0.603 485.74 
±0.010 ±54.33 

12.3 12.3 

RBC 0.677 545.46 
w/Cet ±0.010 ±14.45 

Sickle cells 0.550 206.59 -4i!.J 
±0.010 ±4.47 

15.5 28.7 

Sickle Cells 0.635 265.88 
w/Cet ±0.005 ±5.32 

1 Wi is water inside the cell (mL) 
See section 111.1.6 for sample volume measurements. 

2 % increase = [Wi (Cell + Cet) - Wi (Cell)]/ Wi (Cell) 

8 Echo amplitude measured in arbitrary units. 

% Increase = [A (Cell + Cet) - A (Cell)]/ A (Cell) 
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V. CONCLUSIONS 

Optical data of cetiedil show that it has a maximum absorption at 233 nm 

with an £ 233 of 2796 M-1 cm-1• Cetiedil citrate molecule at high concentration 

is quite acidic, and forms micelles. The critical micelle concentration of 

cetieil in phosphate buffer with 150 mM NaCl is about 8.8 mM. 

Conformational studies of cetiedil in 0 20 using 13C NMR spectroscopy, 

show that the cyclohexyl moiety of cetiedil is in the chair conformation. The 

study also indicates that the molecule see!lls to undergo an overall 

conformational change as the polarity and the ionic strength of the solvent 

change. 1H NMR studies of cetiedil show that at concentrations above 7 mM, 

cetiedil exists as an equilibrium mixture of, possibly, monomers and aggregates. 

13C and 1H NMR data of cetiedil in the presence of membranes show that 

the molecule may have a preferred orientation in the membranes. Cetiedil 

resonances in general are broader in the presence of membranes. The carbonyl 

carbon of cetiedil is relatively less affected than the rest of the molecule. 

The linewidth of the carbonyl carbon increases by 3.2 Hz in the presence of 

membranes compared to 5.5 - 13.5 Hz increase for the remaining carbon atoms 

in the molecule. This may suggest that the nonpolar regions of the molecule 

are more involved with the membrane components than the polar regions. 

This study shows that a large amount of cetiedil may associate with 

membranes. The parition coeficient of 400 µM cetiedil in the membrane lipids 

at 23 °C and pH 7.4 is about 104 - 105 and the free energy of transfer from 

the aqueous phase to the membranous lipid phase is about -7.5 kcal/mo! at 

23 °C. 

Cetiedil seems to associate preferentially with the membrane lipids rather 
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than with the membrane proteins. From the partition coefficient of cetiedil 

into the membrane lipids, 107 - 108 cetiedil molecules are found to be 

associated with the lipids. The partitioning properties of cetiedil are 

comparable to those of the amphiphilic amines such as chlorpromazine and 

methochlorpromazine. Their pharmacological properties (tranquilizing) have 

been correlated with their membrane solubility, but the mechanism of drug 

action is not clearly understood. The amphipathic agents are likely to act in 

four general ways (103); (I) physical expansion of a lipid bilayer leaflet with 

the displacement or disruption of existing str.».J,::tural lipids and lipid domains 

(104,105); (2) capture or replacement of essential or regulatory lipids needed 

for protein function or cell regulation such as polyphosphoinositides (106); (3) 

disruption of the membrane permeability barrier, such as facilitated ion diffusion 

or channel formation (107); and (4) inhibition of the membrane protein function 

by direct modification or damage (108). 

The EPR data show that the drug interacts with the membrane proteins, 

and the binding is saturable and reversible. The half saturation concentration 

for binding is in the range of I - 3 mm oles cetiedil per gram membrane 

proteins at physiological tempera tu re. The equilibrium dissociation constant for 

membranes is about 2 mM at pH 6.3 and 37 °C. Removal of spectrin-actin 

from the membrane does not appear to affect the binding properties of cetiedil 

significantly, indicating that the spectrin-actin network is not involved in the 

mechanism of drug action. The results suggest the existence of an interaction 

between cetiedil and Band 3 molecules, with an equilibrium dissociation constant 

of about 2 mM. From the equilibrium dissociation constant of cetiedil obtained 

from the EPR measurements, about 2 x 105 cetiedil molecules are found to be 

associated with the membrane proteins. Thus the interaction of cetiedil with 
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membrane proteins is relatively weak compared to its interaction with the 

lipids. Our results suggest that at 400 µM concentration, cetiedil molecules 

distribute in the membrane lipids and proteins and would exist as monomers. 

At this level, cetiedil does not alter the blood pH, which is in very good 

agreement with the published studies on the metabolic action of cetiedil (23). 

The EPR data also show that cetiedil affects the mobility of the spin 

labels that intercalate amongst the head groups of the lipid molecules in the 

membrane. The hyperfine separation (HFS) of the spin label decreases as the 

concentration of cetiedil increases, and tends....to level off about 6 mM cetiedil 

concentration. The HFS data suggest that cetiedil affects the organization of 

the membrane lipids. 

Cetiedil also has been found to affect the calcium-dependent calmodulin 

interactions with the membranes (33). The protein spin label EPR data from 

the present study show that cetiedil interacts with the membrane proteins and 

lipids. NMR studies, under the same conditions of cetiedil/membrane 

concentration ratio, temperature and pH, show that cetiedil may have a prefered 

orientation upon interacting with the membrane components. 

In summary, cetiedil seems to exert its action by partitioning preferentially 

into the membranous lipid phase as well as interacting with the membrane 

protein Band 3. 

Further studies of the interaction of cetiedil with the isolated membrane 

components such as Band 3 molecules and ATPases, may provide insight toward 

understanding its various drug actions in affecting the sodium and potassium 

movements across the cell membranes. 

Incubation of normal as well as sickle cells with 390 µM cetiedil at 37 °C 

for 2 hours increases the hematocrit of the samples. The cell volume of the 
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normal cells increased by 10.4 % and that of sickle cells increased by 11.4 %. 

Due to the presence of more bound water molecules inside the sickle cells 

compared to normal cells, our NMR relaxation data of water protons of both 

normal and sickle red cells which show that the water molecules in sickle cells 

exchange slower with the water molecules outside than the normal cells are in 

good agreement with previous studies (99). The diffusional water permeability 

of sickle cells is significantly less than that of normal cells. Treatment of 

both normal and sickle cells with 390 µM cetiedil significantly decreases their 

exchange times to increase their diffusional pca:91eability to water. At 37 °C, 

the permeability of normal cells is 0.0028 cm/sec, and in the presence of 

cetiedil, this permeability increases to 0.0051 cm/sec. For sickle cells, the 

permeability is 0.0016 cm/sec, a value much less than that of the normal 

cells. In the presence of cetiedil, the permeability is increased to 

0.0023 cm/sec, a value more similar to that of normal cells. The increase in 

the diffusional water permeability in the presence of cetiedil is suggested to be 

due to the effect of cetiedil on the membrane proteins and lipids. The NMR 

method, however, does not distinguish between the protein and the lipid 

pathways of water transport. Water transport by leak pathway has been 

studied in the vesicles formed from the extracted membrane lipids (109). A 

similar study in the presence and absence of cetiedil might prove useful to 

determine the effect of ceticdil on the diffusion of water through the lipid 

bilayers. 
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Abstract ··: Celiedil, an anl1sickhng agent and a vascular smooth 
muscl£> rela>tant. 1s an amph1phil1c molecule. The critical micelle concPn
lral•nn in S mM phospMle butter with 150 mM NaCl IS B.B mM. The 
moh•rule. as Hw c1lrale salt. 1s highly ac1d1c at m1lhmolar concenlrat1ons. 
The UV absorption exlinct1on cocH1c1cnl at 233 nm, En3 . ts 2796 M 1 

crn , The studies of free ccliedil concentrations in the presence of 
membrane ghosts show that large amounts of cel1edil associate with 
membrane samples Spm label electron paramagnehc resonance e•· 
pP,riments showed that the hpids and the proteins of erythrocyte 
membrane samplns wPre both affected by the add111on of cetied1I 
However. the cehedtl effects on membrane components are reversible 
The protein spin labf'I results demonstrate lhe binding of cel1edil to the 
m£>mbrane with an apparent equ1hbnum d1ssocia1ton constant of · 2 
mM The binding 1s saturable The apparent hall-salurahon concentra· 
loons for the b1nd1ng al phys1olog1cal ionic strength and temperature are 
in the range of 1-3 mmoles of cetiedil per gram of membrane proteins. 
Our studies also indicate that binding 1s not aHected by the removal of 
the spectnn and aclin network trom lhe membrane~. Interaction ol 
cet1edil with Band 3 molecules in the erythrocyte membrane is sug9est· 
ed The regions near the lipid head groups in the membrane samples 
are also attected by cehedol 

Although many of the molt>cular d!'focts of sickle cell 
disease arc quit<· well characterized. there is at present no 
SJ"'Citic treatment for its run• or prevention. Few antisickling 
ag<'nts have hecn found to Ix.• clinically useful.• " Most 
antisickling agents act hy modifying the sickle hemoglohin 
!llbS1 moh•cult· l'ithc·r coval<•ntly,2 or noncovalenlly. •Modify. 
ing hcmoglohin synthesis has nlso been suggest<•d to he 
useful.'· llowever, ccticdil hclongs to another class of anti· 
sickling a11ents which interacts with the erythrocyte mem· 
hranP.1; 111 CPtiNli1 has abo hc-t•n U!->rd in Europe as 
a vn.sodilator for chronic nlrdiova~cular disca~u. 1 1. 1 " 

The use of cl'li<'dil, <2-hexahydro-IH-azepin·l-yllethyl u· 
cyclohexyl-3-thiophcncacPtute, as on antisickling agent was 
first explored by Cabannes.• Chromium-51 survival studies 
of cl'l1t•dil-tri•al<•d sickle rclls indicated that Cl'tiedil is not 
toxic to the red cell.' ~'urt.hermore, intravenous infusion of 
cet1edil to male volunteers indicated the development of 
tolerance.'" Cetiedil is thus considered as a unique, non-toxic 
nnt1sickling drug hy some physicians. Denjamin ct al.' oh· 
Sl'rvcd a dl'Crl'asc in tlw irrev1·rsiblc sickle c1•1l llSCl count nt 
100-~00 µM concentrations of cetiedil, hut observed no effect 
ot concentrations <50 µMor >500 µM. In another study, 400 
111\1 ceticdil decreased the number of sickle cells under 
dt>oxyi:t•natc•d conditions. whl'Tcas 10 mM Cl'tiedil decreased 
ISC counts.• Marhd tBO'ii I reduction of sickle cells ot 100-
500 µM cetiedil and 3'!1 oxygen concentrations hns also heen 
reported-" However, no significant effect was reported when 
500 µM to I ml\! conrPntrations of cctiedil were added to 
RC'rum at 50'·; oxygPn sat uralion. 1 The detailPcl nwchanism of 
the drug action on the erythrocyte is not cleor. Cetiedil docs 
not app'-'Hr to affect or to hind to llhS.•.7.• Cetiedil increases 
pas:->i\'t' Na' nrnvl•nwnt, and inhihit.s Cn2' -dPprndPnt. K' 
movement ltlw Gardos pathway) across cell mem-
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hranes.•· 1·1." When 400 µ}.! cetiedil is added, a 20'.<> increase 
in hcmatocnt, and an~crease >10% in cell volume are 
reported." Hec1•ntly, cetiedil has hecn found to inhibit Ca2 " • 
dP1wndt>nt calmodulin interactions with mcmhranes.••.•• In 
brief, C<·ticdil oppt•ars to interact with erythrocyte mem
hranes lo pn•vent sickling under some conditions'·"·'" but not 
others.' )<;valuating the effectiveness of cetiedil as an anti. 
sickling drug requires a detailed knowledge of its molecular 
propertil's in solution. and an understanding of its mode of 
action with erythrocyte membrane components. 

We have studied the optical and pH propertiesofcetiedil in 
solution. and have determined its critical micelle concentra
tion. We have also used spin label electron paramagnetic 
resonance IEPRI techniques to study the effects ofcetiedil on 
mcmhrane proteins and lipids. 

j~'~.-·~,-o 
"f 

Cehed1I 

Experimental Section 
C-etiPdil Solution-Cpti(.o.dil wa,_ ohtainrd from McNeil Pharmn

ceulicali-. tSprinJ,! HousP, l'Al in llu· form or the c1lrat.c sail, and was 
uSt•d wilhou\ furthn purifir:ltion. 

Cetiedil is only slr~htly soluhl<• in water, with a oolubility of 0.5 
~1dt.1 1 1'~or cxpf'rimf'nts that rrquirrd concrnlration"' >0.5 f?'dL. a 
t'lot·k t"olulion was prrpan•d hy addinJ! 4!l mJ! of C'f'lirdil lo I ml. of 5 
mM phoephale huffi•r with 150 mM NnCI nt pll 7.4 t51'7.4!NoC'll 
huR"t-r, followed by Mmicolion for -2 min end t~cnlrifugalion at 1075 
)( /: for!) min to give a dear eupcrnnlanl, which was then diluted lo 
30 mM with hufft>r. The conc1~n~rat1on of the supernatant WOE' 
~cnorall.v ahnut 2.5-:J ~tdL 145-M mMI, RS determined hy UV 
nhsorplion mt·as\Jrt•nwnl". Without sonicntion, th<' suJWrnatant was 
cloudy. The final pll of tho 30 mM retiedil stock solution in 
5P7.4'NaCI buffer was 4.0. 

For thC' pH rff,•ct studirl', variou~ amounb of30 mM CE'lif'dil stock 
ooluliun in fi mM phoephalo with 150 mM NnCI nt pH H 1phosphato 
hufft•-rt>d Jo1amplt·~. PHS1 WC'J'P nddt•d lo PBS. or lo ltlood Jo1erum. to ~ive 
a conccntrulion range of ceticdil of 4.3 µM-20 mM. The• pH was 
measured in an open s_vslcm exposed to air, afier the pH values had 
rencherl c.·onf'lnnt \•nlurs. 

For tht• 1·xlinrtinn cot•1fkiPnt dt•lt•rminntion, R precise amount of 
ct>ht•dil wns Wf'IJ!hcd lo pn•p1trt' u lf>O µM tmlution, which was 
subsequently diluled with buffer to give cetiedil solutions of various 
concentrations. 

Ct"til•dil t:xtinc-tion Co'-'ffic-irnt Mea"'urt>mentfil.-ThP UV absorp
tion Rlwrtra. h1•twrrn 1BO anrl 400 nm. of crtii>di) M>lutions of known 
conn·nlrallnn~ 110. lMJ ~&M c1•1ietlil in 5P7.4'NnC.I buffrr) wrn• 
ohtninrd nnd tohnwl'd 1t maximum nh.!-lorption al 233 nm. Rf' shown in 
tht• insPl of i'~i~. 2. A !'imple linc•ar reJ.:'r"ssion of the oh.-orbancr 
vnlut·~ nl 2:t:i nm jA: .. ul vrrsu!' rrtit•clil concrntrntion prov1dt..>d a 
ttlopl• lhnt J::U\'P lhl• l'Xlinction COt•ffiCil'nl of cehrdil. 
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( 'nli1 .al 'lie 1·111· f '1111n·11l1·al11111 I •1•t1•nuinali11n .:-;111n· n·l 11·1ld 1s 
an 1n1pl1111l1du· 1111d1·111l1-. 11~ ... 11l11!11lil'' 111 w;ilt·r I" lirrnlt·d •·At h1~h 
n11111·11l1.d11111 1111' 11111lt·t11l1· ... .ip1w.11 tu form m1n·ll•·~ Ill walt·r. with 
111 .. 11111111·r-.. .111d 11111..111·" 111 1·q111lihn11111 TIH' cnt1ral min·llP nm1·1•11· 
lr.111011 1('M('1 11f l'P!wcld wa..: cl1·filwd and dl'tt•rrmm·d anonlini.:- lo 
tlH' mt'fh1Hl 11f Phillips 1" :\ ma~s-arlton modc>I or mirellc> formation 
w:1s u~1·d 1\t tht• ('f\lt'. llll' tl11nt <h•n\'itll\'t' of nn id.-al l't1lli1.wll\'t' 
prnp1•rlY of tlw :11111d11pl11l1·. :\ .. 11 of l'l'11rd1I for this work, with 
n·~111·1·1 lo 1·11111·1·1111.111011. ,., IS 1t·ru 11l'A,..11cl(' 1 01. The A.,.!"1.1 or 
t·1·l11·rl1( !<-olul111ns 111 tlu• n1ru·1·ntral111n ran~t· of J- Jf> mM Wl'rt' 
mt.,a~un·d u."'IOJ.: a narrow palh k•ni,..rth, 1.0 or 0.2 mm, opt1c:il cell. 
Tlw ah .. nrl1a1H·1· \'al111·s nl cli<T1·n·nl ronrt•ntratton!" Wt'Tl.' fitlt•d to 
polvnn1111al 1·q11at 1111b of' ar\"111).! urd1•r A, n a(' t he:• t r("1 • 

• 11("", wlH'n· a. h. 1-. dr ~'•'rt' paranll'it•rs to hi' d1!lt•rmim·d from 
'''I'''' t11w11l.il d . .t.1, ;11111111 w.1· 1111· 11nl1·r of llu· 1M1h 11111111nl 1·q11al11111 
Th4· ll11rd d1•n\':tll\·1·i-. of tl11· .... 1· 1·qu,1l1011~ with n·,.p1•ct to l'Ollft!lllr.1-
lwn "1•n· ....... , ;1t 1i•r11 In ... olv~· fill' llH' ('.f\1(: valw·s 

S1•in l.alwlt·tl l\11·mhntn1• Samplt•!"-llr-nmf_!lnhin-fn·1· whilt• 
mt•111l1r;11u· i.:h11:--I" 111 ;, mM ph11sphalt· huO't·r at pll H l!"•l 1H1 wt.•rc 
pn·p:\n•d from adull humnn t•rylhrocyh>.~ of normal donort> an<l 
homn1.vi.:1111" s11"k It· 1·1·11 an••mta pal i1•nts. 1'

1 
"" P.lt•mbram• ~nmpll'f" 

tw-11.dl_v •l mg-'mL II\ prol1•1n 1·0111·1·11lration1 wut• incuhal1•d w1lh lhl' 
prol1·1n l"Jllll lalu•I ·1 111al1•1n111lo ~.:!,ti.fi-l('traml'thyl-1-pip..ridinylox_v 
1Alclnrh t 'lw1111,·al t 'o., Mdwauk1•1', \\711 at n l'l)IU'f'ntrat1on of :IO-r>O 
µc"mj.! of prot«>m an the dark nt ·1 'C for I h.~ 1 Exre~!' spin laht•I wn~ 
remo\'ed hy wash mg with 5P8 huff er until the samples gave con•tant 
EPH signals 

The mnlt.·1mitlr ~pin 1ahell'd, Fipt·rtrin-actin deplc>lt•d mPmhrnnes 
Wl.'re prl.'p:trf'd hy mruhalton or lahl'IPd ml"mhranes al 37 "C In 0.3 
mM phosphate hulfer al pl! 7.6 10.31'7.61 bulf,•r, lo soluhiloze sp<•c
lnn -actan, whic.:h was thf'n n•mO\·l'd l,y ct>ntr1fu..:ntion.i.: Lowry 
prolt•in as!"ay~ wnt• c-;irru·d nut on the intnrl membranf' and th1• 
~uJwrnnt;rnt rcsull ing from c•~nt r1fui.::nt ion. Genf'rally, --:lO = 51'.; of 
lhl~ pmll·ini-. were n•mov1·d from ltw membrnnt~:-: lo i:ive Himplilic<l 
ml·rnhrnnr~. depl1·tt·d or ltw spcclrin- ad in nPtwork. The prolt·ins or 
lh1!-- s1mplifit·d m<'mhrarn• ~amph• wPn• mainly lland :i prolPin, n~ 
i.:hown hy !)•.; HllS polv:wrylamidc J!l•I tleclrophoresis, u1>inf{ the 
mrthod!<- of t'airhanks 1•t a1.~· 1 

A fatty acid :-.pin prolu•, 1:t-carhoxypropyll-4.4-dimethyl·2·lridt•cyl-
3-oxvl 1!l-1Joxvl stt-nrat1·1 lSvva, Pain Alto, CAI waFi nl!"O U!-if'd lo Inf)(') 
mt·n~hrant• gi10:-ot ~•1mplt•:--.· M1·111hran1· samplt•s in !iPH hufTPr Wt'rt' 
d1.1lnrd in !ll'7 4 Na('I huffn ht·fon· inruhatinn wilh 5-doxvl Nh•n
ralf; at a rnnt'l·ntrat111n of 100 µ,.: .. mg (lroh·in for :IO min. 1~1 room 
l''lllJlf'l"•ll un• S1n1·1· 1111· n1t·111ln :1111·~ h;1\·t• ahout 1'1111:11 arnounl."' of pru
h·111s aml l1p11I:-- l1y w1·1j.!hl. llw sp111 lal1t•l to hp1J molar ratio ¥-·a/'i I ·ti 

('('tit•dil-!\11•mhranf' Samplt•s--The malc>imidl" spin l.ah<-led mem
hrAnl' and f'implified mcmhrant.• samp)eJ; wt•rt..> dialyud in 
!'lP7 '1'NnCI ovc>rnai.:ht Sumph·~ ur lhc 5-dox_vl Nlearatc llipin lnhclcd 
mt·mhrant•"' in !",1'7.41NaCI wt•rc ust•d Jin·ctly. The prult·in conc1•n
trallon~ of lht•i-;1• i-:arnplt~s wt~rt· df•termin<•d hy thf" mtNhfi1•d Lowry 
a~..,a.v. and ;ul1ush•d lo '1 m..:'mL for tht~ mnll'imidt• Hpin lutwlt·d 
!"nrnph•s, nnd ln Ii m1: 1ml. for llw r.-doxyl fih!uratc lnhrh·d tmmples. 
Vanous vulunws rn .. :.wo ,,Lt of ct•tll'dil stm·k !>!nlutinn wne iuhlt·d to 
100 µL rnl•mbran1• samplt·s. A tinlulaon of lflO mM NaCl .;md 5 mM 
Nnll,l'O, with llCI adrl~d t-0 givo a pH or 4 0 wa• ust'd a• control 
Folution a>I'4 NnC'll. t"lnce the ccti~dil stock solution in f1P7.41NaCI 
haf. n final pf1 vahu· or 4. A volume ofthiR solution was addt'd to f'ach 
sp1n-lahd1·d 01f'ml1ram· and ri·t11•dil mixlurr. to giv(' fl final volume or 
:lllil 1•L. The final pll of all 'ampl<" was 6.3. The mixtur~s of 
m«mhrant· and cetwdll wnt• then centrifuged at 38 750 x R for 5 
min. The supl'rnalanl of each sample was removed, and the free 
ceticdil concentrations in the RupernalantR were determined by UV 
ahsorpt1on at 233 nm. The pellet membrane samples were used for 
EPH measurements. 

lluC' lo the> n•lativelv low ~ensitivitv in the EPR EOtudies, the 
ronccntralwn~ of n•ti1•dil 1in the millimo.lar range) and of mrmbrane 
prolrins 11n lht.· mi.:-'ml. ran~l·I nc>cdl'd in this f:tudy were hii:-hf'r than 
thost• ust•d t'l1111Gt1l\' nr in n•llular ~ludies, in which µM concenlrn
tum ct·ti1·dd pt·r µ~ ~nl. prolt•ins were uscd.7·1 .. Howev<•r, the ceticdil
to-prolem ralu1~ In hot h COf:l'S are millimoles of cetied1I per Jfl"Bm Of 
protein. In a ~imple t•quilibrium process. the interaction dep<>nds on 
lht! ahsolule t·ont·cntralin11~ of Cl'I iedil rather than on the celicdil-to
p111lc·m ralin~; "'llH'•' ttw <•quilihrium will ht• ~hiflrd mon• loward tht• 
u·tit·dil-memhran(' a~"oe111t1on "'l<'1lc> al higher ccllt'dtl conccnlrat1on, 
and toward the d1f.~ocialion !'lnlf' nl lowt>r cetie>dil concentration. In 
tlw cast• nf limil1•d i-.olul11litv of rl'lil'dil in hulfor aN wt•ll n~ Jlrefrrc>n· 
lial parl 111011111~~ of l'l'tll'tfiJ ;11 tht• lipid phust', U prt•CiRt' dcRcriplion nf 

tlu• t·d11·1hl 1111·111hra111• 1•11111lihri11m in llu• h11fln rt'•llllrt•i-; clt'lail1·cl 
mform;ition un llw part1t111ninJ,! of ct•t1Nhl ltt•l\l.'<'t!O the var111u~ 

m1·mltran1· fomporu·nls trnd hufft.r Fur romparil'>on with olht·r ~tud
il':-o, Wt• have• simply u .. 1•ci lhl' rat111 of "n·lwdll add1·d-lo·proll'1n 
prt•!<t•nl" as R p111nl nf n•f1•n·nrt'. 

t:letlron l'arama~nt•lir lfr,..onant<' F.xpt>riml'nl!i\-EPR samples 
Wf'rt' mtro<lurt·ci into ;,o µL cupillury tulH•!>., following the procedures 
u.~t·d in th1~ laluiralnr\' .!"An EPH s1u·t·lromc·tn 1Varian modc>I E109• 
inlt·rfart•<l with a tmu· avnaj!i•r 1N1n1h·t m11d1·I !l:l!">I, wns u~d to 
obluin the EPH srwctru. Tht> temperature oftht.· EPH men~urement 
was contrnllt·d and monitored to ! 0.1 'C. Standard EPR spectrome
lt!r R<'lting" w1•r1• used "I" 

Eh•dron l'arHIDHJ!nt•tic U1•sonanC'(' l>al11 Anah·sis or 5-Uox~·I 
Sh•arah· Lat,..l1•d Sam11lt•i-o-Tht· hypt·rfin£> s..•paration fHFSI or the 
hi~:h fi1•l1I a111I low fu•lcl EPH siJ!OaJ.,..'" uf lah1•l1•cl m1•mhran1• flilmpli.•s 
wt•n• nll'a~un·cl a!-. H funtlion of rl'tif'clil l'oncf•nlrnlion. 

1-;lt·rlron l'nrarrotl-{1wtir Ht.•"'or1ant·1· Uata Analpoi!" or lhf' Malt•i
miclt• l.alu•lt•d ~am1•lt•s-'l'.bt· W1S rntios;t.i or mf'mhrun(' ,.amplef> 
without rclu·tlil, 1W1S111• arld'?ff mt.·mhram!S with a ~pt.·cific amount of 
Cl'tic>dil pre~wnt. lW/81,.,.1 , Wt're mcasun•d. The d11Tert.·ncc betweC'n 
f\\'·S1, 1 and 1WiS1 ... 1 • ~1\\':S1 ... 1 • wns calculah•d nnd U!'ed to obtain 
quanlitati\'t• 111formal111n on lhe Jnh~ractmn beh''l•en cuti<'dil 1(;1 and 
nwmhrarn·s IM I. 

A gt•m·ral roopt·rat l\'t' binding model j,. firi-;t a~~umed for mem
brnnes with n binding sites, M + nC - MC.,. The equilibrium 
dissociation constant, K,1• is equal to C"MiMC •• where Mis the final 
membrane concentration, C is lhe concentration of free celiedil, in 
equilibrium with the hound cetiedil, and MC. is the concentration of 
the membran~t·tiedil compll'x. Ir f,, i• the fraction or membrane 
interaclin~ with Cl'liedil. then r. ~ MC,,11MC. + Ml. Combining the 
aforc·menlioned Kd and fi, expre~sions. we obtain: 

A~!'umin~ that th1: chan..:es in thC' \VIS rntio oh~erved on addition of 
rrtir.d1l to lht• mcmhran<' urc thf" di reel results of eel it'd ii inll'rncling 
with lht' mt•mhrnne to rl'duce lht· spin label mobility, the EPR data 
could ht· n·latt·d tn rh to obtain valuf'i<o for tht• K.1. A!>!>Umin~ (\\'/Sia. RR 
thr \\' S vnlt,c for membrane hound with cl•tiedil, thl"n (\V/SI""' = 
fht\V/Sli. -+ 1 l - f1ollW1'S10, or: 

.11W.'Sl, . ., = f1,.11WtSl, 121 

When n ""~ 1. eq, 3 hl'caml' the C'quation for thl" two-state binding 
model for membranes with multiple independent bmdmg oites. M + 
C -• MC.;1• Vulur~ of .1IW'S1 ... 1 und C 1tr1• l'Xprr1m•·ntally dL•lf'rminl'd 
nnJ K-t, .llW/SJ. and n ar•• ohlnint•tl from C'<I 3 usini.:- nonlinc>nr 
n:grNIMCJn llwlhodl';. Then vulut·s. whu.:h indicate the cooperativ1ly or 
bindmi.:. on- nlso ohtaim·d by Uill plots. Thl· half f"aturution concen
tration, C' 1 :.!• i" Uw c<·ti1·1hl l'nnt·1•ntratwn lhal givt•io n .l.tW181, . .,1 vnhw 
thnt Wilfoi onto.half or tht• ,l1\V,s1. vnlue, and i!' obtained from the 
nonlinear rl•grcRsion filled curveN. 

Results and Discussion 
The pll Effect of CetiC'dil-Figure I <hows the pll of the 

drug molecule, ceticdil citrate, in phosphate buffered saline 
!PllSI and in blood scrum as a function of concentration. In 
PBS, addition of 500 µM cetiedil citrate causes the pH of the 
buffer to drop from 8.0 to 7. 7. At 20 mM cetiedil citrate, the 
pl! is -6.3, and at 30 mM, the pH is 4.0. 

This sharp changl' in pH on addition of cetiedil citrate to 
buffer is probably due to the citrate moiety present with 
cetiedil as a counterion. The pK2 of citrate acid is 4.76 and 
the pK,. is 6.4 at :.!5 °C. The first ionizablc proton (pK1 = 3.1) 
of the three carboxylatc groups in citrate is neutralized by 
the positive charge on the tertiary ammonium ion of the 
azepine ring, which has a pK. of -10. We also prepared 
various roncPntrations of citric ncid solutions in PBS and 
mcasun·d their pll values. The pl! profiles of cetiedil cilrute 
and citric acid in PBS were similar. 

Thr pl! effect or thr drug moll'rule was also tested on blood 
Fl'rum in a similar manner. Although the pl! profile of 
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Figure 1-The pH profile or cetiedilin blood serum (+)and in PBS(.'.). 
The pH measurements were made on a Beckman Model 3560 D1g1tal 
pH meter, using an Ingold Micro pH Electrode at room templ'rature. The 
pH ol the blood serum was 7 78 The lines shown through the data are 
sp/lne fits and havP no theoretical s1gnif1cance. 

cl'lit'dil citrate· in srrum in Fig. I looks similar lo that in 
PBS, the curve is shilled slightly to the right indicating that 
the buffering capacity of blood serum is somewhat better 
than that of PBS. The pH of the srrum remains constant on 
addition nfcd1Prlil citrat<' up to ahout 0.5 mM, and it drops to 
about 6.5 at 20 ml\1 eel irdil ritratr. 

Tlw cmw<'nlration of crtic·dil citrall• used in clinicnl ond 
cellular slurlit's '"usually in the rnngr 100-500 1•M. If this 
amount of cellNlil citrate is evenly distributed, then the 
change in pl! due to celiedil will be minimal. However, if 
cetiedil is more soluble in one part of the membrane than 
anoth<'r tfor example, more soluble in hydrophobic or hydro
philic environments I, then accumulation of the drug in the 
mrmbrane mav lead to local concentrations higher than I 00-
500 µM, which may change the local pl! in the membrane. 
Thr acidic citrate ions are more soluble in aqueous solution 
or serum. and less soluble in membrane bilayers. The basic 
C<'I iedil moi<'ty is more soluble in lht• membrane bilayers 
than in an aqueous solution. Since patients treated with 
cetiedil citrnte r<'ccived 25-50 mg cclicdil per lrC'atmenl,0 ·" 

it is important In cnsurt• that the concentration of cetiedil or 
tlw ~nlution rnlmini-.;fc•rpd to patient~ i~ not J...,'TCal enough to 
canst• a sudden pll drop in scrum. It ulHo appears lhnt o 
different cnuntPr1nn which has a more neutral pK may be 
more dt'8m1hlc. 

Extindion Coefficient of Crtiedil-The molar extinction 
coeflicient at 233 nm I E,;u I was determined to be 2796 M- 1 

cm 1 from a linear plot of A,30 versus ceticdil concentration 
over the range of 10-150 µM. The chromophores in celiedil 
appear to be the thiophene (sulfur-containing five-membered 
ring! a&>d tbe a~el'ine !nitrogen eenteining ee"e~mbered 
m.g+ groupJ. both of which absorb in the UV region. For 
thiophene, the maximum absorption is al 231 nm, and the 
Em is 7 100 M · 1 cm -1, and for azrpine, the maximum 
absorption is at 226-229 nm, and the E227 is 13, 780 M- 1 
cm '.2r, 

Critical l\licclle Concl'nlralion of Crtirdil-Figure 2 
shows that the A230 values of celiedil in 5P7.41NaCI buffer 
level off at higher cetiedil concentrations. The instrument 
performance at high absorbance was checked to ensure linear 
response. Straight lin<'s wrre obtained for absorbance versus 
concentration plots for benzoic acid at 230 nm, and for 
hemoglobin solutions al 280 nm. Light scattering al 233 nm 
was also checked by monitoring the absorbance of membrane 
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Figure 2-A '·" versus cetiedil concentration plot in 5 mM phosphate 
bu/fer wrth 1 so· mM NaCl Inset shows the UV spectrum of cetiedil st pH 
6.3 with maximum absorptron st 233 nm. Opllcal cells with a I-mm light 
path were used to obtarn the A233 . The performance ol the instrument 
was checked for lrnesrity (see text). 

solutions. A lin<'ar response was also ohtnined at high absor
bance 12-31. The IC'veling-off phenomenon in cetiedil solu
tions al high concC"ntration must thus be due lo micdle 
formation. The relationship between the absorbance and 
concentration was fit lo polynomial equations lo determine 
the critical micelle concentration. Polynomial equations with 
orders of 4, 5, 6, 7, and 8 all gave reasonably good fits l~ the 
experimental data. The average value of the CMC obtained 
from thest• fitted polynomial equations was 8.8 = 0.3 ml\1. 

Since the CMC was well abo\•e the• 500 µM concentration 
range used in clinical and cellular studies.'• 00 celiedil would 
exist as monomers in these studies, if it were evenly d1slrtb
uted. In the case wherr' 11 local accumulation of cetiedil to a 
concenlrution abo\'e 8.H mM could occur, then cetiedil would 
exist as both monomers and micelles. 

Celil'dil-Mt•mhrane lntrraction-We determined the free 
celiedil concrntralion in th<' presence of membrane ghosts, 
by measunn~ tlw UV ahsorhancc of the supcrnotnnl result
ing from cenlrifu~ation, as discussed above. Figure 3 shows 
the concentration relationship between free cetiedil and total 
cetiedil citrate added in the presence of 1.33 mglml mem
branes. The slope of the filled line is 0.88. About 85% of 
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Figure 3-The relationship between total and free cetiedil concentra
tions in a membrane sample (1.33 mg·'ml) in 5 mM phosphate bu/fer 
with 150 mM NaCl. At 5 mM concentration, about t.6 ~ ro• cetiedil 
molecules associate with each ghost. 
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rrltf'tld n·ma~n~ ~11snlut11111 as fr1'l' rt'lu.•dd. For L•xnmplr, at a 
!'"1 ml\1 l'di1•cl1I r1trat1· nmn•ntrat1nn, O.fi 11mol of rl't1rrlil 
a~sonatl'l'i with l.:t:I m1: nwmhrallt'l'i, or I.fl ' IOM ft>fit•«fil 
111ol1·rt1l1·~ p1·r gho..;f ta:-.~11m1ng r,_7 'w 10 IO m~ flrolt•in p1·r 

g-ho:--t 1, whtl'h •~ an enormous amount of cclit•dil associated 
wilh nwmhrarws. 

Efft·1·1 of ('l'li••dil on Mrmhraall' l.ipids--Tlw falty acid 
1-1pin prolw. r>-tloxyl :->fC'arah', intt•rrnlah·~ nmonj.! th<" lipid 
mnl1•fHIPs in llw nwmhnuw, wilh tlw nitroxirlt• mniPtv oft.ht• 
r~-·~ox_vl i-;.ft·aral1• loralPd rH'ar flH' rarhnn_vl J.!rnup ofpho~pho
lrprd mol•cull's, and has ht•Pn usl'd lo monitor the behavior of 
the lipid mnlt•cules in the rl'gion near the polar head 
groups.'" Although these spin probes are easy to use, thpre 
has b<'en somt• criticism of their us<'s in membrane studies 
since the spt•ctral data are often over interpreted." In this 
study. we simply usr the lnhel to find out whether cetiedil 
nllf·1·l1•d tJw lip11I rom1mn1•nt in nwmhrnrw, and no nffpmpt 
\\'H!>i 111;1cl1· f1111l1l;1111 q11a11l1lul1v1· 111fi1nu11liu11 on 1111' dvrmm
ir" of tlw lqml mol1•1·11li·'· Figure 4 •how• o plol ~.f th<· 
hypNfint• sPparatlon 1t1FS1 ns a function of total cetiedil 
l'nnt·f'nlration in tlw nwmhrane sampl('. A!i Lh<1' conrcntration 
of cclicdil increased, the llFS values decreased indicating a 
change in thl' mobility or environmental polarily of the spin 
probe upon addition of cclit•dil to the membrane. At a pH of 
-6.3 fin 5P7.4 NaCl bulfpr) nnd 37 •c, the HFS valueR 
rlPcrcasP frnm - fi:! G lo 45 (;when 10-15 mM cetiedil was 
prcspnt in th<• membrane sample that had a protein concen· 
tratinn of2 mg'mL. 

Eff<·ct of Ceticdil on ~h·mbrane l'roh•ins-We user! the 
maleimidc spin lahel to monitor the effect of cet.icdil on 
membrane proteins of both normal and sickle cells. The 
maleimide spin labels alkylnte primarily the sulfhydryl ISH) 
groups of the protein molecules. Our earlier finding shows 
that - 2Qq of the erythrocyte membrane protein SH groups 
are alkylated hy the maleimide spin label, and -80'll of the 
spin label intensity arises from lahcl sites at the cytoplasmic 
membrane surfal'c, with most of the spin lahels attached to 
the penphcral protPins, the speclrin-actin complex," and 
one spm label to the Band 3 molecule. The amplitude ratio, 
\VIS, of the EPR speclrum of the maleimide labeled mem
branps is vny sensitive lo such experimental conditions ns 
h'mpcraturt', ionic strength nnd pll as well ns to molecules 
binding tn the cytoplasmic surface of lhe membranes.'"'" We 
mPasun·d the \Vl'::j values of the maleimide lalwled mem
bran<'s in the presence of various amounts of cetiedil in 5 mM 
phosphah• bulft•r with NnCI nt 20 and 37 •c. As shown in ~'ig. 
5, the initial addition of cetiPdil to both membrane and 
simplified memhranc samples of normal cells gave a gradual 
increase in .11WISI at hoth 20 and 37 °C. The four curves 
shown in Fig. 5 were qualitatively similar to each other. 
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Figure 4- The effects of cetiedil on the hyperfine separation of S·doKyl 
stearate labeled erythrocyte membrane samples in 5 mM phosphate 
buffer with 750 mM NaCl al 37 'C. 
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Figure 5-Change in (W.'SJ of the maleimide labeled erythrocyte 
membranes as a function of free cetiedil concentration in a typical run of 
paired samples of intact membrane (a} and simplified membrane (b} that 
were allowed to interact with cetiedil at 20 'C (top panel} and 37 'C 
(bottom panel). The smooth curves are obtained by a nonlinear regres
sion method using the equation discussed in the teKI. 

They dpmonstrnkd that the binding of cetiedil molecules to 
membranes caused immobili?J1tion of some of the spin labels 
on these membrane samples. In our previous studies, we 
have ehown that chnngl's in the WIS ratios can be dircctlv 
rdated to the mpmhrane binding process. The addition ~f 
bovine serum albumin, for examplP, causes no change in the 
WIS ratios, whereas the addition of hemoglobin causes the 
WIS values ofmemhrane to decrPase." The .11\VIS)'°' values 
approached constant values at high concentrations of cetie
dil, suggesting that the interaction of cetiedil with mem
brane proteins was a saturable process under the conditions 
we studied. Similar data were obtained on membranes from 
sickle cells at 37 •c. 

We also studied the interaction of cetiedil with the spec
trin-actin sample in 5P7 .41NaCI buffer, and monitored the 
WIS ratios of the spectrin-actin samples as a function of the 
cetiedil added. Although we observed decreases in the WIS 
ratios, we also found protein aggregation upon addition of 
cctiedil, probably due to the acidity of cetiedil causing 
spectrin-actin precipitation. The isoelectric point, pl, ofspec
trin-actin is -4.5. Thus little quantitative information was 
obtained. · 

We have found that the association of cetiedil with the 
erythrocyte membrane was reversible. The EPR signals of 
the membrane samples with and without cetiedil were first 
measured. These samples were then dialyzed overnight in 
buffer solutions with buffer to sample volume ratios of at 
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lrusl 10011 Tlw El'H sig"nuls of thl' dialywd RRmpl<'s were 
nu'a!'lurcd again aftt·r dial.\'!'-is. Both sampl<'!-0 JHJ\'C' W.'8 ratios 
~11111lar to that of tl11• ml'mhrunp samph• without cf'firdil 
h1 1 f11n· d1.d\'"1~. mtl1c:11 i111.! I hat tlw l'l'lit•dil. nu•mhrmw int.-r
nrt111n wa-.. nonc·0Yal1·nt in natun'. ancl d1cJ nol cnuse irrev<'rs· 
iblP chan~c' in lh1• t·rylhroc·ytc membrane. This is in good 
ag"reement with the previous finding that the effect ofcetiedil 
on the prvthrorvh' ii" rpvrrsihle.~ 

In nnl1:r to 11h.L1in c111antifativ1• information on crtit•dil nnd 
11wmhra1w h1111lini;, snrh as lh<• apparent K.i vulucs, from the 
\\' !"' rlatn. we• d .. tc•rmirwd f h<' frc•1• Cf'liP<lil ronrf'nt rnt ion, C, in 
1·Pl 1Pdd nu·mhr;uw llll'd 1ir1·s. us ~lurn:n in Fig. :l. Aft1•r t4Uh· 
~t1t11l111g (' aud .ll\\' S1,..i into 1•11. :t, /\ 11 , n nnd ~IW/81, ruulcl 
b<• obtairwd. The n value> obtained from these data, hoth by 
non-Jinpar rPgn•ssion m<'thods and by the Hill plot, were all 
- 1. indicating that a simple two-state model with multipl1• 
independPnt hinding sites that we have pr<'viously used" 
was nd<•quntP lo cleserihe the bindingofcetiedil to membrane 
prol1•1n:.; 

T:iltl1• I "hows tl11· val111•!-. ofapparc-nt h",i, d1\\1/SJ. nnd {'1.:1. 

for t'l'I wdal n11·111hraru., t't•l wdd ··simplilit>cl rnt•mhrane KYS· 

tt·m-. al 20 and :17 C. All th" J\,i valuPs arc -·2 mM. Th<' half 
!"aturat1on c1111cf•11lration rangl'S from 1-3 mn10I of cctit•dil 
p<'r g"rarn of memhranP proteins. 

Di reel comparison of the a\·eraged Kd values of the mem
brane and simphfi<•d memhrane samplPS in Table I indicated 
a slightly lower J\,i \'aluc•s for the simplifird membrane 
samples than thosi· for intact memhrane sample's. llowever, a 
paired sample t test of the KJ values indicated that the 
diff<'rrnc•» in K.i valurs hrtwe<'n memhrane and simplified 
mt•mbram• samples wn<' not statistically significant either 
at 20 T Ip·- 0 O:!I or at 37 'C tp ·- 0.051, ns shown in Table I. 
R1•mo,·al of the sp1•ctnn-actin network from the membrane 
thus did not sir;nifirantly affect the binding of ceticdil to 
erythrocyt<' nwmhram•. The spectrin-actin network ts the 
major compon<·nt in maintaining th<' shape of erythrocyte. 
The lark of interaction between cetiedil and the spectrin
actin network, as ohS<•rved hy EPR data, suggested that the 
action of cc•tiedil in returning sickle cell to normal shapes 
was not accomplish<·d by modifying the spc•ctrin-actin n<'t
work in sirkle ct>lls. Other studies indicate thut cetiedil 
inhibits calmodulin-stimulat<'d cnlcium-ATPnsc activity. 
(~nlm•1dulin is pr<•senl in Uw cryl hrocytc.• 1 hut does not nppcar 
to hind to ~1u·drin molPrtiles."''· 111 These finding-8 nrc con8i~t· 
cnt with unr El'H data. 

Th" simplifil'd membrane sample consists of lipid bilayer 
nnd Bnnd :I protein nnd other proteins, including ATPu•cH.'" 
llowevrr the major prot<•in compon<'nt is the llnnd 3 mole
r11l1• Mosl of tlw proll'Jn spin lalu•ls, if nut all, in thr 
simplifiNI mcmhranes nrc on the Band 3 mnlecull's. There
fore our dnla su,::gC"sted interaction of cetiedil with the Band 
3 proteins m membranes, with an apparent Kd of -2 mM at 
37 'C. llowevl'r. these results did not exclude the interactions 

Table I-Equilibrium Binding Parameters of Cetledll In Membrane 
Systems and Statistical Analysis Resulta of IC,, Values• 

Sample ~(WIS). 
K,, ± so. C1·2 ,. p" mM mmolig 

Membrane.: 1.92 :t 0.15 2.95 :t 0.64 2.5 3.186 Simplilied 3.34 :t 0.57 1.89 ± 0.27 1.1 
<0.02 

Mcmbranec 
Membraned 306 :t 0.43 2.34 ± 0.74 1.4 

2.682 <0.05 S1mplilied 5.30 :t 0.85 1.57 :t 0.56 0.9 
Membraned 

•Membrane systems were in 5 mM phosphate buffer with 150 mM 
NaCl. Seven determinations at each temperature for each membrane 
preparation were made. 0 The I and p values were obtained from a 
paired sample t test by null-hypothesis. c Run al 20 •c. •Run al 37 ·c. 
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of ccticdil with other minor proteins in the simplified mem
hrnn!'s. Tlw spin lah<·I EPR approach will not be scnsiti\'<' 
enmr1:h to dl'l<·ct •urh inlrrnctions. Additional information 
on tlw pnrtitmning uf cl'licdil in mcmbrnm•s will provid<' us 
with quantitative information on the concentrations ofcetie
d1l interacting with individual m<'mbrane components. 

Band 3 is an anion transport protein,34 and may have a role 
in th<• membrane to reg"U)atl' water movement in erythro
cvlt'N.:1'.! :i:i More.' dPtailt•d studil's of intc>ractions hclwl'cn 
c~·tiC"dil and Band 3 molecul<•s and interactions between 
crti1•dil nnd ATl'asrs. for example, mny provide in•ight 
toward 1111dl'rstandi11J! ils v11ri1111s clrug: aclion!i in nm•rtin~ 
<•rvlhrnntc• wnt<·r cont<'nls und Nu' and K' movements 
ac.ross cCll membranes.''·iu.u 

ii/ti Conclusions 

()ur opt icul da(il show that Cf'I it•dil has a maximum nbRorp
tion ut :.!:i:I nm with 11 Ei:i:i of :.nnr. M 1 cm 1. The c<'ticdil 
citrat<• mnlrcul<' ul high concentration is quitr acidic, and 
may form mirrllr•. The critical micelle concentration of 
cetiedil in phosphate buffer with 150 mM NaCl is -8.8 mM. 

This study shows that a large amount of cetiedil may 
associate with membranes. The study further demonstrates 
that cetiedil interacts with both the lipid component and the 
protein component in the membranes. 

The EPR data show that the drug interacts with the 
membrane proteins, and that the binding is saturable and 
reversible. The halfsaturntion concentration for binding is in 
the range of 1-3 mmol cetiedil per gram membrane proteins 
at physiological temperature. The equilibrium dissociation 
con•tant for mPmbrane• is -2 mM at pH 6.3 and 37 °C. 
Removal ofsprctrin-actin from the membrane does not aff<•ct 
the binding properties of cctiedil, indicating that the spcc
trin-actin network is not involved in the mechanism of drug 
action. Our results suggrst the existence of an interaction 
between cetiedil and Band 3 molecules, with an equilibrium 
dissociation constant of -2 mM. 

The El'R data also show that cetiedil affects the mobility of 
the spin labds that intercalate amongst the head !,'Toups of 
the lipid molecuh·• in the m<'mhrane. Thr d<'tailed rffecL• of 
cctiPdil on lipid moll'rulrs an• not cl<'ur at thi• point. 
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