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ABSTRACT 

 Immediately after birth, thousands of foreign antigens challenge the newborn 

immune system. Many of the invaders are harmless, such as food, pollen, and beneficial 

bacteria. Newborns have a tolerant immune system that keeps them from developing 

inflammation or allergies to these new antigens. In utero, this immunoregulatory 

tendency is important for establishing tolerance to self and maternal antigens. Multiple 

processes contribute to fetal tolerance, including clonal deletion, anergy, changes in 

antigen presenting cells (APCs), and the generation of regulatory T cells (Tregs). 

However, the mechanism(s) of fetal Treg differentiation and the specific APCs required 

are unknown.  

 Our lab has previously shown that many CD4+ and CD8+ T cells from umbilical 

cord blood (UCB) differentiate into Forkhead box P3 (Foxp3)+ Tregs after T cell receptor 

(TCR) stimulation ex vivo. Depleting CD14+ monocytes from UCB abrogates Treg 

generation, while purified CD14+CD36hi monocytes are sufficient to induce Treg 

differentiation from naïve T cells. The function of monocytes in protecting against 

bacterial infection, maintaining blood vessel integrity and promoting tissue repair are 

well known. However, their immunoregulatory properties have largely gone 

unrecognized. The goal of this dissertation is to identify the mechanisms monocytes use 

to induce Treg generation and describe how this process is impaired in adult blood or 

during disease states. 
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In this work, I demonstrate that monocytes induce Treg differentiation by 

providing three critical signals to naïve T cells: membrane-bound transforming growth 

factor beta (TGF-β), retinoic acid and Notch ligands. CD14+CD36hi monocytes are the 

only UCB cells capable of presenting all three molecules to T cells, highlighting their 

importance for immune homeostasis. Ligand binding to the CD36 receptor can impair 

Treg generation and skew T cells to produce effector cytokines, such as IL-4. 

Pathogenically elevated levels of CD36 ligands, such as oxidized low-density lipoprotein 

(ox-LDL) during atherosclerosis or beta-amyloid during Alzheimer’s, may aggravate 

inflammation by impairing Treg generation.  

IL-4 potently blocks Treg generation from UCB, more than other inflammatory or 

effector cytokines. IL-4 has several reported mechanisms of inhibiting Foxp3 expression 

in T cells. We found that IL-4 also differentially regulates the mediators of TGF-β 

signaling, Smad2 and Smad3. Downregulation of Smad3 by IL-4 correlates with 

impaired Treg generation and knockdown of Smad3 alone is sufficient to decrease Foxp3 

expressing cells.  

Together, these results demonstrate that CD14+CD36hi monocytes are an 

important immunoregulatory cell, capable of simultaneously producing multiple signals 

required for Treg differentiation. The impairment of monocyte-induced Treg generation 

by CD36 ligands may be an unrecognized cause of inflammation during diseases such as 

atherosclerosis. Furthermore, enhanced IL-4 production by T cells in the presence of ox-

LDL may be one mechanism of impairing Treg differentiation.
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CHAPTER ONE 

INTRODUCTION 

Immune Tolerance 

The field of immune tolerance was pioneered in the late 1940s and early 1950s.  

In 1945, Ray D. Owen described that anastomoses between the fetal blood supply of 

dizygotic cattle twins can result in the exchange of blood cells and hematopoietic 

precursors in utero. Adult cows subsequently maintained blood cells from their twin (1). 

These genetically mosaic cows could also be generated in twin calves originating from 

different fathers. These experiments demonstrated that the cows could tolerate genetically 

disparate cells obtained in utero.   

 In 1951, Medawar and colleagues found that cattle did not reject skin transplants 

from their dizygotic twin, including those of the opposite gender (2). This was in contrast 

to allogeneic human and rabbit skin grafts, which failed due to robust immune responses 

(2). However, cows did reject transplants from non-twin siblings.  These findings 

supported the idea that fetuses can generate long-term tolerance to antigens they 

encounter in utero.  

 To rigorously test this hypothesis, Medawar and colleagues injected mouse 

embryos with cell suspensions of homogenized testis, kidney and spleen from donors of a 

different mouse strain (3). Eight weeks after birth, the mice received a skin transplant 

from the donor strain. A substantial percentage of the recipient mice tolerated the skin 
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grafts, while maintaining the ability to reject skin grafts from a third, unrelated donor. 

These data demonstrated that fetuses induce antigen-specific immune tolerance to 

antigens encountered in utero.  

Suppressor and Regulatory T Cells 

After the seminal experiments by Owen and Medawar, interest in immune 

tolerance steadily grew (4). Early studies tried to identify the cells that mediated immune 

tolerance by using different methods of inducing tolerance to a particular antigen (5). A 

paper in 1971 by Gershon and Kondo described what they termed, “infectious 

immunological tolerance” (6). They showed T cells from mice tolerized to sheep red 

blood cells could dominantly suppress T-dependent antibody production when co-

transferred with non-tolerized T cells. At the time, the authors speculated this dominant 

suppression was due to a factor the tolerized T cells produced or stimulated other cells to 

produce. They named this immunosuppressive factor IgY, since it suppressed 

immunoglobulin production (6, 7).  

 In the following year, Gershon and colleagues published a second paper that 

demonstrated thymocytes could also suppress the proliferation of sensitized T cells when 

co-transferred into a lethally irradiated host and challenged with antigen (8). In this 

paper, the authors considered the possibility that there was a unique subset of “suppressor 

T cells.” However, they did not isolate or identify this population further.  

 By the mid 1970s, it was still unclear whether a distinct subset of T cells existed 

with suppressive function or whether the same population that provided B cell help could 

also suppress. In 1976, Herzenburg and colleagues used complement based depletion of 
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Ly-1+ (CD5) or Ly-2+ (CD8) cells and found that suppressive activity was lost with Ly-2+ 

depletion (9). In contrast, it was known that helper T cells expressed Ly-1, but lacked Ly-

2 (10, 11). These data suggested suppressor T cells were distinct from helper T cells, and 

were found within the CD8+ subset.    

 Despite these findings, skepticism in a distinct suppressor T cell population grew 

in the 1980s for a number of reasons(5). There were no known markers to distinguish 

suppressor cells from effector T cells. Clinicians lacked evidence that a loss of suppressor 

T cells contributed to human disease. A final blow to the suppressor T cell field was the 

supposed discovery of the I-J molecule that mediated suppressor T cell function and was 

encoded in the MHC locus (12–14). Later studies demonstrated the MHC locus contained 

no such gene (15).   

 It had been noted since 1969 that thymectomy in neonatal mice precipitated 

autoimmune disease (16). The combination of non-lethal irradiation and thymectomy of 

adult rats also induced autoimmunity (17). Researchers hypothesized that neonatal 

thymectomy or adult thymectomy with radiation depleted a suppressive population of T 

cells. In agreement with this, later studies showed that adding back total thymocytes or 

only CD4+CD8- thymocytes could prevent autoimmunity in these animals, suggesting the 

thymus gave rise to an immunosuppressive CD4+ T cell (17, 18).  

Researchers sought to identify this immunosuppressive population by transferring 

various CD4+ subsets into animals lacking T cells. Using this method, they found murine 

CD4+ T cells expressing high levels of CD5 or low levels of CD45B suppressed 

autoimmunity, while CD45BhiCD4+ and CD5loCD4+ T cells exacerbated it (19–21).  
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Similarly, in rats, suppressive T cells were contained within the CD45ClowCD4+ or 

RT6.1+ T cells (22, 23).  These data suggested that a population of autoreactive T cells 

escape thymic negative selection, but are normally prevented from initiating 

autoimmunity by a subgroup of CD4+ T cells with suppressive function (24).  

To find a more definitive marker for immunoregulatory T cells, Sakaguchi and 

colleagues searched for a surface protein whose expression correlated with high levels of 

CD5 and low levels of CD45B, consistent with previous studies of suppressive cells (24). 

In this way, they identified the IL-2 receptor alpha chain, CD25, as expressed on CD5hi 

CD45B- T cells. Approximately 10% of CD4+ T cells, but only a minor percentage of 

CD8+ and non-T cells, expressed CD25. To test whether CD25+ T cells were suppressive 

and prevented autoimmunity, the authors transferred CD25 depleted cells from the 

spleens and lymph nodes to T cell deficient recipients. CD25 depleted cells, but not total 

lymphocytes, induced multi-organ autoimmunity, involving the gastrointestinal tract, 

ovaries, thyroid gland, salivary glands, adrenal gland and pancreas. These results could 

be recapitulated by injecting purified CD4+CD25- cells. In contrast, co-transfer of 

enriched CD4+CD25+ prevented autoimmunity, definitively demonstrating that 

CD4+CD25+ cells are immunosuppressive and required for immune homeostasis. Of note, 

co-transfer of CD8+ lymphocytes also protected against autoimmunity, but to a lesser 

extent than CD4+CD25+ cells. Because of the previous skepticism toward suppressor T 

cells, these newly identified CD4+CD25+ T cells were termed “regulatory T cells” 

(Tregs).  
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A few years later, several groups discovered that mutations in the transcription 

factor Foxp3 causes the fatal multi-organ autoimmune disease in humans with 

immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX; also 

known as x-linked autoimmunity-allergic dysregulation syndrome, XLAAD) (25–28). 

Mutations in Foxp3 also lead to a similar lymphoproliferative disease in scurfy mice (29, 

30). 

The symptoms of scurfy mice and IPEX patients resembled the experimentally 

induced autoimmunity caused by depletion of CD4+CD25+ Tregs, leading to the 

hypothesis that Foxp3 was expressed by Tregs and that a loss of Tregs caused these 

diseases. Indeed, a series of publications in 2003 demonstrated that Foxp3 is specifically 

expressed on murine CD4+CD25+ Tregs and that Tregs are lost in scurfy mice (31–33). 

Adoptive transfer of CD4+CD25+ Tregs into Foxp3 null mice rescued them from 

autoimmunity (33). Furthermore, overexpression of Foxp3 in CD4+CD25- cells induced 

suppressive function (32). Later studies demonstrated that CD4 specific knockout of 

Foxp3 is sufficient to induce widespread autoimmunity (34). Together, these data 

demonstrated that the lymphoproliferative disease in mice and humans lacking Foxp3 is 

due to a loss of CD4+CD25+ Tregs.  

Foxp3 is necessary for the development of Tregs and mediates their suppressive 

activity. In mice, Foxp3 is specifically expressed in T cells with regulatory function. 

However, in humans, Foxp3 is expressed transiently in all activated T cells, but is only 

stably maintained in Tregs (35). 
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Peripherally-Induced Regulatory T Cells 

Early on, CD4+CD25+ T cells with suppressive function were found not only in 

blood and secondary lymphoid organs, but also in the thymus (36). This led to the 

conclusion that CD4+CD25+Foxp3+ regulatory T cells are generated in the thymus and 

these cells were termed thymic-derived Tregs (tTregs), or more commonly, naturally 

arising Tregs (nTregs) (37). Later, researchers found that Foxp3 expression could also be 

induced on peripheral naïve CD4+ T cells by TGF-β along with TCR stimulation, 

costimulation, and IL-2 (38–41). These induced Tregs suppressed T cell proliferation in 

vitro and in vivo, similar to nTregs. Peripherally induced Tregs are termed pTregs when 

induced in vivo or iTregs when induced in vitro (37). Beyond the minimum requirement 

for TCR stimulation, costimulation, IL-2 and TGF-β, multiple signals can enhance 

induced Foxp3+ Treg generation. Among these are IL-10, Notch and retinoic acid (42–

54).  

CD8+ Regulatory T Cells 

CD8+ T cells with regulatory function have been recognized since the early 1970s 

(9). However, their phenotype, function, and generation during steady state are still 

ambiguous. Numerous phenotypes have been used to identify these cells, including 

CD8+CD122+, CD8+CD28-, CD8+Foxp3+, CD8+CD103+, CD8+LAG-3+CTLA-4+, 

CD8+IL-10+CCR7+CD45RO+, CD8+CD45RClow, CD8+CD122+PD-1+ and 

CD8+CD11chigh [reviewed in (55)]. Whether these markers identify distinct subsets needs 

to be examined more carefully. However, it is clear that more than one population of 

CD8+ Tregs exists.  
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CD8+ Tregs can be generated in the thymus or in the periphery (55, 56). Like their 

CD4+ counterpart, CD8+ Tregs cells can be induced by APCs in vitro or in vivo (57). 

However, other cells that do not express MHCII may also induce CD8+ Tregs. For 

example, TGF-β2-expressing corneal endothelial cells or B7-1/B7-2 expressing 

pigmented epithelial cells induce CD8+ suppressive cells in the eye (58–60). A growing 

body of literature describes a different group of CD8+ Tregs that are induced upon 

stimulation by the non-classical MHCI, Qa-1 (called HLA-E in humans) (55, 57). CD8+ 

cells recognize peptides presented on Qa-1 via their inhibitory receptor complex 

NKG2/CD94 (61). Alternatively, the TCR can recognize Qa-1/peptide complexes and 

stimulate CD8+ Tregs (62). Therefore, while CD4+ Treg induction requires MHCII-

restricted antigen presentation by an APC, antigens presented from a variety of cell types 

can induce CD8+ Tregs. 

During experimentally induced colitis, transfer of either CD4+CD45RBlow Tregs 

or CD8+CD122+ Tregs ameliorates disease. However, transfer of both CD4+ and CD8+ 

Tregs provides synergistic protection (63). These results are consistent with the 

hypothesis that CD4+ and CD8+ Tregs recognize distinct targets and have non-redundant 

roles in maintaining homeostasis and resolving inflammation. However, more studies are 

needed to understand the division of labor between CD4+ and CD8+ Tregs.  

CD8+ Tregs mediate immune suppression through both contact-dependent and 

independent mechanisms. They can secrete immunosuppressive factors, such as IL-10, 

indoleamine 2,3 dioxygenase, and TGF-β (55). CD8+CD28- Tregs inhibit DC maturation 

and upregulate inhibitory receptors, impairing the ability of DCs to activate effector T 
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cells (64–66). CD8 Tregs can also kill effector T cells through FasL-Fas induced 

apoptosis or perforin-mediated cytolysis (55). During animal models of multiple 

sclerosis, it is thought that CD8+ Tregs kill pathogenic T cells through recognition of 

their autoreactive TCRs (67).  

In summary, numerous CD8 Treg populations have been described with varied 

mechanisms of antigen recognition and suppression. Although not well understood, CD8+ 

Tregs play a distinct role in maintaining immune homeostasis and tolerance.  

Mechanisms of Neonatal Tolerance 

Since Owen’s discovery of fetal tolerance in calves, researchers have sought to 

understand how fetal tolerance is established. It is increasingly clear that multiple 

mechanisms play a role. Early studies showed fetal antigen specific T cells undergo 

clonal deletion in response to foreign cells experimentally injected into mouse fetuses 

(68, 69). Some clones escape deletion, but subsequently develop anergy, their function 

restored with exogenous IL-2 (69).  

More recent studies suggest fetuses generate CD4+CD25+ Tregs to promote 

tolerance to antigens encountered in utero. The fetus has an increased percentage of 

Tregs, however, their frequency decreases to adult levels by birth (70, 71). An exception 

to this is in pre-term newborns that have increased Tregs at the time of birth that persist at 

elevated levels past the first year of life (70). Although Tregs are not found at higher 

percentages in UCB than adult PMBCs, they expand more readily from UCB (72).  In 

addition, upon stimulation by immature DCs, a higher percentage of CD4+CD25- T cells 

from UCB differentiate into suppressive CD4+CD25+CTLA-4+ cells than from adult 
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PBMCs (73). In agreement with this, other studies showed UCB naïve CD4+ T cells have 

an intrinsic propensity to differentiate into Tregs compared to adult naïve CD4+ T cells 

(74, 75). This may be due to increased expression of PD-1 on UCB T cells, diminishing 

the strength of CD28 costimulation and promoting Treg differentiation (74, 76, 77). From 

these data, UCB has been considered a source of Tregs and UCB T cells thought to 

readily differentiate into Tregs. This is likely important for establishing self-tolerance in 

utero, since the majority of antigens encountered in this setting are self-antigens.  

In addition to self-antigens, human fetuses encounter maternal DNA and cells that 

cross the placental barrier and establish microchimerism that can be maintained into 

adulthood (78–81). Because of this fetal exposure, individuals are less likely to develop 

antibodies against non-inherited maternal antigens after blood transfusions than to other 

foreign human leukocyte antigens (HLAs) (82). Similarly, bone marrow and solid 

transplants mismatched for maternal HLAs are better tolerated than those mismatched for 

paternal HLAs (83, 84).  

As early as 1977, Oldstone and colleagues found T cells from newborns inhibit 

maternal T cell proliferation (85). Consistent with this, Mold and colleagues 

demonstrated that human fetuses generate Tregs specific to maternal antigens (81). Like 

humans, mice establish maternal microchimerism through cells transferred in the placenta 

or breast milk and this leads to Treg induction and increased tolerance to grafts 

containing maternal antigens (86–89). Together, these data suggest that Treg induction to 

antigens encountered in utero is a critical mechanism of both human and murine fetal 
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tolerance. However, little is known about the mechanism of peripheral Treg induction in 

the fetus. 

Some studies suggest that UCB APCs contribute to Treg differentiation (74, 90). 

APCs from human UCB and neonatal mice express decreased MHCII and costimulatory 

molecules compared to adults, with reduced capacity to activate T cells (91–93).  Encabo 

and colleagues demonstrated that the immature phenotype of UCB DCs correlates with 

an increased ability to induce CD4+ Tregs (90). Although these studies suggest UCB 

APCs are important for establishing fetal tolerance, the requirement of precise APC 

populations and their mechanism of inducing Tregs are largely unknown.   

Monocyte Subsets 

Metchnikoff described monocytes as a part of the mononuclear phagocytic system 

in the early 1900s (94). Early studies identified monocytes from other blood cells by their 

morphology and ability to phagocytize particles (95). In 1971, Yam and Crosby reported 

that monocytes stain with nonspecific esterases, and this staining combined with 

phagocytic assays was adopted by a number of researchers to define monocytes (96).  

Later, monoclonal antibodies were developed that specifically bound monocytic cells, 

many of which targeted various epitopes of CD14 (97, 98). 

       Studies in the 1970’s and 1980’s revealed monocytes were a heterogeneous 

population. Two to three groups of peripheral blood monocytes were identified based on 

size, cytoplasmic staining and nuclear morphology (99–102). These studies classified 

monocytes into small and large monocytes, with a third, intermediate group. 

Functionally, the monocyte subsets were distinct. Large monocytes expressed Fc 
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receptors and could induce antibody-dependent cellular cytotoxicity (ADCC), whereas 

small monocytes lacked these properties (101). Large monocytes had greater migration 

toward serum chemoattractants and produced more colony-stimulating factor (CSF) than 

small monocytes (102, 103). Large monocytes also produced higher levels of superoxide 

anions and myeloperoxidase needed for bactericidal activity (103). 

      The development of multi-color flow cytometry allowed the distinction of small and 

large monocytes by surface antigen expression. Two consecutive papers in the 1980s by 

Passlick, Flieger, and Ziegler-Heitbrock demonstrated two populations of CD14+ 

monocytes exist: CD14hi and CD14lo. CD14hi monocytes were larger, lacked the FcγRIII 

CD16 and were the most abundant subset. The smaller CD14lo monocytes expressed 

CD16 and accounted for only 13% of blood monocytes (98, 104).  Compared to CD14hi 

monocytes, CD14lo monocytes had higher MHCII expression, but were less phagocytic of 

opsonized RBCs. Today it is accepted that three primary subsets of human blood 

monocytes exist: CD14hiCD16-, CD14hiCD16+, and CD14loCD16+ monocytes (105).  

Three populations of mouse monocytes analogous to humans were identified in 

the early 2000s based on expression of Cx3Cr1, Ly6C, CCR2 and CD45 (106–109). 

Cx3Cr1lo Ly6Chi CCR2hi CD45lo murine monocytes resemble human CD14hi CD16- cells 

(110, 111). These two groups in mouse and man are often referred to as “inflammatory 

monocytes,” but a recent consortium recommended “classical monocytes” as a better 

term (105, 111). Cx3Cr1hi Ly6Clo CCR2lo CD45hi murine monocytes share many 

properties with human CD14+ CD16+ monocytes and both are termed “non-classical 

monocytes”, also referred to as “patrolling” or “alternative” monocytes (111). Finally, 
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mouse Ly6Cmed CD45hi and human CD14hiCD16+ cells are referred to as intermediate 

monocytes.  

Monocytes differentiate from a succession of precursors in the bone marrow. 

There has been debate over whether classical, non-classical and intermediate monocytes 

represent distinct lineages, or whether their phenotypes reflect different maturation 

stages. Several studies showed classical monocytes can differentiate into non-classical 

monocytes (108, 112). For example, Ly6Chi monocytes are the first to populate the blood 

after liposome depletion, followed by Ly6Clo cells. Furthermore fluorescently labeled 

Ly6Chi monocytes convert to Ly6Clo cells in vivo (108). A seminal paper in 2011 by 

Hanna and colleagues demonstrated that the transcription factor Nr4a1 (Nur77) was 

required for Ly6Clo non-classical monocyte survival in the bone marrow (113). Nr4a1-/- 

mice selectively lost Ly6Clo monocytes in the periphery, while maintaining Ly6Chi 

monocytes. The study also demonstrated that non-classical monocytes could arise 

directly in the bone marrow. Nr4a1-/- mice became a tool to specifically delete non-

classical monocytes for functional studies. Human CD14loCD16+ monocytes also express 

Nr4a1 more highly than other monocyte subsets, suggesting a conserved role of this 

transcription factor (114). 

Because mouse and human monocytes do not share the same surface markers, a 

study was conducted to examine the similarities between monocyte subsets in the two 

species. They found non-classical monocytes from mice and humans shared 63 genes that 

were upregulated compared to classical monocytes (111). However, the authors also 

identified 33 genes that were oppositely expressed between mouse and human non-
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classical monocytes. These data suggested human CD14+CD16+ and mouse Ly6Clo 

Cx3Cr1hi cells were analogous populations, but not identical. 

Classical monocytes in mice and man express the adhesion molecules CD62L and 

CCR2 (107). In contrast, non-classical monocytes lack CCR2 and CD62L, but express 

higher levels of CX3CR1. Human CD14+CD16+ monocytes also express higher levels of 

CCR5, which recognizes MIP1α (RANTES) (115).  In murine studies, classical 

monocytes are mainly found in the blood and spleen at steady state, but can home to sites 

of inflammation through the interaction of CCR2 with CCL2 (MCP-1) in inflamed tissues 

(107, 116). In contrast, non-classical monocytes were found in a variety of murine tissues 

in the absence of inflammation through the interaction of Cx3Cr1 with its ligand, 

fractalkine, on endothelial cells (107).  

 Cros et al. compared the function of different monocyte subsets from human 

peripheral blood (110). Unstimulated CD14+CD16- cells were highly phagocytic and 

produced the highest levels of ROS, myeloperoxidase and lysozyme. CD14+CD16+ 

intermediate monocytes produced low levels of these molecules, but maintained the 

ability to phagocytose latex beads. Unstimulated CD14loCD16+ monocytes had very little 

phagocytic ability or production of the aforementioned molecules. Upon stimulation by 

lipopolysaccharide (LPS) or viral ligands, CD14+CD16- produced IL-8, IL-6, and CCL2. 

CD14+CD16+ cells produced the highest levels of TNF-α and IL-1β in response to LPS, 

and also produced TNF-α in response to some viral ligands. In contrast, CD14loCD16+ 

monocytes did not respond to LPS challenge. However, they upregulated TNF-α, IL-1β, 

and CCL3 when challenged with viruses, toll-like receptor (TLR) 7 and TLR8 ligands. 
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Together, these data suggest monocyte subsets have distinct functions during steady state 

and infection. 

Monocyte Function in the Vasculature 

In 2007, Auffray and colleagues used intravital confocal microscopy to study the 

movement of Cx3Cr1hi (non-classical) and CX3Cr1lo (classical) monocytes during steady 

state and inflammation (117). CX3Cr1lo classical monocytes primarily circulated in blood 

until they encountered inflammatory signals, upon which they rolled along the blood 

vessel walls in the direction of the blood flow. However, Cx3Cr1hi (non-classical) 

monocytes displayed a peculiar “crawling” motion along the blood vessel walls in the 

absence of any inflammation. Their movement occurred in multiple patterns and 

directions, regardless of the blood flow, distinct from the characteristic “rolling” of 

immune cells prior to diapedesis. Crawling was completely abolished by an antibody 

against the integrin LFA-1, and partially blocked in CX3Cr1 deficient mice. Upon sterile 

inflammation, tissue damage, or infection, Cx3Cr1hi non-classical monocytes rapidly 

migrated to the site of inflammation. They were the first cells to migrate to the peritoneal 

cavity after L. monocytogenes challenge, and were the earliest producers of TNF-α. 

However, upon recruitment of other inflammatory cells, CX3Cr1hi monocytes 

downregulated TNF-α and upregulated genes required for tissue remodeling. These 

studies revealed a novel role for non-classical monocytes as “patrolling” cells that 

monitor blood vessel walls during steady state, act as first responders at the site of 

inflammation and infection, and promote tissue repair.  
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Since this initial discovery, Ly6CloCx3Cr1hiCCR2- monocytes have been found 

patrolling the vessel walls in a variety of organs, including the dermis, mesentery, brain, 

kidney, lung, heart, cremaster muscle and liver (117–123). In mice, it is estimated that 

one-third of non-classical monocytes adhere to vessel walls at any one time (124). 

Human CD14loCD16+ also display patrolling behavior in an LFA-1-dependent manner 

when transferred into a lymphopenic Rag2-/- Il2rg-/- mouse (110). Human CD14loCD16+ 

monocytes are demarginalized during exercise, due to a release of catecholamines, and 

are also increased in the blood during infection (125, 126).  

Patrolling monocytes may maintain blood vessel homeostasis by clearing dead 

cells and debris (110, 118, 120).  In the kidney vasculature, Ly6Clo non-classical 

monocytes respond to TLR7 ligands by recruiting neutrophils, which mount an immune 

response that damages the endothelial cells (120).  Ly6Clo monocytes subsequently 

phagocytize the dead endothelial cells. In the lung, Ly6Clo monocytes survey the blood-

air barrier, phagocytize metastatic tumor cells and recruit NK cells to kill the tumor (121, 

127). Mice with global or myeloid-specific deletion of Nr4a1that lack Ly6Clo monocytes 

have increased lung metastasis in several tumor models (127). Ly6Clo monocytes have 

also been observed patrolling cranial veins when beta-amyloid is present, but not in the 

absence of beta-amyloid (118). In a model of Alzheimer’s disease, mice lethally 

irradiated and reconstituted with Nr4a1-/- bone marrow had a greater number of beta-

amyloid deposits in the hippocampus and cortex than mice reconstituted with wild-type 

bone marrow. Together, these studies demonstrate non-classical monocytes can survey 

the vessel walls and clear debris to maintain vessel homeostasis. 
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Monocyte Subsets During Atherosclerosis 

Both Ly6Chi and Ly6Clo monocytes reside in murine atherosclerotic lesions, but 

Ly6Chi are more abundant (128).  Soehnlein and colleagues suggest Ly6Chi classical 

monocytes contribute to the generation of atherosclerotic lesions (129). The role of non-

classical monocytes during atherosclerosis is still unclear. Nr4a1-/- Apolipoprotein E 

(ApoE)-/- mice lacking Ly6Clo monocytes have increased atherosclerotic plaques, lipid 

uptake and macrophage deposition in the aortic root than mice deficient for ApoE only 

(114). Atherosclerosis is also more severe in low-density lipoprotein receptor deficient 

(Ldlr−/−) mice lacking Nr4a1 in bone marrow cells (130). These results suggest a 

protective role of Ly6Clo cells during atherosclerosis. However, mice lacking either 

Cx3Cr1 or CD36, which are expressed more highly on Ly6Clo monocytes compared to 

Ly6Chi, have less severe atherosclerosis (111, 131–134). It is unclear whether the 

decreased disease severity in these mice is due to the function of Cx3Cr1 and CD36 on 

Ly6Clo cells. Alternatively, the observed phenotypes may be due to a loss of these 

molecules on Ly6Chi cells, even though expressed at lower levels. Indeed Ly6Chi, but not 

Ly6Clo, monocytes use Cx3Cr1 to migrate to atherosclerotic plaques, despite lower levels 

of the receptor on Ly6Chi cells (128). Therefore, more studies need to be done to define 

the roles of each monocyte subset during atherosclerosis in mice. 

 In humans, a variety of studies have linked CD16 expressing monocytes with 

atherosclerosis and severe cardiovascular disease (135). CD14+CD16+ monocytes are 

increased in patients with coronary artery disease, along with an increase in serum TNF-α 

levels (136). Both soluble and membrane-bound CD16 is elevated in patients with 
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coronary artery disease (137). However, it is unclear whether this increased risk is due to 

CD14loCD16+ non-classical monocytes or CD14hiCD16+ intermediate monocytes (135). 

In two studies of patients with chronic kidney disease, elevated CD14+CD16+ 

intermediate monocytes was a predictor of cardiovascular events (138, 139). Together, 

the literature suggests CD16 expressing monocytes may contribute to atherosclerosis in 

humans. The role of CD16- classical monocytes during atherosclerosis requires further 

studies.  

CD36 

CD36 is a highly conserved class B scavenger receptor with homologs found in 

animals as low as the fly, worm and sponge (140, 141). The protein has a large 

extracellular domain, with short N-terminal and C-terminal cytoplasmic tails. Many cells 

express CD36 including microvascular endothelial cells, cardiac muscle, skeletal muscle, 

adipocytes, mammary glad cells and keratinocytes (141). Among hematopoietic cells, 

monocytes, macrophages, dendritic cells and platelets express CD36. A number of 

ligands bind CD36 including thrombospondin-1 (TSP-1), oxidized-LDL (ox-LDL), 

fibrillar beta-amyloid, fatty acids, collagen, and a growth hormone releasing peptide 

called hexarelin (142–149). It also binds components of photoreceptor outer segments, 

gram-positive cell walls, apoptotic cells, and red blood cells infected with Plasmodium 

falciparum (150–156).  

CD36 ligand binding usually triggers endocytosis and activation of intracellular 

signaling events, despite its short cytoplasmic tails (141). The function of CD36 depends 

on the identity of its ligand. TSP-1 inhibits angiogenesis when bound to CD36 (157). 
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This function may be redundant with other CD36 ligands, as oxidized LDL can also 

inhibit endothelial cell differentiation, growth, migration and angiogenesis (157–159). 

TSP-1 has a number of other CD36-dependent roles. It activates latent-TGF-β 

(160–163) and inhibits inflammatory cytokine production in the presence of bacterial 

ligands and apoptotic cells (164, 165). In other contexts, the TSP-1/CD36 interaction can 

initiate an inflammatory program, such as TLR4 activation and TNF-α production (166).  

CD36 acts as a fatty acid translocase for long-chain fatty acids (147, 167). Loss of 

CD36 in mice leads to decreased fatty acid uptake in adipocytes, skeletal and cardiac 

muscle, with an increased dependence on glucose (168–170). Similarly, CD36 deficient 

humans have decreased long chain fatty acid uptake by the heart (171–173). 

As a scavenger receptor, CD36 binds a number of conserved motifs to mediate 

macrophage clearance of apoptotic cells, pathogens and modified lipids, such as ox-LDL. 

CD36 is also required for macrophage recognition of some TLR2/6 ligands, suggesting a 

role as a TLR coreceptor (152, 153). Mice deficient for CD36 have decreased ability to 

phagocytize and clear Staphylococcus aureus, leading to increased mortality during 

infection (152, 153). 

 In the context of atherosclerosis, CD36 mediates uptake of ox-LDL by 

macrophages to initiate foam cell formation, the characteristic cell residing in 

atherosclerotic plaques (174). CD36 deficiency in mice and humans impairs macrophage 

uptake of ox-LDL (168, 175). Furthermore, in mouse models of atherosclerosis, loss of 

CD36 leads to decreased atherosclerotic plaques in the aortic tree and aortic sinus, 

suggesting CD36 contributes to disease (132–134). Moore et al. contested this idea 
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because of data showing that CD36 deficient mice have increased aortic sinus lesions 

(176). However, Fabbraio and colleagues suggest that measuring the total lesion area in 

the aortic tree is a better measure of the extent of atherosclerosis (141). Using this 

readout, CD36 knockout mice consistently have more severe cardiovascular disease.  

In mice, CD36 is expressed more highly on Ly6Clo non-classical monocytes than 

Ly6Chi. However, in humans, it is higher on CD14hiCD16- classical monocytes (111).  

The summary of the literature suggests CD36 has many functions in many 

contexts. On the surface of monocytes, CD36 could limit inflammation by triggering 

apoptotic cell clearance or TGF-β activation. In contrast, CD36 could mediate ox-LDL 

uptake, foam cell formation and atherosclerosis progression. In vivo, CD36 plays 

numerous roles in maintaining steady state and during disease. Its function on monocyte 

subsets likely depends on the disease context and the species studied. 
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CHAPTER TWO 

MATERIALS AND METHODS 

Antibodies 

Antibodies used for flow cytometry were: anti-phospho-SMAD2/3 and IL-2 (BD 

Biosciences; San Jose, CA), anti-LTBP1 and DLL3 (R&D Systems; Minneapolis, MN), 

anti-CD103 (eBioscience; San Diego, CA) and anti-TSP1 (Beckman Coulter; Brea, CA). 

Anti-CD3, CD4, CD8, CD14, CD25, CD28, CD36, LAP, GARP, Nrp1, HLA-A2, Helios, 

Foxp3, IFN-γ, IL4, IL-17a, IL-10, IL-5, IL-13, and IL-9 antibodies were from Biolegend 

(San Diego, CA). Functional grade antibodies for cell culture, anti-CD3 (OKT3) and anti-

CD28 (CD28.2), were from Biolegend. Western blot antibodies for Notch-1 (D1E11), 

Notch-2 (D76A6), cleaved Notch-1 (D3B8), Smad2 (D43B4) and Smad3 (C67H9) were 

from Cell Signaling Technology (Danvers, MA). Anti-β-actin was from Sigma-Aldrich 

(St. Louis, MO). 

Chemicals, Peptides and Recombinant Proteins 

The following reagents were used: human IL-2, IL-4, IL-5, IFN-γ, TNF-α, IL-12, IL-6 

and IL-1β (PeproTech; Rocky Hill, NJ) and human TGF-β (R&D systems); a TGF-β 

receptor I kinase inhibitor, SB431542 (Sigma-Aldrich); an RAR antagonist LE135 

(Tocris; Bristol, UK); an RAR agonist AM580 (Tocris); a gamma secretase inhibitor, 

DAPT (Sigma-Aldrich); low-density lipoprotein (LDL) (Kalen Biomedical; Montgomery 

Village, MD); and high oxidized LDL (ox-LDL) (Kalen Biomedical). The peptides 
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LSKL, GGWSHW, cyclic CSVTCG, and Ova (257-264) were purchased from AnaSpec 

(Fremont, CA). Carboxyfluorescein succinimidyl ester (CFSE) was purchased from 

Invitrogen (Carlsbad, CA). 

Mononuclear Cell Isolation and Cell Purification 

UCB was collected into citrate phosphate dextrose solution.  Neonatal and infant samples 

(ages 7 days -24 months) were collected from healthy donors in EDTA. Adult PBMCs 

from healthy donors were collected in heparin or buffered sodium citrate. Mononuclear 

cells were enriched by density dependent centrifugation using Lymphocyte Separation 

Medium (Corning Cellgro, Tewksbury, MA).  In some samples, RBCs were lysed with 

ACK lysis buffer (Gibco, NY). For UCB, a second isolation with Lymphocyte Separation 

Medium was performed after ACK lysis. Total T cells (negative selection), CD4+ T cells 

(negative selection), naïve CD4+ T cells (negative selection), CD8+ T cells (positive 

selection) and CD14+ monocytes (positive selection) were enriched from mononuclear 

cells using BD IMag Enrichment Sets (BD Biosciences) or EasySep enrichment kits 

(STEMCELL Technologies; Vancouver Canada).  IMag kits were used for depleting 

CD14+ cells. CD3 depleted, CD14+CD36hi, CD14+CD36lo, CD14-CD36+ and CD14-

CD36- cells were isolated by cell sorting on FACS Aria (BD Biosciences).   

Treg Induction Culture and Plate-Bound Stimulation 

Total UCB mononuclear cells were stimulated with human IL-2 (10 ng/ml; >100 U/ml) 

and anti-CD3 (0.2 µg/ml). Medium was changed every 2-3 days, maintaining IL-2 

concentrations. Treg percentages were analyzed after 12-15 days of culture, unless 

otherwise specified. For purified co-cultures, T cells were cultured with monocytes or 
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irradiated THP-1 cells (3000rad) at a 1:3 ratio with α-CD3 and IL-2. For plate-bound 

stimulation, CD4+ T cells isolated by immunomagnetic sorting were plated on untreated 

tissue culture plates that were coated with α-CD3 and α-CD28 (5 µg/ml each), washed 

and blocked in 10% FBS.  

Where indicated SB431542 (10mM), LE135 (5mM), AM580 (1 or 100 nM), DAPT 

(40mM), LDL (50mg/ml), ox-LDL (50mg/ml), IL-4, IL-5, IFN-γ, TNF-α, IL-12, IL-6, 

IL-1β, LSKL, GGWSHW, cyclic CSVTCG, and Ova (257-264) peptide were added once 

at the beginning of cultures at the listed concentrations. Where indicated, the percent 

inhibition of Treg differentiation was calculated as [(%Treg control - %Treg treated)/ %Treg 

control]. 

Suppression Assay 

Tregs were generated by stimulating UCB with anti-CD3 and IL-2. Foxp3 expression 

was confirmed by flow cytometry and CD4+ and CD8+ cells were separated by 

immunomagnetic enrichment. Unstimulated naïve CD4+ T cells were enriched from 

allogeneic adult PBMCs, labeled with 5µM CFSE and used as responder cells. CD3 

depleted cells sorted from the same PBMC donor and irradiated at 3000 rad were used as 

APCs. Responder cells were stimulated with anti-CD3 (0.2 µg/ml) and APCs at a 1:1 

ratio, in the presence or absence of the indicated ratio of Tregs. The percent of 

proliferating cells was determined after 5 days of culture as the percent of cells with 

diluted CFSE using flow cytometry. 
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Adult PBMC and UCB Co-Cultures 

For direct co-culture, adult PBMCs and UCB were screened for expression of HLA-A2 

by flow cytometry. HLA-A2 mismatched adult PBMCs and UCB were co-cultured at a 

1:1 ratio. Where indicated, adult PBMCs and UCB (not screened for HLA-A2) were 

separated by a 0.4 µm transwell. In both cases, cells were stimulated with IL-2 (10 ng/ml; 

>100 U/ml) and anti-CD3 (0.2 µg/ml). Two weeks later, the percent of Foxp3+cells were 

compared from adult and UCB T cells. 

Flow Cytometry 

Foxp3 staining was performed with the Foxp3 Fix/Perm Buffer Set (Biolegend).  For 

phospho-SMAD2/3 staining, cells were fixed using Lyse/Fix Buffer (BD Biosciences) 

and permeabilized with Perm Buffer III (BD Biosciences). For intracellular cytokine 

staining, cells were restimulated with phorbol myristate acetate (PMA; 50ng/ml), 

ionomycin (1uM), and monensin (2uM) for 4 hours, fixed in 4% paraformaldehyde and 

permeabilized in a solution of 50mM NaCl, 5mM EDTA, 0.02% Sodium azide, 0.5% 

TritonX, pH 7.5. Prior to staining, cells were blocked in 20 µg/ml of human IgG and 

surface stains were performed using standard protocols.  Data were collected on a FACS 

Canto II (BD Biosciences) or FACS LSRFortessa (BD Biosciences) and analyzed using 

FlowJo software (Tree Star, Inc., Ashland, OR).  

Multiplex Cytokine Analysis 

Cells were restimulated with PMA (50ng/ml) and ionomycin (1uM) for 4 hours and the 

supernatants harvested. Cytokine production of IL-17a, IFN-γ, TNF-α, IL-2, IL-4, IL-6 

and IL-10 was determined using the human Th1/Th2/Th17 cytometric bead array kit (BD 
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Biosciences), according to the manufacturer’s instructions, except decreasing the assay 

volume 5-fold. 

ALDEFLUORTM Assay 

ALDH activity was measured in freshly isolated UCB mononuclear cells using the 

ALDEFLUORTM Kit (STEMCELL Technologies), according to the manufacturer’s 

instructions. 

Western Blot 

CD4+ cells were enriched by immunomagnetic sorting and lysed in SDS sample buffer 

(2% SDS, 125 mM DTT, 10% glycerol, 62.5 mM Tris-HCl [pH 6.8]). Equal numbers of 

cells were used for polyacrylamide gel electrophoresis. The proteins were transferred to 

polyvinylidene fluoride membranes, blocked with 5% milk and blotted with the indicated 

antibodies. Proteins were detected using the ECL detection reagent (GE Healthcare, 

Piscataway, NJ). Relative band intensities were determined using ImageJ software 

(National Institutes of Health).  

siRNA Knockdown of Smad2 and Smad3 

Allstars negative control, Smad2 gene solution and Smad3 gene solution siRNAs were 

purchased from Qiagen (Hilden, Germany). Enriched CD4+ T cells were electroporated 

with 200 pmol of control or Smad2 siRNAs, or 100 pmol each of two Smad3 siRNAs 

using a Human T Cell Nucleofector Kit (Lonza; Basel, Switzerland). The cells were 

rested for approximately 5 hours and then co-cultured with irradiated THP-1 cells with 

IL-2 (10 ng/ml; >100 U/ml) and anti-CD3 (0.2 µg/ml). 
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Reverse Transcription and PCR 

RNA was isolated from enriched or sorted cells using ReliaPrep RNA Cell Miniprep 

System (Promega, Madison, WI) and converted to cDNA using oligo deoxythymidine 

and SuperScript III First-Strand Synthesis System (Life Technologies; Carlsbad, CA).  

PCR analysis of TSP-1 and DLL3 were performed using Ex Taq DNA polymerase 

(TaKaRa; Katsushika, Tokyo, Japan), with the following primers:  

DLL3 forward 5’-GTCCGAGCTCGTCCGTAGA-3’;  

DLL3 reverse 5’-CGGACAGAATCGAGGAAGGG-3’;  

TSP-1 forward 5’-AACCGCATTCCAGAGTCTGG-3’;  

TSP-1 reverse 5’-TTCACCACGTTGTTGTCAAGGGT-3’. The conditions used for PCR 

were: initial denaturation at 95°C for 3 min; 30 cycles (for DLL3) or 35 cycles (for TSP-

1) of denaturation at 95°C for 30 sec, annealing at 56.5°C (DLL3) or 59°C (TSP-1) for 30 

sec, and extension at 72°C for 45 sec; 72°C final extension for 10 min. Real-time PCR 

analysis was performed using SsoAdvanced SYBR Green Supermix (Bio-Rad, Hercules, 

CA), according to the manufacturer’s protocol. The following primers were used:  

Foxp3 forward 5’-TGGGGTAGCCATGGAAACAG-3’;  

Foxp3 reverse 5’-CTCATTGAGTGTCCGCTGCT-3’;  

Smad2 forward 5’-ATTTGCTGCTCTTCTGGCTCAGT-3’;  

Smad2 reverse 5’-CAGCAAGGAGTACTTGTTACCGT-3’;  

Smad3 forward 5’-GTCAAGAGCCTGGTCAAGAAAC-3’;  

Smad3 reverse 5’-CGATGGGACACCTGCAACC;  

Hprt forward 5’-GAAGAGCTATTGTAATGACC-3’;  
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and Hprt reverse 5’-GCGACCTTGACCATCTTTG. The relative expression of Foxp3, 

Smad2, and Smad3 were quantified using the ΔΔCt method, normalizing each sample to 

Hprt. 

Statistical Analysis 

Statistical analyses were performed using GraphPad Prism software (San Diego, CA), 

except Cuzick’s Non-Parametric Test, which was conducted by the Clinical Research 

Office at Loyola. The following designation was used throughout the paper: * p <0.05, ** 

p < 0.01, *** p < 0.001, **** p < 0.0001.
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CHAPTER THREE 

MECHANISMS USED BY CD14+CD36hi MONOCYTES TO INDUCE TREG 

DIFFERENTIATION 

Introduction: Monocyte-Induced Treg Generation from UCB 

Fetuses have a unique tendency to generate tolerance to antigens they encounter 

in utero, a phenomenon termed fetal tolerance. Fetal tolerance is maintained by a variety 

of mechanisms, including active immune suppression through Treg generation. Using 

UCB as a source of fetal cells, previous studies have found that Tregs can be readily 

differentiated or expanded from UCB (72–75). UCB T cells reportedly have an increased 

tendency to differentiate into Tregs compared to adult T cells and UCB APCs also 

support Treg differentiation. However, the mechanisms of Treg generation in the fetus 

and the APC population(s) required are largely unknown.  

To address these questions, the Iwashima lab utilized UCB as a source of full-

term fetal immune cells. In agreement with previously reports, we found unstimulated 

UCB has the same frequency of CD4+CD25+Foxp3+ Tregs as adult PBMCs (data not 

shown) (70, 71). However, the majority of UCB T cells are naïve; they have not received 

the signals necessary for differentiation. Therefore, we asked what phenotype UCB T 

cells acquire when stimulated. Specifically, we hypothesized the potential for extrathymic 

Treg differentiation is increased in UCB compared to adult PBMCs.  
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Peripheral Treg generation requires TCR stimulation, costimulation, TGF-β and 

IL-2 (38–40). IL-2 is a general T cell growth factor that acts in an autocrine matter and is 

required for induced Treg differentiation (39, 41, 177). Unlike most T cells, Tregs do not 

produce IL-2, but rely on exogenous sources (178).  Many groups have induced Tregs in 

vitro by stimulating naïve T cells with immobilized αCD3 and αCD28 in the presence of 

high levels of exogenous TGF-β and IL-2. Although this method efficiently generates 

Foxp3-expressing T cells, it is artificial. A more physiologically relevant approach is to 

use APCs as a source of costimulation with endogenous sources of TGF-β.  

To address whether UCB has an increased propensity for Treg differentiation 

compared to adult PBMCs, we stimulated blood mononuclear cells with an αCD3 

antibody in medium containing IL-2. A large percentage of UCB CD4+ T cells (65.6%, ± 

3.5) acquired the prototypic Treg markers CD25 and Foxp3, whereas few (19.5%, ± 7.3) 

adult CD4+ cells became CD25+Foxp3+ (Fig. 1A-B). Notably, stimulated UCB gave rise 

to both CD4+ and CD8+ Foxp3+ T cells. Because the phenotype of CD8+ Tregs is less 

well characterized, we used total CD8+Foxp3+ cells (both CD25+ and CD25-) for 

statistical analysis of CD8 Tregs, unless otherwise specified. 
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Co-expression of CD25 and Foxp3 defines CD4+ regulatory Tregs generated in 

vivo and in vitro. However, Treg subsets express a variety of other markers. Helios is a 

transcription factor thought to distinguish murine nTregs from pTregs or iTregs (37). 

Multiple human Treg subsets also express Helios, including nTregs and iTregs generated 

in the presence of APCs, but not those generated without APCs (37, 179). CD4+ and 

CD8+ cells from stimulated UCB increased the expression of Helios compared to 

unstimulated CD4+ and CD8+ cells (Fig. 2A-B), demonstrating CD4+ and CD8+ Tregs 

induced from UCB express Helios. 

In our studies, stimulated UCB gives rise to both CD4+ and CD8+ Foxp3+ cells. 

Although CD8+ Tregs were first described in the early 1970s, they remain poorly 

understood. Multiple suppressive CD8+ cells have been identified using various markers 

(55, 57). Studies using knockout mice that lack certain CD8+ Treg populations 

demonstrate CD8+ Tregs are required for normal immune homeostasis, resolution of 

inflammation and the generation of immune tolerance (62, 180). The non-redundant roles 

of CD4+ and CD8+ Tregs may be due to differences in the mechanisms of antigen 

recognition and immune suppression.  
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Figure 2. Helios expression on Tregs induced from UCB. Expression of Helios 
and Foxp3 by CD4

+
 or CD8

+
 gated cells from freshly isolated UCB (unstimulated) 

or UCB cultured for Tregs as in Figure 1 (stimulated). (A) Representative plot of 
Helios and Foxp3. (B) Mean fluorescence intensity (MFI) of Helios from 4 donors. 
* p < 0.05; ** p < 0.01; paired Student’s t test; n = 4 pairs. 

P	=	0.0045 P	=	0.0225 
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CD28 is a costimulatory molecule on T cells that binds the ligands CD80 and 

CD86 on APCs to support T cell activation during antigen presentation. One group of 

CD8+ Tregs described previously express low levels or no CD28 (181). Similarly, the 

mean fluorescence intensity (MFI) of CD28 decreased on UCB CD8+ T cells after 

stimulation compared to unstimulated CD8+ T cells, while CD4+ T cells upregulated 

CD28 expression under Treg inducing conditions (Fig. 3A-B). These data demonstrate 

that CD8 Tregs induced from UCB phenotypically resemble the CD28- subset of CD8+ 

Tregs.  

CD103 is theαE integrin, expressed on intestinal lymphocytes and subsets of 

Tregs, including some suppressive CD8+ T cells (182, 183). When CD103 dimerizes with 

β7 integrin, it binds E-cadherin to promote cell migration to epithelial sites, including the 

gut and lung mucosa. A large percentage of induced CD8+CD25+Foxp3+ cells (49.8% ± 

24.26), but only a small fraction of CD4+CD25+Foxp3+ Tregs (7.50% ± 6.46), induced 

from UCB expressed CD103 (Fig. 4A, B). CD8+CD103+ T cells migrate into non-

lymphoid sites and remain as tissue residential T cells, mainly with cytotoxic 

function(184). Previous studies of CD8+CD103+ Tregs showed they lack Foxp3(183).  

Our data reveal a novel subset of CD8+ Tregs that co-express Foxp3 and CD103. These 

data suggest CD8+Foxp3+ cells induced from UCB may distribute into different target 

tissues than UCB-derived CD4+ Tregs, which lack CD103 expression.	
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Figure 3. CD28 expression on Tregs induced from UCB. (A-B) Expression of 
CD28 by CD4

+
 or CD8

+
 gated cells from freshly isolated UCB (unstimulated) or 

UCB cultured for Tregs as in Figure 1 (stimulated). (A) Representative plot of CD28 
(open histogram) compared to isotype control (shaded histogram). (B) Mean 
fluorescence intensity (MFI) of CD28 from 4 donors. ** indicates p < 0.01; paired 
Student’s t test; n = 4 pairs. 

P	=	0.004 P	=	0.003 

Unstimulated Stimulated Unstimulated Stimulated 
CD4 CD8 
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 Activated human T cells can transiently express CD25 and Foxp3. To ensure 

CD25+Foxp3+ T cells induced from UCB are functional Tregs, we examined their ability 

to suppress the proliferation of allogeneic naïve CD4+ T cells activated in the presence of 

APCs with anti-CD3. Responder naïve CD4+ T cells were labeled with CFSE and the 

amount of proliferation was measured as the frequency of cells with diluted CFSE. In the 

absence of Tregs, a substantial portion of responder T cells proliferated upon T cell 

stimulation (Fig. 5). However, their proliferation dramatically decreased in the presence 

of CD4+ Tregs or CD8+ Tregs induced from UCB. These data demonstrate induced CD4+ 

and CD8+ Foxp3+ cells from UCB suppress naïve T cell proliferation. Together, the 

phenotypic and functional analyses demonstrate that αCD3 and IL-2 stimulation of UCB 

induces CD4+Foxp3+ and CD8+Foxp3+ cells that are phenotypically and functionally 

Tregs. 

Figure 4. CD103 expression on Tregs induced from UCB. Expression of 
CD103 and Foxp3 by gated CD4

+
 or CD8

+
 Tregs (CD25

+
Foxp3

+
) from UCB 

cultured as in Figure 1. (A) Representative plot of CD103 and Foxp3. (B) 
Summarized data from 3 donors. 

CD4 Treg 

CD8 Treg 

	

A B 
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Figure 5. Suppression of T cell proliferation by Tregs induced from UCB. (A-B) 
In vitro suppression of T cell proliferation by CD4

+
 and CD8

+
 UCB Tregs cultured as 

in Figure 1 and used in a standard suppression assay. CFSE-labeled, allogeneic adult 
naïve CD4

+
 T cells were used as responder cells. (A) Representative CFSE histograms 

of gated responder cells in the presence or absence of CD4 Tregs (top) or CD8 Tregs 
(bottom). (B) Summarized data from 3 Treg donors. * p < 0.05; ** p < 0.01, one-way 
ANOVA with Dunnett’s multiple comparisons test; n=3. 

Treg:	Responder 

CFSE 

A 

* 

** 

CD4 Tregs 

* * 
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Treg to responder ratio Treg to responder ratio 



	

	

36 
To determine whether the high efficiency of Treg generation from UCB was due 

to an intrinsic property of UCB T cells or to the contribution of UCB APCs, we depleted 

various APC subsets. As previously observed, anti-CD3 and IL-2 stimulation of total 

UCB efficiently induced CD4+CD25+Foxp3+ cells (68.08% ± 12.08 of CD4+ cells), 

however monocyte depletion decreased the frequency of CD4+ cells expressing CD25 and 

Foxp3 (41.33% ± 17.55) (Fig. 6A-B). Monocyte depletion also decreased the frequency 

of Foxp3 expression on CD8+ cells (60.11% ± 6.38 in total UCB; 38.35% ± 9.98 in CD14 

depleted). These data demonstrate monocytes contribute to UCB Treg differentiation. 

The generation of Tregs in the absence of monocytes could be due to incomplete 

monocyte depletion or due to a different population(s) also capable of inducing Tregs. 

We next asked whether monocytes are sufficient to induce Treg differentiation from 

UCB T cells. Enriched CD14+ monocytes were capable of inducing Foxp3 expression 

from purified CD4+ and CD8+ T cells (data not shown). UCB monocytes are a 

heterogeneous population and segregate into 2 populations based on CD14 and CD36 

expression: CD14+CD36lo and CD14+CD36hi (Fig. 7A). To determine which population 

induces Tregs, we cultured purified CD14+CD36lo or CD14+CD36hi monocytes with 

naïve T cells. Purified CD14+CD36hi monocytes efficiently induced Foxp3 expression 

from autologous naïve CD4+ T cells (Fig. 7B). However, CD14+CD36lo and CD14- cells 

did not efficiently induce Foxp3 expression. These data demonstrate that CD14+CD36hi 

monocytes provide the necessary signals to induce Treg differentiation from naïve CD4+ 

T cells in the absence of other UCB cells. 
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Monocytes are commonly classified by expression of CD14 and the Fc receptor, 

CD16 (105). Human classical monocytes express high levels of CD14 and lack CD16. 

Non-classical monocytes express CD16 and lower levels of CD14. The majority of 

CD14+CD36hi monocytes express low levels of CD16, consistent with human classical 

monocytes (data not shown).  
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Figure 6. Treg differentiation in monocyte-depleted UCB. (A-B) The expression 
of CD25 and Foxp3 on gated CD4

+
 or CD8

+
 T cells from total UCB or CD14 

depleted UCB stimulated with anti-CD3 and IL-2. (A) A representative plot and (B) 
summarized data from 4 donors are shown. Statistical significance was determined 
using the paired Student t test, * p < 0.05; ** p < 0.01. 
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Finally, we examined whether monocytic cell lines maintain the ability to induce 

Treg differentiation. THP-1 cells are a human monocytic leukemia cell line. Irradiated 

THP-1 cells induced Foxp3 expression on a large percentage of CD4 (74.4% ± 24.05) 

and CD8 (45.95% ± 15.2) T cells when co-cultured with UCB T cells in the presence of 

anti-CD3 and IL-2 (Fig. 8A-B). Treg induction by THP-1 cells was as efficient as in total 

UCB cultures (74.5% ± 16.06 of CD4; 48.85% ± 17.18 of CD8). Together, these data 

demonstrate that both primary and transformed human monocytes efficiently induce Treg 

differentiation from stimulated T cells. 

A Figure 7. Treg differentiation by CD14+CD36hi 
monocytes. (A) Expression of CD14 and CD36 among 
freshly isolated total UCB mononuclear cells. (B) 
Expression of CD25 and Foxp3 by gated CD4+ T cells 
from total UCB cultures or UCB naïve CD4+ T cells co-
cultured with purified CD14+CD36hi, CD14+CD36 lo, 
CD14 -CD36 +, or CD14-CD36- cells. All cultures were 
stimulated with anti-CD3 and IL-2. Data represent at 
least 3 independent experiments.  

B 	Total UCB 
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CD8 

CD4+	gated 
ns 

CD8+	gated 
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Figure 8. Treg differentiation by THP-1 cells. (A-B) Total UCB cells stimulated as 
in Figure 1 or UCB T cells from the same donor stimulated with irradiated THP-1 
cells in the presence of anti-CD3 and IL-2. After co-culture, Foxp3 expression was 
assessed on CD4+ T cells and CD8+ T cells. (A) Representative plot and (B) data from 
3 donors are depicted. ns = not significant, p > 0.05; paired Student t test. 
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The Role of TGF-β in CD14+CD36hi Monocyte-Induced Treg Generation 

Tregs can be induced in vitro by providing TCR stimulation to naïve T cells, along 

with high levels of active TGF-β and IL-2. TGF-β is essential for extra-thymic Treg 

generation(38, 40). However, Treg generation from UCB does not require exogenous 

TGF-β. The TGF-β receptor kinase inhibitor (SB431542) reduces the frequency of 

CD25+Foxp3+ expression on CD4+ and CD8+ T cells from stimulated UCB by 

approximately 50% (47.26 ± 10.05 %inhibition of CD4+ Tregs; 55.16 ± 13.99 

%inhibition of CD8+ Tregs) (Fig. 9A). These data suggest endogenously produced TGF-β 

contributes to Treg generation from UCB. The incomplete loss of Tregs in the presence 

of the TGF-β receptor kinase inhibitor could indicate that TGF-β promotes Treg 

differentiation not only through canonical TGF-β signaling, but also through non-

canonical pathways. 

I determined when TGF-β is required during monocyte-induced Treg differentiation 

by adding the TGF-β receptor kinase inhibitor at various times after T cell stimulation. 

CD4+CD25+Foxp3+ Treg induction was substantially reduced when the inhibitor was 

added during the first two days of T cell stimulation (Fig. 9B-C). However, adding the 

inhibitor at later time points either minimally decreased Treg differentiation or had no 

effect. These data indicate that TGF-β signaling is required within the first 24~48 hours 

after T cell stimulation, and that the events occurring during this period determine the 

differentiation pathway of the T cells in our culture conditions. 
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Because monocytes induce Treg differentiation and endogenous TGF-β 

contributes to this process, we hypothesized CD14+CD36hi monocytes produce active 

	
Figure 9. The role of TGF-β signaling in UCB Treg differentiation. (A) Frequency of 
CD25+ Foxp3+ expression among CD4+  and CD8+ gated cells from UCB after 
stimulation by anti-CD3 and IL-2 with the addition of a TGF-β receptor kinase inhibitor 
(SB431542) or the DMSO carrier control at the start of the culture. *** p< 0.001; **** 
p< 0.0001; paired Student t test; n=9. (B-C) Inhibition of CD4+ Treg generation by 
SB431542 compared to the DMSO carrier control added at various times after the start 
of UCB stimulation as in (A). (B) Data summarized from 3 donors. % inhibition is 
calculate as [(%Tregs DMSO treated – % Treg SB431542 treated)/ %Tregs DMSO treated] x 100. (C) 
Representative plot from (B) is shown. 

Day	inhibitor	added C 
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TGF-β. However, when we tested the culture supernatant of CD14+CD36hi monocytes in 

a TGF-β bioassay, the level of active TGF-β was below the detectable level (<1pg/ml) 

(data not shown). TGF-β can be secreted or presented on the cell surface (185–191). 

Because CD14+CD36hi monocytes do not secrete active TGF-β, we hypothesized they 

present TGF-β on their cell surface.  

Activation of the TGF-β receptor leads to Smad2 and Smad3 phosphorylation, 

dimerization with Smad4, and translocation to the nucleus to regulate target gene 

transcription(192) (Fig. 10A). If monocytes are the endogenous source of TGF-β for Treg 

differentiation, then we predict that depleting monocytes will abrogate Smad2/3 

activation in T cells.  To test this hypothesis, we measured Smad2/3 phosphorylation in 

UCB T cells stimulated in the presence or absence of monocytes. When total UCB cells 

were stimulated for 1 day with anti-CD3 and IL-2, we observed substantial 

phosphorylation of Smad2/3 (pSmad2/3) in CD4+ and CD8+ T cells (Fig. 10B-C). 

Smad2/3 was also phosphorylated in T cells cultured with enriched CD14+ monocytes, 

but greatly reduced in T cells from CD14 depleted UCB cultures. These data demonstrate 

that CD14+ cells are sufficient and required for the majority of TGF-β signaling in UCB 

T cells.  
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TGF-β is translated as a polypeptide, which is cleaved into latency associated 

peptide (LAP) and the growth factor domain (Fig 11A). The two peptides then bind non-

covalently to form the small latency complex (SLC). The SLC may further associate with 

TGF-β binding proteins (LTBPs) to form the large latency complex (LLC) (193). Upon 

secretion, TGF-β may be tethered to the extracellular matrix through the association of 

LTBP with matrix proteins. Alternatively, the SLC may be bound to the cell membrane 
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through interactions with transmembrane proteins, such as neuropilin-1 (Nrp-1) or 

Glycoprotein A Repetitions Predominant (GARP) (194–197). TGF-β must subsequently 

be released from LAP to signal through its receptor. 

Because monocytes are required for the majority of TGF-β signaling in T cells, 

but do not secrete substantial levels of active TGF-β, we hypothesized that monocytes 

present membrane-bound TGF-β to T cells. No antibodies are available to distinguish 

active TGF-β from inactive TGF-β bound to LAP, therefore we assessed membrane 

bound TGF-β using anti-LAP antibodies. Among UCB cells, CD14+CD36hi monocytes 

were the major group of cells that expressed LAP on the cell surface (Fig. 11B-C).  In 

most UCB donors, a significant fraction of CD14+CD36hi, but not CD14+CD36lo, cells 

expressed surface LAP. The increase in LAP expression on CD14+CD36hi cells was not 

significantly different in our sample set due to one outlier donor that did not express 

detectable levels of LAP on the CD14+CD36hi cells. This could be due to poor sample 

quality or a normal biologic variant. If this outlier is removed from the sample set, the 

expression of LAP on CD14+CD36hi cells is statistically increased over other populations.  

To determine how LAP is tethered to the monocyte cell membrane, we examined 

LAP co-expression with several molecules known to bind LAP: Nrp-1, GARP and 

LTBP-1. Freshly isolated monocytes express little Nrp-1 and inconsistently express 

GARP (data not shown). In contrast, a large percentage of CD14+CD36hi monocytes 

express LTBP-1 on the cell surface (Fig. 12A-B). A smaller percentage of CD14+CD36lo 

cells also express LTBP-1, however only CD14+CD36hi cells co-express LAP with 

LTBP-1 (Fig 12C-D). Very few CD14- cells express LTBP-1. Among CD14+CD36hi 
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cells, all LAP+ cells express LTBP-1 and the expression level of the LAP increases as 

LTBP-1 increases (Fig. 12C, E). These data suggest CD14+CD36hi monocytes present 

LAP on the cell surface as a complex with LTBP-1. 

 

 

 

 

Figure 11. LAP expression by CD14
+
CD36

hi 
monocytes. (A) Schematic of TGF-

β production and activation. TGF-β is translated as a pro-protein, dimerizes and is 
cleaved into latency associated peptide (LAP) and the active cytokine. TGF-β non-
covalently binds to LAP and must be released from LAP to bind its receptor. (B) 
LAP expression by total UCB cells (left) and CD14

+
 gated monocytes (right). (C) 

LAP frequency and MFI on mononuclear cell subsets gated by CD14/CD36 
expression. ns = not significant, * p <0.05, one-way ANOVA with Dunnett’s 
multiple comparisons test, n =5. 
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The Role of Retinoic Acid in CD14+CD36hi Monocyte-Induced Treg Generation 

Our data leads to a model in which CD14+CD36hi monocytes induce Treg 

differentiation by presenting membrane-bound TGF-β in a complex with LTBP-1. It is 

known that Tregs induced by exogenous TGF-β in the absence of APCs in vitro are not 

as stable as Tregs generated in vivo (37). Therefore, it is thought that APCs provide other 

signals in addition to TGF-β to promote Treg differentiation and stability.  

Previous reports suggest retinoic acid, a vitamin A metabolite, supports Treg 

differentiation in a TGF-β dependent manner (43, 44, 54). To determine whether retinoic 

acid contributes to UCB Treg generation, we cultured UCB in the presence of a retinoic 

acid receptor (RAR) antagonist (LE135) (Fig. 13A, B). The antagonist decreased Foxp3 

expression in CD4+ and CD8+ T cells. This effect was specific to inhibition of the RAR 

since Treg differentiation was restored when an RAR agonist (AM580) was added in 

addition to the antagonist. 

Since the levels of vitamin A are not optimized in our culture media, we tested if 

an exogenous RAR agonist could enhance UCB Treg differentiation. The frequency of 

CD8+ Foxp3+ cells increased with the addition of the RAR agonist in a dose-dependent 

manner (Fig. 14). The frequency of CD4+ Foxp3+ cells also statistically increased with 

AM580 treatment, but the change was less dramatic than in CD8+ cells due to the high 

frequency of CD4+ Treg generation in the absence of an exogenous RAR agonist. 

Together these data demonstrate that endogenous retinoic acid contributes to UCB Treg 

differentiation and the addition of an exogenous RAR agonist can further enhance Treg 

generation. 
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Figure 13. Modulation of UCB Treg generation by retinoic acid. (A-B) 
Inhibition of Treg differentiation by an RAR antagonist. Total UCB cells were 
stimulated with anti-CD3, IL-2 and an RAR antagonist, LE135. Where 
indicated, an RAR agonist, AM580, was added in addition to LE135. (A) 
Representative plot of Foxp3 expression analyzed on CD4+ (upper panel) and 
CD8+ (lower panel) cells. (B) Data summarized from 4 donors; * p < 0.05, ** p 
<0.01, ns = not significant compared to DMSO control; one-way ANOVA with 
Dunnett’s multiple comparison’s test.  
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Retinoic acid is oxidized from vitamin A by an alcohol dehydrogenase and 

aldehyde dehydrogenase (ALDH) (Fig. 15A). Since CD14+CD36hi monocytes induce 

Foxp3+ Tregs, we hypothesized they produce retinoic acid.  We determined which UCB 

cells are capable of producing retinoic acid by determining which cells contain ALDH. 

ALDH activity can be measured using a diffusible fluorescent dye that is retained by cells 

when oxidized by ALDH (ALDEFLUOR assay). As a control, the ALDEFLUOR assay 

is also performed in the presence of an ALDH inhibitor. A large percentage of 

CD14+CD36hi and a small fraction of CD14+CD36lo monocytes retained the fluorescent 

dye above background levels, suggesting they express active ALDH (Fig. 15B-C).  In 

contrast, a very minor fraction of granulocytic cells or CD4+/CD8+ T cells had detectable 

ALDH activity.  Together, our data suggest CD14+CD36hi monocytes are a primary 

producer of retinoic acid among UCB cells. 

AM580	(nM) AM580	(nM) 

Figure 14. Enhancement of UCB Treg generation by an RAR agonist. UCB cells 
were cultured as in Fig. 13 with the addition of increasing concentrations of AM580. 
Each line represents the frequency of Foxp3

+
CD25

+
 cells (Tregs) from one donor. An 

asterisk (*) indicates a significant increase of Tregs (p<0.05) with increasing AM580 
concentration using Cuzick’s Non-Parametric Test on the median of all samples.   
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The Role of Notch Signaling in CD14+CD36hi Monocyte-Induced Treg Generation 

Notch signaling is a type of cell-to-cell communication that has been implicated 

in the differentiation of various T helper subsets, including Th1, Th2 and Treg cells (198, 

199). Membrane-bound Notch ligands (in the Jagged or delta-like ligand families) induce 

the stepwise cleavage of a Notch receptor (Notch 1-4 in humans) by ADAM family 

metalloproteases and gamma secretase. Notch cleavage releases the intracellular domain 
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(ICD) of the Notch receptor and leads to its nuclear translocation and the transcriptional 

activation of target genes. Previous studies have demonstrated Notch crosstalk with the 

TGF-β signaling pathway. Specifically, the ICDs of Notch-1 and -4 can associate with 

Smad3, a target of the TGF-β receptor (200, 201). Furthermore, the Notch ICD can 

directly bind the foxp3 locus along with Smads (47, 200, 201). Therefore, we asked 

whether Notch signaling contributes to monocyte-induced Treg differentiation. 

To determine the role of Notch signaling in UCB Treg differentiation, we first 

asked whether UCB T cells express and activate Notch. We examined resting and 

stimulated T cells for the expression of Notch by flow cytometry and western blot. 

Consistent with previous reports in activated T cells  (202–204), Notch-1 was highly 

upregulated 2 days after TCR stimulation in UCB CD4+ and CD8+ T cells (Fig. 16A-B). 

Furthermore, cleaved Notch-1 was detectable by western blot after T cell stimulation, 

demonstrating Notch-1 activation (Fig. 16C). Stimulated CD4+ T cells also upregulated 

Notch-2 (Fig. 16D). 

To determine whether Notch signaling contributes to monocyte-induced Treg 

differentiation, we cultured UCB in the presence of a gamma secretase inhibitor, DAPT, 

which prevents Notch cleavage and downstream signaling. DAPT efficiently blocked the 

generation of cleaved Notch-1 in activated UCB CD4+ T cells (data not shown). Notch 

inhibition also led to a mild, but consistent, decrease in the percentage of 

CD4+CD25+Foxp3+ Treg cells (Fig. 17A-B), along with a reduction in the level of Foxp3 

expressed (Fig. 17C-D). DAPT did not decrease the percentage of Foxp3+ CD8+ T cells 

(data not shown). 
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A 

Figure 16. Notch expression and activation in stimulated UCB T cells. Total UCB 
mononuclear cells were analyzed for Notch-1 or Notch-2 expression either directly 
after isolation (unstimulated; day 0) or 1-3 days after stimulation with anti-CD3 and 
IL-2 (stimulated). Cells were (A-B) stained with anti-CD4, CD8, CD25 and Notch-1 
antibodies and analyzed by flow cytometry. (A) Representative plots and (B) 
summarized data from 3 donors are shown. (C-D) CD4+ T cells were enriched from 
cultures and analyzed by western blot for (C) cleaved Notch-1 and (D) Notch-2. The 
band intensities from 2-3 donors were measured and normalized to the beta actin 
control. Statistics were performed on the band density normalized to beta actin. * p < 
0.05; paired Student t test.  

B 

C D 
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To determine whether CD14+CD36hi monocytes provide Notch ligands to T cells, 

I first examined the expression of Notch ligands. Humans encode five Notch ligands: 

Jagged-1 and -2 and Delta-like ligand (DLL) 1, 3, and 4. Both CD14+CD36hi and 

CD14+CD36lo monocytes expressed DLL3 mRNA by RT-PCR analysis (Fig. 18A). Most 

CD14+CD36hi monocytes expressed DLL3 protein on the cell surface (Fig. 18B-E). 

Fewer CD14+CD36lo monocytes and CD14- cells expressed membrane DLL3. 

Furthermore, only CD14+CD36hi monocytes co-expressed LAP with DLL3 on their cell 

surface (Fig. 18C). In some donors, CD14+CD36hi monocytes also expressed Jagged-1, 
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but less consistently between donors and at a lower frequency than DLL3 (data not 

shown). These findings show CD14+CD36hi monocytes co-express DLL3 with LAP at 

their cell surface. Previous data show monocytes provide TGF-β to T cells and that 

CD14+CD36hi monocytes are the primary UCB cells expressing membrane-bound latent 

TGF-β. From these results, we propose a model in which CD14+CD36hi monocytes 

induce Treg differentiation by presenting TGF-β concurrently with Notch ligands and 

retinoic acid to naïve T cells at the point of cell-to-cell contact. 
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The Function of CD36 Ligands in CD14+CD36hi Monocyte-Induced Treg 

Differentiation 

Because monocytes expressing high levels of CD36 induce Tregs, but CD36lo 

monocytes do not, we asked whether CD36 plays a role in Treg differentiation. CD36 has 

many ligands that trigger a wide range of physiological responses when bound to CD36. 

We reasoned CD36 could have Treg-promoting or Treg-antagonizing roles, depending on 

its ligand and the environment. Thrombospondin-1 (TSP-1) is a CD36 ligand that is also 

known to activate latent TGF-β (144–147). We hypothesized that monocytes may 

activate membrane-bound TGF-β through TSP-1. To address this question, we first 

examined whether monocytes express TSP-1 on their cell surface. We found CD14+ 

monocytes express TSP-1 mRNA (Fig. 19A), and a large percentage (62.2% ± 17.33) of 

CD14+CD36hi monocytes express TSP-1 on their cell membrane. In contrast, very few 

CD14+CD36lo, CD36+CD14- or CD14-CD36- cells express membrane TSP-1 (5.55% ± 

3.35, 3.02 ± 4.37, 0.18% ± 0.13, respectively) (Fig. 19B-C).  

If monocytes utilize TSP-1 to activate membrane-bound TGF-β, then blocking 

TSP-1 should inhibit monocyte-induced Treg differentiation. To test this, I utilized 

several peptides which inhibit different aspects of TSP-1: LSKL, CVSTCG, and 

GGWSHW (Table 1) (161, 205–207). None of these peptides substantially altered Treg 

differentiation (Fig. 20A-D). Therefore, although CD14+CD36hi monocytes express TSP-

1 at the cell surface, we lack evidence for TGF-β activation by TSP-1. 
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Peptide Description Peptide Function References 

LSKL 

Peptide sequence in LAP that binds both the 
RKPK sequence of TGF-β and the KRFK 
sequence of TSP-1. When TSP-1 binds the 
LSKL sequence of LAP, it presumably 
competes off TGF-β, activating the cytokine. 

Competitively 
blocks TSP-1 
mediated activation 
of TGF-β 

(161, 205, 
208) 

 

GGWSHW 
Peptide sequence found in the type I repeat of 
TSP-1 and thought to mediate initial binding 
to LAP/TGF-β prior to TSP-1 activation of 
TGF-β.  

Inhibits TSP-1 
binding to LAP/ 
TGF-β  

(161) 

CSVTCG Peptide sequence found in the type I repeat of 
TSP-1 that mediates TSP-1 binding to CD36 

Blocks TSP-1 
binding to CD36 (209) 

Table 1. TSP-1 blocking peptides. The identity and function of TSP-1 blocking peptides 
used in this study. 
 

CD14+	 

TSP-1 

HPRT 

A B 

Figure 19. TSP-1 expression by UCB monocytes. (A) The mRNA expression of 
TSP-1 was analyzed on CD14

+
 enriched UCB by RT-PCR analysis and compared to 

the housekeeping gene, HPRT; representative data from 3 donors. The (B) frequency 
and (C) MFI of TSP-1 by CD14/CD36 gated subsets are shown for 3 donors. * p < 
0.05, ns = not significant, one-way ANOVA with Dunnett’s multiple comparisons 
test. 
 

C ns 
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In addition to TSP-1, CD36 can bind ligands that mediate inflammatory 

processes. Low-density lipoproteins (LDLs) are carriers of cholesterol and other lipids in 

the blood.  LDL can be modified to form more pathogenic species (210). Oxidized LDL 

(Ox-LDL) is a modified form of LDL that binds CD36 on macrophages and initiates 
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foam cell formation and atherosclerosis, a disease marked by systemic and local 

inflammation (174, 211). In contrast, Tregs protect against atherosclerosis (212).  

To test whether ox-LDL alters the ability of CD14+CD36hi monocytes to induce 

Tregs, I cultured UCB in the presence of LDL or ox-LDL (Fig. 21A). Ox-LDL mildly, 

but significantly, reduced CD8+Foxp3+ Treg generation compared to PBS control-treated 

cells. In contrast, unmodified LDL did not significantly reduce Treg generation.  Ox-LDL 

decreased CD4+Foxp3+ Tregs in three of the four donors, but this decrease was not 

significantly different with this sample size. PMA and ionomycin restimulation of T cells 

from ox-LDL treated UCB demonstrated that ox-LDL increased IL-4 production from 

activated T cells, compared to PBS or unmodified LDL-treated UCB (Fig. 21B).  

 

Figure 21. Ox-LDL modulation of monocyte-induced Treg differentiation and 
cytokine production. (A) CD4 (left) and CD8 (right) Foxp3

+
 cell frequencies in 

UCB cells stimulated with anti-CD3 and IL-2 in the presence of LDL (50 µg/ml), 
ox-LDL (50 µg/ml), or a PBS carrier control as indicated. * p < 0.05, ns = not 
significant, one-way ANOVA with Tukey’s post-test, n= 4. (B) IL-4 production from 
ox-LDL treated UCB T cells. UCB was stimulated as in (A). 2 weeks later, the cells 
were washed, restimulated with PMA and ionomycin, and the supernatants 
harvested for cytokine analysis, n=1. 
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Together, these data suggest an increase in serum ox-LDL may promote 

atherosclerosis not only through macrophage foam cell formation, but also by hindering 

the ability of CD14+CD36hi monocytes to generate protective CD8+ Tregs. Furthermore, 

ox-LDL increases T cell-derived IL-4. In the future, we will determine whether IL-4 

neutralization restores Treg differentiation in ox-LDL treated UCB. Future studies will 

also be required to elucidate the mechanisms by which ox-LDL impairs Treg 

differentiation and modulates cytokine production.  

Discussion 

Membrane-Bound TGF-β. 

Although the roles of TGF-β in peripheral Treg induction and immune regulation 

have been widely studied, very little is know about the context in which naïve T cells 

must encounter TGF-β or the mechanisms by which TGF-β is activated. This is partly 

because many studies that examined the role of TGF-β in peripheral Treg differentiation 

utilized high concentrations of exogenous active TGF-β, a situation that does not occur in 

vivo. 

 We differentiated Tregs ex vivo from naïve T cells without the need for 

exogenous TGF-β. Rather, monocytes were the major endogenous source of TGF-β for 

activated T cells. Although monocytes do not secrete high concentrations of active TGF-

β, they present the latent form on their cell surface in a complex with LTBP-1.  

Only a handful of the numerous publications on TGF-β describe a role for its 

membrane-bound form in establishing immune suppression and tolerance (185–191). A 

few reports describe CD4+ Tregs utilizing membrane-bound TGF-β for contact-
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dependent inhibition of inflammatory immune cells (185, 186, 213). Furthermore, CD4+ 

cells that express membrane-bound TGF-β may have suppressive activity, even in the 

absence of CD25 or Foxp3(188, 189, 214). In the eye, membrane-bound TGF-β on retinal 

pigment epithelial cells induces Tregs(191). These studies suggest membrane-bound 

TGF-beta has the ability to stimulate TGF-β mediated processes.  

In the context of monocytes, there are likely multiple advantages to expressing 

TGF-β on the cell surface. Monocytes can act as APCs. As such, they control the 

differentiation pathway of T cells through the cytokines they produce at the time of 

antigen presentation and costimulation. Membrane-bound TGF-β may be more potent 

than the soluble form due to its high local concentration at the site of cell-to-cell contact 

between monocytes and naïve T cells, ensuring TGF-β signaling is induced 

simultaneously with TCR activation. Furthermore, TGF-β is a pluripotent cytokine with 

biological effects on many cell types, affecting diverse processes, such as fibrosis, tumor 

metastasis, and inhibition of cell proliferation. The differentiation of multiple T helper 

subsets requires TGF-β, including the inflammatory Th17 and Th9 cells(215–220). 

Membrane localization of TGF-β may help limit the recipients of this cytokine and 

ensure that it is presented in the context of other Treg promoting factors, thereby limiting 

the differentiation of inflammatory T cell subsets. An unexplored area of TGF-β biology 

is whether the mode of TGF-β presentation (membrane-bound verses soluble) is one 

factor directing the pathway of T cell differentiation in response to this multifunctional 

cytokine. 
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In studies of membrane-bound TGF-β, it is unclear whether TGF-β exists in the 

active or latent form on the surface of cells. Because TGF-β and LAP are transcribed as 

one pro-protein and the two mature proteins associate to form latent TGF-β, current TGF-

β antibodies on the market do not distinguish between the active and latent forms. Our 

studies used LAP expression on CD14+CD36hi monocytes as a surrogate for latent TGF-

β. We have also used phage display technology to generate fibronectin-based affinity 

reagents that specifically recognize active TGF-β (Volgina et al., manuscript in 

preparation). These reagents stain UCB monocytes positive for active TGF-β. Together, 

these results suggest monocytes present both active and latent TGF-β on the cell surface.  

Although the functions of TGF-β have been widely studied, little is known about 

the mechanism(s) of TGF-β activation. Proposed models of activation involve proteolytic 

cleavage or conformational changes in LAP, which release the active cytokine (221). 

TSP-1 can activate TGF-β, presumably by competing for the TGF-β binding site on LAP 

(161, 205, 208). Integrins and LTBP-1 bind opposite poles of the latent TGF-β complex 

and are thought to pull LAP into a new conformation that releases active TGF-β (222–

225). Furthermore, TGF-β can be activated in vitro by acidic conditions.  

 In our culture conditions, it is unclear where or how TGF-β is activated. We have 

shown LAP is expressed exclusively on monocytes in freshly isolated UCB cells. 

However, LAP is also upregulated on the surface of T cells after activation (data not 

shown). We know that monocytes express latent TGF-β and are required to initiate 

Smad2/3 phosphorylation in T cells. Therefore, monocytes may be required for TGF-β 

production, activation or both. Because monocytes exclusively express LAP in 
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unstimulated cells, and they also display active TGF-β on the cell surface, I hypothesize 

that TGF-β is activated at the monocyte plasma membrane and is presented in its active 

form to T cells. This could be tested experimentally using a TGF-β bioassay in which a 

TGF-β-deficient cell line containing a TGF-β response element reporter is co-cultured 

with monocytes in direct cell contact. TGF-β-deficient T cells may also be added to the 

assay to test whether TGF-β activation requires monocytes alone or interaction with 

activated T cells.  

The Role of Notch in UCB Treg Differentiation. 

Notch ligand binding triggers sequential cleavage of the Notch receptor, resulting 

in release of the Notch ICD (reviewed in (226)). The Notch ICD regulates target gene 

transcription through interaction with recombination-signal-binding protein J (RPB-J), 

also know as CBF1, Suppressor of Hairless, Lag-1 (CSL). In the absence of the Notch 

ICD, RPB-J directly binds target genes and inhibits transcription through recruitment of a 

co-repressor complex. Notch ICD binding to RBP-J displaces the co-repressor and allows 

for recruitment of a co-activator complex, resulting in gene transcription.  

Multiple RBP-J binding sites have been identified in the Foxp3 promoter where 

the Notch ICD binds in conjunction with RBP-J to regulate Foxp3 expression (47, 227, 

228). Some data suggests Notch ICD binding may be required for Smad3 recruitment to 

the Foxp3 promoter, as Smad binding is inhibited in the presence of a gamma secretase 

inhibitor (47). Notch may also regulate Treg differentiation through cross-talk with the 

TGF-β signaling pathway, as the ICD of Notch-1 and -4 can form a complex with Smad3 

(200, 201). 
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Our data demonstrate that Notch signaling contributes to Treg differentiation from 

UCB. However, literature suggests Notch is also required for other T helper subsets. This 

may suggest Notch provides a general differentiation signal, not Treg specific (229–232). 

Alternatively, different Notch ligands may promote specific Th subsets. There is some 

evidence to support this. Multiple reports suggest that DLL4 promotes Th17 and Th1 

differentiation, but inhibits Th2 and Tregs (229, 233–235). In contrast, Jagged-1 has been 

shown to induce Th2 and Treg differentiation and inhibit Th1 (45, 46, 52, 227, 232). Our 

data shows CD14+CD36hi monocytes express DLL3. Interestingly, they also express 

Jagged-1, but at lower levels than DLL3 and less consistently between donors (data not 

shown). The mechanisms leading to different Th subset differentiation by different Notch 

ligands are still unknown.  

One approach to studying the role of different Notch ligands and Notch receptors 

in T cell differentiation is to selectively express only one Notch receptor in T cells or 

provide only one Notch ligand. Gene expression profiling can then be used to determine 

the gene targets of specific Notch receptor/ligand pairs. It is possible that various Notch 

receptors and Notch ligands differentially regulate transcription factors involved in T 

helper cell differentiation.  

Our data suggests Notch signaling contributes to UCB Treg differentiation. 

However, we did not determine the specific ligand involved, nor did we exclude other 

cellular sources of Notch ligands. We showed DLL3 was expressed by CD14+CD36hi 

monocytes, but also at lower levels by CD14+CD36lo, CD14-CD36+, and CD14-CD36- 

cells. Therefore, it is possible that other cells contribute to Notch activation in UCB T 
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cells. Monocytes, however, are sufficient to induce Tregs differentiation in the absence of 

other accessory cells and CD14+CD36hi monocytes were the only cells observed to co-

express Notch ligands with LAP. 

The Role of Retinoic Acid in UCB Treg Differentiation. 

Our data demonstrate that endogenous retinoic acid contributes to monocyte-

induced Treg generation from UCB. Among UCB cells, CD14+CD36hi monocytes are the 

primary cells that exhibit ALDH activity, the enzyme required for retinoic acid 

production. Previous studies showed retinoic acid enhances TGF-β-dependent Treg 

differentiation through several mechanisms. Retinoic acid enhances Smad-independent 

ERK phosphorylation in the presence of TGF-β and increases activating histone 

modifications at the Foxp3 promoter (54, 236). Retinoic acid also enhances peripheral 

Treg generation indirectly by decreasing the production of inhibitory effector cytokines 

by memory T cells (237). 

The addition of an exogenous RAR agonist increases the efficiency of Foxp3 

induction to over 80% of CD4+ and CD8+ T cells. Other studies demonstrated that 

retinoic acid improves nTreg and iTreg stability under inflammatory conditions (236, 

238–240). This is especially important for ex vivo Treg generation for therapeutic 

applications because Tregs can lose Foxp3+ expression and upregulate effector cytokines 

when they enter inflammatory environments (241–243). The use of retinoic acid in ex 

vivo Treg generation for therapeutic purposes may be useful for both generating a high 

frequency of Tregs and preventing Tregs from converting to inflammatory T helper 

subsets upon transfer.  
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 Because retinoic acid is a vitamin A metabolite, it calls into question the effect of 

vitamin A deficiency on Treg development in the neonate. Vitamin A deficiency affects 

approximately one-third of infants and young children worldwide (244). Vitamin A 

deficiency causes blindness and deafness, and can increase the risk of serious diarrheal 

and respiratory infections. In children living in regions where vitamin A deficiency is 

prevalent, vitamin A supplementation has been estimated to decrease all cause mortality 

by 30%, and specifically improves survival during gastrointestinal and respiratory 

infections (245). 

 While it is clear that vitamin A deficiency impairs effective immune responses, 

little is known about the impact of vitamin A deficiency on Treg generation in humans. 

Because the vitamin A metabolite, retinoic acid, contributes to iTreg generation and 

stability, it is plausible to hypothesize that vitamin A deficiency would impair Treg 

generation or function. This could be particularly harmful during fetal development or 

shortly after birth, when there is enhanced Treg generation under normal conditions. 

Epidemiological studies are still needed to characterize Treg frequency and function in 

vitamin A deficient individuals, as well as to determine the impact of vitamin A 

supplementation in these individuals.  

In mice, vitamin A deficient animals are more susceptible to a variety of 

infections and inflammatory conditions and this is associated with an increase in 

inflammatory cytokine production (246–249). While the data is limited on the effect of 

vitamin A deficiency on Treg generation, one study demonstrated that vitamin A 

deficient mice have decreased generation of oral tolerance and impaired Foxp3+ Treg 
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induction by mesenteric DCs (250). However, a second study of viral upper respiratory 

tract infection suggested enhanced inflammatory cytokine production in vitamin A 

deficient mice is due to impaired viral clearance rather than decreased Foxp3+ Tregs 

(246). Further studies are needed to understand the impact of vitamin A deficiency on 

human Treg development. 

The Role of CD36 in UCB Treg Differentiation. 

High expression of CD36 marks the monocytes capable of inducing Tregs, yet we 

lack evidence that CD36 itself is required for Treg differentiation. Multiple peptide 

inhibitors that block TSP-1 mediated activation of TGF-β or TSP-1 binding to CD36 did 

not inhibit Treg differentiation from UCB. In an effort to elucidate the role of CD36 

expressing cells during Treg development in vivo, our lab sought to identify a murine 

counterpart to CD36hi cells capable of inducing Tregs, but without success. Our future 

goal is to knock down CD36 in human monocytes to test the role of CD36 in monocyte-

induced Treg generation. However, gene deletion or knockdown in primary human 

monocytes is extremely challenging with our current technology. Monocytes are difficult 

to maintain in an undifferentiated state in substantial numbers. They easily die in culture 

without stimulation and do not proliferate sufficiently in the absence of differentiation. 

siRNA based knockdown in primary human monocytes is difficult prior to their 

differentiation into monocyte-derived macrophages or DCs.  

Ox-LDL Modulation of UCB Treg Differentiation. 

In our studies, the addition of ox-LDL to total UCB cultures blocked CD8+ Treg 

differentiation. Ox-LDL can bind CD36, but also other surface receptors such as 
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scavenger receptor A (SR-A) (251). It is unclear in our studies whether Ox-LDL is 

modulating Treg differentiation through direct binding to CD36 on monocytes or through 

binding to other surface receptors. Ox-LDL can alter monocyte/macrophage phenotype, 

promoting foam cell formation (174). Other CD36 ligands, such as beta-amyloid, 

enhance inflammatory cytokine production and ROS in macrophages, and this may also 

be true of ox-LDL (145, 252, 253). Ox-LDL might convert the tolerogenic monocytes to 

a pro-inflammatory state and alter their cytokine production to favor the differentiation of 

other Th subsets rather than Tregs. T cells from ox-LDL-treated UCB upregulate IL-4, a 

Th2 cytokine. Future studies are needed to determine whether ox-LDL alters UCB 

cytokine production and whether these cytokines subsequently block Treg differentiation. 

To test this, ELISA or multiplex cytokine analysis can be used to analyze the cell 

supernatants of UCB stimulated in the presence or absence of ox-LDL. I hypothesize that 

ox-LDL increases the production of cytokines known to block UCB Treg generation, 

such as IL-4 and IL-12. To test whether increased production of these cytokines accounts 

for decreased Treg generation in ox-LDL treated UCB, neutralizing antibodies may be 

used. If ox-LDL impairs Treg generation through the upregulation of inhibitory 

cytokines, then neutralizing these cytokines should restore Treg differentiation.
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CHAPTER FOUR 

IL-4 REGULATION OF TGF-β SIGNALING AND UCB TREG GENERATION  

Treg Generation after Birth and into Adulthood 

 Infection remains a leading cause of death among neonates and infants 

worldwide. In 2013, approximately 50% of deaths in children under 5 years old were 

from infection(254). Enhanced Treg differentiation by neonates could contribute to their 

increased risk for life-threatening infections. We have shown that the majority of UCB T 

cells acquire regulatory markers when stimulated with anti-CD3 and IL-2 ex vivo (Fig. 1). 

To determine if babies maintain the ability to efficiently generate Tregs after birth, 

PBMCs from 12 donors ages 7-180 days old were stimulated with anti-CD3 and IL-2. At 

these ages, babies maintained the ability to induce Treg differentiation at a higher level 

than adult PBMCs (Fig. 22, Fig. 1). Compared to UCB (day 0), the efficiency of Foxp3+ 

Treg generation in babies diminished slowly over the first six months, with only a trend 

toward significance with this sample size.



	
	

	
	

70 

 

To determine whether the efficiency of Treg generation correlates with the 

percent of CD14+CD36hi monocytes, we compared the frequency of these cells between 

UCB, infant and adult PBMCs (Fig. 23). The frequency of CD14+CD36hi monocytes 

decreased in infants (ages 5-24 months) compared to UCB (Fig. 23A). However, the 

percent of CD14+CD36hi monocytes was not significantly different between adult blood 

and UCB (Fig. 23B). There was no correlation between the percent of CD14+CD36hi 

monocytes and the frequency of induced Tregs (data not shown). Therefore, while it is 

possible that a loss of CD14+CD36hi monocytes contributes to the gradual decrease of 

Treg generation in infants, there does not appear to be a direct relationship between the 

two. Furthermore, the loss of Treg differentiation in adult blood is not due to a loss of 

CD14+CD36hi monocytes. 

Figure 22. Induced Treg differentiation from neonates in the first six months of 
life. The percent of CD4+ cells expressing CD25

 
and Foxp3 was determined from 

UCB (0 days old) or neonatal PBMCs stimulated with anti-CD3 and IL-2 as in figure 
1. Each dot represents a different donor.  
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We asked whether the loss of Treg generation in adult PBMCs is due to a lack of 

TGF-β, Notch or retinoic acid. A large percentage of adult CD14+CD36hi monocytes 

express membrane-bound LAP and DLL3 (Fig. 24A-B). The vast majority of adult CD4+ 

and CD8+ T cells stimulated in the presence of other mononuclear cells upregulate 

pSmad2/3 and Notch-1 (Fig. 24C-D). Furthermore, the addition of an RAR agonist to 

adult PBMCs does not substantially increase CD4+ Treg differentiation (Fig. 24E). The 

RAR agonist enhanced Foxp3 expression on CD8+T cells, but the majority of cells 

remained Foxp3- (Fig. 24E). These data suggest that the lack of Treg generation from 

adult PBMCs is not primarily due to a lack of TGF-β, Notch or retinoic acid signaling.  

Figure 23. The frequency of CD14+CD36hi
 
monocytes in UCB, infant and 

adult PBMCs. The percent of CD14+CD36hi
 
monocytes was compared between 

(A) UCB and infant PBMCs (age 5-24 months), n=9; and (B) UCB and adult 
PBMCs, n = 12. * p < 0.05, ns = not significant, unpaired Student t test with 
Welch’s correction. 
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Because adult PBMCs do not lack monocytes or monocyte-derived signals to 

induce Tregs, we hypothesized that adult PBMCs produce a factor that actively inhibits 

Treg differentiation. To test this, we asked whether adult PBMCs inhibit UCB Treg 

differentiation. We co-cultured adult PBMCs with HLA-A2-mismatched UCB, to 

distinguish the two cell sources. As we have previously shown, anti-CD3 and IL-2 

Figure 24. The presence of TGF-β, retinoic acid and Notch in adult PBMCs.  
(A) Comparison of LAP expression on UCB or adult PBMC CD14+CD36hi

 

monocytes. Student t test, * p < 0.05, n=4. (B) DLL3 expression on CD14/36 gated 
populations from adult PBMCs, n=5. (C) SMAD2/3 phosphorylation in CD4+ and 
CD8+ T cells from adult PBMCs stimulated for 2 days with anti-CD3 and IL-2, n=5. 
(D) Notch-1 upregulation on adult CD4+ and CD8+ T cells activated (Day 2) as in 
(C), compared to unstimulated T cells (Day 0); n=5. (E) Adult PBMC Treg 
generation in the presence of the RAR agonist, AM580. Adult PBMCs were 
stimulated with anti-CD3 and IL-2 in the presence of AM580 or the DMSO control 
and analyzed 2 weeks later for Foxp3 expression on CD4+ and CD8+ T cells. ** p < 
0.01, ns = not significant, paired Student t test, n=3. 
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stimulation induces a lower percentage of CD4+ and CD8+ Foxp3+ cells from adult 

PBMCs than from UCB (Fig. 25A). However, the percentage of Foxp3+ cells between 

adult and UCB was the same when co-cultured. The percentage of CD4+CD25+Foxp3+ 

cells from UCB also decreased when co-cultured with adult PBMCs in transwell 

compared to UCB cultured alone (Fig. 25B). These data suggest UCB is capable of 

producing factors to boost adult Treg generation. Likewise, adult PBMCs can produce a 

soluble factor(s) that dominantly suppresses UCB Treg generation. 
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Inhibition of Treg Generation by IL-4 

To identify the molecules expressed by adult PBMCs that may be inhibitory for 

Treg generation, we tested multiple cytokines known to abrogate Treg differentiation, 

stability or suppressive function in other experimental models (237, 255–262). These 

included the Th2 cytokines, IL-4 and IL-5; cytokines that induce Th1 differentiation or 

are produced by Th1 cells, IFN-γ, IL-12 and TNF-α; and the inflammatory cytokines, IL-

6 and IL-1β. Addition of IL-4 at the time of T cell stimulation decreased Foxp3 mRNA 

expression 3 days after T cell stimulation (Fig. 26) and the percentage of Foxp3 

expressing CD4+ and CD8+ T cells approximately 2 weeks after T cell stimulation (Fig 

27A-D).  IL-4 inhibition of Foxp3 expression occurred in a dose-dependent manner (Fig. 

28). These data demonstrate the presence of IL-4 at the time of T cell stimulation potently 

inhibits UCB Treg differentiation. 

We asked whether other cytokines inhibited UCB Treg differentiation similar to 

IL-4.  A different Th2 cytokine, IL-5, did not inhibit Foxp3 expression to the same extent 

as IL-4 (Fig 27 A-D). IL-12, a Th1 inducing cytokine, substantially decreased the 

percentage of CD25+Foxp3+ expressing T cells (Fig. 27 A-D). IL-12 inhibition occurred 

primarily by decreasing CD25 expression, rather than Foxp3 (Fig. 27A-B). These data 

suggest IL-12 may decrease Treg differentiation by impairing T cell activation. This is in 

contrast to IL-4, which primarily decreased Foxp3 expression. IFN-γ, TNF-α, IL-1β, and 

IL-6 minimally impacted Treg differentiation.  
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Foxp3	Ct	(mean	of	2-
3	technical	replicates) 

Hprt	Ct	(mean	of	2-3	
technical	replicates) 

	 NT +IL-4 NT +IL-4 
Donor	1 21.95 24.55 22.52 21.945 
Donor	2 21.89 25.48 22.57 23.68 
Donor	3 23.545 26.64 24.38 24.04 
Donor	4 22.7 23.51 23.28 23.3 
Donor	5 22.61 26 23.39 22.62 
 

A 

B 

Figure 26. IL-4 regulation of Foxp3 mRNA expression. UCB T cells were stimulated 
with anti-CD3 and IL-2 in the presence (IL-4 treated) or absence (no treatment; NT) of 5 
ng/ml IL-4. Three days later, CD4+ T cells were enriched and analyzed for the expression 
of Foxp3 by RT-qPCR. The (A) relative expression was calculated using the ΔΔCt 
method, normalized to the Hprt housekeeping gene. Statistics were calculated on the 2

-ΔCt 

values; ** p< 0.01, paired Student t test; n=5. (B) Ct values from each donor are shown. 
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IL-4 is a classic Th2 cytokine. To ask whether IL-4 blocks Tregs by diverting T 

cells toward Th2 differentiation, we stimulated UCB cells with anti-CD3 and IL-2 in the 

presence of IL-4. Two weeks later, we washed and restimulated the cells to examine their 

cytokine production. If IL-4 shifts T cell differentiation from Tregs toward Th2 cells, 

then stimulating T cells in the presence of IL-4 should increase the production of IL-4 

upon restimulation. IL-4 was increased in the cell supernatant of IL-4-treated UCB (Fig. 

29A). The percentage of cells expressing intracellular IL-4 also significantly increased in 

IL-4 treated cells (3.6%  ±  2.3 no IL-4 treatment; 8.9%  ± 6.1 with IL-4 treatment)  (Fig. 

29B-C). However, the majority of IL-4 treated cells did not produce detectable levels of 

IL-4. Some Th2 cells produce only IL-5 and IL-13, but the levels of these cytokines did 

not change in IL-4 stimulated UCB (data not shown). These data suggest only a small 

fraction of UCB cells differentiate into Th2 cells when stimulated in the presence of IL-4.  

Figure 28. Dose-dependent inhibition of UCB Treg differentiation by IL-4. UCB 
was stimulated with anti-CD3 and IL-2 in the presence of varying concentrations of 
IL-4. The frequency of (A) CD4 or (B) CD8 Tregs was analyzed approximately 2 
weeks later. Statistical differences were determined compared to 0 ng/ml of IL-4; * p< 
0.05, ** p< 0.01, *** p< 0.001, one-way ANOVA with Dunnett’s multiple 
comparisons test; n=3.  

A B 
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We also examined the production of other T helper cytokines to determine 

whether IL-4 is inducing a unique CD4+ T cell subset. IL-10 is an immunosuppressive 

cytokine produced by Type 1 regulatory (Tr1) T cells. Tr1 cells can be induced in mice 

and man by IL-27 in combination with IL-21 (263). These cells have been shown to 

prevent allogeneic graft rejection and autoimmunity in multiple mouse models (263). IL-

10 production was increased in the cell supernatants of IL-4 treated cells (Fig. 29A). IL-4 

treatment also increased the percentage of cells expressing intracellular IL-10, however 

this increase was not significant with our sample size and the majority of cells lacked IL-

10 (Fig. 29B-C). We also observed a small increase in IL-2 producing cells by 

intracellular staining, which was insignificant with our sample size. The majority of IL-4 

treated cells remained negative for the Th1, Th17 and Th9 cytokines IFN-γ, IL-17a and 

IL-9, respectively. We conclude from these data that IL-4 directly inhibits Treg 

differentiation, rather than diverting naïve T cells toward a different T helper cell 

differentiation pathway. 
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IL-4 binding to its receptor leads to the activation and nuclear translocation of 

STAT6 and the subsequent regulation of target genes. STAT6 upregulates GATA3, the 

master transcription factor of Th2 cells. IL-4 has been reported to block Foxp3 expression 

through several mechanisms, including direct binding of both STAT6 and GATA3 to the 

Foxp3 promoter (259, 264). However, it is unknown whether IL-4 regulates TGF-β 

signaling upstream of Foxp3.  

To test whether IL-4 regulates TGF-β signaling, we examined Smad2 and Smad3 

in UCB CD4+ T cells cultured for 3 days in the presence or absence of IL-4. We 

examined this early time point, since TGF-β signaling is required during the first few 

days of T cell stimulation for Treg generation (Fig. 9). IL-4 increased the expression of 

Smad2, but decreased Smad3 (Fig. 30A-B).  

The IL-4 receptor is expressed by T cells, but also by other mononuclear cells 

such as B cells and monocytes(265–267). IL-4 in combination with GM-CSF triggers 

monocyte differentiation into DCs (268). Therefore, we asked whether IL-4 acts directly 

or indirectly on T cells to regulate Smad2 and Smad3 by stimulating UCB CD4+ cells 

with plate-bound anti-CD3 and anti-CD28. Consistent with IL-4 treatment of total UCB 

cells, IL-4 upregulated Smad2 and decreased Smad3 in isolated CD4+ cells (Fig. 30C-D). 

The changes in Smad2 and Smad3 were clear by day 2 post-stimulation. Together, these 

data demonstrate that IL-4 differentially regulates Smad2 and Smad3 expression. Foxp3 

is a known target of Smad2 and Smad3. Therefore, IL-4 regulation of Smad2 and Smad3 

may alter Foxp3 transcription and Treg generation. 
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 To determine how IL-4 differentially regulates Smad2 and Smad3, I determined 

the levels of Smad2 and Smad3 transcripts at various times after CD4+ T cell stimulation 

with plate-bound αCD3 and αCD28 in the presence or absence of IL-4, with the 



	

	

83 
expectation that if IL-4 differentially regulates Smad2 and Smad3 at the transcript level, 

we should observe an increase in Smad2 and decrease in Smad3 transcripts in IL-4 treated 

cells.  In parallel to the protein levels, IL-4 significantly increased Smad2 and decreased 

Smad3 transcripts (Fig. 31). These data demonstrated that IL-4 differentially regulates 

Smad2 and Smad3 at the transcript level. 

Knockout studies in mice suggest that single deletion of either Smad2 or Smad3 is 

sufficient to decrease, but not completely abolish, Treg induction from naïve T cells in 

vitro (269–272). These data suggest Smad2 and Smad3 have both redundant and distinct 

roles in inducing Foxp3 expression in the periphery. For nTreg generation, single Smad2 

or Smad3 deletion does not decrease Foxp3+ cells in the thymus, spleen or mesenteric 

lymph node, while double deletion substantially decreases the percent of Tregs in these 

tissues(272). In humans, the relative roles of Smad2 and Smad3 in Treg differentiation 

are unknown. 

My data demonstrates that IL-4 downregulation of Smad3 correlates with 

impaired Foxp3 expression and Treg differentiation. To test whether a loss of Smad3 is 

sufficient to block Treg generation, I used Smad3 siRNA and induced Tregs using THP-1 

monocytic leukemia cells. This bypassed the need to freeze primary monocytes during 

siRNA knockdown in T cells. Freshly isolated UCB CD4+ T cells were transfected with 

Smad3 siRNA and stimulated with irradiated THP-1 cells in the presence of IL-2 and 

anti-CD3.  
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Introduction of Smad3 siRNA resulted in mild reduction of Smad3 protein, as 

assessed by western blot (Fig. 32A). Despite mild knockdown, Smad3 siRNA moderately 

decreased the percentage of Foxp3 expressing CD4+ T cells when co-cultured with THP-

1 cells (Fig. 32B). These data suggest Smad3 may play a non-redundant role in 

monocyte-induced Treg differentiation. Furthermore, downregulation of Smad3 by IL-4 

may be sufficient to decrease Treg generation. 

Smad2 and Smad3 have opposing roles in some biological contexts (273). For 

example, Smad3 mediates TGF-β autocrine signaling to enhance TGF-β production by 

DCs, while Smad2 opposes it(274). Therefore, it is possible that Smad2 and Smad3 have 

opposing roles in monocyte-induced Treg differentiation. Our data suggests Smad3 

promotes Treg differentiation. To examine the role of Smad2 in UCB Treg 

differentiation, we used siRNA-mediated knockdown of Smad2. Three of the four 

siRNAs tested decreased Smad2 protein in UCB CD4+ T cells (Fig. 32A). After 

stimulation with THP-1 cells, Foxp3 expression was decreased in the CD4+ T cells with 

effective Smad2 knockdown (Fig. 32C). These data suggest that both Smad2 and Smad3 

contribute to Treg differentiation in UCB T cells in a non-redundant manner. 

Furthermore, IL-4 may inhibit Treg differentiation in part by reducing Smad3 expression. 

The role of increased Smad2 by IL-2 in UCB Treg generation remains to be determined. 
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Discussion 

Treg Inhibition by IL-4. 

Inflammatory cytokines can inhibit Treg differentiation or function in various mouse 

and human models (237, 255–262). However, UCB Treg differentiation is apparently 

resistant to many of these cytokines. IL-5, IFN-γ, TNF-α, IL-6, IL-1β, and IL-6 plus IL-

1β had little ability to block CD4+ or CD8+ Foxp3+ cell generation. This suggests UCB 

has mechanisms to promote Treg differentiation even in the presence high levels of 

inflammatory cytokines. In contrast, both IL-12 and IL-4 substantially decreased the 

percentage of CD25+Foxp3+ T cells, suggesting UCB Treg generation is not resistant to 

inhibition under Th1 and Th2 inducing conditions.  

IL-12 lowered the percentage of Tregs primarily by decreasing CD25 expression, 

which is a T cell activation marker. Therefore, IL-12 may impair Treg differentiation 

through decreased T cell activation. This could be tested in the future by examining the 

expression of other activation markers at various times after UCB stimulation in the 

presence or absence of IL-12.  

IL-4 strongly suppressed UCB Foxp3 expression. Neonatal mice have Th2-skewed 

immune responses, characterized by the production of Th2 cytokines upon immune 

stimulation (275, 276) and an intrinsic lack of Th1 cytokine production (277). It is less 

clear whether human neonates are also Th2-prone (278). However, several studies 

suggest human neonatal T cells may epigenetically favor Th2 cytokine production over 

Th1 (279, 280). Furthermore, Th1 responses are dampened in human neonates during 

stimulation by allogeneic T cells (281), which may lead to a relative increase in IL-4. 
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Babies encounter numerous microorganisms during their first few months of life, some of 

which are pathogenic. Therefore, they may require this relative increase in IL-4 to mount 

protective immune responses by shutting down the strong fetal tendency to induce Tregs.  

To test whether IL-4 plays a major role in inhibiting Treg generation after birth, 

the effect of an anti-IL-4 neutralizing antibody on Treg generation from infant PBMCs 

could be tested. Neutralizing anti-IL-4 antibodies could also be used in neonatal mice, to 

test whether IL-4 inhibits Treg generation in vivo. If IL-4 plays a role in inhibiting Treg 

generation in infants, then we would expect that anti-IL-4 treatment would lead to 

increased Treg generation and enhanced immune tolerance in young mice. 

Differential Regulation of Smad2 and Smad3 by IL-4. 

Our data show IL-4 differentially regulates Smad2 and Smad3 at the transcript 

level. IL-4 can block Treg differentiation via direct binding of Stat6 or GATA3 to the 

Foxp3 locus (255, 258, 259, 264). PU.1, a transcription factor transiently expressed 

during Th2 differentiation, also inhibits Foxp3 expression and Treg differentiation (255). 

Therefore, IL-4 uses multiple mechanisms to inhibit Foxp3 expression. My data suggest 

that IL-4 has an additional layer of regulation on the Foxp3 locus through upstream 

modulation of the TGF-β signaling components Smad2 and Smad3 (Fig. 33). IL-4  

increased Smad2 and decreased Smad3 and this correlated with decreased Treg 

generation.  
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We are continuing to investigate whether the differential regulation of Smad2 and 

Smad3 by IL-4 contributes to the loss of Tregs. siRNA knockdown of Smad3 resulted in 

mild inhibition of Tregs, suggesting that IL-4 downregulation of Smad3 may contribute 

to IL-4 inhibition of Foxp3 expression and Treg differentiation. However, IL-4 also 

increased Smad2, a second mediator of TGF-β signaling. Like Smad3, our data suggests 

Smad2 is required for optimal Treg generation. Furthermore, previous reports suggest 

Smad2 and Smad3 are partially, but not completely, redundant. Therefore, it is possible 

that the increase in Smad2 by IL-4 compensates for the loss of Smad3. Alternatively, 

increased Smad2 may contribute to the loss of Tregs because dimerization with the co-
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Smad, Smad4, is required for nuclear localization of both Smad2 and Smad3. Increased 

levels of Smad2 in IL-4 treated cells could outcompete Smad3 for Smad4 binding, 

effectively inhibiting Smad3 nuclear localization. These possibilities can be tested in the 

future using Smad2 overexpression in primary T cells or a T cell line. 

The question remains of how IL-4 differentially regulates Smad2 and Smad3 

transcripts. IL-4 signaling leads to the activation of Stat6, which has multiple target genes 

in T cells including other transcription factors such as Gata3 and Batf (282). Stat6 itself 

may directly bind to the Smad2 and Smad3 locus to differentially regulate their 

transcription. However, Stat6 is generally thought to be a transcriptional activator and 

would be less likely to repress Smad3. Furthermore, Smad2 upregulation peaks two days 

after stimulation in the presence of IL-4, whereas Smad3 is maximally downregulated 

three days post-stimulation. These results are consistent with different mechanisms 

regulating Smad2 and Smad3 downstream of IL-4. Stat6 target genes may contribute to 

Smad2 and/or Smad3 regulation. For example, Gata3 has known activity as a 

transcriptional repressor (259, 283), and may be responsible for downregulation of 

Smad3.  

 Apart from transcriptional regulation, Smad3 transcripts may also be decreased by 

IL-4 through increased production of Smad3-targeting micro-RNAs. Smad2 and Smad3 

have highly similar protein sequences and share regulation by some micro-RNAs, such as 

miR-136 (284). However, not all micro-RNAs equally regulate the two targets. For 

example, miR-133 decreases Smad3, but not Smad2 (285). IL-4 may decrease Smad3 

transcripts by upregulating Smad3-targeting micro-RNAs. One micro-RNA of interest is 
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miR-145. Smad3 is a known target of miR-145, and this micro-RNA is upregulated by 

IL-4 in microglia (286–289). Future studies are needed to determine whether IL-4 exerts 

transcriptional or post-transcriptional regulation on Smad2 and Smad3 and which 

transcription factors or micro-RNAs are involved. 

 The purpose of differential Smad2 and Smad3 regulation by IL-4 remains a 

question. TGF-β contributes to the differentiation of several Th subsets, including Th17, 

Th9, Tr1, and potentially T follicular helper (Tfh) cells (215–220). Several studies 

demonstrate Th17 induction in mice requires Smad2 (270, 271), whereas the role of 

Smad3 remains controversial (269, 290). Both IL-4 and TGF-β contribute to Th9 cell 

generation in mice and humans (219, 291, 292). Considering the differential regulation of 

Smad2 and Smad3 by IL-4, I predict that human Th9 differentiation relies on Smad2, but 

not Smad3. Overall, IL-4 may block Treg differentiation, while still allowing the 

induction of other TGF-β dependent subsets. 

 TGF-β has many functions in addition to inducing Tregs. It instructs embryologic 

axis formation, inhibits cell proliferation, stimulates fibrosis, and induces epithelial to 

mesenchymal transition (EMT). During tumor development, tumors can become 

insensitive to TGF-β-mediated growth arrest (293). As the tumor progresses, it can 

produce TGF-β, promoting tumor metastasis through EMT and immunosuppression 

(293). Studies suggest TGF-β-mediated growth arrest predominantly requires signaling 

through Smad3 compared to Smad2 (294–296). Smad3 is also required for EMT from 

murine hepatocytes, while Smad2 knockout spontaneously triggers EMT (294). The IL4 

receptor is expressed by a variety of hematologic and solid tumors(297–300). Therefore, 
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IL-4 upregulation of Smad2 and downregulation of Smad3 may modulate tumor 

responses to TGF-β.  

IL-4 protects tumors from apoptosis, enhances tumor metastasis and promotes 

cancer stem cell survival (301, 302). Tumors genetically modified to overexpress IL-4 

undergo more rejection compared to tumors not expressing IL-4 (301, 303, 304). 

However, in mouse models of lymphoma and lung carcinoma, tumor growth was 

impaired in IL-4 knockout mice compared to wild-type, suggesting IL-4 enhances tumor 

development (305, 306). Consistent with the these studies, IL-4 stimulated the growth of 

various colon and pancreatic cancer cell lines in vitro and a deficiency of the IL-4 

receptor protected mice from two models of colon cancer in vivo (307, 308). 

Furthermore, the IL-4 receptor is commonly overexpressed on tumor cells and cancer 

patient PBMCs have increased Th2 compared to Th1 cytokine production (301, 302, 309, 

310). An intriguing question is whether IL-4 acts as a tumor growth factor by rendering 

cells insensitive to TGF-β. My data suggests this is a possibility, since IL-4 decreases 

Smad3, which reportedly plays a dominant role in TGF-β mediated growth arrest. 

Loss of Treg Generation in Adult Blood. 

 We show that neonates maintain much of the tendency to induce Treg generation 

during the first three to six months of life. However, anti-CD3 and IL-2 stimulation of 

adult blood is not effective at generating Tregs. We reasoned that this deficiency in adults 

could be due to a lack of monocytes or of the monocyte-derived signals needed to 

promote Treg differentiation. Indeed, others have suggested UCB APCs are better at 

inducing Treg differentiation than adult APCs (90). However, my results showed adult 
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monocytes resemble UCB in their frequency and their ability to produce TGF-β, retinoic 

acid and Notch ligands. Furthermore, previous studies in the lab showed adult monocytes 

are capable of inducing Tregs from purified naïve T cells (data not shown). Therefore, we 

have no evidence that the lack of Treg generation in adults is due to intrinsic differences 

in their naïve T cells or monocytes. 

 Adult blood has a higher frequency of memory T cells than UCB. Memory T cells 

potently proliferate in response to antigen stimulation. In adult blood, these cells may 

overtake the cultures in the conditions we use. Moreover, memory T cells could produce 

factors that are inhibitory to Treg differentiation or expansion.  Indeed, our data suggest 

adult blood produces inhibitory factors that reduce the efficacy of Treg differentiation 

from UCB. The identity of these factors and their cellular source are under ongoing 

investigation in our lab. Cells of interest include IL-4 producing eosinophils, basophils, 

innate lymphoid cells, and memory T cells. To test the role these populations in inhibiting 

Treg differentiation, we will examine whether their depletion restores adult blood Treg 

generation. Conversely, we will test whether the same cells inhibit Treg generation from 

UCB.  

 Our studies found IL-12 and IL-4 effectively inhibit CD25 and Foxp3 expression 

respectively, but it is unclear whether these are the factors produced by adult cells that 

inhibit UCB Treg generation. Multiple approaches can be taken to address this question. 

First, if adult IL-4 and/or IL-12 contribute to UCB Treg inhibition, then we would expect 

the levels of these cytokines to be higher in the media from stimulated adult PBMCs than 

from UCB. This could be tested by ELISA or by multiplex cytokine analysis. Second, if 
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IL-4 and IL-12 contribute to adult inhibition of UCB Tregs, then neutralizing IL-4 and 

IL-12 should enhance UCB Treg generation when co-cultured with adult PBMCs. 

Finally, anti-IL-4 and anti-IL-12 antibodies could be administered to adult mice to 

determine whether peripheral Treg generation is enhanced by blocking these cytokines. 
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CHAPTER FIVE 

FINAL DISCUSSION 

Monocyte-Induced Treg Generation 

Together, my data leads us to a model in which CD14+CD36hi monocytes induce 

Tregs by producing three factors: TGF-β, retinoic acid and Notch ligands (Fig. 34). No 

other UCB cell observed could simultaneously provide all three signals to T cells. The 

roles of each signal were discussed in detail above. To summarize, Smad2/3, the Notch 

ICD, and RAR all promote Foxp3 transcription through binding to the Foxp3 locus. 

Some cross talk between these pathways may also occur. For example, Smad3 was 

previously shown to forma a complex with the Notch ICD and Notch signaling was 

required for Smad binding to the Foxp3 promoter (47, 200, 201). 
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Treg Generation During Early Development 

 Our studies and others have shown that the propensity for Treg generation 

changes throughout the lifespan. A healthy immune system relies on the balance between 

immune tolerance and the generation of protective immune responses against pathogens. 

The relative need for suppressive verses inflammatory immune responses likely changes 

throughout development, depending on the most abundant new antigens encountered 

(Fig. 35). 

 In the womb, the developing fetal immune system primarily encounters self-

antigens and maternal antigens. The pre-term fetus has an increased frequency of Tregs 

and although the percentage drops in the full-term fetus (70, 71), the tendency of naïve T 

cells to differentiate into Tregs upon antigen stimulation remains high. This 

immunoregulatory program is likely important for generating life-long self-tolerance and 

for preventing inflammation against maternal antigens during the fetal period.  

The strong tendency of the fetus to generate immune tolerance poses little risk to 

the baby, since few pathogens cross the placenta and fetal infection is infrequent. 

However, when fetal infection does occur, the results can be detrimental since the fetus 

has little ability to mount a protective immune response. This is clearly seen in the recent 

Zika virus outbreaks in South America, where maternal infection can result in transfer to 

the fetus and viral invasion of the fetal central nervous system (311–313).  

At birth, the baby’s immune system likely encounters the largest onslaught of new 

antigens that the individual will ever experience in his or her lifetime. This flood of 

antigens comes from many sources, most of which are harmless: food, pollen, pet dander 
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and commensal bacteria to name a few. The tendency to generate Tregs in the newborn is 

likely important in preventing overwhelming inflammation in the context of massive 

immune stimulation. However, it also leaves the infant in a precarious situation. The baby 

is no longer in the protective environment of the womb, and now encounters a variety of 

potentially harmful pathogens. Indeed, infections are a leading cause of death in infants 

worldwide (254). 

After babies have already generated tolerance to the most common harmless 

antigens in their environment, it becomes advantageous to increase their ability to mount 

protective immune responses against pathogens. To do this, infants require a mechanism 

to decrease the immunoregulatory tendency of the fetus and newborn. It is generally 

accepted that infants have Th2-skewed immune responses, compared to Th1. In mice, 

stimulating neonatal naïve T cells results in robust Th2 cytokine production, including 

IL-4 (276). Our data demonstrate that UCB Treg differentiation is resistant to inhibition 

by a variety of inflammatory cytokines. However, UCB Foxp3 expression is substantially 

decreased by IL-4. Therefore, we propose that one purpose for Th2 dominance in infants 

may be to inhibit the Treg dominant program of the fetus and newborn.  
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Monocytes and Vascular Immune Regulation 

 Since the discovery of monocytes in the early 1900s, they have been recognized 

as sentinels of the blood, playing an important role in protecting against extracellular 

pathogens and initiating inflammatory immune responses. More recently, monocytes 

have been shown to maintain vessel homeostasis by patrolling the blood vessel walls, 

clearing dead cells and debris and recruiting inflammatory immune cells during infection 

or injury (117, 120). While the roles of monocytes have been extensively studied during 

inflammation, infection, and tissue repair, their immunoregulatory properties have been 

largely unrecognized.  
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 Although adults are not as likely as fetuses or neonates to generate tolerance upon 

antigenic stimulation, they maintain this capacity in certain microenvironments. The gut 

is a well-recognized tolerogenic niche that prevents allergy and inflammation to food 

antigens and commensal bacteria (314). A major contributor to oral tolerance is CD103+ 

DCs in the small intestine lamina propria and mesenteric lymph nodes, which produce 

retinoic acid and TGF-β to induce Tregs (43, 44). Inflammatory bowel disease patients 

have decreased CD103+ DCs and ALDH+ cells in inflamed tissues compared to 

unaffected areas, highlighting the role of these cells in maintaining intestinal homeostasis 

(315). An intriguing question is whether other tissues have analogous populations of 

APCs that prevent aberrant inflammation.  

 Our data show that circulating CD14+CD36hi monocytes from UCB and adults 

produce TGF-β and retinoic acid and promote Treg differentiation, similar to CD103+ 

DCs in the gut. These data suggest monocytes may be an important immunoregulatory 

cell in the vasculature. Although blood vessels are often viewed as a transportation 

system for immune cells and nutrients, immune responses within the vasculature itself 

must also be regulated.  

Atherosclerosis is increasingly recognized as an inflammatory and autoimmune 

state, rather than just a metabolic disease (211). LDL deposits in vessel walls activate 

endothelial cells at sites of turbulent blood flow, leading to increased adhesion molecule 

expression and chemokine production (316). Platelets recruited to these sites enhance the 

migration of other blood cells into the vessel wall, including macrophages and T cells. 

Mice deficient in the ApoE gene develop spontaneous atherosclerosis (316, 317). 
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However, knockout of the IFN-γ receptor along with ApoE significantly protected mice 

from disease (318). This was recapitulated in male IFN-γ-/-ApoE-/- mice, in a gender-

specific manner (319). Low-density lipoprotein receptor (Ldlr) deficient mice with a 

high-fat diet are commonly used as a second mouse model for atherosclerosis. In these 

mice, a loss of the Th1 master regulator, T-bet, also decreased disease severity (320). 

These studies demonstrate Th1 cells are pathogenic during atherosclerosis.  

In contrast, accumulating evidence suggests Tregs mitigate atherosclerosis (212, 

321–324). Oral feeding of anti-CD3 in ApoE-/- mice leads to CD4+CD25+Foxp3+ Treg 

induction, decreased Th1 and Th2 responses, and decreased atherosclerotic lesion size in 

the aortic sinus (324). In two other studies, Ldlr-/- mice were irradiated and reconstituted 

with ICOS-/-, CD28 -/-, or CD80-/-CD86-/- bone marrow(321, 323). These mice have 

impaired Treg development and function and have greater atherosclerotic lesions. Co-

transfer of CD4+CD25+ Tregs with CD28-/- bone marrow reduced the lesion size, while 

depleting CD25 cells in ApoE-/- mice enhanced it(321). These data clearly demonstrate a 

protective role of CD4+ Tregs during atherosclerosis. Therefore, monocytes may protect 

the vasculature against atherosclerosis or other inflammatory diseases by inducing Treg 

differentiation.   

Cholesterol and other lipids are transported in the blood as various lipoproteins 

that may be biochemically modified to more pathogenic forms(211). Monocytes and 

macrophages phagocytose ox-LDL via CD36 or SR-A, and this process leads to fatty 

streak formation in vessel walls. Our data show that ox-LDL also inhibits monocyte-

induced CD8+ Treg differentiation. Therefore, pathogenic LDL species like ox-LDL may 
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promote atherosclerosis not only through foam-cell formation, but also by blocking the 

ability of CD14+CD36hi monocytes to induce Tregs, exacerbating inflammation. 

 As a scavenger receptor, CD36 initiates monocyte/macrophage phagocytosis of 

multiple entities, including beta-amyloid, pathogens, and apoptotic cells. Uptake of these 

ligands can trigger an inflammatory program in monocytes. Beta-amyloid fibrils are 

deposited during Alzheimer’s disease and stimulate inflammation in macrophages and 

microglia, contributing to disease(145, 253). Our lab is currently examining whether 

beta-amyloid also impairs monocyte-induced Treg differentiation. Overall, various CD36 

ligands may have a dual role during inflammation and autoimmunity by activating an 

inflammatory program in phagocytes, and by impairing the ability of monocytes to 

induce Tregs.
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