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CHAPTER I 

INTRODUCTION AND REVIEW OF THE LITERATURE 

I. INTRODUCTION TO HEPARIN 

A. History 

Heparin is a commonly used anticoagulant drug 

indicated for the prophylaxis and treatment of thrombo­

embolic disorders. Although it has been investigated for 

almost 70 years and been in clinical use for over thirty 

years, many questions remain relative to its pharm­

acodynamic actions (Jaques, 1979). 

The discovery of heparin is attributed to the 

serendipitous observations of Jay Mcclean, a medical 

student at Johns Hopkins working under the direction of 

professor W.H. Howell. Howell's inte~ests were in the 

investigation of natural thromboplastins. He assigned 

Mcclean the task of extracting and observing the activity 

of various phosphatides such as cephalin and a hepatic 

extract termed heparophosphatide. During these studies 

Mcclean noticed that the thromboplastic activity of the 

phosphatide was not only lost after prolonged storage, but 

actually prolonged coagulation times in his assay system. 

Further investigations by Howell and Holt, (1918) demon­

strated that these substances were also active after 

intravenous administration in dogs. Since these 
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substances were especially abundant in the liver, Howell 

named them heparins. Further characterization revealed 

that these substances contained no phosphorus and were not 

actually phosphatides, but rather sulfur containing carbo-

hydrates (Howell & Holt, 1928). These heparins demon-

strated weak anticoagulant activity and were to toxic for 

therapeutic use. 

using a different extraction method, Scott and 

Charles, (1933) reported that a relatively pure high yield 

of heparin could be obtained from beef lung. In this 

system, purification by tryptic digestion and alcohol 

precipitation removed protein and fatty contaminants. 

Additional work by Scott and Charles, (1936) resulted in 

the preparation of a crystalline form of heparin as either 

a barium or sodium salt. The enhanced efficiency of these 
• 

extraction and purification processes resulted in suf-

ficient quantities of suitable material for clinical 

evaluation. 

B. The Chemistry of Heparin 

Chemically heparin is best characterized as a family 

of linear anionic polysaccharide chains with a highly 

heterogeneous distribution of molecular weights. The 

molecular weights of the individual components generally 

range from 1,000 through 50,000 daltons. The mean 

molecular weight is usually between 9,000 and 15,000 
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daltons, however these figures vary with both the source 

and method of extraction. It has been shown that beef 

lung heparin has different molecular weight character­

istics compared to porcine mucosal heparin (Cifonelli & 

King, 1970 ; Bianchini et al., 1976). 

Reports from various investigators have shown that 

commercial heparin preparations contain at least 21 

discrete molecular species identifiable by electro­

focusing (Mc Duffie et al., 1975; Dietrich et al., 1975). 

Most likely twenty-one is the minimal number since the 

separation loses resolution at the longest chains. For 

this reason the number may be as high as 23 or 24. These 

molecular species vary in molecular weight, net charge, 

charge density and ratio of hexose residues. The 

heterogeneity within the components of heparin has been 
• 

shown to be a consequence of the natural synthetic process 

rather that an artifact of preparation (Cifonelli, 1974). 

A conceptual representation of the diversity of heparin is 

seen in appendix I. Recently, heparin preparations have 

also been shown to vary in terms of the proportion of 

individual molecular weight components (Barlow, 1983, 

1985) . Not only are heparins heterogeneous in terms of 

their composition of molecular weight components, but also 

in the distribution of these components. Thus, it is 

possible that heparins with similar mean molecular weights 

may differ in the relative proportion of individual 
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components. 

The polysaccharide chains of heparin are constructed 

with alternating residues of uronic acid (either L idur­

onic or o-glucuronic acid) and D-glucosamine monosac­

charide units joined via alpha 1-4 glycosidic linkages. 

These residues are sulfated and acetylated to a varying 

degree, however most glucosamine units possess an o­

sulfate at carbon six, while most iduronic acid residues 

are sulfated at carbon two. An o-sulfate group at carbon 

three is thought to be critical to the anti thrombin III 

binding sequence (Lindahl et al., 1980). A drawing 

representing the chemical structure of heparin is seen in 

appendix II. 

Commercial heparin is generally extracted from 

either bovine lung or porcine~ intestinal mucosa and 

• 
prepared as either a sodium or calcium salt. However, 

barium and potassium salts are also prepared. These 

metals are usually present at concentrations of about 12 

%. No difference has been observed in the pharmacologic 

properties between any of the different salt preparations 

and it is generally assumed that they are equivalent 

(Cocchetto and Bjornsson, 1984). 

C. Standardization of Heparin 

Due to the inherent variability within the sources 

and methods of manufacturing, it is necessary to standard-
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ize commercial heparin preparations in terms of biological 

actions. These actions are quantified in units of anti-

coagulant activity. 

The first unit was defined by Howell as the amount 

of heparin that would prevent the clotting of one ml. of 

freshly drawn cat blood overnight in the cold (Howell, 

1928). The Connaught unit was essentially similar to the 

Howell unit, however the potency was determined by 

comparison to a defined reference heparin preparation 

(Scott & Charles, 1933). The need for international 

standardization of heparin resulted in the establishment 

of the first international standard and unit of heparin in 

1942. The unit was defined as 1/130 mg of the inter-

national standard heparin preparation (prepared for and 

held by the World Health Organization Division of 

Biological Standards Geneva, Switzerland) • Since its 

origin, the international standard has been successively 

modified such that currently the fourth international 

standard is utilized. Unfortunately, no specific assay 

was described for use with the international standards. 

Consequently these standards have been used in a variety 

of assays for heparin's potency evaluation. Since the 

values of the international standards vary in different 

assay systems, the international standards have proven an 

unreliable method for the standardization of heparin 

(Brozovic & Bangham, 1974). 
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The U. s. Pharmacopeial Unit (USP) was originally 

defined as the amount of activity present in 1/130 mg of 

the second international standard heparin. Unlike the 

international unit, the USP unit utilizes a specific 

coagulant method to evaluate the potency of heparin. The 

assay measures heparin's inhibition upon recalcified 

activated sheep plasma (U.S. Pharmacopeia XX, 20th 

revision). Although this method relies on a semi-

quantitative visual evaluation of the clot endpoint, it 

has proven to be very reproducible among individual 

heparin preparations. 

The British Pharmacopeial (BP) assay has also been 

widely used for heparin potency evaluation and standard-

ization. This assay is based upon the inhibition of 

thromboplastin activated oxalatea ox blood by heparin. 
. . . When compared to USP standardized heparins, this assay 

gives higher results for lung heparins but lower values 

for mucosal heparins (Brozovic & Bangham, 1974). 

Recently, the USP has established an assay for 

standardizing heparin in terms of anti Xa uni ts. This 

assay measures the inhibition of standardized bovine 

factor Xa in the presence of heparin using a Xa specific 

chromogenic substrate. The amount of anti factor Xa 

activity per mg in USP units must not be less than 80 % 

nor more than 120 % of the potency of heparin in USP 

heparin uni ts per mg as determined by the assay 
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(Pharmacopeial Forum, 1984). 

o. overview of Coagulation 

In order to understand the mechanisms and sites of 

action of heparin, a basic comprehension of the coag­

ulation network is helpful. 

Blood coagulation occurs through a series of complex 

interactions between at least 15 distinct plasma glyco-

proteins. A description of the names, functions, approx­

imate molecular weights and normal plasma concentrations 

is listed in appendix III. With the exception of 

fibrinogen these glycoproteins are classified as either 

protein cofactors or enzyme precursors. The precursors 

circulate as non-activated zymogens and are converted to 

active enzymes upon proteolytic activation. Most of these 

enzymes are serine proteases • • which produce limited 

proteolytic cleavage at peptide bonds on the carboxyl side 

of arginine. 

In its most simplified form, the coagulation network 

can be represented as two distinct, but interacting 

pathways which result in the generation of thrombin. 

These pathways, the intrinsic and extrinsic are so 

designated based upon their mechanism of activation and 

are conceptually illustrated in appendix IV. 

Intrinsic activation is a surface mediated reaction 

which results when the contact factors (prekallikrein and 
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factor XII) are adsorbed to a negatively charged surface. 

such a negatively charged surface is provided in vitro by 

glass or kaolin and in vivo by collagen. The interactions 

between the contact factors and a negatively charged 

surface result in a conformational change which exposes 

the active serine site of the molecule. During this 

process, the contact factors are activated to the 

proteases kallikrein and factor XIIa. In the presence of 

the protein cofactor high molecular weight kininogen, 

factor XII a activates factor XI to XI a. A intermediary 

stage of intrinsic activation is then initiated when 

factor XIa activates factor IX. This is the first calcium 

and phospholipid dependent phase of intrinsic activation. 

Calcium and phospholipid are also necessary for the next 

step where factor IX a converts ~ factor X to Xa. The 

protein cofactor factor VIII is also required for this 

process. Factor X activation is also the first step of. 

the common pathway so designated because it is at this 

point that both intrinsic and extrinsic pathways converge. 

After the generation of factor Xa, factor II (prothrombin) 

is converted by Xa in the presence of the protein co­

factor, factor V, to IIa (thrombin). Finally, factor IIa 

converts f ibrinogen into soluble fibrin monomers and 

fibrinopeptides A and B. At this point the fibrin 

monomers are able to spontaneously polymerize, however 

they remain soluble (in 5 M urea) until acted upon by the 
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transaminase, factor XIIIa. 

Extrinsic activation results when factor VII comes 

into contact with the intracellular lipoprotein, tissue 

thromboplastin. Since this lipoprotein normally resides 

within cells, it is extrinsic to plasma. For this reason, 

initiation of coagulation by this mechanism has been 

termed extrinsic activation. 

Unlike other precursors of the coagulation enzymes, 

factor VII has been demonstrated to possess proteolytic 

activity (Zur, 1978). When tissue thromboplastin enters 

the blood, the proteolytic activity of factor VII is 

enhanced sufficiently to activate factor X (Nemerson, 

1983) • The activated factor X then catalyzes the 

conversion of VII to VIIa, thus creating an amplification 

loop. Factor VII-thromboplastin"' has also been shown to 

• activate factor IX, and by this mechanism may further 

amplify the initiation of coagulation by contributing to 

factor X activation (Osterud & Rapaport, 1977). Because 

of the powerful amplification mechanisms surrounding 

factor VII activation, it has been suggested that factor 

VII may be the key enzyme for the initiation of 

coagulation (Nemerson, 1983). 

Al though most of the proteins of the coagulation 

network are procoagulant, a variety of enzymes and 

protease inhibitors display some anticoagulant actions. 

Alpha-1 antitrypsin, C-1 esterase inhibitor and alpha-2 
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antiplasmin inhibit serine proteases by forming a 1:1 

stoichiometric complex which inhibits serine proteases 

upon association. Antithrombin III (discussed later in 

detail) also functions in this manner. When compared for 

their ability to inhibit thrombin, antithrombin III is the 

most potent of the aforementioned inhibitors. Alpha-2 

macroglobulin has also been shown to inhibit thrombin 

(Thompson & Harker 1983). 

Recently protein c, a vitamin K dependent protein, 

has been shown to be an important regulator of coagulation 

(Comp, 1984) • Upon activation by thrombomodulin bound 

thrombin, protein C exerts it's anticoagulant actions by 

digesting the active forms of factors V and VIII. 

A regulatory mechanism which functions after the 

formation of a clot, involves tlte enzyme plasmin. This 
• 

protein circulates as the zymogen plasminogen and can be 

activated to plasmin during contact activation or by the 

activity of various tissue plasminogen activators. After 

activation, plasmin can dissolve insoluble fibrin monomers 

and produce in clot lysis. The activity of plasmin is 

regulated by the inhibitors alpha2 antiplasmin and alpha2 

macroglobulin. 

E. Mechanism of Heparin's Action CAntithrombin III 

Dependent) 

It has been recognized for many years that heparin 
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requires the plasma protein antithrombin III for the 

expression of most of its anticoagulant effects. The 

initial observation of this cofactor was made by Howell, 

(1928) and Quick, (1938). It was observed that heparin 

tested against pure thrombin and fibrinogen had little 

effect. However when heparin was tested against thrombin 

in plasma, it was an extremely potent anti-thrombin agent. 

since this antithrombin activity of heparin in plasma 

could be destroyed by heating, it was hypothesized that 

the components necessary for the action of heparin were 

probably proteins (Howell, 1928 ; Quick, 1938). By 

separating the albumin and globulin fractions of plasma, 

the heparin cofactor activity was primarily found in the 

albumin fraction (Quick, 1938). These observations led to 

the hypothesis that components of the albumin fraction 

• contained anti thrombin activity and that the addition of 

heparin resulted in the intensification of these actions. 

Further biochemical characterization finally 

revealed that antithrombin III is an alpha2 globulin with 

a molecular weight of about 64, ooo (Abligaard et al., 

1967) . 

The observation that factor Xa as well as thrombin 

could be inhibited by a plasma protein and that this 

process was accelerated by heparin was reported by Biggs 

et al., (1970) and Yin et al., (1971). They concluded 

that the heparin accelerated factor inhibiting factor Xa 
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and thrombin were the same protein. These observations 

were confirmed by the studies of Rosenberg & Damus, (1973) 

and oamus et al., (1973) who offered the first mechanistic 

analysis of the actions of antithrombin. Using an extract 

of anti thrombin judged homogeneous by disc gel electro­

phoresis, SOS gel electrophoresis and immunoelectro­

phoresis they were able to demonstrate that anti factor Xa 

and antithrombin activities reside on the same molecule. 

The proposed mechanism for the inhibition of thrombin 

involves binding between arginine residues on antithrombin 

and the active serine sites of thrombin. The binding 

occurs in a stable 1 : 1 stoichiometric complex which is 

not dissociable by denaturing or reducing agents. Heparin 

accelerates this process by binding allosteric lysyl 

residues on antithrombin which result in a conformational 
• 

change providing a more favorable orientation of one or 

more arginines for interaction at the active site of 

thrombin (Rosenberg & Damus, 1973 . 
I Rosenberg, 1975 . 

I 

Damus et al., 1973 ). A critical tryptophan residue has 

also been proposed to reside within the heparin binding 

site (Blackburn & Sibley, 1980). This proposal is based 

upon the observation that modification of a single 

tryptophan residue blocks not only the binding of heparin 

to antithrombin, but also the heparin induced enhancement 

of thrombin inactivation. Since these actions can be 

accounted for by allosteric effects, additional 
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experimentation is necessary to prove the critical role of 

tryptophan (Blackburn & Sibley, 1980). 

The reactivity between arginine and active serine 

sites led to the hypothesis that the heparin-antithrombin 

complex should inhibit all serine proteases within the 

coagulation network (Rosenberg, 1975) • Consistent with 

this view, it has been demonstrated that in vitro, the 

heparin-antithrombin complex exerts it's anticoagulant 

effects by inhibiting factors XIIa, XIa, Xa, IXa and 

thrombin (Damus et al., 1973 ; Rosenberg et al., 1975 ; 

Snead et al., 1976 and Yin et al., 1971). The possible 

exception to this theory is the serine protease factor 

VIIa (Rosenberg et al. , 1977 & Jesty, 1978) • Although 

some investigators have reported inhibition of factors VII 

or VIIa by heparin-antithrombin.,. (Godal et al., 1974 

Broze & Majerus, 1980) I these observations are 

controversial and currently the subject of investigation. 

The heparin-antithrombin complex has also been shown 

to inhibit the serine protease plasmin (Highsmith et al., 

197 4) • 

F. Mechanisms of Heparin's Action 

Independent) 

CAntithrombin III 

Many investigators studying the anti thrombotic 

actions of heparin have reported that the in vitro 

anticoagulant actions of heparin are not always 
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quantitatively related to the in vivo antithrombotic 

actions. Furthermore, antithrombotic activity often shows 

poor relationship to antithrombin III affinity (Merton et 

al., 1984 ; Barrowcliffe et al., 1984). Consistent with 

these observations, Ofosu et al., (1982) have shown 

anticoagulant actions by low antithrombin affinity 

fractions. Using fractions prepared by antithrombin 

affinity chromatography methods, low affinity heparin 

inhibited activation of prothrombin, but did not inhibit 

factor Xa or IIa. Unlike the anticoagulant actions of 

high affinity heparin, this inhibition was not dependent 

upon the presence of antithrombin. The mechanism of the 

low affinity component in this action was attributed to 

disruption of the binding of factor Xa to phospholipid, 

ca++ and factor II by low affinity heparin. It was 

• concluded that the contribution by the low affinity 

component in terms of the overall antithrombotic effect of 

heparin was probably insignificant (Ofosu et al., 1982). 

Using similar affinity chromatographic methods it 

has been shown that about one third of commercial heparin 

binds with high affinity to antithrombin III (Holmer et 

al., 1981). If antithrombin III dependent mechanisms are 

solely responsible for heparins anticoagulant actions, 

then it would appear that almost two-thirds of the heparin 

mixture is inactive. In support of this view, removal of 

the high antithrombin III affinity fraction from· heparin 
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results in almost complete loss of the in vitro anti-

coagulant activity. Based on these observations, it was 

predicted that high antithrombin III affinity fraction of 

heparin would be a more effective in vivo antithrombotic 

agent than conventional heparin. Recently, several 

investigators have shown this not to be true. Merton et 

al., (1984) compared high affinity with unfractionated 

heparin for their ability to inhibit stasis induced 

thrombosis in a rabbit model. Although similar circulat­

ing anti Xa and clotting activity was observed, the 

unfractionated heparin provided greater protection from 

thrombosis that the high affinity fraction. The greater 

antithrombotic response of the unfractionated heparin was 

attributed to its content of low antithrombin affinity 

components. Further proof of th~ antithrombotic effects 
• 

of low affinity heparin was demonstrated by mixing low 

affinity with high affinity heparin. The addition of low 

affinity components restored antithrombotic potency to the 

high affinity fraction equivalent to unfractionated 

heparin (Merton et al., 1984 ; Barrowcliffe et al., 1984). 

These observations clearly indicate that at least a part 

of heparins antithrombotic effects are mediated through 

non anti thrombin III dependent mechanisms. Speculation 

about the nature of these mechanisms has included effects 

on endothelial cells, pro-fibrinolytic actions, anti­

coagulant actions mediated through heparin cofactor II, 
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effects upon blood viscosity and interactions with 

cellular components of the blood. 

1 • Heparin's Action on Endothelial Cells 

It has been demonstrated that heparin binds to 

endothelial cells both in vitro and in vivo (Mahadoo et 

al., 1977 ; Barzu et al., 1984). Because of their 

critical role in hemostasis, binding of heparin to endo­

thelial cells is thought to play an important anti­

thrombotic role which is indirectly independent of the 

antithrombin III mechanism. Recently, several inves-

tigators have shown that heparin like molecules exist on 

the surface of endothelial cells and are important 

determinants of the anticoagulant nature of these cells 

(Rosenberg, 1985). It is thought that anti heparin .. 
proteins such as platelet factor - 4 and histidine rich 

glycoprotein, constantly compete with anticoagulant 

proteins for the limited number of binding sites on these 

heparin like molecules. The binding of exogenous heparin 

to endothelial cells would alter this competition simply 

by creating additional binding sites (Rosenberg, 1985) . 

These additional binding sites could contribute to 

heparin's overall antithrombotic actions by increasing the 

difficulty for neutralizing the natural antithrombotic 

characteristics of endothelial cells by anti heparin 

proteins. 
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2 • Heparins Effect on Fibrinolysis 

A profibrinolytic action, resulting from heparin­

endothelial interactions may also contribute to overall 

antithrombotic effects. Heparin administration has been 

associated with an increase in fibrinolytic activity as 

demonstrated by decreased euglobulin lysis times, 

increased fibrin plate activity, increased circulating BB 

15-42 related peptides and increased circulating 

immunoreactive tissue plasminogen activator (t-PA) 

(Gaffney et al., 1982 ; Variel et al., 1983 ; Vinazzer et 

al., 1982 . 
' Fareed, 1985) • Although the mechanisms 

resulting in the increased fibrinolytic activity are not 

well understood, it is likely that several mechanisms are 

involved. Among the possible profibrinolytic mechanisms 

of heparin are direct release o'f t-PA from endothelial 
... 

cells, an increased synthesis of t-PA and inhibition of 

plasmin or plasminogen activator inhibitors (Fareed, 

1985). 

3. Heparin Cofactor II 

An additional heparin cofactor, similar to 

antithrombin III in composition and molecular weight has 

been recently identified (Griffith et al., 1983 . 
' 

Tollefsen et al., 1982) • This cofactor has been termed 

heparin cofactor II. Unlike antithrombin III, it is 

thought to inhibit only thrombin and not the other 

17 



proteases of the coagulation network inhibited by 

antithrombin III (Tollefsen et al., 1984). Like anti­

thrombin III, heparin cofactor II binds heparin and other 

sulfated polysaccharides in a 1 : 1 stoichiometric manner. 

The binding of heparin, chondroitin sulfate, dermatan 

sulfate, pentosan polysulfate or dextran sulfate results 

in a dramatic increase in the rate at which thrombin is 

neutralized (Yamagishi et al., 1986) •• 

Although in vitro, the heparin-heparin cofactor II 

complex inhibits thrombin, it's role as a physiological 

mediator of heparins anticoagulant actions is question-

able. Heparin cofactor II's concentration in the plasma 

is only about 1.0 micro molar, approximately half that of 

antithrombin III. Also, heparin cofactor II requires a 

two fold greater concentration of ileparin to neutralize an 

• equivalent amount of thrombin when compared to anti-

thrombin III. Consistent with these observations, animal 

studies indicate that after intravenous injection, 

thrombin is exclusively neutralized by antithrombin III 

(Tollefson, 1984). Thus it seems unlikely that under 

normal physiologic conditions, heparin cofactor II is a 

significant contributor to heparins anticoagulant actions. 

4. Heparin's Effect on Blood Rheology 

It is thought that anti thrombotic actions can be 

produced by agents which affect the rheology of blood 
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(Angelkort et al., 1979). Consistent with this, it has 

been suggested that a lowering in blood viscosity by 

heparin may contribute to it's overall antithrombotic 

effects (Kitsos et al., 1986 ; Reggiero et al., 1983 . 
I 

Copley and King, 1984). Preliminary reports by Kitsos et 

al., (1986) have demonstrated some reduction in whole 

blood viscosity by heparin and heparin fractions. These 

effects were only detectable using an extremely sensitive 

controlled stress rheometer. 

currently, the mechanism involved in heparin's 

effect on viscosity is not well understood, however it 

seems likely that cell membrane characteristics and plasma 

protein levels are altered. It has been hypothesized that 

both a reduction in plasma fibrinogen levels, as well as a 

direct effect on f ibrinogen may be responsible for 
• 

heparin's decrease in plasma viscosity (Ruggiero et al., 

1983 ; Copley and King, 1984). 

5. Cellular Interactions 

Several investigators have suggested that actions by 

heparin on cellular components of the blood may contribute 

to it's overall antithrombotic effects. Most reports have 

identified platelets and leukocytes as the components 

involved in these actions (Zucker, 1977 ; czarnetzki et 

al., 1980). 
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a. Platelets 

Platelets plays an important role in the development 

of both arterial and venous thrombosis. The former being 

more dependent on the activity of platelets than the 

latter. It seems likely that heparin affects this role 

since it is known to produce effects upon platelets both 

in vitro and in vivo. The exact nature of heparins 

influence on platelets and the resulting contribution to 

hemostasis is unclear at this time. Both stimulation and 

inhibition of in vitro platelet aggregation have been 

reported by heparin (Salzman et al., 1980 ; Gillett & 

Besterman, 1973). These effects appear to be dependent on 

the source of heparin, the individual platelets and the 

method of aggregation. 

Heparin has been suggested "'to exert anti thrombotic 

actions by inhibiting the adherence of platelets to 

subendothelial connective tissue. Evidence for this comes 

from experiments using heparin coated arterio-venous 

shunts in dogs . In these studies, heparin coated shunts 

remained patent longer and displayed a reduced 

accumulation of platelets (Zucker, 1977). 

b. Leukocytes 

Leukocytes have been suggested to play a role in 

blood coagulation. Although both anticoagulant and 

procoagulant activities have been reported, it seems 
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likely that leukocytes act in a procoagulant manner by 

stimulating thromboplastin production (Niemetz, 1972 

Lerner et al., 1977). Heparin has been shown to inhibit 

chemotactic factors involved in the migration of 

leukocytes (Czarnetzki et al., 1980). This inhibition may 

result in reduced thromboplastin production and by this 

action contribute to the overall anticoagulant action. 

G. The Pharmacokinetics of Heparin 

Heparin has been used clinically for almost 30 

years, yet its pharmacokinetics remain poorly understood. 

The difficulty in studying this complex problem originates 

from heparin's polycomponent nature (Estes, 1980) • 

Because heparin is not one molecule but rather a mixture 

of diverse molecules, a suitable method for measuring the 
• 

kinetics of all components does not exist. 

In an attempt to study the pharmacokinetics of 

heparin several investigators have utilized radio-

labelled heparin. The use of this method is questionable 

since it appears that the radioactive label may not 

distribute identically to the individual components of 

heparin. A greater proportion of label may bind to low 

molecular weight heparin species. This is suggested by 

results from radio-labelled studies which demonstrate a 

slightly larger volume of distribution (Estes, 1980). The 

larger distribution volume may also be explained by free 
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label resulting from migration off the heparin or 

metabolic degradation. 

In the absence of accurate direct kinetic 

measurements, a variety of bio-assays have been used to 

estimate the pharmacokinetics of heparin. These bio-assay 

methods utilize calibration curves to determine the plasma 

concentration of heparin. Most commonly, various 

activated clotting time assays are used in these studies. 

A brief review of the various bio-assays for heparin has 

been provided by Wessler and Gitel, (1979). 

comparison of pharmacokinetic studies using dif­

ferent bio-assays has demonstrated great variation. 

Results about absorption, volume of distribution (Vd) and 

clearance (Cl) vary significantly and are dependent upon 

the method of assay. 
.,, 

• 
In reviewing the pharmacokinetics of heparin it is 

important to mention some of the components with which it 

is likely to react in vivo. In the blood, heparin not 

only binds to antithrombin III, but also to many 

constituents of the plasma including fibronectin, albumin, 

fibrinogen, platelet factor-4 and histidine rich glyco­

protein (Dawes et al., 1985; Estes, 1980). The effect of 

binding by heparin to these plasma components upon the 

pharmacokinetics and pharmacodynamics is largely unknown. 

Heparin has also been shown to bind and be taken up by 

endothelial cells (Barzu et al., 1984 ; van Rijn et al., 
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1987)· 

1 • ,Absorption 

Because the molecules of heparin are so highly 

charged, it is not well absorbed from all routes of 

administration. Generally heparin is administered by 

either subcutaneous or intravenous routes. Intra-

pulmonary administration has also been shown to be a 

useful method (Bick and Ross, 1985). More recently, 

absorption of orally administered heparin has been 

reported (Ueno et al., 1982 ; Lasker, 1985 ; Larsen et 

al., 1986). Although there is wide variation in both the 

rate and extent of absorption after various routes of 

administration, the total amount of heparin required to 

achieve the same anticoagulant effect over equivalent time 

periods has been reported to be ·similar for intravenous, 
• 

subcutaneous and intrapulmonary routes (Cocchetto and 

Bjornsson, 1984). Similar data following oral adminis-

tration of heparin is not available, however preliminary 

data indicates that only low molecular weight molecules 

displaying anti Xa activity are recovered from the plasma 

(Larsen et al., 1986). 

2. Distribution 

Most studies have reported the Vd of heparin to be 

about 0.07 L/Kg (Estes, 1980). This volume approximates 

distribution to the plasma compartment, however slightly 
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larger distribution volumes have been reported depending 

on the method of assay. Bjornsson et al., (1982) demon­

strated the differences in Vd calculated from three assay 

methods. Significant differences were obtained, with the 

values obtained from chemical methods being slightly 

greater than those based upon coagulant assays. It should 

be mentioned that when 35s labelled heparin has been used 

to estimate Vd, volumes between those of extracellular and 

total body water are reflected (Estes, 1980). This is not 

an accurate reflection of heparins distribution volume and 

illustrates the inadequacy of radiolabelled heparin for 

such studies. The large Vd is explained by the loss of 

the radioactive label from the heparin molecule. 

Cellular uptake of heparin has been reported by 

several investigators (Mahadoo ana Jaques, 1979 ; Barzu et 

al., 1984). If these observations are true, they may 

explain reports indicating a volume of distribution for 

heparin which slightly exceeds the plasma compartment. 

The major cell populations responsible for heparin uptake 

were reported to be macrophages and endothelial cells. 

3. Half-life and Clearance 

Unlike many drugs, heparin exhibits dose dependent 

pharmacokinetics (Estes, 1980 ; Bjornsson et al., 1982 ; 

Raasch, 1980 ; Cocchetto and Bjornsson, 1984). Half-life 

increases with increasing dose in humans and animals with 
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no Michaelis-Menton type kinetics being apparent 

(Cocchetto and Bjornsson, 1984). After administration to 

normal volunteers, the half-life of heparin is about 1.5 

hours, however reports have ranged from 23 minutes to 2.48 

hours depending on the dose and method of assay (McAvoy, 

1978). Clearance rates have been reported at about 0.5 to 

o.6 ml/min/Kg (Estes, 1980). Most investigators have 

emphasized the many variables affecting heparins half-life 

and clearance, thus estimates of its true values are 

difficult. 

Recently it has been shown that different delivery 

systems may affect the half-life of heparin. Using 

heparin encapsulated in liposomes, a half-life up to three 

times that of non-encapsulated heparin was observed after 

intravenous administration (Kim., et al., 1986). The 
• 

prolonged half-life was attributed to gradual release of 

the heparin from liposomes trapped within the reticulo­

endothelial system. 

4. Metabolism and Elimination 

The metabolism and elimination of heparin are rather 

poorly understood due to heparins polycomponent nature. 

Unlike more conventional drugs, metabolites of heparin are 

not readily identifiable. Heparin metabolism involves 

depolymerization and desulfation by a variety of heparin-

ases, desulfatases and endoglycosidases. Thus during 
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metabolism, high molecular weight components may be 

metabolized to molecules resembling non-metabolized low 

molecular weight species. 

Heparin is primarily eliminated by the reticulo­

endothelial system, liver and kidneys. Evidence for this 

is found in the prolonged anticoagulant effects observed 

in nephrectomized and hepatoectomized animals (Cocchetto 

and Bjornsson, 1984). The reticuloendothelial system has 

been associated with this process largely because it is 

the only system which can account for the reports of 

variation and dose dependent nature of heparins half-life 

(Estes, 1980). 
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II· THE MOLECULAR WEIGHT DEPENDENT EFFECTS OF HEPARIN 

A. Fractionation 

As previously discussed, there are a variety of 

oligosaccharide chains of differing molecular weight 

within any given heparin preparation. Assuming that 

individual molecular weight components differ in their 

biological function, many investigators have studied the 

biologic actions of heparin as a function of molecular 

weight. To accomplish this task, various fractionation 

techniques have been employed to create molecular weight 

fractions. The most commonly employed fractionation 

techniques have been gel-filtration chromatography or 

depolymerization with either nitrous acid or heparinase. 

The depolymerization methods typically result in end 

residues which are characteristic of the process (Casu, 

1984) • Heparinase an enzyme from Flavobacterium 

heparinum, splits glycosidic bonds between N - sulfated 

glucosamine and iduronic acid 2 - sulfate. This process 

results in fragments which terminate with 4 , 5 - un-

saturated iduronic acid at the non reducing end and N-

sulfated glucosamine at the reducing end. Using heparin­

ase, more that 90 % of a commercial heparin has been shown 

to be digested to a hexasaccharide (Jaques, 1978, 1978). 

Nitrous acid is less specific than heparinase 

digestion and splits glycosidic bonds between N - sulfated 

glucosamine and any kind of uronic acid. This results in 
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fractions with 2, 5 - anhydromannose at the reducing end 

ccasu, 1984). 

under carefully controlled conditions, the use of 

both heparinase and nitrous acid results in the production 

of low molecular weight compounds without major deviation 

from the original glycosaminoglycan structure (Coyne, 

l985). Because of these characteristics, both depolymer­

ization techniques have been utilized in studies on the 

molecular weight dependent effects of heparin. 

Unlike heparinase and nitrous acid digestions, gel 

filtration chromatography does not in any way alter the 

native chemical composition or structure of heparin. For 

the separation of various molecular weight components, gel 

filtration depends on a size exclusion principal. During 

the gel filtration process, the individual heparin 
• 

molecules elute at a rate dependent upon their size. High 

molecular weight species elute at a faster rate than those 

of low molecular weight. Thus depending upon the size 

exclusion properties of the gel, an effective separation 

based upon molecular weight can be achieved. Using this 

technique, only natural fractions are separated from the 

original preparation. These characteristics contribute to 

the effectiveness of gel filtration a fractionation 

technique for studying the molecular weight dependent 

effects of heparin. 
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In Vitro Studies B· 

Molecular Weight Dependent Inhibition of Thrombin 1. 

Initial studies largely utilized gel filtration 

techniques to fractionate a single source of heparin into 

molecular weight fractions (Scott et al., 1957 ; Laurent, 

1961 and Lasker, 1966). 

using gel filtered molecular weight fractions in 

whole blood or plasma clotting assays, some correlation 

was observed between molecular weight and heparin's 

anticoagulant activity (Laurent, 1961). Generally, 

higher molecular weight heparins were more potent than 

those of lower molecular weight, however variation was 

observed with both the source of heparin and the assay 

utilized. Correlations between molecular weight and 

anticoagulant activity were consistent only between 

molecular weights of 11,000 - 4,000 daltons (Scott et al., 

1957; Laurent, 1961; Lasker and stivala, 1961). 

Additional studies by Laurent et al., (1978) and 

Shen et al., (1978) utilized gel matrices with differing 

size exclusion properties to study molecular weight 

dependent effects over a greater range of molecular 

weights. Fractionation of single sources of porcine 

mucosal and beef lung heparin yielded fractions ranging 

from 36,000 - 5,600 daltons. Using these gel filtered 

fractions, anticoagulant activity determined by both a 

whole blood clotting and a amidolytic antithrombin assay 
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demonstrated a molecular weight dependence in ranges from 

7 , soo through about 16, 500 dal tons. Molecular weights 

above 16,500 did not exhibit an increase in anticoagulant 

activity with increasi.ng molecular weight. Both inves-

tigators reported that the lowest molecular weight 

fractions (< 5,600 & < 6,200) did not show any significant 

anticoagulant activity. It is interesting to note that a 

molecular weight of about 5,600 correlates well with the 

minimum size of heparin necessary to accelerate thrombin 

inhibition in the presence of antithrombin (Costa et al., 

1981) • This observation, along with reports of anti Xa 

activity at even lower molecular weights, suggest that the 

molecular weight dependent effects reported by Laurent et 

al., (1978) and Shen et al., (1978) largely reflected the 

molecular weight dependent effects of heparin upon 

thrombin. 

The relationship of molecular weight to thrombin 

inhibition was thought to relate to the necessity of 

heparin binding simultaneously to both anti thrombin III 

and thrombin for maximal inhibition (Nordenman et al. , 

1978 ; Porter et al., 1976 ; Wilson-Gentry and Alexander, 

1973) . Since heparin is a linear polysaccharide, higher 

molecular weights are equated with longer chains. With 

increasing chain length, there is also increased prob­

ability that the chain will be of sufficient length to 

bind both anti thrombin III and thrombin. More recently 
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oosta et al., (1981) have shown that heparin fragments of 

about 14 monosaccharide residues are capable of catalyzing 

thrombin inactivation. Using heparin fragments of various 

length, the kinetic rate constants for the inactivation of 

thrombin by antithrombin heparin were studied as a 

function of the length of the heparin fragment. Hexasac-

charide, octasaccharide and decasaccharide sequences 

displayed no effect on the rate of thrombin inactivation 

although they were found to bind tightly to antithrombin 

III. Heparin fragments of longer length ( 14 residues) 

bound to antithrombin with equal affinity, but were 

capable of catalyzing thrombin inactivation. Using a 

slightly longer heparin fragment, additional rate 

enhancement of thrombin inactivation was observed. These 

findings suggested that both fragments possessed similar 

ability to activate antithrombin relative to thrombin 

inactivation, however the larger fragment possessed an 

additional structural element which may have contributed 

in approximating free enzyme with protease inhibitor 

(Oosta et al., 1981). 

The direct binding of heparin to thrombin provided a 

partial explanation of the molecular weight dependent 

effects of heparin. Additional explanations of the 

molecular weight dependent actions of heparin upon 

thrombin were thought to involve binding to antithrombin 

III. It has been proposed that molecular weight dependent 
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effects may relate to the probability of finding the 

antithrombin III binding site (Laurent et al., 1978). If 

a specific sequence of heparin is required to bind to 

anti thrombin III, then the anticoagulant activity should 

be related to the probability of finding that sequence on 

the heparin molecules. This theory assumed equal prob-

ability of these sequences occurring along the heparin 

chains. Al though these assumptions provided an explan-

ation of the molecular weight dependent effects of 

heparin, additional factors were thought to be involved 

based on studies using high antithrombin III affinity 

heparin. Since these fractions were already selected for 

their ability to bind antithrombin III, it was proposed 

that they should no longer display molecular weight 

dependent effects. However, a high correlation between 
• 

molecular weight and anticoagulant activity was still 

observed in these fractions. 

2. Molecular Weight Dependent Inhibition of Xa 

A molecular weight dependence to the inhibition of 

factor Xa has also been reported (Lane et al. , 1978 ; 

Andersson et al., 1978 ; Thunberg et al., 1979). As with 

investigations involving thrombin, gel filtered fractions 

of heparin were utilized in these studies along with 

specific anti Xa assays. Unlike the antithrombin effects 

of heparin, the specific activity per unit weight of 

32 



heparin increased with decreasing molecular size in both 

amidolytic and clot based assays (Andersson et al., 1979 ; 

Lane et al., 1978 ; Graham and Pomeroy, 1979). Interest­

ingly, this negative correlation between molecular weight 

and anti Xa activity was observed in plasma but not in 

purified systems (Andersson et al., 1979). In the 

purified system, the molecular weight dependence resembled 

that of thrombin where higher molecular weights resulted 

in greater inhibition (Andersson et al., 1979 and Ellis et 

al., 1987). Investigation of this discrepancy between 

plasma and purified systems revealed that the high 

molecular weight anti Xa components were preferentially 

neutralized in plasma (Anderssom et al., 1979). Ellis et 

al., ( 1987) speculated that this effect may be due to 

interactions with lipoproteins. - This neutralization 
• 

sharply decreases at low molecular weights, thus the 

increased anti Xa potency of low molecular weight heparin 

is primarily due to a decreased neutralization of this 

component in plasma. These observations are also 

consistent with reports of differential neutralization of 

various molecular weight heparins by protamine (Hubbard 

and Jennings, 1985 . 
' Holmer and Soderstrom, 1983 . 

' 

Racanelli et al., 1985). All investigators observed 

resistance by the anti Xa component of heparin to 

neutralization by protamine. Al though the addition of 

protamine to heparin did result in a measurable reduction 
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of the anti Xa activity, complete neutralization was never 

observed (Holmer and Soderstrom, 1983) • Similar 

observations were reported for the ability of platelet 

factor - 4 to neutralize the anti Xa activity of heparin 

(Lane et al., 1984). 

The observation that low molecular weight heparin 

displays such high anti factor Xa activity also suggests 

that unlike thrombin, direct binding of heparin to factor 

xa is not necessary for maximal inhibition (Andersson et 

al., 1979 ; Thunberg et al., 1979). This speculation has 

been confirmed by kinetic studies on the rate of 

enhancement of factor Xa inhibition in the presence of 

antithrombin and low molecular weight heparin (Jordan et 

al o I 1980) o These studies demonstrated that the heparin 

induced acceleration of Xa inhibition by antithrombin III 
• 

is solely dependent upon the binding of heparin to this 

inhibitor. 

The effects of specific heparin fragments from the 

same source of unfractionated heparin on factor Xa 

inhibition were reported by Oosta et al., (1981). Hexa­

saccharide, octasaccharide and decasaccharide displayed a 

significant capacity to accelerate factor Xa inhibition in 

the presence of antithrombin. A distinct relationship 

between the molecular size of these fragments and their 

biologic activity was observed. Increasing chain length 

resulted in increasing activity. This relationship was 
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consistent from the hexasaccharide to a sequence 

containing about 16 monosaccharide residues. Interest-

ingly, the affinity of these fragments to antithrombin as 

determined by a competitive binding assay also increased 

as a function of molecular size. (Costa et al., 1981). 

3. Molecular Weight Dependent Effects on Other Coagulation 

Factors 

The majority of studies investigating the molecular 

weight dependence of heparin utilized global clotting 

assays such as the APTT or the British Pharmacopoeia 

assay. These tests reflected multiple effects upon the 

coagulation system and did not demonstrate actions upon 

individual proteases. When factor specific amidolytic 

assays were used to investigate the molecular weight 
... 

dependent effects of heparin, similar effects as observed 

in the global assays were reported for the inhibition of 

thrombin. A different pattern of molecular weight 

dependence was observed for the inhibition of factor Xa. 

These observations led to speculation about the molecular 

weight dependent effects on the other coagulation factors 

known to be inhibited by heparin. 

Holmer et al., (1981) reported the effects of gel 

filtered molecular fractions of heparin on coagulation 

factors XIIa, XIa, Xa, IIa, and Kallikrein in amidolytic 

and clotting assays specific for these factors. As with 
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previous reports' anti IIa potency increased with 

increasing molecular weight. An inverse relationship was 

observed for anti Xa activity. Potency appeared to 

increase with decreasing molecular weight. The relation­

ships between molecular weight and potency of the other 

coagulation factors could be classified as resembling 

those of either factor Xa or thrombin (Holmer et al. , 

1981). 

Factors IXa and XIa resembled thrombin in that the 

specific activity of the heparin increased with increasing 

molecular weight. These reports were consistent with 

observations indicating that the inhibition of factor IXa 

is dependent upon binding of heparin both to antithrombin 

III and directly to the free enzyme (Jordan et al., 1980). 

Kallikrein and factor XIIa resembled factor Xa in 
• 

that the inhibition of these factors was less dependent 

upon the length of the polysaccharide chain. 

Based upon these observations, it was hypothesized 

that the molecular weight dependent effects of heparin 

upon other coagulation factors could be characterized as 

resembling either thrombin or factor Xa. In addition, it 

was suggested that the mechanisms relevant to the 

molecular weight dependent effects of heparin on 

coagulation factors in these categories would be similar 

(Holmer et al., 1981). 
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c. H..olecular Weight and Antithrombin III Affinity 

It is now well known that the anticoagulant activity 

of heparin is largely mediated by the plasma cofactor 

antithrombin III (Rosenberg et al., 1973 ; Damus et al., 

1973). Purification of antithrombin III by Miller-

Andersson in 1974 resulted in the development of several 

affinity chromatography techniques utilizing antithrombin 

immobilized to sepharose. The use of these techniques 

greatly facilitated the understanding of the requirements 

for the binding of heparin to antithrombin III. 

Hook et al., (1976) demonstrated that heparin could 

be separated into components of high and low anticoagulant 

activity based upon affinity to the immobilized anti-

thrombin. Interestingly, these affinity fractions 

appeared to have similar structures and molecular weight 

distributions. Some differences were observed in the net 

charge with the high affinity fractions tending to have a 

greater negative charge. 

Andersson et al. , (1976) performed a similar 

affinity fractionation with additional gel filtration to 

achieve molecular weight subfractions of the high affinity 

component. These subfractions demonstrated that the high 

affinity fraction of heparin was not homogeneous. Within 

the high affinity fraction there was still a variety of 

components differing in molecular weight. As previously 

indicated, the high molecular weight high affinity 

37 



fractions showed greater IIa inhibition, while low 

molecular weight high affinity fractions showed greater 

anti xa activity. Al though no molecular weight sub­

fractionation was performed on the low affinity fraction, 

in vitro screening in various anticoagulant assays 

revealed them to be virtually inactive (Andersson et al., 

1976). 

These observations by Andersson and Hook resulted in 

speculation about the relationship between heparins 

antithrombin affinity and molecular weight. It was 

theorized that high affinity heparin should contain a 

greater degree of binding sequences for antithrombin than 

low affinity heparin. Thus, the total number of these 

units in a heparin molecule would be proportional to 

antithrombin affinity (Laurent et al., 1978) • 
... 

Theories about the relationship between molecular 

weight and antithrombin affinity were obscured by an 

imprecise knowledge of the anti thrombin binding sequence 

of heparin. Laurent et al., (1978) proposed that a 

segment of ten disaccharides was needed for the full 

activity of heparin. Although the term specific dodecca-

saccharide was used, it was emphasized that this should 

not be interpreted as only one possible sequence but 

rather several sequences which may have in common the 

location of only one sugar unit. 

Using affinity and size fraction techniques, 
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Rosenberg et al• I (1978) reported characteristics 

essential for antithrombin affinity. Fractions of heparin 

with high affinity had a significantly higher content of 

glucuronic acid and a lower amount of N sulfated 

glucosamine per molecule compared to the low affinity 

fraction. Within both fractions, a tetrasaccharide 

sequence responsible for antithrombin affinity was 

identified. Differences in affinity were suggested to be 

due to the relative abundance of this sequence. Within 

the high affinity fraction, sufficient amounts of this 

sequence are present such that each molecule may contain 

the this structure. However, the low affinity fraction 

contains only enough tetrasaccharide for one fifth of the 

molecules to contain the sequence. Although about 20 % of 

the molecules in the low affinity fraction contain the 
... 

tetrasaccharide sequence, only about 1 % of the anti-

coagulant activity of the high affinity fraction is 

observed. This suggests that an additional structural 

feature may either be included in or missing from the low 

affinity molecules containing the tetrasaccharide sequence 

(Rosenberg et al., 1978). 

Using nitrous acid digestion followed by anti­

thrombin affinity fractionation, Lindahl et al., (1979) 

observed that the smallest fraction binding to anti­

thrombin was between six and eight disaccharide uni ts. 

Based on this observation, it was reported that the 
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antithrombin binding site was more a tetradecassacharide. 

The binding site was thought to contain both variable and 

invariable regions, with the non variable regions being of 

critical importance to antithrombin binding. The tetra-

saccharide sequence reported by Rosenberg et al., (1978) 

was thought to be essential only in that it contributed to 

a portion of the non variable region. 

Recently, strong evidence for the minimal binding 

sequence of heparin to antithrombin III has been reported 

(Choay et al., 1983). Unlike previous studies, extensive 

heparinase digestions, combined with a unique chemical 

synthesis were utilized to define the binding requirements 

of heparin to anti thrombin III. Chemical analysis of a 

hexasaccharide obtained by heparinase digestion revealed a 

4,5 unsaturated uronic acid at the· non reducing end of the 

molecule. Since this residue was not associated with 

anticoagulant activity it was speculated that the minimal 

binding sequence of heparin was a pentasaccharide. To 

prove this theory, a specifically substituted penta­

saccharide (molecular weight 1,585) was synthesized along 

with two of the possible tetrasaccharide combinations 

contained within the pentasaccharide sequence. Subsequent 

in vitro analysis in anti Xa and specific antithrombin 

binding assays revealed that neither tetrasaccharide bound 

to anti thrombin III nor did they exhibit any anti Xa 

activity (Choay et al., 1983). However, the penta-
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saccharide bound to antithrombin with an affinity constant 

of the same order of magnitude as that reported for high 

antithrombin affinity heparin (Choay et al., 1983). 

similarly, the pentasaccharide exhibited high in vitro 

anticoagulant activity in both anti Xa amidolytic and 

clotting assays however no antithrombin activity was 

observed. 

Using a similarly synthesized tetrasaccharide 

(molecular weight 1,268), Petitou (1984) reported in vitro 

anticoagulant activity. These results, and those of 

Rosenberg et al., (1978) suggest that the minimal sequence 

of heparin capable of binding to antithrombin, is a 

tetrasaccharide. This minimal tetrasaccharide sequence 

while capable of binding to antithrombin does not exhibit 

significant anticoagulant activity·· (Petitou, 1984). Thus, 
... 

it is likely that the minimal sequence of heparin capable 

of binding to antithrombin III is a tetrasaccharide. 

However, the pentasaccharide appears to be the minimal 

sequence capable of antithrombin III binding and eliciting 

significant anticoagulant activity. By subs ti tu ting the 

molecular weights of the penta and tetrasaccharides it is 

possible to determine the molecular weight dependency for 

these functions as 1,268 and 1,585 respectively. 

The structural characteristics necessary for anti­

thrombin III binding were reported by Thunberg et al. , 

(1982). Enzymatic and chemical modifications revealed 
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that three sulfate groups played key roles in antithrombin 

affinity. These sulfates were identified as the N-

acetyl - 6 - O - sulfate on D - glucosamine, the N­

sulfate in the three position on 3,6 - di - O - sulfate­

D _ glucosamine and the N - sulfate in the three position 

on N - sulfate - 6 -o - sulfate - D - glucosamine. The 

essential role of the 6 - o - sulfate and 3 - o-

sulfate groups for antithrombin III binding were reported 

by Lindahl et al., (1983) (1980). Choay et al., (1983), 

provided strong additional evidence for the essential role 

of the 6 - O - sulfate group. Using the synthetic penta 

and tetrasaccharide fragments, interactions with anti­

thrombin III were only observed with the pentasaccharide. 

The only difference between the penta and tetrasaccharides 

was the 6 - o - sulfate group on· the monosaccharide at the 

non reducing end of the pentasaccharide. The absence of 

interactions with antithrombin without this group provides 

strong evidence for it's functional role ( Choay et al. , 

1983). Interestingly, definitive proof for the essential 

role of the 3 - O - sulfate group reported first by 

Lindahl et al., (1980), could not be demonstrated in the 

pentasaccharide studies (Choay et al., 1983). Additional 

studies by Petitou, (1984) did confirm this observation. 

A pentasaccharide deficient in the 3 - o - sulfate group, 

as determined by NMR spectroscopy did not bind to anti­

thrombin III nor exhibit any anticoagulant activity 
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suggesting the critical role of this group. In these same 

studies, a tetrasaccharide deficient in both the o­

sulfate and N - sulfate groups on the residue at the non 

reducing terminal demonstrated minimal anticoagulant 

activity suggesting that their importance must be 

reconsidered. 

o. Molecular Weight Dependent Events Not Mediated By 

Antithrombin III 

Most reports investigating the molecular weight 

dependent actions of heparin have focused upon anti-

thrombin mediated anticoagulant actions. However, some 

studies have indicated molecular weight dependence to 

functions not involving antithrombin III. 

1. Lipoprotein Lipase Activation 

It is well known that administration of heparin 

results in increased lipoprotein lipase activity in the 

blood. This increase has been attributed not to effects 

upon the kinetic properties of the enzyme but rather to an 

increased bioavailability resulting from displacement from 

capillary endothelium by heparin (Olivecrona et al., 

1977) • Harenberg et al., (1985) reported a molecular 

weight dependence to these effects. Plasma lipoprotein 

lipase activity was twice as high following intravenous 

administration of low molecular weight heparin when 
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compared to unfractionated heparin in humans. The 

molecular weight dependent effects were even more dramatic 

after subcutaneous administration. These observations 

suggest that low molecular weight heparin is more 

effective in displacing lipoprotein lipase from its 

endothelial binding sites than heparin of higher molecular 

weight. 

2. Endothelial Cell Binding 

Choay et al., (1986) reported the molecular weight 

dependent properties of heparin binding to endothelial 

cells. Affinity constants were determined using a 

competitive binding assay between radioiodinated heparin 

and fractions of various molecular weight. Using this 

technique, it was shown that heparin of higher molecular 

• weight possessed greater affinity for cultured endothelial 

cells than lower molecular weight fractions. Similar 

observations were reported by Barzu et al. , ( 1984) • By 

increasing the sulfate content of the various fractions it 

was observed that a higher charge density could compensate 

for decreased molecular size. 

3. Heparin Cofactor II Activation 

A molecular weight dependent activation of heparin 

cofactor II has also been reported (Choay et al., 1986). 

Yamagishi et al., 1986). Using fragments of heparin 
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obtained by nitrous acid depolymerization and sized by gel 

filtration, heparin cofactor II mediated thrombin 

inhibition decreased steadily with decreasing molecular 

weight (Choay et al., 1986). This observation was 

consistent between molecular weights of 9,700 through 

6 ,200 daltons. When low molecular weight fragments were 

chemically over sulfated, it appeared to increase the 

affinity constants for these fragments. This observation 

suggested that the molecular weight dependent effects were 

likely due to an increased charge associated with the high 

molecular weight molecules (Choay et al., 1986). 

Yamagishi et al., (1986) observed similar results relating 

charge and molecular weight to dextran sulfate enhanced 

heparin cofactor II activity. 

4. Pro-fibrinolytic Actions 

Another affect of heparin which has shown some 

dependence upon molecular weight and or sulfate content, 

are it's pro-fibrinolytic actions. Vinazzer et al., 

(1982) compared high (18,000) and low (3,000) molecular 

weight fractions from the same source for their effect on 

euglobulin lysis time. A significant difference was 

observed between the two fractions. The low molecular 

weight fraction had no effect, while the high molecular 

weight fraction showed a dose dependent enhancement of the 

euglobulin lysis time. It was thought that this effect 
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was mediated through endogenous activation of factor XII 

which paralleled the effect on euglobulin lysis time. 

Although the use of the molecular weight fractions 

demonstrated the effect to be a function of molecular 

weight, a similar effect involving sulfate content was 

observed. Using a highly sulfated synthetic heparin 

analog (3, 000 molecular weight) a comparable effect to 

that of the high molecular weight heparin was observed 

(Vinazzer et al., 1982). These results suggested that the 

molecular weight dependent effect of heparin on euglobulin 

lysis time are at least in part due to charge character­

istics. Similar pro-fibrinolytic effects involving charge 

mediated binding of heparin to plasminogen activators has 

been reported by Paques et al., (1986). 

• 
5. Heparin - Platelet Interactions 

Many studies have demonstrated effects by heparin on 

platelet function, the most notable being platelet 

aggregation. A molecular weight dependence to heparin 

induced platelet aggregation has been reported by several 

investigators. Salzman et al., (1982) reported that gel 

filtered fractions of the same source of heparin differed 

in their ability to both induce and enhance aggregation 

induced by other agonists. The high molecular weight 

fraction (22,000 daltons) was more active in these actions 

than the low molecular weight fraction (7, 000 daltons). 
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similar results comparing unfractionated heparin with 

various depolymerized fractions were observed by Brace and 

Fareed, (1985) and Blockmans et al., (1986). Further 

studies by Brace and Fareed, (1986) expanded the range of 

molecular weight dependence to heparin induced platelet 

aggregation. Using molecular weight fractions of de-

polymerized heparin ranging from 6,200 - 1,800 daltons 

platelet aggregation was studied in individual human 

platelet rich plasmas. A direct correlation between 

aggregation and molecular weight was established. In all 

cases platelets which aggregated to heparin showed a 

decreased response with fractions of decreasing molecular 

weight. 

E. In Vivo Studies 

• 1. The Effect of Molecular Weight on the Pharmacokinetics 

of Heparin 

The pharmacokinetics of heparin fractions of 

different molecular weight have not been directly 

investigated, however several investigators have compared 

the pharmacokinetics of native and various commercial low 

molecular weight heparins. Like pharmacokinetic studies 

on unfractionated heparin, these studies have primarily 

calculated kinetic parameters from estimates of plasma 

heparin concentrations determined in anticoagulant assays. 

Unfortunately, many of these assays were developed .for use 

47 



with unfractionated heparin and are variable in their 

response to low molecular weight heparin. Consequently, 

reports comparing the pharmacokinetics of unfractionated 

and low molecular weight heparin have yielded contrasting 

values for the various kinetic parameters. 

An additional problem in comparing the pharmaco-

kinetics or other biological actions of low molecular 

weight heparins was the lack of a international reference 

preparation (recently a low molecular weight reference has 

t>een proposed Thomas, 1987). In the absence of such a 

reference, the various low molecular weight heparins were 

standardized for potency in a variety of assays which 

differed with the manufacturer. This resulted in low 

molecular weight heparins which although standardized in 

anticoagulant units, differed significantly in potency and 
• 

gravimetric amounts. Furthermore the standardized units 

of low molecular weight heparins did not correlate well 

with units of unfractionated heparin (Barrowcliffe et al. 

unpublished report). Most pharmacokinetic studies 

comparing unfractionated and low molecular weight heparins 

have used these unit dosages. Comparisons were inaccurate 

since it was likely that the various heparins were not 

compared at equigravimetric concentrations. The pharmaco­

kinetics of heparin are dose dependent and vary with the 

method of assay. For these reasons, many reports 

comparing the pharmacokinetics of native and low molecular 
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weight heparin are of little value. 

a. ,Absorption and Distribution 

Bergqvist et al., (1983) compared the absorption of 

low molecular weight fractions (obtained by gel-two 

filtration and depolymerization) with unfractionated 

heparin after subcutaneous administration. In this study, 

plasma anti Xa activity was observed over a twenty four 

hour period after a single injection of a 5, ooo 

International Unit (IU) dose. In contrast to the 

unfractionated heparin, it was reported that there was 

significantly greater absorption of both low molecular 

weight fractions. Peak absorption for both low molecular 

weight and unfractionated heparin appeared at about four 

hours post administration (Bergqvist et al., 1983). The 

activities of both low molecular weight heparins remained 

greater at 11 hours post injection than the peak activity 

of the unfractionated heparin. These differences were 

attributed to molecular weight dependent differences in 

both the rate and amount of absorption (Bergqvist et al., 

1983) . It is interesting to note that a molecular weight 

dependent difference in the rate and degree of absorption 

was also observed between the two low molecular weight 

fractions. 

Bratt et al., (1985, 1986) 

dependent change in the volume 

reported a small dose 

of distribution after 
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intravenous administration of a low molecular weight 

fraction of heparin (Kabi 2165) as determined by plasma 

anti xa activity. At a dose of 60 IU/Kg the apparent 

volume of distribution was reported to be 2.9 L. Increas­

ing the dose to 120 IU/Kg resulted in an approximate 15 % 

increase in the volume of distribution to 3. 4 L. This 

apparent dose related increase in distribution volume was 

thought to reflect a larger fraction of drug not bound to 

antithrombin III at the higher dose. The unbound drug 

would be available for binding outside the plasma perhaps 

to endothelial cells (Bratt et al., 1986). 

b. Half-life 

The half life of low molecular weight heparin 

fractions has been reported to be significantly longer 

than unfractionated heparin. In most studies, the half-

life of low molecular weight heparin is two to three times 

longer than that of unfractionated heparin (Fareed et al., 

1985 . 
I Lockner et al. , 1985 . 

I Boneu et al • , 1985 ; 

Harenberg et al., 1986). Other investigators have report-

ed the half-life of low molecular weight heparin to be up 

to 4 times that of unfractionated heparin (Bara et al., 

1985). As with unfractionated heparin, the half-life of 

low molecular weight heparin appears to be dose dependent. 

Half-life increases with increasing dose but does not 

display typical Michaelis-Menten (capacity-limited) type 
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kinetics (Bara et al., 1985 . 
' Harenberg et al • , 1986 

sergqvist et al., 1983). 

c. clearance and Elimination 

The clearance of low molecular weight heparin is 

also dependent on dose (Bratt et al., 1985 1986). After a 

120 IU/Kg dose, Cl was reported to be 25 ml/min., compared 

to 15 ml/min. after a 60 IU/Kg dose. 

Recently it has been reported that the clearance of 

native and low molecular weight heparin may be different 

(Goudable et al., 1986). Native and low molecular weight 

heparin were compared for differences in half-life in 

healthy human patients and those with impaired renal 

function. No difference was observed in the half-life of 

native heparin between the healthy and renal impaired 

• individuals. However, a dramatic difference was observed 

with the low molecular weight fraction. These results 

suggest that renal mechanisms may play a greater role in 

the clearance of low molecular weight compared to native 

heparin. 

d. Bioavailability 

Several reports have demonstrated that low molecular 

weight heparins are more efficiently absorbed after sub-

cutaneous administration than unfractionated heparin 

(Fareed et al., 1985 ; Bergqvist et al., 1983 ; Harenberg 

51 



et al.' 1986). In an attempt to quantify the extent of 

these differences in absorption, investigators have 

evaluated the relative bioavailability after subcutaneous 

and intravenous administration. It must be kept in mind 

that such a comparison is only acceptable when the rate 

constant of elimination (Ke) is constant with respect to 

drug plasma concentration. Since the Ke of unfractionated 

and low molecular weight heparin has been reported to be 

dependent upon concentration, the validity of such studies 

is questionable. 

By comparing the area under the plasma concentration 

time curve (AUC) for both intravenous and subcutaneous 

routes of administration, several investigators have 

reported higher bioavailability with low molecular weight 

compared to unfractionated heparin. Bara et al., (1985) 

reported 91 % bioavailability in • terms of anti Xa 

activity, for low molecular weight heparin in contrast to 

28 % for unfractionated heparin. The greater bioavail-

ability seen with the low molecular weight heparin was 

dependent upon the method of assay. When the same agents 

were compared in an anti IIa assay, no significant 

difference between the low molecular weight or un-

fractionated heparin was observed. 

Increased relative bioavailability of low molecular 

weight heparin, as measured by anti Xa methods have been 

reported by Bratt et al., (1986) and Harenberg et al., 

52 



(1986)· 

The Effect of Molecular Weight on Antithrombotic 

Actions 

The antithrombotic actions of unfractionated and low 

molecular weight heparins in both clinical and animal 

studies have been reviewed (Thomas et al., 1981 ; Fareed 

et al., 1985 . 
I Kakkar, 1984) • In these studies, low 

molecular weight heparins have exhibited effective anti-

thrombotic actions. When compared to unfractionated 

heparin, they require greater gravimetric concentrations 

to achieve similar anti thrombotic actions after intra-

venous administration. However in subcutaneous regimens, 

equal gravimetric dosages of unfractionated and low 

molecular weight heparin have ·produced similar anti-

• thrombotic actions. 

The antithrombotic activities of unfractionated and 

low molecular weight heparin correlate reasonably well 

with their in vitro anticoagulant actions. However, the 

significance of the correlation varies between different 

assay methods (anti Xa, anti IIa, APTT). For relating in 

vitro anticoagulant to in vivo antithrombotic actions, no 

one assay appears clearly superior. 

A study directly examining the effect of molecular 

weight on antithrombotic actions was reported by Bergqvist 

et al., (1985). In this study, various molecular weight 
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fractions (molecular weights ranging from 22,000 - 4,900 

daltons) and unfractionated heparin were compared for 

their ability to inhibit in vivo thrombosis in animal 

models. These studies utilized a high molecular weight 

fraction obtained by gel filtration as well as heparinase 

digested low molecular weight fractions. All except the 

lowest molecular weight fraction decreased the frequency 

of venous thrombosis and at equigravimetric dosages were 

not less effective that unfractionated heparin. 

In a dose response study, the unfractionated heparin 

was determined to be more efficacious than low molecular 

weight heparin. This observation was especially interest­

ing since the low molecular weight heparin was determined 

to have greater circulating anti Xa activity (Bergqvist et 

al., 1985). This observation was consistent with those of 

Carter et al., ( 1981) . 
,. 

These observations suggest that 

the anti IIa activity of heparin is an important determ­

inant of antithrombotic actions. 

Recently, Walenga et al., (1986) reported anti-

thrombotic properties for a synthetic pentasaccharide. 

Although this agent displayed no thrombin inhibition, 

anti thrombotic actions were observed. When compared to 

unfractionated heparin an approximate 4 fold greater 

concentration was required for similar antithrombotic 

activity. This observation supports earlier observations 

that an anti II a component of heparin is important for 
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antithrombotic actions, but not necessary. These 

oDservations suggest that the relationship between 

molecular weight and antithrombotic actions is similar to 

the molecular weight dependent relationships of anti­

thrombin III affinity and thrombin inhibition. 
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CHAPTER II 

STATEMENT OF PURPOSE 

Molecular weight is an important factor in under­

standing the pharmacological actions of heparin. 

Heparin's antiprotease actions, pharmacokinetic behavior 

and antithrombotic effects have been shown to be dependent 

upon this parameter (Laurent et al., 1961 ; Harenberg et 

al., 1986 ; Bergqvist et al., 1983) • A greater under­

standing of the pharmacological actions of heparin as they 

relate to molecular weight may contribute to greater 

safety and efficacy of this agent. 

It was the purpose of this dissertation to inves­

tigate the molecular weight dependence of the pharmaco­

logical effects of heparin in terms of its anticoagulant, 

antithrombotic and pharmacodynamic behavior. 

In vitro anticoagulant studies wer.,e conducted for 

the purpose of identifying molecular weight dependent 

effects associated with specific coagulation pathways. 

· These studies utilized conventional clotting and amido­

lytic assays as well as novel protease generation tests. 

These tests were specifically designed to investigate 

possible actions of heparin not previously reported. Of 

particular importance were the protease generation systems 

using factor VII-thromboplastin and those based upon the 

release of fibrinopeptide-A. These assays were used to 
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investigate the molecular weight dependent effects of 

heparin on the extrinsic pathway of coagulation. 

The molecular weight fractions were studied for 

their antithrombotic effects in a rabbit thrombosis model. 

These studies were conducted for the-purpose of relating 

molecular weight to anti thrombotic activity. The frac­

tions were administered by both subcutaneous and intra-

venous routes of administration. Comparison of the 

antithrombotic efficacy in both routes provided infor-

mation about the effect of molecular weight on the 

absorption of active components after subcutaneous 

administration. 

The molecular weight fractions were also studied to 

determine the plasma concentration time course. These 

studies were carried out to investigate any molecular 
• weight dependence in heparin's apparent volume of 

distribution, biologic half-life or clearance after both 

subcutaneous and intravenous administration. Comparison 

of the area under the plasma concentration time curve 

after both routes of administration provided information 

about the effect of molecular weight on absolute 

absorption. 

The information obtained from this dissertation may 

provide a clearer pharmacological profile of the effects 

of heparin relative to molecular weight. This information 

may have practical value relative to therapeutic indi-
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cations, routes of administration and toxic effects. 

Several low molecular weight heparins are currently 

in pre-clinical and clinical trials. Knowledge about the 

molecular weight dependent effects of heparin may be 

especially important for predicting the pharmacological 

actions of these new agents. Furthermore, the test 

systems developed for this dissertation may be of value 

for potency determination, standardization and clinical 

monitoring of both heparin and its low molecular weight 

fractions. 

• 
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CHAPTER III 

MATERIALS AND METHODS 

A. Heparin and. its Fractions 

Unfractionated porcine sodium mucosa! heparin (lot # 

H 410) and CY 216 (lot # Pl57 XH) a low molecular weight 

heparin fraction, were obtained from Choay Institute 

(Paris, France). The CY 216 was prepared by ethanol 

extraction of porcine mucosa! heparin, followed by gel 

filtration on a Ultrogel ACA 44 column (Choay et al., 

1980) • The analytical profile of the porcine mucosa! 

heparin is seen in appendix v. 

B. Reagents 

1. Clotting Assays 

Thromboplastin-c reagent (lot #'s TPCD - 318, 348 

and 358) a rabbit brain thromboplastin ~ontaining .0116 M 

CaCl2, was obtained from American Dade (Miami, FL) and 

used in the prothrombin time assay (PT). A description of 

this assay is in appendix VI. APTT reagent (lot # 4W6-34) 

was obtained from General Diagnostics, (Morris Plains, NJ) 

and used in the activated partial thromboplastin assay. 

The APTT reagent was a rabbit brain cephalin with a 

micronized silica activator. The assay is described in 

appendix VII. Heptest heparin assay (lot #'s A 85, B-86-

2) were obtained from Haemachem (St. MO). A description 

of the assay is in appendix VII. 
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2 • protease Assays 

Human thrombin (Fibrindex brand lot # 3B340 50 

u/vial) was purchased from Ortho Diagnostics (Raritan, NJ) 

in powder form. The thrombin was reconstituted in dis-

tilled water, diluted with saline, standardized to 10 NIH 

u/ml using a plasma clotting assay and stored at -10° c 

until used. Bovine factor Xa (lot B44) was purchased from 

RQP Laboratories (South Bend, IN). The Xa was reconsti-

tuted in 1. O ml tr is buff er containing 1. O mg/ml bovine 

serum albumin, diluted 1:4 in saline and stored at -10° c 

until use. Human factors VII, X and Xa were purchased 

from Diagnostica Stago (Asniers, France). Human factor 

VII (lot # 67 100 ug/vial) was reconstituted with distil­

led water, diluted to 5 ug/ml with saline and stored at-

100 C until use. Human factor X (lot # H 11 F U/vial) was 

reconstituted in 0.5 ml of amidolytic assay buffer prior 
• to each use. Human factor Xa (lot # H 11 25 nKat/vial) 

was reconstituted with distilled water prior to each use. 

Human antithrombin III (lot # 85 07 01 86576 500 U/vial) 

obtained from Kabi Vitrum (Stockholm, Sweden), was re­

constituted in 1. o ml of distilled water, diluted to 5 

U/ml with saline and stored in aliquots at -10° c until 

use. The chromogenic substrates used in the amidolytic 

assays, spectrozyme TH (lot # 1051 /81) and spectrozyme 

Xa (lot # 1213 /85) were purchased from American 

Diagnostica (Greenwich, CT) . These substrates were 
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reconstituted with distilled water to the desired molarity 

prior to use. 

3. Plasma Preparation 

Normal human pooled plasma was prepared from at 

least 10 heal thy male and female volunteers under the 

guidelines established by the Institutional Review Board 

for the protection of human subjects (permit # SF ap-

pendix IX). Blood was collected by venipuncture using 

double syringe technique through a 21 gauge butterfly 

needle. The initial 2 - 3 ml's of blood were discarded 

and the subsequent blood was immediately added to 3. 8 % 

citrate (1 10) in plastic tubes. The tubes were then 

centrifuged for 20 minutes at 2,500 RPM to obtain platelet 

poor plasma. Additional human plasma was purchased from 
... 

the Loyola University Medical Center Blood Bank. This 

plasma was made by collecting blood from healthy donors 

into CPDAl anticoagulant. The blood was centrifuged and 

the resulting plasma was freshly frozen in 250 ml packs. 

Prior to use, the individual plasma packs were thawed in a 

water bath at 370 c and pooled. A minimum of at least 5 

individual plasma preparations were used to prepare a 

pool. Aliquots of all plasmas were stored at -700 C prior 

to use. 

Factor I deficient plasma (made deficient by plasma 

phoresis of normal donors) was obtained from George King 
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Biomedical (Overland Park, KS) This plasma was stored at 

-100 c until use. Plasma deficient in anti thrombin III 

was prepared by heparin affinity chromatography using a 

method described by Ofusu et al., (1981). Heparin-

sepharose CL 6B (lot # FE 15465) was obtained from 

Pharmacia (Piscataway, NJ). A column (Pharmacia K 15/90, 

total volume 156 ml) was packed with the heparin­

sepharose, and equilibrated with 0,06 M NaHP04 and 0.5 M 

NaCl pH 7.5. To obtain the antithrombin deficient plasma, 

200 ml of citrated normal human, platelet poor plasma was 

applied to the column. The plasma was eluted at a flow 

rate of about 2. 5 ml/ minute with equilibration buffer. 

The eluted plasma was dialyzed against 0.4% sodium citrate 

containing 0.15 M NaCl, aliquoted and frozen at -100 c 

prior to use. Anti thrombin III- levels were determined 
... 

using a synthetic substrate based automated method (aca 

automated chemistry analyzer E.I. Du Pont Co). Reference 

antithrombin III deficient plasma was provided dy Dr. F. 

Ofusu (McMaster Univ. Hamilton Ontario Canada). 

Platelet rich plasma was prepared in the following 

manner. Blood was drawn from individual donors into 3.8 % 

citrate ( 1: 10 ratio) and centrifuged at 225 x g for 20 

minutes to obtain plasma rich in platelets. The platelet 

count was then adjusted (using autologous platelets) to 

about 250,000 using a light microscope and a bright line 

hemocytometer. 
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Thrombogenic Reagents 4. 

Konyne brand of prothrombin complex concentrate 

(PCC) lot # NC 912, obtained from Cutter Laboratories 

(Berkley, CA) was reconstituted in 20 ml of sterile water 

to obtain a working solution of 25 U /ml. This solution 

was kept frozen at -10° C until use. Russell's viper 

venom (RVV) in cephalin lot # 20F 39581, obtained from 

sigma Chemical Co. (St. Louis, MO) was reconstituted with 

sterile water to 0.1 U/ml prior to each use. 

5. Anesthetics 

The anaesthetic agent utilized in both animal models 

was ketamine hydrochloride (Ketalar, Parke Davis Morris 

Plaines, NJ) • In the rabbit stasis thrombosis model, an 

additional anaesthetic xylazine "(Rompum Bayvet division, 

Miles Labs Shawnee, KS) was used. Both.anaesthetics have 

been shown to have no effect on the normal coagulation 

profile or heparinizability of either primates or rabbits 

(Fareed et al., 1985) • Pentobarbi tal sodium (Nembutal 

Abbott Chicago, IL) was used in rabbit euthanasia. 

6. Animals 

A mature primate colony (Macaca mulatta) consisting 

of 17 male and female animals (weight range 7-12 Kg) was 

housed in the AAA LAC approved animal research facility of 

Loyola University Medical Center. The health of all 
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primates was routinely evaluated by a licenced doctor of 

vetrinary medicine. Abnormal primates were excluded from 

experimentation. All primates were maintained on a 

standard diet of Purina monkey chow, had free access to 

water and kept on a regular 12 hour light /dark cycle 

during all experiments. 

New Zealand white rabbits (Oryctolagus cuniculus) 

weight range o. 5 - 2. o Kg, were obtained from Langshaw 

farms (Augusta, MI). These rabbits ranged in age from 9-

18 mos. Rabbits were also housed in the animal research 

facility and exposed to a regular 12 hour light / dark 

cycle. The rabbi ts were fed a standard diet of Wayne 

Rabbit Ration and allowed free exposure to water. 

For all animal studies, ethical guidelines 

established by the committee f·or animal welfare were .. 
strictly adhered to and all protocols were approved by the 

aforementioned committee. 

7. Analytical Instruments 

Most of the instruments used in this study were 

available through the departments of pharmacology and 

pathology at Loyola University Medical Center. These 

included a Biogamma gamma counter (Beckman Instruments 

Fullerton, CA) used in radioimmunoassays, a DU-7 spectre-

photometer (Beckman Instruments Fullerton, CA) used in 

chromogenic substrate assays and an Multistat centrifugal 
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analyzer (Instrumentation Labs Lexington, MA) used in the 

factor VII-thromboplastin assays. Several fibrometers, 

(BBL cockeysville, MD) used in clotting assays as well as 

two cone plate viscometers (Wells-Brookfield Stoughton, 

MA) were available in the hemostasis research laboratory. 

An personal computer XT (IBM Personal Computers Boca 

Raton, FL) and support software was utilized for statis­

tical and word processing applications. The software used 

in these applications was SYSTAT version 2.0 (Systat Inc. 

Evanston, IL) and WORDPERFECT 4 • 1 (SSI Oren, UT) 

respectively. 

A K 100/100 chromatography column and Pf-30 fraction 

collector (Pharmacia Laboratory Separation Division 

Piscataway, NJ) was used in the molecular weight frac­

tionation. A Waters (Milford, MA) HPLC-GPC chromatography 

system, equipped with a model 710 WISP sample processor, a 

model 490 Multiwavelength Detector, a model 510 HPLC pump, 

and a Digital 350 computer running Waters 840 software was 

utilized for molecular weight determinations. These 

instruments were made available at Choay Chemie (Roen, 

France). The columns used in the molecular weight 

determinations were LKB Ultropac tsk 2,000 and 3,000 

(Bromma, Sweden) . The porosity of these columns was 125 

and 250 angstroms respectively. 

c. Molecular Weight Fractionation 
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sodium porcine mucosa! heparin (lot # H 410) was 

fractionated into molecular weight subfractions utilizing 

a method similar to that of Johnson and Malloy (1976). 

The fractionation was performed at Choay Chemie (Roen, 

France) under the following conditions. A Pharmacia K 

100/100 column (dimensions 10 X 100 cm., total bed volume 

l L) was packed with Ultrogel ACA 44 agarose acrylamide 

matrix, size exclusion range 10,000-140,000 (Reactifs 

clichy, France). The column was connected to a mariott 

flask and a sample reservoir through a three way valve to 

facilitate sample application and maintain a consistent 

flow rate. Prior to the fractionation process, the column 

was equilibrated with O. 5 M NaCl and the flow rate was 

adjusted to 400 ml / hour. 

Five grams of the unfractionated heparin was 

dissolved in 70 ml's of distilled water and applied to the 

column through the sample reservoir. Heparin elution was 

monitored by manually recording absorbance of the eluent 

at 205 nM using a Beckman model 35 spectrophotometer. At 

the first absorbance peak, 15 fractions were collected 

with the aid of a Pharmacia Pf-30 fraction collector. The 

interval between fractions was 35 minutes. Since the 

absorbance peaks indicated low heparin concentrations in 

the initial and latter fractions, these fractions were 

pooled such that a total of nine fractions were obtained. 

The fractions were recovered using twice ethanol precip-
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itation. The ethanol precipitation was performed using 1 

volume of the fraction with 1.5 volume of 100 % ethanol 

while stirring. This mixture was centrifuged at 5,ooo rpm 

and the supernatant discarded. The precipitate was then 

homogenized and vacuum dried in glass filter funnels at 

The heparin content of the fractions was deter-

mined using a toluidine blue assay described in (NCCLS 5: 

(13) 373-376). The calibration curve for this assay is 

seen in appendix X. 

D. Molecular Weight Determination 

In order to determine the molecular weights of the 

gel filtered fractions, gel permeation chromatography was 

performed on a Waters liquid chromatography system. The 

system was equipped with a Digital 300 series mini-
• 

computer running Waters 840 software to facilitate data 

reduction. The Waters 840 system was specifically 

designed for applications in molecular weight determ­

inations of polymers. The system calculated not only mean 

molecular weight, but also values indicating the molecular 

weight distribution. These values were calculated from 

the chromatographic characteristics of standards with 

similar molecular composition on columns of specific 

porosity. Since the molecular weight range of heparin was 

large, two columns of different porosity were used. Thus 

prior to use, the columns were calibrated with anionic 
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polymers consisting of sulfated glucuronic acid, uronic 

acid and glucosamine. A description of these standards is 

given in appendix XI. Appendix XII and XIII show the 

calibration curves obtained by running the standards on 

the LKB tsk 2000 and 3000 columns respectively. Values 

for retention time (RT) and polymer dispersity (D) were 

determined, and used along with the molecular weights of 
' 

the standards to calculate a calibration curve. This 

curve was calculated by third polynomial regression and 

yielded polynomial coefficients (Do, Di, D2, D3) which 

characterized the average standard curve. The following 

equation was used: 

MW= Do+ D1 (RT) + D2 (RT)2 + D3 (RT)3 

The molecular weight of the samples were determined 

from their chromatographic characteristics under the 

following conditions: 

Columns: LKB tsk 2,000 and 3,000 

Mobile Phase: NaS04 0.5 M 

Detector: UV 205 nm 

Flow Rate: 1 ml/min. 

Sample: 20 ul of lOmg/ml 

Following chromatography, the total area under the 

elution curve for each sample was determined by integra-

tion. The computer divided the total area into about 50 

equal time slices. The retention time value of each slice 

was used in the previous equation to calculate the molec-
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ular weight of the individual slices. This provided 

approximately 50 (MW) and (RT) values for the following 

calculations where (Sx =the area of the x slice), (Mx = 

the molecular weight of the x slice) , (Mw = the weight 

average molecular weight), (Mn = the number average 

molecular weight) , (Mz = the z number molecular weight) 

and (D =the dispersity of the polymer). 

Mz = ---1.S.x--11xl2 D = Mw 
(Sx Mx) Mn 

Thus, Mw indicated the value for the mean molecular weight 

of the polymer. Mn and Mz were molecular weight values 

which characterized the high and low molecular weight 

areas of the elution curve. These values were of partic­

ular importance for evaluating the relative distribution 

• • of differing molecular weight components within a given 

fraction. For example, if Mw = Mn = Mz, then this indi-

cated that the polymer was monodisperse. Inequality in 

these values indicated a polydisperse mixture (Waters, 

1985) . 

Verification of the molecular weights determined by 

the HPLC-GPC method were achieved by measuring the 

viscosity of the fractions (Johnson and Malloy, 1976 and 

Laurent, 1961). For this purpose a Wells Brookfield cone 

plate viscometer was utilized. Prior to viscosity 

measurements, the instrument was calibrated with silicone 
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fluids of known viscosity (5 and 10 centipoise) standard­

ized by methods traceable to the U.S. National Bureau of 

standards. Measurements were made by adding l ml of the 

individual fractions (cone. 10 mg/ml) to the viscometer. 

The solution was allowed to equilibrate to 250 c at which 

time the viscosity measurements were recorded at shear 

rates of 90, 225 and 45osec-1. To obtain viscosity values 

in centipoise (mPa), the values read from the viscometer 

were multiplied by a constant based on the geometry of the 

cone and the shear rate. These values were . 0514 for 

shear rate 450, .102 for shear rate 225 and .257 for shear 

rate 90 (Wells 

mation). 

Brookfield Technical Product Infor-

E. In Vitro Anticoagulant studies ... 

From the original nine, five fractions yielding the 

widest range of molecular weights were selected for the 

experimental studies. These fractions were supplemented 

to pooled normal human platelet poor plasma at concen­

trations ranging from o. 625 - 20 ug/ml and profiled in 

clotting assays routinely used for coagulation pro­

filing. These tests included: prothrombin time (PT), 

activated partial thromboplastin time (APTT) and Heptest. 

All assays were performed exactly as previously described. 

The test fractions were also supplemented to anti­

thrombin III deficient plasma (the antithrombin III 
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deficient plasma was prepared as previously described) at 

a concentration of 20 ug/ml and screened in an identical 

PT assay. 

Amidolytic antifactor Xa and IIa assays were per-

formed to assess the relative inhibition of these two 

enzymes by the various fractions. The test fractions were 

supplemented to pooled normal human platelet poor plasma 

and the assays were performed as follows. For the amido-

lytic anti Xa method: 375 ul of 0.05 M Tris and 0.175 M 

NaCl buffer pH 8.4 was equilibrated with 25 ul of plasma 

sample to 37° c. 50 ul of o. 5 nkat/ml human or bovine 

factor Xa was added and allowed to react for exactly 2 

minutes. After the 2 minute incubation, 50 ul of sub-

strate (spectrozyme-Xa 2.5 mM) was added and the change in 

absorbance was recorded at 405· nm over a one minute 
• 

period. To determine the effect of the individual 

fractions, the heparinized samples were compared to a 

saline control, and a value of relative % inhibition was 

calculated. 

The anti IIa method utilized the same buffer with a 

volume of 400 ul, to which 25 ul of plasma sample was 

added. The mixture was equilibrated as before and 25 ul 

of 10. o NIH unit thrombin was added and incubated for 

exactly for 1.0 minute. At the end of one minute, 50 ul 

of substrate (spectrozyme-TH 2. 5 mM) was added and the 

change in absorbance per unit time is recorded. Percent 
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inhibition was calculated in an identical manner as 

described for the anti Xa assay. 

Fibrinopeptide-A generation tests {FPAGT) were also 

used to examine the test fractions. This test was used 

essentially as previously described {Emanuele et al., 

1984, 1985) however, it was slightly modified to yield 

more reproducible results. The test was performed as 

follows. 0. 625 - 5.0 ug/ml concentrations of the test 

fractions were supplemented to pooled normal human 

platelet poor plasma. Thromboplastin c {Dade PT reagent) 

was standardized in a prothrombin time assay to achieve 

consistent and measurable amounts of {FPA) • The stan-

dardization was accomplished by diluting the thrombo­

plastin c in 0.025 M CaCl2 to obtain a PT value of about 

35 seconds for citrated human plasma. FPA generation was .. 
initiated by adding 100 ul of the standardized thrombo-

plastin ·to 400 ul of test plasma. A control FPA gener-

ation was also performed by adding 100 ul of saline to 400 

ul of test plasma. FPA generation proceeded for exactly 

2. O minutes, at which time 100 ul of inhibitor cocktail 

containing 10 mg/ml EDTA, 500 KIU/ml aprotinin, 1 ug/ml 

indomethecin { Indocin Merk Sharp & Dohme, Philadelphia, 

PA) and a thrombin inhibitor 5 antithrombin U/ml was 

added. The plasma was then treated with bentonite {2: 1 

bentonite to plasma) mixed well and centrifuged. The 

supernatant was then assayed for FPA using a Mallinckrodt 
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radioimmunoassay (RIA) kit (St. Louis, MO). This kit 

utilized competitive binding between Il25 labeled and 

unlabeled fibrinopeptide - A for a limited number of 

antibody binding sites. Quantitation of the generated FPA 

was achieved by comparing the assay results to a FPA 

standard curve. 

The FPAGT was performed identically in platelet 

rich, and antithrombin III deficient plasma. 

A whole blood system for the FPAGT was also util-

ized. The test was performed as follows: 12 X 75 non 

siliconized glass tubes were washed with saline, marked at 

a 2.0 ml level and supplemented with 100 ul of an appro-

priate concentration of heparin or heparin fraction. 

Blood was drawn from normal human volunteers using a 

double syringe technique. After discarding the first 2-.. 
3 ml's, the whole blood was immediately added to the tubes 

and filled up to the 2. o ml mark. FPA generation was 

allowed to proceed for exactly 2.0 minutes. At the end of 

2.0 minutes, 200 ul of the inhibitor cocktail previously 

described was added to prevent further FPA generation. 

Plasma was obtained by centrifugation, treated with 

bentonite, re-centrifuged and assayed as before. 

The molecular weight dependent effects of heparin 

upon the extrinsic network were studied by developing an 

assay using thromboplastin and factor VII to activate 

factor x to xa. This amidolytic Xa generation assay was 
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performed on a centrifugal analyzer (Mulitstat III, IL 

Lexington KY) as follows: 25 ul of 80 ug/ml factor X, 25 

ul of 2. 5 ug/ml factor VII and 25 ul of the individual 

heparin fractions (25 ug/ml heparin diluted in 1.25 U/ml 

AT-III) were added to well # 1 of the centrifugal rotor. 

140 ul of 0.06 mM Tris and .1 mM CaCl2 buffer pH 8.1, 25 

ul of 2 • 5 mM spectrozyme Xa and human thromboplastin 

diluted 1:20 in 0.025 M CaCl2 were added to well # 2 of 

the rotor. After incubation to 37° c, the contents of the 

two wells were mixed by accelerating the rotor and the 

change in absorbance at 405 nM was recorded at 30 second 

intervals over a 5 minute time period, after a 5 second 

delay. 

This assay was slightly modified to allow for the 

use of a plasma matrix. In this modification, the plasma .. 
provided factors VII and X, thus additional buffer was 

added to achieve a similar volume. Dilute (1 2 in 

saline) f ibrinogen deficient plasma was used in these 

studies to avoid clotting. 

The results from assays run on the multistat kinetic 

analyzer were expressed in terms of uM of substrate 

cleaved per unit time. The multistat provides a recording 

of the absorbance change over time. Using the molar 

absorbance value for para-nitroanaline (9.2 X 103 L mo1-l 

cm), molar values were calculated per unit of time. Since 

the multistat has a .5 cm path length, absorbance values 
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were first divided by two. Values were calculated at 

three different time periods in the linear portion of the 

assay and averaged to obtain the rate of substrate 

cleavage in terms of uM/time. 

For all of the previously described in vitro assays, 

an appropriate dose response was determined by studying 

the test fractions in at least four concentrations. Since 

the pooled plasma was considered a reagent for the in 

vitro test systems, all fractions were assayed on five 

separate occasions to achieve statistical significance. 

F. In Vivo Studies 

l. Pharmacodynamic time course 

The pharmacodynamic time course of three test 

fractions (molecular weights 23,000; 13,300 and 5,100 .. 
daltons) along with the unfractionated heparin and a 

commercial low molecular weight heparin (Fraxiparine 

were investigated in a primate model (Macaca mulatta) 

using both intravenous and subcutaneous routes of 

administration. The model was similar to that described 

by Fareed et al. , ( 1985) . Before initiating the study, 

all primates were profiled using clinical laboratory 

methods including SMAC, CBC and coagulation studies for 

the purpose of excluding abnormal animals. Before all 

blood sampling or drug injections, the animals were 

anaesthetized/immobilized by injection of 10 mg/kg 
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]Cetamine HCl . It has been shown that repeated 

administration of this anaesthetic does not significantly 

alter the normal coagulation or heparinization profile 

(Fareed et al., 1985) . At all times when test drug or 

anaesthesia was administered the safety and comfort of 

each primate was continually monitored. 

For subcutaneous administration, all fractions were 

compared at a dose of 1.0 mg/kg (stock solution cone. 10.0 

mg/ml). For intravenous administration, a dose of 250 

ug/kg was used (stock solution l. o mg/ml). Prior to 

injection of the test fraction, a baseline blood sample 

was drawn from the saphenous vein of the individual 

monkeys. For the intravenous route, the fractions were 

administered by a single bolus injection to the same vein. 

For the subcutaneous route, a single bolus was injected at .. 
a site in the lower abdomen. For both intravenous and 

subcutaneous routes, the test agents were injected through 

syringes incorporating sterile, pyrogen free 0.2 um 

Nalgene filters (Nalge Co. Rochester, NY). After 

injections and blood sampling, the animals were returned 

to their respective cages until the next sampling time. 

At the prescribed time intervals, the primates were 

anaesthetized and a blood sample was taken as before. For 

the subcutaneous route blood samples were taken at o, 2, 

4 I 6 f 8 10, 12 and 24 hours post injection. For the 

intravenous route blood samples were taken at o, 5, 10, 
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15 , 30, 60, 180, and 360 minutes post injection. At each 

sampling time 3.0 ml of blood was collected into silicon­

ized glass tubes containing 0.3 ml of 3.8 % sodium citrate 

and centrifuged to obtain plasma. Clotting times were 

performed on the fresh plasma samples in the intravenous 

study. The protease and fibrinopeptide - A assays were 

performed using the same plasma which had been stored at-

700 c for not more than two months. In the subcutaneous 

study, all assays were performed in plasma which had been 

stored at - 100 c. 

In the intravenous study, each fraction was tested 

in the same five animals. Since all animals received all 

test agents, a dosing schedule was utilized to account for 

effects possibly due to the order in which the agents were 

administered. The schedule was as follows: .. 
Animal Week 1 Week 2 Week 3 Week 4 Week 5 

1 I IV IX heparin CY 216 

2 IV I CY 216 IX heparin 

3 IX heparin IV CY 216 I 

4 heparin CY 216 I IV IX 

5 CY 216 IX heparin I IV 

During the study, the following protocol for blood 

sampling was strictly adhered to. 

9:15 A.M. injection of anaesthesia. 

9:30 A.M. o hour sample followed by test fraction 

injection. 
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9:35 A.M. 5 min. sample 

9:40 A.M. 10 min. sample 

9:45 A.M. 15 min. sample 

10:00 A.M. 30 min. sample 

10:45 A.M. animals were examined for determination if 

additional anaesthesia was required and injected if 

necessary. 

10:30 A.M. l hour sample 

12:15 P.M. additional anaesthesia administered 

12:30 P.M. 3 hour sample 

3:15 P.M. additional anaesthesia administered 

3:30 P.M. 6 hour sample 

For the subcutaneous study, the different molecular 

weight fractions were examined in 15 heal thy primates. 

These animals were randomly assigned to three groups of 5 .. 
for the purpose of testing all 5 fractions on each exper-

imental day. Each fraction was tested in 5 different 

primates. The limited number of primates necessitated 

that individual monkeys be used more that once. At least 

10 washout days were allowed before a any animal was 

utilized for the second time. The following blood 

sampling time schedule was utilized. 

8:00 A.M. injection of anaesthesia 

8: 15 A.M. O hour blood sample followed by test fraction 

injection 

10:00 A.M. injection of anaesthesia 
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10:15 A.M. 2 hour blood sample 

12:00 P.M. anaesthesia 

12:15 P.M. 4 hour blood sample 

2:00 P.M. anaesthesia 

2:15 P.M. 6 hour blood sample 

4:00 P.M. anaesthesia 

4:15 P.M. 8 hour blood sample 

6:00 P.M. anaesthesia 

6:15 P.M. 10 hour blood sample 

8:00 P.M. anaesthesia 

8:15 P.M. 12 hour blood sample 

8:00 A.M anaesthesia 

8:15 A.M. 24 hour blood sample 

For both intravenous and subcutaneous studies, the 

pharmacodynamic time course was characterized in terms of 
... 

the biological half-life (t l/2) I apparent volume of 

distribution (Vd)i plasma clearance (Clp) and area under 

the plasma - drug time curve (AUC) • Individual parameters 

were calculated from heparin concentrations determined 

using each of the previously described in vitro assays 

(Heptest, FPAGT, Anti Xa, Anti IIa). A dilute thrombo-

plastin clotting time (PT) was also performed by using the 

standardized thromboplastin from the FPAGT in a PT assay. 

To convert the bio-assay parameter into relative heparin 

concentrations, calibration curves were used. To ensure 

the most accurate calibration, the curves were constructed 

79 



t est fraction supplementation of the individual zero from 

hour plasma samples. 

To determine Vd, the following formula was used. 

where 

Cp = maximal plasma concentration after distribution 

determined by back extrapolation of the beta slope to time 

zero and x = dose of drug given. t 1/2 was determined by 

observing the time required for the plasma concentration 

to decrease by 1/2 during the decay phase obtained from a 

semi-log plot of concentration / time. Clp was calculated 

using the following equation: Clp = Vd x Ke where, 

.693 
Ke = t1;2 

AUC was calculated using the trapezoidal rule. To 

determine the area between sampling times the following 

equation was used. 

t 
[AUCJt~-l = Cn-1 + Cn 

2 

The total area was calculated by summing the individual 

areas between consecutive time intervals. Absorption of 

the anticoagulant components after subcutaneous 

administration was determined relative to the intravenous 

route using the following formula. 

Absorption = AUC SC I dose 
AUC IV / dose 
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~~tithrombotic actions 
2. ~· 

The anti thrombotic effects of the test fractions 

were studied in a modified stasis thrombosis model (Fareed 

et al., 1985) using both subcutaneous and intravenous 

routes of administration. In the subcutaneous route, all 

fractions were compared at 1.0 mg/kg. For the intravenous 

route all fractions were compared at 25, 50 and 100 ug/kg. 
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White New Zealand male rabbits were anaesthetized f-

with intramuscular injections of Xylazine (20 mg/kg) and 

ketamine (80 mg/kg). After induction of anaesthesia, the 

rabbits were weighed and prepared for surgery. Baseline 

blood samples were also taken at this time. The surgical 

procedure entailed the isolation of both right and left 

jugular vein segments. To minimize trauma and to ensure 

hemostasis, battery operated cauteries were used in the .. 
surgical procedures. After isolating the jugular vein 

segments, the test fractions were injected by intravenous 

route through a marginal ear vein and allowed to circulate 

for five minutes. For the subcutaneous route of admin-

istration, the surgical procedure was initiated 3.5 hours 

post subcutaneous injection in the lower abdomen. 

At the appropriate time, thrombogenic challenge of 

Konyne brand of PCC (25 U/kg) followed by RVV (0.01 U/kg) 

was administered through the marginal ear vein and allowed 

to circulate for exactly 2 o seconds. At this time, the 

isolated jugular vein segments were ligated and stasis 



produced. Blood samples, drawn by cardiac puncture for ex 

vivo analysis, were taken immediately prior to and after 

injection of the thrombogenic challenge. After exactly 10 

minutes of stasis time, the isolated segments were removed 

and examined for blood clots in a saline filled petri 

dish. Clot formation was visually graded using a + 

system. In this system, - represented blood only with no 

evidence of clotting, + indicated some small clots but 

mostly blood, ++ indicated mostly small but some medium 

clots, +++ indicated a large clot with some blood while 

++++ indicated a fully formed, casted clot with no blood. 

In order to analyze the data, the + grades were 

transformed into numerical values using the following 

scale. 

= 0 
+ = 1.25 

++ = 2.5 
+++ = 5.0 

++++ = 10.0 

After transformation, mean values were determined from the 

average of the left and right stasis scores. 

For statistical significance, all drugs were 

compared in 5 animals for each route of injection and 

concentration. 

G. Statistical analysis 

Various statistical tests were performed on the 

experimental data. For this purpose an IBM PC XT 
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utilizing SYSTAT and an Hewlett - Packard 32 E were used 

to facilitate data reduction and test statistic 

calculation. 

SY STAT is a commercial software program for 

statistical applications. It has the ability to perform 

most commonly used statistical tests, and was utilized in 

the calculation of means, standard deviations, correlation 

coefficients, t-tests, one way analysis of variance 

(AVOVA) and student-Newman-Keuls test statistics. All 

test statistics were calculated at a significance level of 

0.05. Critical values for t, F and H distributions were 

obtained from Zar, (1974). 

To establish relationships between molecular weight 

and effects in the various in vitro assays, regression 

analysis was used to calculate correlation coefficients . 

• To test for a difference in effect of the fractions 

in the various in vitro tests, one way ANOVA was utilized. 

If ANOVA revealed a significant difference, the Student-

Newman-Keuls test was used to more precisely determine 

which fractions differed. This procedure was selected in 

preference to both the Tukey and Duncans tests since it 

tends to be more powerful and more widely accepted (Zar, 

1984) • When using SYSTAT to perform the student-Newman-

Keuls test, only critical values for differences in 

ordered means were provided. These values were utilized 

by calculating the differences in ranked mean values for 
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the comparison groups and comparing this value at the 

appropriate gap order to determine significance. 

To test for a difference in the pharmacodynamic time 

course of the test fractions, ANOVA followed by student­

Newman-Keuls testing was again utilized. 

To test for difference between the anti thrombotic 

effects of the test fractions, the Kruskal Wallis 

nonparametric ANOVA was used. Multiple comparison testing 

of nonparametric ANOVA was done similar to the Newman­

Keuls test, however the ranked sums were used in the 

calculation of the test statistic. 

To represent the variation in mean values, standard 

deviation calculated using SYSTAT. Thus in all figures, 

error bars represent the standard deviation • 

• 
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CHAPTER IV 

RESULTS 

Fractionation of Heparin A· 
From the initial five grams of starting material, 

4 • 425 grams were recovered from the gel-filtration 

procedure in the following proportions. Fraction I 250 

mg, I I 7 2 5 mg, III 575 mg, IV 650 mg, V 626 mg, VI 

550 mg I VII 450 mg, VIII 500 mg and IX 100 mg. The 

elution profile of heparin lot # 410 is seen in figure 1. 

The elution pattern reflected the composition of molecular 

weight components in the unfractionated preparation. A 

normal distribution of these components was observed. 

To test whether the heparin content was similar for 

each of the gel-filtered fractions, a toluidine blue 

heparin assay was used. In this assay, the toluidine blue 

dye reacted with the sulfate groups on the heparin 
• molecules to produce a color change. This color change 

increased with increasing heparin content and was mea-

surable by absorbance at 606 nm. Appendix X shows the 

direct relationship between heparin content and absorbance 

at 606 nm. Figure 2 illustrates the results of the 

toluidine blue assay on the gel-filtered fractions. All 

fractions displayed similar absorbance characteristics 

suggesting similar glycosaminoglycan content. 
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Molecular Weight Determination B. 

The results of the HPLC-GPC chromatography of the 

fractions, the starting heparin and CY 216 using two 

columns of different porosity (LKB tsk 2000 and 3000) are 

represented in appendix XIV and XV respectively. A 

detailed description identifying various regions of the 

elution curves is shown in appendix XX. Due to the 

differences in porosity, slightly different molecular 

weights were obtained from the two columns. To achieve 

accurate values, the results from both columns were 

averaged used in the calculation of apparent mean and peak 

molecular weights. These values along with the approx­

imate molecular weight ranges are seen in table 1. 

Although significant overlap existed between the 

fractions, they were different when analyzied using HPLC 

in terms of mean molecular weight, peak• molecular weight 

and molecular weight distribution. 

Table 2 shows the results of the viscosity mea­

surements on the same heparin preparations. The viscosity 

of the individual fractions ranged from 0.76 mPa for the 

5,100 M.W. fraction to 1.28 mPa for the 23,000 M.W. frac­

tion. For all test heparins, the viscosity increased with 

increasing molecular weight. When the viscosity values 

were plotted as a function of molecular weight, a linear 

relationship was observed (figure 3). 
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c. In Vitro Screening (Clotting and Amidolytic 

A,?saysl. 

Five fractions with the broadest difference in 

molecular weight, the native heparin from which these 

fractions were obtained and CY 216 were supplemented to 

normal human pooled plasma. These agents were tested at 5 

concentrations for in vitro anticoagulant activity using 

assays described in the methods section. All assays were 

performed in duplicate on 5 separate days to achieve 

statistical validation. 

1. APTT Assay 

The results for the APTT, expressed in terms of 

clotting time in seconds, are given in table 3. For this 

and all other clotting assays, the prolongation of this 

parameter was directly related to the antlcoagulant action 

of the respective fraction. For all fractions a concen-

tration dependent response was observed within the o. 6-

10 ug/ml range. The lowest concentrations resulted in 

slight increases from the baseline clotting time of 27 

seconds. Higher concentrations, 

prolonged times for all fractions. 

concentrations, the 23, ooo . 
I 17,450 . 

I 

displayed greatly 

At the higher 

13 , 3 o o and 9 , o o o 

M.W. fractions, along with the native heparin, inhibited 

the assay beyond its linear range of 200 seconds. 

When compared for potency at a concentration of 2.5 
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ug/ml, large differences between the individual molecular 

weight fractions were observed.· The 13,300 M.W. fraction 

was the most potent with a clotting time of 82 seconds. 

At the same concentration, the 5,100 M.W. fraction 

displayed the least potent actions, with a time of 3 6 

seconds. The apparent potency rank order of the different 

heparins in this assay was 13,300 M.W. > Native Heparin > 

17,·450 M.W. > 9,000 M.W. > 23,000 M.W. > CY 216 > 5,100 

M.W.. ANOVA revealed that these potency differences were 

significant (p < • 0001) • Newman-Keuls (.05) comparison 

suggested significant differences between the following: 

13,300 'I' heparin 'I' 17,450 'I' 9,000 = 23,000 = CY 216 = 

5,100. 

Testing the 5 gel-filtered fractions for correlation 

between potency and M.W. indicated a poor relationship (r 

• = .187). Although a good correlation existed from 5,100 

through 13, 300, beyond this point, further increases in 

molecular weight did not result in greater potency. 

2. PT Assay 

The results of the PT assay are shown in table 4. 

Since this assay was not sensitive to the actions of 

heparin below 1.25 ug/ml, relatively higher concentrations 

were used. Between 1.25 20 ug/ml, concentration 

dependent effects were observed for all fractions. These 

concentration dependent effects varied in potency response 
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between the different molecular weight fractions. At 20 

ug/ml, the 23,000 M.W. fraction prolonged the clotting 

time to 55 seconds while a identical concentration of the 

s,100 M.W. only elevated the time to 15 seconds. When 

ranked in terms of apparent potency at the 2 o ug/ml 

concentration, the 23,000 M.W. > 17,450 M.W. > 13,300 M.W. 

> Native Heparin > 9,ooo M.w. > CY 216 > 5,100 M.W •• 

ANOVA suggested that these potency differences were 

significant (p < • 0001) • The overall conclusion 

determined by Newman-Keuls at • 05 suggested significant 

differences between the following: 23,000 r 17,450 r 
13,300 r heparin r 9,000 = CY 216 r 5,100. 

Regression analysis demonstrated a strong relation­

ship between clotting time in the PT assay and molecular 

weight (r = .97). From 5,100 through 23,000 M.W., potency 

directly increased with increasing M. W ... It was inter­

esting to note that the potency of both the native heparin 

and CY 216 both correlated well to their respective 

molecular weights. 

An identical PT assay was run in plasma deficient in 

antithrombin III (antithrombin III levels were determined 

to be 6.2 % of normal using a synthetic substrate based 

functional assay [aca method] (table 5). In this plasma, 

20 ug/ml concentrations of all test agents produced a 

slight prolongation from the baseline clotting time. No 

difference in potency was observed between any of the test 
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fractions (p = .83). 

3 • Heptest Assay 

The results for the heptest assay are presented in 

table 6. The baseline value of the assay in normal human 

pooled plasma was 16 seconds. Supplementation of the test 

fractions at concentrations between o. 6 and 10 ug/ml to 

the same plasma resulted in concentration dependent 

increases in clotting time. Increasing concentration 

resulted in increased clotting time for all fractions. 

These concentration dependent actions were different in 

terms of potency response between the various test agents. 

When compared at a concentration of 2. 5 ug/ml, the ap­

parent rank order of the test heparins was as follows: 

Native heparin> 13,300 > 9,000 > 23,000 > 17,450 >CY 216 

> 5,100. •• ANOVA indicated significant differences between 

these potency responsesn(p = .OOO). The overall conclu-

sion determined by Newman-Keuls analysis at .05 suggested 

the following differences in potency were significant: 

Heparin 'I 13, 300 'I 9, 000 = 23, ooo 'I 17, 450 'I CY 216 'I 

5,100. 

The correlation observed between potency and molec-

ular weight in this assay was poor (r = • 08) . Potency 

increased with increasing molecular weight from 5, 100 to 

13,300. Higher M.W.'s (17,450 and 23,000) did not demon-

strate greater potency but rather were less potent when 
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compared to the 13,300 M.W. fraction. 

4 • Anti Xa Assay 

The results of the amidolytic anti Xa assay are 

shown in table 7. The results of this assay are expres­

sed in terms of % inhibition and were calculated as pre­

viously described in methods. These values represent the 

inhibition of factor Xa by the different heparin prepar­

ations. For all test fractions, this inhibition increased 

with increasing concentration, however large differences 

in potency were observed. At 10 ug/ml, the most potent 

fractions resulted in inhibition ranging from 87 - 88 %. 

The least potent fraction displayed 69 % inhibition at an 

identical concentration. When ranked in order of apparent 

potency determined at a concentration of 2.5 ug/ml, 13,300 

• > Heparin > 2 3 , O o o > 17 , 4 5 O > 9 , o O o > CY 216 > 5 , loo • 

ANOVA suggested that the apparent potency differences were 

significant (p = .031). Newman-Keuls multiple comparison 

test (.05) suggested actual differences between the 

following fractions: 13,300 = heparin =23,000 = 17,450 r 
9,000 r 5,100 = CY 216. 

Potency correlated well with M.W. from 5,100 through 

13,300. However, above 13, 300 M. W. all fractions dis-

played similar potency, thus the overall correlation 

between potency and M.W. was poor (r = .67). 
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5 • Anti IIa Assay 

The results for the anti II a amidolytic assay are 

seen in table a. These results are expressed in terms of 

% inhibition and reflect the actions of the fractions on 

factor IIa. As with all previous assays, concentration 

dependent effects were observed for all test agents 

between o. 626 and 10 ug/ml concentrations. Between the 

individual fractions, large differences in potency were 

observed. At 10 ug/ml, the most potent fractions resulted 

in inhibition ranging from 90 93 % • Less potent 

fractions produced about 60 % inhibition at identical 

concentrations. The apparent potency rank order observed 

at a concentration of 2.5 ug/ml was 23,000 > 13,300 > 

17,450 > Heparin > 9,000 > 5,100 > CY 216. AN OVA 

suggested the potency differences were significant (p = 

.000). Newman-Keuls (. 05) demonstrated significant 

differences between the following fractions: 23,000 = 

17,450 = 13,300 =heparin~ 9,000 ~ 5,100 ~CY 216. 

The correlation between potency and M. w. was r = 

.60. These results were similar to those achieved in the 

anti Xa assay. Potency increased with increasing 

molecular weight from 5, 100 through 13, 3 oo. Molecular 

weights above 13, 300 showed no additional increases in 

potency. 

It is interesting that in most conventional clotting 

and amidolytic assays, similar patterns of molecular 
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weight dependent potency were observed. The noteworthy 

exception was the PT assay. This assay was also the only 

method which utilized an extrinsic activation system. 

For the purpose of further examining the molecular 

weight dependent effects of heparin on extrinsic acti­

vation, a assay based upon the release of fibrinopeptide-A 

was utilized. The assay was used as described in methods. 

6. FPA Generation Assays 

The test agents were examined in four FPA generation 

matrices (normal platelet poor plasma, antithrombin III 

deficient plasma, normal platelet rich plasma and whole 

blood) • For all plasma systems, thromboplastin was used 

as an activator (extrinsic activation). The whole blood 

system was activated by contact with glass (intrinsic 

activation) • The results of all FPA generation assays 

were expressed in terms ng/ml of FPA generated over a two 

minute period. This value was inversely related to the 

potency of the test fractions in the assay. 

a. FPA Generation In Normal Human Plasma 

The results of the test fractions in normal platelet 

poor plasma are shown in table 9. Between the ranges of 

0.6 5 ug/ml, concentration dependent effects were 

observed for all test fractions. Differences in potency 

between the fractions were observed and appeared to be 
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related to molecular weight. The 23, ooo M. W. fraction 

displayed the most potent inhibition of FPA. At 5 ug/ml 

42 ng/ml were generated. In contrast, the 5, 100 M. W. 

fraction displayed the least inhibition. At an identical 

concentration, 763 ng/ml of FPA were generated over the 

two minute time period. When the test fractions were 

compared for their ability to inhibit FPA generation at a 

concentration of 2. 5 ug/ml, the following potency rank 

order was observed 23, 000 > Heparin > 17, 450 > 13, 300 > 

9
1
000 > CY 216 > 5,100. Significant differences were in 

potency were determined by ANOVA (p =.000). Newman-Keuls 

analysis (.05) suggested differences between the fol­

lowing: 23,000 = 17,450 =native heparin r 13,300 r 9,000 

! 5,100 = Cy 216. 

b. FPA Generation In Antithrombin III Deficient Plasma 

Plasma from the same source used in the previous in 

vitro assays was made deficient in antithrombin III using 

the heparin affinity chromatography technique described in 

methods. Antithrombin III levels were determined to be 

6. 2 % of normal using a functional method (ACA). The 

plasma was supplemented at 10 ug/ml with the test 

fractions and assayed in the same thromboplastin activated 

FPA generation assay. The results illustrating the ef-

f ects of the molecular weight fractions and a saline 

control, in this plasma are presented in table 10. 
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In the plasma deficient in antithrombin III, 

addition of the test fractions did not result in the 

inhibition of FPA generation. In the saline control, 

thromboplastin activation resulted in the generation of 

1216 ng/ml FPA over the 2 minute assay period. When the 

test fractions were supplemented to the antithrombin III 

deficient plasma, the generated FPA was similar to control 

values (ANOVA value p = .73). 

c. FPA Generation In Platelet Rich Plasma 

The effects of the test fractions on FPA generation 

were compared in platelet poor and platelet rich normal 

human plasma at a concentration of 2.5 ug/ml. The results 

are seen in figure 4 . All fractions inhibited the gen-

eration of thromboplastin activated FPA generation in both 

the platelet rich and platelet poor plasmas. Using paired 

t-tests, no difference was observed between the effects of 

any of the test fractions in the platelet rich or platelet 

poor plasma. The individual probabilities were as fol-

lows: 23,000 p = .104; 17,450 p = .072; 13,300 p = .60; 

9,000 p = .60; 5,100 p = .83; heparin p = .51; CY 216 p = 

.so. 

Although no significant differences were detectable 

between the two plasmas, slightly more FPA was consis­

tently generated in the platelet rich plasma. 
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d. FPA Generation In Whole Blood 

Five fractions were screened in the whole blood FPA 

generation assay exactly following the procedure described 

in methods. The results are illustrated in table 11. All 

test fractions displayed concentration dependent inhi-

bition of FPA generation. These concentration dependent 

effects were different in terms of potency response 

between the test agents. At 10 ug/ml the most potent test 

fractions produced complete inhibition of FPA generation. 

In contrast in the presence of the least potent fraction 

( 5, 100 M. W.) , 12. 6 ng/ml FPA was generated over the 2 

minute assay period. The apparent potency rank order was 

as follows: 13,300 > 23,000 > Heparin > CY 216 > 5,100. 

Using Newman-Keuls analysis (.05), significant differences 

were observed between the following: 13,300 = 23,300 = 

Heparin~ Cy 216 = 5,100 was achieved. • 

It was interesting to note that unlike the 

thromboplastin activated assays, the potency of the 

fractions did not appear to be related to molecular 

weight. 

7. VII - Thromboplastin Assay 

The enhanced potency of high molecular weight 

fractions observed in thromboplastin activated assays 

suggested high molecular weight heparin may inhibit the 

actions of thromboplastin. To investigate this relation-
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ship, a assay using thromboplastin and factor VII to 

activate factor X to Xa was developed. The assay endpoint 

was determined by monitoring the release of pNA from a Xa 

specific substrate. In this assay factor VII and 

thromboplastin were both necessary to activate factor x. 

The activation of factor X was directly related to factor 

VII and thromboplastin concentrations (fig. 5). 

Figure 6 shows the effect of the test fractions on 

this assay system. Although compared at an identical 

concentration of 1.25 ug/ml, large differences in the 

potency of the individual fractions were observed. The 

potency appeared to be related to the molecular weight of 

the individual fractions. The 23, ooo M. W. fraction was 

the most potent inhibitor of the assay. In the presence 

of this fraction, p-NA was generated at a rate of • 55 

uM/min. In contrast, the 5,100 M.W. fraction produced the 

least inhibition. In its presence, p-NA was generated at 

a rate of 2. 75 uM/min. The potency of the remaining 

fractions followed the following rank order: 23,000 > 

17,450 > 13,300 > Heparin > 9,000 > CY 216 > 5,100. 

Significant differences in potency, as determined by 

Newman-Keuls analysis (.05) were detected between the 

following fractions: 23,000 i 17,450 i 13,300 i Heparin i 

9,000 = CY 216 i 5,100. 

As with other assays using thromboplastin 

activation, a high correlation between potency and 
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molecular weight was observed (r = .97). 

To distinguish whether the pattern of molecular 

weight dependent inhibition was due actions of the test 

fractions inhibiting factor Xa, the original assay was 
\ 

modified. Factor's VII and X were eliminated and replaced 

by a concentration of factor Xa which generated an amount 

of p-NA equivalent to the antithrombin III control in the 

original assay. The effect of the test fractions on this 

system are shown in figure 7. In the presence of the test 

fractions higher rates of p-NA release were observed 

compared to the original assay. All fractions inhibited 

the Xa, however no direct molecular weight dependent 

inhibition was observed as before. The 23,000 ; 17,450 ; 

13,300 . 
I 9,000 and native heparin preparations all 

resulted in similar rates of p-NA release between 5 - 6 

uM/min. In contrast to the results witn the presence of 

factor VII, Newman-Keuls multiple comparison (. 05) sug­

gested that 23,000 = 17,450 = 13,300 =Heparin i 9,000 i 

CY 216 = 5,100. 

To further investigate the mechanism of the molec-

ular weight dependent potency differences between the 

fractions, two systems isolating the various fractions 

with either factor VII-thromboplastin or factor X were 

used. The centrifugal rotors were designed with two wells 

which allowed initial isolation with subsequent mixing of 

all reagents after acceleration. This design allowed the 
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test fractions to incubate either in the well containing 

the factor VII - thromboplastin or with the factor X. 

Figure s shows the result of the test fractions in this 

experiment. Paired t-tests revealed significant dif-

f erences between the actions of the test fractions in the 

two incubation systems for only the 23,000 ; 17,450 M.W. 

fractions and unfractionated heparin (p = .ooo, .ooo and 

.001 respectively). For these three fractions, incubation 

with factor VII thromboplastin resulted in greater 

inhibition than incubation with factor X. The 13, 300 ; 

9,100 ; 5,100 M.W. fractions and CY 216 showed no dif­

ference between the two incubation systems (probabil-

ities .084, .935, .101 and .95 respectively). 

The % differences between the two incubation systems 

were calculated to provide a better indication of the 
• 

molecular weight differences between the two incubation 

systems. These values were 64 %, 48 %, and 23 % for the 

23, ooo, 17, 450 and unfractionated heparin respectively. 

These results demonstrated that in this assay the 23,000 

M.W. fraction produced the most inhibition followed by the 

17,450 M.W. fraction and unfractionated heparin 

respectively. 

a. VII - Thromboplastin in Plasma 

The original VII - Thromboplastin assay was modified 

to examine the actions of the test fractions in a plasma 
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matrix. Fibrinogen deficient plasma was used to prevent 

clot formation and was the source factors VII and x. This 

assay was performed exactly as described in methods using 

both xa and thrombin specific substrates. Figure 9 shows 

the effects of the molecular weight fractions at a 

concentration of 5 ug/ml in the plasma system with a Xa 

substrate. In this system the potency response of the 

fractions resembled that of the pure Xa system. The 

23,000 ; 17,450 ; 13,300 and native heparin all exhibited 

similar potency. Significant differences, determined by 

Newman-Keuls analysis (.05) were observed between the 

following 13,300 = 17,450 =Heparin= 23,000 f 9,000 =CY 

216 f 5,100. This observation was in strong contrast to 

other thromboplastin activated assays, where potency 

consistently increased with increasing molecular weight. 

Figure 10 shows the results of the same assay using 

a 2. 5 ug/ml concentration of the test fractions. A 

similar pattern of molecular weight dependent effects was 

observed. At this concentration, the 13,300 M.W. fraction 

appeared to be the most potent inhibitor of the assay. 

This observation was even more evident at 1.25 ug/ml 

(figure 11) . The apparent potency rank order for both 

concentrations was 13,300 > 17,450 > Heparin > 23,000 > 

9 I 0 0 0 > Cy 216 > 5 I 10 0 . Newman-Keuls (. 05) suggested 

significant differences between the following: 13, 300 f 

17,450 =Heparin= 23,000 f 9,000 =CY 216 f 5,100. 
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The effects of the test fractions at a concentration 

of 5 ug/ml, in the plasma system using thrombin substrate 

are shown in figure 12. The pattern of molecular weight 

related potency in this system was similar to that 

observed with the Xa substrate. The apparent potency 

order of the fractions was as follows: 13,300 > 17,450 > 

23,000 > Heparin > 9,000 > CY 216 > 5,100. Significant 

differences were detected using Newman-Keuls (.05) between 

all fractions except CY 216 = 5,100 M.W. 

At a test fraction concentration of 2. 5 ug/ml, a 

similar pattern of molecular weight dependent effects were 

observed. Consistent with the lower concentrations of the 

test fractions, less inhibition of the assay was seen 

(figure 13). 

At a concentration of 1. 25 ug/ml, additional 

concentration dependent decreases in the actions of all 

test fractions were observed (figure 14). At this 

concentration, the 13,300 M.W. fraction appeared to be the 

most potent inhibitor of the assay, however it was not 

significantly different from the 23, ooo and 17, 450 M. w. 

fractions. 

D. In Vivo·Results CPharmacodynamic Concentration I Time 

Course) 

The intravenous and subcutaneous pharmacodynamic 

concentration / time course of CY 216, unfractionated 
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heparin the 23,000 ; 13,300 and 5,100 M.W. fractions were 

studied in the primate Macaca mulatta as described in 

methods. Plasma concentrations of the test fractions were 

determined using 5 assays (Heptest , dilute PT, anti Xa, 

anti IIa and FPAGT). These assays were performed exactly 

as previously described. Gravimetric concentrations were 

extrapolated from calibration curves made by supplementing 

the test agents to autologous plasmas. The resulting 

concentrations were plotted as a semi-log function of time 

and used to estimate the time course parameters. The 

formulas used in these calculations are described in 

methods. 

1. Intravenous Administration 

Figure 15 shows the semi-log concentration / time 

• plot for the 23, 000 M. W. fraction calculated from data 

obtained using the Heptest assay. After injection, plasma 

concentrations declined at a constant rate throughout all 

sampling times. The apparent distribution volume was .049 

L/Kg suggesting that this fraction remained within the 

plasma. The half-life was calculated at 29 ± 2.2 minutes. 

The semi-log concentration / time plot for the 

13, 300 M. W. fraction calculated from data obtained using 

the Heptest assay is seen in figure 16. After injection, 

an initial rapid decrease in plasma concentration was 

observed through the 5, 10 and 15 minute sampling times. 
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Afterward, a slower rate of decrease persisted until the 

drug could no longer be detected. These differences in 

elimination rates demonstrated that for this agent both 

alpha and beta phases of distribution and elimination 

occurred. The half-life during the alpha phase was 25 ± 3 

minutes compared to the 34.5 ± 4.5 minutes during the beta 

phase. The observation of a biphasic elimination curve 

suggested distribution of this fraction within two 

compartments. 

Figure 17 shows the concentration / time plot for 

the 5, 100 M. W. fraction calculated from plasma concen­

trations determined using the Heptest assay. A bi-phasic 

elimination pattern was again observed. The half-life 

calculated from the alpha slope was 25 ± 2 minutes 

compared to 51 ± 6.5 minutes during the beta phase. The 

• kinetic behavior of this fraction suggested distribution 

to two compartments. 

Figure 18 shows the concentration / time plot for CY 

216 calculated from heptest assay data. The concentration 

I time course of this agent was similar to the 5,100 M.W. 

fraction. The alpha phase persisted throughout the 5,10 

and 15 minute sampling times. The half-life during this 

phase was 22.5 ± 4 minutes. The beta phase half-life was 

58 ± 4. 8 minutes. A slightly larger distribution volume 

(.006 L/Kg) was calculated for this agent compared to the 

other test fractions. 
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The concentration / time course of the unfraction­

ated heparin calculated using the Heptest assay is shown 

in figure 19. After injection, the plasma concentrations 

rapidly decreased over the first 10 minutes. Between 10 

and 15 minutes, plasma concentrations decreased at a 

qreatly reduced rate compared to the initial 10 minutes. 

Beyond this point, elimination increased to a rate similar 

to that initially observed. These different rates 

sugqested distribion to more that two compartments. The 

half-life values for the elimination phases were 25 ± 3.5 

and 31 ± 2. 2 minutes for the alpha and beta phases 

respectively. 

a. Pharmacodynamic Concentration / Time Course of the Test 

Fractions Using Different Assays 

i. Heptest 

A summary table for the intravenous plasma concen­

tration / time course of the test fractions calculated 

using the heptest assay is seen in table 12. Comparison 

of the half-life values demonstrated an inverse relation-

ship between this parameter and molecular weight. Half-

life increased with decreasing molecular weight from 29 

minutes for the 23,000 M.W. fraction, to 58 minutes for CY 

216 (M.W. 4,500). This response was consistent for all 

test fractions, however significant differences were only 

observed between the highest and lowest molecular weighs. 
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The overall conclusion based upon ANOVA and Newman-Keuls 

(.05 ) multiple comparison for similarity in half-life was: 

23 , ooo = 13, 300 = Heparin '! CY 216 = 5, 100. Clearance 

values were consistent with the half-life results. 

The apparent distribution volume of all test 

fractions approximated the plasma volume (.05 -.06). With 

the exception of CY 216, no difference was observed in 

this parameter among the test agents (p = • 01) It is 

interesting to note that the lowest molecular weight 

fraction (CY 216) had the greatest apparent volume of 

distribution. 

Comparison of the molecular weight fractions for 

their response in terms of area under the plasma concen-

tration / time curve (AUC) were similar to the half-life 

results. AUC increased with increasing molecular weight . 
• 

This observation was consistent for all test fractions, 

however only the lowest M.W. fractions were significantly 

different. Comparison using Newman-Keuls (.05) suggested 

an overall conclusion of CY 216 = s,100 'f: 13,300 = heparin 

= 23,000. 

ii. Anti Xa Assay 

The results of the intravenous concentration / time 

course for the anti Xa activity of the test fractions is 

shown in table 13. The curves from which these values 

were calculated are given in appendix XVIa. No signif-
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icant difference between the time course observed using 

the Heptest or anti Xa method was calculated {for Vd p = 

• for T 1/2 p = .26 ; for Cl p = .35 and for AUC p = .03 I 

• 67) • 

iii. Anti IIa Assay 

The results of the time course for the anti II a 

activity of the fractions is seen in table 14. The curves 

from which these values were calculated are shown in 

appendix XVIb. No increase in half-life was observed with 

decreasing M. W. All test fractions displayed a similar 

plasma half-life which ranged from 30 - 32 minutes. These 

slight differences were not significantly different {p = 

• 28) • In addition, no molecular weight dependent effects 

were observed for clearance or apparent distribution 

volume. A molecular weight related effect was observed 

• for AUC. CY216 and the 5, 100 M. W. fraction displayed 

significantly greater values {4.0 & 4.73 respectively) 

compared to the higher molecular weight fractions (3.31, 

3.53 and 3.5 for 23,000 ; 17,450 and heparin respectively. 

iv. Dilute Thromboplastin Assay 

The time course values of the test fractions 

calculated from the dilute thromboplastin assay are 

illustrated in table 15. The concentration / time plots 

from which these values were calculated are shown in 

appendix XVIc. Molecular weight dependent effects were 
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observed for all parameters. Half-life, apparent Vd and 

AUC all increased with decreasing molecular weight. 

Accordingly, plasma clearance decreased in a similar 

manner. 

The concentration / time course of the test 

fractions calculated using this assay, showed a similar 

pattern of molecular weight dependence to those calculated 

from other assays. These values were less compared to 

those calculated using the heptest and anti Xa assays. 

The values ranged from 26 minutes for the 23, ooo M. W. 

fraction, to 39 minutes for CY 216. 

v. FPAGT 

Table 16 shows the summary of the intravenous 

concentration / time course for the test agents calculated 
• 

from the FPAGT. The concentration / time plots from which 

these values were calculated are shown in appendix XVId. 

As with previous assays, significant differences in the 

kinetic parameters of the molecular weight fractions were 

observed. Half-life and AUC increased as the molecular 

weight of the test fraction decreased. 

inversely related to half-life. 

Clearance was 

When the time course as determined in this assay 

was compared to those calculated by other methods, 

significant differences were observed. Half-life values 

were longer for all fractions compared to those calculated 
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from other methods. These values ranged from 30 minutes 

for the 23,000 M.W. fraction, to 61 minutes for CY 216. 

Accordingly, AUC values for all fractions increased 

relative to their increased halflives. 

Subcutaneous Administration 2. 

Figure 20 shows the semi-log concentration / time 

plot for the 23,000 M.W. fraction after subcutaneous 

injection. The concentrations used in this plot were 

determined using the Heptest assay. Poor absorption from 

the subcutaneous injection site was observed for this 

agent. After injection, plasma concentrations rose to a 

average peak of • 06 ug/ml at 4 hours. From this point, 

plasma levels slowly declined until 12 hours when no drug 

was detectable. 

The area under the plasma concentration time curve 
• 

{AUC) was similarly low (. 47 ug hr/ml). A half-life of 

205 minutes was observed. 

The semi-log concentration / time plot for the 

13,300 M.W. fraction after subcutaneous injection is seen 

in figure 21. The plasma concentrations used in this plot 

were determined using the Heptest assay. A peak plasma 

level of about .25 ug/ml was observed at 4 hours. From 

this point, plasma levels slowly declined at varying 

rates. At 12 hours, a slight amount of drug was detect-

able in the circulation. No drug was detectable at 24 

hours. The half-life and AUC values observed for this 
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fraction were 144 minutes and 1.54 ug hr/ml respectively. 

When compared to the 23, 000 and 13, 300 M. W. frac­

tions, the 5,100 M.W. fraction displayed much greater 

absorption from the subcutaneous injection site (figure 

22 ). A peak plasma concentration (determined using the 

Heptest assay) of about 4.0 ug/ml was observed at 4 hours 

post injection. Plasma concentrations declined to a level 

of 1.5 ug/ml after 12 hours. No drug was detectable at 24 

hours. 

The greater absorption of this fraction was also 

reflected in the AUC, which was more that 15 X greater 

than either the 13,300 or 23,000 M.W. fractions (23.7 ug 

hr/ml). The half-life for this fraction was 108 minutes. 

The semi-log concentration / time plot for CY 216 

after subcutaneous administration determined from Heptest 

assay data, is seen in figure 23. • • The pharmacodynamic 

time course of this fraction was similar to that of the 

5,100 M.W. fraction. A peak absorption of about 3.7 ug/ml 

was observed at 4 hours. The AUC and half-life were 22 ug 

hr/ml and 144 minutes respectively. 

Figure 24 shows the subcutaneous pharmacodynamic 

concentration / time course of the unfractionated heparin. 

The data points were plotted using plasma concentrations 

determined from the Heptest assay. A peak plasma concen-

tration of 1.5 ug/ml was observed at 4 hours post adminis-

tration. From this peak, plasma levels steadily declined 
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to minimally detectable levels at 12 hours. No drug was 

detectable at 24 hours. The half-life of this agent was 

the shortest of all the test fractions (94 minutes). The 

AUC was 6.8 ug hr/ml. 

a. Pharmacodynamic Time Course of the Molecular Weight 

Fractions After Subcutaneous Administration, Determined in 

oif f erent Assays 

i. Heptest 

A comparison of the subcutaneous concentration / 

time course for the molecular weight fractions calculated 

from the heptest assay are seen in table 17. A direct 

relationship was observed between the molecular weight of 

the fractions and relative absorption. Absorption and AUC 
• 

increased with decreasing molecular weight. Comparison of 

the absorption of the test fractions using ANOVA followed 

by Newman-Keuls analysis suggested significant differences 

between some of the test agents. The overall conclusion 

ranked in order of increasing absorption was: 23, 000 'I 

13,300 'I Heparin 'I CY 216 'I 5,100. 

ii. Anti Xa 

The summary table for the subcutaneous pharmaco­

dynamic concentration / time course of the test fractions 

calculated from the anti Xa assay are seen in table 18. 

These values were determined from the semi-log concentra-
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tion / time plots shown in appendix XVIIa. As with the 

results calculated using the Heptest assay, relative 

absorption and AUC increased with decreasing molecular 

weight. The absorption of all fractions as calculated 

from this method was slightly greater when compared to 

that calculated from Heptest. The relative absorption of 

CY 216 and the 5,100 M.W. fraction approached 100 % (96 

and 94 % respectively). The 23, ooo M. W. fraction dis-

played the least absorption at 10 %. 

iii. Anti IIa 

Table 19 shows the subcutaneous pharmacodynamic 

concentration / time course for the test fractions 

calculated from the anti IIa assay. The plots from which 

these values were determined are shown in appendix XVIIb • .. 
As with previous assays, relative absorption increased 

with decreasing molecular weight. As determined by ANOVA 

and Newman-Keuls, the differences in absorption between 

the fractions was significant. The overall conclusion, 

ranked by decreasing absorption was: 5,100 'I Cy 216 'I 

Heparin 'I 13,300 = 23,000. These values were lower than 

those observed using the heptest and anti Xa assays. 

Values ranged from a low of 6 % , to a high of 60 % for 

23,000 and 5,100 M.W. fractions respectively. 

iv. Dilute Thromboplastin 
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The results of the subcutaneous plasma concentration 

I time course for the test fractions calculated from the 

dilute thromboplastin assay are seen in table 20. These 

values were determined from concentration / time curves 

shown in appendix XVIIc. When compared to the relative 

absorption values calculated from other assays, these 

results were much lower. In contrast to the 96 % absorp­

tion observed with CY 216 using the anti Xa assay (table 

17), the absorption of CY 216 calculated from this assay 

was 38 %. As with other assays, the relative absorption 

increased with decreasing molecular weight. 

v. FPAGT 

The concentration / time course values for subcu-

taneous administration of the test fractions calculated 

from the FPAGT are seen in table 21. 
... 

The plots from which 

these values were determined are shown in appendix XVIId. 

The absorption increased with decreasing molecular weight. 

The 23,000 M.W. fraction displayed 28 % absorption 

compared to 100 % for CY 216. Significant differences 

were determined using Newman-Keuls analysis between all 

fractions except CY 216 and the 5,100 M.W. fraction. 

Half-life also appeared to be different between the 

test fractions. Half-life increased with decreasing 

molecular weight however, a significant difference was 

only observed for CY 216. The overall conclusion for 
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equivalence in half-life based on Newman-Keuls analysis in 

order of decreasing values was: CY 216 ;':- 5,100 M.W. = 

131 300 M.W. = heparin = 23,000 M.W. 

E. In Vivo Results (Antithrombotic Actions) 

The test fractions were compared for their anti­

thrombotic actions in a rabbit stasis thrombosis model. 

The model used stasis, combined with prothrombin complex 

concentrate and Russell's viper venom as a thrombogenic 

challenge. The antithrombotic effects of the test agents 

were compared using both intravenous and subcutaneous 

routes of administration. 

1. Intravenous (25 ug/kg) 

The results obtained after intravenous adminis-.. 
tration of the test fractions at 25 ug/kg, compared to a 

saline control are seen in figure 25. The control rabbits 

averaged stasis clot scores of 6.5. Scores between 2 and 

3 were observed for all agents except for the 5,100 M.W. 

fraction which resulted in a score of 5. 5. When tested 

using the Kruskal Wallis nonparametric ANOVA and appropri-

ate multiple comparison test, significant differences were 

detected between all test agents and control, except for 

the 5,100 M.W. fraction. Between the 23,000 and 13,300 

M.W. fractions, CY 216 and unfractionated heparin, no 

difference in the anti thrombotic effects were observed. 
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The overall conclusion determined by multiple comparison 

analysis (. 05) ranked in order of decreasing anti throm­

botic potency was: 13,300 M.W. = 23,000 M.W. = Heparin = 

CY 216 r 5,100 M.W. = control. 

The circulating pharmacodynamic effects of the 

molecular weight fractions in the test rabbits are shown 

in table 22. These effects were measured in the clotting 

and amidolytic assays described in methods. The baseline 

values were determined prior to drug administration. Pre-

challenge values indicate the circulating drug actions 

immediately prior to administration of the thrombogenic 

challenge. 

Comparison of the pre-challenge and baseline values 

demonstrated minimal anticoagulant actions for all 

fractions in all assays. These observations were consis-.. 
tent with the low dose at which the fractions were 

administered. As with the in vitro studies, the potency 

of the individual fractions was dependent upon the assay 

method. However, due to the low plasma concentrations, 

significant differences between the effects of the 

fractions in different assays were not observed. 

To determine whether the circulating pharmacodynamic 

actions were related to the anti thrombotic effects, cor-

relations coefficients were calculated. Poor correlation 

between the activity in the heptest assay and anti-

thrombotic actions was observed ( r = - • 4 7) . Activated 



115 

partial thromboplastin time (PTT), anti Xa and IIa 

amidolytic assays demonstrated better correlations (r = 

.65, .68 and .60 respectively). 

2. Intravenous (50 ug/kg) 

Figure 26 shows the antithrombotic effects after 

intravenous administration of the test agents at a 

concentration of 50 ug/kg. All fractions displayed stasis 

scores which were significantly different from the control 

score of 6. 5 . These values ranged from O. 25 for the 

unfractionated heparin, to 2. 5 for the 5, 100 M. W. frac-

tion. Comparison for similarity between the test agents, 

suggested significant differences in their antithrombotic 

actions. The overall conclusion based upon multiple 

comparison analysis, ranked in order of potency was: 

• Heparin r 13,300 = 23,000 = CY 216 r 5,100 r control. 

The circulating pharmacodynamic actions of the test 

fractions in this experiment are shown in table 23. All 

fractions produced inhibition of the various assays 

relative to baseline values. Compared to the 2 5 ug/kg 

dose, the circulating pharmacodynamic actions of the test 

fractions were only minimally increased. 

Correlations were calculated as before to determine 

relationships between the circulating pharmacodynamics and 

the observed anti thrombotic actions. Poor correlations, 

(r = .50 - .24) were observed in all assays. 
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The anti thrombotic actions of the test fractions 

after intravenous administration at 100 ug/kg are il-

iustrated in figure 27. All fractions displayed anti-

thrombotic actions which were significantly different from 

control. At this concentration, the unfractionated 

heparin resulted in complete inhibition of thrombosis. 

The other test agents resulted in stasis clot scores 

ranging from 0.25 for the 13,300 M.W. fraction to 2.75 for 

the 5,100 M.W. fraction. The variation in the stasis 

scores produced by the various agents were significantly 

different. The overall conclusion for similarity in 

antithrombotic actions, ranked in order of potency, 

determined using multiple comparison analysis was: Heparin 

= 13 I 3 0 0 M. w. = 2 3 I 0 0 0 M. w. = CY 216 ;:. 5 I 10 0 M. w. ;:. 
• control. 

The circulating pharmacodynamics of the test 

fractions for this experiment are shown in table 24. 

Anticoagulant actions were observed for all agents at the 

time of thrombogenic challenge. These anticoagulant 

actions were elevated·, consistent with the higher dose at 

which the agents were compared. As with the lower 

dosages, the degree of anticoagulant potency differed 

between the individual fractions and assay methods. The 

correlation of these activities to antithrombotic actions 

was also higher than observed for the lower dosages. The 
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correlation values for heptest, anti Xa and anti IIa were 

r = .89, .87 and .82 respectively. 

4. subcutaneous (1 mg/kg) 

The anti thrombotic effects of the test fractions 

after subcutaneous administration at a concentration of 

i.o mg/kg are illustrated in figure 28. Significant anti­

thrombotic actions were observed for all agents with the 

exception of the highest molecular weight fraction (23,000 

M. W.) • This fraction resulted in a stasis score of 6.0 

compared to a control value of 6.5. CY 216 displayed the 

greatest potency (stasis score 1.25). When compared for 

similarity using non parametric ANOVA and multiple 

comparison testing, significant differences in antithrom-

botic potency were calculated between the test agents . 

The overall conclusion ranked in • order of decreasing 

potency was: CY 216 = 13,300 M.W. = 5,100 M.W. = unfrac­

tionated heparin ~ 23,000 M.W. = control. 

The circulating pharmacodynamic activities of the 

individual fractions observed after subcutaneous admin-

istration are shown in table 25. A good correlation 

between the circulating anticoagulant and antithrombotic 

actions was observed in all assays. Correlation values 

for heptest, anti Xa, anti IIa, and PTT were r = .76, .81, 

.63 and .78 respectively. 



CHAPTER V 

DISCUSSION 

Molecular Weight Fractionation and Determination A· 
To study the effect of molecular weight on the 

anticoagulant, antithrombotic and pharmacokinetic actions 

of heparin, fractions differing in molecular weight were 

used. These fractions were obtained from one source of 

native porcine mucosal heparin using a gel - filtration 

technique. This technique has previously been used for 

studying the molecular weight dependent effects of heparin 

(Bergqvist et al., 1985 ; Losito et al., 1981 ; Thunberg 

et al., 1979). In these studies, gel filtration was shown 

to be useful since it relied almost exclusively on size 

for separation. For this reason, differences between the 

pharmacological properties of gel-filtered fractions are 

primarily due to characteristics related to or associated 

with molecular size. 

The elution profiles of the gel-filtered fractions 

used in the current studies, illustrated that each 

fraction was composed of a bell-shaped distribution of 

molecular weight components. For each fraction, the 

average of these components determined the mean molecular 

weight. For most fractions, the molecular size range of 

the individual components was narrow, however the lower 

molecular weight fractions contained a broader molecular 

weight distribution range. The difference in molecular 

118 
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weight range was due to the size exclusion properties of 

the Ul trogel, which lost resolution at lower molecular 

weights. The broader molecular weight distribution range 

of the low molecular weight fractions also reflected the 

composition of the unfractionated heparin, which contained 

a greater percentage of low molecular weight components. 

The molecular weights of all experimental agents 

were determined using HPLC - gel permeation chromatog-

raphy. This was an accurate method for determining 

molecular weight since well defined calibration standards 

of similar molecular composition were used (Harenberg and 

De Vries, 1983 ; Rodriquez, 1976). 

HPLC - gel permeation chromatography also demon-

strated the frequency distribution and range of molecular 

weight components within each fraction • This allowed 

• evaluation of the results relative to both mean molecular 

weight and molecular weight distribution. Character-

ization relative to both these parameters was important 

since an almost unlimited number of molecular weight 

distributions could result in an identical mean molecular 

weight. 

B. Comparison of the Pharmacological Actions of the 

Molecular Weight Fractions 

For all experimental studies, gravimetric expres-

sions (ug/ml or ug/Kg) were primarily used to indicate 
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test fraction concentrations. These expressions were 

selected primarily for reasons of accuracy and reproduc-

ability. Alternatively, concentrations could have been 

expressed in molar or unit amounts. No clear advantage 

existed for using any of these methods. To express the 

concentrations of the test agents in terms of units, 

standardization against a reference heparin preparation 

such as the International Standard would have been 

required. While this preparation was suitable for 

standardizing unfractionated heparins, it appeared 

unsuitable for fractionated heparins. In an international 

collaborative study, fractionated heparins did not 

parallel the International Standard Heparin in any of four 

assay systems used (Barrowcliffe et al., 1985). Since no 

suitable standard for cross-referencing the test agents 
• 

was available, unit expressions were not used. 

Molar expressions of concentration were used when 

they contributed to the explanation of molecular weight 

dependent differences between the test fractions. These 

expressions were not used more frequently since they could 

not be precisely determined but only approximated from the 

average molecular weight. 

1. In Vitro Analysis 

a. Clotting and Amidolytic Assays 

Profiling the effects of the test agents, in 
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different clotting and amidolytic assays, revealed 

distinct differences in their molecular weight related 

anticoagulant potency in all assays. Interestingly, the 

pattern of these molecular weight dependent effects was 

different between assays of the intrinsic and extrinsic 

coagulation network. 

In the APTT, Heptest, anti Xa and anti IIa assays, 

the 13,300 M~W. fraction consistently displayed the most 

potent anticoagulant and antiprotease actions. Similar, 

but slightly less potent effects were observed from the 

17,450 and 23,000 molecular weight fractions respectively. 

The 9,000 and 5,100 M.W. fractions displayed the least 

anticoagulant and anti protease actions. The potency of 

these two fractions decreased in direct proportion to 

their molecular weights. The anticoagulant potency of 

both CY 216 and the unfractionated hepa~in was consistent 

with other fractions of similar molecular weight. 

The differences in potency between the various 

molecular weight fractions in the aforementioned assays 

were best explained through differences in affinity to 

antithrombin III, neutralization by anti-heparin proteins 

and molar ratios. 

Heparin's affinity to antithrombin III has been 

shown to be related to its molecular weight. High 

affinity binding of heparin to this protein is dependent 

upon a specific tetrasaccharide sequence within the 
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heparin. The affinity of heparin to antithrombin III 

increases with the relative abundance of this sequence 

(Rosenberg et al., 1978). The probability of this 

sequence occurring, increases with molecular weight 

(Laurent et al., 1978) . For these reasons, heparin of 

higher molecular weight generally displays greater 

affinity to antithrombin III compared to its low molecular 

weight counterparts. 

The decreases in the anticoagulant potency observed 

between the 13,300 . 
I 9, ooo and 5, 100 molecular weight 

fractions were most likely due to molecular weight related 

decreases in antithrombin III affinity. These potency 

differences were even more dramatic when compared in terms 

of molar ratios. Since the fractions were compared at 

equal gravimetric concentrations, the 5,100 M.W. fraction 

had almost a three-fold higher molar rati6c relative to the 

13, 300 M. w. fraction. If the test fractions had been 

compared at equal molar concentrations, much greater 

potency differences would have been observed between the 

high and low molecular weight fractions. At equal 

gravimetric concentrations, the low molecular weight 

fractions had more molecules available to bind to anti-

thrombin III, however less anticoagulant actions were 

observed due to the decreased affinity of these components 

to this important heparin cofactor. 

There was no possibility that the decreased anti-
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coagulant actions of the lower molecular weight fractions 

were due to saturation of antithrombin III. This protein 

was always present in at least 5 - 10 X molar excess for 

all concentrations at which the test agents were compared 

(table 30). 

The potency differences between the 23,000 ; 17,450 

and 13, 300 M. W. fractions most likely were not due to 

differences in antithrombin III affinity. Between these 

three fractions, potency decreased with increasing molec­

ular weight. The molar ratio between the respective 

fractions and anti thrombin III also decreased with in­

creasing molecular weight. This observation suggested 

that the potency differences between these three fractions 

may have been due to relative molarity differences. Since 

heparin interacts with antithrombin in a 1 : 1 stoichio­

metric manner (Jordan et al., 1979), the greater molarity 

of the 13,300 M.W. fraction resulted in more molecules 

free to interact with antithrombin III. 

It has been reported that in plasma, high molecular 

weight heparin is more readily neutralized by anti-heparin 

factors compared to lower molecular weight fractions 

(Andersson et al., 1979 ; Hubbard and Jennings, 1985) . 

This differential neutralization along with the less 

favorable molar ratio of the high molecular weight 

heparin, most likely resulted in the decreased potency 

observed between the high molecular weight fractions. 
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As previously mentioned, the potency rank order of 

the molecular weight fractions was similar in the Heptest, 

APTT, anti Xa and anti IIa assays. These results were not 

surprising since these assays primarily reflect heparin's 

actions upon either factor Xa, thrombin or both. 

When the test fractions were screened in the 

prothrombin time assay (PT), the relationship between 

potency and molecular weight was different from that 

observed in the previous assays. The 23,000 M.W. fraction 

displayed the greatest anticoagulant effects. The anti-

coagulant actions of all other fractions decreased in 

direct proportion to molecular weight. The potency 

differences between the individual fractions were signif i-

cant and were even greater when molar ratios were consi-

dered. The different pattern of molecular weight depen-

. . . 
dent potency suggested that heparin was possibly acting 

through a different mechanism in the PT assay. 

The prothrombin time differed from the other 

coagulation assays used to compare the fractions in that 

it reflected the extrinsic pathway of coagulation. The 

distinguishing factors of this pathway were factor VII and 

tissue thromboplastin. (Nemerson, 1983). Since these 

factors were not reflected by assays such as the APTT and 

heptest, it was possible that the different pattern of 

molecular weight dependence was due to effects by the test 

fractions on these factors. 
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It is important to mention that due to the insensi­

tivity of the prothrombin time assay to the actions of 

heparin, two-fold higher concentrations of the test agents 

(5-20 ug/ml) were used in comparison to the other screen­

ing assays. 

At high heparin concentrations (> 20 ug/ml), heparin 

cofactor II has been suggested to contribute to the 

overall anticoagulant actions of heparin (Ofosu et al., 

1985). A molecular weight dependent activation of this 

factor has also been reported (Choay et al., 1986 ; 

Yamagishi et al., 1986). For these reasons, it was 

interesting to investigate whether heparin cofactor II 

played a role in the molecular weight dependent effects 

displayed by the fractions in the prothrombin time assay. 

This was accomplished by supplementing the various molec­

ular weight fractions to antithrombin II1 deficient plasma 

and performing identical prothrombin time assays. 

The antithrombin III deficient plasma 

using heparin affinity chromatography. 

was prepared 

This method 

resulted in plasma with functional antithrombin III levels 

which were 6 % of normal. Heparin cofactor II levels in 

plasma prepared using this method have been reported to be 

unchanged (personal communication). 

If the molecular weight dependent effects of the 

test agents in the PT assay were mediated exclusively 

through antithrombin III, they should have been diminished 
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or eliminated in plasma deficient in this protein. 

However, if the effects were due to heparin cofactor II 

activity, they should have remained in the antithrombin 

III deficient plasma. As shown in table 5, removal of 

antithrombin _III resulted in the loss of the molecular 

weight dependent potency observed in the PT assay in 

normal plasma. These results suggested that in this 

assay, the increased potency of the high molecular weight 

fractions were mediated by antithrombin III. 

b. Fibrinopeptide-A Generation Tests 

The f ibrinopeptide - A generation test was developed 

for the purpose of studying the collective actions of 

heparin on the proteases of the coagulation network. The 

assay is based upon quantitation of a 16 amino acid 

• peptide known as fibrinopeptide - A (FPA) , after acti-

vat ion of citrated blood or plasma. This peptide is 

released from fibrinogen by the action of thrombin, and 

has been shown to be a specific indicator of thrombin' s 

coagulant actions (Emanuele et al., 1986). Any event, 

either intrinsic or extrinsic, which results in thrombin 

generation will result in FPA release. FPA release is the 

final endpoint of coagulation prior to fibrin monomer 

polymerization. For this reason FPA release can be used 

to assess the collective anticoagulant activity of any 

agent which acts prior to this step. Since the assay uses 
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an immunoquantitation technique to measure the generated 

FPA, it has great sensitivity to any anticoagulant action. 

In addition to its sensitivity, this assay can be per­

formed in a variety of matrices, provided thrombin and 

fibrinogen are present. This feature allowed comparison 

of the molecular weight fractions in platelet rich and 

platelet poor plasma as well as whole human blood. The 

efficacy of these tests in different matrices has previ­

ously been discussed (Emanuele et al., 1985). 

In order to further profile the effects of the 

different molecular weight fractions, four variations of 

the FPA generation assay were used. The results of these 

assays were dependent upon the method of activation and 

matrix used. 

When the test agents were studied in normal human 
• plasma using the thromboplastin activated system, the 

results were similar to those obtained in the PT assay. 

The 23,000 M.W. fraction displayed the greatest potency in 

terms of inhibiting FPA generation. The potency of the 

other fractions decreased in direct proportion to their 

molecular weights. The similar pattern of molecular 

weight dependence observed in the PT and FPA generation 

assays was not surprising since both methods utilized 

thromboplastin activation. Both systems were reflecting 

the action of heparin along the extrinsic pathway. The 

similarity between the two systems implied that . similar 
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JDechanisms were responsible for the pattern of molecular 

weight dependent potency. These observations further 

reinforced the notion that high molecular weight heparin 

was inhibiting either factor VII or thromboplastin. The 

results from this assay were particularly interesting 

since they occurred at lower heparin concentrations (2.5 & 

5 ug/ml) compared to the PT assay. 

The thromboplastin activated FPA generation assay 

was also performed in antithrombin III (AT III) deficient 

plasma. The effects of the test agents in this assay were 

consistent with those observed in the PT assay performed 

in AT III deficient plasma. All agents failed to produce 

any inhibition of FPA generation al though high heparin 

concentrations were used (10 ug/ml). No significant 

differences in the effects between any of the test agents 
• 

were observed. This observation further reinforced the 

previous hypothesis, that the molecular weight dependent 

anticoagulant effects, displayed by the test fractions in 

thromboplastin activated plasma, were mediated through 

antithrombin III. Furthermore, at these concentrations, 

it was unlikely that Heparin cofactor II contributed to 

these molecular weight dependent effects. 

several reports have suggested that interactions 

between platelets and heparin may be important in terms of 

an overall hemostatic effect (Salzman et al., 1980). Ad­

ditional reports have demonstrated that these interactions 
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are dependent upon heparin's molecular weight (Salzman et 

al., 1982 Brace and Fareed, 1986) • Platelets also 

contain a small peptide (platelet factor 4) within their 

alpha granules which has been shown to neutralize the 

anticoagulant actions of heparin (Dawes et al., 1982). 

To study whether the presence of platelets affected 

the molecular weight dependent responses of the test 

agents, they were studied in platelet rich and platelet 

poor plasma using the thromboplastin activated FPA 

generation assay. No significant difference was observed 

in the actions of any test fractions between the two 

plasmas (figure 4) • These results suggested that the 

presence of platelets did not affect the molecular weight 

dependent actions of these agents. 

It was interesting to note that in all cases, the 

amount of FPA generated was slightly• higher in the 

platelet rich plasma. Since these slight differences were 

present between the controls of both plasmas, they were 

not attributed to neutralization of the test agents by 

platelet factor 4. 

Phospholipoproteins (platelet factor 3) from the 

platelet membrane are known to accelerate two critical 

steps of blood coagulation (factor Xa activation and 

prothrombin conversion) (Ofosu et al., 1981) . It was 

likely that the platelet rich plasma contained a greater 

concentration of these factors compared to the platelet 
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poor plasma. Thus, the greater FPA generation in the 

platelet rich plasma was probably due to accelerated 

factor X and prothrombin conversion due to phospholipo­

proteins contributed by the platelets. 

The molecular weight fractions were also tested in a 

whole blood FPA generation assay. This test differed from 

the previous FPA assays in both the generation matrix and 

method of activation. The assay utilized contact between 

the glass surf ace of a test tube and the whole blood for 

activation. This procedure was intended to mimic in-

trinsic or contact activation of whole blood. 

The molecular weight dependent effects of the test 

fractions were different in this assay compared to the 

thromboplastin activated system. Although not signif-

icantly different from the 23,000 M.W. fraction, the 

13, 300 M. W. fraction appeared to be• the most potent 

inhibitor of FPA generation. The unfractionated heparin 

also displayed strong inhibitory actions. The two low 

molecular weight fractions were significantly less 

effective in inhibiting FPA generation compared to the 

higher molecular weight agents. These observations were 

consistent with results obtained in previous assays of the 

intrinsic pathway. It was likely that in this assay, the 

different potencies of the test fractions resulted from 

similar differences in the molar ratios and susceptibility 

to neutralization previously discussed for the other 
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assays utilizing intrinsic activation. 

c. VII-Thromboplastin Assay 

The different pattern of potency observed for the 

molecular weight fractions between assays of the intrinsic 

and extrinsic pathway, suggested possible inhibition of 

factor VII by heparin. Previous investigators have 

suggested this may occur (Dahl et al., 1982 ; Godal et 

al.,1974 ; Osterud et al., 1976). However, these reports 

were controversial and other investigations concluded that 

factor VII was not inhibited by heparin 

Rosenberg, 1977). 

(Jesty, 1978 ; 

In order to more accurately investigate the inter-

actions between factor VII and heparin, the test fractions 

were screened in an amidolytic VII-thromboplastin assay. 

This assay was performed on a Mult!stat centrifugal 

analyzer. The advantages of using this instrument in 

coagulation testing have been previously reviewed (Hills 

et al., 1983). In the assay, factor VII-thromboplastin 

was used to activate factor X to Xa. The assay endpoint 

was then determined by measuring the absorbance change due 

to Xa chromophore release. A direct relationship between 

this endpoint and factor VII concentration was established 

(figure 5). Since thrombin was not a necessary component 

of the assay, any effects by heparin could only be due to 

factor VII, thromboplastin or factor Xa. 
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When the test agents were screened in this assay, 

similar molecular weight dependent effects as seen in the 

PT and thromboplastin activated FPA generation assays were 

observed. The highest molecular weight fraction (23,000) 

displayed the greatest inhibition of the assay. The 

potency of the other fractions decreased in direct 

relation to their molecular weight. These observations 

were consistent with the hypothesis that high molecular 

weight fractions of heparin were inhibiting either factor 

VII or thromboplastin. The VII-thromboplastin assay 

relied on the actions of factor Xa for endpoint determ-

ination. The inhibition of this factor by heparin has 

been shown to be dependent upon molecular weight (Lane et 

al.,1978 . 
I Andersson et al. , 1978 . 

I Thunberg et al . , 

1979) • To study the possibility that the pattern of 

molecular weight dependence in this assay was due to 

effects on factor Xa, an identical assay substituting Xa 

for factors VII and X was used. Thromboplastin was also 

present in this system. Under these conditions, the 

23,000 . 
I l 7 , 4 5 o and 13 , 3 O o M. W • fractions all displayed 

similar effects and no difference in potency was observed. 

These results suggested that the increased potency of 

23, 000 and 17, 450 M. W. fractions observed in the VII-

thromboplastin assay were not due to the inhibition of 

factor Xa. 

To demonstrate that the increased potency of the 
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high molecular weight fractions were due to actions 

occurring prior to the activation of factor X, the test 

fractions were studied in two systems of the VII-thrombo­

plastin assay. The test fractions were incubated either 

with VII-thromboplastin or factor X. These two incubation 

systems differed only in the incubation step and otherwise 

were identical in the volumes and concentrations of all 

reactants. The X Xa activation catalyzed by VII-

thromboplastin occurred in the presence of identical 

heparin-antithrombin III concentrations. Under these 

conditions, any difference between the two systems could 

only be due to inhibition by heparin-antithrombin III on 

VII-thromboplastin. 

When the test agents were screened in this assay, 

only the 23,000 and 17,450 M.W. fractions, along with the 

• unfractionated heparin, produced significant differences 

between the two incubation systems. These results sug-

gested that only these fractions were inhibiting factor 

VII-thromboplastin. The potency of these three agents 

decreased with decreasing molecular weight implying that 

inhibition of VII-thromboplastin was inf 1 uenced by 

molecular weight. These results further suggested that 

the increase potency of the high molecular weight frac­

tions observed in all assays reflecting the extrinsic 

pathway were due to a molecular weight dependent inhibi­

tion of either factor VII or thromboplastin. 
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It was interesting that the unfractionated heparin 

[(12,575 M.W) demonstrated inhibition of factor VII­

t[hromboplastin while the 13, 300 M. W. fraction did not. 

This appeared contradictory since other observations 

indicated that the inhibition of VII-thromboplastin was 

influenced by molecular weight. The apparent discrepancy 

was explained by the molecular weight distribution range 

of the two fractions. The unfractionated heparin was 

composed of a range of molecular weight components from 

l,500 - 44,000 while the 13,300 M.W. fraction contained 

components ranging from 7, 000 - 22, 000 (Table 1) . The 

different molecular weight distributions of both agents 

resulted in similar mean molecular weights. The presence 

of high molecular weight components in the unfractionated 

heparin and their absence in the 13,300 M.W. fraction most 

• • likely contributed to the inhibition observed with the 

unfractionated heparin. 

The VII-thromboplastin assay was modified to study 

the effects of the test agents in a plasma matrix. As 

before the assay was performed using a centrifugal ana­

lyzer, however factors VII, X and anti thrombin III were 

replaced by fibrinogen deficient plasma. The fibrinogen 

deficient plasma was used to prevent the formation of a 

clot. Either a Xa or thrombin specific substrate was 

added for the purpose of monitoring p-NA release as an 

endpoint. Both assays used dilute (1:20) thromboplastin 
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to activate the plasma. For this reason it was thought 

that the actions of the test agents would be similar to 

those observed in other assays using extrinsic activation. 

However, the actions of these agents in this system were 

very different. In the assay using the Xa substrate, the 

13,300 M.W. fraction displayed the most potent anti­

protease actions. Above and below this molecular weight, 

the potency of the test agents decreased with increasing 

or decreasing molecular weight respectively. With the 

thrombin substrate, similar but · slightly less potent 

effects were observed for all fractions. These results 

did not resemble those obtained in other assays of the 

extrinsic pathway, but rather were similar to results 

obtained with intrinsic and anti Xa and IIa assays. The 

similarity suggested that these assays were reflecting the 
• 

actions of the test fractions on the enzyme directly 

cleaving the substrate (Xa and thrombin) and not on the 

initial activation process. 

It was difficult to explain the failure of the test 

heparins in the plasma VII-thromboplastin system to re­

flect any inhibition of the initial activation process as 

observed with other extrinsic activated assays. A 

possible explanation was attributed to differences between 

the assay systems. The plasma VII-thromboplastin assay 

differed from the other extrinsic assays in two important 

properties. Unlike the pure VII-thromboplastin assay, 
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this assay was performed in plasma. Thus, in addition to 

factors VII and X, all other coagulation proteases and 

inhibitors were present. Also, compared to a conventional 

prothrombin time assay, the incubation and assay time 

period were much longer. It is known that extrinsic 

activation is a fast system compared to the longer 

activation time period involved in the intrinsic network 

(Thompson and Harker, 1983). It was possible that the 

longer time interval and the additional factors provided 

by the plasma VII-thromboplastin assay, resulted in the 

activation of intrinsic coagulation factors. Thus, the 

plasma VII-thromboplastin assay actually did not reflect 

the actions of the test fractions on extrinsic but rather 

intrinsic proteases. 

• i. Possible Significance of Factor VII or Thromboplastin 

Inhibition by Heparin 

The observation that factor VII or thromboplastin 

may be inhibited by high molecular weight heparin may have 

relevance to the hemorrhagic side effects of this agent. 

Reports have suggested that low molecular weight may have 

less bleeding tendencies compared to higher molecular 

weight heparin (Salzman, 1986). 

Factor VII has been shown to be a key factor in the 

regulation of hemostasis (Nemerson, 1983). The results 

presented in this dissertation have demonstrated the 
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inhibition of factor VII or thromboplastin only by high 

molecular weight heparin. If factor VII or its activation 

by thromboplastin are important to hemostasis, then their 

inhibition by high molecular weight heparin would compro­

mise a key hemostatic mechanism and contribute to hepa-

rin's hemorrhagic effects. Conversely, low molecular 

weight heparin may have less hemorrhagic tendencies due to 

its lack of inhibition on factor VII or thromboplastin. 

2. In Vivo Actions (Pharmacodynamic Concentration / Time 

course) 

a. Intravenous Administration 

The pharmacodynamic concentration / time course of 

the test agents was studied in the primate Macaca mulatta. 

The validity of studying the plasma concentration / time 
. . . 

course of heparin in this species has been demonstrated 

for both fractionated and native heparins (Fareed et al., 

1985) • Kinetic values were calculated from plasma 

concentrations determined at different time intervals. 

The clotting and protease assays used in the in vitro 

profiling were used in these determinations. Individual 

calibration curves for each test agent and primate were 

used to transform the individual assay parameters into 

gravimetric amounts. This technique was a accurate method 

for quantitation of the circulating heparin levels since 

individual variations were nullified by the separate 
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calibration curves. 

The results of the concentration / time course 

studies indicated that heparins of different molecular 

weight displayed significantly different kinetic behavior. 

Differences between the test agents were observed in their 

absorption, half-life and distribution characteristics. 

Upon introduction into the circulation, all test 

agents, with the exception of the 23,000 M.W. fraction, 

displayed bi-phasic rates of elimination (figures 16-

19). The 23,000 M.W. fraction displayed a constant 

elimination rate (figure 15). The bi-phasic elimination 

consisted of an initial rapid decrease in plasma activity, 

followed by a reduced elimination rate. These two phases 

were due to an initial equilibration within the vascular 

compartment and subsequent distribution to a second tissue 

compartment. . ' . ' Differences in the rates of elimination were 

observed between the test fractions showing bi-phasic 

elimination. The higher molecular weight fractions were 

removed from the circulation at a greater rate compared to 

those of lower molecular weight. These observations were 

consistent with the molecular weight dependent differences 

in apparent volume of distribution and half-life. 

All test agents were compared at equal gravimetric 

dosages. Since these agents differed in molecular weight, 

the circulating molar concentrations were of these agents 

were not equal . To test whether the different molar 
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concentrations resulted in different plasma concentration 

I time profiles, these values were calculated using both 

molar and gravimetric concentrations. The profiles were 

similar whether calculated from either value. (table 26). 

To explain the differences between the concentration 

I time profiles of the molecular weight fractions it is 

important to review the mechanisms involved in the 

elimination ·of heparin. It has been suggested that 

heparin is removed from the circulation through a combi­

nation of saturable and non-saturable mechanisms. Only a 

combination of these mechanisms can account for the non-

linear, dose dependent elimination of heparin from the 

circulation (de Swart et al., 1982). 

The non-saturable mechanism is thought to be due to 

the renal elimination of heparin (Estes, 1980 ; Cocchetto 

and Bjornsson, 1984). • • The saturable mechanisms are more 

complex and involve neutralization of heparin molecules 

through a variety of processes. It is known that desulfa­

tion of heparin by various desulfating enzymes results in 

the loss of heparin's anticoagulant activity. Heparin 

desulfamidases have been isolated from lymphoid tissue. 

For this reason, the reticuloendothelial system has been 

associated with the saturable processes of heparin 

elimination (Estes, 1980). Inactivation of heparin by 

desulfation is thought to be saturable since increasing 

doses of heparin, result in greater amounts of intact (non 
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desulfated) drug in the urine (de swart et al., 1982). 

Heparin has been shown to bind to endothelial cells 

both in vitro and in vivo (Mahadoo et al., 1977 ; Barzu et 

al., 1984). The affinity of this binding has been shown 

to increase with increasing molecular weight (Choay et 

al., 1986 ; Boneu et al., 1985). The binding of heparin 

to endothelial cells effectively neutralizes its anti-

coagulant activity (van Rijn et al., 1987). For these 

reasons endothelial cell binding has been implicated in 

the saturable mechanism involved in the elimination of 

heparin (van Rijn et al., 1987). 

The similarity between heparin's molecular weight 

dependent plasma concentration time profile and endothe­

lial cell binding characteristics suggested that these 

phenomena were related. The binding of heparin to 

endothelial cells may explain the short nalf-life of the 

high molecular weight and relatively longer half-life of 

the lower molecular weight fractions. The high molecular 

weight heparin may have been effectively neutralized by 

high affinity binding to endothelial cells. This process 

would be less effective for low molecular weight fractions 

due to their reduced affinity for these cells. In 

addition, the binding of low molecular weight components 

to endothelial cells may have acted as a tissue reservoir. 

The relative low affinity of the molecules to their 

endothelial binding sites may have allowed for the slow 
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This 

mechanism was consistent with the two compartment distri­

bution and elimination behavior displayed by the lower 

molecular weight test fractions. 

since the loss of heparin's anticoagulant activity, 

due to endothelial cell binding, was a saturable process, 

the relative molar differ enc es between the high and low 

molecular weight fractions may also have contributed to 

the differences in the kinetic behavior. 

b. Comparison of the Intravenous Concentration / Time 

Profile in Different Assays 

The intravenous plasma concentration / time course 

of the test fractions were calculated using five different 

ex vivo assays. Consistent with reports of other inves­

tigators (Cocchetto and Bjornsson, 1984r, the concentra­

tion / time profile of all test fractions were assay 

dependent. Plasma concentrations determined from identi-

cal plasma samples yielded different heparin concentra­

tions when different assays were used. These results were 

not surprising since the various assays were sensitive to 

different pharmacodynamic actions. 

The sensitivities of the individual assays to the 

different molecular weight fractions were reflected in the 

concentration / time profiles. Those assays sensitive 

primarily to high molecular weight fractions (the anti IIa 
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and dilute PT assays) indicated short half-lives and small 

distribution volumes. Assays with greater sensitivity to 

loW molecular weight fractions (anti Xa, heptest and 

FPAGT) suggested longer half-lives and greater distribu-

tion volumes. Thus, the assay dependent concentration / 

time profiles directly reflected the molecular weight 

dependent time course. 

The different assay methods were useful to study the 

kinetics of the biological response of the individual 

fractions. The various assays reflected specific anti-

coagulant and antiprotease actions. For this reason, the 

time course calculated from different assays reflected the 

kinetics of specific pharmacodynamic actions. Thus, the 

time course observed using the anti IIa assay represented 

the kinetics of heparin components inhibiting this factor. 

Similarly, the anti Xa assay represente~ the kinetics of 

anti Xa components. Based on this reasoning, the differ­

ent kinetic profiles of identical fractions calculated 

from different assays, were due to differences in the 

kinetics of the assay specific pharmacodynamic action. 

The results demonstrated that those components 

expressing anti factor Xa actions displayed the longest 

halflives. These actions were reflected in the anti Xa 

assay and Heptest. The long halflives calculated from the 

FPAGT were also due to anti Xa actions. The association 

between low molecular weight and anti Xa activity, sug-
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gested that the prolonged half-life of the anti Xa actions 

were a molecular weight related effect. Thus the mech-

anisms contributing to the increased half-life of low 

molecular weight heparin, were also responsible for the 

prolonged anti Xa actions. 

The half-life of those components inhibiting 

thrombin, as indicated by the anti IIa assay, were signif­

icantly shorter than those exhibiting anti Xa effects. 

The short half-lives and distribution volumes observed in 

the dilute PT assay, suggested that components inhibiting 

extrinsic activation also have a short half-life. The 

associations of these actions with high molecular weight 

heparin, suggested that the short half-lives of these 

components were also molecular weight related. 

c. Subcutaneous Administration 

The subcutaneous concentration / time course study 

was carried out primarily for the purpose of comparing the 

effect of molecular weight on the absorption of heparin. 

This was accomplished by comparing the AUC of the indivi-

dual fractions after intravenous and subcutaneous adminis-

tration. After intravenous injection, 100 % absorption 

was observed for the test fractions. This was demonstra-

ted by the recovery of plasma levels predicted from 

injection of a prescribed mg/kg dose. Differences in 

plasma concentrations of identical fractions after 
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subcutaneous injection were attributed to differences in 

the rate and extent of absorption from the subcutaneous 

site. This conclusion was only valid if the rate constant 

of elimination after both routes of administration was 

similar. Heparin has been shown to display both dose 

dependent elimination and reduced absorption after 

subcutaneous administration. For these reasons, a larger 

dosage of the test fractions was used in the subcutaneous 

route for the purpose of achieving similar plasma concen-

trations after both routes of administration. The dose 

adjusted AUC values were then used to calculate relative 

absorption. 

It should be mentioned that since the absorption was 

calculated from anticoagulant data, only components of the 

test fractions expressing these actions were reflected. 
. . .. 

Thus, the exact gravimetric concentrations may or may not 

have been directly reflected. Also, the net absorption 

may have been different if a different endpoint (anti­

thrombotic) was used. 

Profound differences were observed in the absorption 

of the test fractions after subcutaneous injection. These 

differences were attributed to molecular weight dependent 

effects. Comparison of the AUC values for the test 

fractions demonstrated that absorption increased with de-

creasing molecular weight. Poor absorption was observed 

with the 23,000 M.W. fraction indicating that very little 
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h 's agent actually reached the circulation after of t 1 

subcutaneous injection (figure 20). Slightly better 

absorption was observed with the 13,300 M.W. fraction 

(attributed to its lower molecular weight) (figure 21). 

CY 216 and the 5,100 M.W. fraction displayed much better 

absorption characteristics. At these low molecular 

weights almost all of the drug reached the circulation 

from the subcutaneous injection sites. 

Since the absorption of the test agents was compared 

at equal gravimetric concentrations, the circulating molar 

concentrations were different. However, no difference was 

observed, whether the absorption was calculated from 

gravimetric or molar concentrations (table 27). 

It was interesting that although the unfractionated 

heparin and the 13,300 M.W. fraction had similar mean 

molecular weights, significantly • better absorption was 

displayed by the unfractionated heparin. This apparent 

contradiction to the molecular weight dependent dif f eren­

ces in absorption observed with other fractions, probably 

was due to differences in the respective molecular weight 

distributions. The unfractionated heparin was composed of 

molecular weight components ranging from 44, 000 - 1, 500 

M.W., while the 13,300 M.W. fraction contained components 

ranging from 22,000 - 7,000 (table 1). The presence of a 

greater percentage of low molecular weight components in 

the unfractionated heparin contributed in its greater 
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absorption. 

The differences in absorption between the test 

fractions suggested a molecular weight dependent threshold 

for the absorption of heparin from subcutaneous sites. 

This threshold was determined to be about 10, ooo M. W. 

based on comparisons between the relative absorption of 

the test fractions and their molecular weight distribu­

tions. A high correlation (r = .99) between the percent­

age of molecular weight components below 10,000 and 

relative absorption was observed (table 28). This data 

suggested that primarily those components of the test 

fractions with molecular weights less than 10, 000 were 

absorbed from the subcutaneous site into the circulation. 

It is important to mention that this absorption 

threshold may not have been exclusively determined by 

molecular size exclusion. • • It is well known that charge 

plays an important role in the absorption characteristics 

of most therapeutic agents. Since heparin is a highly 

charged molecule, it is reasonable to assume that the 

charge characteristics of the test fractions also may have 

influenced their absorption. 

The observation of a molecular weight dependent 

threshold for the absorption of heparin may be important 

relative to its therapeutic use. If the absorption of 

subcutaneously administered heparin is limited by 

molecular weight, then administration by this route may 
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restrict some of its molecular weight dependent actions. 

The data presented in this study suggests that only 

components of molecular weight of about 10,000 or less are 

absorbed after subcutaneous injection. Thus, actions of 

heparin exclusively associated with molecular weights 

above 10, 000 should not be displayed after subcutaneous 

administration. 

Furthermore, this observation suggests that sub­

cutaneous administration of native heparin may be inef­

ficient and uneconomical since a significant portion of 

the drug never reaches the circulation. Heparins whose 

molecular weight range does not exceed 10,000 may be 

better suited for this route of administration. 

d. Comparison of the Pharmacodynamic Concentration / Time 

Course After Subcutaneous Injection Using.Different Assays 

As with the intravenous study, the pharmacodynamic 

·concentration / time course of the test fractions after 

subcutaneous injection was assay dependent and consistent 

with the sensitivities of the assay methods to molecular 

weight. Assays reflecting low molecular weight components 

demonstrated greater absorption, compared to those 

reflecting the actions of higher molecular weight compo­

nents. 

The different assay methods also reflected the 

differences in absorption relative to pharmacodynamic 
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response (tables 16 - 20). The highest absorption was 

associated with components inhibiting factor Xa. This was 

due to the potent anti Xa actions of low molecular weight 

components. The high absorption observed in the Heptest 

and the FPAGT also were attributed to anti Xa effects. 

Consistent with the association between efficient 

anti thrombin inhibition and higher molecular weight 

heparin, poor absorption was observed for all test 

fractions using the anti IIa assay. This observation 

suggested that after subcutaneous administration, compo­

nents of the fractions with high antithrombin actions were 

not efficiently absorbed into the circulation. Similar 

results were observed with the dilute thromboplastin 

clotting time. The low overall absorption observed in 

this assay was due to poor absorption of high molecular 

weight components which were • necessary to efficiently 

inhibit this assay. These results suggested that compo-

nents necessary for the inhibition of extrinsic proteases 

are not effectively absorbed after subcutaneous adminis­

tration. 

3. In Vivo Antithrombotic Actions 

a. Intravenous Administration 

The antithrombotic effects of the molecular weight 

fractions were studied in a rabbit stasis model. This 

model utilized a complex of human factors II, VII, IX, X 
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and Russell's viper venom (a factor X activator) along 

with stasis to produce a localized clot. This thrombo-

genie procedure, produced high factor Xa levels which 

subsequently generated thrombin to produce a clot. Since 

the method relied on both factor Xa and thrombin for 

thrombus formation, inhibitory actions of the test 

fractions directed toward either of these factors should 

have resulted in antithrombotic actions. 

It is important to mention that the results obtained 

using this model were relative to the thrombogenic 

challenge. The use of a different challenge may have 

resulted in a different anti thrombotic profile for the 

test agents. As previously stated, this model primarily 

relied upon the actions of factor Xa to initiate thrombus 

production. Thus, this model may have resulted in a more 

• favorable antithrombotic profile for the lower molecular 

weight fractions by virtue of their high anti factor Xa 

actions. A less favorable antithrombotic profile may have 

resulted for these fractions if thromboplastin or thrombin 

had been used as the thrombogenic challenge. 

Using the PCC/RVV challenge, control animals 

consistently produced a similar degree of thrombus for-

mation. Administration of a low dose (25 ug/Kg) of the 

test agents resulted significant antithrombotic actions 

for all but the 5, 100 M. W. fraction. The experimental 

design included quantitation of the thrombus size. This 
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design made it possible to compare the antithrombotic 

potencies of the individual test fractions. At the 25 

ug/kg dose, differences in anti thrombotic potency were 

observed. These differences were reflected the in vitro 

anticoagulant potency profiles observed in the APTT, 

Heptest, anti Xa and anti II a assays. As previously 

discussed, these assays primarily reflected the effects of 

the fractions on factors Xa and thrombin. The similarity 

between the anticoagulant and antithrombotic potency 

profiles suggested that the antithrombotic effects 

observed in the rabbit model were primarily due to the 

inhibition of these two proteases. 

When a higher dosage of the test agents was used in 

the rabbit model, greater antithrombotic effects were 

observed. These results demonstrated that as with the in 

vitro anticoagulant effects, the anti t:tirombotic effects 

were dose dependent. At these higher dosages, the anti-

thrombotic effects correlated relatively well with the in 

vitro anticoagulant and circulating pharmacodynamic ef-

f ects for most of the molecular weight fractions. How-

ever, a poor correlation was observed with the unfrac-

tionated heparin. After intravenous administration of 

both the 50 and 100 ug/kg doses, the unfractionated 

heparin was the most effective antithrombotic agent. Only 

this agent resulted in the complete inhibition of throm-

bosis in all experimental animals. The anti thrombotic 
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potency of this agent was not reflected by its in vitro 

anticoagulant or circulating pharmacodynamic actions since 

these activities were greater for both the 23, 000 and 

13,300 M.W. fractions. 

The poor correlation between the anticoagulant and 

antithrombotic potency of fractionated heparins has been 

reported by other investigators {Merton et al., 1984 ; 

Barrowcliffe et al., 1984). These investigators have 

shown that heparin fractions with relatively higher 

anticoagulant actions, have been shown to be less ef­

fective antithrombotic agents compared to unfractionated 

heparin when administered at equivalent units. The 

enhanced antithrombotic effects of native heparin were 

attributed to the actions of low antithrombin III affinity 

components. 

In this study, the d . . t,.. isassocia ion between the 

anticoagulant and anti thrombotic actions of the unfrac­

tionated heparin further suggested a role for the low 

antithrombin III affinity components in the antithrombotic 

effects of this agent. Speculation about the mechanisms 

by which the low antithrombin affinity components contrib-

ute to antithrombotic effects may involve pro-fibrinolytic 

actions, the inhibition of platelets or other cellular 

components and interactions resulting in a less thrombo-

genie endothelial surface (Barrowcliffe et al., 1984). 
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p. subcutaneous Administration 

After subcutaneous administration, apparent molec­

ular weight dependent differences were observed in 

anti thrombotic potencies of the test agents. With the 

exception of the 23,000 M.W. fraction, all test agents 

produced significant antithrombotic effects. Between the 

agents displaying antithrombotic effects, no statistically 

significant differences in potency were calculated. How­

ever, the lower molecular weight fractions did appear to 

be the more effective antithrombotic agents. The enhanced 

antithrombotic actions of these fractions was probably due 

to better absorption from the subcutaneous injection 

sites. 

For most fractions, the antithrombotic effects 

increased in direct proportion to the circulating pharm­

acodynamic actions (table 29). These elfects correlated 

well with the absorption of the respective agents observed 

in the primate model (table 29). Only the 13,300 M.W. 

fraction displayed a poor correlation between these 

actions. This agent resulted in good antithrombotic 

effects while displaying only minimal circulating pharma­

codynamic actions. These results suggested that after 

subcutaneous administration of this fraction, components 

expressing anti thrombotic but not anticoagulant effects 

were absorbed into the circulation. The differential 

absorption between the anticoagulant and anti thrombotic 
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actions may have been due to the charge characteristics of 

the heparin. It has been shown that highly anionic 

heparin displays high anticoagulant actions (Sache et al., 

1981) • A highly charged heparin would also be less 

efficiently absorbed from a subcutaneous injection site. 

After subcutaneous injection of the 13,300 M.W. fraction, 

the highly charged high anticoagulant components did not 

appear to have been absorbed into the circulation. This 

may have been due to size and charge characteristics. 

Those components responsible for the antithrombotic 

actions may have been less charged since they displayed 

only minimal anticoagulant actions. The lower charge of 

these components may have allowed for absorption and the 

subsequent production of anti thrombotic effects not 

mediated through anticoagulant actions. 

Since the antithrombotic actions ot the 13,300 M.W. 

fraction appeared to be independent of its anticoagulant 

actions, it was difficult to account for these effects. 

Similar observations by other investigators have been 

accounted for by increased fibrinolytic actions, effects 

on platelets or endothelium and by effects contributing to 

a reduction in blood viscosity (Merton et al. , 

Ruggerio et al., 1983). 

1984 . 
I 

It was interesting that only the 13,300 M.W. 

fraction showed a disassociation between the anticoagulant 

and anti thrombotic effects after subcutaneous injection. 
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one possible interpretation of this observation is that 

the low anticoagulant, high antithrombotic components of 

heparin are primarily of this molecular weight. Ad­

ditional experimentation would be required to verify this 

hypothesis. 

c. Integration of the Molecular Weight Dependent Anticoag­

ulant, Antithrombotic and Concentration / Time Profile of 

Heparin 

The results obtained from the anticoagulant, 

concentration / time course and anti thrombotic studies 

using the different test agents, suggested that these 

pharmacological functions were influenced by molecular 

weight. Since the therapeutic effect of heparin is 

determined by these actions, integration of the molecular 

weight dependent anticoagulant, 
.. . 

anti thrombotic and 

pharmacodynamic properties should result in a comprehen­

sive understanding of the molecular weight dependent 

effects of this agent. 

The in vitro anticoagulant studies demonstrated that 

more potent anticoagulant actions were associated with the 

higher molecular weight heparins. The enhanced potency of 

these agents was primarily due to greater molecular weight 

dependent anti factor IIa actions. The inhibition of 

factor VII or thromboplastin by these agents, may also 

have contributed to their enhanced potency. These results 
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predicted that higher molecular weight heparins should be 

more effective antithrombotic agents compared to those of 

lower molecular weight. This prediction was based upon 

the assumption that heparin's antithrombotic effects were 

due primarily to its anticoagulant actions. 

The antithrombotic studies verified that, for most 

agents, the in vitro anticoagulant potency was predictive 

of antithrombotic actions, however this only applied to 

the intravenous route of administration. In this route, 

all but the unfractionated heparin demonstrated good 

correlation between the in vitro anticoagulant and in vivo 

antithrombotic actions. After subcutaneous administration 

the in vitro anticoagulant activity was not predictive of 

antithrombotic effects. Molecular weight dependent dif-

ferences in absorption resulted in the production of 

• greater antithrombotic effects by fractions which had 

displayed the least in vitro anticoagulant actions. This 

observation demonstrated that route of administration, due 

to its influence on drug absorption, was an important 

characteristic for determining the antithrombotic effects 

of the different molecular weight heparins. 

Significant differences in half-life were also 

observed between the molecular weight fractions. The 

lower molecular weight fractions, possessing the least 

anticoagulant actions, displayed the longest half-lives. 

The amount by which the half-life increased in the lower 
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molecular weight fractions, was dependent upon the method 

of assay. 

It is interesting to speculate on whether the 

increased anticoagulant half-life of lower molecular 

weight heparins results in a similar prolongation of their 

antithrombotic effects. Intuitively, the prolonged 

presence of these agents in the circulation should 

contribute to a sustained antithrombotic response. 

However, half-life values of identical fractions were 

different when calculated in different assays. As 

previously discussed, these different values were inter­

preted to represent different half-lives for the assay 

specific pharmacodynamic response of the individual 

agents. 

Different pharmacodynamic responses have been 
. . . . associated with different ant1thrombot1c potencies. It is 

generally believed that the pharmacodynamic actions of 

heparin associated with its antithrombotic effects are the 

inhibition of factors Xa and IIa. Previous investigators 

have speculated on the relative importance of these two 

factors to the anti thrombotic actions of this drug. A 

strong argument has been made for the necessity of anti 

factor IIa actions for efficient antithrombotic actions 

(Buchanan et al., 1985 ; Carter et al., 1982). However, 

Walenga et al (1986) have recently shown antithrombotic 

actions using a synthetic heparin like pentasaccharide 
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possessing only anti factor Xa actions. No clear answer 

is readily apparent for determining the contribution of 

the anti Xa or II a actions of heparin to its anti throm-

botic actions. However, it seems likely that any con-

tribution to a prolonged anti thrombotic effect due to a 

molecular weight related increase in half-life, is 

relative to its pharmacodynamic action. 

This dissertation has suggested that the increased 

half-life of the lower molecular weight heparins is 

primarily associated with anti factor Xa actions. When 

measured in terms of anti factor IIa actions, no similar 

increase in half-life was observed. Thus, if anti factor 

IIa effects are required for efficient antithrombotic 

actions, the greater half-lives of lower molecular weight 

heparins may not result in a concomitant prolongation in 

anti thrombotic actions. 
. . . 

However if the anti factor Xa 

actions are sufficient for effective antithrombotic 

actions, then the longer half-life should contribute to 

prolonged antithrombotic effects. 

Due to the molecular weight dependent differences in 

the half-life of heparins anti Xa and IIa actions, it may 

be possible to identify heparins therapeutic actions as a 

function of its pharmacokinetic time coarse. Initially 

when both anti Xa and IIa effects are present, heparin may 

have therapeutic actions relative to inhibiting an ongoing 

thrombotic process. At a later time point, when primarily 
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only anti Xa actions are present, the actions of heparin 

may be better described as prophylactic relative to a 

similar thrombotic process. If this argument is true, 

then low molecular weight heparins by virtue of their high 

anti Xa / IIa ratio and long half-lives, may be more 

appropriately indicated as prophylactic agents. Clearly 

such a distinction could only be determined through large 

scale clinical trials. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

By studying the in vitro anticoagulant, in vivo 

antithrombotic and concentration / time profile of 

different molecular weight fractions of heparin, several 

molecular weight dependent actions were observed. 

1. The in vitro potency of the test fractions 

increased with increasing molecular weight from 5,100 

through 13,300 molecular weight in assays reflecting the 

intrinsic pathway. Beyond 13,300 no further increases in 

potency were observed. The potency differences between 

the fractions were attributed to the molecular weight 

dependent inhibition of factor Xa and thrombin. 

2. It was interesting to note that all low molecular 

weight heparins used in this study (including CY 216) 

displayed similar anti Xa to IIa ratios. Although anti Xa 

activity was slightly higher in the lower molecular weight 

fractions, the ratio was not significantly greater than 

1. O as reported by other investigators. This low ratio 

was probably due to the relatively wide molecular weight 

distributions of these fractions. 

3. In assays of the extrinsic pathway, potency 

increased in direct relation to molecular weight for all 

agents tested (M.W. 's 5,100 23,000). The enhanced 

potenqy of the high molecular weight fractions was due to 

159 
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either the inhibition of factor VII or thromboplastin. 

The direct inhibition of this enzyme or cofactor was 

observed only by fractions containing high molecular 

weight components. 

4. It was not possible to distinguish the point of 

inhibition by the high molecular weight fractions between 

factor VII or thromboplastin. The observation that the 

inhibition was dependent upon antithrombin III implicated 

factor VII, since the inhibition of this serine protease 

was consistent with the mechanism of action for antithrom­

bin III. 

5. The inhibition of factor VII and thromboplastin 

by high molecular weight heparin may be of importance 

relative to the side effects of this agent. Reports have 

suggested greater hemorrhagic tendencies for high compared 

to low molecular weight heparin. Factor VII has been 

shown to be a key hemostatic enzyme (Nemerson, 1983). The 

results of this thesis suggest that this key enzyme is 

inhibited only by high molecular weight heparin. This 

observation, along with the association between high 

molecular weight heparin and increased hemorrhagic 

tendencies, suggests a possible association between these 

two events. Further studies investigating factor VII or 

thromboplastin inhibition with the bleeding tendencies of 

different molecular weight fractions would be required to 

test this theory. 
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6. Molecular weight proved to be an important 

determinant of the pharmacodynamic time course of heparin. 

The highest molecular weight fraction exhibited distri­

bution and elimination characteristics consistent with a 

one compartment model. Fractions of lower molecular 

weight clearly fit a two compartment model. These 

molecular weight related differences in distribution and 

elimination may have been due to different molecular 

weight dependent interactions with endothelial cells. 

7. Significant differences were observed in the 

half-life of the different molecular weight fractions. 

Half-life increased with decreasing molecular weight. The 

half-life of the lowest molecular weight fractions was 

almost 100 percent greater than the highest molecular 

weight fraction. 
• a. The half-life values of the individual fractions 

were assay dependent. Assays with greater sensitivity to 

low molecular weight components demonstrated longer half-

lives. Similarly, assays reflecting higher molecular 

weight components resulted in shorter half-life values. 

These results also demonstrated the differences in the 

kinetics of the pharmacodynamic actions of the different 

molecular weight fractions. 

9. Absorption studies suggested that molecular 

weight was an important determinant of this character-

istic. Absorption increased with decreasing molecular 
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weight. The high absorption of low molecular weight 

heparins suggests that subcutaneous administration may be 

an efficient route by which to administer these agents. 

10. The high correlation between absorption and 

percent content of molecular weight components under 

10,000 M.W. suggested that only components of about 10,000 

molecular weight or less reached the circulation after 

subcutaneous administration. It is important to mention 

that this molecular weight dependent absorption threshold 

was relative only to the anticoagulant actions of the 

fractions and may have been different for other pharmaco-

dynamic effects. 

11. After intravenous injection, the antithrombotic 

potency of most agents was directly related to the in 

vitro anticoagulant potency. Only the unfractionated 
• heparin displayed a dissociation between its anticoagulant 

and anti thrombotic effects. For this agent, the anti-

thrombotic effects were greater than the anticoagulant 

effects suggested. After subcutaneous administration, the 

antithrombotic effects of most agents were similarly 

related to absorption. However, the 13,300 M.W. fraction 

exhibited strong antithrombotic effects with poor absorp-

tion. These two observations suggested that not all 

antithrombotic effects of heparin are reflected by 

anticoagulant actions. 

12. For all molecular weight dependent actions of 
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heparin, the effect was influenced not only by mean 

molecular weight but also by the percent distribution of 

molecular weight components. 



CHAPTER VI I 

TABLES 

Table 1 

HPLC-GPC Molecular Weight (MW) Determinations for 
Fractions Obtained by Gel Filtration 

Fraction MW Mw Distribution Ran2e Peak MW -
I 23,000 44,000 - 12,500 22,000 
II 17,450 30,000 - 11,000 16,780 
III 15,000 24,000 - B,000 14,4i0 
IV 13,300 22,000 - 7,000 13,000 
v 11,750 21,000 - 5,500 11,200 
VI 10,400 20,000 - 4,300 9,500 
VII 9,000 20,000 - 2,600 7,600 
VIII 7,400 18,000 - 2,400 5,600 
IX 5,100 15,000 - 1,500 3,800 
heparin 12,575 44,000 - 1,500 13,550 
CY 216 5,400 14,000 - 1,000 

• 
4,400 

Table l. The molecular weight characteristics of the 

fractions obtained from the gel - filtration procedure 

were determined by HPLC - GPC. The molecular weight 

values.were calculated by comparing column retention times 

to those obtained from standards of known molecular 

Weight. The values in the table represent the averages 

calculated from two columns of different porosity. 
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Table 2 

Viscosity of the Test Fractions 

Heparin preparation 

unfractionated 
CY 216 
23,000 
17,450 
15,000 
13,300 
11,750 
10,400 
9,000 
7,400 
5,100 

Viscosity (mPa's) 

1.02 
0.95 
1. 28 
1.18 
1.10 
1.05 
0.98 
0.97 
0.94 
0.92 
0.76 
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Table 2. The viscosity of the gel - filtered fractions 

was measured using a Wells-Brookfield viscometer. The 

viscometer was calibrated with oils of known viscosity and 

10 mg/ml solutions of the test fractions were measured at 

2s0 c at three shear rates. Values in centipoise were 

obtained by multiplying the readings from the viscometer 

by a constant based upon the geometry of the cone plate. 

The values in the table represent averages of two deter­

minations at the three rates. 



Table 3. 

Table 3 
Effect of Molecular Yeight on APTT 

Molecular Yeight 

23,000 

17,450 

13,300 

9,000 

5,100 

Native Heparin 

CY 216 

Control 

N - 5 

Concentration 
ug/ml 

10 
5 
2.5 
1. 25 
.625 

10 
5 
2.5 
1. 25 
.625 

10 
5 
2. 5 
1. 25 
.625 

10 
5 
2. 5 
1. 25 
.625 

10 
5 
2.5 
1. 25 
.625 

10 
5 
2. 5 
1. 25 
.625 

10 
5 
2.5 
1. 25 
.625 

Clotting Time 
seconds 

> 200 
163 :!: 9 
55 :!: 4. 3 
36 :!: 2. 4 
3l :!: .9 

> 200 
183 :!: 12.4 
61 :!: 5. 7 
38 :!: 2 
31 :!: • 7 

> 200 
> 200 
82 :!: 4 

47 :!: 2.7 
34 :!: 1. 1 

> 200 
121 :!: i.i 
5 7 :!: 3. 4 
38 :!: 2.l 
32 :!: l 

64 :!: 
44 :!: 
36 :!: 
30 :!: 
29 :!: 

> 200 
> 200 

2.5 
1.4 
1. 6 
.4 
l. 2 

78 :!: 7. 6 
52 :!: 2. 3 

,.16 :!: 3 

85 :!: 4. 8 
67 :!: 3. 3 
55 :!: 2.6 

36 :!: 3 
30 :!: l. 3 

27 :!: • 4 

The molecular weight fractions were supplemented 

to pooled normal human platelet poor plasma at concen­

trations ranging from 0.625 through 10.0 ug/ml. The APTT 

assay was performed on five separate occasions exactly as 

described in appendix VII. The results represent the mean 

and the standard deviation of the five determinations. 
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Table 4 

Effect of Molecular W'eight on PT 

Molecular Weight Concentration <u1u:m1) Clotting Time 

23,000 20 55 ± 2.7 
10 23 ± 1. 3 
5 16 ± 1. 4 
2.5 14 ± . 8 
1. 25 13 ± . 3 

17,450 20 47 ± 3. 6 
10 21 ± 1. 7 
5 16 ± . 9 
2. 5 14 ± 1 
1. 25 13 ± . 3 

13,300 20 36 ± 1. 5 
10 22 ± 1. 3 
5 17 ± . 8 
2.5 14 ± . 6 
1. 2 5 13 ± .4 

9,000 20 21 ± .7 
10 18 ± . 7 
5 15 ± . 6 
2. 5 14 ± . 7 
1. 25 13 ± . 6 

5,100 20 15 ± . 9 
10 14 ± .6 
s 13 ± .6 
2. s 13 ± .4 
1. 25 13 ± . 7 

Native heparin 20 23 ± 3. 3 
10 20 ± 1. 9 
5 17 ± 1. 4 
2.5 14 ± . 8 
1. 25 • 13 ± . 9 

CY 216 20 18 ± 1. 4 
10 16 ± . 8 
5 15 ± . 7 
2. 5 14 ± . 9 
1. 25 13 ± .4 

Control 13 ± .5 

N - 5 

Table 4. The molecular weight fractions were supplemented 

to pooled normal human platelet poor plasma at concen-

trations ranging from o. 625 through 10. O ug/ml. The PT 

assay was performed on five separate occasions exactly as 

described in appendix VI. The results represent the mean 

and the standard deviation of the five determinations. 
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Table 5 

The Effect of Molecular Weight Fractions of Heparin on PT 
in Antithrombin III Deficient Plasma 

Fraction Clotting Time (seconds) . 

23,000 M.W. 16.3 + . 3 

17,450 M.W. 16.4 + .5 

13,300 M.W. 16.4 + .4 

9.000 M.W. 16.0 + . 7 

5,100 M.W. 15.9 + . 8 

CY 216 16.1 + .4 

unfractionated heparin 16.2 + .2 

control 13.8 + .3 
• 

Table 5. Antithrombin III deficient plasma was prepared 

as described in methods. The antithrombin content of this 

plasma was determined to be 6 . 2 % of normal. The test 

fractions were supplemented to the anththrombin deficient 

plasma at a concentration of 20 ug/ml and the PT assay was 

performed exactly as described in appendix VI. 



Table 6 

Effect of Molecular Yeight on Heptest 

Molecular lJeight 

23,000 

17,450 

13. 300 

9,000 

5,100 

Native Heparin 

CY 216 

Control 

N - 5 

Concentration (ug/ml) 

10 
5 
2. 5 
1. 25 
.625 

10 
5 
2. 5 
1. 25 
.625 

10 
5 
2.5 
1. 25 
• 6 25 

10 
5 
2. 5 
1. 25 
.625 

10 
5 
2.5 
1. 25 
.625 

10 
5 
2. 5 
1. 25 
.625 

10 
5 
2. 5 
1. 25 
.625 

Clotting Time 

290 ± 16 
145 ± 3.2 
70 ± 3 
43 ± 8.2 
35 ± 2.4 

256 ± 12 
135 ± 6.5 
64 ± 5 
52 ± 3.4 
38 ± 1.9 

346 ± 14.7 
170 ± 9.6 
82 ± 2.8 
62 ± .5 
41 ± 3.9 

235 ± 18.6 
120 ± 8 
72 ± 9.4 
54 ± 5.4 
38 ± 1.3 

128 ± 11.7 
69 ± 17.6 
56 ± 2.2 
42 ± 2.5 
29 ± 2.7 

353 ± 9.4 
160 ± 12.3 
84 :!: 4.6 
50 ± 3.4 
'9±1.7 

120 :!: 5.6 
86 :!: 6.6 
64 ± 4.3 
48 ± 4.5 
31 :!: 2 

16 ± .9 

Table 6. The molecular weight fractions were supplemented 

to pooled normal human platelet poor plasma at concen­

trations ranging from o. 625 through 10. o ug/ml. The 

heptest assay was performed on five separate occasions 

exactly as described in appendix VIII. The results 

represent the mean and the standard deviation of the five 

determinations. 
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Table 7 

Effect of Molecular Yeight on Xa amidolytic activity 

Molecular Yeight Concentration (ug/ml) ' inhibition 

23,000 10 87 ± 2. 2 
5 87 ± 1. 7 
2.5 76 ± 1. 3 
1. 25 51 ± 2. 2 
.625 28 ± . 7 

17,450 10 89 ± 1. 7 
5 86 ± 1. 4 
2. 5 75 ± . 7 
1. 25 51 ± 2.9 
.625 26 ± 1. s 

13,300 10 88 ± 2. 7 
5 88 ± 1. 3 
2. s 77 ± 1.1 
1. 25 53 ± 2.2 
.625 29 ± 1. l 

9,000 10 88 ± 2. 3 
5 72 :!: l 
2.S 48 ± 1. 9 
l. 25 38 ± . 6 
.625 13 ± 1 

5,100 10 69 ± 1. 3 
s 45 ± .9 
~ ~ 
~. ~ ;:4 ± 1. 3 
1. 25 13 ± 1.1 
.625 8 ± • 6 

Native Heparin 10 87 ± 2.0 
s 86 ± 1. 4 
2. s 77 ± 1. 2 
1. 25 so ± 2.2 
.625 2J ± 1. 7 

CY 216 10 80 ± 3. 2 
s 59 ± 1. 6 
2. s 37 ± 1. 4 
1. 25 21 ± 1. 3 
.625 13 ± 1. 3 

Control 6 ± 1. 2 

N - 5 

Table 7. The molecular weight fractions were supplemented 

to pooled normal human platelet poor plasma at concen­

trations ranging from 0.625 through 10.0 ug/ml. The anti 

factor Xa assay was performed on five separate occasions 

exactly as described in methods. The results represent 

the mean and the standard deviation of the five 

determinations. 
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Table e 

Effect of Molecular Yeight on Anti II a Activity 

Molecular Weight Concentration (u~/ml) ' Inhibition 

23,000 10 91 :: 2. 2 
5 86 :: 3.5 
2.5 82 ± 3.l 
l. 25 62 :: :.. 7 
.625 40 ! 4.3 

17,450 10 90 ± 1. 3 
5 89 ± 2.7 
2. 5 79 = 3.4 
1. 25 68 ± 4. 7 
.625 44 ! 2. 6 

13,300 10 93 ± 2.4 
5 88 ± 1. 7 
2. 5 79 ::: 1. 6 
1. 25 74 :: 3.l 
.625 41 ::: 4.6 

9,000 10 88 ± 1. 8 
5 77 :!: :. . 2 
2. 5 59 ::: 2.1 
1. 25 42 ± 2. 9 
. 6 25 15 :: . 7 

5,100 10 68 :!:. 2.1 
!i.4 :: ~. 9 

2. 5 24 ± l. 7 
l. 25 13 ± 3.5 
.625 2 ± l. 7 

Native Heparin 10 87 ± 2.1 
5 84 :!:. 3.1 
2. 5 76 :: l. 6 
l. 25 64 ± 2.4 
.625 

6 36 :!:. 4.2 

CY 216 10 58 ± 3.1 
5 34 ::: 3.2 
2. 5 14 :!:. 4.6 
l. 25 9 ± 3.1 
.625 3 ± 2. 7 

Control 3 ± 1.4 

N - 5 

Table 8. The molecular weight fractions were supplemented 

to pooled normal human platelet poor plasma at concen-

trations ranging from 0.625 through 10.0 ug/ml. The anti 

factor IIa assay was performed on five separate occasions 

exactly as described in methods. The results represent 

the mean and the standard deviation of the five 

determinations. 



Table 9 

Effect of Molecular Weight on Thromboplastin Activated FPA 
Generation 

Molecular Weight 

23,000 

17,450 

13,300 

9,000 

5,100 

Native Heparin 

CY 216 

Control 

N - 5 

Concentration (ug/ml) 

5 
2. 5 
l. 25 
.625 

5 
2. 5 
l. 25 
.625 

5 
2. 5 
1. 25 
.625 

5 
2. 5 
l. 25 
.625 

5 
2. 5 
1. 25 
.625 

5 
2. 5 
1. 25 
.625 

5 
2. 5 
1. 25 
.625 

FPA (ng/ml) 

42 ± 22 
64 ± 19 
425 ± 60 
713 ± so 

63 ± 30 
87 ± 21 
528 ± 76 
836 ± 110 

75 ± 30 
146 ± 29 
509 ± 115 
823 ± 82 

221 ± 89 
332 ± 44 
686 ± 76 
947 :!: 147 

763 ± 116 
915 ± 60 
1,023 ± 143 
1,357 ± 276 

81 ± 15 
66 ± 18 
475 ± 62 

762 ± 123 

756 ± 110 
820 ± 134 
997 ± 138 
1,059 ± 106 

l~ 27 5 ± 186 
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Table 9. The molecular weight fractions were supplemented 

to pooled normal human platelet poor plasma at concen-

trations ranging from O. 625 through 5. O ug/ml. The 

fibrinopeptide - A generation assay was performed on five 

separate occasions exactly as described in methods. The 

results represent the mean and the standard deviation of 

the five determinations. 
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Table 10 

Comparison of Molecular Weight Fractions of Heparin on FPA 
Generation in At III Deficient Plasma 

Heparin concentration: 10 ug/ml 

HEPARIN 

Control 
23,000 M.W. 
17,450 M.W. 
13,300 M.TJ. 
9,000 M.W. 
·s,100 M.W. 
Native Heparin 
CY 216 

N - 5 

FPA GENERATED (ng/ml) 
AT III DEFICIENT 

1216 ± 167 
1254 ± 181 
1183 + 139 
1180 ± 124 
1100 ± 162 
1138 ± 121 
1118 ± 109 
1156 + 182 

• 

Table 10. Antithrombin III deficient plasma was prepared 

as described in methods. The antithrombin content of this 

plasma was detennined to be 6. 2 % of normal. The test 

fractions were supplemented to the anththrombin deficient 

plasma at a concentration of 10 ug/ml and the fibrino-

peptide-A generation assay was performed exactly as 

described in methods. 
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Table 11 

The Effect of Molecular Weight Fractions of Heparin on FPA 
Generation in Whole Human Blood 

Heparin Fraction 

23,000 M.W. 

13,300 M.W. 

5,100 M.W. 

Native Heparin 

CY 216 

control 

N - 4 

Concentration 
(ug/ml) 

10 
5 
2.5 

10 
5 
2.5 

10 
5 
2.5 

10 
5 
2.5 

10 
5 
2.5 

FPA Generated 
(ng/nl) 

0.66 ± .3 
3.5 ± 2.7 
18.3 ± 9.0 

0.5 ± .5 
0.37 ± .5 
6.0 ± 3.6 

12.6 ± 3 
14.2 ± 4.4 
42.6 ± 6.4 

0.0 ± 0 
6.0 ± 3.0 
12.0 ± 6.8 

4.3 ± 1.1 
12.5 ± 3.3 
24.0 ± 3.4 

so ± 10.0 

• 

Table 11. Three concentrations of the individaul test 

fractions were added to freshly drawn human whole blood. 

The whole blood fibrinopeptide - A generation assay was 

performed on these samples exactly as described in 

methods. The results represent the mean and standard 

deviation from assays performed in the whole blood of four 

individuals. 



Table 12 
Time Course Values Obtained Using Heptest 

FRACTION 

23,000 M.W. 

KINETIC PARAMETER 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

VALUE 

.OS ± .OOOS 

29 ± 2.2 

1.18 ± .l 

3.99 ± .2 

-----------------------------------------------
Vd (L/Kg) .OS ± .003 

t 1/2 {min. ) 34.S ± 4.S 
13,300 M.W. 

Clp (ml/min/Kg) 1.12 ± .11 

AUC (ug hr/ml) 4.36 ± .53 

---------------------------------------------------
Vd ( L/Kg) .oss ± .004 

t 1/2 (min.) S0.8 ± 6.5 
S,100 M.W. 

Clp (ml/min/Kg) .76 ± .09 

AUC (ug hr/ml) 6.38 ± .61 

-------------------------~---------------------------------

CY 216 4,SOO M.W. 

Native Heparin 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr /ml) 

Vd (L/Kg} 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

.061 ± .008 

S8 ± 4.8 

.72 ± .06 

• 6.2S ± .57 

.OS ± .0001 

31 ± 2.2 

1.14 ± .08 

4.26 ± .3 
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Table 12. The intravenous Plasma time course Of the 

individual test fractions was calculated exactly as 

described in methods. The data in this table represents 

the time course parameters calculated from data 

obtained with the heptest assay. All values indicate the 

mean and standard deviation obtained from administration 

of the individual fractions to five primates. 
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Table 13 

Time Course of plasma Anti Xa Activity 

FRACTION KINETIC PARAMETER VALUE 

Vd (L/Kg) .oso ± .cos 

t 1/2 (min.) 29 ± 2.~ 

23.000 M.W. 
Clp (ml/min/Kg) 1.18 ± .03 

AUC (ug hr/ml) 4.10 ± .07 

--------------------------------------------------------------

13' 300 M. \J. 

5,100 M.W. 

CY 216 4,SOO M. t,;. 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

.OS4 ± .005 

34.4 ± 4.3 

l. lS ± .08 

4.36 ± .35 

.OS ± .004 

50.6 ± 7.7 

.77±.58 

6.08 ± .35 

.064 ± .005 

SS ± 4.0 

.77 ± .13 

s. 9 ± .57 

-----------------------------~---~~-----------------------

Vd (L/Kg) .OS ± .004 

t 1/2 (min.) 31 ± 2.0 
Native Heparin 

Clp (ml/min/Kg) 1. 06 ± .06 

AUC (ug hr/ml) 4.36 ± .43 

Table 13. The intravenous plasma time course of the 

individual test fractions was calculated exactly as 

desc~ibed in methods. The data in this table represents 

the time course parameters calculated from data 

obtained with the anti factor Xa assay. All values 

indicate the mean and standard deviation obtained from 

administration of the individual fractions to five 

prima1:es. 



Table 14 
Time Course of Plasma Anti Ila Activity 

FRACTION PHARMACOXINETIC PARAMETER 

23,000 !i.IJ. 

13,300 M.W. 

S,100 M.W. 

CY 216 4,500 M.W. 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

Vd (L/Kg) 

t 1/2 (min.) 

c1,, (ml/min/Kg) 

AUG (ug hr/ml) 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUG (ug hr/ml) 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

VALUE 

.OS ± .009 

30 ± l.S 

1.4 ± .03 

3.31 ± .2 

.06 ± .006 

32 ± 1. 3 

1. 46 ± .05 

3.53 ± .04 

.OS ± .004 

32 ± 1. 9 

1. 08 ± .08 

4.73 ± .14 

.OS ± .005 

32 ± 1. 4 

1.1 ± .07 

4.0 ± . 5 
.,A. _____________ 

Vd (L/Kg) .06 ± .01 

t 1/2 (min.) 32 ± 1. 5 
Native Heparin 

Clp (ml/min/Kg) 1. 4 ± .22 

AUC (ug hr/ml) 3.S ± .52 

Table 14. The intravenous plasma time course of the 

individual test fractions was calculated exactly as 

described in methods. The data in this table represents 

the time course parameters calculated from data 

obtained with the anti factor II a assay. All values 

indicate the mean and standard deviation obtained from 

administration of the individual fractions to five 

primates. 
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Table 15 

Time Course Values Obtained From PT Assay 

FRACTION 

23,000 M.W. 

13,300 M. i;. 

5,100 M.Y. 

CY 216 4,500 M.Y. 

Native Heparin 

KINETIC PARAMETER 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml ) 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

VALUE 

.1 ± .01 

26.2 ± 2.0 

2.68 ± .39 

2.4 ± .3 

.11 ± .004 

35 ± 3.4 

2.14 ± .15 

2.42 ± .16 

.09 ± .005 

36 ± 2.1 

1.8 ± .19 

2. 6 :: . 2 

.06 ± .007 

39 ± 7.2 

1. 2 ± .14 

3.80 ± .58 

-------
.07 ± .01 

29 ± 5.4 

1.76 ± .16 

2.78 ± .34 

Table 15. The intravenous plasma time course of the 

individual test fractions was calculated exactly as 

described in methods. The data in this table represents 

the time course parameters calculated from data 

obtained using a dilute PT assay. All values indicate the 

mean and standard deviation obtained from administration 

of the individual fractions to five primates. 



Table 16 
Time Course of Plasma FPA Inhibiting Actions 

FRACTION 

23,000 M.IJ. 

13,300 M.IJ. 

5,100 M.IJ. 

CY 216 4,500 M. IJ. 

KINETIC PARAMETER 

Vd (L/Kg) 

t 1/2 (min. ) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

VALUE 

.07 ± .008 

30 ± 2.7 

2.05 ± . 5 

2.56 ± 1. 1 

.10 ± .1 

45.6 ± 5 

1.9 ± .3 

3.13 ± .1 

.07 ± .01 

52 ± 7 

l. 0 ± .23 

5.1 ± .49 

.09 ± .01 

61 ± 6.8 

1. 21 ± .1 

3.9 ± .14 

-----------------------------------------------

Native Heparin 

Vd (L/Kg) 

t 1/2 (min.) 

Clp (ml/min/Kg) 

AUC (ug hr/ml) 

.08 ± .02 

37 ± 1.9 

1.6 ± .2 

3.57 ± .3 

Table 16. The intravenous plasma time course of the 

individual test fractions was calculated exactly as 

described in methods. The data in this table represents 

the time course parameters calculated from data 

obtained using a the fibrinopeptide - A generation assay. 

All values indicate the mean and standard deviation 

obtained from administration of the individual fractions 

to five primates. 
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Table 17 

Subcutaneous Time Course Obtained Using Heptest Assay 

FRACTION KINETIC PARAM!TE~ VALUE 

t 1/2 (min.) 205 ± 40 

23,000 M.IJ. AUC (ug hr/ml) .47 ± .38 

Absorption 3 % 

-----------------~-----------------------------------------

13,300 M.IJ. 

t 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

144 ± 32 

1.54 ± .2 

9 % 

------------------------------------------------------------

5,100 M.\J. 

t 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

108 ± 20 

23.7 ± .9 

93 % 

-------------------------------------------------------

CY 216 4,500 M.~. 

t 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

144 ± 26 

21.9 ± 2.2 

88 % 

-----------------------------------------------

Native Heparin 

t 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

• 
94 ± 32 

6.8 ± 1.4 

40 % 

Table 17, T~e !)lasma time course of the test fractions were 

calculated after subcutaneous injection at a concentration 

of 1. O mg/kg. The blood sampling protocal and time 

course calculations were performed exactly as previously 

described. These results were calculated from data 

obtained using the heptest assay. All values represent 

the mean and standard deviation of calculations from five 

individual primates. 
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Table 18 
Subcutaneous Time Course of Plasma Anti Xa Activity 

FRACTION 

23,000 M.IJ. 

13,300 M.W. 

5,100 M.\;. 

CY 216 4,500 M.IJ. 

Nat:ive Heparin 

KINETIC PARAMETER 

t 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

t 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

t 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

t 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

t 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

VALUE 

106 ± 12 

1.5 ± .4 

10 ' 

163 ± 19 

2.9 ± .4 

14 ' 

200 ± 18 

21.4±1.7 

94 ' 

201 ± 17 

22 ± 2 

96 ' 

154 ± 17.5 

•5.7±1.3 

32 ' 

Table 18. The plasma time cours1~ of the test fractions was 

calculated after subcutaneous injection at a concentration 

of 1. O mg/kg. The blood sampling protocal and time 

course calculations were performed exactly as previously 

described. These results were calculated from data 

obtained using the anti factor Xa assay. All values 

represent the mean and standard deviation of calculations 

from five individual primates. 
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Table 19 
Subcutaneous Time Course of Plasma Anti Ila Activity 

FRACTION 

23,000 M.lJ. 

KINETIC PARAMETER 

t 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

-------------------------
t 1/2 (min.) 

13,300 M.lJ. AUC (ug hr/ml) 

Absorption 

t 1/2 (min.) 

5,100 M.lJ. AUC (ug hr/ml~ 

Absorption 

VALUE 

104 ± 16 

0.9 ± . 3 

6 ' 
147 ± 2 8. 3 

1. 4 ± .63 

10 ' 
139 ± 22 

12. 2 = 2.:. 

60 ' 

-------------------------------------------------
t 1/2 (min.) 167 ± 15 

CY 216 4,500 M.lJ. AUC (ug hr/ml) 7.5 ± 1 

Absorption 47 ' 

t 1/2 (min.) 119 ± 19 
• 

Native Heparin AUC (ug hr/ml) 3.5 ± .7 

Absorption 24 ' 

Table 19. The plasma time course of the test fractions was 

calculated after subcutaneous injection at a concentration 

of 1. o mg/kg. The blood sampling protocal and time 

course calculations were performed exactly as previously 

described. These results were calculated from data 

obtained using the anti factor IIa assay. All values 

represent the mean and standard deviation of calculations 

from five individual primates. 
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Table 20 
Subcutaneous Time Course Determined Using A PT Assay 

F1lACTION ~INETIC PAIAMET?i VALCE 

23,000 lt.~. 

13,300 M.IJ. 

5,100 IL~. 

t 1/2 (11in.) 

AUC (ug hr/ml) 

Absorption 

t l/2 (min.) 

AUC (ug hr/ml) 

Absorption 

t 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 
--------------- ----

t 1/2 (min.) 

CY 216 4,500 M.~. AUC (ug hr/ml) 

Absorption 

t l/2 (min.) 

Nati•.re Heparin AUC (ug hr/ml) 

Absorption 

~.A. 

?LA. 

0 

l6i : z:-

l. 2 : . 4 

13 ' 

----------
121 : 17 

3.3 : .6 

30 ' 

135 ± 14 

5.8 ± l.l 

38 ' 

-------
117 ± 14 

3.7:: .5 

36 ' 

Table 20. The plasma time course of the test frac"tions were 

calculated after subcutaneous injec"tion at a concentration 

Of l. 0 mg/kg. The blood sampling protocal and time 

course calculations were per!cr.:ied exac~ly as previously 

described. These results were calculated fro~ data 

obtained using a dilute PT assay. All values represent 

the mean and standard deviation of calculations from five 

individual primates. 
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Table 21 
Subcutaneous Time Course Determined Using the FPAGT 

FRAC':'ION 

23,COO ff.Ii. 

XIN!TIC PARAM!T!R 

c 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

89 : 41 

2. 8 : . .5 

28 ' 

·--------------- --~---------------------------
c 1/2 (min.) 131 ! 2C 

13.~00 !Lil. AUC (ug hr/ml) S.7 ! c 

Absorption 44 ' 

--------------------·----------------------

s.:..co ~.~. 

CY 216 4,500 ff.Ii. 

Native Heparin 

c l/2 (min.) 

ACC (ug !':.r/ml) 

Absorption 

c l/2 (min.) 

AUC (ug hr/ml) 

Absorption 

c 1/2 (min.) 

AUC (ug hr/ml) 

Absorption 

.. 

l!B :: 19.: 

• a , . ...... : : .. :.. 

95 ' 

195 = ;: 
19.9 = ::.; 

100 ' 

120 :: 24 

8.2: l.4 

66 ' 

Table 21. The plasma time course of the test fractions was 

calculated after subcutaneous injection at a concent~ation 

Of l. 0 mg/kg. The blood sampling protocal and time 

course calc~lations were performed exactly as previously 

desc:-ibed. These results were calculated fro~ data 

obtained using the fibrinopeptide - A generation assay. 

All values represent the mean and standard deviation of 

calculations from five individual primates. 
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Table 22 
Circulating Pharmacod"118mi.c Effects of the Molecular Weight 

Fractions in the Rabbit Stasis Thrombosis Hodel 

Dose: 25 ug/Kg 
Route: Intravenous 

Clottins Time in Seconds 

Test Fraction PTl' IT Hep test 

23,000 M.W. 

Baseline 78 .± 6 37 .± 7 27 .± 4 I 

Pre-challenge 85 .± 9 39 .± 9 31 .± 3 I 

13,300 M.W. 

Baseline 83 .± 7 33 .± 4 32 .± 6 I 

Pre-challenge 88 .± 8 44 .± 6 40 .± 6 I 

5,100 M.W. 

Baseline 84 .± 7 34 .± 6 31 .± 5 I 

Pre-challenge 82 .± 9 35 .± 6 39 .± 7 I 

CY 216 

Baseline 80 .± 9 32 .± 5 29 .± 3 I 

Pre-challenge 83 .± 8 37 .± 6 39 .± 6 I 

Unfractionated Heparin 

Baseline 

Pre-challenge 

82 .± 14 35 .± 6 30 .± 6 I 

92 .± 17 38 .± 5 35 .± 6 I 

I 

I Percent Inhibition 

Anti Ia 

5 .± 3 

14 .± 6 

4 .± 1 

13 .± 4 

3 .± 2 

8 .± 3 

4 .± 2 

15 .± 6 

4 .± 3 

12 .± 5 

Anti !Ia 

4 .± 2 

16 .± 10 

3 .± 1 

13 .± 5 

5 .± 3 

10 .± 7 

4 .± 2 

8±3 

3 .± 1 

13 .± 7 

Table 22. The circulating pharmacodynamic actions of the 

test fractions were measured during the stasis thrombosis 

experiments using the PTT, PT, heptest, anti Xa and anti 

IIa assays. The baseline values represent the coagulation 

profile prior to drug administration. The pre-challenge 

levels represent the circulating pharmacodynamic actions 

immediately prior to administration of the thrombogenic 

challenge. All results represent the mean and standard 

deviation obtained from five experimental animals. 
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Table 23 
Circulating Pbarmacod!:!!a.mic Effects of the Molecular Weight 

Fractions in the Rabbit Stasis Thrombosis Hodel 

Dose: 50 ug/Kg 
Route: Intravenous 

Clotting Time in Seconds I Percent Inhibition 

Test Fraction PTI TI Hep test I Anti Xa Anti IIa 

23,000 H.W. 

Baseline 84 ± 11 36 ± 3 29 ± 4 I 5±3 4±3 

Pre-challenge 105 ± 15 109 ± 40 42 ± 6 I 23 ± 6 32 ± 6 

13,300 H.l•i. 

Baseline 84 ± 7 33 ± 3 28 ± 7 I 5±2 5 ± 3 

Pre-challenge 100 ± 16 55 ± 12 37 ± 4 I 23 ± 6 29 ± 14 

5,100 M.W. 

Baseline 87 ± 14 33 ± 3 33 ± 3 I 6 .±. 3 4 ± 2 

Pre-challenge 93 ± 12 37 ± 6 38 ± 3 I 12 ± 6 7 ± 3 

CY 216 

Baseline 83 ± 9 32 ± 4 31 ± 4 I 5±3 5 ± 1 

Pre-challenge 96 ± 13 39 ± 7 40 ±. 7 I 17 ± 7 10 ± 5 

Unfractionated Heparin 

• 
Baseline 86 ± 8 30 ± 2 30 .±. 2 I 6±3 4 ± 3 

Pre-challenge 90 ± 16 70 ± 15 37 ± 4 I 23 ±. 6 29 ± 12 

Table 23. The circulating pharmacodynamic actions of the 

test fractions were measured during the stasis thrombosis 

experiments using the PTT, PT, heptest, anti Xa and anti 

IIa assays. The baseline values represent the coagulation 

profile prior to drug administration. The pre-challenge 

levels represent the circulating pharmacodynamic actions 

immediately prior to administration of the thrombogenic 

challenge. All results represent the mean and standard 

deviation obtained from five experimental animals. 
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Table 24 
Circulating Pharmacodynamic Effects of the Molecular Weight 

Fractions in the Rabbit Stasis Thrombosis Hodel 

Dose: 100 ugiKg 
Route: Intravenous 

Clotting Time in Seconds I Percent Inhibition 

Test Fraction PIT TT Heptest I Anti Ia Anti IIa 

23,000 M.W. 

Baseline 86 ± 10 38 ± 2 30 ± 5 I 5 ± 2 4±3 

Pre-challenge > 150 > 150 63 ± 14 I 40 ± 11 47 ± 14 

13,300 M.W. 

Baseline 82 ± 8 34 ± 5 27 ± 3 I 4 ± 3 5 ± 2 

Pre-challenge > 150 > 150 63 .:t 9 I 50 .:t 9 47 .:t 7 

5,100 M.W. 

Baseline 83 ± 7 35 ± 5 33 ± 6 I 6±2 4 ± 2 

Pre-challenge 85 ± 5 47 ± 7 48 ± 17 I 20 .:t 9 19 ± 12 

CT 216 

Baseline 82 ± 9 33 ± 3 31 ± 3 I 6±3 3±2 

Pre-challenge 86 ± 3 50 ± 9 53 ± 7 I 27 ± 12 22 ± 7 

Unfractionated Heparin 
• 

Baseline 84 ± 9 36 ± 4 28 ± 5 I 7±4 4 ± l 

Pre-challenge 123 ± 30 >150 57 ± 12 I 43 ± 13 47 ± 17 

Table 24. The circulating phannacodynamic actions of the 

test fractions were measured during the stasis thrombosis 

experiments using the PTT, PT, heptest, anti Xa and anti 

IIa assays. The baseline values represent the coagulation 

profile prior to drug administration. The pre-challenge 

levels represent the circulating phannacodynamic actions 

immediately prior to administration of the thrombogenic 

challenge. All results represent the mean and standard 

deviation obtained from five experimental animals. 
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Table 25 
Circulating Pharmacodrn.amic Effects of the Molecular Weight 

Fractions in the Rabbit Stasis Thrombosis Hodel 

Dose: lmg/Kg 
Route: Subcutaneous 

Clotting Time in Seconds I Percent 

Test Fraction PTT IT Hep test I Anti Xa ---
23,000 M.W. 

Baseline 79 .± 9 32 .± 2 27 .± 2 I 3 .± 2 

Pre-challenge 84 .± 11 36 ·.± 3 23 .± 3 I 3 .± 2 

13,300 M.w. 

Baseline 80 .± 7 34 .± 2 30 .± 2 I 3 .± 2 

Pre-challenge 90 .± 9 42 ± 6 33 .± 5 I 12 ± 6 

5,100 M.W. 

Baseline 84 ± 10 32 .± 3 29 ± 6 I 4±3 

Pre-challenge 94 ± 12 44 ±. 16 55 ±. 13 I 17 ±. 8 

CY 216 

Baseline 81 .± 9 31 .± 4 27 .± 3 I 4 .± 2 

Pre-challenge 96 .± 10 47 .± 7 62 .± 9 I 23 ±. 9 

Unfractionated Heparin 

Baseline 79 .± 10 35 .± 3 24 .± 5 I 3 .± 2 

Pre-challenge 88 ± 12 37 .± 5 33 .± 8 I 19 .± 5 

Inhibition 

Anti IIa 

3 .± 6 

2 .± 4 

4 ± 4 

10 + 8 

5 .± 3 

23 ±. 8 

4 .± 2 

19 .::. 12 

2 .± 2 

4 ± 5 

Table 25. The circulating pharmacodynarnic actions of the 

test fractions were measured during the stasis thrombosis 

experiments using the PTT, PT, heptest, anti Xa and anti 

IIa assays. The baseline values represent the coagulation 

profile prior to drug administration. The pre-challenge 

levels represent the circulating pharmacodynarnic actions 

immediately prior to administration of the thrombogenic 

challenge. All results represent the mean and standard 

deviation obtained from five experimental animals. 
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Table 26 
Comcarison of Half-life Calculated from 
M~lar and Gravimetric Concentrations 

Fraction Time EOSt concentration concentration 
Injection ~ (ug/ml) 

5 .207 4.78 
10 .18 4.2 

23,000 15 .16 3.7 
30 .10 2.5 
60 .05 1.15 

180 .001 .02 
t 1/2 .. 27 a:in. t 1/2 . 29 min. 

5 .35 4.72 
10 .30 4.0 

13,300 15 .26 3.5 
30 .18 2.4 
60 .09 l. 3 

180 . 01 .13 
t l/Z := 33 :nin. t 1/2 34 min. 

5 .93 4.77 
10 .81 4.14 

5,100 15 .70 3.61 
30 .59 3.05 
60 .42 2.14 

180 .078 .40 
t 1/2 - 52 min. t 1/2 = so min. 

5-- .89 4.81 
10 .79 4.29 

CY 216 15 .70 3.8 
30 .54 2.9 
60 .35 l. 9 

180 .09 ,..47 
t 1/2 • 60 min. t 1 2 .. 58 min. 

5 .375 4.72 
10 .329 4.14 

Heparin 15 .304 3.82 
30 .227 2.85 
60 .10 l. 27 

180 .002 .02 
t 1/2 - 30 min. t 1/2 .. 31 min. 

Table 26. The gravimetric concentrations from the primate 

kinetic study were converted to molar amounts using the mean molec-

ular weights in table 1. Semi - log concentration I time plots 

were generated for both values from which half-1.ife values were 

calculated. These values were similar for both molar and grav-

imetric concentrations. 

189 



190 

Table 27 

Comparison of Relative Absorption Calculated From 
Molar and Gravimetric Concentrations 

Molar Gravimetric 
Test Fraction Absorotion Absorption 

23,000 2.89 % 3 % 

13,300 8.85 % 9 % 

5' 100 92 % 93 % 

CY 216 86 % 88 % 

Heparin 41 % 40 % 

Table 27. Absortion was calculated using the AUC 

data obtained from the heptest assay exactly as described 

in methods. The ug hr/ml concentrations were transformed 

to uM values using the mean molecular weights of the 

individual fractions (table 1). 



Table 28 

Relationship Between Absorption 

Fraction 

Native Heparin 

23,000 M.W. 

13,300 M.W. 

5,100 M.W. 

CY 216 

Distribution 

% of components 
less than 10,000 

38 

1 - 2 

7 

96 

97 

correlation between absorption 
molecular weight components less 
weight (r = .99) 

191 

and Molecular Weight 

approximate 

Absortpion 

40 % 

6 % 

11 % 

• 93 

91 

and the % content of 
than 10,000 molecular 



Table 29 

Relationship Between Absorption , Pharmacodynamic 
Effects and Antithrombotic Actions After Subcutaneous 
Administration 

Fraction Antithrombotic 
Actions 

23,000 7.7 

13,300 62.0 

5,100 47.0 

CY 216 81.0 

Heparin 27.0 

Absorption 
(Primate) (%) 

3.0 

9.0 

93.0 

88.0 

40.0 

correlation 
absorption 

between antithrombotic 
r = • 55 

Pharmacodynamic 
Effects 

3.7 

9.9 

48.0 

57.0 

28.0 

actions and 

correlation between antithrombotic actions and circulating 
anticoagulant actions r = .63 

• 

Table 29. The antithrombotic actions represent the percent 

reduction in thrombus formation in the rabbit model 

compared to control. The absorption was calculated 

from the primate heptest data exactly as previously 

described. The pharmacodynamic effects indicate the 

circulating drug actions in the rabbit model prior to 

injection of the thrombogenic challenge. These values 

represent the percent difference from baseline values. 
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Table 30 

Molar Concentration of Antithrombin III in Normal Human 
Plasma and the Test Fractions at a gravimetric 

concentration of 5 ug/ml 

Test Fraction Concentration (uM) 

23,000 M.W. .217 

17,450 M.W. .286 

13,300 M.W. .375 

9,000 M.W. .555 

5,100 M.W. .98 

CY 216 .92 

Heparin .397 

Antithrombin III 4.53 

.. 

Table 30. The molar concentrations of the test fractions 

were based on the molecular weights determined by HPLC-

GPC (table 1) • The molar concentration of anti thrombin 

III was based upon a molecular weight of 64, 000 and a 

normal plasma concentration of 29 mg/dL. The molar ratio 

between the test fractions and antithrombin III was even 

greater than the calculations indicate since only about 

one third of a given heparin preparation possesses af­

finity to antithrombin III. 



CHAPTER VIII 

FIGURES 

Figure 1 
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Figure 1. Five grams of porcine sodium heparin were 

fractionated on an Ul tro-gel ACA-44 column. Fourteen 

fractions were collected at 35 minute intervals and the 

absorbance at 205 nm was recorded to deter:iine heparin 

content. Initial and latter fractions were pooled i~ order 

to ac~ieve a sufficient quantity for experiment3l work. The 

elution profile demonstr3 ted a normally distributed 

·population of molecular weight components wit~in the native 

hep3rin. 
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Figure 2 
Comparison of the Glycosaminoglycan Content of 

the Various Test Heparins Using a 
Toluidine Blue Assay 

Abs 606 
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Figure 2. The glycosaminoglycan content of the gel-filtered 

fractions was measured using a toluidine blue assay. The 

dye reacted with the sulfate groups of the heparin molecules 

to produce a color change which was measured in a 

spectrophotometer. The absorbance at 606 nm was directly 

proportional to the heparin content of the individual 

frations. All fractions displayed similar heparin content. 
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Figure 3 
Relationship Between Viscosity and the Molecular Weight 

of the Test Heparins Determined by HPLC - GPC 
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Figure 3. 
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molecular weight x 10-4 

Viscosity measurements were cade on 10 mg/:nl 

solut!ons of the gel-filtered fractions using a cone-plate 

viscocieter. The figure shows the relationship bet·.•een the 

resulting viscosity and the molecular weight deter:Jined by 

HPLC-GPC. A linear relationship was observed bet·.;een 

Viscosity and molecular weight. 
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Figure 4 197 
Effect of Molecular Weight on Thromboplastin Activated 

FPA Generation in Platelet Poor and Platelet Rich Plasma 
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Figure 4. The molecular weight fractions were compared in 

the thromboplastin activated FPA generation assay in both 

platelet rich and platelet poor plasmas. Both plasmas were 

prepared from the saoe donor (N = 5) and supplemented with 

the individual test fractions at 2.5 ug/ml.. FPA generation 

was perforced exactly as described in methods. The effects 

of all fractions were si:nilar in both platelet rich and 

platelet poor plasmas. 
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Figure 5 
Effect of Factor VII Concentration 

on VII-Thromboolastin Activation 
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Figure S. The factor VII-thromboplastin assay was performed 

as described in methods using five different concentrations 

of factor VII. The concentration of all other reactants was 

kept constant. The rate of p-NA release was directly 

related to the concentration of factor VII. 



Figure 6 
Effect of the Test Fractions on Factor VII - Thromboplastin 

Activated Factor Ia in an Amidolytic Assay 
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Figure 6. !be test fractions were compared for their effect 

in the factor VII-Thromboplastin assay. !be assay used 

factor VII-1bromboplastin to activate factor I to Ia. !be 

assay endpoint was measured by recording the kinetics of p-

NA release from a Ia specific substrate using a kinetic 

analyzer (IL Multistat). The effects of the H.~. fractions 

were studied using 25 ug/ml solutions of the i~divual test 

fractions diluted 1 :2 in 1.25 U/ml antithrocbin III and 

comparing the resulting p-NA release. 
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Figure 7 
Effect of the Test Fractions on Factor Ia as Studied 

in an Am.idolytic Assay 
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Figure 7. The factor VII-Thromboplastin assay was modified 

to study the effects of the M.W. fractions on factor Ia in 

this assay. The assay was perfonied by replaci~g factor's 

VII and X with an equivalent a::ount of Xa. Thrc~boplastin 

re~ai~ed in the reaction mixture. 25 ug/ml conce~trations 

of the test fractions were diluted 1: 2 in 1. 25 U/ml 

antithrocibin III and compared for their effect on p-NA 

release fro~ a Xa specific substrate. With the exception of 

the two low molecular weight fractions, no difference in 

potency was observed. 
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Figure 8 201 
Differential Effect of the Test Fractions When Incubated With 

Factor VII - Tiiromboplastin or Factor I in the 
VII - 'ln.romboplastin Activated Amidolytic Assay 

J.00 r-
C::::::~•o•~l" w/Vtt-TP 
c;:::::;~•o•~1n w/factor X 

Figure 8. The factor VII-Thromboplastin assay was modified 

to distinguish the effects of the M.W. fractions on factor 

VII. 25 ug/ml concentrations of the test fractions were 

diluted 1 :2 in 1.25 U/ml antithrombin III and incubated 

either vith factor VII-thromboplastin or factor X. 

Differences in p-NA release were compared from the two 

incubation systems (N • 5). Significant differences between 

the two systems were only observed for the 23,000 and 17,450 

H.W. fractions. 



Figure 9 
Effect of the Test Fractions on a Tb.romboplastin Activated 

Amidolytic Assay in Plasma 
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Figure 9. The test fractions were compared for their 

effects in the plasma VII-Thromboplastin assay. In this 

assay, factor's VII, I and antithrombin III were provided by 

the plasma. The assay used dilute thromboplastin (1:20) to 

activate dilute (1:2), factor II deficient plasma 

supplemented with 5 ug/ml of each test fraction. p-NA 

release from a Xa specific substrate was compared to 

determine the effects of the test fractions. The 23,000 ; 

17, 450 and 13, 300 M. W. fractions displayed the most 

inhibition in this assay. 
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Figure 10 
Effect of the Test Fractions on a Thromboplastin Activated 

Aai.dolytic Assay in Plasma 
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Figure 10. The test fractions were compared for their 

effects in the plasma VII-Thromboplastin assay. In this 

assay, factor's VII, I and antithrombin III were provided by 

the plasma. The assay used dilute thromboplastin (1:20) to 

activate dilute (1:2), factor II deficient plasma 

supplemented with 2.5 ug/ml of each test fraction. p-NA 

release from a Xa specific substrate was compared to 

determine the effects of the test fractions. In contrast to 

the results observed at 5 ug/ml concentrations, the 13,300 

M.W. fraction displayed the greatest potency. 
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Figure 11 204 
Effect of the Test Fractions on a Th.romboplastin Activated 

Amidolytic Assay in Plasma 
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Figure 11. The test fractions were compared for their 

effects in the plasma VII-ThroJiboplastin assay. In this 

assay, factor's VII, X and antithrombin III were provided by 

the plas~a. The assay used dilute thromboplastin (1:20) to 

activate dilute (1:2), factor II deficient plasma 

supplemented with 1.25 ug/ol of each test fraction. p-NA 

release from a Xa specific substrate was compared to 

determine the effects of the test fractions. Less 

inhibition was observed compared to the 2.5 and 5 ug/ml 

concentrations. 



Figure 12 
Effect of the Test Fractions on a Thromboplastin Activated 

Am.idolytic Assay in Plasma 
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Figure 12. The test fractions were compared for their 

effects in the plasma VII-Thromboplastin assay. In this 

assay, factor's VII, X and antithrombin III were provided by 

the plasma. The assay used dilute thromboplastin (1:20) to 

activate dilute (1 :2), factor II deficient plasma 

supplemented with 5 ug/ml of each test fraction. p-NA 

release from a thrombin specific substrate was compared to 

determine the effects of the test fractions. Similar with 

the results observed with the Xa substrate, the 13,300 M.W. 

fraction displayed the greatest potency. 
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Figure 13 206 
Effect of the Test Fractions on a Thromboplastin Activated 

Amidolytic Assay in Plasma 

D'""IA ,..1 .... (1,1M/e1nl 

80 ~•o•'" ll' c:anc:. 2. !5 1.1a/• l 

[ 

1 • 23. 000114.W. 

2 • 17. 4!50 ...... 
10 ~ • e I 3 • 13. 300 M .... 

&O .,__ 4 • i.000 M.W. 

5 • !!. 100 114.W. 

!!0 - 6 • 11101r1n 

I 7 • CY 216 

'T 
30 I-

i!O I-

I 
10 I-

1 2 

Tl'lroao1n Suoacr1t1 

6 7 

Figure 13. The test fractions were compared for their 

effects in the plasma VII-Thromboplastin assay. In this 

assay, factor's VII, X and antithrombin III were provided by 

the plasma. The assay used dilute thromboplastin (1:20) to 

activate dilute (1:2), factor II deficient plasma 

supple:iented with 2.5 ug/ml of each test frac~:.on. p-NA 

release from a thrombin specific substrate was compared to 

deter::iine the effects of the test fractions. 
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Figure 14. The test fractions vere compared for their 

effects in the plasma VII-Thro::'!lboplastfo assay. In this 

assay, factor's VII, I and antithrombio III vere provided by 

the plasma. The assay used dilute throcboplastin (1:20) to 

act iv a t e d i 1 u t e ( l : 2 ) , fa c t or I I de ! i c ! e ~ t p l3 s ::a 

supple!teated vi.th 1.25 ug/ml of each test fraction. p-NA 

release from a thrombia specific substrate was compared to 

deteroioe the effects of the test fractions. At this 

cooceotratioa, mini:nal effects vere observed for all test 

fractions. 



Figure 15 
Effect of Molecular Weight 

on Plasma Concentration Time Course 
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Figure 15. Five primates were administered a 250 ug/Kg 

dose of the 23,000 M.W. fraction. Blood samples were taken 

at 5, 10, 15, 30, 60, 120 and 180 minutes post injection and 

plasma concentrations were determined using the Heptest 

heparin assay. Semi-log plots were generated using the mean 

plasma concentrations of the five primates at each time 

interval. The error bars represent the standard deviation. 
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Figure 16. 

Figure 16 
Effect of Molecular Weight 

on Plasma Concentration Time Course 
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Five primates were administered a 250 ug/Kg 

dose of the 13,300 M.W. fraction. Blood samples were taken 

at 5, 10, 15, 30, 60, 120 and 180 minutes post injection and 

plasma concentrations were determined using the Heptest 

heparin assay. Semi-log plots were generated using the mean 

plasma concentrations of the five primates at each time 

interval. The error bars represent the standard deviation. 
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Figure 17 
Effect of Molecular Weight 

on Plasma Concentration Time Course 
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Figure 17. Five primates were administered a 250 ug/Kg 

dose of the 5,100 M.W. fraction. Blood samples were taken 

at 5, 10, 15, 30, 60, 120 and 180 minutes post injection and 

plasma concentrations were determined using the Heptest 

heparin assay. Semi-log plots were generated using the mean 

plasma concentrations of the five primates at each time 

interval. The error bars represent the standard deviation. 
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Figure 18. 

Figure 18 
Effect of Molecular Weight 

on Plasma Concentration Time Course 
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Five primates were administered a 250 ug/Kg 

dose of CY 216. Blood samples were taken at 5, 10, 15, 30, 

60, 120 and 180 minutes post injection and plasma 

concentrations were determined using the Heptest heparin 

assay. Semi-log plots were generated using the mean plasma 

concentrations of the five primates at each time interval. 

lbe error bars represent the standard deviation. 
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Figure 19. 

Figure 19 
Effect of Molecular Weight 

on Plasma Concentration Time Course 
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Five primates were administered a 250 ug/Kg 

dose of the unfractionated heparin. Blood samples were 

taken at 5, 10, 15, 30, 60, 120 and 180 minutes post 

injection and plasma concentrations were determined using 

the Hep test heparin assay. Semi-log plots were generated 

using the mean plasma concentrations of the five prioates at 

each time interval. The error bars represent the standard 

deviation. 
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Figure 20 
Effect of Molecular Weight 

on Plasma Concentration Time Course 
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Figure 20. 
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Five primates were administered a 1.0 mg/Kg 

dose of the 23,000 M.W. fraction. Blood samples were taken 

at 0, 2, 4, 6, 8, 10 and 12 hours post injection and plasma 

concentrations were determined using the Heptest heparin 

assay. Semi-log plots were generated using the mean plasma 

concentrations of the five primates at each time interval. 

1be error bars represent the standard deviation. 
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Figure 21. 

Figure 21 
Effect of Molecular Weight 

on Plasma Concentration Time Course 
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Five primates were administered a 1.0 mg/Kg 

dose of the 13,300 M.W. fraction. Blood samples ~ere taken 

at 0, 2, 4, 6, 8, 10 and 12 hours post injection and plasma 

concentrations were determined using the Heptest heparin 

assay. Semi-log plots were generated using the mean plasma 

concentrations of the five primates at each time interval. 

The error bars represent the standard deviation. 
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Figure 22 
Effect of Molecular Weight 

on Plasma Concentration Time Course 
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Five primates were administered a 1.0 mg/Kg 

dose of the 5,100 M.W. fraction. Blood samples were taken 

at 0, 2, 4, 6, 8, 10 and 12 hours post injection and plasma 

concentrations were determined using the Heptest heparin 

assay. Semi-log plots were generated using the mean plasma 

concentrations of the five primates at each time interval. 

The error bars represent the standard deviation. 
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Figure 23 
Effect of Molecular Weight 

on Plasma Concentration Time Course 
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Five primates were administered a 1.0 mg/Kg 

dose of CY 216. Blood samples were taken at 0, 2, 4, 6, 8, 

10 and 12 hours post injection and plasma concentrations 

were determined using the Heptest heparin assay. Semi-log 

plots were generated using the mean plasma concentrations of 

the five primates at each time interval. The error bars 

represent the standard deviation. 
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Figure 24, 

Figure 24 
Effect of Molecular Weight 

on Plasma Concentration Time Course 
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Five primates were administered a 1.0 mg/Kg 

dose of the unfractionated heparin. Blood samples were 

taken at 0, 2, 4, 6, 8, 10 and 12 hours post injection and 

plasma concentrations were determined using the Heptest 

heparin assay. Semi-log plots were generated using the mean 

plasma concentrations of the five primates at each time 

interval. The error bars represent the standard deviation. 
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Fl"gure 25 Effect of Molecu ar Weight on PCC/RVV 
Activated Stasis Thrombosis 

D11~1t •' C1t& ~o~••&lo" 

10,... 
I- Doot : 29 "'"'' r ~tw&I : l"&~1vt"owo ... 

-t 
i ,.. 
I 

4 ;-
,.. 
I 

i"' 
~ 
r 

2 :-
,.. 
L 
... 
I 

-

I. H. 000 M.W • 

I. ll. JOO M.lf. 

•· I. 100 •·•· 

I. CY 211 

o: ~~~~~~...1---::_.~~..J......:.,~_._.;.....<.~.__-
1 2 3 4 

• 

Figure 25. Male rabbits were anesthetized and segments of 

both jugular veins surgically exposed. Each test fraction 

was administered to five rabbits and allowed to circulate 

for five minutes. A thrombogenic challenge of prothrombin 

complex concentrate and Russells viper venom was given. 

After 20 seconds both jugular veins were ligated for exactly 

10 minutes and the jugular vein segments removed and 

evaluated for degree of clot formation. With the exception 

of the 5,100 M.W. fraction, all agents produced significant 

inhibition of clot form~.tion compared to control (p • .001). 
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Figure 26 
Effect of Molecurar Weight on PCC/RVV 
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Figure 26. Male rabbi ts were anesthetized and segments of 

both jugular veins surgically exposed. Each test fraction 

was administered to five rabbits and allowed to circulate 

for fh·e minutes. A thrombogenic challenge of prothrocbin 

complex concentrate and Russells viper venom was given. 

After 20 seconds both jugular veins were ligated for exactly 

10 minutes and the jugular vein segments removed and 

evaluated for degree of clot formation. All fractions 

produced significa~t antithrombotic actions compared to 

control. 
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Figure 27 
Effect of Molecular Weight on PCC/RVV 

Activated Stasis Thrombosis 

10 
Oo•• : 100 u;/~i 

&. COM,.ol 

I. H.ooo M.W. 

N • !I 

8 J. U.JOO M.W. 

•• 5. 100 ...... 

1 2 3 4 5 6 

Figure 27. Male rabbits were anesthetized and segments of 

both jugular veins surgically exposed. Each test fraction 

was administered to five rabbits and allowed to circulate 

for five minutes. A thrombogenic challenge of prothrombin 

complex concentrate and Russells viper venom was given. 

After 20 seconds both jugular veins were ligated for exactly 

10 minutes and the jugular vein segments removed and 

evaluated for degree of clot formation. All fractions 

produced significant antithrombotic actions compared to 

control. Tile unfractionated heparin was the only agent to .. 
produce complete inhibition in all five animals. 
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Effect of Molecliirew~~ght on PCC/RVV 
Activateo Stasis Thrombosis 
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Figure 28. Male rabbits (N • 5) were given subcutaneous 

injections of the test fractions at a dose of 1.0 mg/Kg. 

After four hours the rabbits were anesthetized and segments 

of both jugular veins surgically exposed. A thrombogenic 

challenge of prothrombin complex concentrate and Russells 

viper venom was given. After 20 seconds both jugular veins 

were ligated for exactly 10 minutes and the jugular vein 

segments removed and evaluated for degree of clot formation. 

With the exception of the 23,000 M.W. fraction, all agents 

produced significant antithrombotic effects compared to 

control. Error bars represent standard deviation 
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APPENDIX I 

conceptual Representation of the Molecular Diversity in Heparin 

I I I I • 

I I I I 

~ OOOECAS.ACCHARIOE 
.,_... HEXASACCHARJOE . n 

Dietrich et al., 1975 

i ---------------
21 COMPONENTS OF 
ISOELECTRIC FOCUSING 

• 
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APPENDIX II 

The Chemical Structure of Heparin 

, ;-; h . coo· h h ~~ f; 
€J~~/;;Jv'ef0if:t~~o· 

bsoj NMSOj OH NHA, OH NHSOj osoj NHSOj oso; NHSOj 

R • H or so3 

(Adapted from Choay et al, Fareed, 1985) 
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HUMAN COAGULATION PROTEINS 

Clotting Factors 

Name Molecular Weight Plasma Cone. Active Form 

Factor XII 80,000 30 ug/ml serine protease 

Prekallikrein 80,000 50 ug/ml serine protease 

High Molecular 
Weight Kininogen 120,000 70 ug/ml cofactor 

Factor XI 160,000 4 ug/ml serine protease 

Factor IX 57,000 4 ug/ml serine protease 

Factor VII/ 
von Willebrand 
factor 2,000,000 7 ug/ml cofactor 

Factor VII 47,000 1 ug/ml serine protease 

Tissue Factor 45,000 0 cofactor 

Factor x 59,000 5 ug/ml serine protease 

Factor v 330,000 5 - 10 ug/ml cofactor 
• 

Factor II 70,000 100 ug/ml serine protease 

Fibrinogen 340,000 250 mg/dl clot structure 

Factor XIII 300,000 10 ug/ml transaminase 

Regulatory Factors 

Antithrombin III 64,000 29 mg/dl Inhibitor 

Protein c 62,000 .5 ug/ml Serine protease 

Protein s 65,000 ? Regulates Protien C 

Thompson and Harker, 1983 
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APPENDIX IV 

Conceptual Representation of the Coagulation Network 
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Analysis Of The Unfractionated Heparin And 
A Low Molecular Weight Heparin (CY 216) 

Unfractionated 
Heparin 

Lot number ................ . 

Description ............... . 

Color ..................... . 

Origin, Intestinal Mucosa .• 

Molecular Weight 

Chemical Data 

USP Potency, as is 

AXa Potency, as is 

Loss on Drying ....••. 

Residue on Ignition •• 

Nitrogen Content ..... 

Heavy Metals ••••••••• 

pH @ 1 % ••••••••••••• 

Protein Content ••••.. 

Solubility @ 20,000 
U /ml ................ . 

Absorbance @ 20,000 
U/ml at 400 nm ..••.•• 

Uronic Acid (%) 

So3-/coo- (meq) 

Pyrogen DY LAL ..••.•• 

H-410 

Powder 

White 

Porcine 

12,500 

160 U/mg 

154 U/mg 

3.1 % 

38.7 % 

2.2 % 

< 10 ppm 

6.94 

Negative 

Clear 

0.015 

24.5 

2.44 Neg. 

Negative 

• 

Low Molecular 
Weight Heparin 

XH 46 

Powder 

White 

Porcine 

5,400 

58 U/mg 

96 U/mg 

2.9 % 

29 % 
• 

2.3 % 

< 10 ppm 

6.86 

Negative 

23.9 

2.23 Neg. 

Negative 
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APPENDIX VI 
Method for Prothrombin Time Assay 

Principle 

The prothrombin time (PT) is a screening test for the 
extrinsic pathway of coagulation (factors VII, X, V, II, 
I) and for the monitoring of coumadii therapy. It is 
based on the measurement of time to clot after plasma has 
been activated by tissue thromboplastin and CaCl2. 

Reagents 

1. Thromboplastin-calcium reagent (Dade, Miami, FL). 
Reconstituted according to manufacturer's instructions. 

2. Citrated test plasma (platelet poor) 

3. Normal plasma control 

Procedure 

Incubate 100 ul plasma at 370 C in fibrometer* for 3 
minutes. 

Add 200 ul of pre-warmed 
immediately record time 
activator. 

(370 C) throm~oplastin-C and 
to clot upon addition of 

* The fibrometer is a electro-mechanical device used to 
detect clot formation. It utilizes a probe arm which 
drops into a reaction vessel and alternately descends and 
rises in a sweeping motion to sense the formation of a 
clot. When the reagents are in a fluid phase, an electric 
current is transmitted. As clotting begins, the 
electrical conductance is reduced, the electrode and 
mechanical timer stop and the clotting time is read from 
the digital readout. 
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APPENDIX VII 
Method for Activated Partial Thromboplastin Time Assay 

Principle 

The activated partial thromboplastin time assay is a 
screening test for the intrinsic pathway of coagulation 
(factors XII, XI, IX, VIII, X, V, II, I) and for 
monitoring heparin therapy. It is based on the time for 
plasma to clot after activation by a platelet substitute 
(phospholipid) activator and CaCl2. 

Reagents 

1. APTT reagent (General Diagnostics, Morris Plains, NJ) 
containing phospholipid and micronized silica is 
reconstituted as directed by the manufacturer. 

2. CaCl2 (0.025 M) 

3. Citrated test plasma (platelet poor) 

4. Normal plasma control 

Procedure • 

Add 100 ul of APTT reagent to 100 ul of plasma. 
at 370 C for 5 minutes in fibrometer well. 

Incubate 

Add 100 ul of prewarmed (370 C) .025 M CaCl2 and record 
time to clot immediately upon adding the CaCl2. 
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APPENDIX VIII 
Method for Heptest Heparin Assay 

Principle 

The heptest assay is a clot based test for determining 
heparin concentrations in plasma. Inhibition of factor's 
Xa and Ila is accelerated by hep•rin bound to 
antithrombin-III. The amount of factor Xa/IIa activity 
neutralized during a specific time period is directly 
proportional to the concentration of heparin in the 
reaction mixture. 

Reagents 

1. Factor Xa (supplied by manufacturer) reconstituted in 
2.0 ml distilled water. The factor Xa is kept at room 
temperature. 

2. Recalmix (supplied by manufacturer) containing 
phospholipid and fibrinogen is reconstituted in 2.0 ml 
distilled water. The recalmix must be pre-warmed to 370 C 
for at least 10 minutes before using. 

Procedure 
• 

100 ul of plasma is pre-warmed in the fibrometer for 3 
minutes. 

100 ul of factor Xa is added to the plasma and incubated 
for exactly 2 minutes. 

After the 2 minute incubation, 100 ul of recalmix is added 
and the time to clot is recorded from this point using the 
fibrometer. 
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APPENDIX IX 
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Calibration Curve for 
Toluidine Blue Assay 

Abs 606 

0.30 

0.20 

0 .10 

0 . 00 ___.__.__...__.__.._~~.._._.__.~~_.._~.._ 
0.00 50.00 100.00150.00200.00 

Heparin Cone. ug/ml 
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APPENDIX XI 
Reference Standards For GAG Molecular Weight Determination 

Reference Standard 

Hyaluronate 

CH-6-S 

CH-2-S 

Choay Stnd.#1 (heparin) 

Barlow Stnd. #2 (heparin) 

CH-4-S 

Barlow Stnd. #3 (heparin) 

Choay Stnd. #3 (heparin) 

Barlow Stnd. #5 

Choay Stnd. #5 

Octodecasaccharide 

Hexadecasaccharide 

Tetradecasaccharide 

Dodecasaccharide 

Decasaccharide 

Octosaccharide 

Hexasaccharide 

Pentasaccharide 

Tetrasaccharide 

Disaccharide 

Molecular Weight 

230,000 

45,000 

29,000 

22,900 

16,500 

15,000 

13.280 

12,600 

7,700 

7,570 

5,706 

5,~72 

4,438 

3.804 

3' 170 

2.336 

1.902 

1,585 

1,268 

634 
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APPENDIX XII 
GPC TSK 2000 

Log molecular weight 

4 

!5 7 

Retention time 



APPENDIX XIII 

• 



266 

APPENDIX XIII 
GPC TSK 3000 

Log molecular weight 

4 

!5 6 7 9 

Retention time 
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HPLC-GPC Profile of Unf r?ctionated Heparin 

Column TSK 2000 

AcQu1s1t1on m•tnod 
Un 1 ts 

r Chann•l 
; In J •ct 1 on 
, P.un tim• 

InJ•c:t1on volum• 
Irit•rnal standard Amt 
Mode 
V•rs1or-. 
tiirscr1pt1on 

COLO~#~E: TSK 2000Si-i VI 

~.403 

'=a~t!ZG02 
20C.u9 
1 
l 
l~.00 min 
20 uL 

Anal vs is 
RE'.'O~.O 

Detector UV 205 

17:4:'.a:17 

Q~ant1tat1on m•tnDd 
S·Jst•m numo•r 
V1 ;ol 
Total in)•ct1ons 
S;imcl• rat• 
Same!• amount 
S::a.o• factor 
Fl•tPons• factors 
Chann•l to cal1brat• 

9a~t:£C:GC:~ 

1 
l 
l 
2 p•r sec 

SOL.VANT: t~a2S04 0, ~ DETECTEUF: W 

cum :; 

~C• 1 
I 

60 i 
I 

70 "". 
! 

Hl -
I 

~c 1 

•0 1 
~a ... 

/\__ '.: j 
1!.250 ~~..::.;.c:::::::::..:.~.:.;.:~~!.l:~~~~.!..!,.;.;..;~:.:.:.;::::::::;::i=::.'~' -----'~;;;;:;;::;;;;;;;;;;,;;; 

10 11 
49.~6 

12 
CUlll :. I 

I 
Q" ""'! .• I 

I 

~" ... I 
I 

:-~ i 
60 -: 

I 
!O i 

·"~ -
:o ~ 

: 
zo 1 
10 -

14. 64e -1====-.::::.-====~::::::======~=::::::::::::::======::::-_;I 
e 

W•19ht Av•ra43• 
Z Avera43• 
Viscosity AveraQ• 
Z + l Av•r•'3• -
M: / l"o..I 

12487 
16723 
12487 
33376 
.l .33~ 

10 

Numb•r Avera43• 
Disp•rsivity 
Intrinsic Viscosity 
P•ak Mol W•i 43nt 
M:Tl / Mw 

927'!5 
1.346 
o.ooo 
13108 
2.673 
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APPENDIX XIV a 

Frequency Distribution of Molecular Weight Components 

Column TSK 2000 

Unfractionated heparin 

Ret. time Mal. Wt. Cum. % Slice area 

S.'!~O ~2:.€3 0.217 4947 
'!. €vo 453:?7 0.467 1c:.:.9 
5. :-:c 3992? 0.663 16:;47 
'! .Ei:O 3~2::: 1.434 22~€1 

~.=-Jo 31~77 2.!~; 30630 
6 .C·CO z-:i1 ire ..... __ 3.206 411 ~3 
E.lCO 2'!4'.;7 4.~~= ~477~ 

6 ·''"" 
2:::::1 6.~~3 70€16 

6. ::co 2!.!E3 e.~!.~ 901:03 
6.4:;C 1:!'47€ 11.223 112439 
6 .5:0 18021 14.639 1363'!3 
6.6vo 16760 18.'!67 1ca•cQ 

6. :-:o 1'!662 22.99'! 179456 
6.S~C 147C l 27.760 :.939€9 
6.?~Q 13856 32.747 202'!'!4 
7.c:o 13108 37.782 204'!48 
7.:.co 12443 42.739 201339 
7.2:0 1:.849 47.!!!. 1~3=~~ 
7.:::o 11312 '!2.C47 164263 
7. 4~0 10826 S6.33c 174206 
7.'!:0 10382 60.333 162332 
7.6~:; ~~74 64.CS~ 1~!~42 

7. :-:o 95:04 67 .'!:.3 140302 
7.SOO 9239 70. 710 12?'346 
:'.~~a 8902 73.666 120076 
0. c:i:; 9591 76.339 110609 
'!! .:.:o 8271 78.891 101Ei2 • 
e.z~~ 79"0 81.:.77 92923 
0.:::0 7674 93.269 84942 
S.4CO 7392 s5.:.s7 77?60 
8. '!:o 7091 86.948 71'!33 
8.0~0 6800 e0.s.:;.; 65750 
a. ;-~c 6507 90.043 ~~~63 
8.SOQ 6-·-, ... , 91.355 54SC9 
8.?')0 ~~!~ ?2.602 4:-437 
S-. CCiJ 5614 93.:"CO 44~:?9 

9. :.:o ~~10 94.cSS 40042 
~.::: 5004 ~s.:~6 3~~~6 
? . :::J 46?6 :!'6.:::.1 30Eo.O 
:a. ~.Jc 4388 96 • .?47 25934 
~.~:; 4080 ~7 . .;61 20660 
!l.6CC 3"'"' .. '. ~ 97.65'! 1~9:16 

~. :-:o 3473 99.:.40 llCU7 
!'.SOC .3177 98.;';34 7S7S 
9. si·~c zsae !'9 . ..:67 5407 

10.~C~ .2609 ~9.!:'4 43·H 
lo.~;J 2340 99.ti90 4665 
lo.:oo 2094 99.828 5625 
10.300 1943 98.973 5969 
10.4.JO 1616 9~.l!' ~674 

10.'!~0 1406 ~si.::2g ~!~2 
10 .6il0 1213 99.376 5603 
lo.:-:o 1037 99.!01 5070 
l0.<:00 87S 9?.u49 ~~~4 

10.~!)0 

__ .,. 
I.;,' l00.000 14259 
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HPLC-GPC Profile of the 23,000 M.W. Fraction 

Column TSK 2000 Solvent NazS04 0.5 M Deteo: tor t;'; 205 

683HH1 

~ccu1s1t1on m•t~oa 

Un 1 ts 
ct-.ann•l 
Ir.' •Ct 1 on 
F.un t 1m• 
In1•<:t1on Yolum• 
Ir.t•rn•l stanaerc ._,.,t 
Moc• 
t.'•rs1on 
O•s-:.r1i;.tton 

4/£'/86 

9;~aO:E02 

2o"u9 
1 
1 
i:..oo min 
20 uL 

Analysis 
P.E'J03. 0 

18:0010~ 

'Jia.l. 
Tot•.l. 1r.1•-:t1or.s 
Sill!ID.l.• r•t• 
Serr.ole amount 
S=a.l.e factor 
i:: .• £oor.se f ectors 
Channe.l. to <:al!brat• 

:. 

COLOt.NE: TSK 2~oos;... VI SOL'.IANT: Na2S04 0, ~'1 DETECiELJP.: W 20'!5 

8'?.681 -

,j} 

~Z.033 

; ~ i 111 
·I ' 

v1 11 

1 

• 

JI I I,. 

Y: I Ii Ii 
/1· 1!!1:111111 14.19.0 

~ 

S9.SS1 

... 
I 

l-l•19ht Avera43e 
Z AYeT"aQ• 
Viscosity Avera43• 
Z + 1 Av•r•A• 
Hz / Hu • 

~ 

24299 
28624 
24299 
49348 
1.178 

; 

~ 
111nut•s 

1e 11 

10 

Numoer Av•ra43• 21'!511 
Disoers1v1ty 1.130 
Intrinsic Viscosity 0.000 
Peak Hol ~•143ht 23131 
H:~l / l1w 2.031 

12 

eurn .• I 
I Q" i . . I 

se 1 
;e -, 

I 

t:~t -
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Frequency Distribution of ~olecular Weight Components 

Column TSK 2000 

23,000 M.W. Fraction 

Ret. time Mol. Wt. Cum. % Slice area 

5.500 52169 1.002 20658 
5.600 45397 2.201 38042 
5.700 39829 4.579 75479 
5.800 35219 9.280 149182 
5.900 31377 17.156 249970 
6.000 28155 28.219 351078 
6.100 25437 41.601 424715 
6.200 23131 55.774 449774 
6.200 21163 68.936 417723 
6.400 19476 79.643 339809 
6.500 18021 87.245 241242 
6.600 16760 92.082 153521 
6.700 156c2 94.931 90412 
6.200 14701 96.565 5186~ 
6.:000 13856 97.513 30091 
7.000 13108 98.087 18216 
7.100 12443 98.446 11371 
7.200 11848 98.682 7505 

• 
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HPLC-GPC Profile of the 17,450 M.W. Fraction 

Column TSI: 2000 

683HH2 

~cou1s1t1on m•t~cc 

un 1 ts 
Ct".anne.I. 

Rur. time 
InJecuon uo.l.ume 
Ir.terr:a.I. star.o•ro 6mt 
Mooe 
1 
... '•"' 11 on 
Oescnption 

CCLOt·ll'<E: TSK 200CSi-l VI 

p.72? 

13.345 

!: 

94.113 

~3.667 

l 
13.Z.S.:. I 

0 

Weic:iht Auerac:ie 
Z A~era'3e . 
Viscosity Auer•'3• 
Z + 1 Auer•'3• 
H:z: / Hw 

6 

4/~/96 

gagtsZEv2 
2COug 
l 
l 
i:.oc• n'\1n 
20 uL 

Ar.alus1 s 
REvo:;.o 

Detector UV 205 

19116:4~ 

Ouant1t•t1on methcc 
S11stem numoer 
V1iil 
Total inJect1ons 
Samele rate 
SillYlple ~ount 
Scale factor 
Resoonse factors 
Channel to calibrate 

~·~-::s,CO~ 
l 
3 
1 
2 PH sec 

SOL1.iANT: Nii2S04 0, :M CCTEC~E:.JF: w 20: 

I 

17559 
19439 
17559 
27466 
1.107 

; 

!: 

---------

• 
9 9 10 11 

M1nute:r 

iw I I 
11

1 

:~1 
t: 

k 

r 
1iil l 11 Jl!!!,l1 L 

10 
Minute!' 

NumOer Au•r•'3• 
Oispersau1ty 
Intrinsic Viscosity 
P•ak Hol Wea ght -
H:z:+l / Hw 

16106 
1.090 
0.000 
16760 
1.564 

~~j 
so 

70 

60 

!:ll 

40 

~o I 
2e 1 
10 ~ 

I 

1, 

cum :, I 
"'' -I 
90 1 
::-e i 

I 

60 1 
~13 i 
·~ ., I 
"0 -I 
~ I 
"', 

I 
1£1 ; 
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Frequency Distribution of Molecular Weight Components 

Column TSK 2000 

17,450 M.W. Fraction 

Ret. time Mol. Wt. Cum. % Slice area 
5.500 52169 0.168 2862 
5.600 45:397 0.367 7100 
5.700 39829 0.752 13742 
5.800 35219 1.288 19158 
5.900 31377 2.099 28954 
6.000 ")Q, C'C' 

'--•w-.1 3.590 53240 
6.100 2=437 6.459 102451 
6.200 23131 11.489 179593 
6.300 21163 19.265 277679 
6.400 19476 29.794 375964 
6.500 18021 42.395 449951 
6.600 16760 55.834 479893 
6.700 15662 68.605 456014 
6.800 14701 79.392 385161 
6.900 138=6 87.432 287099 
7.000 13108 92.744 189697 
7.100 12443 95.974 111748 
7.200 11848 97.523 58888 
7.300 11312 98.332 28893 
7.400 10826 98.718 13771 
7.500 10382 98. 903 • 6632 
7.600 9974 99.001 3486 



APPE~DIX XIV d 

HPLC-GPC Profile of the ~5,000 M.W. Fraction 

Column TSK 2000 
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APPENDIX XIV d 

Frequency Distribution of Molecular Weight Components 

Ret. time 
5.700 
5.800 
5. '.?00 
6.000 
6.100 
6.200 
6.300 
6.400 
6.500 
6.600 
6.700 
6.800 
6.900 
7.000 
7.100 
7.200 
7.300 
7.400 
7.500 
7.600 
7.700 
7.800 
7.900 

Mol. Wt. 
39829 
35219 
31377 
28155 
25437 
23131 
21163 
19476 
18021 
16760 
15662 
14701 
13856 
13108 
12443 
11848 
11312 
10826 
10382 

9974 
9594 
9239 
8902 

Column TSK 2000 

15,000 M.W. Fraction 

Cum. % 
0.354 
0 .541 
0.806 
1.160 
1.692 
2.650 
4.455 
7.669 

12.944 
20.739 
31. 093 
43.400 
56.464 
68.875 
79.384 
87.331 
92.686 
95.953 
97.770 
98.722 
99.130 
99.408 
99.509 

Slice area 

4030 
6616 
9370 
12558 
18805 
33930 
638i5 
113782 
186710 
275864 
366484 
435626 
462415 
4392E1 
371957 
291302 
189518 
115641 
64329 
33707 
16566 
7665 
~c:.,~ 
..;-..it -
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APPENDIX XIV e 

HPLC-GPC Profile of the 1,3,300 M.W. Fraction 

Column TSK 2000 

0 S3HH4 
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12843 
1:5804 
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1.231 
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lntr1ns1c Viscosity 
P••k Ho.1 W•19nt 
H:~l .' Hw 
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APPE~DIX XIV e 

Frequency Distribution of Molecular Weight Components 

Column TSK 2000 

13,300 M.W. Fraction 

Ret. time Mal. Wt. Cum. % Slice area 
6.000 28155 0.601 6119 
6.100 25437 0.857 9842 
6.200 23131 1.263 15619 
6.300 21163 1.939 21:'C.QIC' 

...,)- _, "'111 

6.400 19476 3.128 45718 
6.500 18021 5.191 79370 
6.600 16760 8.549 129147 
6.700 156€2 13.608 194574 
6.800 14701 20.603 269035 
6.900 13856 29.484 341548 
7.000 13108 39.815 397349 
7.100 12443 50.881 425614 
7.200 11848 61.815 420512 
7.300 11312 71.792 383733 
7.400 10826 80.231 324561 
7.500 10382 86.831 253857 
7.600 9974 91.617 194094 
7. 700 9594 94.814 122956 
7.800 9239 96.792 76045 
7.900 8902 97.910 43028 
8.000 8581 99.47! 21764 
8.100 8271 98.731 9814 
8.200 7970 98.836 4044 
8.300 7674 98.867 1174 



APPENDIX XIV f 

HPLC-G?C Profile of the Jl,750 M.W. Fraction 

Column TSK 2000 

683HH~ 
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Z A~ua43• . 
Viscosity A1o1era43e 
Z + 1 A1o1er a43e 
Mz / Mw 

11393 
14026 
11393 
44130 
1.231 

5 
l'ltnutH 

10 

Number A1o1erase 
Oisoers11o11ty 
Intrinsic Viscos1ty 
Peak Mo.l We143ht 
H:z:+l / l'tJ 

1066~ 

1.060 
o.ooo 
10826 
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APPENDIX XIV f 

Frequency Distribution of Molecular Weight Components 

Column TSK 2000 

11,750 M.W. Fraction 

Ret. time Mol. Wt. Cum. % Slice area 
6.200 23131 0.806 11050 
6.300 21163 1.241 16166 
6.400 19476 1.901 24476 
6.500 18021 2.897 36957 
6.600 16760 4.412 56231 
6.700 15662 6.679 84120 
6.800 14701 9.929 120599 
6.900 13856 14.374 164942 
7.000 13108 20 .159 214659 
7.100 12443 27.256 263349 
7.200 11848 35.477 305065 
7.300 11312 44.451 332978 
7.400 10826 53.717 343850 
7.500 10382 6~.801 337085 
7.600 9~74 71.258 313800 
7.700 9594 78.709 276507 
7.800 9239 84.921 230495 
7.900 8902 89.822 181876 
8.000 8581 93.450 134593 
8.100 8271 95.966• 93370 
8.200 7970 97.581 59920 
8.300 7674 98.552 36030 
8.400 7382 99 .114 20873 
8.500 7091 99.416 11217 
8.600 6800 99.569 5681 
~. 700 6507 99.641 2662 
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APPE:-IDIX XIV g 

HPLC-GPC Profile of the lp,400 M.W. Fraction 

Column TSK 2000 Solvent ~azS04 0.5 M Detector UV 205 
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HPLC-GPC Profile of the 9,000 M.W. Fraction 

Column TSK 2000 Detector UV 205 

69:3HH7 
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APPENDIX XIV h 

Frequency Distribution of Molecular Weight Components 

Column TSK 2000 

9,000 M.W. Fraction 

Ret. time Mol. Wt. Cum. % Slice area 
Oo'+UU l. ::::i'+ l'b 0.671 10111 
6.500 18021 1.043 18331 
6.600 16760 1.642 29495 
6.700 15662 2.51~ 43013 
6.800 14701 3.699 58342 
6.900 13856 5.214 74603 
7.000 13108 7. 063 91098 
7.100 12443 9.2::4 107~::2 

7.200 11848 11.799 12540:: 
7.300 11312 14.709 143338 
7.400 10826 18.010 162612 
7.500 10382 21. 749 184225 
7.600 9974 25.920 20::46a 
7.700 9594 30.546 2-:"_0__,0 

-1-"--
7.800 9239 35.661 251962 
7.900 8902 41.262 27::944 
8.000 8581 47.318 298347 
8.100 8271 53.750 316880 
8.200 7970 60.409 328089 
8.300 7674 67 .103 329742 
8.400 7382 73.60$ 320286 
8.500 7091 79.663 298499 
8.600 6800 85. 034 264603 
8.700 6507 89.528 221412 
8.800 6212 93. 058 173993 
8.900 5915 95.642 127314 
~.000 5614 97.393 86275 
9.100 5310 99.491 54074 
9.200 5004 99 .122 31097 
9.300 4696 99.457 16490 
9.400 4388 99.619 7994 
9.500 4080 99.685 3249 



APPENDIX XIV i 

HPLC-GPC Profile of the.7,400 M.W. Fraction 

Column TSK 2000 
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APPENDIX XIV i 

Frequency Distribution of Mo~ecular Weight Components 

Ret. time 
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Column TSK 2000 

7,400 M.W. Fraction 

Cum. % 
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40 .157 
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82.357 
96.918 
90.765 
93.818 
96.082 
97.630 
98.612 
99 .182 
99.489 
99.643 
99.715 

Slice area 
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65603 
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APPENDIX XIV j 

HPLC-GPC Profile of the .?.100 M.W. Fraction 

Column TSK 2000 Detector UV 205 
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APPENDIX XIV j 

Frequency Distribution of Mol~cular Weight Components 

Column TSK 2000 

5,100 M.W. Fraction 

Ret. time Mol. Wt. -.SuE!. % Slice area 
7.200 11848 1.194 5031 
7.300 11312 1.340 6950 
7.400 10826 1.540 9322 
7.::oo 10382 1.815 12864 
7.600 9:<74 2.200 18021 
7.700 9594 2.735 25060 
7.800 g23~ 3.465 34135 
7.900 8902 4.427 45042 
8.000 8581 5.669 58118 
8.100 8271 7.223 72736 
8.200 7970 9.120 88789 
6.300 7674 11.396 106489 
8.400 7382 14.063 124847 
s.::oo 7091 17 .140 144012 
8.600 6800 20.628 163203 
E:.700 6507 24.519 182095 
8.8(:0 6_,-, ..::. ..... 28.813 200~90 
8.:?00 5915 33.526 220549 
9.000 5614 38.689 241671 
9.100 52.10 44.333 264142 
9. 2C'0 5004 50.475 • 287425 
='.300 4€?6 57. 055 307980 
9.400 4388 63.940 322186 
9.500 4080 70.861 322~30 
~.600 3775 77.438 307796 
~.700 3473 63.264 272680 
9.800 3177 89.041 223552 
9.900 2888 91.684 170503 

10.000 2609 94.294 122131 
10.100 2340 96.100 84541 
10.200 2084 97.349 58441 
10.300 1843 98.240 41712 
10.400 1616 98.984 30150 
10.500 1406 99.342 21419 
10.600 1213 99.655 14667 
10.700 1037 99.670 10048 
10.800 878 99.982 5234 
10.900 737 100.000 651 



Column TSK 2000 
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APPENDIX XIV k 

HPLC-GPC Profile of CY 216 

Detector UV 205 
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IntT1nsic Viscosity 

.P•ak Ho.1 Weight 
H:+l / Mw 

4391 
1.230 
o.ooo 
4308 

16.010 
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Frequency Distribution of Molecular Weight Components 

Column TSK 2000 

CY 216 

Ret. time Mol. Wt. Cum. % Slice area 
7.000 13108 0.631 30S8 
7.100 12443 0.753 3870 
7.200 11848 0.931 5638 
7.300 11312 1.173 7665 
7.400 10826 1.497 10281 
7.500 10382 1.944 14168 
7.600 9974 2.522 18341 
7.700 9~~4 3.2:s 22317 
7.900 9239 4.175 29087 
7.900 8902 5.309 35941 
8.000 6581 6.688 43749 
8.100 8271 8.~44 52500 
8.200 7970 10.315 62478 
S.300 7674 12.636 73598 
8.400 7382 1:5.336 85610 
8.500 7091 18.444 98543 
8.600 6800 21.987 112363 
8.700 6507 25.~99 127194 
8.800 6-, "") .::._ .... 30 • .:l.67 141668 
8. '.?00 5915 35.398 156348 
9.000 S614 40.758 169946 
9.100 5310 46.507 • 182283 
9.200 5004 :2.=65 192086 
9.300 4696 58.914 198146 
9.400 4388 65.104 1994.:J.3 
9 .. 500 4080 71.244 194673 

•9. 600 3775 77.037 183686 
9.700 3473 82.302 166?35 
9.800 3177 EG.850 144189 
9.:?00 28:::8 :?O • i;o S 1:=-·157" 

10.000 2609 :-2.~so ?4226 
10.100 2:::40 95.809 706.?0 
10.200 2084 97.402 50~22 
10.300 1843 98.481 34203 
10.400 1616 99.187 22386 
10.500 1406 99.610 1 "'':"OIOI .,j~-·-

10.600 1213 99.829 6956 
10.700 1037 99.893 2043 
10.800 878 99.917 740 
10.900 737 100.000 2637 
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APPENDIX XV a 

HPLC-GPC Profile of the unfractionated heparin 

Column TSK 3000 

Acau1!1t1on m•thoc 
ur. i ti> 
ci-.ar.n•l 
lr.Ject:cr. 
Run tim• 
! n J •e~ ion voL1me 
Internal stancard amt 
ModE 
Ver!ion 
Descrii;.tion 

COLOMNE: TSK 3000S:..I l I l 

47,041 -

31..071 

47.041 

., 

Solvent NazS04 0.5 M Detector UV 205 

4/10/96 

s•?~s3303 
2~0 ... 9 
l 
l 
::.cc min 
2C UL. 

i:.rial ·;sis 
PE'JOZ. 0 

19149:1::: 

Ouantitation ~•thod 
S·;stem numoer 
'Jial 
Total inJee~:~ns 

S.:.mclli rat& 
Samele .vnour.t 
Sea.le factor 
P.1uponse factors 
Channel to calibrate 

Replace 
1 

SOL'JANT: NA2S04 0, SM DETEC7EUR: VJ 205 mn 

r r 
Jo" 6.0 s.5• 9.0 

1e 

I 
90 -: 

I 
S0 1 

I 
70 ~ 

I 
60 -; 

I 
I 

~o -
I 

40 -' 

10.0 10.5 

CUhl ;, 

?9 : 

so -: 

"linute~ 

Molecular Weight Distribution Averages 

Weight Average 
Z Averaq• 
Viscosity Average 

! Z + l Average 
Hz / r-t.i 

i:z,;.;o 
14877 
12660 
1702:3 
1.17~ 

Numcer Average 
Dispersivity 
Intrinsic Viscosity 
Peak Mol Weight . 
Mz+l / f't.I 

100S9 
1.261 
o.ooo 
14011 
1. :34~ 
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APPENDIX XV a 

Frequency Distribution of Molecular ~eight Components 

Ret. time 
:i.uuu 
: .:.ci:i 

~-~OG 
~.400 .. ,.. .. 
-·--~ 
: . i·~C 

~.'.?CIC 
b.:.cc 
6.:.:o 
6.:~c 

6.::o 
6.400 
6.!~IJ 
e . .;«;:: 
6. ;-.;c 
6.aoc 
6. :·:c 
7.:JCO - .... ,. , ..... ... 
7.2:C 
I• .;1,,. U 

7.41JO 
7.!:C 
~ .~.:c 

7.:i:o 
7. :?00 
s.occ 
e.:.:c 
e . .:~c 
e.:;,c 
s • .;:;o 
e. !·:ei 
s.cc~ 
e. ;-.: : 

a.:~:: 
:- .. .::c: 
!I' ........ 
=' • .:: : 
:1 • .::= 

~ • .;.:.o 
?. :-oo 
~.soc 
?.:?00 

10 .uOO 
lO .:.:o 
io • .:oo 
:.o.:oo 
10 ... oo 
10.!00 
10.uOO 
10. 700 
10.zoo 
10.:?00 
11.000-
ll.!OO 
ll.~00 

Mol. Wt. 
44432 
41E=O 

~74!'32 

3!4~$ 

21oa7 
'6ea7 
~!:GE 
24~Z,4 

23!46 
ZZ6Z7 
~!i€Z 
2C~,j~ 

zo:.7:. 
H 14::! 
1Ei34 
lEQG.: 
17'1Z:! 
16co: 
16Zl0 
1!6!! 
1!07? 
14!.~3 
140:.:. 
li4?9 
12='£'6 
1~~·::4 

1ZC2~ 
l!'!il? 
11054 
10GZ7 
10177' 

?7::4 
?2:?~ 
ESG? 
S447 
&o::: 
:c~.; __ ,..._..,, 
. -....-.;:. 

~7J! 
!J.;:­
:oo:: 
40_;0 
43.;3 
403l 
~730 

3442 
3167 
2?0:5 
2G5G 
2420 
21?8 
1?!0 
17?4 
1612 
1443 

Column TSK 3000 

Unf ractionated heparin 

Cum. % 
0.039 
a.on 
O.J?:> 
CJ .1::. 
0.2Z6 
0 .::::: 
0.473 
0.6!!' 
o.e~:: 
l.~E7 
1.!~! 

z.o,:i 

4.:.c.; 
:.204 
6.4!~ 

i.~:6 
!'.i!:' 

11.a~= 
14.~~4 

1;.z::: 
20 .4'!:> 

~/ •' c.-. 
~!. ;-3:: 

!?.?!t 
4'3.~~~ 

47.:?£': 
~: . .:c;: 
~=-~~' 
~~.:_44 

6,.~~~ 
6:.:-.:~ 

oc.:-:? 
7:. .c.;;! 
74.~i!:: 

~::.~~c 

=~.~~: 

S'~ • .:s: 
::ao • .::.:. 
!'7 .01: 
S'7.0?2 
~9.Z~!l 
98. ;;;;1 
98.969 
S'~.!S9' 
~!.3~Z 
99 • .;97 
~~.616 
9!.:'46 
99.97: 

100.000 

Slice area 
--7~7- -

976 
16.;: 
'44Z 
3431 
4831 
63!3 
6437 
106.;? 
1 ""'"'Q 
16;;.;; 
21::'.70 
,6:03.l 
31!26 
3?0l:. 
471 E7 
:67C:~ 

601:::: 
8li42 
97160 
1:::'~' 
12~71 :l 
14:4~~ 

1:~S~! 
1 ~~ .. ., .. 
ieo:.:..; 

le,;.;.::; 
1s:;c6 
ie1:::: 
17~·~1;: 
l66.S~!' 
l6iC::? 
1:~7.:.7 

14~S7? 

13'.:"C! 
130::~4 

1Z2~~3 

!! ~St:l ..... -.- .. 
•lol• -.:i ... 

:.c:::.;~3 

-·:--·": 

.,;.:; : : . 

!3C':.! 
~==!·J 
47~=~ 

.1C:C:: 
~i:; .. eo 
::06a2 
24641 
1?134 
14004 

7396 
6113 
:s6o 
:~17 

• 
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HPLC-GPC Profile of the 23,000 M.W. fraction 

Column TSK 3000 Solvent Na2S04 0.5 M Detector UV 205 

683H1 4/10/86 

~~:~1s1t:on metnoc 3~~t!3203 
Un1~s ~OOus 

Ch~nn•l l 
l~Jec::on l 
~un time 1e:.oo min 
lnJec:t1on vol~me 20 uL 
lr.terr.•.l £tar.ca.re: ~t 
Moc:e Analvs15 
Ver!1on RE!O!.O 
Desc:r1pt1on 

19:04153 

Ou~nt!~~t:on ~•,Mod 

$v!tem numoel" 

To~i.i. :n)ec:tions 
Same.lot "ate 
Samo l • .,.,,oun ~ 
S.::a.le f•c-:or 
Resoon!e f•c:tors 
Channel to calibrate 

9ag~£33C3 

l 
2 
1 
2 per sec: 

C~LCtlNE: TSK :;ooos:~ I I I SOL'.'ANT: NA2SC4 0, ~ OETEC7EUR: lJJ 205 mn 

SL e:11 

48.805 

l 
4.0 

si.e:11 .... 
10.0 Hl.S 

0 s 
Minute~ 

ia 

Molecular ~eight Distribution Averages 

Wei9ht Average 
i Z AV1l'ra9e 
Viscosity Av!l'rage 
Z + 1 Avll'ragll' 
Mz / l"\.I 

21691 
22527 
21691 
23509 
1.039 

Numoer Average 
Di spersivi tv 
Intrinsic: Viscosity 
Peak Mel Wtu ght 
Mz+l / l"\.i 

20354 
l.066 
o.ooo 
20945 
1.084 

' 
~0 

' so i 
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APPENDIX XV b 

Frequency Distribution of Molecular Weight Components 

Column TSK 3000 

23,000 M.W. Fraction 

Ret. time Mol. Wt. Cum. % Slice area 
5.200 39558 0.596 6522 
5.300 37438 0.863 9652 
5.400 354'.?t 1.190 11771 
S.500 33712 1.595 1461~ 

5.600 3202~ 2.135 19486 
5.700 30~7~ 2.947 29308 
5.800 ---01 ~'="~ "- - ' - 4.267 47E20 
5.:?00 

__ ,...f*"._ 
~.· c: =' ,' 6.421 776C:S. 

6.000 -.---- -::. .,..,~ 11:?647 c;.'.:·•:·C·,. - • i ~, 

6.100 2:.si.::= 14.520 172512 
6.200 ""4 C' ::: .. 1 

c:. ·--. 20.~~3 232072 
6. 20 Ct 23'::4,,: 2:?.047 291993 
6.400 ~"'"='-="':·-c.._.,_._. 38.598 344543 
6.500 21.762 49 .122 37'.?~94 

6.600 20:?4:. C' ·=i 0. C' C' ....J- ._._;_ 3:?0422 
6.700 2017:. 70.197 36.?464 
6.800 1942':: 79.028 318577 
6.900 18734 85.910 248222 
7.000 18064 90.737 17414? 
7.100 17422 93.816 • 111061 
7.200 16205 95.654 66200 
7.300 16210 o- ..,., 0 

-~·'""-- 38423 
7.400 156;::. '?7.3=.5 """"':·i::I~? 

c::.~- -'-
7.500 1507? c.- ..,~~ -1.' ._,, 144?2 

- -



APPE~DIX XV c 

HPLC-GPC Profile of the 17,450 M.W. fraction 

Column TSK 3000 Solvent NazS04 0.5 M Detector UV 205 

693H2 4/10/96 1~:21:37 

Acau1s1t1on metnoo ga?t!3303 
Ltn1a ;;oousi 
Channe~ 1 
!n3ec~;on l 
P.un nme l:.oo min 
In1ec~1on volume 20 uL 
Interna~ stanoaro amt 
Mooe Anal~s1s 
1Jers1on RE'J03.0 
Cesc!'1C:t1on 

COLOtl'JE: TSK 3000$!.-< I I I 

52.776 

1 

Ouant1tat1on methoo 
S·111 tem r.umcer 
V1a.l. 
Total 1n3ect1ons 
Sample rate 
S..-nole amount 
Sea.le f •c~or 
Re!pcnse- factors 
Channe.l. to calibrate 

.,,a~a3302 
1 

l 

OETEC7E1JR: IJ.J 2C:i mn 

I . 

I 
90 ., 

I 
80 .J 

I 
70 ., 

i 
60 i 

I 

'.:'-1 -

I I I 2e ~ 
16.4139 ~...;._------~..;.;..;..;..;..;..;.;.,;1..;.;.l ..;..;.I .;..;..;.;;;;, ______ 

1
_
0 1 

•.0 4.S S.0 

99.0631 

0 s 
Minutes 

10 

Holecu.l.ar Weight Oistr1but1on Avera~es 

Weight Average 
Z Averac:ie 
Viscosity Average 
Z + l Average 
H:z: / Hw 

17348 
17996 
17~48 
19493 
1.032 

Number Avera<!!• 
Oisoersivi tv 
lntr1ns1c Viscosity 
Peak Ho.1. i..le1 ght 
H:z:+l / Hw 

16399 
l .OS9 
o.ooo 
1690:i 
l.066 

~UtD :. 

Q~ -. - ' 

so ~ 

295 
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Frequency Distribution of Molecular Weight Components 

Ret. time 
;) • :>UU 

5.600 
5.700 
5.800 
5.:?00 
6.000 
6.100 
6.200 
6.300 
6.400 
6.500 
6.600 
6.700 
6.800 
6.:?00 
7.000 
7.100 
7.200 
7.300 
7.400 
7.500 
7.600 
7.700 
7.800 
7.900 
8.000 
13.100 
8.200 

Mol. Wt. 
:3:3718 
32022 
30572 
2917'.? 
.-.-,-_c-
t!ld·.;l 

26c27 
2=::c:.a 
24~24 
235~6 

226~7 
21762 
2094'! 
2017"'1 
1S'42:. 
187S4 
18064 
17422 
16205 
16210 
15635 
1507:? 
14~~3 

14011 
13498 
12::?6 
12504 
12022 
11549 

Column TSK 3000 

17,450 M.W. Fraction 

Cum. % 
0.164 
0.268 
0.425 
0.620 
0.81S 
1.061 
1.286 
1.S74 
2.626 
4.060 
6.31:? 

14.904 
21. 740 

40.22~ 

50.97? 
61.7~8 
71.752 
80.280 
86.932. 
91.674 
94.759 
96.614 
97.660 
gs.226 
("4Q t::~C" -·-·-"--· 

Slice area 
2253 
4121 
62~? 

3227S 
~40:;=: 

20213? 
271824 
340~'.?4 

39S,?O 
427~19 

422733 
397504 
339211 
264~75 

1e::e30 
122665 
73806 
41585 
22505 
118S'6 
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HPLC-GPC Profile of the 15,000 M.W. fraction 

Column TSK 3000 Solvent NazS04 0.5 M Detector UV 205 

6S~H:3 4/10/86 19:~8:16 

Aeau1s1t1on method 9a9~s3303 

1Jn1 ts 200u9 
Channel l 
lnJeetion 1 
Run time l~.oo min 
ln1ection volume 20 u~ 

Internal stanoard 91llt 
Mooe 
Version 
Description 

Aniil'.'SlS 
RE'J03.0 

Ouantitation ~ethoo 
System n urnc;er 

Total lnJect10~~ 
Samele rate 
Semc.i.e 2mount 
Sca.i.e fac~or 
Response factors 
Channel to ca.i.icrate 

s•s~s~:?03 
1 
4 

1 

COLONNE: TSK 3000SW III SOL\.'A~JT: NA2S04 0, 5:-1 DE'iEC7EUR: lN 20~ mn 

87.592 

=52.116 

1\ 
I l 

· ..... , 
i 

90 ., 
60 J 

J i0 
I 

6il 
... 
I 
I 

so -
I 

413 
I 

?O -
I 

2e I 
10 

... 
I 
I 

16. 639 _.,_ ______ ii&illl ___ .......,--..;.~.;...".;...1.;..;. -===-------
4.0 

52. 116 ..J 
I 
' 

16.639 

0 

6.<l e..s ".0 
Mir.utes 

s 
Minutes 

- ... , ·~ a.a 

Ho.i.ecu.i.ar Weight Distribution Avera9es 

We19ht Averase 
Z Averase 
Viscosity Averase 
Z + 1 Average 
Mz / """ 

15273 
16133 
15273 
17!'48 
1.056 

Numoer Auerase 
Oisoers1v1ty 
Intr1ns1c Viscosity 
Peak Mol ~~e1 ght 
H::+l /""" 

9,0 

14464 
1.0:56 
o.ooo 
1507!' 
1.17:5 

9.! 10.0 lt). 5 

cum .. 
i 

'?O -
I 

80 -
7:Y -

-': .. _, 

::J -
... "3 -
:.; -
,i(l .., 

I 

10 
J 
I 
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Frequency Distribution of Molecular Weight Components 

Ret. time 

6.100 
6.200 
6.300 
6.400 
6.=oo 
6.600 
6.700 
6.200 
6.900 
7.000 
7.100 
7.200 
7.300 
7.400 
7.~00 

7.600 
7.700 
7.800 
7 . .?00 
S.000 
8.100 
8.200 
8.200 
e.400 
e.=eio 
.e. 60 0 
8.700 
~:.200 

2.900 

Mal. Wt. 

25568 
24524 
23546 
2262i 
21762 
20945 
20171 
19435 
18734 
18064 
17422 
16805 
16210 
15635 
1=079 
145;::s 
14011 
13498 
12996 
12504 
12022 
11549 
11084 
10627 
10177 

9734 
~2.?8 
S869 

Column TSK 3000 

15,000 H.W. Fraction 

Cum. % 

0.989 
l.161 
1.350 
1.598 
1.$461 
2.536 
3.486 
= .034 
7.478 

11.143 
16.356 
23.308 
31.942 
41.953 
52.6?0 
63.334 
72.058 
el.241 
67.572 
~2.093 • 
~= .082 
96.935 
98. 018 
~e.627 

98. $465 
99 .160 
??.221 
QC, ':·OO -- . -"-'-

Slice area 

5687 
6706 
7358 
9706 
14138 
22520 
36984 
60404 
Sl5382 
143035 
203423 
271280 
336915 
390649 
419002 
415348 
379441 
319326 
247071 
176417 
116658 
72261 
42284 
23751 
13208 
7602 
4730 
4223 
~C:~? 
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HPLC-GPC Profile of the 13,300 M.w. fraction 

Column TSK 3000 Solvent NazS04 0.5 M Detector UV 205 

683H4 

Accu1s1t1on met~oc 
Units 
Charin el 
lnJec~:or1 

Pun time 
lnJe~t1on volume 
Internal stancarc amt 
Hoce 
Ver:1or. 
Oesc~ 1 p t1 on 

COLOt.t•E: TSK 30 0 0 S>• I I I 

83.!53 -

se.037 

1 
I 

16.~~! 

4/10/66 1.9:5~:03 

=ac:its.2303 
206u9 
1 
1 
1:.00 run 
20 uL 

Analvs1s 
P.E'JO'?. 0 

Ouant1tat1on methoc 
S·Jstem nurncer 
Vial 
Tot al 11'• J •ct 1 on s 
Samele rate 
Samele amount 
Scale factor 
Resoonse factors 
Channel to calibrate 

9a9a3303 
1 

1 
2 per sec 

Reolace 
1 

SOLVANT: NA2S04 O,~ OETEC7EUP.: W 20:; mn 

.... .... 6.il 

~i 
- .. ... w ~.0 
Minutes 

}: 
1 I 

11 
~ .. 
'•w 

y 
! ti 
I \ 

: I 1

1\ 
, .I. I 1111 

"I 
1 , I I, I 1 

• 8.0 a.~ 9.0 9.5 10.0 

i 
00 ..., 

~0 J 
I 

70 -

60 ~ 
\ 

~2 -: 
I 

4H -
i 

30 .. 

20 -

10 -
! 

10.! "·6 4.5 s.e 
SJ. 5;'.:l -; i:un % 

16.413 I ' 
s 10 
M1nu~s 

Molecular We19ht Distr1but1on Avera9es 

We19ht Average 
Z Average 
Viscosity Average 
Z + l Avera9e 
Hz / l"W 

13707 
146c5 
13707 
16840 
1.070 

Numo•r Average 
Dispersivity 
Intrinsic Viscosity 
P•ak Hol Weight 
Hz+l / Mw 

13053 
1.050 
o.ooo 
13498 
1.~2~ 

90 -
S0 ~ 

; 

70 -
I 

60 -: 
I 

~o ""'. 
-'') -
:.) -
,;(' -
10 -: 

.........._ 
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Frequency Distribution of Molecular Weight Components 

Ret. time 
6.200 
6.300 
6.400 
6.500 
6.£00 
6.700 
6. eoo 
6.900 
7.000 
7.100 
7.200 
7.300 
7.400 

7.600 
7.700 
7.800 
7.900 
8.000 
8.100 
8.200 
8. 300 
e. 400 
s.::oo 
8.600 
8.700 
~. 800 
c.9oo 
:?.~!QO 

::: .. ::. 00 

Mol. Wt. 
24524 
23546 
22627 
21762 
20945 
20171 
19435 
18734 
18064 
17422 
162.0 5 
16210 
1563':: 
15079 
1453:3 
14011 
13498 
12996 
12504 
12022 
11549 
11084 
10627 
10177 

9734 
9298 
826? 
~447 

:::o 21 
762'1 

Column TSK 3000 

13,300 M.W. Fraction 

Cum. % 
0.988 
0.969 
1. 091 
1 .265 
1.515 
1.887 
2.451 
3.324 
4.680 
6.726 
9.707 

13.852 
19.316 
2€ .133 
34.160 
43.071 
52.402 
61.623 
70.220 
77. 821 • 
84 .152 
89 .125 
92.804 
95.371 
97.061 
98.113 
~8.742 

99.112 

Slice area 
1687 
3474 

7416 
10660 
1586? 
24065 
37260 
57836 
87265 
127161 
176a2s 
233074 
2.:10800 
342436 
380149 
398038 
3933:;4 
3615741 
324259 
270102 
212131 
156923 
10'.?535 
72062 
44901 
26219 

300 
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HPLC-GPC Profile of the 11,700 M.W. fraction 

Column TSK 3000 Detector lN 205 

68:3H5 

Acau1s1t1on metMoc 
Un 1 ts 
Cl":anne.i. 
lnJECtlOn 
P.un time 
InJecuon vol.ume 
Interna.i. stancaro amt 
Hoce 
Version 
Descr1pt1on 

CCLOt.NE: TSi'. 300CS._. I I I 

71.6';oS 

43.7:i2 

l 

4/10/86 

ga~~s3203 
200u'!I 
l 
l 
l~.00 mir. 
20 UL. 

Analvs1s 
RE')03.0 

20111146 

Ouant1tat1on m•thoc 
Svstem numoer 
Vi el. 
Total 1n)ect1ons 
Samol.e rate 
Samo.i.e amount 
Sca.i.e fac~:ir 
F.esponse factors 
Channel. to calibrate 

ga9a3303 
l 
6 
1 
2 per sec 

P.eolace 
1 

SOL'J~NT: NAZS04 0, !:1 CE!ECTEWP.: VJ 205 mn 

2e ~ 
I 

10 -: 
I 

4.0 

71.695 ~ 

s.e t-.s -.0 7.::: a.0 e.::: ~.0 3.::: 10.0 10.::: 
M1,.,1.1tes 

s 
Minutes 

Hol.ecular Weight Distribution Averages 

Weight Auer age 
Z Auerag• 

I Viscosi tY Auer age 
! Z + 1 AueraC1• 
I • 

H:z: / Hw 

120~1 
12937 
12091 
14501 
1.070 

Numb•r Au er ;,ge 
Oispersiui ty 
Intrinsic Viscesity 
Feak Hol W•i gnt 
H:+l / Hw 

11439 
1.057 
o.ooo 
11549 
1.!99 

:io -
i 

80 ..; 

70 -: 
I 

60 ~ 
I 

so -: 
I 
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APPENDIX XV f 

Frequency Distribution of Molecular Weight Components 

Ret. time 
6.:500 
6.600 
6.700 
6.800 
6.?00 
7.000 
7.100 
7.200 
7.200 
7.400 
7.500 
7.600 
7.700 
7.800 
7.900 
s.ooo 
8.100 
8.200 
8.300 
9.400 
8.500 
8.600 
8.700 
s.200 
8.900 
.~. 0 0 0 
9 • .:.oo 
9.200 
9.300 
9.400 
9.500 

Mol. Wt. 
21762 
20945 
20171 
19425 
18734 
1S064 

leo05 
1i:~10 

15J5~= 
1::o7? 
14528 
14011 
124?8 
12996 
12=04 
12022 
11549 
11084 
10627 
10177 

9734 

886? 
E447 
8021 
7624 
722~: 

64-l7 
6071 

Column TSK 3000 

11,750 M.W. Fraction 

Cum. % 

0.908 
1.025 
1.220 
1.:12 
1 . :?34 
2.542 
3.412 
4.649 
6.389 
8.783 

11.982 
16.107 
21.227 
27.~21 
34.300 
41.936 
49 • .956 
58.042 
65.866 
73.132 
79.602 
95.104 
00 """"0 
··- • ...,;-1,,.J 
Q "":i 0'7,.· 
-'-·-'~ 

~7.1.29 

98.207 
CIC ~""C - .._ • W'•··~ 

99.492 
99.632 

• 

Slice area 

2535 
4759 
7988 
11885 
17246 
24821 
3~506 

50502 
71004 
97712 
1~0595 
168360 
209014 
249146 
284492 
311628 
327256 
330085 
319358 
296613 
264093 
224581 
181 S24 
1 "'0.0:.0~ 
---~-

100E7:: 

4 -:-·::ioc: 
_._ - ·.J 

26:;7:; 
1601 ;' 
9846 
5745 
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APPENDIX XV g 

HPLC-GPC Profile of the 10,400 M.W. fraction 

Column TSK 3000 

693H6 

AcQu1s1tion methoo 
Un1~s: 

Ch11nne.L 
lnJect1on 
Run time 
ln3ect1on Yo.Lume 
lnterna.L st11no11ro amt 
Mooe 
Version 
Oescr1pt1on 

COLONNE: TSK 3000S'-' 111 

~.643 

Solvent NazS04 0.5 M Detector UV 205 

4/10/96 

9al'?t£3303 
200u9 
1 
1 
:.!.CO min 
20 uL 

Ana.Lys1 s 
RE'J03.0 

20129133 

Ou11nt1tat1on method 
S·1stem number 
V1 ill 
Tota.L inJect1ons 
Samp.Le r11te 
Sample amount 
Sca.i.e factor 
Resoonse f11ctors 
Channe.L to c11.Libr11te 

9119ts3303 
1 
7 
l 
2 per sec 

SOL'JANT: NA2204 0, :H OETECTEUP, : l>J 20 ~ mn 

.... I •• I 
90 1 
80 i 
70 J 
60 ' 

I 
~0 1 
40 ., 

i 
"'0 ., 
w i 

29 i 
1~.844 .,l-__ .;.. ______________ ..,..r;;;,.s;;;;;;.;...;.;..:..:..:.~..:..:..w..;..:..:..:..;..!..J..:..~.:.:::== ..... --

10 
.... i 

4.0 4.~ 5.0 

73.442 i 

44.643 -
I 

s.s 6.~ 6.5 ~.a 7.s e.e e.~ 
l"llnuws 

e 10 

Molecular We19ht Distribution AYera9es 

Wei9ht AYera9• 
Z Auera9• 
Viscosity Auera9e 

· Z + 1 Auer119• 
Mz / Mw 

1o=ss0 
11638 
10,88 
14,9=s 
1.119 

Number AYer119e 
Oispersiui ty 
Intr1ns1c Viscosity 
Peak Mo.L We19ht 
Mz+l- / ~ 

9692 
1.094 
o.ooo 
9734 
1.379 

10 • ., 10. ~ 

cum:; I 
~0 1 
se ~ 

I 
~a -

~0 ~ 
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APPENDIX XV g 

Frequency Distribution of Molecular Weight Components 

Ret. time 
6.500 
6.600 
6.700 
6.800 
6.900 
7.000 
7.100 
7.200 
7.300 
7.400 
7.500 
7.600 
7.700 
7.800 
7.900 
8.000 
8.100 
8.200 
8.300 
8.400 
8.500 
8.600 
8.700 
8.800 
8.:?00 
9.000 
<9.100 
9.200 
9.200 
9.400 
?.:'.80 
:?.GOO 
9.700 
9.800 
9.900 

10.000 

Mol. Wt. 
21762 
20945 
20171 
19435 
18734 
19064 
17422 
1680= 
16210 
15635 
15079 
14538 
14011 
13498 
12996 
12504 
12022 
11549 
11084 
10627 
10177 

9734 
9298 
8869 
8447 
80 ::·1 
7624 
7223 
6831 

6071 
5705 
534:? 
5003 
4668 
4343 

Column TSK 3000 

10,400 M.W. Fraction 

Cum. % 
0.686 
0.761 

1.090 
l.38E: 
1.802 
2.38~ 
3.:. 66 
4.205 
~.e-13 
7.172 

11.74~ 
14.SOZ 
18.463 
22.761 
27. 697 
33.264 
39.382 
45.943 
52.810 
59,799• 
66. 656 
73 .181 
7~. :4:~ 

8'1 I 382 
88. 7~7 
92. 21 s 
~4. so 3 
S'6'. 61 = 
97 I 20 s 
:?8. 544 
:?8.981 
9~.230 
99. 375 
99. 463 

Slice area 
1815 
36:?~ 
631.C 
9896 
14618 
20648 
28415 
33376 
51071 
64334 
81536 
100856 
1242.24 
150091 
179982 
211313 
242711 
273710 
300777 
322598 
337635 
343108 
337665 
320217 
293397 

215057 
170169 
127094 
89082. 
=~.6~.;; 

26~·:16 

2.1468 
12242 
7155 
4318 
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APPENDIX XV h 

HPLC-GPC Profile of the 9,000 M.W. fraction 

Column TSK 3000 

693H7 

Ac:quis1t1on metnod 
Un 1 ts 
Ch•nr.e.l 
lnJec:t1on 
Run time 
lnJec:tion vo.lume 
Interna.l stanoarc amt 
Mooe 
Version 
Description 

4/10/96 

9a~a3303 
200ug 
1 
1 
lS.00 m1n 
20 uL 

Ana.LYS1tl 
REl.'03. 0 

Detector UV 205 

2014~113 

Quant1tat1on metnod 
S·1 st em n umcer 
Via.L 
Tota.L inJeetions 
Samo.Le rate 
Sample amount 
Sc:a.Le factor 
Resoonse fioc:t~r• 

Channel to c:a~ibrate 

ga~u3303 
1 
8 
1 
2 per sec: 

COLON'~E: TSK 3000SW III SOL1JANT: NA2S04 O,~ OE7ECTEUR1 l.JJ 205 mn 

74.308 -

44.971 

1 

90 j' 80 

70 

60 

50 1 
40 ~ 
30 ~ 

~: 1 
15.634 1 

.+---:~~~~~~--...,:;;,;...::~:...:..i..:....:...:..;:...:..:...:~.%ll~...;....:_;,...l...:...l..!...W.:i::::::o........; 

i 

4.0 4.S 

74.308 -

44.924 

15.541 

0 

.

1

, Ho.lecu.lar Loole19ht 

Weight Average 
Z Average 

: Viscosity Average 
: Z + 1 Average 

Hz / l1w -

5.~ 5.S 6.0 6.5 7.0 
f'linui.s 

- .. , ,.., a.a s.s 9.0 

8999 
1006:5 

8999 
11 :so:s 
1.118 

I I 

s 
Mtnuws 

10 

Number Average 
Oispersivity -
Intrinsic Viscosity 
Pea11. 1'10.1 Wei gnt 
Hz+1 / l1w 

8079 
1.114 
o.ooo 
7624 
1.278 

10.0 10.5 

-:~j 
S0 I 
70 i 
60 1 

I 
~c ~ 

I 
40 1 
30 ~ 

' I 
20 ~ 

I 
10 "". 
. I 
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APPENDIX XV h 

Frequency Distribution of Molecular Weight Components 

Ret. time 
6.500 
6.600 
6.700 
6.800 
6.'.?00 
7.000 
7.100 
7.200 
7.300 
7.400 
7.500 
7.600 
7.700 
7.800 
7.:?00 
8.000 
8.100 
8.200 
8.300 
8.400 
8.500 
8.EOO 
2.:-00 
;:;,~OO 

8.~00 

'.?.000 
?.100 
:?.200 
:?.200 
:? . ..:.o 0 
9.::oo 
9.600 
9.700 
9.800 
9.900 

10.000 
10.100 
10.200 
10.300 
10.400 

Mol. Wt. 
21762 
20945 
20171 
19435 
18734 
18064 
17422 
16805 
16210 
15635 
15079 
14538 
14011 
13498 
12="96 
12504 
12022 
11549 
11084 
10627 
10177 

St734 
c;..-,oc 
- '-- 'wJ 

8869 
8447 
8031 
7624 
7222 
6C:~:l 

i~447 

6071 
5705 
5349 
5003 
4660 
4343 
4031 
3730 
3442 
3167 

Column TSK 3000 

9,000 M.W. Fraction 

Cum. % 
0.156 
0.195 
0.262 
0.370 
0. 54'.? 
0. :?17 
1.207 
1.75<1 
2.483 
3.413 
4.563 
~.~4~ 

7.56? 
9.447 

11. 5:?8 
14.043 
16.802 
l'.?. 899 
23.36'.? 
27.242 
31. 54~. 
36.307 
41.5~0 

47.180 
52.210 
5:?.480 
6~.834 

72.070 
77.962 
S3.2~1 

87.869 
~1.!.83 
94.407 
96.423 
97.768 
98.623 
99.147 
99.464 
99.660 
99./~R 

Slice area 
1170 
2143 
---~ .. ,.., .:> ( ... .:; 

5946 
9859 
14847 
21516 
301'.?1 
4026? 
51345 
63535 
76~2~ 

89€71 
103739 
118753 
135058 
152327 
171037 
1916~1 

213685 
237874 
26274'.? 
287299 
312:36 
"91~~~ecQ .:>-----
346Z46. 
350?23 
34.!.!06 
32::236 
2?4315 
252E5~ 
205090 
15~940 
111353 
74252 
47259 
28910 
17507 
10842 
7n&:CI 
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APPENDIX XV i 

HPLC-GPC Profile of the 7,400 M.W. fraction 

Column TSK 3000 

683HS 

Accu1s1tion methoo 
Un I~ s 
Channe.i. 
InJect:on 
Run time 
!nJecti.on 'JOl.ume 
Internal. stanoarc 6/nt 
Mooe 
'.Jers1on 
Oescl"1pticn 

COLONNE: TSK JOOOSW III 

68.8S6 

42.019 

~-~· l 
I 

I 
i 

Detector UV 205 

4/10/86 ~l.:02:00 

:.;,?~'S2303 

200J'i' 
1 . .. 

~naj,·,;Sl $ 

f<.E'.'02 .C 

Cuant:tat1on met~od 
S11stem number 
Vi6.i. 
Totiol 1nJections 
S&mol.e rate 
S-oJ.e ilTIOUnt 
Sc:a.l.e factor 
l'esoonse fectors 
Channel. to c•l.i~rate 

'i'a~•s.;::o:: 
l 

SOL';ANT: NA2S04 0, ~ DE!EC~EWR: 'J.J 20S mn 

~-~ 6.e ~-~ ~.e 
Minutes 

5 
Minutes 

7.S S.0 a.s 9.0 9.S 

10 

10.ti 10.:: 

cum ;; 

'?0 ... 

J se 
i 

/t.l -
I 

6e ; 
I 

Mol.ecul.ar We19ht Distribution Mvera9es 

: Wei 9ht Aver as• 
' Z Average 
Viscosity Average 
Z + l Average 
Mz / Mw 

7285 
8927 
7285 

1156? 
1.~2s 

Number Average 6009 
Disoersivity l.~12 

Intrinsic Viscosity 0.000 
Peak Mol. Weight S349 
M:+l / Mw 1.!88 

.· 
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APPENDIX XV i 

Frequency Distribution of Molecular Weight Components 

Column TSK 3000 

7,400 M.W. Fraction 

Ret. time Mol. Wt. Cum. % Slice area 
7.100 17422 0.938 8758 
7.200 16805 1.053 12252 
7.200 16210 1.360 1756>3 
7.400 1563~ 1.784 24177 
7.::oo 15079 "" "jC'-c:. .... ..., .;; 32486 
7.600 14522 3. 078 41352 
7.700 14011 "':) o--

...., • - 1.:; 51044 
7.eOO 13498 ~. 06? 62:~3 
7.900 129:?6 6.382 74923 
8.000 12504 7.921 877:?5 
6.100 12022 9.687 100783 
8.200 11549 11. 680 113733 
8.300 11084 1~.901 12E709 
8.400 10627 16.340 1392.1.4 
8.500 10177 18.::088 151063 
8.600 9724 21.842 162829 
8.700 9~'=i0 "'-- .. 24.90= 1747S4 
8.800 886? 2E .180 186890 
8.900 8447 31.688 200203 
e.coo 8031 3~.45S 215141 
9.100 7624 3?.:2e • 2322.;;.s 
9.200 7223 4-: 0:,")1 -. - "-- 25070E 
9.300 6831 48.664 270E'38 
9.400 6447 53.744 2898153 
9.500 6071 59.109 306177 
.9. 600 5705 64.661 316787 
9.700 534? 70.265 3197:?3 
9.eoo 5003 i=.747 3122~2 

9.?00 46158 80.904 2.?4271 
10.000 4343 85.541 264606 
10.1.00 4031 6:?.495 22=656 
10.200 3730 92.679 181708 
10.200 3442 ~5.0:?6 137925 
10. 400 3167 96.808 97668 
10.500 2905 97.939 64517 
10.600 2656 98.654 40844 
10.700 2420 99.096 2=211 
10.800 2198 99.384 16413 
10 . :?00 1990 99.591 11831 



APPE~DIX XV j 

HPLC-GPC Profile of the 5,100 M.W. fraction 

Column TSK 3000 

683H9 

Accu1s1t1on m•tnoo 
Ur11 t ! 

c~.an,.,e.l. 

In J e-c ~ 1 on 
P;..:r1 t:.me 
!n~ec~1on volume 
!nte~n•l stanc•rc amt 
Mooe 
1;e,..'! 1 on 
De'!C!' l ct: on 

cc:..ONNE: TSi', 3000SW I I I 

-1.0 

:"Q.S61 .., 

43. ~~5 

We1<;1ht Average 
'Z Average 
Viscosity Average 
Z + 1 Average 
M:: / Mw 

Detector tN 205 

4/10/86 21:19:39 

9agu3303 
~o o ... c: 
l 
l 
:.~.oc min 
l:JW UL.. 

Anal·J~l ~ 

RE'i03.0 

.. .. -·-

4741 
61:50 
4741 
~871 

1.zg7 

Ouant1tat1on metnod 
Sy!tem numce~ 
'Ji al 
•otai.i. 1nJeet1ons 
Samele rate 
Same.le amount 
S::ol.e- f ac~cr 
Peic.onse fac~ors 
C~annei tc calibrate 

9ag~s:=:31J3 

1 
10 
1 
2 per sec 

Reo.l.ace 
l 

DETEC7EUR: V~ 20~ mn 

e.: 7".~ 
M1r1Uti':i 

- .. ··-

~ 
MinutE·S 

10 

Number A1,1eraqe 
Di sper<s1v1 ty -
Intr1n<s1c Vi<sco<s1ty 
Peak Mo.l. W•1gnt 
M::+l / Mw 

3867 
1.Z26 
o.ooo 
3442 
2.0S2 

C<om :; 

.:..~ -• • I 
i 

so -: 
! 

:.: -
-'·; -
:.) -
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Frequency Distribution of Molecular Weight Components 

Column TSK 3000 

5,100 M.W. Fraction 

Ret. time Mal. Wt. Cum. % Slice area 
t.uuu J. ~Ubq 0.230 1084 
7.100 17422 0.2:;9 1345 
7.200 16805 0.2~4 1657 
i.300 16210 0.243 2266 
7.400 15635 0.397 2540 
7.500 15079 0.466 3244 
7.600 145::.s 0.542 ~c,..::-~ ....,"'-'--
7.700 14011. 0.6::~ 4229 
7.800 12496 0.737 4664 
7.900 12996 Q OC'O . '-'""""'-' 56QS' 
8.000 12504 1.010 i12:; 
s.:.oo 12022 1.199 es:::2 
8.200 11549 1.444 11461 
e.::oo 11084 1.764 149?1 
8.400 10627 2.189 1~910 
8.500 10177 2.7:: 26461 
S.600 g.734 3.4?3 34:;:;9 
8.700 9298 4.446 44622 
s. ~:o o 886.9 =.651 5i5•ll 7 
8.900 8447 7.150 70170 
?.000 8031 8.967 Ot::'l"':~.lt 

\.Jw\J._-r 

9.100 7624 11.146 • 102003 
? . .:c· o .,..,~~ ( c...-.- 12.706 11 :0962 
9.~co 6831 16.676 139053 
9.400 6447 20. 067 158717 
9.500 6071 23.8~0 178.975 
..:· .600 ~70~ 28.147 199285 
9.700 5349 22.864 220812 
:?.800 5003 ~2 .. 0 62 242315 
?.:?00 4'5C.C 43.77=: 267446 

:o.C:OG 4343 50.002 291=83 
10.lOO 4021. S6.626 212222 
1C1 • .:o 0 ·-=--:-~..-, 

- ' '-''-i 
~32. ~7~ ~~-:1 "':'O -'-• ---10.:=.oo 2442 ;";J,701 328987 

l G . .lO 0 3167 ~"";' .388 313003 t I 

10.!SOO 2;•05 83.330 278186 
10.600 2656 88.246 230130 
10.700 2420 Sl2.034 177325 
10.800 2198 94.805 129697 
10.900 1990 Sl6.779 92411 
11.000 1794 98.198 66459 
11.100 1612 99.237 48638 
11.200 1443 100.000 35710 
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Appendix XVIa 
Intravenous Time Course Determined Using the Anti Xa Assay 

Concentration ~;/~lJ 

4.00 

3.00 

2.00 I 
a:ss F= 
o.eo E 0.70 
0.60 
0.50 

0.40 

o .3o I 

0.20 

8:AS 
0.08 
0.07 t­
o .06 r-
0.05 r-
0.0<4 1-
0.03 

0.02 

n - 5 

0.00 

* ' + ' 

50.00 

' 

--W-- M. W. 23, 000 
· +· M.~. 13. 300 
--ff-M.W. e. 100 

' ' ' ' 
~~~~~: 

100.00 lSO. 00 

Time (rainutesJ 
200.00 
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Appendix XVIa 
Intravenous Time Course Determined Using the Anti Xa Assay 

Ccnc•ntrat1on ~;/ml) 

4.00 ~ 
I 

:::: ~ 
a.oo ~ 
g:~g ~~ 
0.60 
o.eo 
O.AO I 
0.30 I 
0.20 r 
8:62 b 
o.oa t­
o. 07 t-
0. 06 t 
0 .OS 

0.04 

0.03 

n • 5 

-M- Nat 1Ye Hacar 1n 
· +· CY 216 

• 

o. o 1 __ _.._ ___ -..J------1....----1----L 
o.oo 50.00 100.00 150.00 200.00 

Tlme (minutes) 
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Appendix XV!b 
Intravenous Time Course Determined Using the Anti Ila Assay 

Ccncantraticn ~g/mll 

I 
4.00 i­

i 
3.00 I-

I 
I 

2.00 ~ 
; . 
I 

j 

~.00 ~ 
u.90 !-
0. BO :...... 
0.70 ;.._ 
0 .so r­
o.eo ~ 
0.40 +--

i 
I 

0.30 i-

i 
0.20 t­

i 

l 
s:as ~ 
o.oa F 
0.01 r 
0. 06 r-

1 

0 .05 r-

0 .04 ~ 

o.o3 L 
I 

I 
! 

0.02 t-
i 

~ .. 
I ' 

I * \ \ .... 
'~ ' '. ' \ ·~ 

\,. '\ 

'\+\ 
~-. \ 

\ . \ 
\ •\ 

' 

-"*- 23. 000 M. W. 
·+· i3.~00 M.W • 
-+i-5,100 M.W. 

. \ 
' 

' \ 
\ 

\ 

. ' ' . ' 
\ 
\ 

I 

\ . \ 
' 
'\ 
'\ \ 

\ 

\ 
., 

' \ 
\ 
\ 
\ 

'\ ., 
.\ 

\ 
\ 

\ 
' \ 

\ 

j n .. s 
0. 01 l _ _._.l ___ _,_l ___ J 

\, 
\ 

\ 

0.00 50.00 100.00 150.00 
Time (minutes) 

• 

~ 
200.00 
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Appendix XVIb 
Intravenous Time Course Determined Using the Anti !Ia Assay 

Concentr1t1on ~g/ml) 

I 
4.00 r-

1 
3.00 L..-

1 
I 

2.00 L 

' a.oo !-

0:~8 t: 
0.70 ~ 
0.60 ~ 
0.50 ~ 

I 
0.40 r 

I 
0.30 i--

1 

i 
I 

0.20 ~ 
i 
I 

I 
I 

8: AS t: 
0. 08 r-
0. 07 t-
0.06;..... 
0 .05 r--
0.04 r 

' 0.03 ~ 
I 
i 

0. 02 j--

'"""'*""-Native Hspal"1n 
· +· CY 216 

•• 
+ 

1 n - 5 

0. 01 .... 1 --'-----~------']'--_ 
0.00 50.00 100.00 150.00 200.00 

T1:ne (minutes) 
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Appendix XVI c 
Intravenous Time Course Using A Dilute Prothrombin Time Assay 

Cancant~stian Cug/ml) 
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Appendix XVI c 
Intravenous Time Course Using A Dilute Prothrombin Time Assay 
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Appendix XVI d 
Intravenous Time Course Using the Fibrinopeptide-A Assay 
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Appendix XVI d 

Intravenous Time Course Using the Fibrinopeptide-A Assay 
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Appendix XVIIa 

Subcutaneous Time Course Determined Using the Anti Xa Assay 
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Appendix XVIIa 

Subcutaneous Time Course Determined Using the Anti Xa Assay 
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Appendix XVIIb 
Subcutaneous Time Course Determined Using the Anti IIa Assay 
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Appendix XV II b 
Subcutaneous Time Course Determined Using the Anti Ila Assay 
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Appendix XVII c 
Subcutaneous Time Course Using A Dilute Prothrombin Time Assay 
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Appendix XVIIc 
Subcutaneous Time Course Using A Dilute Prothrombin Time Assay 
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Appendix XVIId 
Subcutaneous Time Course Using the Fibrinopeptide-A Assay 
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Appendix XVI Id 
Subcutaneous Time Course Using the Fibrinopeptide-A Assay 
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M.W. 
Parameter 

Weight 
Average 

z 
Average 

Viscosity 
Average 

Z+l 
Average 

MZ/ZW 

Number 
Average 

Dispersity 

Peak MW 

MZ+l MW 

IDLECUIAR WEIGH!' PROFILE OF TFST HEPARINS 

23,000 17,450 13,300 9,000 5,100 CT 216 

24,299 17,558 12,843 9,074 5,500 5,399 

28,624 19,439 15,804 14,647 12,381 10,799 

24,299 17,558 12,843 9,074 5,500 5,399 

49,348 27,466 42,894 78,791 78,276 86,436 

1.178 1.107 1.231 1.614 2.251 2.000 

21,511 16,106 11,841 8,187 4,365 4,391 

1.13 1.09 l•.00 1.10 1.26 1.23 

23,131 16,760 12,443 7,676 4,080 4,388 

2.673 1.654 3.340 8.683 14.232 16.010 

Hepar.!.n 

12,487 

14,877 

12,487 

17,023 

1.175 

9,275 

1.34 

13,108 

1.345 

~ 
~ 

~ 
H 
H 

w 
w 
0 
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APPENDIX XIX 

Recovery of Fractions from Gel-Filtration Procedure 

Fraction Molecular Weight % Recovered 

I 23,000 5.0 

II 17,450 14.5 

III 15,000 11. 5 

IV 13,300 13.0 

v 11,750 12.5 

VI 10,400 11. 0 

VII 9,000 9.0 

VIII 7,400 • 10.0 

IX 5,100 2.0 

Total Recovery = 88.5 % 

Percent recovery was calculated by comparing the gravimetric 
yield of each fraction to the anticipated recovery of starting 
material. The percent of each fraction represents the percent 
of the total recovery. 
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APPENDIX XX 

Comparative Potency of Various Heparin Fractions 

Agent APIT PI' Heptest Anti xa Anti IIa FPAGT 
0:2* 0:2* DJ** IC50+ IC50 IC50++ 

23,000 2.5 10.0 1.5 1.25 1.0 0.38 
17,450 2.0 11.0 1.1 1.25 1.1 0.70 

13,300 1.5 11. 7 0.7 1.20 1.2 0.70 

9,000 2.4 >20 1.0 2.65 2.0 1.20 

5,100 6.5 >20 2.0 6.20 6.25 7.50 

CY 216 2.5 >20 1.25 4.60 7.6 7.45 

Heparin 1.3 20.0 1.20 1.25 0.8 0.5 

* The concentration required to produce a doubling of the 
baseline time values. All values represent ug/ml concentrations. 

** The concentration required to produce a tripling of the 
baseline time values. All values represent ug/ml concentrations . 

• 
+ The concentration required to produce a 50 % inhibition 

in the activity of factor xa and IIa respectively. All values 
represent ug/ml concentrations. 

++ The concentration required to produce a 50 % inhibition 
of control FPA generation. All values represent ug/ml 
concentrations. 
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A Comparison of Unfractionated and IJ::M Molecular Weight Heparin 

Heparin IJ::M Molecular Weight Heparin 

Molecular Weight 
Distribution 1,000 - 40,000 1,000 - 15,000 

Mean Molecular 

t Weight 12,500 5,000 

Anti Xa/IIa 
Ratio 1.0 )> 2.0 ~-

Relative USP g 
Potency ---- < Heparin 

Effect on Platelet 
.Aggregation < Heparin 

Half life 30 min. 60 min. 

Bleeding tendency < Heparin 

w 
w 

°' 



APPENDIX XXII 

• 



Apperdix XXII 

Description of HPI..C Elution Profile 
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Very slight changes in retention tiJne can cause large changes in the mean 
molecular weight of polymers. For this reason it is important to interpret 
molecular weight data determine:i by HPI.C relative to various parameters • 

• Peak Molecular Weight: In:Ucates the mlecular weight of the greatest portion 
of the elutirq material. 

Mz, K., an:! Mz•1: 'Ihese values are affected by variations in the high molecular 
weight reqion of the elutirq material. 'Ihus they characterize the high 
molecular weight o:xrponerrts. 

1-fn: 01aracterizes the low molecular W'eight portion of the elution curve. lb.is 
value is sensitive to a lorq tail of low molecular weight conp:ments. 

Dispersity: When the polymer is ~ of a wide ran;e of molecular weight 
components this value will be high. It indicates the ran;e of molecular 
weights in the material. 

* Taken from technical manual Waters 410 Chromatography 
system 
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