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CHAPTER I 

INTRODUCTION 

The renin-angiotensin-aldosterone system is involved in the 

regulation of blood volume and pressure (Fujii and Vatner, 1985; Joy 

and Lowe, 1970), and the maintenance of sodium balance (Parfrey et al., 

1981; Davis and Freeman, 1976). Renin is the rate limiting enzyme in 

the formation of the vasopressor substance angiotensin II (ANG II). 

ANG II is the active component of this system and is involved in 

several physiological functions in addition to its vasoconstriction 

effect. The primary source of renin in the blood is the specialized 

juxtaglomerular cells located in the afferent arterioles of the kidney. 

The synthesis, storage and secretion of renin occurs in these 

juxtaglomerular cells (Taugner et al., 1984). 

Renin secretion is regulated in part, by a renal baroreceptor that 

senses changes in renal perfusion pressure (Blaine et al., 1971). The 

release of renin from the kidney is also modulated by the amount of 

sodium that is reabsorbed across the specialized macula densa cells in 

the distal tubule (Fray, 1978; Itoh and Carretero, 1985). In addition, 

the renal nerves and circulating catecholamines increase renin 

secretion by stimulating renal beta-receptors. ANG II and vasopressin 

inhibit renin release (Bunag et al., 1967). Studies by De Vito et al. 

1 
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(1971) provided evidence for the presence of a renin-releasing factor 

in the plasma of hypovolemic dogs. However, these results could not be 

replicated by Polomski et al (1974), and no further studies were 

reported. 

Brain serotonergic neurons stimulate renin secretion. 

Administration of the serotonin (5-HT) releasers, PCA (p-

chloroamphetamine) or fenfluramine, or the serotonin agonists MK-212 

and quipazine produced dose-dependent increases in plasma renin 

activity (PRA; Lorens and Van de Kar, 1987; Van de Kar et al., 1985b; 

1981). The effect of fenfluramine could be prevented by pretreatment 

with the 5-HT uptake inhibitors indalpine and fluoxetine or the 5-HT 

synthesis inhibitor PCPA (p-chlorophenylalanine; Van de Kar et al., 

1985b). Injections of the 5-HT neurotoxin 5, 7-dihydroxytryptamine 

(5,7-DHT) into the dorsal raphe nucleus prevented the effect of PCA on 

renin secretion suggesting that brain 5-HT neurons in the dorsal raphe 

nucleus mediate the effect of PCA (Van de Kar et al., 1982). The 

dorsal raphe nucleus sends projections to the arcuate, anterolateral 

and the suprachiasmatic nuclei of the hypothalamus (Van de Kar and 

Lorens, 1979; Azmitia and Segal, 1978). Posterolateral deafferentation 

or mechanical ablation of the hypothalamus prevented the PCA- induced 

increase in PRA (Karteszi et al., 1982), suggesting that the dorsal 

raphe nucleus may send projections to the hypothalamus that are 

involved in the regulation of renin secretion. 

The role of the sympathetic nervous system in mediating the PCA­

induced increase in PRA has also been investigated. The serotonergic 

stimulation of renin secretion was not mediated by either the 
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sympathetic nervous system or adrenal catecholamines (Van de Kar and 

Richardson-Morton, 1986). Transection of the spinal cord proximal to 

the exit of the renal nerves did not prevent the effect of PCA on renin 

secretion . These studies suggest that the sympathetic nervous system 

. is not involved in mediating the serotonergic stimulation of renin 

secretion. 

Taken together, these results indicate that a serotonergic pathway 

originating in the dorsal raphe nucleus with nerve terminals in the 

hypothalamus regulate renin secretion. The exact location of the 

terminals has not been identified. It is possible that the 

paraventricular nucleus (PVN) may play a role in mediating the 5-HT­

induced increase in renin secretion since studies by Gotoh et al. 

(1987) have demonstrated that electrolytic lesions of the PVN prevent 

the PCA-induced increase in PRA. Studies by Richardson Morton et al. 

(1986) and Gotoh et al. (1987) have also indicated that the PVN is 

involved in the stress-induced increase in PRA. Since the sympathetic 

nervous system was not shown to play a role in the PCA-induced increase 

in PRA, there should be another way for the brain to communicate with 

the kidneys. One possibility is that the hypothalamus releases a 

hormonal factor into the blood that circulates to the kidneys and 

increase renin secretion. 

In order to test this hypothesis, a group of donor rats were 

treated with PCA or saline. Their plasma was collected and injected in 

a group of recipient rats. The PRA values in the recipient rats were 

increased after injection of the PCA-plasma, but injection of plasma 

from rats that were treated with saline did not alter PRA (Van de Kar 
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~ al., 1982a). These data suggested that PCA may stimulate the 

release of a factor (renin-releasing factor; RRF) into the circulation 

that produces an increase in renin secretion in conscious rats. 

Pretreatment of the rats with the 5-HT synthesis inhibitor p­

chlorophenylalanine (PCPA) did not alter the response of PRA to 

administration of the PCA-plasma. Depleting 5-HT stores with PCPA 

prevented any release of 5-HT by residual PCA molecules present in the 

plasma fractions. 

The present studies were designed to investigate RRF in vitro 

using a kidney slice renin release bioassay. Studies were designed to 

determine the molecular weight of RRF and to characterize the nature of 

this substance is a peptide. Plasma from rats that received either 

injections of serotonin agonists or rats that were stressed were tested 

to determine if these stimuli could increase the plasma concentration 

of RRF. Other experiments were developed to study the distribution of 

RRF in the rat brain and attempt to identify where RRF cell bodies are 

located. In addition, hypothalamic explants were superfused in vitro 

with a high potassium solution to test if depolarization of the 

hypothalamus could stimulate the release of RRF. 

Many neuroendocrine systems have a feedback system that regulates 

the synthesis and release of a hormone from the hypothalamus or 

pituitary gland. Once the factor reaches the target organ, the target 

increases the secretion of its hormone which acts as a message to the 

brain to halt the production of the hormone. To test for the 

possibility of a feedback loop in the regulation of the release of the 

RRF from the hypothalamus, the concentration of RRF in the hypothalami 
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of nephrectomized rats was compared with the RRF concentration in sham­

operated rats. The results of this experiment suggest that there is a 

negative feedback loop from the kidney to the hypothalamus that 

regulates the release of RRF. 



CHAPTER II 

LITERATURE REVIEW 

A. overview 

1. Renin-angiotensin enzyme cascade 

The regulation of blood pressure in the body relies to a large 

extent on the integrity of the renin-angiotensin-aldosterone system 

(RAAS). Renin is the rate limiting enzyme in the formation of ANG II. 

The enzyme is synthesized, stored and released from the granular 

juxtaglomerular cells located in the afferent arterioles of the kidney 

(Taugner et al., 1986; Cantin et al., 1977). 

The juxtaglomerular cells, afferent and efferent arterioles and 

distal tubule are referred to collectively as the juxtaglomerular 

apparatus (JGA) . The JG cells are in close proximity to the macula 

densa, a specialized portion of the distal tubule that is sensitive to 

changes in sodium reabsorption across the tubular epithelium. 

When released from the kidney, renin circulates in the blood and 

cleaves the leucine-leucine bond (a leucine-valine bond in humans) in 

the renin substrate, angiotensinogen, to liberate the decapeptide, 

angiotensin I (ANG I). Angiotensin converting enzyme (ACE) cleaves two 

amino acids from ANG I to form the octapeptide angiotensin II. 

Degradation of ANG II by the action of aminopeptidase A leads to the 

6 
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formation of angiotensin III, while the action of other angiotensinases 

leads to inactive peptide fragments. 

asp-arg-val-tyr-ile-his-pro-phe-his-leu-leu-ile-his-ser-R 
Angiotensinogen l Renin 

asp-arg-val-tyr-ile-his-pro-phe-his-leu + leu-ile-his-ser-R 
angiotensin I l angiotensin converting enzyme 

asp-arg-val-tyr-ile-his-pro-phe + his-leu 
angiotensin II 

~ aminopeptidase 

arg-val-tyr-ile-his-pro-phe 
angiotensin III l angiotensinases 

inactive fragments 

Figure 1. Diagrammatic representation of the renin-angiotensin system 
enzyme cascade. 

2. Role of the angiotensins 

The angiotensins (ANG I, ANG II and ANG III) exert a number of 

pharmacological actions, all of which are involved in maintaining blood 

pressure and plasma volume. ANG II is the most active peptide of the 

renin-angiotensin enzyme cascade and produces profound increases in 

blood pressure (Fujii and Vatner, 1985; Fagard et al., 1985; Ross and 

White, 1966). ANG II is a potent vasoconstrictor and contracts 

vascular smooth muscle directly by stimulating vascular receptors 

(Fujii and Vatner, 1985; Coruzzi et al., 1983). In addition to 
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increasing systemic blood pressure, ANG II acts directly on the heart 

to increase myocardial contractility (Koch-Weser, 1965). ANG I 

enhances the release of catecholamines from the adrenal medulla and 

sympathetic nerve terminals (Peach et al., 1971; Ross and White, 1966). 

In addition, ANG II also prevents the reuptake of norepinephrine by the 

sympathetic nerves (Khairallah, 1972), thus prolonging the effect of 

norepinephrine at the synapse. ANG I is equally effective as ANG II in 

stimulating the release of adrenal catecholamines but is less potent in 

producing vasoconstriction (Peach et al., 1971). 

Another principal mechanism of action for ANG II is the 

stimulation of aldosterone synthesis and secretion from the zona 

glomerulosa of the adrenal cortex (Aguilera et al., 1980; Davis and 

Freeman, 1976). Aldosterone produces an increase in sodium and water 

reabsorption from the distal tubule (Biron et al., 1961) thus 

increasing extracellular fluid and volume. The heptapeptide, ANG III 

has been reported to be equally effective in inducing steroid synthesis 

in the adrenal cortex (Braley et al., 1983; Blair-West et al., 1980). 

Circulating levels of ANG II are able to influence the release of 

pituitary hormones. Systemic ANG II facilitates the neuronal firing of 

neurohypophysial neurons of the paraventricular and supraoptic nuclei 

(Ferguson and Renaud, 1986). It has been demonstrated that the release 

of vasopressin and ACTH (adrenocorticotropin hormone) are stimulated by 

increased plasma levels of ANG II (Keller-Wood et al., 1986; Spinedi 

and Negro-Vilar, 1983; Ramsay et al., 1978). LH (luteinizing hormone) 

secretion is also stimulated by ANG II. However, this effect does not 

appear to be mediated by circulating intravenous ANG II but rather by 
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intracerebral injections of ANG II (Steele~ al., 1983). 

The subfornical organ (SFO), median eminence and area postrema are 

circumventricular organs of the brain. These brain regions are not 

located within the blood-brain barrier and therefore may be responsive 

to circulating factors. Immunoreactive staining for ANG II has been 

demonstrated in the SFO and area postrema (Gehlert et al., 1986; Lind 

~al., 1985). Destruction of the subfornical organ (SFO) prevents the 

increased neuronal firing of neurohypophysial neurons (Ferguson and 

Renaud, 1986). This finding suggests that ANG II may influence the 

firing rate and possibly the release of substances from 

neurohypophysial neurons by influencing SFO neuronal firing. The 

pressor response to ANG II and the ANG II-induced drinking response 

were also attenuated by lesions in the SFO (Lind et al., 1983). Joy 

and Lowe (1970) and Fink et l!l., (1987) demonstrated that ablation of 

the area postrema prevents the ANG II-induced pressor response. 

Therefore it appears that ANG II, by stimulating receptors in the 

circumventricular organs, can further influence the regulation of 

plasma volume through central nervous system pathways. 

B. Historical Overview 

Studies in the late 1800's, Tigersteadt and Bergmann (as reviewed 

by Brod, 1986) demonstrated that kidney extracts, when injected into 

bilaterally nephrectomized rabbits, produced a prolonged increase in 

blood pressure. This pressor material was found primarily in the renal 

cortex of the kidney whereas other tissue extracts did not produce an 

increase in blood pressure. This substance was called renin. Later, 
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in 1934, Goldblatt et al produced an increase in blood pressure by 

placing a clamp around, and occluding the renal arteries. The degree 

of hypertension appeared to be dependent on the tightness of the clamp 

around the renal artery. They concluded that the kidney may play a 

.role in the development of hypertension. This increase in blood 

pressure was independent of the sympathetic nervous system or the 

adrenal medulla (Goldblatt et al., 1934). Tying off the renal veins 

prevented the hypertension from developing (Goldblatt et al., 1937). 

This indicated that the kidney releases a substance that is responsible 

for the development of hypertension. 

The attention then turned to renin as a causative substance for 

hypertension. When renin was purified, it increased blood pressure in 

intact animals but had no vasopressor activity when it was infused into 

the isolated dog tail (Friedman et al., 1938). However, when blood was 

used to perfuse the dog tail preparation, the vasoconstrictor effect of 

the kidney extracts returned. This finding led to the theory that 

renin was not the vasoactive substance but it was the interaction of 

renin and renin-activator that led to the formation of the vasoactive 

product. The substrate (renin-activator) is present in the alpha-2 

globulin fraction of plasma. 

Two independent groups, Page and Helmer (1940) in the United 

States and Braun-Menendez (1940) in Argentina, studied the pressor 

effect of renin. They found that plasma (renin-activator) and renin 

when incubated together formed a heat stable and potent vasoconstrictor 

substance that produced an immediate and dose-dependent increase in 

blood pressure. Renin, when administered, had a latent period before 
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the vasopressor effect could be observed. It became evident that renin 

was the enzymatic catalyst in the formation of this peptide. Page and 

Helmer named this peptide angiotonin and Braun-Menendez referred to it 

as hypertensin. It was not until 1958 that the nomenclature was 

standardized when the two groups compromised and called the substance 

angiotensin. The renin-activator became known as angiotensinogen 

(renin-substrate; proangiotensin). 

Studies were begun to isolate and purify angiotensin. However, 

upon purification it was discovered that dialyzing the solution 

containing angiotensin with sodium chloride instead of water, produced 

a pressor material in a different molecular weight range. This led to 

the discovery that there were two forms of angiotensin. The second 

peptide could be formed from angiotensin I by plasma supplemented with 

sodium chloride. However, if renin was incubated with plasma in the 

absence of chloride only angiotensin I was formed. Using isolated 

perfused kidneys, Skeggs et al. (1954) showed that ANG II was a more 

potent vasoconstrictor that ANG I. Therefore rapid conversion of ANG I 

to ANG II results in the pressor activity. These results suggested 

that an additional enzyme was required for the conversion of ANG I to 

ANG II. This newly found enzyme was named angiotensin converting 

enzyme (ACE). ACE circulated in the plasma and required the presence 

of chloride ions for its activity (Skeggs et al., 1956). A later study 

by Ng and Vane (1967) showed that as blood circulated through the lungs 

there was a stronger vasoconstriction produced than blood that 

circulated through other vascular beds. They therefore concluded that 

the highest concentration of this enzyme occurred in the lung. 
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The association of renin with the glomeruli was identified by Cook 

and Pickering (1959). They succeeded in separating the glomeruli from 

the rest of the kidney tissue by first injecting iron oxide into the 

glomerulus. The cortex was dissected and put through a sieve. A 

magnet was then used to separate the glomerular fragments from the 

tubules. Bioassay indicated that the vascular pole of the glomerulus 

contained more renin activity than the tubules. Similar results were 

reported by Bing and Wiberg (1958) who showed that destruction of the 

renal cortex reduces the renin content of the kidney. These data 

support earlier findings of Goormaghtigh (1939) who demonstrated that 

renin was localized in the arterioles of the juxtaglomerular apparatus. 

These were some of the first studies that reported the localization of 

renin at the glomerular area of the renal cortex. 

These studies have indicated that there are two enzymatic steps 

needed to form ANG II from angiotensinogen. Since renin and 

angiotensin have been implicated in the pathogenesis of hypertension, 

many studies have focussed on the inhibition of this enzyme cascade as 

a possible treatment of hypertension. The development of substrate 

analogues (Plattner et al., 1986), converting enzyme inhibitors (Mento 

and Wilkes, 1987), renin antibodies (Dzau et al., 1980) and ANG II 

antagonists (Wilkes, 1984) are pharmacological approaches to the 

possible treatment of hypertension. 

C. Angiotensinogen 

Angiotensinogen is the substrate for renin and thus the precursor 

for ANG I, and ultimately ANG II. There is renin-substrate specificity 
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that allows the interaction of renin only with homologous substrate. 

For example, human renin will only react with human angiotensinogen; 

non-primate angiotensinogen will preferentially react with homologous 

substrate. It has been proposed that the specificity of the enzyme­

substrate interaction may be due to the variation in the amino acid 

sequence between the human and non-primate forms (Tewksbury et al. , 

1981; Bouhnik et al., 1981). 

Angiotensinogen is a glycoprotein that is primarily localized in 

the liver although other organs have been found to contain 

angiotensinogen. Recent studies using immunocytochemistry (Richoux et 

al., 1983) and Northern Blot analysis with complementary mRNA sequences 

for angiotensinogen (Ingelfinger et al., 1986) identified that the 

liver contains and synthesizes angiotensinogen. Clauser et al., (1983) 

demonstrated that angiotensinogen is released from liver slices and its 

productions can be prevented by treatment with cycloheximide, a protein 

synthesis inhibitor. Incubation of liver slices in the absence of 

oxygen also prevents the secretion of angiotensinogen indicating that 

the release is an active process. 

Angiotensinogen circulates in the plasma in two forms which are 

referred to as Aol and Ao2 (Hilgenfeldt and Schott, l987a; 1987b; 

Tewksbury, 1983). The dissimilarity in molecular weight is 

attributable to the difference in the number of carbohydrate residues 

present on Aol and Ao2. Hilgenfelt and Schott (1987) demonstrated that 

the two forms of angiotensinogen do not differ in their affinity for 

endogenous renin. 

There are a variety of factors that can modulate the plasma 
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concentration of angiotensinogen. The levels of renin substrate can be 

decreased by diseases that affect liver function, such as cirrhosis 

(Schroeder et al., 1970; Ayers, 1967). Adrenalectomy (Carretero and 

Gross, 1967; Nasjletti and Masson, 1969; Reid, 1977) and hypophysectomy 

(Goodwin et al., 1970) also reduce the circulating levels of 

angiotensinogen. The decrease in angiotensinogen levels produced by 

adrenalectomy can be prevented by administration glucocorticoids (Reid, 

1977; Nasjletti and Masson, 1969). Nasjletti and Masson, (1969) found 

that mineralocorticoids and sodium replacement also inhibited the 

effect of adrenalectomy. From these reports it appears that the 

pituitary adrenal-axis is necessary for maintaining plasma substrate 

levels. In addition to the pituitary-adrenal axis, the pituitary­

thyroid axis may play a role in regulating the synthesis of 

angiotensinogen. Rats that have been thyroidectomized have a decreased 

plasma angiotensinogen concentration; this decrease is reversed by 

thyroid hormone replacement therapy (Bouhnik et al., 1981; Dzau and 

Herrmann, 1982). Rats that were made hyperthyroid by administration of 

1-thyroxine also had elevated levels of renin substrate (Dzau and 

Herrmann, 1982). Increased levels of angiotensinogen are also achieved 

by administration of ethinyl estradiol (Glauser et al., 1983; Krakoff 

and Eisenfeld, 1977). However, this treatment does not increase 

angiotensinogen levels in hypophysectomized animals. Dexamethasone, a 

glucocorticoid, also increases the production of angiotensinogen by the 

liver. 

The release of angiotensinogen may be subject to a feedback 

control by the renin-angiotensin system. The final product of the 
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pathway, ANG II has been shown to stimulate the release of 

angiotensinogen (Herrmann et al., 1980; Reid, 1977). Captopril, a 

converting enzyme inhibitor, reduces circulating levels of ANG II, and 

also produces a decrease in the circulating levels of angiotensinogen 

(Radziwill et al., 1986; Hermann and Dzau, 1983). 

D. Renin 

1. Renin synthesis 

Renin is a proteolytic enzyme with a molecular weight of 

approximately 36, 000 to 40, 000. Renin is primarily localized in and 

secreted from the granulated cells of the afferent arterioles (Lacasse 

et al., 1985; Taugner et al., 1982a; Taugner et al., 1979). Renin-like 

immunoreactivity has also been demonstrated in the cells of the 

efferent arteriole (Taugner et al., 1981) and along extended lengths of 

the afferent arteriole and interlobular artery (Taugner et al., 1979; 

Taugner et al., 1981). Renin-like immunoreactivity has also been 

described in tissues other than the kidney. Extrarenal sources of 

renin include blood vessels (Re et al., 1982), pituitary (Deschepper 

et al., 1986; Naruse et al., 1985), adrenal gland (Baba et al., 1982), 

testes (Deschepper et al., 1986) and heart (Dzau and Re, 1987). These 

studies were performed by using either immunocytochemical techniques or 

in situ hybridization using renin messenger RNA. These extrarenal 

renin sources are not identified in all species, only kidney renin is 

universally present in all species. Perhaps the richest source of 

renin is the submaxillary gland of the mouse (Menzie et al., 1978; 

Cohen~ al., 1972). Purification and isolation studies for renin have 
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been performed using submaxillary renin. It is important to keep in 

mind that renal and submaxillary renin are not identical in structure; 

renal renin is glycosylated whereas submaxillary gland renin does not 

contain carbohydrate moieties (Kawamura et al., 1986). Studies have 

indicated that renal renin may be the major source of the circulating 

enzyme. Van de Kar and Richardson Morton (1986) have reported that 

after bilateral nephrectomy the plasma levels of renin are below the 

sensitivity limit of the radioimmunoassay (less than 10 pg) suggesting 

that renal renin is the major source of renin in the plasma. 

Renin is synthesized from messenger RNA as a preprozymogen that is 

processed at the endoplasmic reticulum and converted to prorenin. This 

proenzyme (prorenin) is further processed in the rough endoplasmic 

reticulum and is packaged in a crystalline form in the golgi apparatus 

which then forms protogranules. The protogranules mature into dense 

secretory granules (Taugner et al., 1987; Lacasse et al., 1985) which 

secrete renin from the epithelial cells. It has long been believed 

that only the dense granules contain renin. Recently, the presence of 

immunoreactive renin vacuoles in the cytoplasm of these granule cells 

may suggest an alternative pathway for the packaging and release of 

renin (Lacasse et al., 1985; Taugner et sij.., 1984). 

There has been some debate as to whether the dense granules 

contain and release active or inactive (prorenin) renin. The presence 

of prorenin has been identified in both plasma and kidney (Sealey et 

fil., 1983; Morris and Johnston, 1976) and has been immunologically 

identified as inactive renin (Bouhnik et al., 1985). Kawamura et al. 

(1986) showed that isoelectric focusing of stored renin resulted in 
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several peaks of differing isoelectric points with the majority of 

renin activity present in one peak. Renin that was secreted from 

isolated glomeruli also exhibited different isoelectric points. 

However, there was a redistribution of renin activity between the 

different isoelectric points, and there were two peaks that contained a 

considerable amount of renin activity. Kawamura et al. (1986) 

therefore concluded that there may be some processing of renin 

occurring in the cytoplasm. Cathepsin B is an intracellular enzyme 

that has been cited to convert inactive to active renin (Takahashi et 

al., 1982). In other studies, Taugner et al. (1983) have found that 

mature secretory granule cells exhibit both renin-like and cathepsin B­

like immunoreactivity. It is suggested that cathepsin B is involved in 

the activation of prorenin to active renin which probably occurs in the 

dense granules. 

Studies using antisera raised against different determinants of 

the renin prosegment have indicated that prorenin is found 

predominantly in the protogranules of the epithelioid cells while there 

is very little staining in the mature granules (Taugner et al., 1987). 

Therefore it was concluded that this prosegment was cleaved off in the 

golgi complex. In contrast, labelling for immunoreactive renin 

increases from the protogranules to the mature granules (Taugner et 

al. , 198 7; Lacasse et al. , 1985) . It is therefore suggested that 

activation of renin from prorenin occurs in the protogranules. 

Altogether, these results indicate that there may be stores of inactive 

renin that are further processed to active renin and released into the 

circulation. 
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2. Renin release 

Renin is released from the kidney primarily by exocytotic 

mechanisms. The granules have been observed to fuse with the plasma 

membrane of the juxtaglomerular cell and release their contents into 

the extracellular space (Taugner et al., 1986; Taugner, Buhr le and 

Nobiling, 1984). Other groups have reported invaginations of the 

plasma membrane into the interior of the epithelioid cell that come in 

close contact with the dense granules (Ryan et al., 1982; Peter, 1976). 

These invaginations of the plasma membrane contain material that 

appears to be similar to that present in the dense granules which 

suggests that these granules empty their contents into these 

invaginations. 

It has been hypothesized that renin is released from the JG cells 

into the lymphatics and not directly into the blood. Lever and Peart 

(1962) first demonstrated renin activity in renal lymph. The highest 

renin activity was present in the renal venous plasma which correlated 

with increased levels in the lymph (Horky et al., 1971). Since 

injection of renin into the plasma produced an increase in blood 

pressure without altering the renin concentration in the lymphatics, 

Horky et al. (1971) hypothesized that renin was first secreted into the 

lymph and then diffused into the circulation. The relationship between 

renin in the plasma and renal lymph was illustrated by O'Morchoe et al. 

(1981). In response to injection of furosemide, renin concentration 

rose in the renal artery, renal vein and lymph. The increase in renin 

concentration was more immediate and marked in the renal lymph whereas 

a few minutes were required to reach peak renin levels in the plasma. 
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Therefore, renin may be released into the lymph where it then diffuses 

into the blood. 

3. Metabolism of renin 

Renin circulates in the plasma with a half-life of approximately 

7.0 minutes (Kim et al., 1987). Other half-life values for renin have 

been reported to be between 3. 0 and 15. 0 minutes (Fiselier et al. , 

1984; Assaykeen et al., 1968). The clearance of renin from plasma 

follows a two component system with a rapid component (t1;2 - 7. 0 

minutes) and a slow component with a t1;2 of about 65 minutes (Kim et 

al., 1987). 

Plasma renin values are dependent on the relative rates of renin 

release and the clearance from the plasma. A major portion of renin is 

inactivated by the liver (Heacox et al., 1967), however the kidney is 

also involved in eliminating renin from the plasma (Kim et al., 1987; 

Peters-Haefeli et al., 1971). Partial hepatectomy produced a decrease 

in the clearance of renin and increased the half-life of the slow phase 

(from 65 minutes to 94 minutes) while nephrectomy prolonged the half-

life of the rapid phase (6 minutes to 10. 5 minutes). The increased 

half-life suggests that both the kidney and the liver are involved in 

the catabolism of renin. Intravenous infusion of radiolabelled renin 

accumulated preferentially in the liver and kidney. Fifteen minutes 

after injection of renin, radioactive degradation products, with 

molecular weights lower than that for renin, were present in both the 

liver and kidney (Kim et al., 1987). Although the liver accumulated 

about 60% of the radiolabelled renin, the kidney accumulated only 11%. 
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These studies suggest that both the liver and kidney are responsible 

for the clearance of circulating renin with the liver being the more 

predominant. 

A pure antibody against renin is not widely available for use in a 

direct radioimmunoassay (RIA) for renin. Renin is measured in the 

plasma primarily by RIA of generated ANG I. To prevent conversion of 

ANG I to ANG II, ACE inhibitors are added to the samples. Plasma renin 

activity (PRA) is the measure of the ability of plasma to generate ANG 

I, which depends on the amount of renin and renin substrate present in 

the plasma sample. Unless there is saturation of the enzyme with the 

substrate, variations in substrate levels may influence the amount of 

ANG I produced. Plasma renin concentration (PRC) is a measure of the 

ability of renin to generate ANG I in the presence of a saturating 

concentration of renin substrate. The normal plasma concentration of 

angiotensinogen is less than the Km required for renin to generate ANG 

I at maximum velocity. In order to measure renin concentration, the 

samples are saturated with renin substrate so that the reaction 

proceeds at Vmax· Therefore any variation in substrate levels will not 

influence PRC values. PRC is a better indication of the amount of 

renin circulating in the plasma. 

E. Regulation of renin secretion 

1. Role of plasma electrolytes 

la. Macula densa 

The macula densa region of the distal tubule is composed of 

columnar cells that are in contact with the afferent arteriole. The 
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basement membrane of the macula densa cells appears to fuse with the 

membranes of the afferent arteriole that surround the granular cells 

(Barajas and Powers, 1984). In addition, the macula densa cells have 

short extensions of cytoplasm that extend into the mesangial cell area 

of the JGA and the granule cells of the arterioles {Sottiurai and 

Malvin, 1982). These anatomical findings suggest that there may be a 

functional relationship between the cells of the macula densa and the 

renin containing cells of the afferent arteriole. It has been 

hypothesized that the macula densa is the sensor for changes in ionic 

concentrations of the tubular fluid that signals the granular cells to 

alter renin release. 

lb. Sodium 

Sodium has been shown to play a role in hypertension and the 

regulation of blood pressure (Parfrey et al., 1981; Dawson and Oparil, 

1987; McCaa, 1982; Takata et al., 1986). In addition, renin secretion 

appears to be inversely regulated by distal tubular sodium 

concentration. In the study by Parfrey et al. (1981) it was observed 

that as patients were changed from a high to a low sodium diet their 

PRA values increased. In hypertensive patients, reduction of sodium 

led to lowered blood pressure. However, reduction in sodium levels did 

not alter blood pressure in normotensive patients. It appears that in 

hypertensive patients there is a greater sensitivity to changes in 

sodium. Rats that are supplemented with NaCl in their drinking water 

also have decreased PRA values and increased blood pressure (Pyykonen 

.tl. al., 1986). It is conceivable that increased sodium may decrease 
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renin by stimulating the renal baroreceptor as a result of the 

increased blood pressure and extracellular fluid (ECF) volume. To test 

this hypothesis, Anderson et al. (1975) infused dextran solutions of 

different osmolarities or a Ringer's salt solution into sodium depleted 

dogs. PRA was decreased only in the group that received the Ringer's 

salt solution which restored the sodium levels. Replacement of 

extracellular fluid with the dextran solutions did not reduce PRA 

values. The plasma volume and mean arterial pressure were not 

significantly different between the dextran-infused and saline-infused 

groups. This suggests that renin secretion may be inversely 

proportional to plasma sodium concentration. A similar study was 

performed in salt-depleted humans (Tuck et al., 1975). When the 

subjects received saline infusions, PRA decreased, but there were no 

alterations in PRA after dextran infusion. The increase in ECF volume 

was similar in both the saline-infused and dextran-infused groups. If 

the renal baroreceptor contributed to the suppression of renin release, 

then all of the groups would be expected to have a similar decrease in 

PRA after restoration of plasma volume. These data support the 

proposed mechanism of sodium-induced suppression of renin release 

independent of changes in plasma volume. 

One of the first studies that actually measured the amount of 

sodium at the macula dens a area was performed by Churchill et al. , 

(1978). The changes in sodium concentration in the distal tubule were 

correlated with alterations in renin secretion. Micropuncture sampling 

of the distal tubular fluid showed that the tubular sodium load was 

proportional to dietary sodium. In sodium-deprived rats, renin 
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secretion was increased when compared with the control group maintained 

on a standard diet. Renin secretion was decreased in the animals that 

were fed a high sodium diet. This study suggested that there was an 

inverse correlation between plasma renin activity and the sodium load 

in the distal tubule. 

le. High ceiling diuretics, sodium and renin secretion 

The effect of sodium on renin secretion was also tested using the 

high ceiling diuretic ethacrynic acid and a thiazide diuretic, 

chlorothiazide (Cooke et al., 1970). Ethacrynic acid prevents sodium 

and chloride reabsorption by inhibiting the active sodium-chloride co­

transporter in the ascending loop of Henle. The thiazides inhibit 

sodium reabsorption in the distal tubule downstream from the macula 

densa. It was observed that renin secretion was increased after 

administration of ethacrynic acid and persisted when the volume was 

restored. Chlorothiazide failed to produce an increase in renin 

secretion during volume restoration. The effects of these two 

diuretics implies that the effect of chlorothiazide on renin release is 

mediated by changes in plasma volume. The effect of ethacrynic acid 

appears to be mediated by the macula densa. The results of this study 

suggest that changes in sodium sensed by the macula densa cells in the 

early part of the distal tubule serve as a regulator of renin release. 

The finding with ethacrynic acid seems to contradict the results of 

other studies indicating that sodium ions decrease renin release 

(Parfrey et al., 1981; Fray, 1978; Churchill et al., 1978; Tuck~ .al., 

1975; Anderson et al., 1975; Bunag et al., 1966a). However, another 



24 

study which used furosemide, a diuretic with actions similar to 

ethacrynic acid, to investigate the effect of salt and water loss on 

PRA (Vander and Carlson, 1969) supported the findings by Cooke et al. 

(1970). Small doses of furosemide produced a natriuresis and diuresis 

that was prevented by replacing the volume loss. Larger doses of 

furosemide produced significant increases in PRA in dogs that were not 

reversed by replenishing the salt and water losses. These results 

provided evidence that the loop diuretics may inhibit sodium transport 

at the macula densa cells, resulting in elevated PRA. 

One proposed hypothesis by Meyer et al. (1968) was that furosemide 

might affect renin release by inhibiting sodium transport into the 

macula densa cells. This would account for the inability of the 

increased sodium load to the macula densa after furosemide to decrease 

renin release. Meyer et al. (1968) noticed that furosemide produced a 

large increase in renin release in volume-replete rabbits. They 

concluded that since the loss of volume did not increase renin there 

may be a change in the delivery of sodium to the cells of the macula 

densa. This theory was tested in 1982 by Sottiurai and Malvin. They 

correlated intracellular sodium concentration in the macula densa cells 

with changes in PRA that occurred as a result of altering sodium 

intake. In sodium-depleted states, there was the expected rise in PRA 

but without any changes in the intracellular content of sodium in the 

macula densa cells. Infusion of saline reduced PRA but did not alter 

the intracellular concentration of sodium. The authors concluded that 

intracellular sodium in the macula densa cells is not affected by 

changes in dietary sodium and furthermore, that this is not the 
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mechanism by which the macula densa regulates renin secretion from the 

afferent arteriole. 

Itoh and Carretero (1985) have observed that the macula densa is 

necessary for the regulation of renin release from isolated afferent 

arteriole preparations. They noted that in vitro afferent arteriole 

preparations had a higher rate of renin release than afferent 

arterioles with an intact macula densa. When these arterioles are 

incubated with furosemide, in doses that correspond to those used in 

vivo studies, only the arterioles with the macula densa were stimulated 

to increase renin release. This implies a role for the macula densa in 

the furosemide-induced increase in renin release that is independent of 

the baroreceptor effect. Since this was an in vitro study, it appears 

that furosemide may directly affect the macula densa. 

Upon histological analysis of the macula densa cells Sottiurai and 

Malvin (1982) noted that the intercellular spaces between the cells 

were dilated after perfusion. This finding was also observed by 

Kaissling and Kitz (1982). In addition, they noted that when rats 

received either mannitol infusion (osmotic diuretic) or furosemide, the 

intercellular spaces between the macula densa cells were narrower than 

those of control animals. From a functional perspective, the closing 

of these spaces might prevent sodium from gaining access to the JG 

cells and therefore sodium would not be able to inhibit renin 

secretion. In hypervolemic conditions the intercellular spaces were 

dilated. Kaissling and Kitz (1982) did not attribute these findings as 

artifacts of the tissue processing since the spacing between the 

epithelial cells of the tubules were not altered under the different 
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test conditions. Whether the treatment effects on the macula densa 

cell spaces reflect a true occurrence in vivo remains to be determined. 

However, these findings are interesting and may suggest a mechanism of 

action for the macula densa in transducing the signal from the ionic 

concentration of the tubular lumen to the renin secreting cells. 

ld. Potassium 

In addition to sodium, another cation, potassium, is thought to 

regulate renin secretion. The first study on potassium-regulated renin 

release was done by Vander (1970). In normal dogs, infusion of 

potassium chloride into the renal artery produced a decrease in PRA 

without altering renal plasma flow or blood pressure. Infusion of 

potassium increased the urinary excretion of both sodium and potassium 

from the perfused kidney. The decrease in PRA could have been due to a 

decrease in either sodium or potassium reabsorption that would have 

resulted in an increase of sodium delivery to the distal tubule/macula 

densa. The possibility that potassium exerts its effect on the JGA was 

not ruled out. Shade et al. (1972) demonstrated that potassium 

produces a decrease in renin secretion that is dependent on an intact 

renal system and glomerular filtration rate. In the non-filtering 

kidney, potassium was without effect on renin secretion (Shade et al., 

1972). Kirchner and Mueller (1982) tested the potassium-induced 

inhibition of renin secretion using salts other than chloride. PRA was 

measured after infusion of potassium chloride, bicarbonate, nitrate and 

acetate in sodium deficient rats. After each infusion, PRA levels 

decreased about 50% from the control values. Arterial pressure, plasma 
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volume and sodium balance were similar between the control and 

treatment groups. In conscious rats maintained on a sodium-deficient, 

high potassium diet, the increase in potassium levels blocked the rise 

in PRA after sodium depletion. In 1976, Kotchen ~ al. found similar 

results using a low sodium chloride diet supplemented with potassium 

bicarbonate. If potassium chloride was used instead of potassium 

bicarbonate, not only was there a blockade of the sodium-induced 

increase in PRA but a further suppression of PRA was observed. 

le. Chloride 

Since potassium chloride produced a greater suppression of PRA, 

Kotchen et al. (1976) suggested a role for chloride in addition to 

potassium in regulating renin release. This spurred interest in 

chloride as a new modulator for renin secretion. Not only did 

potassium chloride inhibit renin secretion when compared with potassium 

bicarbonate but sodium chloride inhibited renin release when compared 

with sodium bicarbonate (Kotchen et al., 1976). Furthermore, Kotchen 

et al. (1978) and Kirchner et al. (1978) demonstrated that both sodium 

chloride and sodium bromide decreased PRA while sodium infusion as an 

acetate, nitrate or carbonate salt did not alter renin release. It has 

been postulated that bromide is handled by the kidney in a similar 

manner to chloride, and either of these ions can influence renin 

secretion. Kotchen et al. (1978) tested the role of chloride by 

infusing choline chloride versus the bicarbonate salt. Again, only the 

chloride salt produced a suppression of renin release. These changes 

occurred independently of variations in sodium or potassium balance 
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(Kotchen et al., 1978) or blood pressure or volume (Kirchner et al., 

1978). 

Rostand et al. (1985) measured the quantities of chloride in the 

tubules and correlated the concentration of chloride with changes in 

renin release in the perfused rat kidney. Substituting sodium nitrate 

and thiocyanate salts for chloride reduced the amount of chloride in 

the kidney and also produced an elevation of renin release. Analysis 

of the data revealed a negative correlation between chloride and renin 

activity. Therefore, it is possible that chloride, in addition to the 

cations, may be important in regulating renin release from the 

juxtaglomerular cells. 

lf. Calcium 

Calcium plays an important role in secretory and smooth muscle 

cells. It provides a signal for the release of neurotransmitters and 

for muscle contraction. However, with respect to renin release, there 

may be an inverse relationship between renin secretion and the 

intracellular concentration of calcium. In 1974, Kotchen et al. 

infused calcium chloride into the renal artery of dogs and observed a 

fall in renin release that was accompanied by increased calcium levels 

in the blood. There was no alteration of renal blood flow or of 

arterial pressure. An increase in sodium excretion was observed while 

the plasma concentration of sodium was unaffected by calcium treatment. 

Addition of calcium directly to kidney cortical cells produced a dose­

dependent suppression of renin release whereas sodium did not alter the 

spontaneous release of renin (O' Dea et al., 1984). Kotchen et al. 
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(1974) examined the effect of calcium on the generation of ANG II from 

renin. Infusion of calcium did not interfere with the renin-substrate 

interaction or with angiotensinase activity. It was therefore 

concluded that calcium inhibited renin release by the macula densa or 

by a direct effect on the juxtaglomerular cells. 

Recent studies investigating the role of calcium in regulating 

renin release have used pharmacological agents to alter calcium 

concentrations. BAY K 8644 is a calcium channel agonist that activates 

the slow inward calcium channel. It has been shown that BAY K 8644 

vasoconstricts smooth muscle and reduces renal blood flow, dose-

dependently (Dietz, 1986). Infusion of the agonist into perfused 

kidney (Dietz, 1986) or addition to cortical slices (Matsumura et al., 

1985) does not alter basal levels of renin release. However, when BAY 

K 8644 was added with 15 mM potassium there was a significant decrease 

in renin release from the slices (Matsumura et al., 1985; May and 

Peart, 1986). The dose of potassium was reported to be below the 

threshold level for depolarization of the cells. The effect of BAY K 

8644 was reversed by addition of nifedipine, a calcium channel 

antagonist. Other investigators have indicated that addition of calcium 

channel antagonists elevate renin release from kidney slices by 

decreasing the amount of intracellular calcium (Henrich and Campbell, 

1986; Antonipillai and Horton, 1985). 

The hypothesis that renin secretion is modulated by stores of 

intracellular calcium has not been defined. However, calmodulin, an 

intracellular protein that has multiple binding sites for calcium, has 

been implicated in controlling renin release (Park et al., 1986; Fray 
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and Park, 1986; Fray et al., 1983). Addition of calmodulin antagonists 

such as trifluoperazine (Fray et al., 1983), calmidazolinium (Fray and 

Park, 1986) or W- 7 (Shinyama et al., 1987) produced dose-dependent 

increases in renin release when added to the kidney. Trifluoperazine 

also increased the basal levels of renin secretion from isolated renal 

cortical cells (Fray et al., 1983). Infusion of W- 7 into the renal 

artery of rats did not alter mean arterial pressure, renal blood flow 

or urine flow. The control compound, W-5, which does not have 

calmodulin antagonist actions, also did not affect these parameters. 

W- 7 produced dose-related increases in PRA and renin secretion rate 

whereas W-5 did not produce these changes in renin release (Shinyama et 

al., 1987). These data suggest a role for calmodulin and intracellular 

calcium levels in the juxtaglomerular cells in modulating renin 

release. 

Some of the stimuli that inhibit renin secretion require the 

presence of extracellular calcium. Vanadate (Churchill and Churchill, 

1980), ouabain (Cruz-Soto et al., 1984), potassium (Park et al., 1986) 

and high renal perfusion pressure (Fray and Park, 1986) are dependent 

on calcium in order to mediate their effect. For example, ANG II 

suppressed renin release when added directly to the kidney via the 

renal artery (Bunag et al., 1967). Removal or lowering of the 

concentration of calcium in the perfusate medium prevented the effect 

of ANG II on renin release (May and Peart, 1986; Antonipillai and 

Horton, 1985). In addition, the ANG II-induced stimulation of 

aldosterone production from glomerulosa cells was enhanced after 

addition of BAY K 8644 (Hausdorff et al., 1986). These findings 
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suggest that calcium is necessary in order for ANG II to exert an 

action, and that inhibition of renin secretion by ANG II is dependent 

on a calcium mediated mechanism. Dietz (1986) demonstrated that 

verapamil, another calcium channel antagonist prevented the decrease in 

renin secretion produced by increasing perfusion pressure. This 

supported an earlier proposal by Fray (1980) stating that calcium 

influx is needed for elevated perfusion pressure to decrease renin 

release. Overall, the evidence implies that calcium suppresses renin 

release and may be the mechanism by which other factors {ANG II and 

increased perfusion pressure) inhibit renin release. 

2. Volume receptors 

The early study by Goldblatt et al. (1934) demonstrated that 

graded constriction of the renal arteries induced hypertension in dogs. 

This was believed to be due to the presence of a circulating 

vasopressor substance. In 1959, Tobian et al. observed that there was 

an inverse relationship between the granulation of juxtaglomerular 

cells and perfusion pressure. He therefore proposed the theory that 

the juxtaglomerular cells act as baroreceptors, changing the rate of 

renin release as determined by changes in arterial pressure. Imagawa 

~ al. (1984) showed that as arterial pressure is gradually increased 

by suprarenal aortic constriction, PRA decreases. These studies 

suggest that changes in perfusion pressure may be a stimulus for renin 

release. 
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2a. Intrarenal baroreceptor 

The role of an intrarenal baroreceptor has been studied using the 

non-filtering kidney model (Blaine et al., 1971). This model was 

developed to obstruct glomerular filtration and prevent changes in 

.sodium delivery to the macula densa from altering renin release (Blaine 

et al., 1970). Reduction of plasma volume by hemorrhage or reduction --
of renal blood flow by partial suprarenal aortic constriction produced 

significant increases in renin secretion (Blaine et al., 1970; 1971; 

Blaine and Davis, 1971). Renal denervation or adrenalectomy did not 

diminish the renin response to decreased blood flow. Since glomerular 

filtration ceased, the authors deduced that the change in renin release 

was not dependent on the macula densa and was likely due to the 

presence of an intrarenal baroreceptor. 

The role of an intrarenal baroreceptor has also been studied using 

an isolated perfused kidney (Fray, 1976). Increased perfusion pressure 

suppressed renin release from the isolated kidney. Alteration of the 

sodium concentration in the perfusion medium did not affect the renin 

response to increased perfusion pressure. These findings support the 

hypothesis of Blaine et al. (1971) that the macula densa may not be 

involved in mediating the changes in renin secretion produced by 

increased arterial pressure. Kaloyanides et al. (1973) demonstrated 

that the increase in renin secretion produced by ureteral occlusion was 

prevented by increasing renal arterial pressure. 

Results have also accumulated suggesting that the juxtaglomerular 

cells are sensitive to changes in arterial stretch. Vasodilation 

produced by papaverine decreased renin release from the isolated 
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Perfusion of the kidney with either 

phenylephrine or methoxamine, two o agonists that produce 

vasoconstriction, increased renin activity. The increase in renin 

secretion produced by phenylephrine was blocked by co-administration of 

papaverine or by increased perfusion pressure. Since the 

juxtaglomerular cells are modified smooth muscle cells, it is likely 

that they may depolarize in response to stretch (similar to the 

response seen with increased plasma volume) or increased perfusion 

pressure. Depolarization may influence the membrane permeability to 

certain ions (Fray, 1976). Later, Fray (1980) demonstrated that the 

decrease in renin release produced by increased perfusion pressure was 

mediated by calcium. Intracellular recordings from renin-containing 

cells show that depolarization of the juxtaglomerular cells is produced 

by stimuli that inhibit renin release and may be mediated by an 

increase in calcium influx (Buhrle et al., 1985). 

2b. Cardiac mechanoreceptors 

In addition to the intrarenal baroreceptor, cardiac 

mechanoreceptors also are involved in the maintenance of renin 

secretion. Increased left and right atrial pressure produced by 

inflation of arterial balloons produces a decrease in plasma renin 

activity (Brennan et al., 1971). Kaufman (1987) on the otherhand, 

demonstrated that increased right atrial stretch did not alter plasma 

renin activity or the isoproterenol-induced increase in PRA in 

conscious rats. Other studies have supported the results of Brennan et 

al. (1971) indicating that the mechanoreceptors in the right atrium 
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influence renin release (Sanchez et al., 1987; Julius et .5!.l., 1983). 

In human studies, lower body compression produced by inflation of a 

cuff around the legs, caused a significant increase in right arterial 

pressure and a suppression of PRA (Sanchez et al., 1987; Julius~ .5!.l., 

1983). Tilting the subject upwards promoted gravitational pooling of 

blood and also increased PRA. The effect of tilting on renin was 

counteracted by lower body compression. Inversely, decreasing right 

atrial pressure by induced pooling of blood in the extremities, results 

in an increase in PRA (Julius et al., 1983). These findings suggest 

that the cardiopulmonary mechanoreceptors play an important role in the 

integration of postural changes and renin release. 

3. Autonomic nervous system 

3a. Role of the sympathetic nervous system 

The juxtaglomerular apparatus of the kidney was analyzed for the 

presence of adrenergic nerve terminals. Using electron microscopy, 

Barajas and Muller (1973) documented the presence of dense core 

varicosities in the vicinity of the JGA that are generally associated 

with adrenergic neurons. These nerve terminal regions synapsed on the 

cells of the afferent and efferent arteriole as well as on the 

glomerulus and the proximal and distal tubules (Buhrle et al., 1985; 

Barajas and Muller, 1973). Using horseradish peroxidase labelling 

techniques, the origin of the renal nerves has been identified in the 

celiac and nodose ganglion (Gattone et al., 1986) and there is 

innervation extending from the dorsal root ganglia in the spinal cord 

segments TlO-Ll (Ciriello and Calaresu, 1983; Kuo et al., 1982). 
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Typically, stimulation of the renal nerves results in a renal 

vasoconstriction, increased renin release and an increase in sodium 

reabsorption (DiBona, 1985). The increase in renin release occurs at 

stimulation frequencies that do not alter renal hemodynamics (Osborn et 

1 1981) . Renal denervation produces a decrease in basal renin L·• 

release (Grandjean et al., 1978) and a decrease in the amount of sodium 

reabsorbed from the tubules (Bello-Reuss et al., 1975; Fernandez-

Repollet et al., 1985). The antinatriuresis produced by renal nerve 

stimulation can be prevented by pretreatment with the Q antagonist 

phentolamine. The beta blockers, propranolol and atenolol reduce the 

renal nerve-induced increase in renin secretion (Osborn et al., 1983). 

It has been hypothesized that the increase in renin release 

resulting from sodium depletion is partially dependent on intact renal 

nerves. Denervation reduced the response of natriuresis to volume 

expansion in sodium-depleted rats. There was no difference in sodium 

excretion in rats that were maintained on a regular sodium diet. These 

results suggest that renal nerve stimulation plays a larger role in 

maintaining sodium excretion in sodium-deficient than in control states 

(DiBona and Sawin, 1985). 

Renal sympathetic nerve activity has been shown to influence the 

onset of hypertension by changing renal arterial pressure, sodium and 

water balance and renin release. Winternitz and Oparil (1982) 

demonstrated that renal denervation decreases blood pressure and 

increases the renal excretion of sodium in spontaneously hypertensive 

rats. Renal denervation delays the development of hypertension in 

renovascular hypertension (Vari et al., 1987) and in genetic forms of 
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hypertension (Kline et al., 1980; Dietz et al., 1978). 

3b. Beta receptors 

3b1. Renal beta receptors 

Infusion of either epinephrine or norepinephrine into dogs with 

maintained arterial pressure produces the same response with respect to 

renin release and renal function as renal nerve stimulation (Vander, 

1965). Renin release increases and the renal plasma flow and sodium 

excretion decreases. Vander (1965) proposed that stimulation of the 

renal nerves produced an increase in renin secretion that occurred 

secondarily to changes in sodium excretion. Studies using kidney 

slices have demonstrated that adminstration of the beta receptor 

agonist, isoproterenol, produces increases in renin release that are 

prevented by pretreatment with d, 1-propranolol ('Weinberger et al., 

1975; Vandongen et al., 1973). Addition of norepinephrine and 

epinephrine also produce increases in renin release that are prevented 

by addition of d,1-propranolol ('Weinberger et al., 1975). These 

effects are due to stimulation of beta receptors since pretreatment 

with either phenoxybenzamine, an alpha-antagonist or d-propranolol, a 

membrane stabilizing form of the beta antagonist propranolol, did not 

prevent the catecholamine-induced stimulation of renin secretion. 

Beta-adrenergic receptor subtypes were localized in rat kidney 

slices by autoradiography using the non-selective B antagonist, 

iodocyanopindolol, in the presence of the selective antagonists for the 

Bi (betaxolol) or B2 (zinterol) receptors (Healy et al., 1985). The 

results from this study identified the renal cortex as having the 
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highest concentration of renal beta-receptors. B1 binding occurs 

primarily on the afferent arterioles and on the glomeruli; B2 binding 

is predominantly on the renal tubules of the medulla. Functionally, 

the B1 adrenoceptor has been associated with renin release from the 

kidney. Himori et al. (1979) demonstrated that atenolol, a selective 

B1 antagonist, attenuates the increase in renin secretion produced by 

isoproterenol. A B2 antagonist, IPS-339, was not as effective in 

reducing the isoproterenol-induced increase in renin release. 

Stimulation of renal nerves at a low frequency (0. 5 Hz for 0. 5 ms) 

produces an increase in renin release without changing renal blood 

flow, sodium excretion or arterial pressure (Osborn et al. , 1985; 

1981). Pretreatment with atenolol blocked the renin response to renal 

nerve stimulation. In contrast, blockade of B2 receptors did not 

modify the increase in renin secretion. These studies suggest that the 

sympathetic nervous system increases renin release by stimulating B1 

receptors on the JG cells. 

3b2. Extrarenal beta receptors 

Recently, data have accumulated indicating that an extrarenal beta 

receptor regulates renin secretion independently of the renal beta 

receptors. In 1972, Reid et al. infused the beta adrenergic receptor 

agonist, isoproterenol, into the femoral vein of dogs and noticed 

increases in PRA and renin secretion rate in both innervated and 

denervated kidneys. Renal perfusion pressure was held constant by 

adjusting an aortic clamp so there was no influence of renal perfusion 

pressure on the renin response to isoproterenol. No changes in 
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glomerular filtration, renal plasma flow or electrolyte excretion in 

these animals were detected. In contrast, infusion of isoproterenol 

into the renal artery at similar doses produced no change in PRA or 

renin secretion rate. These results do not support the involvement of 

intrarenal beta receptors in the regulation of renin secretion, and 

indicate that beta adrenergic stimulation is mediated by an extrarenal 

mechanism. 

In 1979, Johnson et al. reproduced the findings of Reid et al. 

(1972) with isoproterenol and tested the effect of epinephrine on renin 

secretion infused both intravenously and intrarenally. Similarly, 

epinephrine produced increases in PRA when infused intravenously but 

not intrarenally. This increase in renin secretion was independent of 

renal nerves, changes in perfusion pressure and prostaglandins (Johnson 

et al. , 1979a). Propranolol blocked the effect of epinephrine. 

Further experiments were designed to identify the location of these 

extrarenal beta-receptors. Infusion of epinephrine into splanchnic 

circulation (Johnson, 1983) did not produce an increase in PRA as did 

intravenous infusion. Johnson (1982) also tested the possibility that 

the beta receptors were located in the cerebral vasculature by infusing 

epinephrine into the carotid arteries. At higher doses epinephrine 

produced an increase in PRA when infused into the carotid arteries and 

this dose also increased the circulating levels of epinephrine. At 

slightly lower doses there was no change in PRA. Epinephrine also 

produced increases in PRA in adrenalectomized animals, indicating that 

the extrarenal beta receptors are not located in the adrenal glands 

(Johnson, 1985). At this point Johnson established a role for 
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extrarenal beta receptors but did not address whether there was an 

interaction between renal and extrarenal receptors. A submaximal dose 

of epinephrine was infused intravenously and into the renal artery. 

The renin secretion rate was measured in both kidneys and the values 

were not different from one another (Johnson, 1984). It was concluded 

that there is no interaction between beta receptors and that renin 

secretion is regulated only by extrarenal beta receptors. Contrary to 

these findings by Johnson (1979; 1982; 1984; 1985) are the data that we 

have obtained in our laboratory (Urban and Van de Kar, 1986). We have 

demonstrated that addition of the beta agonist, isoproterenol, to rat 

kidney cortical slices produces significant increase in renin release 

from the kidney slices. The dose of isoproterenol that we used in the 

renin release bioassay, is more concentrated than that used by Johnson. 

Therefore, it may be likely that the beta receptors at the kidney level 

require a higher concentration of isoproterenol in order to produce an 

effect whereas extrarenal beta receptors may be more sensitive to lower 

doses. 

3c. Parasympathetic nervous system 

Cholinergic innervation of the kidney has been described by 

Barajas (1979). He observed that labelling for acetylcholinesterase 

followed the distribution pattern of catecholamine fluorescence. 

However, when the animals were treated with 6-hydroxydopamine (6-0HDA), 

a drug that destroys catecholaminergic nerve terminals, both 

norepinephrine and acetylcholine staining disappeared from the kidney. 

This suggested that the acetylcholinesterase and catecholamine-
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Addition of 

acetylcholine directly to kidney slices did not produce a significant 

change in renin release (De Vito et al., 1970). Schrier et al. (1975) 

studied the effects of vagotomy on renin secretion in dogs. Vagotomy 

produced a suppression of renin secretion. However, in 

hypophysectomized dogs the suppression of renin secretion after 

vagotomy was prevented. This result indicates that inhibition of renin 

secretion is due to release of a pituitary hormone and not to a direct 

innervation of the kidney by the parasympathetic fibers. The authors 

attributed this effect to an enhanced release of vasopressin after 

vagotomy. Therefore, it appears that cholinergic neurons do not 

contribute to the innervation of the kidney or to the regulation of 

renin release. 

4. Other factors that regulate renin secretion 

4a. Vasopressin 

Vasopressin (AVP) is a potent vasoconstrictor and antidiuretic 

hormone. In addition, vasopressin inhibits renin secretion. However, 

whether this inhibition occurs by direct action of AVP on the 

juxtaglomerular cells or secondarily due to AVP-induced changes in 

blood pressure has not been determined. 

Vander (1968) showed that infusion of AVP produced a decrease in 

basal renin release. However, Vander noted that the excretion of 

sodium was increased and proposed that AVP may inhibit renin by acting 

on the macula densa. Another study (Shade et al., 1973) using the non­

filtering kidney model, also demonstrated that AVP suppresses renin 
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release after intrarenal infusion. They reported that the doses of AVP 

used did not alter mean arterial pressure or renal blood flow. 

Furthermore, since this study was performed in a non-filtering kidney, 

the decrease in renin release occurred without a functioning macula 

densa, suggesting a direct effect of AVP on the juxtaglomerular cells. 

Addition of AVP to rat renal cortical slices produced a significant 

decrease in renin release (Park et al. , 1981). This is further 

indication that AVP acts directly on the juxtaglomerular cells. 

In addition to a direct effect on the kidney, AVP decreases renin 

release secondarily to changes in blood pressure (Schwartz and Reid, 

1986). The inhibitory effect of AVP on renin release has been studied 

using analogues for AVP that are selective for either antidiuresis (V2 

receptor) or vasoconstriction (V1 receptor). Infusion of the 

antidiuretic agonist, DDAVP (d-arg-vasopressin), does not modify PRA or 

arterial pressure. Pretreatment with a V1 receptor antagonist 

[(CH2)5Tyr(Me)AVP], prevented the AVP-induced increase in blood 

pressure and the decrease in PRA (Schwartz and Reid, 1986). These 

studies indicate that AVP reflexly inhibits renin secretion through 

increased blood pressure. However, whether AVP primarily suppresses 

renin release by this mechanism or by a direct action on the kidney has 

yet to be established. 

4b. Adenosine 

Adenosine has recently been shown to inhibit the release of renin 

from the kidney. Churchill and Churchill (1985) have described the 

presence of two adenosine receptors (A1 and A2) that differentially 
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regulate renin secretion. Both receptors are coupled to adenylate 

cyclase, but the Ai receptor inhibits while the A2 receptor stimulates 

adenylate cyclase. Stimulation of the Ai receptor produces suppression 

of renin release while activation of the A2 receptor increases renin 

release from kidney slices. These effects of adenosine on renin 

release are anatagonized by calcium channel inhibitors and are probably 

mediated by changes in intracellular calcium (Churchill and Churchill, 

1985). 

Adenosine produces vasoconstriction when injected into the renal 

artery (Osswald, 1984). Other studies have indicated that adenosine 

can also alter renal nerve activity. Stimulation of the renal 

sympathetic nerves at different frequencies produces vasoconstriction 

that is blocked, dose-dependently, by adenosine (Ekas et al., 1981). 

However, Arend et al. (1984) have demonstrated that the decrease in 

renin release produced by adenosine was not influenced by changes in 

renal blood flow or blood pressure. Administration of adenosine 

prevents the increase in renin release produced by prostacyclin (PGI2) 

and norepinephrine, suggesting that adenosine acts directly on the 

juxtaglomerular cell to inhibit renin release (Deray et al., 1987). 

4c. Prostaglandins 

Administration of the prostaglandin precursor, arachidonic acid, 

produces an increase in renin release from isolated glomeruli 

(Beierwaltes et al., 1982). Superfusion of the glomeruli with 

prostaglandins PGE1, PGE2 or thromboxane had no effect on renin release 

(Beierwaltes et al., 1982). However, if the rapid breakdown of PGI2 
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was prevented, thereby increasing the concentration of PGI2, or if the 

pH of the perfusate was increased which favors stability of the 

prostaglandins, renin release was stimulated. Inhibition of PGI2 

synthesis also prevented the arachidonic acid-induced increase of .renin 

release (Beierwaltes et al., 1982). The increase in renin release 

produced by PGI2 has also been described by Kirchner (1985) and Henrich 

and Campbell (1984). 

Prostaglandins have been shown to mediate the increase in renin 

release in response to sodium depletion. Indomethacin, a prostaglandin 

synthesis inhibitor, reduces renin release in the sodium depleted dog. 

However, when the animals are maintained on a regular sodium diet, 

indomethacin does not affect the basal levels of PRA (Deforrest et al., 

1980). The role of prostaglandins in mediating the response of PRA to 

changes in renal arterial pressure is more controversial. In dogs with 

either a denervated non-filtering kidney or an intact filtering kidney, 

suprarenal aortic constriction produces an increase in PRA. This 

increase in PRA is not blunted by treatment with indomethacin (Freeman 

et al., 1982) or meclofenamate (Villarreal et al., 1984). However, the 

decreases in renal perfusion pressure in these experiments were below 

the autoregulatory range (80 mmHg). Imagawa et al. (1985) produced an 

increase in renin release after suprarenal aortic constriction without 

going below the autoregulatory range. After treatment with 

indomethacin, the renin response to aortic constriction was abolished. 

It has been suggested that the difference in the prostaglandin response 

to suprarenal aortic constriction following reductions in perfusion 

pressure within the autoregulatory range may be dependent on renal 
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prostaglandins (Freeman et al., 1984). 

5. Feedback regulation of renin release 

As has been discussed, the renin-angiotensin system partially 

controls aldosterone secretion which maintains sodium and water 

balance. The mechanisms involved in renin secretion can also be 

described in terms of a feedback control system. The primary signals 

that stimulate the renin-angiotensin system are a decrease in plasma 

volume and blood pressure. The decrease in blood pressure not only 

activates the stretch receptor but also the macula densa by decreasing 

glomerular pressure and sodium delivery to the distal tubule. 

ANG II is the end product of the renin-angiotensin system and 

plays an important role in the feedback regulation of renin secretion. 

ANG II has been shown to inhibit renin release from the kidney (Vander 

and Geelhoed, 1965). This is referred to as the short feedback loop. 

Receptors for ANG II have been localized on the glomerulus (Bianchi et 

al., 1986). However, it is possible that stimulation of ANG II 

glomerular receptors would affect renin release as a result of changes 

that would occur as a consequence of alterations in the glomerular 

capillary pressure. Furthermore, ANG II constricts the efferent renal 

arterioles which increases the pressure in the capillaries, resulting 

in enhanced sodium and water reabsorption (Hall, 1986). The increased 

sodium and water reabsorption would lead to an increased plasma volume 

and concomitant decrease in renin release. ANG II stimulates the 

production of aldosterone from the adrenal gland (Aguilera et al. , 

1980; Davis and Freeman, 1976). Aldosterone acts at the renal distal 
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tubule to increase the reabsorption of sodium and water from the 

tubular lumen. This restores plasma volume and blood pressure, thus 

completing a long feedback loop . 

. F. Central nervous system regulation of renin secretion 

1. Role of the central nervous system 

There has been increasing evidence suggesting a role for central 

nervous system pathways in regulating renin secretion. The effect of 

electrical stimulation of several brain sites have been electrically 

stimulated on PRA have been studied. Richardson et al. (1974) compared 

the effects of ventrolateral medulla (VLM) stimulation on renin release 

from control and denervated kidneys. They observed that denervation 

prevented the increase in renin release following stimulation of the 

VML in cats. Propranolol also blocked this increase. These studies 

suggest that the renal sympathetic nerves are involved in mediating the 

increase in renin secretion after stimulation of the VLM. Passo et al. 

(1971) stimulated the dorsal medulla and similarly demonstrated that 

destruction of the renal nerves attenuated the PRA response to 

excitation of the dorsal medulla. In this study (Passo et al., 1971), 

plasma epinephrine levels were elevated, implicating the involvement of 

the sympathetic nervous system and adrenal catecholamines. 

Stimulation of the dorsal periaqueductal grey (PAG) in the 

mesencephalon produced a pressor response that was associated with an 

increase in renin activity. Renal denervation prevented the effect of 

electrical stimulation of the PAG on blood pressure and renin secretion 

(Ueda et al., 1967). 
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The fastigial nucleus of the cerebellum has been implicated in 

regulating autonomic functions, namely, elevating arterial pressure and 

heart rate. This has been referred to as the fastigial pressor 

response and requires an intact sympathetic nervous system (Del .Bo et 

.al., 1983). Koyama et al. (1980) stimulated the fastigial nucleus and 

observed a pressor response accompanied by a significant increase in 

PRA. This increase was reduced by transection of the superior 

cerebellar peduncles (SCP). The major output from the fastigial 

nucleus is to the pontine and medullary areas via the SCP. The authors 

therefore concluded that the pressor response to fastigial stimulation 

may be mediated by these cardioregulatory centers through the 

sympathetic nervous system. 

An increase in renin activity was observed after electrical 

stimulation of the lateral hypothalamus (Zanchetti and Stella, 1975). 

This was associated with a transient constriction of the renal artery. 

However, the elevation in PRA was maintained beyond the vascular 

response and was prevented by destruction of the renal nerves. These 

data are supported in part by Frankel et al. (1976) who also observed 

increases in PRA after stimulation of the lateral hypothalamus. On the 

other hand Zehr and Feigl (1973) observed a suppression of renin 

release in dogs after stimulation of a site in the lateral 

hypothalamus. This site was postulated to be a sympathetic inhibitory 

site since both blood pressure and renin levels decreased. No 

histology was presented to identify the sites of stimulation, so a 

comparison with those areas stimulated by Zanchetti and Stella (1975) 

could not be made. Stimulation of the posterior hypothalamus 
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(supramammillary region) produced an increase in PRA and blood pressure 

(Natcheff et al., 1977). This effect was also dependent on an intact 

sympathetic nervous system. Electrical stimulation of the 

paraventricular nucleus of the hypothalamus (PVN) produced dose­

dependent increases in renin release with increased stimulation 

frequency (Porter, 1986). Blood pressure was not affected by 

stimulation of the PVN. These data suggest a role for the PVN in 

increasing renin release independently of changes in blood pressure. 

The role of the renal nerves in mediating this effect has not yet been 

reported. 

2. Stress-induced renin secretion 

Stress is implicated in the pathogenesis of hypertension and 

cardiac disease. A variety of stress paradigms produce increases in 

blood pressure and the circulating levels of different hormones 

including corticosterone, prolactin and PRA. One of the first studies 

on the effect of stress on renin secretion was conducted by Leenen and 

Shapiro (1974), who subjected rats to different periods of intermittent 

foot shock. PRA was increased in rats 15 minutes after they received 

the shock. However, after the rats were exposed to this stimulus for 

over 2 hours, there was an apparent adjustment to the shock since there 

was no difference in PRA between the shock and control groups. Paris 

~ al. (1987) reported that intermittent foot shock for 2, 12 and 22 

minutes produced increases in PRA. In addition, PRA was increased by 

20 minutes of forced swimming in deep cold water, 20 minute 

immobilization and by both a 3 and 12 minute conditioned fear (CER) 
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Jindra et al. (1980) also observed increases in PRA in rats 

immobilized for 20 minutes or received repeated 

immobilization of 150 minutes daily for 34 days. Exposure to a novel 

environment (open field) or to the presence of a hungry cat produced 

elevations in PRA (Clamage et al., 1976). The effect of novel 

environment on PRA could be attenuated by pretreatment with 

propranolol. Blair et al. (1976) reported that baboons that were 

subjected to an avoidance operant conditioning paradigm had elevated 

PRA values. The baboons were taught to sit in a chair and their task 

was to push a lever in order to avoid an electric shock. This study 

suggested that a psychological stimulus could evoke a stress response 

as measured by an increase in PRA. 

There are a variety of stress models that produce increases in 

PRA. The stress paradigm used in this laboratory consisted of a 3 or 

10 minute conditioned emotional or fear response paradigm. The rats 

are placed in a chamber on three consecutive days and after either a 3 

or 10 minute period, they receive a footshock. On the fourth day the 

rats are placed in the chamber and do not receive any shock. At this 

point they are anticipating the shock, which simulates anxiety or fear. 

The effect of CER on PRA can be attenuated, but not completely 

prevented by pretreatment with the beta receptor blocker propranolol 

(1.0 mg/kg i.p.; Van de Kar et al., 1984). Administration of the same 

dose of propranolol to rats that were subjected to restraint stress did 

not affect the increase in PRA (Sigg et al., 1978); however, the 

increase in PRA was diminished with higher doses of propranolol. 

Adrenal medullectomy combined with chemical sympathectomy (peripheral 
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injections of 6-0HDA) did not prevent the stress-induced increase in 

PRA (Richardson Morton et al., unpublished observations). With the 

restraint stress paradigm, demedullectomy did not alter the stress­

induced increase in PRA but renal denervation did reduce the observed 

.increase in PRA (Sigg et al., 1978). These conflicting results might 

suggest that different neural pathways are involved in mediating the 

stress-induced increase in PRA. 

Pharmacological studies have indicated that peripheral 

administration of the benzodiazepines, chlordiazepoxide and midazolam, 

which enhance GABA neurotransmission, did not alter the renin response 

to the GER paradigm (Van de Kar et al., 1984b). Naloxone, an opiate 

antagonist or diisopropyl fluorophosphate (DFP) an acetylcholinesterase 

inhibitor, also did not prevent the stress-induced rise in PRA or alter 

basal levels of renin release. Therefore, these results imply that 

neither the cholinergic, GABAergic or opiate systems are involved in 

regulating renin release in response to the GER (stress) paradigm. 

Electrolytic lesions in the dorsal raphe nucleus (DRN) prevented 

the stress-induced increase in renin secretion with both the 3 and 10 

minute GER paradigms (Van de Kar et al., 1984a; Richardson-Morton et 

al., 1986). However, this effect was not due to disruption of 

serotonergic fibers since 5,7-DHT injections into the DRN and 

pretreatment of rats with the S-HT2 antagonist, LY53857 did not prevent 

the effect of stress on renin secretion (Lorens et al., 1986). Gotoh 

~ al. (1987) and Richardson-Morton et al. (1986) showed that 

electrolytic lesions in the PVN prevented the increase in renin 

secretion in rats subjected to either immobilization or GER, 
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respectively. Selective destruction of the cell bodies in the PVN with 

ibotenic acid, also prevented the increase in PRA (Richardson-Morton et 

~·, 1986). In order to test the possible involvement of 

catecholamines in regulating the stress-induced release of renin, 6-

.0HDA was injected into the PVN and was found to attenuate the stress 

(GER) response on PRA (Richardson Morton et al., 1987). 

3. Role of serotonin (5-HT) on renin release 

3a. Effects of peripheral administration of 5-HT 

Administration of 5-HT, or the serotonin precursor, 5-

hydroxytryptophan (5-HTP) to rats produced increases in water intake 

(Kikta et al., 1981) that are mediated by the renin-angiotensin system 

(Meyer et al., 1974; Kikta et al., 1983). Pretreatment with the 

serotonin receptor antagonist, methysergide, prevented the dipsogenic 

effect of 5-HT and 5-HTP. In addition, rats that received either the 

beta blocker, propranolol (Meyer et S!l.., 1974; Kikta et al., 1983) or 

the angiotensin converting enzyme inhibitor captopril (Kikta et al., 

1983) had an attenuated drinking response to 5-HT. These results 

suggest that the renin-angiotensin system mediates the 5-HT-induced 

dipsogenesis. However, these studies did not examine whether this was 

a central effect of 5-HT nor did they postulate a mechanism for 5-HT 

stimulation of renin release. A study by Bunag et al. (1966b) showed 

that infusion of serotonin into the renal artery did not directly 

stimulate renin release from the kidney. Data presented in this study 

(Table 9) demonstrate that addition of 5-HT to kidney slices does not 

directly increase renin release. 
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Barney et al. (1981) and Meyer et al. (1974) demonstrated that 

injection of 5-HT either subcutaneously or intramuscularly to rats, 

produces increases in PRA. The effect of 5-HT on PRA is prevented by 

pretreatment with metergoline, a 5-HT antagonist. Treatment with 

propranolol or camphidonium, a ganglionic blocker, attenuated the 5-HT 

induced increase in PRA (Meyer et al., 1974) indicating that both 5-HT 

and the sympathetic nervous system are involved in regulating renin 

release. Zimmermann and Ganong (1980) administered two 5-HT 

precursors, 5-HTP and 1-tryptophan to anesthetized dogs and observed 

increases in PRA that were not due to changes in blood pressure. The 

elevation of PRA due to the 5-HT precursors was prevented by infusion 

of the central aromatic amino acid decarboxylase inhibitor, 

benserazide, but not by carbidopa, a decarboxylase inhibitor that does 

not cross the blood brain barrier. Pretreatment with metergoline or 

renal denervation also prevented the 5-HT-induced increase in PRA. 

Earlier studies by Epstein and Hamilton (1977) showed that in humans, 

the 5-HT antagonist, cyproheptadine, inhibited the furosemide-induced 

increase in PRA. Other studies by Modlinger et al. (1979) showed that 

oral administration of the 5-HT precursor 1-tryptophan to humans, 

produced an increase in renin secretion that was prevented by 

pretreatment with cyproheptadine. These were the first studies that 

suggested a role for brain 5-HT in stimulating renin release. 

3b. Role of brain 5-HT neurons 

Administration of the 5-HT releaser, p-chloroamphetamine (PCA) or 

the 5-HT agonist quipazine, produces dose-dependent increases in PRA 
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(Van de Kar et al. , 1981) . The effect of PCA is prevented by 

pretreatment with p-chlorophenylalanine (PCPA) a drug that inhibits 5-

HT synthesis. Fenfluramine, another 5-HT releaser, also produces dose 

-dependent increases in PRA that are prevented by pretreatment with 

PCPA or the 5-HT reuptake inhibitors, fluoxetine or indalpine (Van de 

Kar~ al., 1985b). The effect of a submaximal dose of fenfluramine on 

renin secretion was enhanced after pretreatment with 1-tryptophan. 

Administration of the 5-HT2 antagonist LY53857, prevents the increase 

in PRA and PRC produced by fenfluramine and the 5-HT agonist MK-212 

(Lorens and Van de Kar, 1987). LY53857 alone did not alter PRA or PRC. 

The 5-HT1a agonist 8-0H-DPAT (8-hydroxy-2- [ di-N-propylamino] tetralin) 

did not produce any change in either PRA or PRC. Ipsapirone, another 

5-HT1a agonist, produced increases in PRA and PRC only at higher doses 

(Lorens and Van de Kar, 1987). Administration of buspirone, a non-

benzodiazepine anxiolytic that also has 5-HT1a agonist activity 

produces a decrease in renin secretion at relatively low doses ( 1. 0 

mg/kg i. p.; Van de Kar et al., 1985c). These findings suggest that 

stimulation of 5-HT2 receptors enhances renin release whereas the 5-HT1 

receptors may not have a role in the control of renin secretion. 

Injection of the 5-HT neurotoxin 5,7-DHT (5,7-dihydroxytryptamine) 

into the dorsal raphe nucleus, a serotonergic cell group in the 

midbrain, prevented the PCA-induced increase in PRA. Injections of 

5, 7-DHT into the median raphe nucleus were without effect on renin 

secretion (Van de Kar et al., 1982b). Both of these lesion treatments 

significantly reduced brain 5-HT content. These were the first 

definitive findings for a role of brain serotonin neurons in the 
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regulation of renin secretion. Destruction of the mediobasal 

hypothalamus, either destroying or sparing the median eminence, 

prevents the increase in PRA produced by PCA (Karteszi et al., 1982). 

Posterolateral knife cuts through the mammillary bodies destroyed 

neuronal inputs to and from the hypothalamus, also blocked the increase 

in PRA produced by PCA. However, anterolateral deafferentation did not 

reduce the PRA response to PCA. Hypophysectomy did not prevent the 

PCA-induced increase in PRA 4 days after surgery (Karteszi et al., 

1982). Since the dorsal raphe nucleus is known to send projections to 

the hypothalamus it is likely that a serotonergic pathway stimulates 

renin secretion by some structure within the hypothalamus. Recently, 

Gotoh et al. (1987) reported that electrolytic lesions of the 

paraventricular nucleus (PVN) in the hypothalamus prevent the PCA­

induced increase in PRA. 

In the study by Zimmermann and Ganong (1980), renal denervation 

prevents the increase in PRA produced by 5-HTP or tryptophan. To 

investigate the role of the sympathetic nervous system in mediating the 

PCA-induced increase in PRA, beta blockers were administered before 

PCA. Alper and Ganong (1984) showed that pretreatment with the beta­

receptor antagonists propranolol and sotalol prevented the increase in 

PRA produced by PCA. These results were confirmed by Van de Kar and 

Richardson-Morton (1986). Both the selective beta1 receptor 

antagonist, atenolol, and the non-selective beta antagonist, sotalol, 

completely prevented the effect of PCA. However, more conclusive 

studies indicated that the sympathetic nervous system was not involved. 

Treatment of rats with the catecholamine blocker, bretylium tosylate, 
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or the cholinergic muscarinic antagonist, methyl atropine did not alter 

the PCA-induced increase in PRA (Van de Kar and Richardson-Morton, 

1986). Transection of the spinal cord proximal to the exit of the 

renal nerves, between the T1 or T2 vertebrae, did not modify the renin 

response to PCA. In addition, the effect of adrenal medullectomy 

combined with peripheral sympathectomy was also tested on renin 

secretion. The adrenal medulla was removed from rats and one week 

later they received weekly injections of 6-hydroxydopamine (6-0HDA) for 

4 weeks. This treatment decreased the renal content of norepinephrine 

to levels that were below the sensitivity limit of the assay (Van de 

Kar and Richardson-Morton, 1986). Administration of PCA produced 

significant increases in PRA in both the sham-operated rats and the 

rats that were sympathectomized. These results indicate that the 

sympathetic nervous system does not mediate the PCA-induced increase in 

renin release. These results appear to contradict the data obtained 

with the beta blockers. However, it should be considered that beta 

blockers have been shown to cross the blood brain barrier and compete 

with 5-HT for receptor sites. Propranolol, for example, is known to 

interact at the 5-HT receptor (Middlemiss et al., 1977) and has been 

shown to decrease the rate of 5-HT synthesis in the hypothalamus, 

midbrain and frontal cortex (Giarcovich and Enero, 1984). Therefore, 

it is possible that the beta blockers may be acting centrally to 

influence serotonergic transmission and that a central site of action 

for these beta blockers cannot be discounted. 



G. Role of humoral factor in regulating renin release 

The existence of an extrarenal humoral factor 

oeVito g,!;; al. in 1971. Plasma was collected 
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was presented by 

from bilaterally 

nephrectomized dogs that were made hypotensive by controlled 

hemorrhage. When the plasma from hypovolemic dogs was injected into 

unanesthetized control dogs, there was a significant increase in PRA. 

This elevation of PRA was not observed after injection of plasma from 

normotensive dogs. Polomski et al. (1974) could not reproduce these 

findings. No further studies on this factor were performed. 

Since the effect of PCA on renin secretion is not mediated by 

either the parasympathetic or the sympathetic nervous systems, another 

possibility is that the hypothalamus may release a factor into the 

circulation that can stimulate renin release from the kidney. A study 

by Van de Kar et 5!.l. (1982a) tested the hypothesis that PCA induces the 

release of a factor into the blood. A group of rats were 

nephrectomized and received either saline or PCA 24 hours after 

surgery. Their plasma was collected and administered at different 

times to recipient rats. Administration of the plasma from PCA-treated 

rats produced a significant increase in PRA at 30 minutes after 

injection. These results suggest that brain serotonin stimulates renin 

secretion by releasing a factor into the blood. Further transfusion 

experiments have indicated that the renin-releasing factor is heat 

stable and is present in the plasma of PCA-treated rats within the 

molecular weight range of 500-10,000. 



CHAPTER III 

MATERIALS AND METHODS 

A. Animals 

Male Sprague-Dawley rats (150-300 g) were purchased from Sasco­

King Animal Laboratories (Oregon, WI) and were housed, two per cage, in 

a temperature (22°C), light (12:12 light/dark cycle) and humidity (45% 

- 55%) controlled room. Rat chow (Wayne Lab Blox, Allied Mills Inc., 

Chicago,IL) and water were available ad libitum. 

B. Analytical methods 

1. In vitro renin release kidney slice bioassay for measurement of RRF 

activity 

A rat (150-200 g) was perfused under halothane anesthesia, with 

cold saline through the left cardiac ventricle. The abdomen was opened 

to expose the kidneys which were removed and immediately placed in cold 

saline (0.9% NaCl). The kidneys were palpated to remove excess blood 

and decapsulated. The poles (2-3 mm) were dissected and removed from 

the kidneys, and the kidney was cut in half through the papilla, glued 

to a 1-inch square piece of Plexiglas, and mounted on an Oxford Model G 

vibratome (10° angle, settings of 0 for vibration and speed). The 

kidney was always maintained in cold saline, and saline ice cubes were 
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added during the slicing to maintain the temperature at 4°c. Coronal 

slices (400 µm) were cut, and the first slice was discarded. Once the 

slice was cut, it was placed on ice in a petri dish containing cold 

saline, and the medullary tissue was excised from each slice w.ith a 

scalpel. The renal medulla does not contain renin and the highest 

density of renin secreting cells is in the outer cortex. Therefore, 

using coronal slices of cortical tissue ensures that the slices were 

homogenous with respect to renin content (Katz and Malvin, 1982a; Jones 

~al., 1979). Each slice was cut in half and randomly placed, two 

kidney slice halves per vial, in 10.0 ml vials that were siliconized 

(Prosil-28; Scientific Products, Specialty Chemicals, Gainesville, FL). 

Two ml of a Krebs-Ringer buffer were added to each vial. The Krebs­

Ringer solution has a composition of 118.0 mM NaCl, 1.22 mM KH2P04, 4.7 

mM KCl, 2.5 mM CaCl2, 1.2 mM MgS04, 10.0 mM glucose, and 25.0 mM NaHC03 

and was used throughout the experiments. The vials were placed in a 

water bath and the kidney slices were incubated at 37°C. Each vial 

received its own supply of a 95% 02-5% C02 gas mixture via a needle 

(20-gauge) that was attached to plastic tubing (Scientific Products, 

3/32 in. O.D., 1/32 in. I.D.) and inserted into plastic snap-on caps 

which fit snugly onto the vials. This allowed proper oxygenation of 

the vials without bubbling the medium. Cho and Malvin (1979) reported 

that bubbling of the incubation medium in which the kidney slices 

incubated inactivates renin at the air-water interface. This would 

result in low and variable values for renin release and the assay for 

renin would not indicate real changes in renin release over time. A 

few small holes in the caps relieved the pressure inside the vials. 
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The other end of the tubing was attached to a 12 place pipette manifold 

which was fitted to the hose that supplied the 95% 02-S% C02 gas. This 

system, when set up with 4-5 manifolds, could oxygenate a total of 48-

60 vials. 

The slices were placed in the vials with 2. 0 ml of Krebs-Ringer 

buffer for a 30 minute preincubation period. After 30 minutes, a 0.2 

ml sample was withdrawn from the vials for the determination of renin 

concentration. The vials were refilled with 2. 0 ml of Krebs-Ringer 

solution and test solutions (plasma fractions, plasma samples, drugs or 

brain and peripheral tissue extracts) were added to the vials. 

As a routine for each kidney slice bioassay, six vials received 

the vehicle (usually saline or Krebs-Ringer buffer) and another six 

vials received a dose of isoproterenol (10-6M - l0- 5M). This served as 

two controls for the bioassay: the vehicle was a control of basal 

levels of renin release and isoproterenol demonstrated maximal 

stimulus-induced renin release or the upper limit of the bioassay. 

The vials incubated for 1 hr; 0.2 ml was saved for renin assay, 

and the Krebs-Ringer solution was decanted and saved for measurement of 

pH and, on occasion, lactate dehydrogenase (LDH) activity. LDH is a 

cytosollic enzyme that is used as an indicator of cell lysis. The LDH 

assay were performed to ensure that the increases observed in renin 

release from the kidney slices were due to the applied stimulus and not 

due to lysis of the kidney cells. A final 2.0 ml was added for a 30 

minute postincubation period and a final 0. 2 ml sample was taken for 

determination of renin concentration. The slices in each vial were 

blotted dry and weighed. All samples were stored at -40°C until 
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determination of renin concentration. 

For each bioassay, in addition to the incubation values, samples 

were also measured for renin release during the 30 minute pre­

incubation and post-incubation periods. These were used as quality 

controls for each kidney slice vial. After each incubation, the post­

incubation value for renin release should have returned back to the 

levels seen in the pre-incubation. This indicated: (1) if the increase 

seen during the incubation period was truly due to the applied stimulus 

and (2) whether the kidney cells were dying. Using the comparisons of 

the pre-incubation and post-incubation periods along with the 

measurement of the pH and LDH enabled checks on the bioassay that would 

validate the viability of the kidney slices. 

2. Specificity of the bioassay for RRF 

2a. Test for non-specific activation of renin by plasma fractions 

Krebs-Ringer samples (2.0 ml) were preincubated with kidney slices 

for 1 hour. The kidney slices were removed and the Krebs-Ringer was 

pooled. Samples (0.2 ml) of either saline, saline-plasma (M.W. 

5,000-10,000) or PCA-plasma (M.W. - 5,000-10,000) fractions were added 

to 2. 0 ml of the Krebs -Ringer solution. These samples incubated at 

37°C for 1 hour and afterwards, 0. 2 ml aliquots were taken and saved 

for the determination of renin concentration (Method section B part 

3b). 

2b. Test for non-specific generation of angiotensin I from renin 

substrate by plasma fractions and brain extracts 

The samples that were used in the previous studies (plasma 
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fractions and brain extracts) were tested for possible renin-like 

activity that would result in the non-specific generation of 

angiotensin I in the incubation for the radioimmunoassay. A volume of 

2.0 µl of either rat hypothalamic, cerebellar, and pituitary extracts, 

or the saline-plasma and PCA-plasma fractions (M.W. - 5,000-10,000) 

were added to 0.2 ml of the Krebs-Ringer solution containing PMSF, 8-

HQ, phosphate buffer and nephrectomized plasma, which corresponded to 

the dilution of these test substances in the kidney slice bioassay. 

The samples incubated for 1 hour at 37°C, and the incubation was 

terminated by addition of 0. 2 ml of distilled water and immersion of 

the samples in a boiling water bath. The samples were then assayed for 

ANG I. 

3. Determination of renin concentration and plasma renin activity 

Renin activity of the kidney slices samples and plasma is measured 

by radioimmunoassay for generated ANG I according to the method of 

Haber et al. (1969) and Stockigt et al. (1971). 

3a. Preparation of renin substrate (angiotensinogen) 

Renin substrate (angiotensinogen) was obtained from the plasma of 

nephrectomized, male Sprague-Dawley rats (retired breeders, 450-500 g). 

Removal of the kidneys (the major source of renin) prevented the 

enzymatic reaction between renin and angiotensinogen in the plasma and 

allowed the plasma concentration of substrate to increase (Radziwill et 

al. , 1986). 

Approximately 40 animals were used for the preparation of renin 

substrate. The rats were anesthetized with halothane (Burns, Glenview, 
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IL) and care was taken to avoid any undue stress to the rats. The 

kidneys were palpated and a dorsal incision was made through the skin 

at the kidney level. The muscles of the back were teased apart by 

blunt dissection and the kidneys were removed through the openings in 

the body wall. The renal artery and vein were ligated and the kidneys 

were removed. The ligatures were placed back into the body cavity and 

the incision was sutured closed. Each rat then received an injection 

of dexamethasone (0.2 mg/rat, s.c.; Sigma, St. Louis, MO). 

Dexamethasone treatment increases the amount of angiotensinogen in the 

plasma (Reid, 1977). 

The rats were decapitated 24 hours after surgery. The trunk blood 

was collected in a beaker containing 0. 3 M ethylene diamine 

tetraacetate (EDTA, pH 7.4; approximately 0.5 ml per rat). The blood 

was centrifuged at 1500 x g, and the plasma was collected and stored at 

-40°c. 

3b. Determination of renin concentration in the Krebs-Ringer medium 

after incubation with kidney slices and in plasma. 

Renin concentration was measured by determining the amount of 

angiotensin I (ANG I) generated by incubating the sample (0.2 ml Krebs­

Ringer from kidney slices or plasma) for 1 hour with a saturating 

concentration of renin substrate. Renin substrate was 0.1 ml of plasma 

from nephrectomized rats that received an injection of dexamethasone 

(0.2 mg/rat, s.c.) 24 hours before sacrifice. 

The converting enzyme inhibitors 8-hydroxyquinoline (8-HQ, 10% 

suspension in 0.3 M EDTA; final concentration: 0.86 mM; Mallinckrodt, 
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St. Louis, MO) and phenylmethylsulfonyl fluoride (PMSF, 5 g in 150 ml 

ethanol; final concentration: 2.3 mM; Sigma, St. Louis, MO) were added 

(5 µl each) to the samples to prevent the degradation of ANG I to ANG 

II. PMSF inhibits the angiotensin converting enzyme by sulfonating the 

active site of the enzyme (Fahrney and Gold, 1962). 8-HQ prevents the 

action of converting enzyme by chelating divalent metals (Phillips, 

1956) which are necessary for its activity (Fitz, Boyd and Peart, 

1971). A volwne of 0.1 ml of sodiwn phosphate buffer (0.5 M, pH 6.0) 

was added to the samples to maintain the pH at 6. 0-6. 5 during the 

incubation. This pH range has been determined by us to be optimal for 

renin activity. The samples incubated at 37°C for 1 hour. The 

reaction was halted by addition of 1.6 ml cold distilled water to the 

Krebs-Ringer samples, or 0.2 ml of cold distilled water to the plasma 

samples, and subsequent immersion of the samples in a boiling water 

bath for 3 minutes. 

3c. Plasma renin activity 

Plasma renin activity was measured by radioimmunoassay of ANG I 

generated in the plasma sample after a 3 hour incubation. The 

converting enzyme inhibitors, 8-HQ and PMSF were added (25 µl and 20 

µ1) to 1.0 ml of plasma at the same final concentration (0.86 mM 8-HQ 

and 2.3 mM PMSF). Sodiwn phosphate buffer (0.5 ml; 0.5 M pH 6.0) was 

added to the plasma samples to reduce the pH of the samples to 6.0-6.5. 

The samples were incubated for 3 hours at 37°c to generate ANG I from 

endogenous angiotensinogen (renin substrate). The incubation was 

stopped by addition of 0. 5 ml distilled water and immersion of the 
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samples in a boiling water bath for 3 minutes. 

3d. Radioimmunoassay for generated angiotensin I (ANG I) 

After the incubation, the samples (renin concentration, plasma 

renin activity and plasma renin concentration) were centrifuged (13,000 

x g for 10 minutes; Fisher microcentrifuge Model M235A) and aliquots of 

the supernatant (20 µl and 50 µl) were diluted to a final volume of 0.5 

ml with Tris-HCl (pH 8. 0) and added to tubes (polystyrene, 12 x 75) 

with a 0.3 ml solution of an ANG I antibody in a Tris buffer (0.1 M pH 

8.0 containing 0.1% gelatin; Sigma, St.Louis, MO). The final volume is 

0.8 ml. The ANG I antisera (Reid #3 and Brownfield Tl351) were a gift 

from Dr. M. S. Brownfield, University of Wisconsin. These ANG I 

antis era were used at dilutions of 1: 100, 000 (Reid #3) or 1: 40, 000 

(T1351) with 35% binding and a sensitivity limit of 10 pg per tube. 

After a 24-48 hour incubation period at 4°c with the antiserum, an 1251 

labelled ANG I tracer was added to the tubes (10,000 counts per minute 

per tube) for an overnight incubation at 4°C. On the following day, 

0.5 ml of a charcoal-dextran (TSOO; Pharmacia, Piscataway, NJ) 

suspension and 1.5 ml of cold distilled water were added to the tubes. 

The tubes were then centrifuged at 2000 x g for 15 minutes. This 

separated the unbound 1251-ANG I from the antibody-bound tracer in the 

supernatant which was decanted. The charcoal pellets, containing the 

free 1251-ANG I, were counted on a Micromedic gamma counter. The data 

were reduced by RIA_AID computer program (Robert Maciel Associates, 

Inc., Arlington, MA). Intra-assay variability was 4.6% and interassay 

variability was 11. 9%. The values for renin release from the kidney 
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slices are reported as ng ANG I generated/hr. These values were then 

divided by the weight of the kidney slices to obtain ng ANG I/mg 

kidney/hr. PRA and PRC values were reported as ng ANG I/ml/3 hr and ng 

ANG I/ml/hr, respectively. 

ANG I (Beckman, Arlington Heights, IL) was radiolabelled with 125I 

(New England Nuclear, North Bellerica, MA) using the chloramine T 

(Sigma, St. Louis, MO) method of iodination (Greenwood, Hunter and 

Glover, 1963). Phosphate buffer (0.05 M; 0.02 ml), 12 µl ANG I (0.5 

µg/µl) and 20 µl chloramine T (3.5 mg/ml phosphate buffer) were added 

to the vial containing the 125I and mixed for 3 seconds. This was 

immediately followed by addition of 25 µl of sodium metabisulfite (4.5 

mg/ml phosphate buffer; J.T. Baker Chemical Co., Phillipsburg, NJ) to 

halt the reaction. Radiolabelled ANG I was first eluted with 0 .1 N 

acetic acid on a Bio-Rad AG l-X4 anion exchange resin (Bio-Rad 

Laboratories; Richmond, CA) column that was made from a siliconized 

disposable pasteur pipette (5 3/4"; Scientific Products) with a small 

amount of glass wool placed in the tip to support the anion exchange 

resin. Fractions (12 drops per tube) were collected from the column 

and the radioactivity in each tube was measured. The radioactive peak 

fractions eluted off this column (usually tube numbers 4-5) were then 

placed on a Sephadex Gl5 column (Kl5/90, 90 x 1.5 cm; Pharmacia, 

Piscataway, NJ) and eluted with 0. 05 N acetic acid containing 0 .1% 

bovine serum albumin (BSA; Sigma, St. Louis, MO). Fractions (2.0 ml) 

were collected off the Sephadex column and measured for radioactivity. 

The tubes that contained the radioactive ANG I (approximately five 

tubes, numbers 35-39) were pooled and stored at -10°C. 
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In vivo studies of the renin-releasing factor 

The effect of a serotonin releaser, PCA and serotonin agonists (MK-

212 and TFMPP) on PRA, PRC and plasma RRF concentration 

PCA is a drug that exerts its action by inducing the release of 

serotonin from the nerve endings (Sanders-Bush et al., 1975). 

Administration of PCA has been shown to increase the plasma 

concentration of RRF. To test if direct activation of serotonin 

receptors would induce the release of RRF into the blood, the serotonin 

agonists MK-212 [6-chloro-2-phenyl-(l-piperazinyl)-pyrazine] and TFMPP 

(m-trimethylphenyl piperazine) were administered to rats and their 

plasma was collected and assayed for RRF concentration, PRC and PRA. 

PCA (10 mg/kg, i.p.) was administered 1 hour before sacrifice. 

The serotonin agonists, MK-212 (Merck, Sharp and Dohme, Rahway, N.J.) 

and TFMPP (m-trifluoromethyl-phenylpiperazine; Aldrich Chemical CO. 

Inc.; Milwaukee, WI) were administered, at a dose of 10 mg/kg i.p, to 

rats 30 minutes before sacrifice. Saline and the drugs were 

administered at a volume of 2.0 ml/kg i.p. The rats were decapitated 

and their plasma was collected in chilled centrifuge tubes containing 

20 units of heparin. The samples were centrifuged at 1,500 x g for 30 

minutes. The plasma from each rat was divided into 3 aliquots. One 

aliquot of 1. 0 ml was saved for the determination of plasma renin 

activity and the second aliquot (0. 2 ml) was saved for the 

determination of plasma renin concentration (PRC). The third aliquot 

(2.0 ml), was saved for the determination of plasma RRF concentration. 

It was diluted with 2.0 ml distilled water, placed in a boiling water 

bath (to denature renin) for 20 minutes and centrifuged at 13,000 x g 
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for 20 minutes. The supernatant was lyophilized to dryness. The dry 

peptide residues were resuspended in 0.25 ml saline and 0.2 ml of the 

resuspended plasma was added to vials containing 2. 0 ml Krebs-Ringer 

and kidney slices to test for renin-releasing activity as desc;ribed 

above (section B part lb). 

2. Effect of a stressor on PRA and plasma RRF concentration 

2a. Description of the conditioned emotional response (stress) 

paradigm 

Rats were subjected to a conditioned emotional response (CER), or 

fear paradigm. The CER was performed in a rectangular chamber (49 cm 

long x 23 cm wide x 28 cm high) with a grid floor composed of stainless 

steel rods (7.6 mm diameter) spaced 1.3 cm apart. The front wall of the 

chamber was constructed from clear Plexiglas. The remaining walls and 

ceiling of the chamber were made of white Plexiglas. Illumination was 

provided by a fluorescent lamp (20 W) mounted on the outside of the 

rear wall. The chamber was located in a sound attenuated room 7. 5 

meters from the animal quarters. Scrambled constant current shock was 

delivered through the grid floor by a Grayson-Stadler shock generator. 

The rats were carried to the stress room in a plastic cage that was 

identical to their home cage. Three minutes following their placement 

in the chamber, the experimental animals received an inescapable foot 

shock (1. 0 mA DC for 10 seconds). Immediately thereafter, the rats 

were returned to their home cage. This procedure was repeated once a 

day for three consecutive days. Control rats were treated the same, 

except that shock was not administered at any time. By the third day, 
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it was quite apparent that the stressed rats had learned that placement 

in the chamber would be followed by a shock. In contrast to control 

animals, the stressed rats defecated, urinated and alternated between 

freezing and jumping behaviors. On the fourth day, the rats were 

placed in the chamber for three minutes. Instead of receiving the 

shock, they were removed and immediately sacrificed by decapitation in 

a room located 3.0 meters from the stress room. 

2b. Preparation of plasma from stressed and unstressed rats 

Blood from the decapitated rats was collected into centrifuge 

tubes containing 0.5 ml of a 0.3 M EDTA (ethylene diamine tetraacetate, 

pH 7.4; Sigma, St. Louis, MO) solution. The plasma was divided: 1.0 ml 

for determination of PRA and 0. 2 ml for determination of PRC. The 

third aliquot (2.0 ml), saved for determination of plasma RRF 

concentration, was diluted with 2. 0 ml distilled water, placed in a 

boiling water bath (to denature renin) for 20 minutes and centrifuged 

at 13,000 x g (Fisher microcentrifuge Model 235A) for 20 minutes. The 

supernatant was lyophilized to dryness. The dry peptide residues were 

resuspended in 0.25 ml saline and 0.2 ml of the resuspended plasma was 

added to vials containing 2.0 ml Krebs-Ringer and kidney slices to test 

for renin-releasing activity as described above. 

3. Role of disulfide bonds in RRF: In vivo study with cysteamine and 

PCA 

3a. In vivo study with PCA and cysteamine pretreatment 

It is possible that since the RRF is a peptide, it may be contain 
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disulfide bonds that stabilize the molecule and maintain its active 

conformation. Administration of cysteamine (2-aminoethanethiol) has 

been shown to destroy somatostatin (Palkovits, 1982) and prolactin 

(Sagar et al., 1985) immunoreactivity by reducing the disulfide .bonds 

present in these molecules. To determine if RRF contained disulfide 

bonds, cysteamine was administered 3 hours before PCA. The rationale 

behind this experiment was if RRF contained disulfide bonds, cysteamine 

would reduce the disulfide bonds and render RRF inactive and prevent 

the PCA-induced increase in plasma renin activity. 

Male rats were injected with cysteamine (300 mg/kg; Aldrich 

Chemical Co, Inc., Milwaukee, WI) or saline (2.0 ml/kg), subcutaneously 

(s.c.), 4 hours prior to sacrifice. This was followed 3 hours later, 

by injection of PCA (10 mg/kg) or saline at a volume of 2.0 ml/kg i.p. 

The rats were decapitated 1 hour after PCA injection, and trunk blood 

was collected in centrifuge tubes containing 0.5 ml of 0.3 M EDTA 

(pH 7 .4). The plasma was stored at -40°c until PRA and PRC were 

determined. 

3b. Lack of an effect of cysteamine in the renin assay 

The generation of ANG I from angiotensinogen has been found to be 

increased when the sulfhydryl reagents, cysteamine or dithiothreitol, 

were added during the incubation period (Poisner and Hong, 1977; 

Funae, Sasaki and Yamamoto, 1979). To ensure that the values for PRA 

in this experiment were not influenced by treatment with cysteamine, 

control plasma pools were incubated with and without cysteamine to test 

for interference in the assay. 
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Cysteamine was added to plasma samples for a final concentration 

of 3.8 x 10- 3 M. This value was calculated to be the hypothetical 

distribution of cysteamine per body weight (allowing 70% for body 

water) after mixing. High and normal PRA samples ( 1. 0 ml) were 

prepared with 8-HQ and PMSF (25 µl and 20 µl; final concentration 0.86 

mM 8-HQ and 2.3 mM PMSF) and sodium phosphate buffer (0.5 ml of a 0.5 M 

solution, pH 6. 0). In addition, 0.01 ml of cysteamine (0.38 M) was 

added to the samples for incubation for 3 hours at 37°C. The assay for 

generated ANG I was performed as previously described (Method section B 

part 3). 

4. Role of parathyroid hormone (PTH) as the mediator of the PCA­

induced increase in renin release (a possible RRF) 

Parathyroid hormone (PTH) was investigated as a possible renin­

releasing factor. It has been shown that PTH produces increases in 

plasma renin activity (Powell et al., 1978; Smith et al., 1979) and the 

molecular weight of PTH is approximately 9,000 which is similar to the 

molecular weight of RRF. To test the involvement of PTH in PCA-induced 

increase in PRA, parathyroidectomized rats were injected with PCA to 

test if removal of the parathyroid gland prevented the increase in PRA. 

Thyroparathyroidectomized and sham-operated rats were purchased 

from Kurt Johnson Laboratories (Bridgeview, IL). Rats were 

anesthetized with ether and a ventral incision was made on the ventral 

surface of the neck and the muscles were teased apart. The thyroid and 

parathyroid glands were removed and the wound was sutured. The 

thyroparathyroidectomized rats received daily injections of tri-
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iodothyronine (T3; 5 µg/kg s. c., dissolved in 1. 0 M NaOH and saline; 

calbiochem-Behring Corp., La Jolla, CA) after surgery and their water 

was supplemented with 2% calcium lactate and 10% glucose. Rat chow was 

available ad libitum. Sham operated animals underwent the same 

surgical procedure only without removal of the parathyroid and thyroid 

glands. They received daily vehicle injections. Rat chow and tap 

water were available ad libitum. On the fourth day after surgery, the 

rats received either an injection of PCA (10 mg/kg, i.p.) or saline 1 

hour before sacrifice. The rats were decapitated and trunk blood was 

collected into centrifuge tubes containing 0.3 M EDTA (pH 7.4). Plasma 

was stored at -40°C until determination of PRA. 

5. A dose-response study for possible renin-releasing activity of 

neurophysin II (NPII) 

Neurophysin II (NPII ; bovine) , the vasopressin associated 

neurophysin, was tested as a possible renin-releasing factor. Male 

Sprague-Dawley rats received intraperitoneal injections of neurophysin 

II (0.1, 0.5, 2.0, 10.0 or 20.0 µg/kg; Sigma, St. Louis, MO). The 

peptide was dissolved in 0. 9% saline and administered at a volume of 

2.0 ml/kg i.p., 20 minutes before sacrifice. The rats were sacrificed, 

and trunk blood was collected in centrifuge tubes containing 0.5 ml of 

0.3 M EDTA (pH 7.4). The plasma was stored at -40°c until PRA and PRC 

were determined. 
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In vitro characterization of RRF o. 

1. Preparation of PCA-plasma and saline-plasma fractions with 

molecular weights of 1,000-5,000; 5,000-10,000 and 10,000-20,000 

To determine the approximate molecular weight range of RRF, plasma 

from either PCA-treated or saline-treated rats was pooled and filtered 

to obtain plasma fractions of different molecular weights. These 

fractions were tested for renin-releasing activity in the renin release 

bioassay using kidney slices. 

In each of the following experiments, approximately 40 rats were 

nephrectomized under halothane (Burns; Glenview, IL) anesthesia 20 

hours before administration of p-chloroamphetamine (PCA; Regis, Morton 

Grove, IL) or saline. PCA (12 mg/kg, i.p.) and saline were 

administered at a volume of 2.0 ml/kg, 1 hour before decapitation. The 

blood was collected in centrifuge tubes containing 20 units of heparin 

(Upjohn; Kalamazoo, MI) and was centrifuged in a refrigerated 

centrifuge (1, 500 x g) for 30 minutes at 4°c. The plasma was pooled 

into either PCA-plasma (plasma from rats that were injected with PCA) 

or saline-plasma (plasma from rats treated with saline) pools (of 

approximately 150 ml each) depending on which treatment the animal 

received. Ultrafiltration of the plasma was performed in a low 

pressure stirred cell (Nuclepore, Pleasanton,CA) at 4°c. 

For this fractionation procedure, the PCA-plasma and saline-plasma 

pools were placed in a boiling water bath for 20 minutes, and 

centrifuged at 13, 000 x g for 20 minutes. Ultrafiltration of the 

supernatant of the plasma pools was performed at 4°C in a low pressure 

stirred cell first with a low adsorption membrane with a molecular 
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weight cut-off of 20, 000. The filtered fraction containing solutes 

with molecular weights below 20,000 was refiltered through a membrane 

with a molecular weight cutoff of 10,000. The latter fraction was then 

refiltered through a membrane with a molecular weight cutoff of 5,000. 

'l'he remaining fraction containing solutes with molecular weights below 

5,000 was refiltered through a membrane with a molecular weight cutoff 

of 1,000. The material that was retained on the respective membranes 

was resuspended in 3-4 ml saline. Thus, 3 separate fractions were 

obtained, one that contained solutes in the molecular weight range of 

1,000-5,000, one that contained solutes with a molecular weight range 

of 5,000-10,000 and the last fraction that contained solutes with 

molecular weights of 10,000-20,000. All the fractions were stored at 

-40°c. 

The PCA-plasma and saline-plasma fractions (M.W.-1,000-5,000; 

5,000-10,000 and 10,000-20,000) were added to the kidney slices (non­

bubbled method) at a volume of 0.2 ml for the 1 hour incubation period 

to test for renin-releasing activity. 

2. Evaluation of possible renin releasing activity of 5-HT and PCA in 

vitro 

Since PCA, a 5-HT releaser, was used to release RRF, it was also 

possible that the plasma that was tested for renin releasing activity 

contained some residual PCA molecules. In addition, since PCA releases 

5-HT, the 5-HT content in the plasma could also have been increased. 

PCA and 5-HT were added to the kidney slice bioassay to test if these 

drugs could have altered renin release. Fenfluramine (another 5-HT 
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releaser) and saline, were also added to kidney slices to test for 

renin-releasing activity. The drugs PCA (M.W. 206), 5-HT (M.W. 176; 

Sigma, St. Louis, MO) and fenfluramine (M.W. 249; A.H. Robins, 

Richmond, VA) were dissolved in saline for an initial concentration of 

10-4M. A volume of 0.02 ml of each drug was added to the kidney slices 

for the incubation period. The final dilution of the drug in the vials 

was l0- 6M; this corresponded to the calculated distribution of the drug 

in body water. This calculation was performed by estimating the 

concentration of the drug in body water (which was assumed to be 70% 

body weight). This value was then divided by the molecular weight of 

the drug to obtain the concentration of the substance within the 

animal. 

3. Incubation of the PCA-plasma and saline-plasma fractions with 

Pronase 

In order to test whether or not RRF is a peptide, a fraction of 

PCA-plasma and a fraction of saline-plasma (M.W. - 5,000-10,000) were 

incubated with pronase, a mixture of non-specific proteases (Narahashi, 

1970). If RRF were a peptide or a protein, then incubation with 

pronase should destroy its renin-releasing activity. 

Pronase E (a non-specific protease, type XIV, isolated from 

Streptomyces griseus that has an activity of 4 units per mg; Sigma, St. 

Louis, MO) was added to the PCA-plasma fraction that had renin­

releasing activity (the fraction containing solutes with molecular 

weights between 5,000-10,000) and to the equivalent fraction from 

saline-treated rats. Pronase was dissolved in a 0.1 M borate buffer pH 
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7.5 containing 5 mM CaCl2, at a concentration of 20 µg/200 µl and was 

added to a volume of 1.6 ml of PCA-plasma and saline-plasma fractions 

(M.W. 5,000-10,000). The borate buffer vehicle that was used to 

dissolve pronase was added at the same volume (0. 2 ml) to an equal 

aliquot (1.6 ml) of the PCA-plasma and saline-plasma fractions (M.W. -

5,000-10,000). All of the samples were incubated at 37°c for 4 hours. 

After incubation, all aliquots were placed in a boiling water bath for 

20 minutes (to denature the pronase) and centrifuged at 13,000 x g for 

30 minutes. The plasma fractions were added to the kidney slices at a 

volume of 0.2 ml per vial to test for renin-releasing activity. 

E. Studies of RRF in rat brain 

1. Dissection technique 

Rats were sacrificed by decapitation and the brains were removed 

immediately and placed on a cold glass plate kept on ice for 

dissection. The brains were dissected by the procedures outlined by 

Glowinski and Iversen (1966). The pituitary gland was removed from the 

sella turcica with the aid of a spatula. The cerebral cortices were 

gently dissected apart and removed from the rest of the brain. The 

hippocampus, caudate-putamen and amygdala were removed from the 

cortical tissue. The hippocampal formation was easily removed from the 

cortex by blunt dissection with a spatula. The amygdala was cut from 

the cortex at a site rostral to the hippocampus. The corpus callosum 

and lateral ventricle formed the boundaries for the caudate-putamen 

which was carefully dissected with a curved scissors. 

The hypothalamus was delineated rostrally by the optic chiasm and 
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caudally by the mammillary bodies. A transverse cut made at the level 

of the mammillary bodies separated the hypothalamus from the midbrain. 

The anterior commissure (located at the level of the optic chiasm) was 

the horizontal reference for the separation of the thalamus from the 

hypothalamus. 

The midbrain was separated from the pons by a diagonal knife cut 

just caudal to the inferior colliculi. The cerebellum was removed from 

the remaining brain tissue by blunt dissection and severing of the 

cerebellar peduncles. The pons was separated from the medulla by a cut 

caudal to the transverse fibers of the pons. After dissection, the 

brain parts were wrapped in aluminum foil and placed on dry ice. The 

samples were stored at -70°c. 

2. Extraction of the peptide from rat brain 

2a. Comparison of different extraction media from whole brain tissue 

Whole rat brains were cut sagittally and each half was homogenized 

(1 g/10 ml) with either: (1) cold 0.1 N hydrochloric acid, (2) hot 0.1 

N hydrochloric acid, (3) cold 0.1 N hydrochloric acid/absolute ethanol 

mixture (20:80 vol:vol), (4) cold 0.1 N perchloric acid, (5) hot 0.1 N 

perchloric acid or (6) boiling distilled water. The tissue was 

homogenized with a Potter-Elvehjem tissue grinder (Scientific Products, 

McGaw Park, IL), and centrifuged for 30 minutes at 18, 000 x g. The 

supernatant was transferred to polypropylene tubes, lyophilized and 

stored at - 70°c until they were tested for renin-releasing activity. 

The samples were reconstituted in 2.0 ml of Krebs-Ringer buffer and the 

pH of the samples was readjusted to 7. 0- 7. 4 with 1. 0 M NaOH before 



76 

addition to the kidney slices. The extract (0.20 ml) was added to the 

kidney slices for the 1 hour incubation period. 

2b. Comparison of extraction with cold 0.1 N perchloric acid and 

boiling distilled water from rat hypothalamus 

The extraction media that yielded the best results with whole 

brain tissue were the 0.1 N cold perchloric acid and boiling distilled 

water. Hypothalamic tissue was homogenized with either 0.1 N 

perchloric acid or boiling distilled water to test which medium was 

more effective in extracting RRF from hypothalamic tissue. Rat 

hypothalami (6 hypothalami, approximately 0.11 g) were homogenized in 

either cold 0 .1 N perchloric acid or boiling distilled water in a 1 

g/10 ml ratio with a pyrex glass tissue homogenizer. The homogenates 

were centrifuged for 30 minutes at 18,000 x g. The supernatants were 

transferred to polypropylene tubes, lyophilized and stored at - 70°c 

until they were tested for renin-releasing activity. These samples 

were resuspended in 0.1 ml of Krebs-Ringer buffer, the pH was 

readjusted (pH 7. 0- 7. 4 with 1. 0 M NaOH) and 0. 02 ml was added to the 

kidney slices during the incubation period. 

3. Preparation of hypothalamic, cerebellar and pituitary extracts 

Hypothalamic tissue was dissected from 10 rat brains immediately 

after decapitation and stored at -70°c. The brain was placed, dorsal 

surface down, and the hypothalamus was excised from the ventral surface 

with fine curved scissors. The rostral border was the decussation of 

the optic tracts and the decussation of the anterior commissure. The 
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caudal border was the mammillary bodies. The pituitary was removed 

from the sella turcica and the cerebellum was removed from the 

brainstem. A volume of 10 ml/g of boiling water was added to the 

hypothalamic (0.97 g), cerebellar (0.85 g) or pituitary (0.74 g) 

~issue. The tissue was homogenized with a glass tissue grinder, placed 

in a boiling water bath for 20 minutes and centrifuged at 13,000 x g 

for 30 minutes. An aliquot of 4. 5 ml of the supernatant from each 

tissue was lyophilized to dryness and resuspended in 0.2 ml of saline. 

A volume of 0.02 ml was added to the kidney slices to test for renin­

releasing activity. 

4. Dose response of hypothalamic tissue extracts 

Rat hypothalamic tissue (5.8 g, approximately 280 hypothalami) was 

homogenized in boiling distilled water (1 g/ml) with a pyrex tissue 

grinder. The homogenate was placed in a boiling water bath for 20 

minutes and centrifuged at 13,000 x g for 30 minutes. The supernatant 

was collected, 0.4 ml of the extract was saved for serial dilutions and 

1.6 ml of the supernatant was lyophilized (Savant Speed-Vac). The 

straight, non-lyophilized, hypothalamic extract was serially diluted 

with saline (1: 15, 1: 10, 1: 5, 1: 2 and 1: 1) to obtain the equivalent 

volume of the content of 0.07, 0.1, 0.2, 0.5 and 1 hypothalamus when 

added (0. 2 ml) to the kidney slices, respectively. The lyophilized 

pellet was resuspended in 0.4 ml of 0.9% saline and diluted (1:2 and 

1:1) to yield extracts that were equivalent to the content of 2 and 4 

hypothalami. Aliquots (0. 02 ml) of the hypothalamic extracts were 

added to the kidney slices for the 1 hour incubation. 
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5. Distribution of RRF in rat brain 

Rat brains were dissected as described in section E part 1. The 

brain areas that were analyzed for renin-releasing activity were the 

pituitary gland, pons, thalamus, caudate-putamen, hippocampus, 

midbrain, amygdala, hypothalamus, cerebral cortex, medulla oblongata 

and cerebellum. The brain tissues were homogenized in boiling 

distilled water (1 g/ml) with a glass tissue grinder. Afterwards, the 

homogenates were placed in a boiling water bath for 20 minutes and then 

centrifuged at 13,000 x g for 30 minutes. The extracts were added to 

the kidney slices at a volume of 0. 02 ml for the incubation period. 

This volume corresponded to the equivalent of 1 hypothalamus using the 

1 g/ml dilution. Standardizing the dilution and volume of the 

different extracts allowed direct comparison of the renin-releasing 

activity of the different brain areas. 

6. Distribution of RRF in colchicine-treated rat brains 

In order to identify the cell bodies of origin of RRF, rats were 

treated with colchicine, a drug that inhibits axonal transport of 

materials from the cell body, to prevent the movement of RRF from the 

cell body. The results from the renin release bioassay of the 

colchicine-treated brain parts would indicate where the cell bodies 

that contain RRF were located. After colchicine treatment, the areas 

that have high renin-releasing activity would indicate RRF contained in 

cell bodies. 
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6a. Animals 

Rats were prepared for stereotaxic surgery by anesthetizing them 

with pentobarbital (50 mg/kg i.p.; Butler Co., Columbus, OH) and 

pretreating them with methyl atropine bromide (0.4 mg/kg i.m.; Regis 

Chemical Co. , Morton Grove, IL) which minimized respiratory tract 

secretions. After surgery, the rats received an injection of 

ampicillin (50 mg/kg, i.m.; Sigma, St. Louis) to prevent infection. 

care was taken to avoid undue discomfort to the animals. 

6b. Intracerebroventricular injections of colchicine 

The rats were secured in a Kopf stereotaxic apparatus with the 

incisor bar 5. 0 mm below the intra-aural line. The injection needle 

was placed bilaterally, 1.4 mm lateral to the midsagittal suture, 0.5 

mm caudal from bregma and 4. 5 mm ventral from the skull surface. 

Colchicine (Sigma, St. Louis) was administered bilaterally (150 µg/20 

µl saline; 10 µl into each side over a 10 minute period) into the 

lateral cerebral ventricles. The needle was left in place for 5 

minutes to prevent dorsal diffusion of the drug. 

The rats were decapitated 48 hours after injection of colchicine 

and the brains were dissected as indicated in section E part 1. The 

brain parts were homogenized in boiling distilled water and 

centrifuged. The supernatant (0.02 ml) was added to the kidney slices 

to test for renin-releasing activity. 
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6c. Verification that colchicine does not interfere in the renin 

release bioassay 

In a test that preceded the determination of RRF in the brains of 

colchicine-treated rats, colchicine was added to the kidney slices to 

test whether colchicine would alter renin release. Saline or 

colchicine was added to three test substances saline, isoproterenol 

(10-SM) or cerebellar extract, (homogenized as 1 mg/ml in boiling 

distilled water) . The concentration of colchicine was calculated as 

the approximate dilution of colchicine in the treated rat brains (150 

µg colchicine into one brain (1. 80 g) homogenized in 1. 8 ml boiling 

distilled water, which corresponded to 0.083 mg colchicine/ml of 

sample]. This calculation did not take into account any diffusion of 

colchicine from the brain. The samples were added to the kidney slices 

at a volume of 0.02 ml for the incubation period. 

F. Distribution of RRF in peripheral tissues 

After decapitation, the adrenal gland, spleen, liver, kidney and 

skeletal muscle (from the abdomen) were dissected from normal rats. 

The tissues were homogenized (1 g/ml) with boiling distilled water in 

glass tissue homogenizers. The homogenates were placed in a boiling 

water bath for 20 minutes and centrifuged at 13,000 x g for 30 minutes. 

The supernatant of each extract (0. 02 ml) was added to the kidney 

slices for the incubation period. 
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G. Effect of nephrectomy on the hypothalamic content of RRF 

Rats were bilaterally nephrectomized as previously described in 

the Method section B part 3a. Another group of control or sham­

operated rats were treated identically except that their kidneys were 

.not removed. Twenty-four hours after surgery the rats were 

decapitated. The brains were quickly removed and the hypothalami were 

dissected and stored at - 70°C. On the day of the kidney slice 

bioassay, the hypothalami were individually homogenized 1 g/ml in 

boiling distilled water, placed in a boiling water bath and centrifuged 

(13, 000 x g) for 20 minutes. Each hypothalamic extract (20 µl) was 

tested individually in the RRF bioassay. 

H. Stimulation of RRF from hypothalamic neurons 

Superfusion of hypothalamic explants was performed to determine 

whether neurons in the hypothalamus could release RRF in response to 

depolarization. The method used for the superfusion of rat 

hypothalamus was adapted from that used by Gallardo and Ramirez (1977). 

1. Preparation of hypothalamic explants 

Rats (175-200 g) were decapitated and the hypothalami were quickly 

dissected and placed in a petri dish containing cold Krebs-Ringer 

buffer that was bubbled with 95% 02-5% C02. The Krebs-Ringer 

superfusion buffer used for this study had a composition of 117 mM 

NaCl, 4.7 mM KCl, 1.25 mM CaCl2, 1.2 mM MgS04, 1.2 mM KH2P04, 11.5 mM 

glucose and 25 mM NaHC03 (final pH 7 .4). The rostral and caudal 

boundaries for the hypothalamus were the optic chiasm and the 
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mammillary bodies, respectively. The anterior commissure was used to 

define the dorsal limit of the hypothalamus. 

In some cases rat hypothalamo-hypophyseal explants were used, in 

others, the hypothalamic explants were used without the hypophysis. 

The brain was removed from the caudal approach and the pituitary was 

carefully removed away from the sella while still attached to the 

hypothalamus. The hypothalamus was then dissected from the rest of the 

brain and the hypothalamo-hypophyseal explant was placed in cold 

oxygenated Krebs-Ringer. A total of four explants were placed in each 

superfusion chamber. 

2. Superfusion of rat hypothalamic explants 

The superfusion chambers (0. 5 ml) were constructed from 3. 0 ml 

plastic disposable syringes that were cut in half. The hypothalamic 

tissue was placed at the bottom of the chamber and rested on a few 

strands of glass wool. Superfusion buffer entered the chamber from the 

bottom through a hypodermic needle (18 gauge) that was attached to the 

syringe (superfusion chamber; refer to Figure 2). The needle was 

inserted into rubber stoppers on a Plexiglas stand and the apparatus 

(stand with superfusion chambers) was placed in a water bath maintained 

at 37°C. The buffer was continuously delivered into the chamber by a 

Gilson peristaltic pump (Gilson Medical Electronics, Inc., Middleton, 

WI) at a flow rate of 0.08 ml/minute. A PE90 tubing (Becton Dickinson 

and Co., Parsippany, N.J.) led the buffer through a silastic manifold 

tubing (0. 065 inch I. D.) and another length of PE90 tubing connected 

the silastic tubing to the needle on the chamber. The Krebs-Ringer 
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buffer entered the chamber from the bottom and filled the chamber as it 

filtered up through the tissue. The chamber was closed with a rubber 

stopper containing two 20 gauge needles; one was fitted with PE90 

tubing that allowed the inflow of the 95% 02 - 5% C02 mixture and the 

other needle was fitted with tubing (PE90) that served as the outlet 

for the liquid (sample) and oxygen. As the gas entered the chamber, 

it formed bubbles that expelled the liquid sample through the tubing. 

This also kept the volume of the chamber constant at 0.5 ml. 

After a 30 minute equilibration period, samples were collected over 

a 30 minute control period into polypropylene tubes that were 

maintained on ice. To test for the potassium stimulated release of RRF 

from the hypothalamus, the Krebs-Ringer buffer was replaced with a high 

potassium Krebs-Ringer buffer containing 60 mM KCl. The composition of 

the high potassium Krebs-Ringer buffer was 61. 7 mM NaCl, 60 mM KCl, 

1.25 mM CaCl2, 1.2 mM MgS04, 1.2 mM KH2P04, 11.5 mM glucose and 25.0 mM 

NaHC03 (final pH 7 . 4) . The sodium concentration of the buffer was 

reduced to maintain the proper osmolarity. Samples were collected for 

30 minutes into polypropylene tubes that were kept on ice. For both 

the control and experimental (high potassium) periods, the pH of the 

buffer was monitored to confirm that the pH did not fluctuate over 

time. 

3. Preparation of superfusate samples 

After the samples were collected (approximately 3 ml), they were 

filtered and concentrated by ultrafiltration on a micropartition system 

(MPS I, Amicon, Danvers, MA) through a membrane that had a molecular 
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The samples that were collected with the high 

potassium buffer were further washed with 0. 9% saline to remove the 

excess potassium ions. The final volume for all the samples after 

concentration on the filter was 0.3 ml. This corresponded to 

approximately a 10 fold increase in concentration. A volume of 0.2 ml 

was added to the kidney slices to test for the renin-releasing activity 

of the hypothalamic superfusates. 

I. Statistical analysis of the data 

1. Representation of the data 

The data were represented as mean ± S.E.M. (standard error of the 

mean). The sample mean was the average of the numbers in the 

experimental group (n). The standard error of the mean (S.E.M.) was 

reported along with the mean to establish a confidence interval for the 

population mean. The S.E.M. was calculated from a formula relating the 

standard deviation and the number of samples in the test group (n). 

2. Statistical tests 

2a. Student's t-test 

The Student's t-test was used to compare two means either from the 

same sample population (paired t-test) or from different sample 

populations (unpaired t-test). As a rule for the analysis of these 

data, the significance levels used for the t-test and other tests 

(ANOVA and Duncan's new multiple range test) were 5% and 1%. The 

t-tests used were all two-tailed. Two-tailed t-tests are indicated 

when looking for a difference between the means (mean1 not equal to 
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mean2) rather than testing the probability that one mean is greater 

than the other (one-tailed t-test). 

2b. Analysis of variance 

The analysis of variance (ANOVA) was designed to compare several 

groups (means) after a treatment or to compare the same group using 

different treatments. The one way ANOVA was used to compare the effect 

of different treatments between relatively homogenous, random groups. 

The F value is calculated and defined as the ratio of two independent 

estimates of the variance (Steel and Torrie, 1960). The F value is 

compared to values in a table for the level of significance. A 

significant F value indicates that there is less than 5% or 1% that two 

or more means are not different between the treatment groups. However, 

the ANOVA does not show which means are significantly different from 

one another. 

The two way ANOVA is used when there are two or more ways of 

grouping the data (Steel and Torrie, 1960). The individuals in the 

experiment are grouped into blocks according to characteristics. For 

example, animals that are subject to surgery before receiving a drug 

treatment would comprise one block. The units within the block should 

be treated identically, minimizing any variations in techniques or 

conditions. This assures that the differences observed will be due to 

the effects of treatment. For a two way ANOVA, three F values are 

obtained: one indicates if there is a treatment effect; another 

indicates a difference between the blocks and the third indicates if 

there is an interaction between the treatment and block effects. 
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zc. Duncan's new multiple range test 

The Duncan's new multiple range test was applied in addition to 

the ANOVA to determine which means are statistically different (Duncan, 

1955). Generally, tests of comparison should be performed only when 

the F values are significant, however, a Duncan's multiple range test 

can be performed without a significant F value. The Duncan's also has 

a protection level within the computation of statistic that is 

determined by the degrees of freedom. The protection guards against 

the possibility of finding a false positive (Type I error; rejecting 

the Null hypothesis when it is true). Other multiple range or 

comparison tests have a protection level that is the same for all 

sample sizes. The data necessary to perform a multiple range test are 

the mean squared error obtained from the ANOVA, the number of samples 

in the group (n) and a value that is obtained from a table of 

significant ranges. The value obtained from the table is dependent on 

the degrees of freedom, the level of significance and the number of 

means being tested. The desired range is then multiplied by the 

standard error of the mean (obtained by taking the square root of the 

mean squared error divided by the number of samples) to make a shortest 

range of significance. If the distance between two means is greater 

than the shortest range of significance then the difference between the 

means is significant. 



CHAPTER IV 

RESULTS 

A. Development of a renin release bioassay 

Table 1 compares the values for renin release after a 30 minute 

incubation between the bubbled and unbubbled kidney slice methods. 

The unbubbled method yields renin values that were higher and more 

consistent (5.0 ± 0.6 to 7.5 ± 0.5 ng ANG I/mg kidney/hr) than those 

obtained with the bubbled method (0. 23 ± 0. 04 to 1. 90 ± 0. 30 ng ANG 

I/mg kidney/hr). 

The values for pH, kidney slices weight and renin release in one 

experiment are presented in Table 2. All these values were measured 

after a 30 minute incubation period. The kidney slice weights were 

within a small range of distribution with a mean of 18.3 ± 0.5 mg. The 

pH values of the incubation medium of the 24 vials ranged from 7.4 to 

7. 5 with a mean of 7. 45 ± 0. 01. Both the values for pH and kidney 

slice weight were within a close range indicating that the method of 

oxygenation and method of slicing the kidneys (vibratome) were 

reliable. The values for renin release from the slices ranged from 3.4 

to 11.1 ng ANG I/mg kidney tissue/hr with a mean value of 5.9 ± 0.37 ng 

ANG I/mg kidney/hr. This is a much smaller range than that observed 

with the bubbled kidney slice method. The small range of distribution 
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TABLE 1 Comparison of interexperimental variation of renin release (ng 
ANG I/mg kidney/hr) from kidney slices between the bubbled and improved 
unbubbled in vitro methods. 

Experiment Bubbled Method Experiment Unbubbled Method 
1 1. 90 ± 0. 30 (24) 5 7.2 ± 0.6 (24) 
2 1. 80 ± 0 .15 (24) 6 5.0 ± 0.6 (24) 
3 0.23 ± 0.04 (24) 7 7.5 ± 0.5 (24) 
4 0.53 ± 0.07 (24)* 8 6.4 ± 0.4 (24) 

9 6.7 ± 0.4 (24) 
10 5.9 ± 0.4 (24) 
11 7.1 ± 0.4 (36) 

* This value for renin release (experiment 4) was obtained from 
kidney slices that were cut on a vibratome, but were incubated in 
Krebs-Ringer that was bubbled with the 95% 02-5% C02 gas. The kidney 
slices used in experiments 1,2 and 3 were cut using a hand-held razor. 
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TABLE 2 lntraexperimental variability for renin release from kidney 
slices during incubation with Krebs-Ringer Bicarbonate solution for 30 
minutes. 

Weight of the slices Renin release 
Vial !!!! .L!W.. (ng ANG I/mg kidney/hr) 

1 7.4 17.9 4.9 
2 7.5 19.0 6.7 
3 7.6 16.0 6.2 
4 7.4 16.3 3.6 
5 7.4 20.1 5.0 
6 7.6 18.l 3.3 
7 7.5 19.8 3.4 
8 7.4 15.6 4.4 
9 7.5 19.6 6.5 

10 7.4 14.2 8.7 
11 7.5 17.2 5.1 
12 7.4 19.7 5.7 
13 7.4 17.2 5.2 
14 7.5 16.9 5.7 
15 7.5 16.6 7.0 
16 7.5 17.3 6.0 
17 7.5 22.0 6.1 
18 7.4 22.8 5.8 
19 7.5 22.0 6.6 
20 7.5 18.5 8.4 
21 7.4 15.3 3.4 
22 7.4 20.2 7.6 
23 7.4 14.1 11.1 
24 7.5 22.8 6.2 
Mean ± S.E.M 7.45 ± 0.01 18.3 ± 0.5 5.9 ± 0.4 
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of renin release, both intraexperimentally and interexperimentally, is 

is an indicator of the reliability of the new kidney slice method. 

Addition of isoproterenol produced a significant increase 

(Student's unpaired t-test, two-tailed, t=2.460, df-14, p < 0.05) in 

renin release from the kidney slices (Table 3). As can be seen in the 

following experiments, the values for renin release in the slices that 

received either saline or isoproterenol are reproducible between 

experiments. 

B. Check for specificity in the bioassay for RRF 

1. Test for non-specific activation of renin by plasma fractions 

(Table 4) 

This control experiment was performed to verify that the effect of 

the PCA-plasma fraction (M.W. 5,000-10,000) was not due to non­

specific activation of inactive renin that could have been released by 

the kidney slices. Kidney slices were removed from the Krebs-Ringer 

medium after a 1 hour incubation, and the Krebs-Ringer solutions were 

pooled and then divided into 2. 0 ml aliquots. Saline, saline-plasma 

(M.W. 5,000-10,000) or PCA-plasma (M.W. 5,000-10,000) samples were 

added to the Krebs-Ringer aliquots for a 1 hour incubation at 37°C. 

The concentration of renin was measured as the ability to generate ANG 

I from a saturating concentration of renin substrate. As can be seen 

from Table 4, there was no activation of renin by the plasma fractions. 
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TABLE 3 Effect of saline or isoproterenol (10- 7M) on renin release 
from kidney slices using the unbubbled method. 

Renin release 
(ng ANG I/mg kidney/hr) 

Saline (n-10) 10.6 ± 0.9 

Isoproterenol lo-7M (n-6) 19.7 ± 3.4* 

Data represent mean± S.E.M. 
* Significant difference from the saline group, p < 0. 05 (Student's 
unpaired t-test, two tailed: t=2.460, df=l4). 
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TABLE 4 Test for non-selective activation of renin in the incubation 
medium (Krebs-Ringer) by the fractions (M.W. 5,000-10,000) of plasma 
from saline-treated or PCA-treated rats. 

Renin activity 
Fraction added (ng ANG I/ml/hr) 

PCA-plasma fraction 
(M.W. 5,000-10,000) 231.2 ± 19.0 

Saline-plasma fraction 
(M.W. 5,000-10,000) 276.0 ± 8.8 

Saline 238.6 ± 22.8 

Each data point represent mean± S.E.M. of 6 determinations. 
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z. Test for non-specific generation of angiotensin I from renin 

substrate by plasma and brain fractions (Table 5) 

Another control experiment was performed to verify that the 

saline-plasma and PCA-plasma fractions (M.W. 5,000-10,000) and the 

different brain extracts did not have renin-like activity that would 

have resulted in the non-specific generation of ANG I. Rat 

hypothalamic, cerebellar, and pituitary extracts and the PCA-plasma and 

saline-plasma fractions (M.W. 5,000-10,000) were added to the Krebs­

Ringer buffer and incubated with renin substrate for 1 hour. As can be 

seen in Table 5, the values for the amount of generated ANG I were 

below the sensitivity limit of the assay indicating that the effect of 

the test substances on renin release from the kidney slices was not due 

to non-specific generation of ANG I in the bioassay. The normal rat 

plasma was tested at the same concentration as the other substances and 

produced detectable amounts of ANG I. 

C. In vivo studies of the renin-releasing factor 

1. The effect of the serotonin releaser, PCA and serotonin agonists 

(MK-212 and TFMPP) on PRA, PRC and plasma RRF concentration (Table 6) 

The 5-HT releaser PCA (10 mg/kg, i.p.) and two 5-HT agonists, MK-

212 (10 mg/kg, i.p.) and TFMPP (10 mg/kg, i.p.) were administered to 

rats to test if stimulation of serotonin receptors would increase PRA, 

PRC and the concentration of RRF in the blood. PCA, TFMPP and MK-212 

all significantly increased plasma renin ac ti vi ty [ANOVA: 

F(3,36)-22.741, p < 0.001; Duncan's multiple range test: shortest 

range of significance between means - 9.6, p < 0.01] and plasma renin 
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TABLE 5 Test for non-specific generation of angiotensin I from 
angiotensinogen (renin substrate) by hypothalamic, cerebellar, 
pituitary and plasma extracts and fractions. 

Substance added 

Rat hypothalamic extract 

Rat cerebellar extract 

Rat pituitary extract 

PCA-plasma fraction 
(M.W. 5,000-10,000) 

Saline-plasma fraction 
(M.W. 5,000-10,000) 

Unfractionated normal rat plasma 

ng ANG I generated/ml/hr 

N.D. 

N.D. 

N.D. 

N.D. 

N.D. 

3.75 ± 0.15 

Each point represents mean ± S. E .M. of 6 determinations. The 
extracts and fractions were incubated with renin substrate (20 µl/2.0 
ml) without renin in the medium to test if these extracts possessed 
renin-like activity. 
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TABLE 6 The effect of saline or PCA, MK-212 or TFMPP (10 mg/kg i.p.) 
on plasma renin activity (PRA), plasma renin concentration (PRC) and 
plasma concentration of renin-releasing factor (RRF) in conscious rats. 

PRA PRC RRF 
(ng ANG ILmlL3hr) (ng ANG ILml/hr) (ng ANG ILmg kidne:;x::/hr) 

Treatment 

saline 3.5 ± 0.4 5.1 ± 0.5 12.0 ± 0.8 
(n=l2) 

PCA 20.1 ± 2.2** 23.5 ± 3.4** 18.9 ± 1. 5* 
(n=ll) 

MK-212 40.7 ± 3.8**t 56.3 ± ll.7**t 19.3 ± 3.0* 
(n=ll) 

TFMPP 17.2 ± 2.5** 21.4 ± 3.4** 18.8 ± 2.8* 
(n=6) 

Data represent mean ± S.E.M. The number of rats (n) in each group is 
represented in parentheses. 
One way ANOVA for: PRA; F (3,36)-22.741, p < 0.001. 

PRC; F (3.36)-12.394, p < 0.001. 
RRF; F (3,36)- 3.147, p < 0.05. 

Duncan's new multiple range test: 
* Significant difference from saline group, p < 0.05. 
** Significant difference from saline group, p < 0.01. 
t Significant difference from all other groups, p < 0.01. 
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concentration [ANOVA: F(3,36)=12.394, p < 0.001; Duncan's multiple 

range test: shortest range of significance between means = 13.5, p < 

0.05; = 18.0, p < 0.01] when compared with the saline control group. 

The PRA and PRC values in the group that received MK-212 were 

significantly elevated over the other treatments (PCA and TFMPP) groups 

(Duncan's multiple range test: p < 0.01). The plasma concentration of 

RRF was significantly increased in the rats that received either PCA, 

MK-212 or TFMPP [ANOVA: F(3,36)=3.147, p < 0.05; Duncan's multiple 

range test: shortest range of significance between means - 6. 4, p < 

0.05]. There were no significant differences between any of the drug­

treated groups for RRF activity. These results indicate that 

stimulation of 5-HT receptors can increase PRA, PRC and the plasma 

concentration of RRF. 

2. Effect of stress on PRA and plasma RRF concentration (Table 7) 

It has been shown that rats that were stressed using a conditioned 

emotional response (CER) or fear paradigm had significantly elevated 

levels of PRA (Van de Kar et al, 1985; Richardson-Morton et al, 1987). 

Therefore, the plasma from stressed rats was tested in the kidney 

slices bioassay to determine whether stress could be a physiological 

stimulus that would increase the plasma concentration of RRF. Table 7 

shows the effect of stress on plasma renin activity (PRA) and on the 

plasma concentration of RRF. Rats that were subjected to the CER 

paradigm had significant increases in PRA (Student's t-test, two­

tailed; t-3.380, df=l9, p < 0.01) and also in the plasma concentration 

of RRF (Student's unpaired t-test, two-tailed; t-2.711, df-19, p < 
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TABLE 7 The effect of stress (conditioned emotional response or fear 
paradigm) on plasma renin activity (PRA) and the plasma concentration 
of renin-releasing factor (RRF). 

PRA RRF 
(ng ANG I/ml/3 hr) (ng ANG I/mg kidney/hr) 

control (n=9) 4.5 ± 0.8 12. 7 ± 1.1 

stress (n=12) 29.l ± 6.2** 16.0 ± 0.7* 

Data represent mean± S.E.M. 
** Significant difference from corresponding saline control group, 

p < 0.01, (Student unpaired t-test, two-tailed; t-3.380, df-19). 
* Significant difference from corresponding saline control, 
p < 0.02 (Student unpaired t-test, two-tailed; t-2.711, df-19). 
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0.02). These results indicate that stress can act as a physiological 

stimulus to induce the release of RRF into the blood. 

3. Presence of disulfide bonds in RRF: Study with cysteamine and PCA 

(Table Ba and Bb) 

Since RRF was characterized as a heat stable peptide, it is 

possible that this peptide contains disulfide bonds that stabilize the 

molecule and maintain the conformation for its renin-releasing 

activity. Therefore, destruction of these disulfide bonds with 

cysteamine, a drug that reduces disulfide bonds, might change the 

conformational change of RRF and destroy its renin-releasing activity. 

To test this hypothesis, rats were pretreated with cysteamine (300 

mg/kg, s.c.) before administration of PCA (10 mg/kg, i.p.). Tables Ba 

and Bb show the effect of cysteamine and PCA and cysteamine on plasma 

renin activity (PRA) and plasma renin concentration (PRC), 

respectively. Cysteamine did not increase in resting PRA values [Two 

way ANOVA: F(l,20)-3.345, p > 0.05]. Administration of PCA 

significantly increased PRA [Two way ANOVA: F(l,20)-17.016, p < 0.001; 

Duncan's multiple range test: shortest range of significance between 

means= 6.9, p < 0.05]. The two way ANOVA indicates that there was no 

interaction between cysteamine and PCA [Two way ANOVA: F(l,20)-0.0371, 

p > 0.1]. The cysteamine-PCA group was not different from the saline­

PCA group. PCA did not produce an increase in PRA after cysteamine 

when compared with its cysteamine-saline control group. 

The effects of cysteamine and PCA on plasma renin concentration 

(PRC) were very similar to the data obtained for PRA. Cysteamine 
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TABLE Ba Effect of pretreatment with cysteamine (300 mg/kg s. c.) on 
the p-chloroamphetamine (PCA; 10 mg/kg i.p.)-induced increase in plasma 
renin activity (PRA) 

Plasma renin activity (ng ANG I/ml/3 hr) 

saline cysteamine 

saline 6.0 ± 1.1 11.8 ± 2.6 

PCA 13. 5 ± 1. 8* 16.9 ± 3.0 

Data represent mean± S.E.M. n-8. 
Two way ANOVA: Factor A (cysteamine): F(l,20)-3.345, p > 0.05, N.S. 

Factor B (PCA): F(l,20)= 17.016, p < 0.001. 
Factor Ax B: F(l,20)= 0.0371, p > 0.10, N.S. 

Duncan's new multiple range test: 
Significant difference from saline-saline control group, 

* p < 0.05, shortest range of significance between means - 6.9. 

TABLE Sb Effect of pretreatment with cysteamine (300 mg/kg s.c.) on 
the p-chloroamphetamine (PCA) - induced increase in plasma renin 
concentration (PRC) 

saline 

PCA 

Plasma renin concentration 
(ng ANG I/ml/hr) 

saline cysteamine 

7.3±1.2 14.6 ± 4.5 

22.7 ± 3.8** 21.5 ± 3.5 

Data represent mean± S.E.M. n=8. 
Two way ANOVA: Factor A (cysteamine): F(l,20)= 0.585, p > 0.100, N.S. 

Factor B (PCA): F(l,20)= 19.811, p < 0.001. 
Factor Ax B: F(l,20)= 1.325, p > 0.100, N.S. 

Duncan's new multiple range test: 
Significant difference from saline-saline control group, 
** p < 0.01, shortest range of significance between means 11.9. 
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treatment did not increase PRC when compared with the saline-saline 

control [Two way ANOVA: F(l,20)-0.585, p > 0.100]. PCA produced a 

significant increase in PRC [Two way ANOVA: F(l,20)-19.811, p < 0.001]. 

Treatment with cysteamine did not block the effect of PCA [Two way 

ANOVA: F(l,20)-1.325, p > 0.100]. For both PRA and PRC, the values for 

the cysteamine-saline and cysteamine-PCA groups were not statistically 

different from each other. However, PCA did not produced a significant 

increase in the cysteamine-PCA group when compared with its 

corresponding control. There is no difference between the saline-PCA 

and cysteamine-PCA groups. 

The generation of ANG I from angiotensinogen was reported to be 

increased when disulfide reducing agents, such as cysteamine, were 

added to the incubation media (Poisner and Hong, 1977). To test for 

the possible interaction of cysteamine in the renin assay, control 

plasma pools were incubated with cysteamine, at a dose that was 

calculated as the theoretical distribution within body water. 

Cysteamine did not modify the amount of ANG I generated in either the 

normal [Student's t-test (unpaired), two-tailed: t-0.7612, df-10, p > 

0.05] or high [Student's t-test (unpaired), two-tailed: t=0.4155, 

df-10, p > 0.50] plasma renin activity pools (Table 9). 

These results indicate that cysteamine was not capable of 

preventing the PCA- induced increase in renin secretion. Furthermore, 

the concentration of cysteamine used in this experiment did not 

influence the generation of ANG I from the renin substrate and thus did 

not bias the results. 
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TABLE 9 Lack of cysteamine interference in the plasma renin activity 
assay. 

Plasma renin activity 
(ng ANG I/ml/3 hr) 

saline cysteamine 

normal 
plasma renin activity 9.3 ± 0.9 

high 
plasma renin activity 23.7 ± 1.6 

Data represent mean± S.E.M. n-5 in each group. 
Student's unpaired t-test (two-tailed): 

10.2 

23.0 

for normal PRA: t-0.7612, df-10, p > 0.50, N.S. 
for high PRA: t=0.4155, df=lO, p > 0.50, N.S. 

± 0.8 

± 0.7 
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4. Test for parathyroid hormone (PTH) as the mediator of the PCA­

induced increase in renin release (Table 10) 

Several laboratories have demonstrated that parathyroid hormone 

(PTH) increases PRA (Powell et al., 1978; Smith et al., 1979). 

Therefore, PTH was tested as a possible renin-releasing factor. PCA 

was administered to thyroparathyroidectomized rats to test if removal 

of the parathyroid gland would prevent the PCA- induced increase in 

plasma renin activity. 

Basal levels of plasma renin activity were unaffected by 

parathyroidectomy [Two way ANOVA: F(l,28)-2.154, p > 0.100]. 

Administration of PCA produced a significant increase in plasma renin 

activity in the sham-operated rats [Two way ANOVA: F(l,28)-22.774, p < 

0.001; Duncan's multiple range test: shortest range of significance 

between means - 33.2, p < 0.05]. Parathyroidectomy did not prevent the 

PCA-induced increase in plasma renin activity [Two way ANOVA: 

F(l,28)-1.736, p > 0.100; Duncan's multiple range test: shortest range 

of significance between means = 44. 9, p < 0. 01] . The sham- PCA and 

parathyroidectomy-PCA groups were not significantly different from each 

other. These results suggest that the parathyroid hormone is not the 

RRF. 
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TABLE 10 Effect of p-chloroamphetamine (PCA; 10 mg/kg i.p.) on plasma 
renin activity in sham and thyroparathyroidectomized rats. 

Plasma renin activity (ng ANG I/ml/3 hr) 

saline PCA 

Sham-operated 15.2 ± 2.6 52.3 ± 9.5* 

Parathyroidectomized 16. 8 ± 1. 7 82.2 ± 19.0** 

Data represent mean± S.E.M. n = 8. 
Two way ANOVA: 

Factor A (PCA): F(l,28)=22.774, p < 0.001. 
Factor B (parathyroidectomy): F(l,28)=2.154, p > 0.1, N.S. 
Factor Ax B: F(l,28)-1.736, p > 0.1, N.S. 

Duncan's new multiple range test: 
Significant difference from corresponding saline group, 

* p < 0.05, shortest range of significance between means 
** p < 0.01, shortest range of significance between means 

33.2. 
44.9. 



5, Test for possible renin-releasing activity of neurophysin II 

(Table 11) 
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Lesions in the paraventricular nucleus (PVN) prevent both the PCA­

induced (Gotoh et al., 1987) and the stress-induced increases 

(Richardson Morton et al., 1986; Gotoh il al., 1987) in plasma renin 

activity. Neurophysin II (NPII), is synthesized in the PVN, released 

from the neural lobe, and has a molecular weight of approximately 

10,000. There is no known physiological action for the neurophysins 

and therefore, NPII was tested as a possible renin-releasing factor. 

Intraperitoneal injection of increasing doses of neurophysin II did not 

alter PRA [One way ANOVA: F(5,39)=0.2291, p > 0.100] or PRC [One way 

ANOVA: F(5,39)-0.4959, p > 0.100] levels indicating that neurophysin II 

does not have any renin-releasing activity and is probably not the RRF. 

D. Summary of data using unbubbled kidney slice method 

1. Effect of saline-plasma or PCA-plasma fractions (M.W. 1,000-5,000; 

5, 000-10, 000 and 10, 000-20, 000) on renin release from kidney slices 

(Table 12) 

Table 12 shows the effect of the PCA-plasma and saline-plasma 

fractions (M.W. 1,000-5,000; 5,000-10,000 and 10,000-20,000) on renin 

release from the kidney slices. All of the fractions exhibited some 

renin-releasing activity. The PCA-plasma fraction containing 

substances with molecular weights 5,000-10,000 produced a three-fold 

increase in renin release when compared with any of the other plasma 

fractions; this increase was significant [ANOVA: F(6,55)-10.48, p < 

0.001; Duncan's multiple range test: shortest range of significance 
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TABLE 11 Failure of increasing doses of neurophysin II (bovine) to 
alter plasma renin activity (PRA) and plasma renin concentration (PRC) 
in conscious rats. 

Dose of Neurophysin II PRA PRC 
(ug/kg. i.p.) (ng ANG I/ml/3 hr) (ng ANG I/ml/hr) 

saline 7.9 ± 0.9 10.2 ± 0.6 

0.1 9.0 ± 1.0 11.9 ± 1.6 

0.5 9.1 ± 1.1 11.0 ± 1.2 

2.0 9.1 ± 1.0 12.4 ± 1.2 

10.0 8.9 ± 0.7 11.0 ± 1.0 

20.0 8.2 ± 1.2 10.2 ± 1.6 

Data represent mean± S.E.M. n-8 per group. 
One way ANOVA: PRA; F(5,39)- 0.229, p > 0.1, N.S. 

PRC; F(5,39)- 0.495, p > 0.1, N.S. 
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TABLE 12 The effect of saline or plasma fractions from saline-treated 
or PCA-treated (10 mg/kg i.p) nephrectomized rats on renin release from 
kidney slices. 

PCA-plasma fractions 

M.W. 1,000-5,000 (10) 
M.W. - 5,000-10,000 (17) 
M.W. = 10,000-20,000 (6) 

Saline-plasma fractions 

M.W. = 1,000-5,000 (5) 
M.W. = 5,000-10,000 (10) 
M.W. 10,000-20,000 (5) 

Saline (9) 

Renin Release 
(ng ANG I/mg kidney/hr) 

12. 0 ± 1. 8 
32.0 ± 4.1* 
12. 3 ± 1. 6 

11.3 ± 1.5 
9.5 ± 1.3 

10.9 ± 1. 9 

6.2 ± 1.0 

Data represent mean± S.E.M., n is represented in parentheses. 
One way ANOVA F(6,55)-10.48, p < 0.001. 
Duncan's new multiple range test: 

* Significant difference from all other groups, p < 0.01; shortest 
range of significance between means = 18.0. 
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between means - 18.0, p < 0.01]. Lactate dehydrogenase was also 

measured in the incubation medium and was determined to be 0. 034 ± 

O. 006 µmol pyruvate/ml/min for the saline-plasma group (M. W. 5, 000-

10, 000) and 0.032 ± 0.006 µmol pyruvate/ml/min for the PCA-plasma group 

(M.W. 5,000-10,000). The LDH values were lower than those reported in 

the literature for kidney slices (Fray et al., 1983), and indicate that 

the increase in renin release from the group that received the PCA­

plasma fraction (M.W. 5,000-10,000) was not due to cell lysis. 

2. Test for possible renin-releasing activity of 5-HT or PCA (Table 13) 

Since the PCA-plasma produced increases in renin release from the 

kidney slices it could be suggested that either 5-HT or PCA molecules 

in the plasma fractions could increase renin release from the slices. 

Therefore, 5-HT, PCA and fenfluramine, another 5-HT releaser were 

tested for renin-releasing activity. None of these drugs were 

effective in stimulating renin release from the kidney slices [ANOVA: 

F(3,11)=0.18, p > 0.1]. These results suggest that the increase in 

renin release seen with PCA-plasma was not due to either PCA or 5-HT 

molecules. 

3. Incubation of the saline-plasma and PCA-plasma fraction (M.W. 5,000-

10,000) with pronase (Table 14) 

To determine if RRF is a peptide, the PCA-plasma and saline­

plasma fractions that contained renin-releasing activity (M.W. 5,000-

10,000) were incubated with pronase and the samples were added to the 

kidney slices. Incubation of the PCA-plasma fraction (M.W. 5,000-
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TABLE 13 Inability of 5-HT (10-6M), p-chloroamphetamine (10-6M) and 
fenfluramine (10-6M) to increase renin release from kidney slices. 

Renin release 
Test substance (ng ANG I/mg kidney/hr) 

Saline (4) 
10-6M 5-HT (4) 
10-6M PCA (3) 
10-6M Fenfluramine (4) 

9.4 
8.8 
8.6 
9.5 

± 1.0 
± 1.2 
± 1.1 
± 0.4 

Data represent mean± S.E.M .. n is represented in parentheses. 
One way ANOVA F(3,ll)-0.18, p > 0.100, N.S. 
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TABLE 14 Ability of pronase to destroy the renin-releasing activity 
of the PCA-plasma fraction (M.W. 5,000-10,000). 

Renin release 
Fraction added n (ng ANG I/mg kidney/hr) 

Vehicle-treated 
PCA-plasma fraction 9 15.7 ± 1.2* 

Pronase-treated 
PCA-plasma fraction 10 5.6 ± 0.4 

Vehicle-treated 
Saline-plasma fraction 6 10.6 ± 1. 3 

Pronase-treated 
Saline-plasma fraction 6 11. 7 ± 0.9 

Saline 9 6.4 ± 0.5 

Isoproterenol (10-6M) 6 19.6 ± 1.9* 

Data represent mean± S.E.M., n represents number of determinations. 
One way ANOVA F(5,39)= 29.84, p < 0.001. 
Duncan's new multiple range test: 

* Significant difference from saline or the corresponding pronase­
treated group, p < 0.01; shortest range of significance between means -
4.2. 
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10,000) with pr-0nase completely eliminated its renin-releasing activity 

[ANOVA: F(S,39)-29.84, p < 0.001; Duncan's multiple range test: 

shortest range of significance between means - 4.2, p < 0.01]. The low 

renin-releasing activity of the saline-plasma fraction (M. W. 5, 000-

10, 000) was not affected by treatment with pronase. These data suggest 

that RRF present in the PCA-plasma is a peptide and that the increase 

in renin release seen with the saline-plasma is not due to a peptide 

factor. Saline and isoproterenol were tested in the bioassay as 

representative values for the low and high (stimulus induced) renin 

release. 

The proteolytic activity of pronase was verified using a casein 

agar plate. Casein is one of the substrates for pronase. The pronase 

was mixed with the plasma fractions and a sample was added to a casein 

agar plate. The proteolytic activity showed up on the agar as a clear 

ring, indicating that pronase had digested the casein. After 

incubation of the pronase with the plasma fraction, the samples were 

boiled. Boiling inactivated the pronase and prevented any further 

proteolysis; this was also verified using the casein agar plate. 

E. Studies of the renin-releasing factor in rat brain 

1. Extraction of RRF from rat brain tissue 

la. Test of different extraction media on the recovery of renin­

releasing activity from whole brain (Table 15) 

One of the preliminary studies for the distribution of RRF in rat 

brain included the testing of different extraction media on the 

recovery of renin-releasing activity from whole rat brain. Whole rat 
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brains were extracted as described in Method section E part 1 in 

different extraction media, and added to the kidney slices. The hrains 

that were extracted with cold perchloric acid (0.1 N) had the highest 

renin-releasing activity (One way ANOVA: F(6,59)-4.428, p < 0.001]. 

This increase was statistically significant from the saline control and 

the hot and cold hydrochloric acid extract groups (Duncan's multiple 

range test: shortest range of significance between means 5.9, p < 

0.01). 

(20:80) 

Brains that were extracted with either cold 0.1 N HCl/ethanol 

or with hot distilled water also had a significant 

concentration of renin-releasing activity when compared with the saline 

group (Duncan's multiple range test: shortest range of significance 

between means = 4.5, p < 0.05). Hot perchloric acid (0.1 N) extract 

and hot and cold hydrochloric acid (0.1 N) extracts had renin-releasing 

activity that did not differ from the saline control values. From 

these results it appears that cold perchloric acid, cold 0.1 N 

HCl/ethanol and boiling distilled water were the most effective in 

recovering renin-releasing substances from whole rat brain. 

lb. Comparison of extraction with cold 0 .1 N perchloric acid and 

boiling distilled water on the recovery of RRF from rat hypothalamus 

(Table 16) 

Rat hypothalamic tissue was tested for the recovery of renin­

releasing substances using cold 0.1 N perchloric acid or boiling 

distilled water as the extraction media. The extracts were added to 

the kidney slices and the renin-releasing activity of the two extracts 

were compared. The hypothalamic tissue that was homogenized in the 
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TABLE 15 Comparison of different extraction media on renin-releasing 
activity from whole rat brains. 

Extraction media !l 

Cold hydrochloric acid (0.1 N) 9 

Hot hydrochloric acid (0.1 N) 9 

Cold 0.1 N HCl/ethanol (20:80) 9 

Cold perchloric acid (0.1 N) 10 

Hot perchloric acid (0.1 N) 10 

Hot distilled water 8 

saline 12 

Data represent mean± S.E.M. 
One way ANOVA: F(6,59)- 4.428, p < 0.001. 
Duncan's new multiple range test: 

Renin release 
(ng ANG I/mg kidney/hr) 

7.9 ± 0.3 

7.2 ± 0.3 

11.9 ± 2.2* 

13.8 ± 2.1** 

10.4 ± 1.6 

11.0 ± 0.6* 

6.2 ± 0.6 

Significant difference from saline control group, 
* p < 0.05, shortest range of significance between means - 4.5. 

** p < 0.01, shortest range of significance between means 5.9. 
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TABLE 16 Comparison of 0.1 N perchloric acid and distilled water on 
the recovery of renin-releasing factor (RRF) from rat hypothalamus. 

Renin release 
(ng ANG I/mg kidney/hr) 

cold 0.1 N perchloric acid 11.1±1.7 

hot distilled water 22.4 ± 4.2* 

Data represent mean± S.E.M. n-4. 
* Significant difference from cold perchloric acid extract group, p < 
0.05 (Student's unpaired t-test, two-tailed, t-2.516, df-6). 
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boiling distilled water had significantly more renin-releasing activity 

than the hypothalamic tissue extracted with perchloric acid extract 

[Student's t-test (unpaired), two-tailed: t-2.516, df-6, p < 0.05]. 

These data differ from the data obtained in the previous study that 

indicated that perchloric acid was more effective in recovering renin­

releasing activity from whole rat brain. This suggests that the renin­

releasing substance in the hypothalamus and that (those) in whole rat 

brain may be different. One advantage in using boiling distilled water 

for the extraction medium is that the hypothalamic homogenates do not 

need the pH readjusted before addition to the kidney slices. For the 

following studies on RRF the tissues were homogenized in boiling 

distilled water. 

2. Renin-releasing activity of hypothalamic, cerebellar and pituitary 

extracts (Table 17) 

The hypothalamus, cerebellum and pituitary tissues were 

homogenized in boiling distilled water (see Method section E part 3) 

and the extracts were added to the kidney slices to test for renin­

releasing activity. The hypothalamic extract produced a significant 

increase in renin release from the kidney slices [One way ANOVA: 

F(4,46)-ll.474, p < 0.001] when compared with either the saline control 

(Duncan's multiple range test: shortest range of significance between 

means - 8. 5, p < 0. 05) or the pituitary extract values (Duncan's 

multiple range test: shortest range of significance between means -

10.9, p < 0.01). The cerebellar extract significantly increased renin 

release from the kidney slices when compared with the pituitary extract 
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TABLE 17 Effect of rat hypothalamic, cerebellar and pituitary extracts 
on renin release from kidney slices. 

Renin Release 
Substance added (ng ANG I/mg kidney/hr) 

Saline (13) 9.7 ± 0.6 

Hypothalamic Extract (16) 19.1 ± 2.l**t 

Cerebellar Extract (10) 15.3 ± 2.1* 

Pituitary Extract (8) 5.7 ± 0.6 

Isoproterenol 10-6M (5) 19.7 ± 2.6**t 

Each data point represents mean± S.E.M. The number of determinations 
(n) is represented in parentheses. 
One way ANOVA: F(4,46)- 11.474, p < 0.001. 
Duncan's new multiple range test: 
t Significant difference from the saline group, p < 0. 05, shortest 
range of significance between means 8.5. 

Significant difference from pituitary extract 
* p < 0.05, shortest range of significance between means 

** p < 0.01, shortest range of significance between means 
8.5. 
10.9. 
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(Duncan's multiple range test; p < 0.05) but the effect was not 

significant when compared with the saline group. Pituitary extract 

produced a small, but statistically insignificant, decrease in renin 

release when compared with the saline values. Saline and isoproterenol 

(10-6 M) were added to the kidney slices to demonstrate the high and 

low values of renin release for the bioassay. These results suggest 

that the hypothalamus and cerebellum contain renin-releasing 

substances. The pituitary may contain substances that inhibit renin 

release in vitro. 

3. Dose-response effect of the renin-releasing activity of hypothalamic 

tissue (Figure 3) 

The hypothalamus has been shown in the previous study to contain 

renin-releasing substances. Rat hypothalami were prepared (Method 

section E part 4) and added to the kidney slices in dilutions that 

corresponded to the content of 0.07, 0.1, 0.2, 0.5, 1.0, 2.0 and 4.0 

hypothalami. Addition of hypothalamic extract to the kidney slices 

produced a dose-dependent increase in renin release. The content of 

0.5 hypothalamus produced a significant increase in renin release that 

was also significantly different from the equivalent of 0. 2 

hypothalamus (Duncan's multiple range test: shortest range of 

significnce between means - 6.3, p < 0.05). There was a significant, 

and maximal, increase in renin release when the equivalent of the 

content of one hypothalamus was added to the kidney slices (One way 

ANOVA: F(B,50)-10.520, p < 0.001; Duncan's multiple range test: 

shortest range of significance between means - 8.2, p < 0.01]. The 



118 

FIGURE 3 Dose-response effect of rat hypothalamic tissue extract on 
renin-releasing activity. 
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maximal response was also obtained when the equivalents of 2 and 4 

hypothalami were added to the slices. These values were also 

significantly different from the equivalent of 0.5 hypothalamus. 

Saline and isoproterenol were added as low and high (stimulus-induced) 

controls for the bioassay. These results indicate that the kidney 

slices can respond with a maximal stimulation of renin release when the 

equivalent of the content of one hypothalamus is added to the kidney 

slices. For subsequent studies, tissue extracts were added to the 

kidney slices in the volume that corresponded to the equivalent of the 

content of one hypothalamus (0. 02 ml of tissue extract in a 1 g/ml 

dilution with boiling distilled water). 

4. Distribution of RRF in rat brain (Figure 4) 

Rat brains were dissected and the individual parts were prepared as 

indicated in Method section E part 5. The extracts were added to the 

kidney slices to test for renin-releasing activity. Figure 4 shows the 

distribution of renin-releasing activity in different brain regions. 

The data are arranged in order of increasing renin-releasing activity 

[ANOVA: F(l4,110)-4.693, p < 0.005]. Saline and isoproterenol (lo-5 M) 

were tested along with the samples to control for the low and high 

levels of the bioassay. The following brain regions had RRF activity 

that was statistically different from the saline control or the 

pituitary extract groups: the hypothalamus, cerebral cortex (Duncan's 

multiple range test: shortest range of significance between means -

6.2, p < 0.05), medulla oblongata and cerebellum (Duncan's multiple 

range test: shortest range of significance between means - 7.0, 
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FIGURE 4 Distribution of renin-releasing activity in different regions 
of the rat brain. 
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p < 0. 01). There were no significant differences in the renin-

releasing activity between these groups. The pituitary had the least 

amount of renin-releasing activity followed by, in increasing order, 

the pons, thalamus, caudate, hippocampus, midbrain, and amygQ.ala. 

These values were not significantly different from the saline control 

value. These data demonstrate that there is an unequal distribution of 

renin-releasing activity in the rat brain. The areas that contain the 

highest amounts of renin-releasing activity are the cerebellum followed 

by the medulla, cerebral cortex and hypothalamus. 

5. Distribution of RRF in brains of colchicine-treated rats (Figure 5) 

Sa. Test of colchicine-treated brain extracts 

The results from Figure 4, cannot distinguish RRF in cell bodies 

from RRF in nerve terminals. In order to identify RRF in the cell 

bodies, a group of rats were treated with colchicine (48 hours), a drug 

that inhibits axonal transport of cell products toward the nerve 

terminals. Therefore, treatment of rats with colchicine would prevent 

the movement of peptides, such as RRF, from the cell body to the nerve 

terminals. The brains from colchicine-treated rats were dissected, 

homogenized and added to the kidney slices to test for renin-releasing 

activity as was performed with the control brains. 

Figure 5 shows the distribution of renin-releasing activity in 

colchicine-treated rat brains. When compared with Figure 4, there was 

a redistribution of renin-releasing activity. The most visible 

difference after colchicine-treatment was that the hypothalamus was the 

only brain region that exhibited significant renin-releasing activity 
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FIGURE 5 Distribution of renin-releasing activity in brains of 
colchicine-treated rats. 
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[One way ANOVA: F(l3,78)-2.997, p < 0.005]. This activity was 

significantly different from saline, caudate-putamen, midbrain, muscle 

and cerebellar extracts (Duncan's multiple range test: shortest range 

of significance between means - 10.8, p < 0.01) and from the pituitary, 

hippocampus, amygdala, cortex and medulla extracts (Duncan's multiple 

range test: shortest range of significance between means - 8. 3, p < 

0.05). The renin-releasing activity of the hypothalamus was also 

slightly, but not significantly, increased above the value for 

isoproterenol-stimulated renin release. In addition to the 

hypothalamus, the renin-releasing activity of the pituitary, pons and 

thalamus in colchicine-treated rats was slightly but not significantly 

increased when compared with the corresponding areas from the brains of 

non-treated rats (Figure 4). The renin-releasing activity previously 

observed in the cerebral cortex, medulla and cerebellum was reduced, 

and the value for renin-releasing activity in the cerebellum was at the 

level of saline control values. The renin-releasing activity of the 

caudate-putamen, hippocampus, midbrain and amygdala was also decreased 

slightly after colchicine treatment in comparison with the non-treated 

controls. Saline and isoproterenol (lo-5 M) were run as controls for 

the bioassay. Skeletal muscle extract was also tested in the bioassay 

as a tissue control. These results suggest that RRF cell bodies are 

located in the hypothalamus and that the renin-releasing activity that 

was observed in the cerebral cortex, medulla and cerebellum was 

probably due to the presence of RRF in nerve terminals. 
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Sb. Test for colchicine interference in the renin release bioassay 

(Table 18) 

Before the actual bioassay was performed with the colchicine­

treated brain parts, a preliminary kidney slice assay was performed to 

test for the possible interference of colchicine in the release of 

renin from the kidney slices. Colchicine (0. 083 mg/ml extract) was 

added to either saline, isoproterenol (lo- 5 M) or cerebellar extract to 

test if colchicine would interfere in either basal or stimulus-induced 

renin release from the kidney slices. lsoproterenol (Duncan's multiple 

range test: shortest range of significance between means - 6. 2, p < 

0.05) and cerebellar (Duncan's multiple range test: shortest range of 

significance between 

significant increases 

means 8.4, p 

in renin release 

< 0.01) extract produced 

from the kidney slices when 

compared with the saline control group [One way ANOVA: F(S,23)-7.330, p 

< 0. 001). There were no significant differences in renin-releasing 

activity between the colchicine and saline groups for each test 

substance. This dose of colchicine (0.083 mg/ml) was calculated as the 

theoretical dilution of drug in the brain. This theoretical value 

maybe larger than the actual distribution since this calculation did 

not take into account the leakage of the drug from the CSF 

(cerebrospinal fluid) to the periphery. Therefore, the data 

demonstrate that the dose of colchicine used in the brain scan 

experiment would not have interfered with renin release from the kidney 

slices in the RRF bioassay. 
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TABLE 18 Failure of colchicine to alter renin release from the kidney 
slices. 

Renin release Cng ANG I/mg kidney/hr) 

saline colchicine 

saline 13.5 ± 1.6 13.4 ± 1.4 

isoproterenol 10-5M 21. 7 ± 2.4* 19.7 ± 1.1* 

cerebellum extract 25.5 ± 2.0** 24.4 ± 2.6** 

Data represent mean± S.E.M. n-5. 
One way ANOVA: F(5,23)-7.330, p < 0.001 
Significant difference from saline-saline or colchicine-saline control 
groups Duncan's new multiple range test: 

* p < 0.05, shortest range of significance between means 
** p < 0.01, shortest range of significance between means 

6.2. 
8.4. 
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F. Distribution of renin-releasing activity in peripheral tissues 

{Figure 6) 

Since a number of peptides are distributed in the central nervous 

system and in peripheral tissues, some peripheral tissues were tested 

for renin-releasing activity. The adrenal gland, skeletal muscle, 

spleen, liver and kidney were homogenized in boiling water and the 

extracts were added to the kidney slices. Figure 6 shows the renin­

releasing activity of different peripheral tissues. The skeletal 

muscle, spleen and liver extracts did not exhibit any significant 

renin-releasing activity. The adrenal gland extract produced a 

significant decrease in renin release from the kidney slices (ANOVA: 

F(5,28)-6.318, p < 0.005; Duncan's multiple range test: shortest range 

of significance between means - 4. 5, p < 0. 05] . The kidney extract 

produced a significant increase in the amount of ANG I detected. 

It was possible that not all the renin in the kidney extract was 

inactivated by the boiling procedure. Therefore addition of kidney 

extract to the kidney slices may have increased the amount of renin in 

the sample. To test this possibility, kidney extract, at a 

concentration that equalled the dilution of the kidney extract in the 

Krebs-Ringer buffer during the kidney slice bioassay (0.02 ml 

sample/2.0 ml), was incubated with renin substrate (0.1 ml 

nephrectomized plasma). The kidney extract was able to generate 73.1 

ng ANG I/ml. When this value was divided by the average weight of the 

kidney slices for that bioassay (15.7 mg), this resulted in an addition 

of approximately 4.6 ng ANG I/mg kidney/hr. Subtracting this number 

from the value for renin release with kidney extract (14.6 ng ANG I/mg 
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FIGURE 6 
tissues. 
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kidney/hr) would have yielded a final value of 10 ng ANG I/mg 

kidney/hr, and this value would not have been statistically different 

from the saline control group. Therefore it is likely that the 

increase in ANG I with the kidney extract was due to the presence of 

renin in the extract. 

G. Effect of nephrectomy on the hypothalamic content of RRF (Figure 7) 

The colchicine experiment indicated that the hypothalamus contains 

RRF cell bodies. If there were a feedback loop involved in the 

regulation of RRF release, then removal of the kidneys should result in 

a change of hypothalamic RRF. The hypothalami from nephrectomized 

(NEPHX) and sham-operated rats were homogenized in boiling water and 

the extracts were added to the kidney slices for the incubation period. 

The hypothalamic extract from nephrectomized rats produced a 

significant increase in renin release from the kidney slices [ANOVA: 

F(3,22)-8.09, p < 0.005) when compared with either the saline control 

(Duncan's multiple range test: shortest range of significance between 

means = 8.7, p < 0.01) or the hypothalamic extract from sham-operated 

rats (Duncan's multiple range test: shortest range of significance 

between means 6.5, p < 0.05) groups. The hypothalamic extract from 

sham-operated rats produced a small increase in renin release, however, 

this increase was not statistically significant when compared with the 

saline control. Saline and isoproterenol (lo-6 M) were also added as 

controls for the bioassay. The data show that removal of the kidneys 

from rats results in an increase in the hypothalamic content of RRF. 

These findings may suggest that the kidney may be involved in a 
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FIGURE 7 Effect of bilateral nephrectomy (24 hours) on the 
hypothalamic content of renin-releasing factor (RRF). 
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feedback loop that regulates the production and release of RRF from the 

hypothalamus. 

H. Test for the neuronal release of RRF: Study with superfused 

hypothalami (Figure 8) 

The study with the colchicine-treated rats suggest that RRF cell 

bodies are localized in the hypothalamus. If this is a true 

neuroendocrine system, then the neurons containing the peptide (RRF) 

should be able to be stimulated to release the factor. This 

possibility was tested by using hypothalamic explants. Hypothalami or 

rat hypothalamic-pituitary explants were superfused for a 30 minute 

control period followed by a 30 minute test period with a high­

potassium Krebs-Ringer solution to stimulate the release of the 

peptide. The samples were collected, concentrated by ultrafiltration 

and the fraction that was retained on the filter (molecular weights 

greater than 500) were added to the kidney slices to assay for renin­

releasing activity. 

The samples from the hypothalamic explants that were superfused 

for the 30 minute control period with regular (control) buffer had a 

value for renin release that was slightly increased, but not 

significantly different from the saline control value. The 

superfusates from the hypothalamic explants that were superfused with 

the high potassium Krebs-Ringer solution had a significantly higher 

renin-releasing activity than when they were superfused with the 

control buffer [One way ANOVA: F(3,26)-9.894, p < 0.001; Duncan's 

multiple range test: shortest range of significance between means -
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FIGURE 8 Secretion of renin-releasing factor (RRF) from superfused 
hypothalamus: Effect of high potassium (60 mM). 
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4.7, p < 0.05]. The value for renin-releasing activity of the 

potassium stimulated hypothalamic explant was not statistically 

different from the isoproterenol group. Both of these groups had renin 

release values that were significantly increased over the saline and 

control buffer superfused groups (Duncan's multiple range test: 

shortest range of significance between means - 6.4, p < 0.01). As a 

routine saline and isoproterenol were added to kidney slices as 

controls. This result indicates that the hypothalamus can be 

stimulated to secrete renin-releasing substances. 



CHAPTER V 

DISCUSSION 

A. Summary 

The results of this dissertation support the hypothesis for the 

existence of a renin-releasing factor (RRF) that is released from the 

brain into the circulation. Using an improved and reliable method for 

measuring renin release from kidney slices, these studies indicate that 

RRF is a heat stable peptide having a molecular weight between 5,000-

10,000. These data support previous in vivo studies indicating that a 

factor in the plasma (M.W. 500-10,000) of PCA-treated rats is capable 

of increasing plasma renin activity (PRA) in recipient rats (Van de Kar 

et al. , 1982a). Stimulation of serotonergic receptors and stress 

triggers the release of RRF into the blood. These studies suggest that 

the hypothalamus contains RRF which produces a dose-dependent increase 

in renin release from kidney slices. Further investigation revealed 

that RRF is unevenly distributed within the brain with the cerebellum, 

medulla oblongata, cerebral cortex and the hypothalamus exhibiting the 

highest concentration of RRF. Studies using brains from colchicine­

treated rats suggest that RRF cell bodies are localized in the 

hypothalamus. It is also noted that the renin-releasing activity 

previously observed in the cerebellum, medulla and cerebral cortex was 

133 
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reduced which suggests that RRF in these brain regions is present in 

nerve terminals. Superfusion of rat hypothalamus explants with high 

potassium medium demonstrated that RRF neurons in the hypothalamus can 

be stimulated to release RRF. The hypothalamic content of RRF was 

significantly increased after bilateral nephrectomy suggesting the 

possible presence of a feedback loop from the kidneys to the 

hypothalamus which is responsible for the maintenance of RRF at a 

homeostatic level. 

Bioassay of several peripheral tissues indicated that the spleen, 

liver, skeletal muscle and kidney do not contain RRF. Adrenal extract 

produced a decrease in renin release from kidney slices which may be 

due to the presence of inhibitory peptides or transmitters in the 

adrenal gland. The study further determined that parathyroid hormone 

(PTH) and neurophysin II (NPII) are not RRF. 

B. Renin release bioassay 

1. In vivo bioassay 

The first investigations on RRF were performed in conscious rats 

in a series of cross - transfusion experiments (Van de Kar et al. , 

1982a). The plasma from PCA-treated rats was concentrated and injected 

into conscious recipient rats. Plasma renin activity (PRA) was 

measured in the recipient rats to determine whether there was a factor 

in the blood from PCA-treated rats that increased renin secretion. The 

results from these experiments indicated the presence of a blood-borne 

factor with a molecular weight between 500-10,000. Injecting plasma 

fractions into conscious rats could have altered either sodium balance, 
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plasma osmolarity or even blood pressure which, in turn, would have 

altered plasma renin activity. Therefore, it was possible that 

physiological changes in the recipient rats could have interfered with 

the effect of RRF. To eliminate these influences, an in vitro renin 

release bioassay was developed so that the effect of RRF could be 

observed directly on the kidney. 

2. In vitro kidney slice bioassay 

In vitro kidney slice methods have been used to study the direct 

effects of various stimuli on renin release (Henrich and Campbell, 

1984; O'Dea et al., 1984; Fray and Laurens, 1981; Katz and Malvin, 

1982a). The kidney slice method used in these studies was based on the 

method used by Katz and Malvin (1982a). After experimenting with the 

methods of slicing and oxygenation, the resulting method of measuring 

renin release in vitro was an improvement over the other methods. 

Cutting the tissue by hand (Churchill and Churchill, 1982; Henrich and 

Campbell, 1984) or with a Stadie-Riggs microtome (Katz and Malvin, 

1982a) could cause variation in slice thickness and deformation of the 

kidney due to changes in the amount of pressure that is put on the 

kidney during slicing. Using a vibratome to slice the kidney tissue 

ensured that each slice was of uniform thickness, primarily because the 

vibratome cuts the kidney without applying pressure to the kidney 

tissue or deforming it. The uniformity in slice size could be 

correlated with the kidney slice weight (Table 2). 

Another modification of the method involved coronal sectioning of 

the kidney. By cutting the kidney coronally instead of sagittally each 
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slice contained equal amounts of cortical tissue (both outer and inner 

cortex) and medullary tissue. The highest content of renin secreting 

cells is located in the outer cortex (Katz and Malvin, 1982b; Jones et 

_ru.., 1979). The renal medulla however, has virtually no renin activity 

(Katz and Malvin, 1982b) and thus, was removed. The kidney slices then 

contained primarily inner and outer cortical tissue. Medullary 

dissection ensured that the slices were homogenous with respect to 

renin content. Using this coronal method of slicing more than 30 

slices per kidney could be obtained which was far more than the 2-4 

slices which were previously obtained using sagittal cuts (Katz and 

Malvin, 1982a; Churchill and Churchill, 1982; Cho and Malvin, 1979). 

Proper oxygenation of the vials is important to the viability of 

the slices. Cho and Malvin (1979) demonstrated that direct bubbling of 

the Krebs-Ringer buffer surrounding the kidney slices decreased the 

amount or activity of renin present in the medium and also prevented 

the accumulation of renin activity over time. The decrease in renin 

was due to inactivation of the enzyme at the air-liquid interface. The 

values for renin release using the bubbled kidney slice method were 

lower and less consistent than those presented using the modified 

(unbubbled) method (Table 1). By changing to the unbubbled method the 

values for renin release became more consistent and reproducible. 

Histological and immunocytochemical studies were performed to 

verify the viability of the kidney slices both before and after the 

incubation periods (Van de Kar et al., 1987). Histological analysis 

revealed that the glomerulus and adjacent juxtaglomerular apparatus 

appeared healthy both before and after incubation. Immunocytochemical 
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staining for immunoreactive renin was localized to segments of the 

afferent arterioles. Again, there were no differences between the 

staining in the slices either prior to, or after, 2.5 hours of 

incubation. These findings suggest that the content of renin was not 

depleted during the incubation period. Other reports indicate that the 

renal content of renin is not depleted by a similar incubation period 

(De Vito et al., 1970). These analyses of the kidney slices indicate 

that the juxtaglomerular cells in the kidneys remain healthy during the 

RRF bioassay. 

An indicator for a viable kidney slice method is the determination 

of lactate dehydrogenase (LDH) in the medium surrounding the kidney 

slices. LDH is a cytoplasmic enzyme that is commonly used as a 

indicator for the leakage of cell contents into the medium. Reports by 

Churchill (1979) and Lyons (1980) showed that LDH activity in the 

medium did not parallel the release of renin from the slices. LDH did 

accumulate during the incubation, however, the rate of accumulation was 

not affected by factors that increased renin release. The values for 

LDH reported for the unbubbled kidney slice method discussed above were 

lower than reported in the literature (Fray~ J!.l., 1983) and were not 

different between the treatment groups that received the PCA-plasma or 

saline-plasma fraction (M.W. 5,000-10,000). Even though the kidney 

slices that received the PCA-plasma fraction released more than two 

times as much renin as the vials that received the saline-plasma 

fraction, the LDH values were the same. 

An additional precaution taken with the kidney slice bioassay was 

to use young rat kidneys for the slices. The kidneys used for the 
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bioassay were taken from rats that weigh less than 250 g. It has been 

noted in our laboratory that as the rats age their kidney slices often 

hypersecrete renin into the Krebs-Ringer medium which masks any 

treatment effect during the incubation. Using rats between 150-250 g 

increases the probability that the kidneys will be responsive to a 

stimulus. Corman ~ al. (1985) saw that as the rats grew older their 

kidneys increased in weight. They noticed that the increase in kidney 

size is due to enlargement of the glomerulus and proximal tubules. 

Furthermore, the filtering capabilities of the kidney is decreased in 

older rats. Fray (1978) noted that the kidneys from sodium-depleted 

rats had higher basal levels of renin release than kidneys from 

controls rats. It is possible that there are alterations in the 

handling of sodium that causes the kidneys to release more renin. The 

aging of the kidney may not be related to a change in one function but 

may be the result of changes in several processes. It is possible that 

the alterations in renin release, in Yi..t!:,Q, from older kidneys are due 

not only to changes in the renin-angiotensin system but to age related 

nephropathies. 

To test the reliability of the kidney slice bioassay isoproterenol 

was added to the kidney slices. Addition of isoproterenol (10-5-10-6 

M) is known to cause renin release from the kidney (Henrich and 

Campbell, 1984; O'Dea et al., 1984; Katz and Malvin, 1982a; Churchill 

and Churchill, 1982) by stimulating beta receptors (Capponi and 

Vallotton, 1976; Weinberger et al., 1975). An increase in renin 

release was observed using the unbubbled kidney slice method (Table 3) 

after a 1 hour incubation with isoproterenol. Using the new method, a 
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10-7M dose of isoproterenol was able to produce a significant increase 

in renin release whereas, with the bubbled kidney slice method, a 10-5 

M dose did not produce a statistically significant increase. The 

literature generally cites increases of 1.3-2.2 times the control 

values for isoproterenol-induced renin release after 1-2 hours of 

incubation. Addition of 10- 7 M isoproterenol produced more than a 

three - fold increase in renin release over a period of 3 hours in the 

unbubbled renin release bioassay (Urban and Van de Kar, 1986). When 

compared with the values in the literature, this is a larger increase 

in renin release produced with a smaller dose of isoproterenol; this 

illustrates that the bioassay is sensitive and responds to a stimulus. 

One limitation to this bioassay is the narrow dynamic range for 

assessing renin release. It is not often that values for renin release 

are larger than 25 ng ANG I/mg kidney/hr. It is likely that there is 

more renin being released than can be detected by this bioassay. One 

possibility is that renin may be degraded in each of the kidney slice 

vials during the incubation period, since we have not measured the rate 

of accumulation and degradation of renin in these vials. 

C. In vivo studies on plasma RRF 

1. Effect of 5-HT agonists on PRA, PRC and plasma RRF concentration 

Since PCA stimulates the release of RRF, the serotonin agonists 

MK-212 and TFMPP were administered, in addition to PCA, to conscious 

rats to test if these 5-HT agonists could stimulate the release of RRF. 

PCA, MK-212 and TFMPP increased PRA, PRC and plasma RRF levels. For 

both PRA and PRC, the levels produced by MK-212 were higher than the 
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Both MK-212 and TFMPP are 

known to bind to 5-HT receptors. However, their relative potency at 

the receptor subtypes differ. MK-212 is a serotonin agonist 

(Clineschmidt, 1979) that also has been shown to increase 

phosphoinositol turnover in cortical slices (Conn and Sanders-Bush, 

1985). The serotonin-induced increase in phosphoinositol turnover is 

coupled to 5-HT2 receptors whereas stimulation of 5-HT1 receptors 

results in an increase of adenylate cyclase activity (Sanders-Bush and 

Conn, 1985). The selective 5-HT2 antagonist LY53857 prevented the 

increase in PRA after either treatment with MK-212 or fenfluramine 

supporting the hypothe~is that 5-HT2 receptors regulate renin secretion 

(Lorens and Van de Kar, 1987). Studies by Clineschmidt et Al. (1978) 

showed that MK-212 can inhibit the serotonin uptake system at the dose 

that was used in this study (10 mg/kg, i.p.). They demonstrated that 

pretreatment of rats with MK-212 prevents the depletion of serotonin 

observed 72 hours after treatment with PCA. PCA gains access to the 

neuron via the reuptake pump. Pretreatment with an uptake inhibitor 

prevents PCA from entering the nerve terminal and thus inhibits its 

action. It is possible that by blocking the serotonin uptake pump, MK-

212 increases the amount of serotonin available at the synapse (Wong ~ 

al., 1985). Assuming that the renin response, seen with the 10 mg/kg 

dose of MK-212 is not due to maximal occupation of the receptors, it is 

likely that by a combination of both stimulating 5-HT2 receptors and 

increasing the synaptic availability of serotonin, MK-212 could produce 

a potentiation of the renin response. 

Administration of the 5-HT1B receptor agonist, TFMPP, produces 
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significant increases in PRA and PRC, although the increase in PRC is 

not as elevated as that produced by either MK-212 or PCA. A number of 

studies have demonstrated that TFMPP binds preferentially to 5-HT1B 

receptors (McKenney and Glennon, 1986; Asarch et al. , 1985). This 

result is in disagreement with the theory that only 5-HT2 receptors are 

involved in the regulation of renin secretion. However, administration 

of RU24969, a non-selective 5-HTlA&B agonist, produces dose-dependent 

increases in PRA and PRC that are inhibited by pretreatment with 

LY53857 (Van de Kar et al., 1987). This indicates that the putative 5-

HT1 agonist, RU24969 also has affinity and activity at the 5-HT2 

receptor or that LY53857 also blocks the 5-HT1B receptor. In a study 

by Pettibone and Williams (1984), TFMPP and similar piperazine­

containing compounds, were found to act as serotonin releasers and 

displace endogenous stores of serotonin. Fuller~ al. (1981), have 

reported that TFMPP can act as an uptake inhibitor since it prevented 

the depletion of brain serotonin by PCA. Furthermore , Conn and 

Sanders-Bush (1985) have indicated that TFMPP can produce an increase 

in phosphoinositol hydrolysis, an effect that is associated with 5-HT2 

receptors. It is possible that TFMPP produces an increase in PRA, PRC 

and RRF levels by an action that is not attributable to its 5-HT1 

activity. TFMPP could release enough serotonin to increase renin 

secretion, or it is even possible that TFMPP may have activity at the 

5-HT2 receptor site in addition to its 5-HT1B activity. 

Administration of the serotonin agonists MK-212 and TFMPP and the 

serotonin releaser, PCA, all increased the plasma concentration of RRF. 

The difference in the mechanism of action of the drugs can be noticed 
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in the PRA and PRC values, however, the values for plasma RRF 

concentration are equally elevated, indicating that each drug released 

about the same amount of RRF. It is difficult to explain why the RRF 

values do not reflect the difference PRA and PRC values. It is evident 

that serotonin receptors were stimulated to release RRF into the 

plasma. One reason for the consistent values for RRF concentration is 

that the kidneys may have been stimulated maximally with the addition 

of the plasma samples so that any difference in RRF concentration 

between the drug treatments (measured as renin release from the kidney 

slices) was not detectable by the bioassay. Isoproterenol was not 

added in this bioassay so it is difficult to define the dynamic range 

of this bioassay. It is not likely that the activity of RRF was 

digested by proteases since the plasma samples were boiled for 20 

minutes and the larger proteolytic enzymes would not have survived the 

boiling process. Another possibility is that some RRF was inactivated 

by brush border enzymes present in the proximal tubule of the renal 

cortex. A study by Ward and Johnson (1978) showed that kidney extracts 

inactivated substance P faster than the extracts of either liver or 

lung. The highest activity of substance P degradation occurred in the 

brush border of the proximal tubules. The bioassay is performed on 

renal cortical slices that contain a high concentration of proximal 

tubules (Van de Kar et al., 1987). Therefore, it is likely that some 

RRF could have been catabolized during the bioassay since no 

precautions were taken to inactivated these enzymes. 
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2. Role of stress on plasma RRF concentration 

Rats that are subjected to a variety of stress paradigms have 

increased levels of corticosterone, prolactin and renin (Paris il !ll., 

1987; Richardson-Morton et al., 1986; Van de Kar et al., 1984; 1985; 

Eljarmak et al., 1982). The effect of a stressor such as conditioned 

emotional response (Richardson-Morton et al., 1986) and immobilization 

(Gotoh et al., 1987) on renin secretion can be prevented by 

electrolytic lesions in the hypothalamic paraventricular nucleus (PVN). 

This result does not appear to be due to decreased levels of renin 

substrate that would occur as a result of interrupting the 

adrenocortical axis since the corresponding PRC values, measured with a 

saturating concentration of exogenous renin substrate, are also 

decreased (Richardson-Morton et al., 1986). Further studies have 

indicated that cell bodies in the PVN are responsible for mediating the 

stress-induced increase in PRA and PRC (Richardson-Morton et !ll., 

1987). Furthermore, electrolytic lesions in the PVN also prevented the 

increase in PRA after administration of PCA (Gotoh il !ll., 1987). 

Since the PVN contains neurons that can release peptides into the 

circulation, it is likely that the release of RRF may be stimulated by 

stressful conditions. Stress produces an increase in PRA and plasma 

RRF concentration when compared with the renin-releasing activity of 

plasma from control (non-stressed) rats (Table 7). That the increase 

in PRA was about four times greater than the change observed with the 

RRF concentration. There are many factors that can influence the PRA 

values in stressed rats. PRA is a measurement that reflects changes in 

central and peripheral sympathetic nerve activity, changes in sodium 
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levels and blood pressure, in addition to increases due to RRF. When 

measuring the plasma concentration of RRF, only the direct effect of 

the factor is being detected at the kidney level which is evaluated by 

incubating the plasma fraction with renal cortical slices. 

Furthermore, the renal cortical slice is only a fraction of the total 

renin-releasing ability of the kidney. If more kidney tissue were 

added to the bioassay, the increase in renin-releasing activity could 

have been greater. 

D. Characterization of plasma RRF in vitro 

Administration of PCA to rats produced an increase in plasma renin 

activity that was due to the presence of a blood-borne renin-releasing 

factor (RRF; Van de Kar, et al., 1982a). RRF was identified to be 

present in the plasma fraction with molecular weights of 500-10,000. 

The PCA-plasma fraction (M.W. 500-10,000) was also tested in the renin 

release bioassay and produced dose-dependent increases in renin 

release. Further studies using the PCA-plasma fraction with smaller 

molecular weight ranges indicated that RRF is within the 5,000-10,000 

molecular weight range. RRF is also heat stable. These studies were 

performed using the bubbled kidney slice method (Urban et al., 1985). 

Although there were fairly large increases in renin release among the 

treatment groups (0.1 ± 0.06 and 0.66 ± 0.38 ng ANG I/mg kidney/hr), 

these differences were not significant. This was due in part to the 

fact that there was a low number of samples in each group (n-3), and 

there was also a large variation among the values for renin release 

within each group. This was reflected in the relatively large standard 
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error of the mean (S.E.M.). The large S.E.M. values indicated the need 

for a more reliable method for measuring renin release. Therefore, the 

unbubbled method, that proved to be reliable and reproducible was 

developed and used for the rest of the experiments. 

The studies using the plasma fractions were repeated using the new 

unbubbled method. The results indicate that the 5,000-10,000 molecular 

weight PCA-plasma fraction had the highest amount of renin-releasing 

activity. This replicates the results found using the previous bubbled 

bioassay method. Thus, we obtained similar results using both the 

bubbled and unbubbled in vitro renin release bioassays and an in ~ 

renin release bioassay (Van de Kar et .5!.l., 1982a). This suggests that 

even though the bubbled method was not very reliable for measuring 

renin release, it showed a response to an applied stimulus. More 

importantly, replication of the results using different methods, 

reinforces the validity of the observation. 

Nephrectomy is known to increase plasma angiotensinogen (renin 

substrate) levels (Carretero and Gross, 1967). Therefore plasma from 

nephrectomized rats would be expected to contain increased amounts of 

angiotensinogen. It is not likely that angiotensinogen would influence 

renin release from the kidney slices since the molecular weight of 

angiotensinogen is approximately 60,000 (Tewksbury, 1983) and the 

plasma fraction that increased renin release contained solutes with 

molecular weights from 5, 000-10, 000. Furthermore, angiotensinogen is 

denatured by heat and would not have survived the boiling process prior 

to fractionation of the plasma. For the same reasons, renin would not 

be present in the plasma fractions: renin is heat labile and also has a 
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larger molecular weight (40,000). Moreover, the plasma renin activity 

values in rats that are anephric are at the sensitivity limit of the 

assay indicating that there is little, if any, renin present in the 

plasma. In addition, if renin or angiotensinogen were responsible for 

the renin-releasing activity, these substances would be expected to be 

present in the saline-plasma fraction and would have produced a similar 

increase in renin release. 

Serotonin (5-HT) and PCA were not capable of directly producing an 

increase in renin release from the kidney slices indicating that these 

drugs are not renin-releasing factors. Furthermore, these molecules 

are small (PCA: M.W.-206; 5-HT: M.W.-179) and would have been filtered 

through the lower molecular weight membrane (M.W. cutoff 5,000). 

Circulating catecholamines which are known to alter renin release are 

also not likely to be the renin-releasing factor since they also have 

low molecular weights and are heat labile. 

The renin-releasing activity of the PCA-plasma fraction (M.W. 

5,000-10,000) is destroyed by incubation with pronase; in addition with 

the heat stability of RRF these studies suggest that RRF is a peptide. 

Pronase non-selectively digests peptide bonds (Narahashi, 1970). The 

renin-releasing activity of this PCA-plasma fraction (M.W. 5,000-

10,000) is lower than in the previous experiment (Table 12 versus Table 

14). This difference in potency may be partially due to the presence 

of calcium chloride (5 mM) that was present in the pronase vehicle 

(borate buffer). The final concentration of the calcium chloride that 

was added to the kidney slice buffer was approximately 5.5 x lo-5 M. 

The presence of calcium at this dose has been shown to inhibit renin 
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secretion (Park et al., 1986; Antonipillai and Horton, 1985). 

Therefore, this increase in the calcium content of the kidney slice 

buffer may have altered the response of the kidneys to the PCA-plasma 

fraction. The renin-releasing activity of the corresponding saline­

plasma fraction (M.W. 5,000-10,000) was not affected by treatment with 

pronase, suggesting that the substance in this fraction that increases 

renin release is not a peptide. The substance present in the saline­

plasma fraction might therefore be different from the factor present in 

the PCA-plasma fraction. Furthermore, the other plasma fractions (M.W. 

1,000-5,000 and 10,000-20,000) also exhibited some renin-releasing 

activity. It is possible that the increase in renin release seen with 

these other plasma fractions may be due to incomplete fractionation of 

RRF or due to a change in the osmolali ty of the buffer bathing the 

kidney slices. The ultrafiltration method employed is not an absolute 

method for determining molecular weight but is primarily used to 

concentrate solutes within different molecular weight ranges. Some of 

RRF may have been retained in the large molecular weight fraction and, 

if the molecular weight of RRF is closer to 5,000, it could have been 

filtered through into the lower (1,000-5,000) molecular weight 

fraction. This explanation may account for some of the activity 

present in the other PCA-plasma fractions (M.W. 1,000-5,000 and 10,000-

20,000). However, in the saline-plasma fractions there is also some 

renin-releasing activity. Administration of PCA stimulates release of 

RRF, but it is also likely that there may be a small basal release of 

the peptide that would be detected in the plasma of the saline-treated 

rats. However, this possibility is not supported by the data obtained 
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If the saline-plasma fraction (M. W. 

5,000-10,000) contained the same substance as the PCA-plasma then 

pronase should have destroyed the renin-releasing activity present in 

the saline-plasma fraction. 

Since these fractions contain solutes with different molecular 

weights it is difficult to conceive that one substance produces these 

increases. One possibility may be that these fractions change the 

osmolality of the Krebs-Ringer buffer when they are added to the kidney 

slices which would affect renin release. Studies have indicated that 

decreases in osmolality stimulate the release of renin in vitro 

suggesting that the release of renin may be regulated by the cell 

volume of the juxtaglomerular cells (Skott, 1986; Frederikson et~ .• 

1975). If the plasma fractions do alter the osmolality of the Krebs-

Ringer buffer, it would most likely result in a relative increase in 

osmolality since these fractions are concentrated plasma and contain 

high concentrations of protein. According to the hypothesis of 

Frederikson et al. (1975) and Skott (1986) these concentrated plasma 

fractions should decrease renin release from the kidney slices. Hall 

and Guyton (1976) reported that infusions of hypertonic dextran or 

albumin increased renin secretion rate in anesthetized dogs. 

Similarly, Fray and Laurens (1981) reported that addition of albumin to 

juxtaglomerular cells increases renin release from the cells probably 

by sequestering, and lowering, the extracellular calcium concentration. 

It could be possible that there may be substances in the PCA-plasma and 

saline-plasma fractions that could lower the amount of extracellular 

calcium thereby increasing renin release over the saline control 
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values. 

Recent evidence has indicated that in addition to active renin, an 

inactive form of renin is present in the plasma (Bouhnik ~ Sl].., 1985; 

Inagarni et al., 1983). Inactive renin, or prorenin, is primarily 

produced in the kidney (Taugner et Sl].., 1987; Bouhnik ~ Sl].., 1985) and 

circulates in the plasma where it is activated. There are a variety of 

conditions that can activate prorenin, such as cold activation 

(Wilczynski and Osmond, 1983), proteolysis with trypsin (Takada ~al., 

1986; Wilczynski and Osmond, 1986), and acidification (Wilczynski and 

Osmond, 1983). The actual stimulus for activation of prorenin in the 

plasma in vivo has not been identified. One possibility for the 

increased amount of renin activity seen with the addition of the PCA­

plasma (M.W. 5,000-10,000) could have been that the plasma fraction 

contained an activator that would convert prorenin in the medium 

surrounding the kidney slices to active renin. PCA-plasma and saline­

plasma fractions (M.W. 5,000-10,000), when added to the pooled Krebs­

Ringer buffer that was previously incubated with kidney slices, did not 

produce an increase in renin activity above the saline control group 

(Table 4). This indicates that the increased amount of renin release 

from the kidney slices was not due to activation of prorenin by the 

plasma fractions. 

The plasma fractions were also tested for possible renin-like 

activity that would have resulted in higher values for ANG I generated 

in the renin assay. The PCA-plasma and saline-plasma (M. W. 5, 000-

10, 000) fractions were incubated with renin substrate to test if they 

could generate ANG I. The plasma fractions were not capable of 
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producing any measurable amounts of ANG I, which demonstrates that 

there was no renin-like enzyme activity present in these plasma 

fractions. These two tests verify that the increase in the amount of 

ANG I generated from the samples was due to the release of renin from 

the kidney slices and not to activation of prorenin or the presence of 

renin-like enzymes in the plasma fractions. This conclusion is logical 

since the molecular weights of renin and cathepsin D, a renin- like 

enzyme, have molecular weights around 40,000. 

E. Studies of RRF in rat brain 

1. Extraction media 

Rat hypothalami that are homogenized with boiling distilled water 

yield a higher amount of renin-releasing activity than hypothalami that 

are homogenized with cold perchloric acid (0.1 N). Since RRF is a heat 

stable peptide, the brain tissue could be homogenized in boiling water 

to denature other larger proteins, leaving the renin-releasing activity 

of RRF unaffected. It would be expected that the whole brain extracts 

and hypothalamic extracts would exhibit similar values for renin­

releasing activity with the different extraction media. The comparison 

of extraction media with whole brain homogenates indicate that the cold 

perchloric acid (0 .1 N) is the better solution for extracting renin­

releasing activity. Boiling distilled water and cold 0 .1 N 

hydrochloric acid/ethanol (20:80) were equally effective in recovering 

renin-releasing substances from whole brain tissue. The results from 

the whole brain versus hypothalamic tissue homogenates are not in total 

agreement. These data imply that extraction of whole brain with cold 
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perchloric acid may extract or activate other renin-releasing 

substances not located in the hypothalamus. 

2. Central nervous system (CNS) distribution of RRF 

Rat hypothalamic extract produces dose-dependent increases in 

renin-release from the kidney slices (Figure 3). The equivalent of the 

content of one hypothalamus, when added to the kidney slices, produces 

a maximal stimulation of renin release. This indicates that there are 

receptors on the kidney that can respond to different concentrations of 

RRF. This also is an important finding because it made it possible to 

standardized the amount of tissue extract that was added to the kidney 

slices so that the relative concentration in renin-releasing activity 

of different brain regions could be compared. The renin-releasing 

activity of other brain regions were compared to the renin-releasing 

activity present in one hypothalamus. 

Bioassay of rat brain regions showed a differential distribution 

of renin-releasing activity (Figure 4). In addition to the 

hypothalamus and cerebellum which have been shown previously to contain 

renin-releasing substances (Van de Kar il 1!l,., 1987b), the cerebral 

cortex and medulla oblongata also have significant amounts of renin­

releasing substances. Other brain regions (pons, thalamus, caudate, 

hippocampus, midbrain and amygdala) do not contain significant 

concentrations of RRF although there is some renin-releasing activity 

present in these regions. 

Addition of pituitary extract produced a small decrease in renin 

release from the kidney slices. Since the whole pituitary (both neural 
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and anterior lobes) was homogenized, the decrease in renin release may 

be due to the presence of vasopressin in the neural lobe. Vasopressin 

is known to inhibit renin secretion (Schwartz and Reid, 1985; Vander, 

1968). The high vasopressin content in the pituitary may have masked 

any renin-releasing activity. The hypothalamic PVN and SON (supraoptic 

nucleus) contain vasopressin cell bodies, however, an increase in renin 

release is still observed when the hypothalamic extract is added to the 

kidney slices. Within the PVN and SON neurons, vasopressin is 

synthesized and processed along with neurophysin and a smaller 

glycoprotein. Vasopressin is separated from the neurophysin as they 

are transported down the axon to the nerve terminals where they are 

released (Gamier et al., 1985; Masse et al., 1982; Russell et al., 

1982). It can be hypothesized that when vasopressin is bound to the 

carrier protein (neurophysin) it may not interact at the kidney 

receptor and thus will not suppress renin release. Therefore, based on 

this conjecture, the renin-releasing activity of the hypothalamus would 

not be masked by the inhibitory action of vasopressin. 

Colchicine is known to inhibit microtubule transport (Andreu and 

Timasheff, 1986). Treatment with colchicine has been used to prevent 

the axonal transport of peptides from the cell body in order to 

concentrate the peptide within the cell body (Emanuele tl ll·, 1985; 

Kawata et al., 1985). Therefore brain areas that have increased renin­

releasing activity should indicate the presence of RRF in cell bodies. 

The brain areas that have a decrease in activity would indicate the 

presence of RRF in nerve terminals. After intracerebroventricular 

injections of colchicine, the renin-releasing activity in the rat brain 
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was redistributed. The hypothalamus was the only brain region that had 

renin-releasing activity that was significantly increased over all 

other brain regions except the pons and thalamus. These results 

suggest that the cell bodies containing RRF are located in the 

hypothalamus. 

Using an HPLC (high performance liquid chromatography, GPC-100 

column) system and a G50 Sephadex gel chromatography column, rat 

hypothalamic extract was separated into different molecular weight 

fractions and the renin-releasing activity of the fractions was 

determined. There was a significant concentration of renin-releasing 

activity in three peaks within the molecular weight range of 

approximately 4,800-6,000 

unpublished observations). 

(Van de Kar, Brownfield and Urban, 

These fractions have not been tested for 

susceptibility to pronase digestion. 

In addition to the presence of RRF in the rat CNS, bovine 

hypothalamus also contains renin-releasing substances (Van de Kar il 

al., 1987b). Bovine hypothalamic extract was filtered to obtain 

different molecular weight fractions which were tested in the renin 

release bioassay for the presence of RRF. These fractions were treated 

with pronase to test whether there were similar renin-releasing 

substances in the hypothalamus. We determined that the bovine 

hypothalamus contains renin-releasing peptides within the molecular 

weight ranges of approximately 1,000-5,000 and 5,000-10,000 (Van de Kar 

et al., 1987b). Discovering the presence of renin-releasing peptides 

in bovine hypothalamus with a similar molecular weight range as the rat 

plasma fractions, suggests that the rat may not be the only species to 
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The bovine hypothalamic fraction (M.W. 5,000-10,000) may 

contain the same or similar renin-releasing peptides as the rat plasma 

fraction. One dissimilarity between the rat plasma and bovine 

hypothalamus fractions is that the bovine hypothalamus contains renin­

releas ing activity in a fraction with a molecular weight range of 

1,000-5,000. Renin-releasing activity was only present in the rat 

plasma fraction within the 5,000-10,000 molecular weight range. It is 

possible that in the bovine hypothalamus, the smaller peptide may be a 

metabolite of the larger peptide that does not reach the bloodstream, 

or it may even be a different substance altogether. 

F. Distribution of RRF in peripheral tissues 

Many neuropeptides are not only localized to the brain but also 

exist in peripheral tissues. For example, vasoactive intestinal 

polypeptide (VIP), neurotensin, substance P, neuropeptide Y (NPY) and 

atrial natriuretic factor (ANF) are peptides that can be identified in 

neurons in the brain and also are distributed in different peripheral 

tissues. The test for renin-releasing activity in various peripheral 

tissues indicated that only the kidney extract produced an increase in 

the amount of ANG I detected in the RRF bioassay. This effect was 

likely due to excess ANG I that was generated by renin in the kidney 

extract which escaped denaturation before it was added to the kidney 

slices. 

Addition of adrenal extract to the kidney slices inhibited renin 

release. The adrenal medulla contains a high content of 

catecholamines. These are not likely to be involved in the decrease in 
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renin release since catecholamines are not heat stable and are likely 

to be destroyed by addition of water and heating at lOOoc for 20 

minutes. However, if the catecholamines did survive the treatment it • 

could be likely that they would decrease renin release by stimulating 

alpha receptors. 

Glucocorticoids and mineralocorticoids are localized in the 

adrenal cortex. These hormones play a role in the maintenance of 

glucose and sodium balance and plasma volume. Administration of 

steroids decreases the elevated levels of plasma renin activity that 

occurs after adrenalectomy (Nasjletti and Masson, 1969). Infusion of 

prednisolone, a glucocorticoid with some mineralocorticoid activity, 

also decreases plasma renin activity in normal subjects. The 

suppression of renin after administration of glucocorticoids in 

conscious animals probably occurs secondarily to the increase in plasma 

volume. Receptors for corticosterone (Lee et ~ .• 1983) and 

aldosterone (Scholer et al., 1979) have been identified by binding 

studies to be localized along the nephron and on distal segments of the 

cortical tubules, respectively. De Vito et al. (1970) reported that 

addition of aldosterone to kidney slices produces about a 30% decrease 

in renin release from the slices whereas addition of 

deoxycorticosterone has no effect on renin release. 

In addition to catecholamines and steroids, immunocytochemical 

methods have identified other transmitters and peptides in the adrenal 

medulla. Serotonin (Holzwarth and Brownfield, 1985), VIP (Hokfelt et 

al., 1981; Holzwarth, 1984), neurotensin (Lundberg tl al., 1982), 

substance P (Hokfelt et al., 1977), neuropeptide Y (NPY; Varndell fil 
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al., 1984; Majane et al., 1985), somatostatin and enkephalin (Lundberg 

gt al., 1982) were identified in the adrenal medulla. In the case of 

VIP, some fibers were also found in the adrenal cortex. In our 

studies, 5-HT has been demonstrated not to alter the release of renin 

from the kidney slices, therefore 5-HT would not produce the decrease 

in renin release produced by the adrenal extract. VIP stimulates the 

secretion of renin both in yivo (Porter et §1., 1985) and in vitro 

(Porter et al. , 1983) . Therefore any VIP that is present in the 

adrenal homogenate would not be responsible for decreasing renin 

release from the kidney slices. On the otherhand, NPY (Hackenthal and 

Taugner, 1986), substance P (Gullner and Bartter, 1979; Gullner §.!:al., 

1979) and somatostatin (Izumi et al., 1979) have been shown to decrease 

renin release .in vitro. Substance P, even though it is a potent 

vasodilator which would reflexly increase PRA, produced a decrease in 

PRA at doses that do not alter blood pressure (Izumi et §1., 1979). 

NPY slightly decreases plasma renin activity in conscious animals 

(Pfister et al., 1986) at doses that do not influence mean arterial 

pressure or heart rate. Neurotensin also produces hypotension like 

substance P, but may not affect renin release (Gullner and Bartter, 

1979). Based on these findings it is probable that the decrease in 

renin release from the kidney slices produced by adrenal extract may be 

due to the presence of NPY, substance P or somatostatin which are known 

to suppress renin release. 
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1. Superfusion of rat hypothalamus 
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Since the main grouping of RRF cell bodies have been localized to 

the hypothalamus, hypothalamic explants were stimulated to test for the 

release RRF. Superfusion of the hypothalamic explants with a high 

potassium solution (60 mM), which depolarizes the neurons, results in 

increased release of RRF. This observation indicates that RRF neurons 

can respond to a stimulus and that the nerve terminal regions are 

likely to be present in the hypothalamus. For a neuropeptide to be 

released from the hypothalamus there are essentially three pathways: 

1.) The neuron may send a projection down the pituitary stalk to the 

posterior pituitary lobe, 2.) the neuron may terminate in the region 

of the median eminence where the peptide is released into the portal 

blood and 3.) the peptide may be released into the third ventricle 

where it will enter the cerebrospinal fluid (CSF). Based on the 

earlier in vivo studies of the PCA-induced increase in renin secretion, 

the role of the pituitary in the release of the peptide still needs to 

be resolved. Hypophysectomy prevented the PCA-induced increase in PRA 

after 22 days but did not affect PRA 4 days after surgery (Karteszi et 

al., 1982; Van de Kar et .5!.l., 1982). Both hypothalamic explants and 

hypothalamic-hypophyseal explants that had the pituitary and 

infundibulum attached, were used for the superfusion study. The 

results suggest that there was no need for the hypothalamus to have an 

intact pituitary stalk in order to release RRF. This suggests that the 

terminals involved in the release of RRF were intact and may terminate 

in the median eminence which would not have been destroyed in the 
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dissection procedure. These results do not rule out the involvement of 

the pituitary gland in the release of RRF. However, they do lend 

credibility to the hypothesis that RRF is part of a neuroendocrine 

system. 

2. Effect of bilateral nephrectomy on hypothalamic content of RRF 

Another characteristic of a neuroendocrine system is that the 

release of the factor may be regulated by the end product or hormone. 

The release of corticotropin releasing factor (CRF) is regulated by 

circulating levels of corticosterone. High levels of corticosteroids 

will inhibit the release of ACTH and CRF from the hypothalamus to 

control the plasma levels of CRF (Keller-Wood and Dallman, 1984). When 

the adrenal gland is removed, thereby removing corticosterone feedback, 

the hypothalamic content of CRF is increased (Plotsky and Sawchenko, 

1987; Piekut and Joseph, 1986; Sawchenko and Swanson, 1985). The 

studies by Piekut and Joseph (1986) and Sawchenko and Swanson (1985) 

were performed in rats that were adrenalectomized for at least seven 

days. However, the recent study by Plotsky and Sawchenko (1987) 

indicate that 24 hours after adrenalectomy there is a significant 

increase in CRF, as determined by radioimmunoassay, and in CRF staining 

in the PVN. This study suggests that nephrectomy performed 24 hours 

before sacrifice may also be a long enough time to observe an increase 

in the hypothalamic concentration of RRF. 

The data suggest that removal of the kidneys eliminates an 

inhibitory input for RRF secretion and production. By removing the 

kidneys, there is a reduced capacity to inhibit the synthesis and 
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possibly, the release of RRF from the hypothalamus. Therefore, RRF 

cells will continue to synthesize and secrete RRF as long as there is 

no feedback stimulus from the kidney to reduce their activity. This 

feedback factor may be a product of the renin-angiotensin system, 

possibly ANG II or aldosterone. Based on these results we could 

speculate that ANG II may be the mediator of the feedback loop from the 

kidney to the brain. The subfornical organ (SFO) is a 

circumventricular organ that is located in the third ventricle and is 

responsive to changes in the circulating levels of ANG II (Gross et 

al., 1985). The SFO has been documented to send projections to the PVN 

(Tanaka et al., 1986) that are implicated in the control of blood 

pressure (Gutman et al., 1985). In an earlier study, Tanaka et Sll. 

(1985) demonstrated that stimulation of the neurons in the SFO produced 

an inhibition in the activity of 50% of the PVN neurons tested. This 

suggests that the SFO sends projections to the PVN that can regulate 

the firing rate of neurons in the PVN. More studies need to be 

performed to characterize this RRF feedback loop. However, it is 

probable that elevated levels of ANG II produce by increased renin 

release, may stimulate neurons in the SFO which project to the PVN to 

maintain the release of RRF at a homeostatic level. 

It is important to note that in the bilateral nephrectomy and the 

colchicine studies, the levels of renin-releasing activity in the 

hypothalamus is elevated over the isoproterenol control values. Even 

though these increases are not significantly different, this may give 

an indication as to whether or not RRF stimulates a renal beta 

receptor. It is probable that isoproterenol is maximally stimulating 
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the renal beta receptors since different doses of isoproterenol c10-5_ 

10-7 M) produce similar increases in renin secretion. This indicates 

that the beta receptors may be saturated since the more concentrated 

dose (lo- 5 M) does not produce a further increase in renin release from 

the slices when compared with the 10- 7 M dose of isoproterenol. The 

elevations observed with isoproterenol usually produce increases in 

renin release around 20-23 ng ANG I/mg kidney/hr. However, with the 

PCA-plasma fraction (M.W. 5,000-10,000; Table 8) and the hypothalamic 

extracts, increases in renin release from the kidney slices range from 

23-32 ng ANG I/mg kidney/hr. These results are not sufficient evidence 

for the existence of separate RRF receptors, but may give hint on the 

possibility of selective RRF receptors in the kidney. 

When the beta antagonist, d,1-propranolol, is added to the kidney 

slices prior to addition of the PCA-plasma fraction or plasma from 

stressed rats, there is a slight inhibition of both basal and RRF­

stimulated renin release which may be due to the membrane stabilizing 

effects of d-propranolol. However, there still is a significant 

increase in renin release when the PCA-plasma fraction is added to the 

kidney slices. Other beta blockers have been tested. Nadolol and 

atenolol, on the otherhand, prevented the renin-releasing activity of 

the PCA-plasma fraction (Urban and Van de Kar, unpublished results). 

These data are conflicting and do not conclusively state whether or not 

RRF stimulates renal beta receptors. Clearly, the receptor that 

mediates the effect of RRF on renin release from the kidney needs to be 

studied further. 
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H. Possible renin-releasing peptides 

There are a number of peptides that stimulate renin release. A 

few of them are within the 5,000-10,000 molecular weight range. At the 

time that these studies were performed, the molecular weight of RRF was 

identified to be in the range of 5,000-10,000. It was not until after 

these studies were performed that the molecular weight of RRF was 

identified to be within the 4,800-6,000 molecular weight range. 

Insulin (M.W. 6000) and parathyroid hormone (PTH, M.W. 9000) are two 

hormones that are within the molecular weight range of 5,000-10,000 and 

are known to increase renin release. 

Insulin is primarily synthesized in the pancreas, however, recent 

evidence has accumulated indicating the presence of insulin-like 

immunoreactivity and binding sites in the brain and, of particular 

interest for this study, in the hypothalamus (Baskin et.§].., 1983; Van 

Houten et al. , 1980) . Induction of diabetes by alloxan injection 

produces a decrease in PRA that is restored to normal when the diabetic 

rats are supplemented with insulin (Pratt~~ .• 1985). The levels of 

sodium remain normal. However, potassium levels are increased in the 

diabetic rats and it is likely that the decreased PRA values were 

produced by the increased plasma concentration of potassium (Vander, 

1970). Infusion of insulin produces increases in plasma renin activity 

(Otsuka et al., 1970) that is prevented by either pretreatment with 

propranolol (Assaykeen et al., 1970) or by the prostaglandin synthesis 

inhibitor, indomethacin (Campbell and Zimmer, 1980). The distribution 

of insulin in the rat CNS appears to be concentrated around the 

periventricular area (Baskin et ~ .• 1983; Dorn et al., 1981). 
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Considerable staining for immunoreactive insulin has been identified in 

the ependymal cells lining the wall of the third ventricle and in the 

hypothalamus (Dorn et !!l., 1981). The cerebellum and brainstem contain 

small, almost nondetectable concentrations of insulin as determined by 

radioimmunoassay. Before insulin is ruled out as a putative RRF, 

insulin should be tested in an in vitro renin release bioassay to test 

its renin-releasing activity without the effects of potassium and 

increases in circulating catecholamines that can occur in vivo. 

Parathyroid hormone (PTH) produces increases in PRA (Smith et !!l., 

1979; Powell et al., 1978; Broulik et al., 1986). PTH infusion did not 

alter plasma calcium levels or blood pressure but pretreatment with a 

beta blocker (metipranol) attenuated the renin response to PTH in 

humans (Broulik et al., 1986). The PCA-induced increase in PRA was not 

affected by removal of the parathyroid gland indicating that PTH is not 

the RRF. If PTH were the RRF then removal of the parathyroid gland 

would have blocked the effect of PCA on renin secretion. 

There are other peptides that are known to regulate renin 

secretion. Even though some of the peptides are not within the 

molecular weight range of the PCA-plasma fraction that has renin­

releasing activity, recent evidence with the sephadex G-50 and HPLC gel 

filtration (GPC-100 column) indicated that there may be hypothalamic 

substances with molecular weights below 5,000 that are capable of 

inducing renin release from the kidney slices (Van de Kar, Brownfield 

and Urban, unpublished observations). Glucagon (M.W. 3350), has been 

shown to increase renin secretion from the kidney (Ueda et al., 1978; 

Vandongen et al., 1973). When infused into the renal artery at a 
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relatively low dose, glucagon produced increased heart rate, renal 

blood flow and glomerular filtration rate. At a higher dose, glucagon 

produced similar changes in the renal hemodynamic parameters and in 

addition produced a significant increase in renin release (Ueda et al., 

1978). Pretreatment with propranolol did not prevent the increase in 

renin release produced by glucagon (Ueda tl al. , · 1978; Vandongen et 

al., 1973). Glucagon and isoproterenol stimulate adenylate cyclase in 

the renal medulla (Mulvehill et al., 1976). However, the effect of 

glucagon on adenylate cyclase activity is not inhibited by propranolol, 

indicating a glucagon specific adenylate cyclase. Therefore it is 

likely that glucagon may stimulate renin secretion by activating 

adenylate cyclase in the renal cortex. 

Vasoactive intestinal peptide (VIP; M.'W. 3326) increases renin 

release both in vivo (Porter et al., 1983; 1985) and in vitro (Porter 

et al., 1983). There is a high density of VIP-immunoreactive neurons 

in the hypothalamus, specifically, the suprachiasmatic nucleus (SCN) of 

the rat (Loren et al., 1979; Sims tl l!.l., 1980; Samson tl al., 1979). 

The SCN is known to receive serotonergic inputs from the midbrain raphe 

nuclei (Azmitia and Segal, 1978; Bobillier tl .f!l., 1976; Van de Kar and 

Lorens, 1979). Reduction of serotonergic inputs into the SCN, by 

injection with 5,6-dihydroxytryptamine (5,6-DHT), produced a decrease 

in the amount of VIP but not of vasopressin in the SCN (Kawakami et 

al., 1985). These results from this study (Kawakami et ill., 1985) are 

suspect because the neurotoxin 5,6-DHT produces non-specific damage to 

neurons (non-serotonergic) surrounding the injection site (Baumgarten 

et al., 1973). Shimatsu et al. (1982) have shown that intraventricular 
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( icv) injection of serotonin stimulates the release of VIP into the 

portal blood. The plasma concentration of VIP was also increased after 

icv injection of serotonin. It is possible that VIP could be the RRF, 

based on the hypothalamic localization of the cell bodies and fibers, 

and the fact that serotonin can stimulate VIP release from the 

hypothalamus. 

However, when comparing the distribution of RRF with that of VIP 

in the CNS, there is a discrepancy between the distribution of VIP and 

that of RRF. One of the primary differences is that the cerebellum 

dose not contain any VIP-immunoreactivity (Loren et il., 1979; Samson 

et al., 1979). The cerebellum, in control rats, had significant renin­

releasing activity that was reduced in colchicine-treated rats. 

Furthermore, the cerebral cortex contains a high concentration of VIP 

cell bodies (Loren et al., 1979; Sims et .ill., 1980) but the RRF 

concentration in the cerebral cortex was significantly reduced after 

colchicine-treatment when compared with the hypothalamic extract. This 

decrease in renin-releasing activity suggests the presence of RRF in 

nerve terminals, not in cell bodies. From the current data, it is 

noticeable that the patterns of distribution for RRf and VIP are not 

similar, since the molecular weights of these peptides differ also, it 

seems unlikely that VIP and RRF are the same peptide. 

Hauger-Klevene et al. (1970) have shown that adrenocorticotropic 

hormone (ACTH) produces an increase in PRA, that is inhibited by 

blockade of the sympathetic nervous system with pentolinium, a 

ganglionic blocker. The release of ACTH from the pituitary has been 

shown to be influenced by serotonergic neurotransmission (Fuller, 1981; 
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Szafarczyk et al., 1980). However, it is not likely that ACTH is the 

RRF, since hypophysectomy does not prevent the PCA-induced increase in 

PRA (Karteszi et al. , 1982). Lesions of the dorsal raphe nucleus 

prevent the PCA-induced increase in PRA, but do not alter the increase 

in corticosterone levels (Van de Kar il gl., 1982b). Posterolateral 

deafferentation of the hypothalamus also blocked the effect of PCA on 

PRA but not on corticosterone (Van de Karil al., 1985a; Karteszi il 

al., 1982). This indicates that the PCA-induced release of renin and 

ACTH may be mediated by different pathways. 

Atrial natriuretic factor (ANF) plays a role in regulating blood 

pressure and sodium balance. In 1981, De Bold et al. reported that 

peptides in the cardiac atria contain a natriuretic factor. ANF 

produces an increase in sodium excretion accompanied by a decrease in 

plasma volume and a decrease in blood pressure. ANF is, therefore, the 

antithesis of the renin-angiotensin-aldosterone system. Infusion of 

ANF to conscious animals results in an increase in sodium excretion 

(Murray et al. , 1985) and a decrease in blood pressure and renin 

release (Burnett et al. , 1984; Sosa et al. , 1986; Seymour il Al., 

1985). Studies by Deray et al. (1987) show that infusion of ANF into 

nonfiltering canine kidneys does not alter the increase in renin 

release produced by addition of either norepinephrine or prostacyclin, 

whereas adenosine did attenuate the renin response to these agents. 

Based on these studies the authors conclude that ANF does not have a 

direct action on the juxtaglomerular cells. 

Autoradiographic studies using kidney tissue localized ANF 

receptors to the renal outer cortex with concentrations of binding 
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sites over the glomerulus (Healy and Fanestil, 1986; Murphy tl al., 

1985). There is also a light distribution of binding sites in the 

renal medulla. In vitro studies have not clearly determined to what 

extent ANF regulates renin secretion directly from the kidney. Using a 

juxtaglomerular cell culture and renal cortical slices, Kurtz tl al. 

(1986) and Henrich et al. (1986) showed that addition of ANF decreases 

renin secretion. This effect is independent of calcium, since 

pretreatment with verapamil did not alter the ANF-induced decrease in 

renin secretion .. Other studies using similar doses of ANF indicate no 

change in renin release (Rodriguez-Puyol et al., 1986). However ANF 

further potentiated the ANG II-induced inhibition of renin release 

(Antonipillai et al., 1986). Stimulation of renin release by 

isoproterenol was unaffected by ANF. Contrary to these findings are 

the results obtained by Hackenthal et al. (1985) and Hiruma et ll· 

(1986) who reported that ANF stimulates renin release. It is not 

likely that ANF is the RRF since its physiological actions are directly 

opposed to renin. So far, the stimuli that increase the plasma 

concentration of RRF also increase PRA and PRC. If ANF were the RRF, 

it would most likely result in an initial decrease in PRA since the 

natriuresis would reflexly inhibit renin secretion by increasing the 

delivery of sodium chloride to the macula densa. 

The existence of a hypertension-producing, aldosterone-secreting 

factor (ASF) has been reviewed by Carey and Sen (1986). ASF is a 

glycoprotein with a molecular weight of approximately 26, 000 with a 

smaller active fragment of 4,000 (Sen et al., 1981). Sen et il. (1986) 

report that ASF does not alter PRA, ANG II or angiotensinogen 
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concentration in the rat. Therefore, it does not seem likely that RRF 

is ASF. Furthermore, immunofluorescence studies have localized ASF to 

the anterior pituitary with no significant binding in the hypothalamus, 

cerebral cortex, cerebellum, brainstem or peripheral tissues (kidney, 

spleen, nerves, adrenal gland, thyroid, gastrointestinal tract; Sen et 

al., 1977). This distribution pattern in the CNS does not parallel 

that of RRF and therefore, it can be concluded that ASF and RRF are 

different factors. 

For some peptides, such as prolactin and somatostatin, the 

presence of a disulfide bonds are necessary for these hormones to exert 

their physiological effect (Wehrenburg et al., 1983; Palkovits et al., 

1982). In an attempt to determine if RRF contains disulfide bonds, 

cysteamine was administered before PCA. Reduction of possible 

disulfide bonds in the RRF could change the configuration of the 

molecule and thus destroy its renin-releasing activity. The results 

indicate that cysteamine did not alter the PCA-induced increase in PRA 

or PRC. However, PCA did not produce a significant increase in renin 

levels after cysteamine treatment when compared with either the 

corresponding cysteamine control group or the saline-PCA group. In 

these same animals, cysteamine reduced prolactin immunoreactivity. 

Therefore, there may be another action of cysteamine that alters 

resting renin levels. We have shown, that at the dose used in this 

experiment, cysteamine does not alter the renin-angiotensinogen 

interaction as described previously (Poisner and Hong, 1977). It could 

be possible that the increase in renin secretion may be due to a stress 

effect. At the time that the animals received the second injection, 
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lesions were observed at the injection site in some of the animals that 

received cysteamine. By reviewing the data again, it is seen that 

there is more variability among the values for PRA and PRC in the 

cysteamine groups. This is reflected in the S.E.M. However, the only 

information this data provides is that cysteamine was not able to 

inhibit thee renin-releasing activity of RRF that might be necessary 

for its renin-releasing activity. 

Cysteamine is capable of 

prolactin (Sagar et al., 1985; 

reducing the 

Wehrenberg 

immunoreactivity of 

et al., 1983) and 

somatostatin (Palkovits et al., 1982; Webb et al., 1986; Cameron and 

Fernstrom, 1986) but not that of vasopressin or oxytocin (Palkovits et 

al., 1982; Cameron and Fernstrom, 1986) which also contain disulfide 

bonds. Therefore it appears that the ability of cysteamine to reduce 

disulfide bonds in a molecule may depend, in part, on the position of 

the disulfide bond in the molecule and in part, on the importance of 

the disulfide bond in maintaining a functional conformation. A study 

by Cameron and Fernstrom (1986) demonstrated that cysteamine treatment 

can affect the in vivo incorporation of [ 35s] cysteine into 

somatostatin, oxytocin and vasopressin. This indicates that cysteamine 

might also interfere with the synthesis of proteins which may result in 

a reduction of activity. Treatment with cysteamine did not alter the 

renin-releasing activity of RRF. Therefore it can be concluded that 

either RRF does not contain disulfide bonds or that the bonds are not 

necessary for RRF to maintain its activity. Further studies should be 

done to establish the presence of disulfide bonds in RRF. 
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I. Role of RRF as a neurotransmitter 

It is possible that in addition to its renin-releasing activity, 

RRF may also function as a neurotransmitter in the central nervous 

system. This is supported in part by the fact that there are RRF nerve 

terminals in the cerebral cortex, cerebellum and medulla. Since these 

brain regions are not known to be involved in releasing peptides into 

the blood, it is reasonable to think that RRF may be acting as a 

neurotransmitter. Werman (1966) has established eight criteria that 

need to be fulfilled in order to classify a substance as a 

neurotransmitter: 

1. The substance must be present in neuronal tissue with an 
uneven distribution in the CNS. 
2. Stimulation of identified neurons should cause release of this 
putative neurotransmitter. 
3. Direct application of the substance should produce responses 
that are similar to those produced by stimulating the neurons. 
4. & 5. Receptors should be identified that interact with the 
substance and stimulation of these receptors should produce a 
postsynaptic effect. 
6. Precursors and synthetic enzymes must be demonstrated in the 
neuronal element. 
7. Inactivating mechanisms should exist that terminate the action 
of the neurotransmitter. 
8. A substance (agonist) should be able to mimic the natural 
transmitter. 

Using these criteria and applying them to the results that we have 

observed for RRF, it becomes evident that RRF fulfills some of the 

criteria. First, we have demonstrated that RRF is differentially 

distributed within the brain. Release of RRF has been demonstrated 

from hypothalamic explants in vitro and stimulation of serotonergic 

neurons in vivo has increased the plasma concentration of RRF. Both 

the PCA-plasma fraction (M.W. 5,000-10,000) and the hypothalamic 

extract produced dose-dependent increases in renin release from the 



170 

kidney slices suggesting a direct action on renal receptors. The dose­

response effect agrees with the occupancy assumption theory that 

presumes that as more receptors on the kidney are filled there is a 

larger increase in the effect of the neurotransmitter. These results 

satisfy requirements 3, and 4 & 5 (to a lesser degree), identifying 

receptors that respond to application of RRF. ALthough the kidney is 

not a post-synaptic element, there are receptors on the kidney that 

respond to application of RRF. The other criteria have not been 

addressed in this dissertation and have not, as of yet, been studied in 

this, or any other, laboratory. As the work continues with RRF, future 

studies may address these other issues and confirm the role of RRF as a 

neurotransmitter. However, with the data that we have collected so far 

it is conceivable that RRF may be part of a neuroendocrine system and 

may in fact be a neurotransmitter. 

1. Possible role of RRF in the CNS 

The renin-releasing activity of the pons, pituitary and thalamus 

was slightly elevated after colchicine treatment. The renin-releasing 

activity that was present in the cerebral cortex, medulla oblongata and 

the cerebellum was decreased suggesting that RRF in these areas is 

present in nerve terminals. These data may give some indication for 

possible RRF pathways outside the hypothalamus. The studies by Gotoh 

et al. (1987) and Richardson-Morton ~ al. (1986) have indicated that 

lesions in the PVN prevent the PCA-induced and stress-induced increases 

in renin secretion. Since RRF cells bodies are localized in the 

hypothalamus it is possible that RRF may be contained in hypothalamic 
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PVN neurons and that some projections of RRF neurons may parallel those 

of already identified PVN pathways. 

Recent studies have focussed on the PVN as an integrator of 

neuroendocrine and autonomic responses (Sawchenko and Swanson, 1981). 

It is conceivable that if RRF is contained in the PVN, it too, may act 

as a regulator. The presence of RRF in the medulla, and in the pons, 

suggest that RRF may be involved in the regulation of blood pressure 

since these areas of the brain also monitor blood pressure (Nakai et 

al., 1982). We have demonstrated that RRF releases renin both in vivo 

and in vitro. However, its importance in regulating blood pressure 

remains to be determined since we have not observed any increases in 

blood pressure in rats that have received doses of concentrated PCA­

plasma fractions (Van de Kar and Urban, unpublished results). It is 

equally likely that RRF may exert an action that is independent of 

cardiovascular regulation. The brainstem also is the site of 

integration of tracts and nuclei of the cranial nerves, primarily the 

hypoglossal, glossopharyngeal, vagus and accessory nerves. Therefore, 

the RRF could also integrate messages from the cranial nerves that may 

be involved with olfaction, taste, muscle movements or even 

respiration. 

The role of the cerebellum in mediating autonomic functions has 

been studied in other laboratories. Stimulation of the fastigial 

nucleus of the cerebellum results in increased levels of plasma renin 

activity (Koyama et al., 1980) and increases in heart rate and blood 

pressure (Del Bo et al., 1983). Renal sympathetic nerve discharge, 

heart rate and blood pressure, in the decerebrate rabbit, are all 
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increased when the cerebellum (uvula) is electrically stimulated 

(Bradley et fil., 1987). The uvula receives auditory, somato-sensory 

and proprioceptive inputs, the authors speculate that the cerebellum 

may be involved in a startle response resulting in cardiovascular 

changes. Our results suggest that RRF terminals are present in the 

cerebellum and release of plasma RRF is increased during stress. It 

can be speculated that in addition to sending a projection to the 

pituitary or median eminence, that there is a collateral RRF projection 

to the cerebellum. This pathway may be activated during either a 

startle or stress response which might have some influence on the 

cerebellar neurons that regulate cardiovascular function in addition to 

releasing RRF into the circulation. 

2. Role of RRF in stress 

The role that RRF plays in stress-induced renin secretion needs to 

be further defined. It appears that the effect of stress on renin 

secretion is not regulated by a serotonergic mechanism, since 

injections of the serotonin-selective neurotoxin, 5,7-DHT into the 

dorsal raphe nucleus did not affect the stress-induced increase in PRA 

nor did pretreatment with the S-HT2 antagonist LY53857 (Lorens et al., 

1986). Stress is a stimulus that increases sympathetic nerve activity 

resulting in an increase in PRA (Jindra il Jll., 1984; 1980) and 

hypertension (Dobrakovova et al., 1984). Privitera et al. (1979) found 

that administration of propranolol intracisternally to rats suppresses 

renin secretion and produces hypotension. Identical doses of 

propranolol intravenously do not produce the same effects. Renal 
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denervation selectively attenuates the decrease in renin secretion but 

not the hypotensive effect of propranolol. Contrary to these results 

is the finding that injections of the catecholamine neurotoxin 6-

, hydroxydopamine (6-0HDA), combined with adrenal medullectomy did not 

prevent the stress-induced increase in PRA (Richardson-Morton et al., 

unpublished observations). This study indicates that the peripheral 

sympathetic nervous system is not the sole mediator of the stress-

induced increase 'in PRA. However, intraperitoneal administration of 

propranolol greatly attenuates the renin response to stress (Van de Kar 

et al., 1985). Propranolol crosses the blood-brain barrier. 

Therefore, this study does not differentiate between central and 

peripheral beta blockade. Further studies by Richardson-Morton et 1l].. 

(1987) have shown that injections of 6-0HDA into the PVN attenuates the 

stress-induced increase in PRA, suggesting that a central 

catecholaminer~ic mechanism of action is involved. The PVN appears to 

play a pivotal role in the regulation of the stress-induced increase in 

PRA (Richardson-Morton et al., 1987; 1986; Gotoh et 1l].., 1987) and may 

also be invol~ed in the regulation of the release of RRF since lesions 

of this nucleus prevent the PCA-induced increase in PRA (Gotoh et al., 

1987). Therefore I would speculate that the serotonergic and 

catecholaminergic systems converge on the PVN to differentially 

regulate the release of RRF from the hypothalamus. It is also likely 

that catecholamine receptors on cell bodies in the PVN are activated 

' during stress and trigger the release of RRF. 
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J. CONCLUSION 

These studies provide evidence for a blood-borne renin-releasing 

factor. RRF cell bodies are localized in the hypothalamus and RRF is 

released from the hypothalamus when these neurons are depolarized. The 

present studies have shown that the release of RRF is stimulated by 

activation of serotonergic receptors and stressful stimuli. Further 

studies to identify other physiological factors, such as changes in 

sodium balance or blood pressure, that may increase the release of RRF 

need to be performed. 

We postulate a neural circuit for the regulation of the release of 

RRF. This circuit is represented in Figure 8. From the studies 

performed by Van de Kar et al. (1982) and Karteszi et al. (1982) it has 

been demonstrated that the dorsal raphe nucleus sends a serotonergic 

projection -to the mediobasal hypothalamus which stimulates renin 

secretion. Data presented by Richardson-Morton et al. (1987) and Gotoh 

et al. (1987) suggest that neurons in the PVN mediate both the stress-

induced and PCA-induced increases in renin secretion. Since the PVN 

receives very little serotonergic innervation, we have considered the 

possibility that the projection from the dorsal raphe may synapse on an 
/ 

interneuron in the arcuate nucleus. The arcuate nucleus receives 

considerable serotonergic innervation from the dorsal raphe nucleus and 

is known to project to neurons in the PVN. We propose that stimulation 

of neurons in the PVN results in the release of RRF into the 

circulation. RRF then circulates in the blood to the kidney and causes 

the release of renin. An increase in PRA increases the circulating 

levels of ANG II. ANG II would then feedback on the CNS system that 
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Postulated neuronal circuit for the regulation of RRF 
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regulates renin secretion by stimulating neurons in the SFO. Tanaka et 

al. (1986) have indicated that there are projections from the SFO to 

the PVN that can regulate the firing of PVN neurons. As the work 

continues in this area, it is possible that this neuronal circuit may 

change with future results. 

/ 
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