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ABSTRACT 

Wound care affects millions of people worldwide each year, and the need for an 

effective wound therapy still exists.  The aim of this study was to characterize a novel, 

aerated biopolymer, fibrin foam, which is generated through a patented mixing process 

using a commercially-available fibrin sealant.  This research developed a distinct 

preparation of fibrin foam that creates a porous environment with improved wound 

healing properties.  With this fibrin foam, characterization assessments were performed, 

including evaluation of mixing parameters, biocompatibility, and biomechanical 

strengths.  

 Fibrin foam is created by performing six passes through a mixing device, which 

generates a foam matrix with a mean pore size of 155 micrometers.  Cellular viability 

assays utilizing lactate dehydrogenase and AlamarBlue reagents demonstrated that 

primary endothelial cells, fibroblasts, and keratinocytes were all viable and metabolically 

active on and within fibrin foam.  Though fibrin foam produced slightly weaker tensile 

and wound closure strengths from a biomechanical standpoint compared to the fibrin 

sealant, the aeration process provides additional structural properties.  These include 

higher fluid permeability and greater porosity.  

 In addition to characterizing the biodegradable fibrin foam, efficacy was assessed 

in an in vivo wound healing model.  For this, a biopsy punch model was utilized whereby 

full-thickness dorsal skin wounds were generated in mice.  The wounds were treated with 

fibrin foam, and wounds were evaluated 7 and 14 days post-surgery.  The fibrin foam-
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treated wounds showed significantly superior wound closure compared to the other 

treatments.  In summary, this study characterized an aerated fibrin preparation generated 

from a commercially-available fibrin sealant and demonstrated its superior efficacy as a 

novel wound therapy.   
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CHAPTER ONE 

INTRODUCTION 

Wound care has evolved substantially over the years for the treatment of patients 

worldwide.  The annual global prevalence of skin wounds is staggering – 114 million 

acute wounds, 40 million chronic wounds, and over 10 million burn wounds.
1,2

  These 

wounds have a major clinical and economic impact on the patients.  To treat and close 

wounds, a number of options are available, including sutures, staples, surgical sealants 

and glues, and energy- and negative-pressure-based wound closure techniques.
3-5

  These 

products and procedures are designed to facilitate the multiphase wound healing process.  

Wound healing consists of four main stages – hemostasis, inflammation, proliferation, 

and remodeling.
6,7

  However, complications of wound healing can arise and range from 

pain, scarring, and dehiscence to the more severe evisceration, hemorrhage, and 

infection.
8,9

  

More recent wound care treatments have progressed to aid in more efficacious 

wound healing and to avoid the consequences of improper or impaired wound healing. 

Modern wound care treatments include stem cell treatment, gene therapy, and light-

emitting diode-based treatment; however, these are still in early development.
1
  One 

particular wound healing advancement, tissue engineering, seeks to mimic regeneration 

by employing bioengineered scaffolds to create suitable cellular microenvironments.  The 

optimal matrix should have the following characteristics:  1) biocompatible; 2) 

biodegradable; 3) allows for cellular infiltration; 4) allows for gas and fluid transfer; 5) 
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antibacterial/antimicrobial; 6) strength to resist shear and fragmentation stresses; 7) 

reduces heal-time; and 8) fully-incorporates into surrounding tissue.
10-12

  Current tissue 

engineering scaffolds have been developed from materials, such as collagen, hyaluronic 

acid, polyesters, acellular matrices, and fibrin – each with their respective advantages and 

disadvantages.
13-15

  

Fibrin has been well-characterized as a therapy in hemostasis and wound healing.  

Fibrin also has a critical role in cellular and matrix interactions, inflammation, 

angiogenesis, and neoplasia.
16

  This is due to its inherent binding sites for cellular 

receptors, integrins, and clotting and growth factors.
17-19

  By having a dual function of 

contributing to the biologically active clot during hemostasis and creating a viable matrix 

with specific-binding sites during the wound healing process, fibrin is crucial to tissue 

repair.
20-22

  Thus, fibrin sealants have been investigated as scaffolds to promote wound 

healing.   

ARTISS is a fibrin sealant indicated for use as a tissue glue to adhere/seal 

subcutaneous tissue in plastic, reconstructive, and burn surgeries, as a replacement or an 

adjunct treatment.  Additionally, ARTISS is indicated as an adjunct to hemostasis on 

subcutaneous tissue surfaces.
23

  Fibrin foam is a novel fibrin biopolymer that is generated 

when ARTISS is aerated using a patented mixing process.
24-28

  Compared to ARTISS, 

fibrin foam has greater viscosity, can polymerize in a temperature-independent manner, 

and can be applied to both vertical and inverted surfaces without dripping.  Additionally, 

the foam mixing process generates an open-pore fibrin clot structure compared to the 

dense, closed structure of typical fibrin sealants.
24-27
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This prior research has presented fibrin foam as a candidate for uses in specific 

surgical procedures, including acute and chronic wound treatments, where standard tissue 

sealants have historically had poor performance.  Based on these preliminary findings, I 

hypothesized that this novel fibrin sealant preparation would gain advantageous physical 

attributes from aeration, which would allow fibrin foam to function as a superior wound 

therapy.  Therefore, this study set out to characterize fibrin foam. 

The first aim of this study was to determine the impact of aeration on the physical, 

biomechanical, and biocompatibility properties of fibrin foam.  The process and 

formulation for fibrin foam were initially tested to generate an optimal foam.  From here, 

I used the optimal foam in additional characterization experiments.  Biomechanical and 

structural attributes were measured, including tensile strength, porosity, and permeability.  

To determine the biocompatibility of fibrin foam, both qualitative (scanning electron and 

confocal microscopies) and quantitative (lactate dehydrogenase and AlamarBlue assays) 

experiments were used.   

The second aim of the study focused on the use of fibrin foam as a novel wound 

therapy.  Utilizing an in vitro three-dimensional assay to mimic a wound, I was able to 

visually assess cellular migration and proliferation on and within fibrin foam.  Moving 

from these results, a murine skin wound model was used to elucidate the in vivo efficacy 

and performance of fibrin foam as a wound therapy.  Lastly, fibrin foam was tested for its 

use and feasibility in a negative-pressure wound therapy system.   

Results from this work indicate that fibrin foam is a biodegradable and 

biocompatible polymer with advantageous structural characteristics.  Fibrin foam was 

also shown to be effective in the three-dimensional in vitro wound model as well as 
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having superior wound-closure ability in the murine model.  Following this study, it can 

be established that fibrin foam is an appropriate candidate for future research as a novel 

wound healing therapy.   
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CHAPTER TWO 

LITERATURE REVIEW  

Skin and Wounds. 

 The skin is a multilayered organ within the integumentary system.  It is the largest 

organ in this system and is important in the balance of human health and disease.  The 

skin contains three, main layers within its structure (Fig. 1).  They are the epidermis, 

dermis, and hypodermis (or subcutaneous layer).
1,3

  The epidermis is the outer most layer 

of the skin and is divided into five additional layers.  The stratum corneum is the top 

layer of the epidermis and contains mainly flat squamous cells and keratinocytes.  These 

cells serve as a barrier to prevent water loss and entrance of bacteria into the host system.  

The stratum lucidum is a layer present only in human palms and soles; it is composed of 

several layers of dead cells, which act as an additional barrier.  The next layer of the 

epidermis is the stratum granulosum.  This thin, granular layer of cells is important in the 

secretion of lamellar granules, which aid in the binding of keratin fibers.  Specialized 

cuboidal cells interacting with desmosomes are found in the stratum spinosum.  This 

layer contains multiple layers of keratins that support the epidermal layer.  The last and 

deepest layer in the epidermis is known at the stratum basale.  This layer is comprised of 

columnar cells that are continuously undergoing cell division and proliferation into new 

keratinocytes.  The stratum basale also contains melanocytes and Langerhans cells, which 

are important in the skin’s overall immune function.
4,5,29
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Figure 1. Anatomy of the Skin.  The skin is composed of two main layers.  First, the 

epidermis, which is comprised of closely-packed epithelial cells, and secondly, the 

dermis, made of dense, irregular connective tissue.  The dermis houses hair follicles, 

sweat glands, blood vessels, and other structures. The subcutaneous tissue lies underneath 

the dermis, which is composed mainly of adipose and underlying connective tissues. 

Adapted from Grice et al.
30

 

 

 The dermis is the next layer in human skin.  This middle layer contains many 

more cells and cellular elements than the epidermis.  Collagen and elastin as well as other 

connective tissues are housed within the dermis.  Cells, such as fibroblasts, are located 

here as well.  Hair follicles, nerves, lymphatic and blood vessels, and sweat and 

sebaceous glands are also found in this layer.  The dermis acts to cushion the skin from 

external forces and also eliminates waste.  The bottommost layer of the skin is the 

hypodermis, or subcutis/subcutaneous tissue layer.  The subcutaneous layer is comprised 
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of adipose tissue.  These deposits of fat allow for the protection from external injury as 

well as insulation of body heat.
29

  This is the final layer before reaching the underlying 

muscle, bone, and ligaments. 

 These combined layers of the skin have a multitude of functions that are vital to 

the human body.  Externally, the skin provides protection from foreign objects as well as 

ultraviolet radiation.  The dermal layer regulates temperature by either dilating or 

constricting the blood vessels, which are innervated by the sympathetic nervous system.  

Langerhans cells within the epidermis are important in recognition of microbial antigens 

in support of our immune system.  Additionally, the skin has functions in insulation and 

storage of fat tissues, sensations of external movements, and internal vitamin D 

synthesis.
31-33

 

While the skin serves as a protective barrier, it can be subjected to injury in the 

form of a wound.  These disruptions of the skin can be classified as acute (surgical or 

traumatic) or chronic (pressure or diabetic) wounds.  The annual global prevalence of 

these skin wounds is astounding with 114 million acute wounds, 40 million chronic 

wounds, and over 10 million burn-related wounds.
1
  In the United States alone, these 

numbers are overwhelming.  In 2009, there were a reported 60 million major and minor 

wound incidents, 13 million traumatic wounds, and 4 million pressure- and ulcer-causing 

wounds.
2
  Each year since, these numbers have been growing with the increases in the 

aged population as well as the increased incidence of diabetes and obesity worldwide.   

The first two cases of wounds – surgical and traumatic – are acute wounds and are 

typically classified based on their etiology.  Surgical wounds occur as a result of a cut 

due to a sharp instrument, which often occurs during a surgical procedure.  Traumatic 
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wounds include lacerations (tissues are torn apart), abrasions (wound results from friction 

or scraping away) and contusions (wound results from a direct blow).  Included in the 

traumatic grouping are also burn wounds, amputations, and the more rare disorders, such 

as necrotizing fasciitis.
8,34

   

 Chronic wounds typically persist for significant amounts of time, can reoccur, and 

can develop deep within soft tissues.  Within the chronic wound classification are 

pressure ulcers, diabetic ulcers, and venous and arterial ulcers.  These wounds manifest 

upon one or more of the following factors:  lack of blood flow, malnutrition, trauma, 

immobility, excessive moisture, and lack of sensation.  Pressure ulcers are the most 

common chronic wound and result in tissue ischemia after long periods of applied 

pressure to a tissue.
1
  Venous ulcers can be caused by several conditions including, deep 

vein thrombosis, peripheral neuropathy, and obesity.  Arterial ulcers are often caused by 

diabetes mellitus, aging, and peripheral vascular disease.  However, these are commonly 

treated with surgical intervention or pharmaceuticals.  The final classification of chronic 

wounds is diabetic ulcers.  Due to irregular blood glucose levels and impaired immune 

defenses, diabetic patients are often prone to this type of chronic ulcer.  Diabetic ulcers 

can manifest on the lower limbs and feet of patients and heal slowly and poorly due to the 

delayed healing and infection-prone phenotype of diabetic patients.
2,3

 

 Proper therapies are in place to treat both acute and chronic wounds; however, 

complications can arise within a wound.  When wounds fail to heal properly, minor 

adverse effects, such as scars and dehiscence, can occur.  Scars are a naturally occurring 

process of wound healing; however, abnormal scarring can result in the formation of 

keloid or hypertrophic scars, which are caused by excessive inflammatory response and 
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fibrin formation.
1
  Dehiscence is the partial or total splitting open, or separation, of 

wound layers. This most commonly occurs before collagen formation and can also be 

caused while removing particular wound healing treatments, such as sutures.  More 

severe consequences include hemorrhage and infection.
 
 Hemorrhage occurs when the 

initial phase of hemostasis is unable to stop the bleeding.  This can be caused by a slipped 

surgical suture, a dislodged clot, infection or erosion of a blood vessel by a foreign 

object.  Lastly, infections, which can be quite serious, are a significant detriment to the 

wound healing process.  Bacterial infections can inhibit wound healing and can lead to 

discomfort, deformity, disability, and even death.
4,5 

Wound Healing. 

 The human body begins to heal wounds within seconds after the insult or injury.  

Wound healing is a multi-phase process that includes the processes of hemostasis, 

inflammation, proliferation, and remodeling/maturation (Fig. 2).
6,7,9

  However, wound 

healing is much more complex than the simple progression of phases details.  There is 

extensive overlap between the phases, and within each phase, there are a plethora of 

reactions occurring among the cells, matrices, and chemical mediators (Fig. 3).
35
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Figure 2. Phases of Wound Healing.  The sequential wound healing process with its 

four main phases, including hemostasis, inflammation, proliferation, and remodeling.  

Collagen exposed during wound formation activates hemostasis and the inflammatory 

phase. The fibrin clot formed during hemostasis serves as a scaffold for cells, such as 

neutrophils, monocytes, fibroblasts, and endothelial cells.  Fibrin also serves to 

concentrate the influx of cytokines and growth factors.  During the proliferation phase, 

processes, such as epithelialization, angiogenesis, and granulation tissue formation are 

rapidly occurring.  Lastly, in the remodeling phase, collagen deposition into well-

organized networks occurs for up to a year following wounding.  Adapted from 

Broughton et al.
36
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 The initial step in the wound healing process is hemostasis.  Hemostasis begins 

immediately after the injury has occurred, resulting in blood vessel constriction.
37

  

Following this vasoconstriction, two simultaneous reactions begin to generate a clot at 

the wound site.  The extrinsic pathway of the coagulation cascade is activated and leads 

to the generation of a stabilized fibrin clot.  At the same time, local endothelium and 

platelets become active and aggregate.  This platelet aggregation forms a physical barrier 

to prevent further blood loss.  Once this clot has been generated, the fibrin, platelets, 

collagen, and other factors begin to release cytokines and growth factors into the 

interstitium.  The clot also serves as a vital scaffold for incoming cells, such as 

fibroblasts, neutrophils, monocytes, and endothelial cells.
18

   

 After injury and following the formation of the clot, inflammatory factors and 

mediators are released from cellular membranes and clotting factors at the wound site.
7
  

Blood vessel dilation leads to the accumulation of these factors and results in overall 

inflammation.  Neutrophils will next enter the wound site and begin to eradicate bacteria 

and cellular debris.  Metalloproteinases remove damaged extracellular matrix from the 

wound site to clear the way for new cellular structures.  Lastly, macrophages begin to 

work within the wound cavity.
38

  Macrophages secrete enzymes and cytokines, such as 

vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF), which 

stimulate debridement of the wound, promotion of angiogenesis, and proliferation of 

keratinocytes.
39,40

  These actions by the macrophages serve as a crucial gateway into the 

third phase of wound healing – proliferation.   
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 Proliferation occurs at the wound site from approximately day 4 through day 14 

post-wounding.  The key processes of epithelialization, angiogenesis, granulation tissue 

formation, and collagen deposition occur throughout these days (Fig. 3).
36

   

 
 

Figure 3. Wound Environment and Key Players.  The key players within the wound 

environment. (Top) Within minutes after wounding, coagulation occurs and the fibrin 

clot is formed within the wound cavity.  Inflammation is induced, characterized by entry 

of neutrophils and macrophage accumulation.  (Bottom) Fibroblasts enter the region in 

subsequent days.  Granulation tissue is established and angiogenesis occurs. In the final 

steps, epithelialization is initiated, collagen is deposited, and the extracellular matrix 

undergoes remodeling.  Adapted from Broughton et al.
7
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 Epithelialization is stimulated during the inflammatory phase and begins shortly 

thereafter.  Fibroblasts that entered the wound as a result of macrophage stimulation 

begin to secrete keratinocyte growth factor (KGF).
40

  This factor stimulates the nearby 

keratinocytes to migrate into the wound area, proliferate, and differentiate into new 

extracellular matrix and epidermis.  Endothelial cells and fibroblasts have additional roles 

within the proliferation phase.  Stimulated endothelial cells begin to form new blood 

vessels within the wounded region as part of angiogenesis. Within the final portion of the 

proliferation phase, migrated fibroblasts will become activated, proliferate, and begin to 

synthesize collagen and form granulation tissue.  Collagen deposition begins and is the 

transitional step into the final phase of wound healing, maturation and remodeling. 

 As the name implies, remodeling and organization of the collagen matrix is the 

key aspect of this phase. The initial granulation tissue and collagen results in thin strands, 

which are not highly organized.  As the weeks progress, however, the thin collagen fibers 

are reabsorbed and thicker, denser collagen is deposited into the wound by fibroblasts.  

Maturation and remodeling begins to occur roughly a week after wounding, but can last 

upwards of a year, as the tissues within the wound regain their original pre-wound 

strength.
36,41,42

  

Perturbations to the highly-systematic wound healing process can occur as a result 

of several effectors.  These include age, nutrition, illness, smoking, and other 

environmental factors.  These influences can affect the wound healing process greatly.  

For instance, infections can lead to a prolonged inflammatory phase and interference with 

epithelialization and collagen deposition.  This combined effect can cause lack of wound 

closure and possible wound contamination moving forward.  Smoking has debilitating 
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effects on the wound healing environment.  Nicotine is a vasoconstrictive molecule that 

has been shown to decrease proliferation of the critical wound healing cells, macrophages 

and fibroblasts.
7,36

   

Often times, the canonical wound healing process, as mentioned previously, refers 

to the processes that happen as a result of an acute wound.  However, medical conditions, 

such as diabetic or pressure ulcers, result in situations of chronic wound healing.  Chronic 

wound healing differs from that of the acute process in several ways.
43,44

  First, chronic 

wounds often have a large accumulation of inflammatory cells within the wound site.  

These cells lead to such negative effects as increased reactive-oxygen species and 

increased degradation of extracellular matrix.  These combine to generate a state of 

habitual inflammation.  Secondly, fibroblasts in these wound situations have been shown 

to have a lower mitogenic response to growth factors and cytokines.  This, in turn, 

impedes the formation of granulation tissue and collagen deposition.  Keratinocytes are 

also affected as a result of a chronic wound state. In diabetic patients, keratinocytes 

exhibit impaired migration, which leads to a failure to epithelialize the wounded region.  

Lastly, the abundance of inflammatory cells causes a continual state of extracellular 

matrix degradation.  Collagen deposition and maturation within the remodeling phase of 

wound healing is prevented as the inflammatory cells deter the processes from 

occurring.
44

  Together, these effects found in chronic wounds lead to the formation of 

poor- or non-healing wounds for their patients as a result of the sustained inflammation 

and lack of epithelization of the wound.   
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 While there are clear differences between acute and chronic wound healing 

pathways in humans, there are also major similarities and differences in wound healing 

among species.  In scientific research, porcine and murine models are used most widely 

to relate pre-clinical wound healing studies to humans.  Pigs have similar anatomy and 

physiology of the skin, blood supply to the skin, and wound healing characteristics when 

compared to humans.
45

  Porcine skin also has similar lipid profiles, epidermal cell 

turnover, and carbohydrate metabolism within the epidermis.  Due to their highly-

translational ability, pigs are frequently used in pre-clinical studies for wound healing and 

plastic surgery.  An additional similarity between humans and pigs is the fixed skin.  

Fixed skin allows for wound healing by reepithelialization.    

 Unlike pigs and humans, mice primarily heal through contraction of the skin.  To 

overcome this disadvantage, researchers have developed splinted-wound models, which 

force the mice to heal through granulation and reepithelialization and mimic human 

wound healing.
46

  Murine skin also contains far greater amounts of hair follicles, while 

having a thinner epidermal layer when compared to human skin.  Even with these few 

dissimilarities, mice are still readily used in scientific research due to their abundance, 

ability to reproduce data, and low cost – all of which are advantages to using murine 

models over pigs.  Additionally, and while mice share 95% of the same genes as humans, 

mice can easily be genetically modified to study particular disease states, which is highly 

attractive for any translational research situation, including wound healing.
47

       

Hemostasis and Coagulation Cascade. 

 Hemostasis is a crucial first step in wound healing, but it also is a highly-

regulated and important homeostatic process within the human body.  Hemostasis is 
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required for everyday functioning and to prevent blood loss after tissue injury or trauma.  

There are three main phases that occur during hemostasis:  1) vascular phase 2) platelet 

phase and 3) coagulation cascade.
48

   

 The vascular phase of hemostasis begins immediately after injury, which causes 

spasm of the smooth muscles in the vessel walls and results in retraction of severed 

arteries and vasoconstriction of arteries and veins, thus decreasing the rate of blood 

flow.
49

  This occurs as the pericytes, which are cells that function in the regulation of 

blood flow, proliferate and differentiate into endothelial and smooth muscle cells.  

Additional factors, such as reflexes initiated by local pain/nervous system receptors, and 

chemicals released by endothelial cells and platelets such as von Willibrand’s factor 

(vWF), adenosine diphosphate (ADP), thromboxane, and serotonin, can lead to further 

vasoconstriction of the blood vessels.  This vascular phase can significantly reduce blood 

loss for over an hour, which provides time for the formation of the platelet plug and 

blood coagulation.
50,51

 

After the vasoconstriction of the blood vessels at the site of injury, the platelet 

phase begins and results in ultimate formation of a soft platelet plug.
52

  In normal 

physiological conditions, platelets are small anucluer cells that do not adhere to surfaces 

or aggregate with one another.
53

  However, in the case of injury to a tissue or blood 

vessel, platelets are exposed to the subendothelial matrix and various platelet adhesive 

proteins and activators.  The von Willebrand factor is an abundant platelet adhesion 

protein, which interacts with other adhesive proteins, such as collagen.
54

  The circulating 

platelets bind to collagen via the glycoprotein Ia/IIa receptors located on their cell 

surface. This adhesion process leads to the activation of the platelets.
55

  Once activated, 
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platelets begin to aggregate at the site of injury through fibrinogen bridges, which link 

glycoprotein IIb/IIa receptors located on adjacent platelets, as well as collagen binding.  

Additionally and upon activation, platelets can release the contents of their storage 

granules, which include ADP, thromboxane A2, and serotonin, which are critical to 

platelet aggregation and activation.
56

  These granules activate additional circulating 

platelets, which lead to further aggregation, and activation of coagulation.  These 

aggregating platelets adhere and create the soft platelet plug at the site of injury.
57,58

  

Although the platelet plug initially stops bleeding, a supplemented and more stable fibrin 

clot is required.  This fibrin clot is formed during the coagulation cascade. 

Simultaneous to the above-mentioned platelet phase, the coagulation cascade 

occurs at the wound site (Fig. 4).  The coagulation cascade is a complex process that 

occurs to stabilize the platelet plug through the generation of a fibrin clot.  The 

coagulation cascade is comprised of two distinct pathways – the extrinsic and intrinsic 

pathways.  Both pathways ultimately converge on an identical enzymatic reaction that 

leads to formation of the clot.
48

    

 The extrinsic, or tissue factor, pathway is activated when the endothelial lining of 

the blood vessel becomes damaged.
59

  This damaging of the vessel wall allows for 

collagen and tissue factor (TF) to be exposed and released to the surrounding tissues and 

blood.  TF is expressed by smooth muscle cells, cells surrounding blood vessels (i.e. 

fibroblasts) as well as white blood cells.  TF is a cell surface receptor for factor VIIa.  

When TF is exposed after injury, the TF/VIIa complex forms.  This complex can then 

convert factor X to its active form, Xa.  After the activation of factor X, both extrinsic 

and intrinsic pathways of the coagulation cascade converge at the common pathway – 
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activation of X to Xa (Fig. 4).  After factor Xa is active, factor Xa, factor V, and calcium 

form the tenase complex that is required to convert prothrombin to thrombin.  Thrombin 

is a serine protease that converts soluble fibrinogen into insoluble strands of fibrin.
60

  

Factor XIIIa catalyzes the formation of covalent bonds between amino acid residues in 

fibrin. These covalent bonds increase the stability of the fibrin clot by crosslinking the 

fibrin polymers.   

 

Figure 4. The Coagulation Cascade.  The intrinsic and extrinsic pathways of the 

coagulation cascade. The intrinsic cascade is initiated when contact is made between 

blood and exposed negatively-charged surfaces. The extrinsic pathway is initiated upon 

vascular injury which leads to exposure of tissue factor, a cell-surface glycoprotein that 

binds phospholipids. These two pathways converge at the activation of factor X to Xa – 

the common pathway. Active factor Xa activates prothrombin (II) to thrombin (IIa).  

Thrombin then converts fibrinogen to fibrin and activates factor XIII to XIIIa.  Factor 

XIIIa cross-links fibrin polymers creating a final fibrin clot.  Roman numerals refer to the 

specific coagulation factors.  Black arrows indicated the cascade events; red arrows 

indicate where the hemostatic agents act within the pathway.  Adapted from Monroe et 

al.
50
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In contrast to the extrinsic pathway, the intrinsic, or contact pathway, is typically 

less significant to overall hemostatic balance.  The intrinsic pathway is linked to 

abnormal physiological states, such as hyperlipidemia and bacterial infections.
61-63

  

Contact activation within the intrinsic pathway can occur through interactions with 

phospholipids, lipoprotein particles, and negatively-charged surfaces as well as with 

surface proteins and fatty acids on bacteria.  This pathway contains more functional 

proteins than the extrinsic pathway (Table 1).  After activation, the intrinsic pathway is 

initiated with the formation of a complex of high-molecular-weight kininogen (HMWK), 

prekallikrein, and factor XII (Fig. 4).  The formation of this complex converts both 

prekallikrein to kallikrein and XII to XIIa – their active forms.  Factor XIIa goes on to 

convert XI into XIa, and subsequently XIa activates IX.
48

   Factor IXa, along with its co-

factor VIIIa and calcium, forms a complex with their combined substrate, factor X.  

Factor X is converted to Xa, and the common pathway of the coagulation cascade is 

activated with the ultimate arrival at a fibrin clot formed through conversion of 

fibrinogen to fibrin by thrombin. 

However, thrombin has other functions that are vital for maintaining hemostasis.  

Additionally, thrombin acts to convert factor XI to XIa, VIII to VIIIa, and V to Va.  

These conversions are considered positive feedback mechanisms by which amplification 

of the coagulation cascade can occur. Thrombin can also activate factor XIII to XIIIa. In 

addition to its activity in the coagulation cascade, thrombin promotes platelet activation 

and aggregation.
64
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Factor/Name Function(s) 

Factor I (fibrinogen) Converted to fibrin by Factor IIa 

(thrombin).  Creates fibrin clot. 

Factor II (prothrombin) Converted to thrombin by Factor X.  Factor 

IIa converts fibrinogen to fibrin. 

Factor III (tissue factor, TF) Initiates the extrinsic pathway.  Interacts 

with Factor VII. 

Factor IV (calcium) Is required for activation of Factors II, VII, 

IX, X, and XIII. 

Factor V (Proaccelerin) Essential for activation of thrombin. 

Factor VI (Accelerin, Va) Also known as Factor Va 

Factor VII (Proconvertin) Binds to TF and is essential for the 

activation of Factor X. 

Factor VIII (Antihemophilic globulin) Important to the activation of Factor X. 

Factor IX (Christmas factor) Essential to the activation of Factor X and 

the common pathway. 

Factor X (Stuart-Prower factor) Converts prothrombin to thrombin. 

Factor XI (Plasma thromboplastin 

antecedent) 

Activates Factor IX in intrinsic pathway. 

Factor XII (Hageman/contact factor) Essential to the intrinsic pathway and the 

activation of Factor XI. 

Factor XIII (fibrin-stabilizing factor) Aids in the final fibrin clot formation 

through stabilization of fibrin fibers. 

Kallikrein Essential for Factor XII activation, 

necessary in Factor XIIa activation of XI. 

Table 1. Factors of the Coagulation Cascade.  Adapted from Moss et al.
65

  

 

The hemostatic pathway is a critical physiological pathway; however, it is in a 

constant state of homeostasis.  As the fibrin clot is being formed throughout the 

coagulation cascade, the fibrinolytic system is already beginning to disrupt it.
51,66

  The 

fibrinolytic system functions to dissolve blood clots in healthy blood vessels (i.e. prevent 

thrombosis) and during the wound healing process.  Plasmin is the key effector in this 

system.  Plasmin is a zymogen that is generated from its inactive precursor, plasminogen.  

Plasminogen is converted into plasmin by two proteases – tissue-type plasminogen 

activator (tPA) and urokinase-type plasminogen activator (uPA).
67

  For balance, these 

PAs are regulated by plasminogen activator inhibitors.  However, after plasminogen is 
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activated to plasmin, it cleaves fibrin at specific lysine and arginine residues, which 

ultimately results in dissolution of the clots.   

Working alongside these proteases is thrombin-activated inhibitor of fibrinolysis 

(TAFI).  TAFI is also a zymogen that can be activated by either plasmin or thrombin.  

While the fibrin clot is being degraded, C-terminal lysine residues are exposed and can 

enhance activation of plasmin and further fibrin degradation.  TAFI, however, removes 

these lysine residues from fibrin fibers and inhibits any further plasmin(ogen) activation. 

Taken together, the effectiveness and balance of the hemostasis depends on both the 

procoagulation reactions of the coagulation cascade as well as the clot-dissolving process 

in the fibrinolytic system.
68,69

 

The fibrin clot functions in a variety of important physiological processes 

throughout the body.
16

  The most known function of fibrin is within the coagulation 

cascade.  Upon injury, fibrin and its constituents are formed, processed, and degraded in a 

highly-defined pathway.  Due to the influence of the coagulation cascade and hemostasis 

on wound healing, fibrin has been shown to play an important role in the healing phases.  

Hemostasis is the first phase in wound healing.  The network of insoluble fibrin fibers 

that is created as a result of the coagulation cascade stabilizes the platelet plug.
22

  This 

fibrinous matrix acts as a scaffold during wound healing for a plethora of cell types.  

Because of the integrin and non-integrin bindings site of fibrin, cells such as endothelial 

cells, smooth muscle cells, and fibroblasts can easily attach and migrate to the fibrin 

matrix to initiate the wound-healing response.
17,18

 

 After these initial contacts, fibrin can also bind monocytes and leukocytes, which 

are two prominent cell types for the secondary, inflammation phase of wound healing.
70,71
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These cells eliminate debris and bacteria from the wound site.
72,73

  In line with the wound 

healing phases, fibrin also serves as a provisional matrix for endothelial cells and 

fibroblasts.  The endothelial cells, upon stimulation by growth factors, proliferate and 

migrate into the wound site.  There, they begin to generate new vasculature.
74,75

  

Following the proliferative phase of wound healing, remodeling of the wound area 

occurs.  Fibroblasts initially use the fibrin matrix as a scaffold for migration and 

proliferation.  Once the fibroblasts have entered the wound, they begin to create collagen 

as well as other extracellular matrix proteins to regenerate the tissue.
76,77

  At each step 

along the wound healing process, fibrin has been shown to be an integral factor.  Fibrin 

has critical roles in hemostasis, inflammation, and revascularization due to its inherent 

binding sites for cellular receptors, integrins, and clotting and growth factors.
17-19

   

Although the hemostatic and wound healing phases are sequential and regulated, 

medical and clinical indications can manifest causing perturbations to this normally-

balanced pathway.  Surgical or accidental trauma as well as genetic predispositions can 

alter hemostasis through abnormal (or lack of) formation of the platelet plug or fibrin 

clot.   

To combat these clinical situations of excessive or abnormal bleeding, the medical 

field has several hemostatic therapies at its disposal (Table 2).
78

  These include 

mechanical, energy-based, and chemical methods to control bleeding – each with their 

own specific indications and impact on coagulation (Fig. 4).
65

  Mechanical methods, such 

as direct pressure, gauze, sponges, and sutures/staples are often used.  These measures 

rely on the physical strength and barrier formation to prevent further blood loss.  Thermal 

and energy-based hemostatic methods (e.g. electrosurgery, ultrasound, and lasers) have 
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been employed for their use in achieving hemostasis.  Electrosurgery utilizes high-

frequency alternating currents to cut, coagulate, and vaporize tissues; while ultrasound 

devices covert electrical energy into mechanical energy that can seal blood vessels.  

Additionally, lasers use highly concentrated light energy to cauterize bleeding tissues.  

The thermal and energy-based hemostatic techniques must, however, be used by properly 

trained medical professionals due to their complex equipment and functionalities.
79,80

   

Mechanical -Direct pressure 

-Gauze, sponges 

-Sutures, staples 

Thermal & Energy-based -Electrosurgery 

-Ultrasound 

-Laser 

Chemical 

 

-Pharmacological 

 

 

 

 

 

-Hemostatic Agents 

 

 

-Epinephrine  

-Vitamin K, Vitamin K analogs 

-Protamine 

-Desmopressin 

-Lysine analogs 

 

-Mechanical 

 Collagen 

 Gelatin 

 Cellulose 

-Active (Thrombin) 

-Sealants 

 Fibrin 

 Polyethylene glycol (PEG) 

 Albumin, glutaraldehyde 

 

Table 2. Methods for Achieving Hemostasis.  Adapted from Samudrala et al.
78

 

The final means for (re-)establishing hemostasis is through the use of chemical 

methods.  Both pharmacological and hemostatic products are used in cases where the 

mechanical and thermal methods are impractical or otherwise contraindicated, such as 

instances of bleeding over multiple vessels or areas of the body.  Pharmacological 
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treatments, as named in Table 2, are primarily used to improve final fibrin clot formation 

through either preventing anticoagulation or increasing the platelet aggregation to the 

bleed site.  Mechanical (or passive) hemostatic agents stop the flow of blood by either 

providing a scaffold for the rapid formation of a native clot, or by physically acting as a 

barrier to stop the bleeding.  In contrast, active hemostatic agents, such as thrombin 

products and fibrin sealants act to recapitulate the endogenous coagulation cascade and 

fibrin clot formation.
80,81

   

Fibrin and Fibrin Sealants. 

 Fibrinogen is cleaved by thrombin to generate a fibrin clot during the final step of 

the coagulation cascade (Fig. 4).  This single step within hemostasis has a far greater 

reach over the physiological processes within the human body.  Not only is fibrin critical 

to clot formation during hemostasis, but fibrin is an important factor in wound healing, 

inflammation, angiogenesis, and neoplasia.
16

  Fibrinogen is a 340 kilodalton (kD) 

glycoprotein that consists of a dimeric structure composed of 2Aα, 2Bβ, and 2γ chains.  

The Bβ and γ chains make up the D-region of fibrinogen and create an alpha-helical 

structure, while the Aα chains of the E-region are globular (Fig. 5).
82

   

 Thrombin is a serine protease of the trypsin family of proteins that is generated 

from its zymogen, prothrombin. During the coagulation cascade, prothrombin is cleaved 

into thrombin by factors Xa and Va.  Cleavage of prothrombin into thrombin occurs with 

two sites and can be generated through two possible pathways (Fig. 5).  Initial cleavage 

yields N-terminal fragments 1 and 2 (F1.2) and the zymogen, prethrombin, which is 

further cleaved to yield the disulfide linked thrombin (left pathway of Fig. 5A).  

Alternatively, cleavage in the opposite order generates an immediate, meizothrombin, 
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prior to processing into the active thrombin (right pathway of Fig. 5A).  Thrombin, in its 

active form of α-thrombin, is a 36 kD protein.  Thrombin is known to act as a 

procoagulant and anticoagulant enzyme with the human body.  Thrombin elicits a 

response during the coagulation cascade to form a fibrin clot and also activates platelet 

activation during the earlier stages of hemostasis.
83

  For anticoagulation, thrombin has 

been shown to interact with thrombomodulin, which is a required molecule for the 

activation of protein C – an inactivator of factors Va and VIIIa leading to down 

regulation of thrombin generation.     

 

Figure 5. Structures of Thrombin and Fibrinogen.  A) α-thrombin is generated by the 

autocatalytic and factor Xa cleavage of prothrombin.  α-thrombin, the active form of 

thrombin, is covalently linked through disulfide bridges.  B) Fibrinogen is dimeric 

glycoprotein composed of 2Aα, 2Bβ, and 2γ chains. Fp:  Fibrinopeptides. Adapted from 

Wood et al and Undas et al.
82,84

 

 

When fibrin formation occurs, fibrinogen is converted to fibrin by thrombin (Fig. 

6).  Thrombin cleaves fibrinopeptides (Fp) A and B from the Aα and Bβ chains in 

fibrinogen.  The release of these peptides contributes to the lateral aggregation of the 

initial fibrin clot.  Cross-linking and expansion of the fibrin clot occur after the inclusion 

of factor XIII.  Factor XIII allows for the crosslinks of the γ-chains and overall expansion 



26 

 

 

 

of the final, stabilized fibrin clot.  This overall fibrin clot structure is dependent on many 

variables, including pH, salt concentration, thrombin concentration, factor XIII 

concentration, and fibrinogen cross-linking.  pH changes can affect the fibrin fiber 

thickness, with more basic pH environments leading to thinner fibers.  Increased salt and 

thrombin concentrations increase clotting rate, which leads to thinner fibrin fibers as well.  

Factor XIII and fibrinogen alterations can cause changes in branching and polymerization 

in the final fibrin clot.  Each of these factors may lead to variations of the fibrin clot and 

can impact the function of the clot itself.
82,85

 

The fibrin clot also possesses unique biomechanical and viscoelastic properties.  

Fibrin clots have the tensile strength to stop bleeding and hold tissues together; while also 

having burst pressure to withstand the forces of arterial blood flow.  Fibrin is elastic and 

viscous as well.  It can deform and withstand shear forces within the body while 

remaining fluid due to its high elasticity.
85

  Fibrin clots also possess unique structural 

qualities as well.  Fibrin contains a structure encompassing a spectrum of porous void 

spaces – from a few nanometers to 50 µm.
86

  This porosity is crucial to fibrin functioning 

and has a direct impact on cell migration on fibrin, air/fluid transfer through the clot, and 

overall permeability.   
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Figure 6. Fibrin Clot Formation.  Schematic of fibrin clot formation.  Fibrin 

polymerization is initiated by the action of thrombin, which cleaves the fibrinopeptides 

from the middle of fibrinogen to produce fibrin.  These initial oligomers lengthen with 

the additional monomers to make protofibrils, which aggregate to form fibrin fibers.  

These fibers branch into a three-dimensional fibrin network, which is finally stabilized by 

the formation of covalent bonds introduced by the plasma transglutaminase, factor XIII. 

Adapted from Undas et al.
82

 

 

  Due to the impact of fibrin on multiple human systems, its biocompatibility, and 

advantageous biomechanical attributes, fibrin has been well-characterized and used in the 

medical field for a variety of applications for over a hundred years.
87

  Fibrin sealants are 

two-component medical devices that contain fibrinogen and thrombin.  These agents are 

combined and generate a fibrin clot.  Variations of fibrin sealants exist as well – 

including alterations to the formulation (i.e. increasing or decreasing thrombin 

concentrations, use of human, bovine, or synthetic proteins), addition of constituents (i.e. 

other hemostatic agents), and freeze-drying.
88
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 Each preparation of a fibrin sealant is created for a particular use.  Fibrin sealants 

can be used as hemostatic agents, sealants, or adhesives.
89

  Hemostatic agents (e.g. 

hemostats) are the canonical use of a fibrin sealant, whereby their use is dependent on a 

bleed and fibrin to generate a clot.  A sealant creates a barrier between surfaces to prevent 

leakage of liquids and gases.  Lastly, fibrin sealants functioning as adhesives are used for 

ability to glue structures together.  With each preparation, the indications for a particular 

fibrin sealant become apparent.  Hemostats can be used in most surgical situations where 

bleeding occurs.  Sealants can be used as wound therapies and to repair tissue 

anastomoses, while adhesives are employed for use in reconstructive surgeries, such as 

burn and skin grafts.
87,90,91

   

 While the aforementioned practices of fibrin sealants are ever-abundant in the 

medical field, newer and more innovative uses for fibrin sealants are being studied.  In 

recent years, fibrin sealants have been altered to serve as a template for cellular 

migration.  Their matrix interactions with various cell types, such as those in wound 

healing, allows for a candidate scaffold for wound repair.  Additionally, fibrin sealants 

have been widely studied for their use as a delivery system.  Pharmaceutical drugs, 

growth factors and cytokines as well as cells have been incorporated into fibrin matrices 

for use in a spectrum of medical applications.
92-94

 

 Lastly, fibrin sealants have gained appeal in the field of tissue engineering. Due to 

their cellular and protein interactions, fibrin sealants are considered active cellular 

matrices.  Along with their mechanical and biochemical properties, fibrin sealants are 

attractive candidates for further applications in tissue engineering and as matrices for 
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cellular differentiation.  By combining fibrin with other stimulating factors, these sealants 

could be used as highly-customizable scaffolds.
90,92

 

Wound Therapy. 

To promote proper wound healing and prevent the possible risks caused by 

inadequate healing, a variety of wound closure treatments and dressings are available for 

clinicians (Table 3).
95

  These wound therapies range from the components of the therapy 

to the mechanism by which the therapy acts to close the wound.  Traditional wound 

therapies include gauze, sutures, staples, and wound-closure strips.  These therapies have 

been used for many decades and rely on their mechanical strength to hold and seal the 

wounds.  While reliable in most skin wounds, the use of these agents is often limited to 

their reach and placement on the wound.  Additionally, these traditional therapies can 

often lead to dehiscence and improper sealing of the wound.
1,2

 

There are two main classes of sealants used for wound healing:  biologic (e.g. 

albumin, collagen, and fibrin sealants) and synthetic (e.g. hydrogels, cyanoacrylate, and 

polymers).  The biologically-derived sealants products have inherent hemostatic 

properties to decrease blood flow and allow for adherence to the tissue. Synthetic sealants 

elicit tissue adherence within minutes without the use of sutures or staples.  These 

sealants are also biodegradable and slough off or become resorbed by the body once the 

underlying wound site has fully healed. These materials chemically bind to tissue, 

provide immediate sealing of tissues with significant tensile strengths and without the 

risk of immunogenicity.
2,4

 

Polymers have also been used to synthesize gauze, foams, and other dressings.  

Polyurethane dressings are used in the treatment of acute and chronic wounds.  These 
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wound dressings are permeable to both gases and fluids, including wounds with 

moderate-to-heavy exudates.  Moreover, polyurethane dressings are biocompatible, have 

relatively low toxicity, and can be fashioned to a specific pore size matrix.  These 

specific matrices can be utilized in different therapies and can enhance reepithelialization 

while providing mechanical stability to the wound site.  A common disadvantage to these 

polymer dressings is their limited biodegradability.  These dressings must be changed or 

removed periodically during the wound treatment process, which ultimately can lead to 

delayed healing.
96

 

Physical and energy-based processes have also been coupled to wound closure 

methods to aid in wound healing.  One of which is negative-pressure wound therapy 

(NPWT), which utilizes a subatmospheric vacuum system to improve wound healing.  

This technique is often used in hard-to-close acute and chronic wounds because of its 

ability to seal the wound edges and remove excess exudate from the site of injury.  

NPWT involves the use of polyurethane foam or gauze to cover the wound site and is 

ever-growing in popularity for patients with skin grafts, dehisced surgical wounds, and 

pressure ulcers.  NPWT-treated wounds often require debridement of the polyurethane 

wound dressings after several days of treatment due to the tissue ingrowth.  This leads to 

pain, discomfort, and re-wounding of the tissue.
2,95

   

 

 

 

 

 



31 

 

 

 

Class/Type Characteristics 

Gauze Cotton fiber; inexpensive material; requires 

frequent changes on the wound 

Sutures Absorbable or non-absorbable; variable 

tensile strength; may enable infections 

Staples Stainless steel or titanium based; technique 

needed for application 

Tapes/Films Cost-effective; not suitable for wounds 

with heavy exudates 

Hydrogels Water- or glycerin-based gels; non-

adherent to wound 

Hydrocolloids Pectin- or gelatin-based gels; adherent and 

may cause damage to skin 

Foams Polyurethane based; can absorb moderate 

exudate 

Alginates Suitable for wounds with heavy exudate; 

some hemostatic activity 

Sealants Human-, animal-, or synthetic based 

platforms; ability to seal wound; protect 

wound from infection 

Silver Dressings Contain broad-spectrum antimicrobial 

activity; should be used for infected 

wounds 

Vacuum Removes exudate from wounds; 

mechanical seals wounds; increasing 

perfusion 

Table 3. Classification of Wound Therapies. Adapted from Janis et al.
6
 

 

Ultrasonic and radiofrequency are two energy-based therapies that have gained 

recognition for use in wound healing.  Ultrasonic wound therapy uses ultrasonic 

frequencies to fuse and seal tissues together.  Similarly, radiofrequency techniques, or 

electrosurgery, can generate high temperatures from radio waves to be used to cauterize 

the wounded tissues.  These energy-based techniques have become more popular over the 

traditional sutures and staples because of their ability to create a leak-proof seal in the 

wound.  The requirement of specialized tools and training to use such devices, though, is 

a larger disadvantage to their use.
2
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While all available wound therapies have their respective advantages and 

disadvantages for use in clinical situations, the ideal wound therapy or dressing still 

eludes the scientific community.  This optimal wound therapy has been postulated to 

require the following attributes
10,95

: 

 Ease of application 

 Reduce heal time 

 Biocompatible to tissue 

 Biodegradable 

 High mechanical strength and elasticity 

 Fluid and gas permeability 

 Non-toxic and non-antigenic 

 Affordable and long shelf life 

 Resistant to bacterial/microbial infection 

Researchers in the later part of the 20
th

 century began generating more modern wound 

therapies to try and meet these requirements and provide superior wound healing 

therapies for patients worldwide.  These include the use of stem cell therapy, gene 

therapy, and tissue engineering.  Stem cells have been favored as they are critical to 

tissue regeneration and wound healing in the body.  Stems cells recapitulate wound 

regeneration and provide daughter cells that can replenish the lost or damaged tissues 

through cellular differentiation.
14

  

Gene therapy has been a novel wound therapy as it allows for the implantation of 

genes/transgenes into recipient cells.  These genes, often encoding growth factors or 

cytokines, can be used to promote wound healing through the added recruitment of cells 
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and other tissue factors.  For example, virally-transferred epidermal growth factor (EGF) 

could be implanted at a wound site for the downstream effect of leading to the 

proliferation of epidermal and mesenchymal cells; whereas platelet-derived growth factor 

(PDGF) would allow for the chemotactic response and matrix production of macrophages 

and fibroblasts, respectively.  Downsides to this potential therapy are immunological or 

toxic side effects as well as the risk of tumor development.
97

  Additionally, these 

therapies apply one gene encoding one cytokine or growth factor, with limited effects.  A 

typical wound environment has dozens of factors present.  While stem cells and gene 

therapies are promising, very few have reached clinical trials. 

Lastly, tissue engineering has been at the forefront of recent studies in wound 

healing research.  Tissue engineering aims to mimic the structural and cellular elements 

of a tissue to promote the repair and regeneration of that tissue, which is appealing for a 

wound healing situation.  Current tissue engineering scaffolds vary on the test material 

and range from collagen, fibrin, and hyaluronic acid to acellular matrix and 

biodegradable polymers.
13,14

   

Tissue Engineering. 

 Tissue engineering has gained interest over the past twenty years for its versatile 

role in many clinical situations, including wound healing, due to the highly-customizable 

ability of tissue-engineered scaffolds.  Tissue engineering’s goal is to mimic tissue 

regeneration by creating suitable cellular microenvironments.  The scaffolds restore the 

cellular microstructures and mechanical properties of the tissues by possessing critical 

attributes, including porosity, biocompatibility, and biomechanical strength – making 

them ideal therapies for medical intervention.
10,14
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 The porosity of the scaffolds is one of the most important attributes to its success.  

The pore sizes of a scaffold can be manipulated for a given clinical indication.  Pore sizes 

affect different cell types and cellular processes depending on their sizes (Table 4).
15,98,99

  

Due to the ability of tissue-engineered-scaffolds to be customized, researchers may alter 

their scaffold’s pores to fit and treat a particular problem.   

Cellular Process Cell Type/Model Used Pore size (µm) 

Angiogenesis In vivo rat implantation 160-270 

Adipogenesis Bone marrow stem cells, 

adipose-derived stem cells 

70-110 

Cellular infiltration Dermal fibroblasts 100 

Chondrogenesis Porcine chondrocytes, 

rabbit mesenchymal stem 

cells 

70-120, 200-500 

Osteogenesis In vivo mouse implantation 150-400 

Proliferation Human fibroblasts 100-250 

Skin regeneration Guinea pig dermal and 

epidermal cells 

20-125 

Smooth muscle cell 

differentiation 

Canine bone marrow stem 

cells 

50-200 

Table 4. Pore Sizes Required for Various Cellular Processes.  Pore sizes required for 

various cellular processes.  Pore sizes (µm) detail the approximate range required for a 

scaffold’s structure to support the cellular processes listed.  Adapted from Loh et al.
15

   

 

The porosity of a scaffold also affects its permeability.  Permeability of these 

scaffolds plays a significant function in its overall effectiveness.  The scaffolds must be 

able to allow for cellular migration and infiltration, but also for nutrient, waste, and fluid 

transport in and out of the structure.  Additionally, the scaffolds must possess 

biomechanical strengths to support tissue growth and movement.
99

   

Tissue-engineered scaffolds can come in all shapes and sizes and can be created 

from a variety of substrates to accomplish the goals of tissue regeneration.  

Biocompatibility and biomechanical strength go hand-in-hand with the chosen substrate 
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for the particular scaffold.  The ideal matrix is biocompatible, promotes regeneration and 

cellular integration, and fully incorporates into the tissue. 

Collagen is often used for tissue engineering and wound healing situations.  It is 

biocompatible, non-immunogenic, and is readily absorbed into the tissue site.  Due to its 

similar structural properties to extracellular matrix proteins, collagen-based scaffolds can 

be used in a variety of regenerative applications, including bone, skin, and wound 

repair.
100

  Another often-used scaffold is hyaluronic acid.  This polysaccharide is present 

in connective tissues within the body and, while biocompatible, is readily digested.  

Because of its impact in connective tissues, hyaluronic acid scaffolds are sought after for 

use in cartilaginous repair and wound healing.
101

   

Chitosan is an aminopolysaccharide found in the exoskeleton of insects, shellfish, 

and fungi.
102

  Chitosan, while porous, biocompatible, and biodegradable, is often 

combined, in practice, with hyaluronic acid and collagen-based scaffolds for use in a 

variety of applications.   

Fibrin, often utilized as a surgical sealant, is a versatile scaffold in tissue 

engineering.
103

  Fibrin-based scaffolds have excellent biocompatibility and have been 

fabricated with additional cells, growth factors, and pharmaceutical drugs to improve 

tissue regeneration.   

Acellular matrices are derived from animal tissue for which the living cells have 

been removed.  This matrix is appealing for tissue engineering because of its several 

advantages.  These matrices are biocompatible and biodegradable, but are also 

morphologically identical to the tissue structures.  This allows for improved cellular 

migration and infiltration.  Additionally, acellular matrices have similar biomechanical 
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strengths to the surrounding tissues.
104

  Due to these attributes of decellularized matrices, 

their use in organ transplant has been a recent hub of tissue engineering research.  

Acellular matrices have been employed in many clinical indications, including as 

artificial skin scaffolds as well as human tracheal matrices for use as bronchial 

transplants.
105

   

While natural and biological materials have the added attributes of 

biocompatibility and similar structural characteristics to the native tissues, synthetic 

polymers have gained appeal in recent years for their use in tissue engineering.  These 

scaffolds can be generated from many polymers, including polyesters, polylactic acid, 

polyglycolide, poly(lactic-co-glycolic acid), and others.
106

  These polymers are 

biodegradable and have additional advantages as well.  The polymers have added 

biomechanical strength over natural materials, can be processed to meet exact porosity 

requirements, and have controlled degradation rates over time.  As long as the 

degradation byproducts are non-toxic, these polymeric scaffolds can be fabricated to treat 

a wide array of tissue engineering-related issues.   

Because of the capacity to influence all properties of the scaffolds, researchers 

have also manipulated the above materials through addition of cells, growth factors, and 

other molecules to aid in improved tissue regeneration.
107

 Stem cells, for instance, have 

been implanted in these matrices to allow for improved healing and growth of tissues.  

The tissue engineering field is continuing to grow in hopes of finding optimal scaffolds 

for tissue regeneration, wound healing, bone growth, and other medical issues.   
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ARTISS Fibrin Sealant.
23

 

 ARTISS is a fibrin sealant marketed by Baxter Healthcare Corporation.  ARTISS 

was first approved by the FDA for use in the United States in 2008.  ARTISS is a fibrin 

sealant preparation made from pooled human plasma, where both components 

(fibrinogen and thrombin) are formulated as two sterile, deep-frozen solutions.  These 

solutions are presented in two, separate pre-loaded chambers of a single device that mixes 

those two components at the syringe tip (Fig. 7).  ARTISS is generated in a deep-frozen, 

vapor-heated and solvent detergent-treated state that has a two-week shelf life once 

thawed at room temperature.   

The two components of ARTISS fibrin sealant are denoted as the sealer protein 

solution (i.e. fibrinogen) and thrombin solution.  The sealer protein contains active 

ingredients as listed in Table 5.  The sealer solution contains addition excipients (per 1 

mL):  human serum albumin (10-20 mg), histidine (10-25 mg), sodium citrate (4.8-9.7 

mg), Polysorbate 80 (0.6-1.9 mg), nicotinamide (3-9 mg), and water for injection q.s. to 1 

mL.  Of these added excipients, human serum albumin acts as a protein stabilizer and 

buffer to pH.  Polysorbate 80 is an emulsifier, while histidine, sodium citrate, and 

nicotinamide are used for buffering and pH agents.  The thrombin solution contains two 

active ingredients as listed in Table 6.  The thrombin solution contains the addition 

excipients (per 1 mL):  human serum albumin (45-55 mg; protein stabilizer) and sodium 

chloride (3.5-5.5 mg, buffer).   
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Figure 7. ARTISS Fibrin Sealant.  Photograph of a pre-filled dual-component syringe 

of a 10 mL preparation of ARTISS fibrin sealant (Baxter Healthcare Corporation).  

Source of image:  Baxter Healthcare Corporation.
23

 

 

Active Ingredient Quantity/Amount 

Fibrinogen 72-110 mg 

Factor XIII 1.2-10 IU 

Synthetic Aprotinin 2250-3750 KIU 

Table 5. Sealer Protein Active Ingredients.  KIU:  Kallidinogenase Inactivator Unit. 

Active Ingredient Quantity/Amount 

Thrombin 3.2-5 IU 

Calcium Chloride 36-44 µmol 

Table 6. Thrombin Solution Active Ingredients. 
 

 The two-component system, when mixed, acts to mimic the final step of the 

coagulation cascade – formation of a fibrin clot.  Thrombin converts fibrinogen to fibrin.  

This process is repeated as the fibrin fibers begin to polymerize.  The polymerized 

network of fibrin fibers is crosslinked by the native (or added) factor XIII to form the 
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final fibrin clot (Fig. 4).  This clotting process, however, takes approximately one minute 

to begin and two hours to generate a full-strength clot due to the low thrombin 

concentration within the thrombin solution.   

 Because of this slower set time compared to other fibrin sealants, ARTISS is 

indicated for use as tissue glue to adhere/seal subcutaneous tissue in plastic, 

reconstructive and burn surgery, as replacements or adjuncts to sutures or staples. 

Additionally, ARTISS is indicated as adjunct to hemostasis on subcutaneous tissue 

surfaces.  ARTISS is contraindicated for use in replacing skin sutures intended to close 

surgical wounds. ARTISS, by itself, should not be used for the treatment of massive 

arterial or venous bleeding, and the sealant can never be applied intravascularly for risk 

of thromboembolism.   

 ARTISS has been well-studied and was investigated in human clinical trials, 

including use for the fixation of skin grafts in burn patients and for the adherence of skin 

flaps in facial rhytidectomy surgeries.  In the burn patients, ARTISS proved to be non-

inferior to staples with respect to wound closure at 28 days after wounding using a one-

sided 97.5% confidence interval on the difference in the proportion of test sites 

successfully treated (ARTISS 43.3% of wounds closed at Day 28 compared to 37.0% of 

wounds using staples).  Additionally, a facial rhytidectomy trial was performed to 

investigate the adherence of skin flaps using ARTISS.  A standardized drain was placed 

on the face of each patient where the skin flap was placed to compare adherence.  At 24 

hours post-operation, ARTISS-treated skin flaps had a significantly lower volume of 

drainage, correlating to better overall adherence (p<0.0001).  ARTISS-treated skin flaps 

also resulted in significantly less incidence of hematoma/seroma when compared to the 
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standard of care (p<0.05).  Depending on the indication, ARTISS also comes with 

different application equipment.  Cannulas are often employed for use in small wounds or 

for the edges of skin grafts.  A spray set is also offered.  The spray set is highly 

recommended for use in large surface areas requiring tissue adherence.   

Foams:  Properties and Uses. 

 Foams are universal in everyday life – from soap bubbles, detergents, packaging, 

and foods and beverages to firefighting and biomedical foams.
108

  Foams are substances 

generated by trapping gas in either liquid or solid, resulting in an aqueous or dry foam, 

respectively.  Foams can additionally be characterized by their pore structure.  Open-cell 

foams have interconnected pores that allow for rapid movement of gas and liquids across 

the foam.  Closed-cell foams, on the other hand, trap gas within individual pockets and 

thereby restrict the flow of gas and liquids.  The more commonly studied foams are the 

ones generated from liquid and gas – aqueous foams.
109

 

 Aqueous foams, in general, may be made through several techniques, including 1) 

blowing gas through a small hole/nozzle into a liquid, 2) sparging, or blowing gas into a 

liquid through a porous plug, 3) nucleation of gas bubbles in a supersaturated liquid, and 

4) mechanically shaking or beating the liquid.
108

  The formation and breakdown of foams 

occurs in phases as well (Fig. 8).  First, bubbles are formed and grow through the 

aqueous foam (Fig. 8A).  As the bubbles grow, they begin to cream and deform onto one 

another generating a distinct polyhedral shape.  Following the creaming process, drainage 

occurs once the bubbles are more tightly packed.  Drainage refers to the liquid passing 

through the intricacies between bubbles.  As the bubbles begin to form distinct borders 

with one another, the bubbles coarsen, or form larger bubbles, when the borders between 
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the bubbles merge.  Lastly, as the bubbles become larger and larger, the final process in 

the lifecycle of an aqueous foam is rupture (Fig. 8E).  The borders between bubbles 

collapse leading to the dissolution of the foam.
108,110,111

 

Several factors are needed to generate an aqueous foam.  As mentioned, this type 

of foam is created when a gas is mixed into a liquid.  However, often times a surfactant is 

required to generated and stabilize the foam.  A surfactant, or surface active compound, is 

typically concentrated on the surface of foams and reduces the surface tension/energy 

associated with the foam surfaces.  Additionally, a surfactant stabilizes an aqueous form 

from rupture.
108,112

  Surfactants, such as emulsifiers, detergents, and wetting agents, are 

amphiphilic molecules – a molecule that contains both a hydrophobic and hydrophilic 

end.  These molecules act to lower the interfacial tension between the bubbles in the 

foam.  The surfactants stabilize the bubbles through the Marangoni Effect, which occurs 

when bubbles coarsen and increase their local surface area between the lamellae.
108,110
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Figure 8. Foam Formation and Lifecycle.  A) Foam formation begins as smaller 

bubbles dissolve, while larger ones grow in size by diffusion of gas.  B) As bubbles begin 

to cream, segregation occurs between the foam layer and liquid layer.  C) Next, bubbles 

deform one another leading to the polyhedral foam structure of the bubbles.  D) 

Coarsening occurs as liquid drains among bubbles and bubbles become larger.  E) 

Finally, the lamellae between bubbles begin to rupture yielding only few remaining, large 

bubbles.  Adapted from Weaire et al.
108

 

 

 The versatility of foams – both liquid and solid foams – has never been more 

ubiquitous.  Foams are found on a daily basis and can be generated from many different 

organic and inorganic materials.  Even animals, insects, and plants have been studied for 

their ability to create foam structures.
108

  The spittlebug, for instance, produces a bubbled 
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spit to protect its body from the sun and predators.  The Cork Oak tree contains highly-

elongated cells, which generates the porous cork material that is a familiar commodity.  

More recently, biomedical foams have become widely used in various applications.  

These biocompatible and biodegradable foams also have substantial mechanical 

properties.  Additionally, biomedical foams can be manipulated, designed, and 

manufactured to exact specifications for use in medical situations.  Because of this 

appealing quality to scientific researchers, foams have been used in:  porous biomedical 

devices, in vitro scaffolds, in vivo tissue regeneration, and as drug-delivery vehicles.
113

  

 Biomedical foams have evolved over the years.  Initially these foams were created 

from metals – for their longevity and high mechanical strengths.  In recent years, foams 

have been more commonly generated from ceramics, such as glass and carbon, to 

inorganic (polyesters) and organic (lipids, polysaccharides) polymers.  Lastly, composite 

foams have been used to overcome the often problematic issue on incompatibility 

between tissue/recipient and the foam.  Composites, such as collagen and fibrin, are 

naturally-occurring and can provide an excellent balance between mechanical strength 

and biocompatibility.
113

 

Fibrin Foam. 

 Fibrin foam is a novel biopolymer generated from the aeration of the fibrin 

sealant, ARTISS.  The processes for making the foam and the devices are both patented 

and owned by Baxter Healthcare Corporation.
24-27

  Several embodiments for creating a 

foam from fibrinogen and thrombin are detailed in their patents, such as dual-chambered 

syringes and other mixing apparatuses.  However, one such embodiment (Fig. 9A) was 

pursued in preliminary studies.  This process for generating fibrin foam has been 
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previously described by Baxter researchers.  In short, two syringes with male 6% luers 

are filled using constituents from ARTISS.  One syringe contains thrombin (with or 

without air) while the other syringe contains fibrinogen (with or without air).  At least 

one syringe must contain air to allow for foam formation.  Between the syringes is a 

patented mixing device, which consists of two female luer locks and a porous mixing 

disc.  The mixing device is known as Mix-F (Fig. 9B), while the porous disc is called 

Vyon-F.  The porous disc is produced by Porvair (UK) and is a sintered porous 

polyethylene disc.  The disc (Ø3.8 x 1.5 mm) has a porosity of 38.9% and an average 

pore size distribution of 60 µm (Fig. 9C).
28

 

 
Figure 9. Preparation Apparatus and Device for Generation of Fibrin Foam.  

Preparation of fibrin foam using ARTISS fibrin sealant. A) Dual syringes containing 

either thrombin (+ air) or fibrinogen (+ air) are mixed through a patented mixing device, 

Mix-F (B).  C) CAD model of the Vyon-F mixing disc housed inside Mix-F device.  

Images obtained from Baxter patents and internal documentation.
24-28

  

 

To generate the foam, the fibrin components are repetitively passed through the 

mixing device, from one syringe to another.  Thus, this aeration and manual mixing 



45 

 

 

 

through the Mix-F device allows for a homogenous combination of fibrinogen and 

thrombin constituents into the foamed matrix. While the patents detail a wide array of 

potential uses and treatments of fibrin foam, only limited characterization has been 

performed on the mixing device and the foam itself.  The foam, when compared to 

ARTISS, has similar degradation and alpha-chain crosslinking formation.  However, 

fibrin foam has greater viscosity, can polymerize in a temperature-independent manner, 

and can be applied to both vertical and inverted surfaces without dripping.  Also, the 

mixing process to generate the foam causes the fibrin structure to be an open, porous clot 

compared to the dense, closed structure of ARTISS (Fig. 10A, 10B).   

However, this internal research was only performed in initial stages of conceptual 

design.  Due to its porous structure and fibrin matrix, fibrin foam has the potential to be 

an applicable wound therapy in specific surgical settings.  The foam has a clot structure 

that could allow for cellular migration and infiltration that would promote improved 

wound healing.  Moreover, the foam’s advantage of increased viscosity could permit 

treatment of hard-to-treat wounds, such as diabetic foot ulcers or bed sores, which must 

be treated from vertical or inverted angles.  These attributes would provide multiple 

advantages over current wound therapies.  And it is with this research, that I aimed to 

optimize the fibrin foam preparation while also characterizing the foam and assessing its 

untapped potential as an innovative wound therapy.  
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Figure 10. Macroscopic and Microscopic Images of ARTISS and Fibrin Foam.  A) 

ARTISS fibrin sealant (left) and fibrin foam (right) gross images after being manually 

prepared.  B) SEM images of ARTISS (left) and fibrin foam (right).  Scale bars for SEM 

images:  50 µm.  

 

Wound Care Market. 

 The wound care market is ever-expanding and continues to see growth in revenue 

and scientific research.  The global wound care market was estimated at $15.8 billion in 

2013.
2
  It is expected to reach $22.1 billion by later this year.

4
  The key drivers of this rise 

are:  aging population, obesity, and incidence of diabetes, which are all escalating around 

the world.  Additionally, factors such as burns and surgical-related wounds demand the 

use of wound care products, thereby increasing revenue in this market.  The wound care 

market involves many types of treatments and dressings as previously described.  Each of 

the key classes of wound healing treatments has a different outlook in the current and 
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future markets.  The traditional wound dressings segment continues to dominate the total 

wound care market and was at $3.3 billion in 2013.
1
  Low cost, local availability, and 

ease of use and maintenance are the primary reasons for gauze and bandages dominating 

this segment, especially in the Asia-Pacific and BRIC (Brazil, Russia, India, and China) 

countries.  Wet dressings are perceived to be best suited for quicker wound healing at an 

affordable price. The market in hospital care has been driven by increased sales volume. 

It is expected to generate $2.9 billion in revenue by 2018.
2,5

  However, traditional 

(sutures or staples) and wet dressings (dry-to-wet gauze) come with several consequences 

that often impair wound healing, such as risk of evisceration and infection.  These wound 

care markets are in need of products that can minimize these risks and improve sealing of 

tissues.  Thus, future needs of wet dressings include products that provide a moist 

environment for cell repair and products that reduce pain during dressing changes. 

There is a shift in preference for advanced wound care products from traditional 

dressings in developed countries such as the U.S.  Both antimicrobial dressings and 

active therapies, such as fibrin sealants and bioactive dressings, are emerging segments, 

especially in developing countries. Improved clinical results and faster healing rates are 

driving the demand for these products. The expensive nature of these treatments makes 

them feasible in only developed countries or in private hospitals in those developing 

countries.  The growth of minimally-invasive surgeries is also driving expansion towards 

advanced wound care products that will allow for improved efficacy during these 

technical surgeries.  A model product for the minimally-invasive surgery sector would 

allow for treatment in small, enclosed areas, and the product would be able to be applied 

in all spatial directions.
2,4
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Currently, there are approximately 50 million reported cases globally of patients 

suffering from chronic and hard-to-close wounds, which have created a severe cost 

burden to the world’s healthcare system.
3,5

  Additionally, the demand for portable and 

easy-to-use devices is expected to grow over the coming years.  Negative-pressure wound 

therapy (NPWT) is the fastest growing product segment in developing countries.  This 

therapy is used to treat an array of wound situations, including traumatic, dehisced 

wounds, partial-thickness burns, ulcers (e.g. diabetic, pressure or venous), flaps, and 

grafts.  The NPWT sector of the advanced wound care market is growing – the NPWT 

segment generated revenue of $1.7 billion in 2013 and is expected to reach $2.1 billion 

by 2018.
2
  This segment has several unmet needs as researchers are looking to improve 

wound healing methods.  These include the ability of new products to reduce the size of 

the wound throughout treatment with the vacuum, and the need to minimize or remove 

pain caused by debridement during dressing changes.  An ideal product for the NPWT 

sector would allow for cellular in-growth into a biocompatible and biodegradable 

material while being able to withstand the subatmospheric pressure treatment.
1
   

Taken together, there are several unmet needs in the wound therapy field.   Both 

acute and chronic wound care segments have untapped potential for where an optimal 

wound therapy is needed.  Traditional and modern wound therapies have been able to 

satisfy wound healing situations for many years; however, there is the current trend to 

tissue regeneration and healing through the use of tissue-engineered and bioactive 

dressings.   
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CHAPTER THREE 

METHODS 

Preparation of Fibrin Foam. 

 ARTISS (4 IU thrombin, Baxter Healthcare Corporation) and TISSEEL (500 IU 

thrombin, Baxter Healthcare Corporation) fibrin sealants were prepared as per 

manufacturer’s instructions for use.  Fibrin foam was generated by separating the 

fibrinogen and thrombin components from the prefilled syringes of ARTISS into 

individual syringes.  As an example, 1 mL of fibrinogen was placed in one syringe and    

1 mL of thrombin plus 2 mL air was taken up into another syringe.  The Mix-F mixing 

device (Baxter AG) was placed between the two syringes.  The constituents were then 

manually passed back and forth through the Mix-F device, with one pass equaling 

moving through the Mix-F once.  The number of passes through the Mix-F (ex. 2, 4, 6, 8, 

etc.), concentration of thrombin (4 IU, 20 IU, 50 IU), and addition of supplemental 

constituents, including human serum albumin (MP Biomedicals, LLC) and Tween 80 

(Sigma Aldrich), were parameters varied during the analysis of fibrin foam preparations.  

Preparation parameters and their results are listed in the subsequent Results section. 

Fibrin Foam Kinetics Assay. 

 Fibrin foam was prepared as per above utilizing 1 mL of fibrinogen and 1 mL of 

thrombin plus 2 mL of air in respective syringes. Six passes were used to generate fibrin 

foam for the kinetics assessment.  Once mixed, fibrin foam was applied to a vertical glass 
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surface at 5 second intervals – starting at t = 0 seconds and finishing at t = 30 seconds.  

Five hundred microliters (500 µL) of fibrin foam was dispensed from the syringe at each 

time point.  To evaluate the formation of fibrin foam at each time point, a visual yes-or-

no conclusion was given based on the following:  yes:  foam-like consistency and ability 

to be applied to vertical/inverted surface without dripping/running; no:  liquid 

consistency and inability to be applied to vertical/inverted surface without 

dripping/running.  A yes-or-no designation was given at each time interval.  The 

experiment was repeated for a total of eight samples at each time interval.   

Cell Culture. 

  Cell culture was performed on primary human umbilical vein endothelial cells 

(HUVEC), primary normal human dermal fibroblasts (NHDF), and primary normal 

human epidermal keratinocytes (NHEK) purchased from PromoCell.  Cells were 

maintained in respective growth media in a humidified atmosphere of 5% CO2 in air at 

37°C.  When subculturing, cells were washed with HEPES-HBSS (PromoCell), 

suspended in trypsin/EDTA (0.025%/0.01%, PromoCell) for 5 minutes, and neutralized 

with respective growth media.  Cells were spun down at 130 x g for 4 minutes using a 

swinging bucket centrifuge.  Cells were counted using TC20 BioRad Cell Counter and 

seeded in new tissue culture flasks containing fresh growth media.  Cells were passaged 

every three to four days during use. 

Scanning Electron Microscopy and Pore Size Analysis. 

 

 ARTISS and fibrin foam clots were prepared and fixed with glutaraldehyde buffer 

(Electron Microscopy Sciences), containing 0.2 M HEPES and MilliQ water, for SEM 

preparation.  For cell morphology analysis, 5 x 10
4
 cells were seeded on ARTISS and 
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fibrin foam clots for 24-48 hours prior to fixation in buffer.  Subsequently, clots were 

washed, serially dehydrated with ethanol, and dried with hexamethyldisilizane (Alfa 

Aesar).  Clots were allowed to air dry overnight thereafter.  Clots were then mounted on 

aluminum sample supports with carbon adhesive tape.  Samples were sputter coated with 

palladium gold in a Denton Desk IV Sputter/Etch Unit and analyzed in a FEI Quanta 650 

FEG Scanning Electron Microscope. 

Pore size analysis was performed on cross-sectional cuts of fibrin foam clots.  

Briefly, SEM images were uploaded into FIJI ImageJ imaging software.  Feret’s diameter 

was measured for pores in each sample.  Mean pore size was obtained for each fibrin 

foam preparation.  The numbers of pores measured to calculate mean values are shown in 

the Results section.  Percent porosity of ARTISS, fibrin foam, and polyurethane foam 

samples was calculated using SEM images analyzed with FIJI ImageJ.  Sample images 

were assessed for mean gray scale values over a 300 x 300 pixel area.  Two, independent 

measurements were taken per image with at least three images per sample.  Percent 

porosity was calculated per equation 1. A total of 12 fibrin foam, 6 ARTISS, and 12 

polyurethane foam (KCI) measurements were analyzed. 

Porosity = mean gray scale / 255 x 100%    Eq (1) 

Tensile and Wound Closure Strengths Testing. 

 For tensile strength testing, a specially designed dog-bone-shaped mold was used 

to create ARTISS and fibrin foam clots of identical size and volume.  The sample 

thickness was 2 mm and had a width at the narrow middle part of 4 mm.  The total 

volume of the mold was 3.0 mL.  Samples were allowed to cure in the mold for             

15 minutes, and then placed in phosphate-buffered saline (PBS, HyClone) until use.  
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Tensile testing was performed on MTS Criterion Model 42 (MTS Systems Co.).  The 

larger ends of each dog-bone-shape mold were placed into the pneumatic grips of the 

MTS machine.  Tensile loading was applied at a crosshead speed of 12.70 mm/min.  The 

maximum load at the sample failure and stress-strain curve was obtained; tensile strength 

and elastic modulus were measured using the MTS Test Suite software version 3.0.1. Six 

samples of each group were analyzed. 

 Wound closure strength was assessed using ASTM F2458 – 05 (Reapproved 

2010), Standard Test Method for Wound Closure Strength of Tissue Adhesives and 

Sealants.
114

  Briefly, porcine skin was cut into 10 cm long x 3 cm wide pieces.  Pieces 

were placed vis-à-vis along the 3 cm width margin.  ARTISS and fibrin foam were 

prepared and applied to a 0.5 cm region on each porcine skin piece along that same 

margin.  ARTISS and fibrin foam were measured at 3 mm thickness on the porcine skin 

using a non-calibrated ruler.  Samples were allowed to cure for 1 hour in PBS at 37°C.  

Samples were loaded into the pneumatic grips of the MTS machine and tensile loading 

was applied at a rate of 50 mm/min or until a full break occurred.  Wound closure 

strength and modulus measurements were obtained using the MTS software.  The type of 

break was recorded for each sample.  Four samples from each group were measured. 

Thromboelastography and Shear Strength. 

 Clot formation kinetics and strength were determined with thromboelastography 

(TEG) using Thromboelastograph® Hemostasis Analyzer Model 5000 (Haemonetics 

Co.) with the following deviations.  Three-hundred sixty microliters (360 µL) of ARTISS 

or fibrin foam were prepared per sample.  For ARTISS, the samples were placed into the 

assay cups and allowed to cure for 30 seconds before the analysis was started.  For fibrin 
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foam, the samples were mixed at t = 0 seconds, then allowed to sit in a syringe for         

30 seconds prior to application into cups to normalize to ARTISS.  The TEG analyses 

were started at 30 seconds for both sets of samples and run at 37°C.  The 

thromboelastograph was calibrated with quality control samples before each use.  TEG 

Analytical Software version 4.2.3 was used to calculate the time to clot initiation (R, 

minutes), time to clot firmness (K, minutes), alpha angle (α, degrees), maximal clot 

strength (MA, maximum amplitude, mm), and shear elastic modulus strength (G, 

dynes/cm
2
).  Analyses were performed for at least 30 minutes or until the operating 

software had calculated all mentioned parameters. 

Shear modulus was further calculated from MA values in TEG to dynes/cm
2
 and 

kilopascals (kPa) as per equation 2, where G has units of dynes/cm
2
 and 10,000 

dynes/cm
2
 is equal to 1 kPa.

115
  Fourteen samples of ARTISS and sixteen samples of 

fibrin foam were measured for TEG and shear strength. 

G = 5000·MA / (100-MA)     Eq (2) 

Permeability Analysis. 

 Sample fluid permeation was assessed using previously described techniques with 

the following exceptions.
116,117

  The permeation coefficient (Ks) was calculated per 

equation 3, where ƞ is the viscosity of the liquid (water, 0.001 Pascal seconds), L is the 

length of the sample (mm), Q is the flow rate in time t, S is the surface area of the sample 

(mm
2
), and P is the average pressure in the system (98 Pascals).  To assess the fluid 

permeability, ARTISS, fibrin foam, and polyurethane foam samples were fit to a 

cylindrical apparatus and allowed to cure for 30 minutes.  Two milliliters (2 mL) of water 

stained with bromophenol blue (Sigma Aldrich) was applied to the top of each sample.  



54 

 

 

 

Permeability was assessed after 1 hour when the sample radius, thickness of sample, and 

height of permeabilized/dyed area were measured using a ruler.  Lower values of Ks 

indicated reduced permeability and smaller pore size in the matrixed network.  Eight 

samples were measured per group.   

Ks = ƞ·L·Q / S·P      Eq (3) 

Clot Compaction Assessment. 

 Compaction experiments were performed as previously described.
116

  Briefly,   

1.5 mL microcentrifuge tubes were precoated with cooking oil spray (Conagra Brands) 

and dried with a cotton swab.  ARTISS and fibrin foam were prepared, and 1.0 mL was 

dispensed into each tube.  Clots were incubated at room temperature for 2 hours.  After   

2 hours, the clots were centrifuged at 4200 x g for 30 seconds.  The supernatant volume 

was removed and measured with a Hamilton syringe (Hamilton Co.).  Percent 

compaction was calculated as the ratio of the expelled supernatant volume to the original 

clot volume (1.0 mL).  Eight samples were measured per group.   

Non-Invasive In Vivo Degradation Assay. 

To measure the kinetics of in vivo degradation, fluorescently-conjugated fibrin in 

either fibrin foam or ARTISS fibrin sealant was subcutaneously implanted in nude mice. 

For this purpose, fibrin clots of defined volume (200 µL) were labeled by integration of 

fluorescently-conjugated fibrinogen (125 µg/mL; Alexa Fluor 546 conjugate; Invitrogen). 

The experiments were approved by the local animal research committee (Amt der Wiener 

Landesregierung, Vienna, Austria) and animals were treated according to the National 

Institute of Health guidelines. A total of 6 nude mice (BALB/C nu/nu; female; 20-30 g; 

Institut für Labortiertechnik und Gentechnik, Austria) were implanted with fibrin clots 
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under the skin over each shoulder and proximal to each hock. Animals were treated 

preoperatively and on the following 3 days with carprofen (2.5 mg/kg Rimadyl, Pfizer, 

Austria). The fluorescence of the fibrin matrix was non-invasively followed and 

quantified over 14 days using a multispectral imaging system (Maestro Imaging System, 

CRI Inc.).  The images were acquired using the CCD frame at 2 x 2 binning and resulting 

spectral data series unmixed using the identical spectral library for every cube.  This in 

vivo degradation analysis was performed by the Ludwig Boltzmann Institute on behalf of 

Baxter Healthcare Corporation.   

Lactate Dehydrogenase Cell Viability Assay. 

ARTISS fibrin sealant, fibrin foam, and polyurethane foam samples were 

prepared and placed in 24-well plates and set in a 37°C/5% CO2 incubator for                

30 minutes.  A specific number of cells from each cell line (HUVEC, NHDF, and NHEK) 

were isolated to give a final concentration of 2 x 10
4
 cells per well.  Cells were cultured 

on the samples, allowed to attach for 1 hour, and then additional media was placed into 

the wells.  At 2, 24, and 48 hours after cell seeding, lactate dehydrogenase (a marker of 

cellular death) was analyzed using a colorimetric assay and per manufacturer’s 

instructions (Promega).  Briefly, 50 µL of supernatant was removed from each well, 

placed into a 96-well plate, mixed with 50 µL of substrate solution, and allowed to 

incubate for 30 minutes at room temperature.  Fifty microliters (50 µL) of STOP solution 

(solution within LDH cell viability kit) was added to all wells after the 30 minute 

incubation.  Wells were then analyzed for absorbance at 490 nm on a SpectraMax M5e 

microplate reader.  Cell viability was quantified by the average absorbance at each time 
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point for the various cell conditions.  Eight samples were measured for each cellular 

condition. 

AlamarBlue Metabolic Assay. 

 HUVEC, NHDF, and NHEK cells were cultured and isolated to a final 

concentration of 5 x 10
4
 cells per well.  Cells were cultured on ARTISS fibrin sealant, 

fibrin foam, and polyurethane foam for 1 hour in a 24-well plate before an additional 900 

µL of media was added to each well.  After 4 hours of incubation at 37°C/5% CO2, 100 

µL of AlamarBlue reagent (Invitrogen, Thermo Fisher Scientific) were added to each 

well.  At 2, 24, 48, and 72 hours after the addition of AlamarBlue, 50 µL of supernatant 

was removed, placed into a 96-well plate, and read in fluorescence mode with an 

excitation wavelength of 570 nm and emission wavelength of 585 nm.  Readings were 

performed on a SpectraMax M5e microplate reader.  Cellular metabolism and viability 

was assessed using average fluorescence units at each time interval.  Four samples were 

measured per cell condition.   

Confocal Microscopy for Cell Viability. 

One milliliter of ARTISS fibrin sealant or fibrin foam was placed into a 24-well 

plate.  Primary HUVEC, NHDF, and NHEK cells at a final concentration of 1 x 10
5
 cells 

per well were seeded on the clots for 48 hours in a 37°C/5% CO2 incubator.  After         

48 hours, clots containing cells were transferred and inverted onto MatTek dishes.  Two 

milliliters of HBSS (PromoCell) were added to each sample.  ReadyProbes® Cell 

Viability live/dead and wheat germ agglutinin stains (Thermo Fisher Scientific) were 

added to the HBSS solution.  Samples were covered from light and incubated at room 

temperature for 15 minutes.  Images of the samples were taken using a Nikon A1R 
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Confocal Microscope at magnifications noted in the images.  Image manipulation and 

compilation was performed using Nikon NIS-Elements Software Version 3.10.   

Cytotoxicity Assay. 

NCTC clone 929 cells (ATCC #CCL1) were cultured at a concentration of 1.3 x 

10
5
 cells per well.  Cells were incubated for 24 hours in a humidified atmosphere of 5% 

CO2 in air at 37°C.  After 24 hours and according for ISO 10993-5 – Biological 

Evaluation of Medical Products – fibrin foam samples were placed on top of the cells.
118

  

Positive control (powder free latex gloves, Rubbercare) and negative control (Baxter 

polyolefin material) were also tested and placed on cells.  Cells and test samples were 

incubated for an additional 24 hours.  After this elapsed time, test samples were removed 

from each well and 2% Crystal Violet solution (Sigma Aldrich) was added to each well to 

stain the cells.  The cells were examined microscopically based on the ISO guidelines of 

toxicity ratings (below).  Six fibrin foam samples were tested, and three positive and 

three negative controls were also analyzed. 

Rating Pass/Fail Description 

0 Pass No detectable zone around 

or under the specimen 

1 Pass Some degenerated cells 

under the specimen 

2 Pass Zone of degenerated cells 

limited to the area under the 

specimen 

3 Fail Zone of degenerated cells 

extends specimen size up to 

1.0 cm 

4 Fail Zone of degenerated cells 

extends farther than 1.0 cm  

beyond specimen 

Table 7. Toxicity Ratings for ISO 10993-5. Adapted from ISO 10993-5.
118
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Three-Dimensional In Vitro Wound Assay. 

Six hundred microliters (600 µL) of 5 mg/mL PureCol EZ Gel (Advanced 

BioMatrix, Inc., Sigma Aldrich) collagen gels were formed in a 24-well plate.  Gels were 

incubated at 37°C/5% CO2 for 90 minutes to allow for full polymerization of the 

collagen.  Primary HUVEC, NHDF, and NHEK cells were trypsinized.  A specific 

number of cells from each line were isolated to give a final concentration of 3 x 10
4 
cells 

per gel and stained with Vybrant DiO (Life Technologies of Thermo Fischer Scientific).  

After staining, the cells were washed three times with media, and then seeded onto the 

collagen gels.  After 4 hours, a 2 mm biopsy punch (V. Mueller) was used to punch 

regions out of the collagen gel.  Careful pipetting was used to remove remainder of the 

collagen debris from the punch region.  The regions were then filled with PureCol EZ 

Gel, ARTISS fibrin sealant, fibrin foam, or polyurethane foam and supplemental media 

was placed on gels.  Gross migration of cells was assessed at 24 and 48 hours using a 

Nikon Eclipse LV100 Upright Microscope with Nikon Camera.  Images were taken at 4x 

magnification at each time point to analyze the migrated cells and wound margins.  

Murine Wound Model. 

A dermal skin excision wounding model was performed as follows with the 

assistance of the W. Keith Jones Laboratory from Loyola University Chicago in 

collaboration with Baxter Healthcare Corporation.  BKS.Cg-Dock7m +/+ Leprdb/J (db/-) 

mice (Jackson Laboratories, male, 8-12 weeks of age) were anesthetized using isoflurane 

(1.5 L/min) and buprenorphine (0.5 mg/kg i.p.) to effect.  The dorsal aspect of the thorax 

was shaved, draped, and three butadiene scrubs were performed. A 6 mm biopsy punch 

was used to make four excision wounds (1 cm apart) in the sterile field.  Each of the four 
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wounds was treated separately and covered using experimental materials and dressings 

(Fig. 11).  Briefly, ARTISS fibrin sealant and fibrin foam were two treatments, compared 

to control (no dressing) and polyurethane foam dressing (KCI).  Tegaderm (3M Medical, 

USA) and/or cohesive tape were put on the mice to prevent access to the wounds, and the 

mice were individually caged to prevent damage by other animals to the wound site.  

Dressings were changed and wounds measured and photographed at days 3, 7, 10, and 14 

and depilatories used to remove growing hair as needed.  At day 3, day 7, and day 10, 

mice were anesthetized and dressings changed.  While uncovered, photographs with ruler 

were taken to document wound size. The wounds were re-dressed and the animals 

recovered and housed as above. At day 7 or day 14, mice were anesthetized using 

isoflurane and ketamine/xylazine (10 mg/mL and 0.2 mg/mL i.p.). When non-responsive 

to toe pinch, the dorsal aspect of the thorax, including the wounds, was excised, then 

prepared and fixed for histological analysis. The hearts were also harvested resulting in 

death of the mice. 

Animal procedures were approved by Loyola University Chicago Institutional 

Animal Care and Use Committee (IACUC) and conducted in accordance with the Guide 

for the Care and Use of Laboratory Animals and applicable United States animal welfare 

regulations in an AAALAC-accredited facility.  The animals utilized in this experiment 

all received humane care. 
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Figure 11. Overview of Murine Model Surgical Procedure.  Photographical 

representation of surgical procedure and treatment of mice during murine model.  Mice 

were subjected to 2 mm punch biopsies on their dorsum.  Each would was treated 

separately with one of four treatment options.  The dorsal surface of the mice was them 

covered to prevent any disruption to wound and treatment sites. 

 

Wound Closure Measurement. 

Using a digital camera, images of the wounds were obtained after wounding, after 

treatments, and at each scheduled dressing change (days 0, 3, 7, 10, and 14).  Images 

were uploaded to a computer, and using imaging software (FIJI ImageJ), the wound area 

was measured.  FIJI ImageJ imaging software was used to blindly measure the wound 

area by tracing the wound margin with a fine-resolution computer mouse and calculating 

the pixel area.
119

  Wound size area (cm²) from each day was measured as compared to 
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day 0.  A wound was considered completely closed when the wound area was equal to 

zero (grossly).  All area measurements are in cm². 

Histological and Pathological Analyses. 

The wounds and surrounding tissue were collected and placed in formalin for 

histopathologic evaluation on days 7 and 14.  Polyurethane foam dressings were collected 

for histopathologic evaluation on dressing changing days (days 3, 7, and 10) and 

submitted to Loyola University Medical Center’s Histology and Pathology departments.  

Histopathologic evaluation was performed on the collected tissue and samples.  Analysis, 

including hematoxylin & eosin (H&E) and Masson’s Trichrome staining, was read by an 

independent and blinded pathologist at Loyola University Medical Center. 

The main histological parameters analyzed for wound healing were:  

reepithelialization, neovascular proliferation, acute and chronic inflammation, and 

collagen deposition.  These parameters were scored on a 0-3 scale (below).
120

  A total of 

12 samples were analyzed per treatment per time point for all parameters except collagen 

deposition (n = 4 per treatment per time point).  Each histological slide contained 4-6 

slices of wound sample with scores being representative for the sample overall.   
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Parameter 0 1 2 3 

Reepithelialization None Partial Complete, but 

immature/thin 

Complete; 

mature 

Neovascular 

Proliferation 

None Up to 5 

vessels per 

field 

Up to 6-10 

vessels per field 

More than 10 

vessels per 

field 

Acute 

Inflammation 

None Scant Moderate Abundant 

Chronic 

Inflammation 

None Scant  Moderate Abundant 

Collagen 

Deposition 

None Scant  Moderate Abundant 

Table 8. Histological Parameter Scoring for In Vivo Wound Model.  Scoring scale 

adapted from reference Abramov et al.
120

 

 

Additionally, epithelial maturation, granular tissue formation, and granular tissue 

maturation were assessed on a yes-or-no basis. The degree of granular tissue 

formation/maturation was determined by the structure and alignment of fibroblasts in the 

wound area. 

Negative-Pressure Wound Therapy Feasibility. 

 Porcine skin samples (obtained from Baxter R&D) were thawed and cleaned, and 

hair was removed.  A 12-mm full-thickness biopsy punch was created in the porcine skin.   

ARTISS or fibrin foam was prepared and placed into the wound punches.  Samples were 

allowed to cure for 5 minutes, 30 minutes, 1 hour, and 2 hours in the wounds.  At each 

time point, V.A.C. Freedom NPWT System (KCI) was placed over the treated wounds 

and vacuum pressure (-200 mmHg) was applied for 2-5 minutes.  Images of the system 

apparatus, wounds, and treatment were taken using Nikkor 42x Wide Optical Zoom ED 

VR Cool Pix P510.  At least three samples were performed for each treatment group at 

each time point. 
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Statistical Analysis. 

All data collected in this body of work was expressed as mean ± SD.  Sample 

sizes are stated within each experimental results section.  Pairwise differences between 

products were evaluated using the Wilcoxon Mann Whitney test.  For the murine model, 

the means and standard deviations of wound size were calculated initially and at follow-

up time points for each treatment for 12 or 24 mice.  A linear mixed effects model was 

specified to predict wound size as a function of treatment, time, and the treatment by time 

interaction, and included a random intercept for mice to account for possible correlation 

due to repeated measures.  The effect of treatment at each time point was tested.  Least 

squares mean differences in wound size by treatment were presented at day seven to 

assess differences due to treatment.  P-values < 0.05 indicate samples are significantly 

different.  Statistical analyses were performed with the support of Baxter Healthcare 

Corporation Biostatistics and Loyola University Chicago Biostatistics Core. 
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CHAPTER FOUR 

RESULTS 

Aim 1:  To determine the impact of aeration on the physical, biomechanical, and 

biocompatibility properties of fibrin foam. 

 

Optimal preparation of fibrin foam.  The preparation of fibrin foam has several 

variables which could be changed to generate a variety of fibrin foam entities.  Fibrin 

foam is created using a dual-syringe apparatus (Fig. 9A), where the fibrin sealant 

constituents are passed through the mixing device (Fig. 9B).  This aeration process yields 

a foam-like, porous fibrin network compared to the dense fibrin matrix of commercially-

available sealants (Fig. 10).  To optimize the preparation of fibrin foam, I varied three, 

key factors.  These included the number of passes through the Mix-F mixing device, 

thrombin concentration for speed of clot formation, and additional foaming agents (i.e. 

HSA and Polysorbate 80).  With each preparation variant, the acceptance criteria were 

the following:  1) manual ease of mixing 2) foam-like, porous consistency 3) mean pore 

size < 200 µm.  The pore size criterion was chosen based on several critical cellular 

processes that have been noted in the literature that require a mean pore size distribution 

less than 200 µm, including angiogenesis, skin regeneration, and fibroblast cell 

migration/proliferation, which have optimal pore size ranges from 160-270 µm, 20-125 

µm, and 100-250 µm, respectively.
15
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Previous Baxter research dealing with the mixing of fibrin foam indicated either 

syringe could contain the air and an even number of passes was to be used to have equal 

mixing between the syringes.
24-27

  This research had shown six or eight passes to be ideal 

for fibrin foam generation, which was solely based on the void volume remaining in the 

syringes during mixing and included no other acceptance criteria.  At six or eight passes, 

the void volume was zero, meaning all constituents were incorporated into the foam.  

However, and to assess all possible parameters, the experimental variants used in the 

preparation, mixing, and pore size analyses are shown in Tables 9 and 10.   

Fibrin Foam 

Preparation 

4 passes 6 passes 8 passes Failure Point 

4 IU Y Y Y 14 

20 IU Y Y Y 9 

50 IU Y Y N 6 

4 IU +        

10% HSA 

Y Y Y 14 

Table 9. Gross Mixing Assessment of Fibrin Foam Preparations.  Y = total number of 

passes were achieved; N = total number of passes not achieved (i.e. clogging of device or 

failure to mix).  Failure point was the maximum passes reached during mixing over the 

samples tested. Six total samples were measured for each preparation.   

 

First, to assess ease of mixing with the various preparations, fibrin foam was 

prepared and subjected to differing number of passes through the Mix-F mixing device 

and the maximum number of passes before mixing failure (i.e. clotting/clogging).  For all 

mixing experiments, the setup in Figure 9 was used with the following ratio of 

constituents – 1 mL thrombin + 2 mL air in one syringe; 1 mL fibrinogen in the second 
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syringe.  From a gross and human factors perspective, the number of passes and added 

constituents to create fibrin foam was tested.  The number of passes was varied from 2, 4, 

6, 8, and maximum passes achievable.  An even number of passes was chosen for all 

experiments as to have the thrombin and fibrinogen constituents equally mixed in the two 

syringes. 

Higher concentrations of thrombin and human serum albumin (HSA) were also 

tested in this portion of the study.  Thrombin concentration, which dictates the speed at 

which the fibrin clot forms, was varied from 4IU (current ARTISS formulation) up to    

50 IU.  HSA was adjusted to a final concentration of 10% or 50% HSA greater than that 

of the current formulation.  HSA was a chosen constituent to adjust because of the ability 

of albumin to stabilize the fibrin clot and increase foaming abilities.  Polysorbate (Tween) 

80, a known surfactant, was also tested but failed mixing feasibility assessment as this 

preparation clogged the Mix-F device and did not allow for proper mixing through the 

device.  Therefore, Tween preparations were not included in further analyses. 

As shown in Table 9 (and A1), the 4 IU thrombin preparation of fibrin foam was 

able to be passed through the mixing device up to 14 times before failure of the device 

occurred.  Failure was constituted as  clogging of the Mix-F device.  The 20 IU and 50 IU 

thrombin samples, however, clotted too rapidly and only were able to achieve a 

maximum of 9 and 6 passes through the device, respectively.   

The microscopic matrix of fibrin foam was assessed next via scanning electron 

microscopy.  SEM was used to measure the pore sizes of the various fibrin foam 

preparations (Fig. 12).  Pore size is a crucial determinant in the overall structure and 
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function of matrices and scaffolds, as mentioned previously.   Too small and the cell 

migration is limited; while too large of pores can reduce ligand density.   

 

Figure 12. SEM Micrographs of Fibrin Foam Preparations.  SEM micrograph images 

of several fibrin foam preparations.  Preparations were varied by either the number of 

passes through mixing device or by additive constituents (i.e. increase in thrombin 

concentration).  A) 4 Passes + 4 IU fibrin foam B) 6 Passes + 4 IU fibrin foam C) 8 

Passes + 4 IU fibrin foam D) 6 Passes + 4 IU fibrin foam E) 6 Passes + 20 IU thrombin 

fibrin foam and F) 6 Passes + 50 IU thrombin fibrin foam.  Scale bars:  1 mm (A-C), 100 

µm (D-F). 

 

The measured pore size distributions for all fibrin foam preparations are shown 

below in Figures 13 and 14.  Table 10 displays the quantified means for all preparations 

(in microns) and the number of pores analyzed, which is visually shown in Figure 14.  

While the distributions vary from large distributions of pores in the lower number of 

passes to more tightknit pore sizes as the passes increase, it was noted that all 

preparations have mean pore sizes that fall below the accepted range of 200 µm (Table 
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10).  Due to the large standard deviations for each distribution, there was no statistical 

difference among the groups.   

 

Figure 13. Pore Size Measurements of Fibrin Foam Preparations (Passes Varied).  
Histogram representations of pore size distributions for A) Minimum (2) Passes + 4 IU 

fibrin foam B) 4 passes + 4 IU fibrin foam C) 6 Passes + 4 IU fibrin foam D) 8 Passes + 4 

IU fibrin foam and E) Maximum passes (14) + 4 IU fibrin foam.  Quantified data for 

Figure 13 is found in Table 10. 
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Figure 14. Pore Size Measurements of Fibrin Foam Preparations (Additives 

Varied).  Histogram representations of pore size distributions for A) 6 passes + 4 IU + 

10% HSA fibrin foam B) 6 Passes + 4 IU + 50% HSA fibrin foam C) 6 Passes + 20 IU 

thrombin fibrin foam and D) 6 Passes + 50 IU thrombin fibrin foam.  Quantified data for 

Figure 14 is found in Table 10. 

 

As the previous Baxter studies detailed, the number of passes to incorporate all 

constituents into the foam was 6 or 8 passes.  The 20 IU preparation reached 9 passes and 

the 50 IU only reached 6 passes, respectively.  These failure points were too close to the 

optimal range of passes (e.g. 6 to 8), which would not allow for a margin of error in a 

surgical use and preparation of the foam.  Clogging and other mixing failures would 

likely occur at a higher frequency with these preparations.  Thus, to ensure no future 

human factor issues with mixing and preparation of fibrin foam, the higher concentration 

thrombin preparations were eliminated from consideration.  Next, I took into 

consideration the pore mean distribution of all foam preparations.  As shown in Figure 

15, there was no discernable difference in pore size distributions among the fibrin foam 

preparations.   
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All preparations met the mean pore size parameter; however, and after factoring 

in the mixing analyses and acceptance criteria, the 6 passes + 4 IU preparation was the 

optimal choice for fibrin foam.  This preparation would allow for ease in generating the 

foam in a surgical situation and is well within the acceptable range for mean pore size 

(155 µm) for use in wound healing applications.  There was no added effect(s) from HSA 

throughout this initial characterization, thus it was excluded from any major analyses 

moving forward. 

 

Min (2 

Passes) 

+ 4 IU 

 

4 Passes 

+ 4 IU 

 

6 Passes 

+ 4 IU 

 

8 Passes 

+ 4 IU 

 

Max (14 

Passes) 

+ 4 IU 

 

6 Passes 

+ 20 IU 

 

6 Passes 

+ 50 IU 

 

6 Passes 

+ 4 IU + 

10% HSA 

 

6 Passes 

+ 4 IU + 

50% HSA 

 

 

Mean  

Pore 

Size 

(µm) 

 

199.3 ± 

93.8 

 

152.2 ± 

66.8 

 

155.5 ± 

58.9 

 

151.8 ± 

46.0 

 

117.2 ± 

49.7 

 

152.6 ± 

54.8 

 

134.5 ± 

46.7 

 

156.7 ± 

55.3 

 

113.21 ± 

35.2 

 

Pores 

Counted 

 

70 

 

177 

 

277 

 

193 

 

166 

 

118 

 

158 

 

136 

 

180 

Table 10. Mean Pore Sizes of all Fibrin Foam Preparations.  The quantified mean 

pore size distributions (± SD) for all fibrin foam preparations are shown.  The numbers of 

pores counted for each preparation are detailed as well.  No significant differences were 

found among preparations.  IU:  international units of thrombin; HSA:  human serum 

albumin.   
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Figure 15. Mean Pore Sizes of Fibrin Foam Preparations.  Mean pore size 

distributions (± SD) for all fibrin foam preparations (Table 10) are shown.  No significant 

differences were found among groups.   

 

Once chosen as the optimal preparation, further analyses in this study were 

performed on the 6 passes + 4IU fibrin foam.  First, as seen in Figure 16, the rate of 

formation of fibrin foam was assessed in order to confirm that exact preparation 

procedure for the generation and application of fibrin foam.  This test was performed by 

preparing fibrin foam, then waiting 0-30 seconds at 5 second intervals before applying 

the foam to a vertical surface.  Per this experiment, an acceptable outcome was a foam 

having the viscosity to remain on a vertical surface without dripping or running, as this is 

one of the differentiating characterisitcs of fibrin foam compared to ARTISS and other 

fibrin sealants.  Figure 15 details the number of positive outcomes at each time point (n = 

8 per time point).  After 20 seconds post-mixing, fibrin foam is able to be applied with 

100% positive outcomes from a consistency standpoint.  Thus, this 20-second set time 

prior to application was another step in the preparation of the 6 passes + 4 IU optimal 

fibrin foam. 
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Figure 16. Kinetic Assessment of Fibrin Foam Formation.  Fibrin foam (6 passes + 4 

IU) was prepared and allowed to set in syringe for multiple time intervals.  Fibrin foam 

was applied to a vertical surface and each sample’s consistency was noted. An outcome 

was deemed positive based on formation of foam-like consistency and ability to hold on 

vertical surface without running.  Percent of total positive outcomes is shown at each 

time point. A total of eight samples were analyzed at each time interval.  

 

 Taken together, the optimized fibrin foam preparation is generated from the 

components of the commercially-available fibrin sealant, ARTISS.  The constituents of 

ARTISS are used at a ratio of 1 mL fibrinogen to 1 mL of 4IU thrombin + 2 mL of air to 

create fibrin foam as it is passed six times through the Mix-F mixing device.  This 

preparation has a mean pore size of 155 µm and is allowed to set in the syringe for 20 

seconds prior to application.  Hereafter, this specific preparation of fibrin foam was used 

for all subsequent experiments and testing, and it will be referred to as solely as “fibrin 

foam”. 
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Biomechanical and structural characterization of fibrin foam.  With the fibrin 

foam preparation optimized to 6 passes + 4IU thrombin, biomechanical testing was 

performed to study the impact of aeration on fibrin foam as compared to that of ARTISS 

fibrin sealant.  The following portion of the study details both biomechanical and 

structural analyses of fibrin foam.   

Thromboelastography (TEG) is a coagulation assay used to evaluate the 

efficiency of clot formation and clot viscoelastic properties.  TEG analyzes a set of 

specific parameters associated with clot kinetics and formation.  These include:  reaction 

time (R), or time until initial fibrin formation; clot formation time (K), or the measure of 

rapidity to reach clot strength; α angle, or the speed of clot strengthening; maximum 

amplitude (MA), or ultimate clot strength; and shear elastic modulus strength (G), or the 

clot firmness.
121

  TEG was employed to understand any perturbations in clot formation 

and kinetics through the aeration process of ARTISS into fibrin foam and the impact of 

these changes. 

Figure 17 depicts a thromboelastograph readout of fibrin foam versus ARTISS.  

The TEG analyses were normalized to time of preparation as described in the Methods 

section.  This figure shows fibrin foam (green) with a much steeper angle to clot 

formation than ARTISS, as reflected in the significantly higher alpha angle (Table 11, 

p<0.001).  Table 11 (and Table A1) shows the remaining TEG parameters as compared 

between ARTISS and fibrin foam preparations with significant differences (p<0.001) in 

the R and K values as well leading to the conclusion of faster clot kinetics for fibrin foam 

compared to ARTISS.  There were similar measured values for maximum clot strength 

(MA) and shear elastic modulus strength (G), which shows fibrin foam and ARTISS, 
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have comparable clot strengths even after aeration.  Expanding from the TEG analysis, a 

shear strength computation was performed to extrapolate additional data on the 

biomechanical attributes of fibrin foam.  As referenced in the literature, shear strength, G, 

is often measured in a magnitude of Pascals.
115

  Table 12 (shear strength) details similar 

values for G of both fibrin foam and ARTISS as would be expected from the values in 

the TEG analysis.  These values, however, are used to correlate between this study and 

published literature for which the values of ARTISS and fibrin foam are consistent.  

Through literature searches and previous research, the shear strengths for fibrin sealants 

are on average 1-2 kPa.
115,121

 

 

Figure 17. Thromboelastography Assessment of Fibrin Foam. Thromboelastography 

comparison of fibrin foam versus fibrin sealant.  Fibrin foam (green) and ARTISS fibrin 

sealant (black) were analyzed on a thromboelastograph for 30 minutes.  Associated 

parameter data from the plot found in Table 11. 
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Parameter Fibrin Foam ARTISS Fibrin Sealant 

R (clot formation, min) 0.2 ± 0.0* 0.6 ± 0.4 

K (degree of elasticity, 

min) 

0.8 ± 0.0* 4.5 ± 1.8 

Maximum amplitude 

(MA; clot strength, mm) 

88.1 ± 1.8 85.0 ± 6.6 

G (shear modulus, 

dynes/cm
2
) 

38.0 ± 6.5 35.5 ± 18.9 

α-angle (clot kinetics, 

degrees) 

86.0 ± 0.7* 49.8 ± 11.4 

Table 11. Thromboelastography Parameter Measurements of Fibrin Foam.  

Thromboelastography results obtained for fibrin foam and commercially-available fibrin 

sealant.  Fibrin foam showed decreased time to initial fibrin clot formation (R) and a 

lower degree of elasticity (K), which indicates faster clotting.  Additionally, fibrin foam 

had larger α-angles correlating faster clot-forming kinetics.  The fibrin sealant, however, 

had slightly greater clot (MA) and shear strengths (G) comparatively.  Sample size:  n = 

16 for fibrin foam, n = 14 for ARTISS. *Significant difference (p < 0.001).   

 

The mechanical properties of fibrin foam were also examined to show its ability 

to function as a proper wound therapy, including having elasticity to permit motion 

within tissue, ability to resist linear and shear stresses, and tensile strength to resist 

fragmentation.
14

  Tensile strength and elastic modulus were examined using two, similar 

methods.  First, a dog-bone-shaped mold apparatus was used to measure tensile strength 

and modulus.  The tensile strength of fibrin foam (0.40 ± 0.07 MPa) was significantly 

lower than ARTISS (0.87 ± 0.27 MPa) (Fig. 18A); however, ARTISS (0.076 ± 0.01 MPa 

compared to fibrin foam 0.047 ± 0.01 MPa) was shown to be significantly stiffer with its 

higher elastic modulus (p < 0.05) (Fig. 18C).  Similar results were noted in an ASTM 

wound closure experiment that utilized vis-à-vis porcine skin samples with either sealant 

preparation serving as a wound treatment holding the porcine skin pieces together.  

ARTISS, again, had a significantly greater wound closure strength (p < 0.05), but no 

observable difference was noted in wound closure elastic moduli (Fig. 18B, 18D).  The 

tensile and wound closure strengths as well as associated moduli values are comparable 
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with previous research performed on fibrin sealants.  The range for tensile and wound 

strengths is 3 kPa to 0.2 MPa and 1 kPa to 0.13 MPa for elastic moduli.
122,123

  Thus, fibrin 

foam – even with decreased biomechanical strengths relative to ARTISS – should be 

considered a viable and mechanically-sound wound therapy candidate based on data from 

previous data on fibrin sealants.
122,123

 

 

Figure 18. Biomechanical Comparison of Fibrin Foam and ARTISS Fibrin Sealant.  

Tensile strength and elastic modulus were obtained using a Materials Testing System for 

the tensile strength test.  Wound closure strength and modulus were analyzed through use 

of ASTM F2458-05, which used porcine skin segments as scaffold to recreate a wound 

environment.  A) Significant differences between ARTISS and fibrin foam for tensile 

strength (*p < 0.05) B) and wound closure strength (*p < 0.05).  C) Significant increase 

in elasticity of fibrin foam compared to ARTISS observed for elastic modulus (*p < 

0.05).  D) No significant differences were shown for wound strength modulus.  Sample 

sizes:  tensile strength and modulus (n = 6 per group); wound closure strength and 

modulus (n = 4 per group).   

 

While the biomechanical properties are important for wound therapy, I also 

assessed the effects of the aeration process on the structural characteristics of ARTISS 
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used to generate fibrin foam.  In the following assessments, ARTISS (non-aerated fibrin 

sealant) and polyurethane foam dressing (a current wound therapy) were examined for 

comparison purposes.  Polyurethane foam dressings (KCI, Inc.) are often used in 

negative-pressure wound therapy applications because of their highly porous scaffold 

structure (pore sizes:  400-600 µm).  SEM images of each of the three test samples are 

displayed in Figure 19.  As seen in these micrograph images, the polyurethane foam 

dressing sample has vastly larger pore sizes compared to that of fibrin foam and ARTISS.  

Fibrin foam does display its evenly dispersed range of pores in this cross-sectional 

sample, while ARTISS shows its tightly-bound fibrin network.   

 

Figure 19. SEM Analysis of Wound Treatments.  SEM images of each wound 

treatment.  A) Fibrin foam. B) Polyurethane foam dressing. C) ARTISS fibrin sealant.  

Each treatment image is labeled with respective pore size (via SEM/FIJI ImageJ analysis) 

and porosity percentage.  Scale bars:  1 mm (panels A, B), 30 µm (panel C). 

 

The focus then shifted to studying the three-dimensional structure of fibrin foam.  

This entailed analysis of permeability, which is a crucial attribute for wound healing 

biomaterials.  Permeability, in the instance of fibrin foam/sealant, is dependent on fibrin 

density and porosity. These properties were additionally studied through compaction and 

porosity experiments.  As shown in Table 12 below, fibrin foam had a significant 
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increase in compaction percentage (24.7 ± 1.6% compared to 7.4 ± 1.4% of ARTISS) 

indicating a more porous fibrin matrix within the foam, as would be expected through the 

aeration process.  Porosity (72.5 ± 8.3% compared to 47.7 ± 6.8%) and fluid permeability 

(8.3 x 10
-8

 ± 2.3 x 10
-9

 mm
2
 compared to 6.1 x 10

-8
 ± 1.2 x 10

-8 
mm

2
) were also 

significantly higher (p < 0.05) in fibrin foam compared to the fibrin sealant.  While 

polyurethane had significantly better fluid permeability (Ks = 1.3 x 10
-7 

± 1.0 x 10
-8

 mm
2
 

of polyurethane compared to 8.3 x 10
-8

 ± 2.3 x 10
-9

 mm
2
 of fibrin foam, p < 0.05), fibrin 

foam was significantly more porous (72.5 ± 8.3% to 42.8 ± 5.4%, p < 0.05) due to the 

thicker fibers in the polyurethane matrix. 

The results of the fluid permeation experiments displayed significant differences 

between ARTISS and fibrin foam, and polyurethane foam compared to both fibrin foam 

and ARTISS.  This permeability trend among the three test samples is directly related to 

the increases in pore size from ARTISS (0-50 µm) to fibrin foam (100-250 µm) to 

polyurethane foam (400-600 µm) (Figure 19).  All measured permeability constants fall 

within range of other tissue engineering and wound healing scaffolds (ex. range:  1 x 10
-7

 

to 1 x 10
-10

 mm
2
).

116,117
  These combined results show fibrin foam is able to withstand the 

stresses and forces within a wound cavity, and fibrin foam also obtains advantageous 

attributes after aeration, such as increased fluid permeability and porosity, from that of 

commercially-available fibrin sealants and current wound therapies.   
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Shear Strength (kPa) 

 

Compaction (%) 

 

Permeability (K, mm²) 

 

Porosity (%) 

ARTISS Fibrin 

Sealant 

3.6 ± 1.9 7.4 ± 1.4 6.1 x 10
-8

 ± 1.2 x 10
-8

 47.7 ± 6.8 

Fibrin Foam 3.8 ± 0.65 24.7 ± 1.6* 8.3 x 10
-8

 ± 2.3 x 10
-9

** 72.5 ± 8.3*** 

Polyurethane 

Foam 

ND ND 1.28 x 10
-7 

± 1.0 x 10
-8@

 

 

42.8 ± 5.4
 

Table 12. Structural Assessment of Fibrin Foam.  Shear strength, fibrin compaction 

percentage, fluid permeability, and percent porosity of ARTISS fibrin sealant and fibrin 

foam.  Shear strength indicates no significant difference between the two conditions.  

However, significant increases in compaction percentage (*p = 0.0009), fluid 

permeability (**p = 0.0034) and percent porosity (***p = 0.0012 FF vs ARTISS and 

polyurethane foam) were determined for fibrin foam as compared to the fibrin sealant.  

Additionally, polyurethane foam was demonstrated significantly higher permeability 

compared to both fibrin foam and ARTISS (@ p < 0.05).  Sample sizes:  n = 14-16 (shear 

strength), n = 8 (compactibility and permeability), and n = 6-12 (porosity).  ND:  not 

determined. 

 

 Lastly, and to determine the kinetics of in vivo degradation, fluorescently 

conjugated fibrinogen was used to label both ARTISS fibrin sealant and fibrin foam as 

performed by Ludwig Boltzmann Institute in collaboration with Baxter.  Each preparation 

was subcutaneously implanted in nude mice.  As seen in Figure A1, there was no 

difference in the overall degradation rate of fibrin foam from that of ARTISS over the 

fourteen-day period.  However, it was positive to see the biodegradability of fibrin foam 

in vivo of up to two weeks’ time, which overlaps greatly with the wound healing process. 

These results coincide with previously performed in vitro degradation studies performed 

on fibrin sealants (internal Baxter research), which found their fibrin sealants remain 

within a degradative environment for approximately 14 days.   
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Cellular biocompatibility analyses of fibrin foam.  An important consideration 

with the characterization of this novel biopolymer was ensuring the preservation of 

cellular biocompatibility.  While ARTISS fibrin sealant is a commercially-available 

fibrin sealant and has been marketed for years, the permutations in matrix structure 

within fibrin foam could cause cellular distress.  As seen in the literature, pore size 

environment is a determining factor in cell migration and proliferation.
15

  Here, to assess 

cellular viability, a lactate dehydrogenase (LDH) assay was used.  Primary human 

umbilical vein endothelial cells (HUVEC), primary normal human dermal fibroblasts 

(NHDF), and primary normal human epidermal keratinocytes (NHEK) were cultured on 

ARTISS and fibrin foam clots as well as polyurethane foam dressings.  Polyurethane 

(PU) foam, a current therapy in acute and chronic wounds, was also analyzed in these 

experiments as its porous matrix is attributed to its resilience in wound healing 

applications, such as negative-pressure wound therapy.  This colorimetric assay 

quantitatively measures LDH released into the media from damaged cells as a biomarker 

for cellular viability.  The extracellular LDH in culture media, in combination with 

diaphorase, enzymatically converts tetrazolium into a red formazan product, which was 

measured spectrophotometrically. 

As Figure 20 illustrates, several cellular conditions were analyzed at each time 

point.  As expected, Media Alone, Cells + Media, ARTISS + Cells, Fibrin Foam + Cells, 

and Polyurethane Foam Alone conditions all resulted in low average absorbance levels at 

2, 24, and 48 hour time points.  This correlates to minimal cell death and high level of 

cell viability in each condition, including fibrin foam.  Conversely, the LDH positive and 

Cell Lysis conditions resulted in increased levels of average absorbance, as these wells 
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contained high concentrations of LDH in the cell media (i.e. non-viable or dead cells). 

ARTISS and fibrin foam were both significantly different (p < 0.05) from the LDH 

positive condition, confirming cellular viability in each condition.  PU + Cells begin to 

show increasing levels of absorbance (i.e. increased levels of LDH in supernatant) at 24 

and 48 hours (Fig. 20 middle and lower panels).  Compared to Media Alone, PU + Cells 

(NHDF, NHEK) show significant differences (p < 0.05) at 24 and 48 hour time points, 

which may denote increases in cell death when cells are seeded on PU foam dressings. 
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Figure 20. Lactate Dehydrogenase (LDH) Assay for Cellular Biocompatibility.  

HUVEC, NHDF, and NHEK cells were cultured on fibrin sealant and fibrin foam clots as 

well as polyurethane (PU) foam dressings for 2, 24, and 48 hour time points.  ARTISS 

and fibrin foam (FF) were both significantly (*p < 0.05) different from the LDH positive 

condition, showing cell viability in each case.  Compared to Media Alone, PU + NHEK 

and PU + NHDF show significant differences (#p < 0.05) at both 24 and 48 hour time 

points; this may denote cell death.  Eight samples were performed for each group.   

 

Additionally, cellular biocompatibility was determined on the basis of the 

metabolic state of the cells (Fig. 21).  When cells are viable, they maintain a reducing 
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environment within the cytosol of the cell. Resazurin, the active ingredient of 

AlamarBlue (AB) reagent, is a non-toxic, cell permeable compound that is blue in color 

and non-fluorescent. Upon entering cells, resazurin is reduced to resorufin, a red-colored 

compound and highly fluorescent. Viable cells continuously convert resazurin to 

resorufin, increasing the overall fluorescence and color of the cell media.
124

  Therefore, 

the amount of fluorescence produced is proportional to the number of viable and 

metabolically active cells. 

Using this AlamarBlue assay, the metabolic activity of HUVEC, NHDF, and 

NHEK cells seeded on ARTISS, fibrin foam, or polyurethane foam was evaluated.  The 

proliferation and metabolism of each cell type was indicated as the fold-increase of the 

AlamarBlue reagent at each time point (2, 24, 48, and 72 hours) using the excitation and 

emission filters of 570 nm and 585 nm, respectively.  

 In Figure 21, Media Alone, Cell Lysis, fibrin foam (FF) alone, and PU foam 

alone conditions all result in low fluorescence levels.  This was expected as these 

conditions are void of viable cells.  Cells Alone, FF + Cells, ARTISS + Cells, and PU 

Foam + Cells all begin to show a significant (p = 0.0304) increase in fluorescence at the 2 

hour time point when compared to Media Alone.  This significant difference carries 

across all time points leading to the conclusion of continuously proliferating and 

metabolizing cells present in these conditions, including fibrin foam.  However, PU Foam 

+ Cells had a significant decrease in fluorescence at 24 hours across all cell types when 

compared to Cells Alone (p = 0.0304).  Cells, in this instance, may have inhibited surface 

adherence and migration into the polyurethane foam matrix, which would hinder their 

proliferation. 
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Figure 21. AlamarBlue Assay for Cellular Metabolic Activity.  HUVEC, NHDF, and 

NHEK cells were cultured similar to panel A and Alamar Blue (AB) reagent was 

fluorescently analyzed at 2, 24, 48 and 72 hour time points.  Media Alone, Cell Lysis, FF 

alone, and PU foam alone conditions all result in low fluorescence levels.  Cells Alone, 

FF + Cells, ARTISS + Cells, and PU Foam + Cells all begin to show a significant (*p = 

0.0304) increase in fluorescence at the 2 hour time point when compared to Media Alone.  

This significant difference carries across all time points (2, 24, 48, and 72 hours) leading 

to the conclusion of continuously viable and metabolizing cells present in these 

conditions, including fibrin foam.  However, PU Foam + Cells had a noticeable decrease 

in fluorescence at 24 hours across all cell types.  At 24 hours, PU Foam + Cells was 

significantly different (#p = 0.0304) when compared to Cells Alone.  All samples were 

repeated for n = 4.   
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Additionally, cytoxicity of fibrin foam was  assessed per ISO 10993-5.
118

  The 

results of this experiment (Table 13) detail fibrin foam’s biocompatibility once again.  

Taken together, these assays have shown that fibrin foam is biocompatible from both 

cellular viability and cellular metabolism assessments.  Conversely, the current wound 

therapy product, polyurethane foam, displayed marked cellular death in the LDH assay, 

followed by a decreased rate of cellular proliferation in the AB assay after 24 hours of co-

culture.  This may be due to the more suitable pore size distribution of fibrin foam as 

compared to polyurethane foam or due to the extracellular matrix-like ligands present in 

the foam’s structure.  

Sample Results/Score Rating 

Fibrin foam 1 0 Pass 

Fibrin foam 2 0 Pass 

Fibrin foam 3 0 Pass 

Fibrin foam 4 0 Pass 

Fibrin foam 5 0 Pass 

Fibrin foam 6 0 Pass 

Table 13. ISO 10993-5 Cytotoxicity Assessment of Fibrin Foam.  Results from the 

ISO 10993-5 assessment of fibrin foam.  All fibrin foam samples (n = 6) passed the 

cytotoxicity analysis.  The positive control (n = 3) failed in all of its tests; while the 

negative control (n = 3) passed in all tests.  Scoring and ratings are detailed in the 

Methods section.   

 

Along with the quantitative analyses of cellular biocompatibility, two qualitative 

experiments were performed on fibrin foam.  First, SEM images were taken of ARTISS 

fibrin sealant and fibrin foam clots that were seeded HUVEC, NHDF, and NHEK cells.  

These cells were cultured on the clots for 24 hours prior to imaging.  As the images in 

Figure 22 show, endothelial, fibroblast, and keratinocyte cells spread and have 

morphology associated with viability on the ARTISS fibrin clots in panels A-C.  When 

compared to the lower panels (D-F), the identical morphologies in the cell types are seen 

in and on the fibrin foam clots. 
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Figure 22. Cellular Interactions with Fibrin Foam.  Cellular interactions with fibrin 

foam. Scanning electron microscopy images of ARTISS fibrin sealant (top) and fibrin 

foam (bottom) seeded with HUVEC (A, D), NHDF (B, E), and NHEK cells (C, F).  Cells 

were cultured for 24 hours on the fibrin clots before fixation.  Scale bars:  50 µm.  FF:  

fibrin foam, HUVEC:  human umbilical vein endothelial cells, NHDF:  normal human 

dermal fibroblasts, NHEK:  normal human epidermal keratinocytes.  Images are 

representative of at least three separate images. 

 

Additionally, cellular viability was assessed using confocal microscopy and 

live/dead cell stains.  HUVEC, NHDF, and NHEK cells were seeded on fibrin foam clots 

and allowed to culture for 24 hours prior to imaging.  After 24 hours, cells and clots were 

stained with live/dead stain and a wheat germ agglutinin stain (WGA, stained fibrin foam 

structure).  Figure 23 confocal images show the vast majority of cells to be living (blue 

stain) within the fibrin foam matrix for each cell type used.   
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Figure 23. Cellular Viability Assessment of Fibrin Foam using Confocal 

Microscopy.  Confocal images of fibrin foam seeded with A) endothelial cells 

(HUVEC), B) fibroblasts (NHDF), and C) keratinocytes (NHEK) following 24 hours of 

incubation at 37°C / 5% CO2.  Blue (live cell stain), green (dead cell stain), and orange 

(wheat germ agglutinin).  FF:  fibrin foam, HUVEC:  human umbilical vein endothelial 

cells, NHDF:  normal human dermal fibroblasts, NHEK:  normal human epidermal 

keratinocytes.  Scale bars:  200 µm.  Images are representative of three separate 

experiments. 

 

Aim 2:  To evaluate the performance of fibrin foam as a novel dressing in acute 

wound and negative-pressure wound therapy settings. 

 

Three-dimensional in vitro wound model.  The structure and porosity of fibrin 

foam coupled with its biocompatibility and biodegradability make it a suitable candidate 

for wound therapy.  Additionally, host cell migration into such wound scaffolds in vivo is 

crucial for such processes as angiogenesis and skin regeneration to occur.  In this part of 

the research, a three-dimensional in vitro wound assay was employed to visually assess 

cellular migration into and onto fibrin foam.
125

  For this in vitro assay, I utilized a three-

dimensional (3D) model which mimics that of a skin wound environment.  This allowed 

me to study the cellular migration of cells in the wound where previous 2D assays have 

sufficiently lacked.  This 3D model was generated using a collagen matrix to mimic skin.  

Once the matrix was formed, HUVEC, NHDF, and NHEK cells were stained and seeded 

on the collagen before a wound was created in the matrix using a 2 mm biopsy punch.  
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The wound defect was filled with one of four treatments – collagen (control), ARTISS 

fibrin sealant, fibrin foam, or polyurethane foam.   

At 24 and 48 hours after treatments were applied, the 3D wounds were 

fluorescently imaged.  As seen in the top panel of Figures 24-26, the control-treated 

wounds had visibly poor cell migration onto their surface at both time points.  The lack of 

fluorescent cells migrating onto the collagen-filled matrix is shown across all three cell 

types.  Similarly, polyurethane (PU) foam-treated wounds (lower panels in figures) had 

marked failure of cellular adherence to its matrix or migration into the polyurethane foam 

dressing.  From the fluorescent images of the PU foam-treated wounds, the presence of 

sloughed, or likely dead, cells that had settled into the bottom of foam matrix was noted – 

likely due to improper attachment to the synthetic polyurethane foam scaffold. 
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Figure 24. Three-Dimensional In Vitro Wound Assay (NHDF).  Endothelial (HUVEC) 

cells, fibroblasts (NHDF) (shown), and keratinocytes (NHEK) stained with Vybrant DiO 

were analyzed for migration.  Biopsy punch (2 mm) wounds were filled with control 

(PureCol EZ Gel), ARTISS fibrin sealant, fibrin foam, and polyurethane foam dressing.  

Migration was assessed at 24 and 48 hours into and onto wound treatments.  Images are 

labeled with white arrows to denote location of wound periphery.  A representative image 

of an unfilled wound is shown in the upper left corner.  Location of treatments noted by 

abbreviations:  C:  Control; A:  ARTISS; FF:  Fibrin Foam; PU:  Polyurethane foam 

dressing.  Images were taken at 4x magnification.  Images are representative of at least 

three separate samples.   

 

Conversely to the control- and PU foam-treated wounds, moderate cell migration 

was seen at both time intervals for ARTISS fibrin sealant.  When imaged, ARTISS led to 

a cloudy appearance in the wound cavity as is noted in its macroscopic form as well (Fig. 

10).  However, wound margins were still able to be marked (white arrows) for reference.  

Each cell type was able to adhere to the ARTISS fibrin matrix and was able to migrate 
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onto its surface by the 48 hour time interval.  Lastly, fibrin foam-treated wounds showed 

and allowed for the greatest migration of cells into the foam-filled wound margin with all 

three cell types and at each time point.   From the fluorescent images, migration of cells 

into and onto the fibrin foam scaffold can be seen. 

Through the use of this assay, this research was able to recreate a three-

dimensional collagen-based wound in vitro and test the efficacy and performance of 

several wound treatments.  From a qualitative standpoint, fibrin foam-treated wounds 

were shown to allow for a more favorable migration environment throughout this 3D in 

vitro wound assay due to its fibrin matrix and porous structure.   
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Figure 25. Three-Dimensional In Vitro Wound Assay (HUVEC).  Three-Dimensional 

In Vitro Wound Assay.  Endothelial (HUVEC) (shown) cells, fibroblasts (NHDF), and 

keratinocytes (NHEK) stained with Vybrant DiO were analyzed for migration from 

collagen matrix (PureCol EZ Gel) into 2 mm biopsy punch wound.  Biopsy punch 

wounds were filled with control (PureCol EZ Gel), ARTISS fibrin sealant, fibrin foam, 

and polyurethane foam dressing.  Migration was assessed at 24 and 48 hours into and 

onto wound treatments.  Images are labeled with white arrows to denote location of 

wound periphery.  A representative image of the unfilled wound is shown in the upper 

left corner.  Location of treatments noted by abbreviations:  C:  Control; A:  ARTISS; FF:  

Fibrin Foam; PU:  Polyurethane Foam dressing.  Images were taken at 4x magnification. 
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Figure 26. Three-Dimensional In Vitro Wound Assay (NHEK).  Three-Dimensional In 

Vitro Wound Assay.  Endothelial (HUVEC) cells, fibroblasts (NHDF), and keratinocytes 

(NHEK) (shown) stained with Vybrant DiO were analyzed for migration from collagen 

matrix (PureCol EZ Gel) into 2 mm biopsy punch wound.  Biopsy punch wounds were 

filled with control (PureCol EZ Gel), ARTISS fibrin sealant, fibrin foam, and 

polyurethane foam dressing.  Migration was assessed at 24 and 48 hours into and onto 

wound treatments.  Images are labeled with white arrows to denote location of wound 

periphery.  A representative image of the unfilled wound is shown in the upper left 

corner.  Location of treatments noted by abbreviations:  C:  Control; A:  ARTISS; FF:  

Fibrin Foam; PU:  Polyurethane Foam dressing.  Images were taken at 4x magnification. 

 

Negative-pressure wound therapy (NPWT) feasibility using fibrin foam.  

Negative-pressure wound therapy (NPWT) utilizes a vacuum system, which applies 

subatmospheric pressures ranging from 0 to -300 mmHg, to improve wound healing.  

This technique is often used in hard-to-close acute and chronic wounds because of its 

ability to seal the wound edges, continuously remove excess exudate from the site of 
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injury, and promote wound healing.  NPWT involves the use of polyurethane foam or 

gauze dressings to cover and fill the wound site and serve as a permeable barrier.  NPWT 

is ever-growing in popularity for patients with skin grafts, dehisced surgical wounds, and 

pressure ulcers as these clinical indications have increased during the 21
st
 century.

126,127
 

However, the disadvantage to treating such wounds with a polyurethane foam 

dressing is the need to debride the wounds every 2 to 3 days of vacuum treatment.  

During these few days, tissues are pulled and migrate into the non-biodegradable matrix 

of the polyurethane foam.  This debridement step in NPWT leads to pain and irritation to 

the patient, re-injuring of the wound site, and an overall decrease in the wound healing 

rate.
128

  Therefore, I wanted to test the feasibility of fibrin foam for use in a NPWT 

environment.  Fibrin foam holds a porous matrix to allow for removal of exudate from 

the wound; however, fibrin foam also generates a fibrin scaffold for the migration of cells 

and tissues.  Lastly, fibrin foam is a biodegradable and biocompatible matrix and 

therefore would not need to be debrided from NPWT-treated wounds.   

For NPWT feasibility, full-thickness biopsy punch wounds were created in 

porcine skin samples.  The wounds were filled with fibrin foam or ARTISS and allowed 

to cure over several time points.  After curing, the NPWT device (KCI, Inc.) was 

attached, a protective plastic sheath was placed over the treated wound, and 

subatmospheric pressure (-200 mmHg) was applied to the wounds for 2-5 minutes.  At 

each time point, images were taken.  As Figure 25B and 25E shows, fibrin foam was able 

to withstand the negative pressure and remain in the wound cavity.  To test the worst-case 

scenario (Fig. 25C, 25F), the protective sheath was removed and the direct pressure from 

the vacuum system was placed on top of the fibrin foam-treated wound.  As seen at this 
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instance as well as the remaining time points, fibrin foam remained within the wounds 

after treated with the NPWT system.  As shown in Figure 28, I also tested the feasibility 

of ARTISS fibrin sealant for use in NPWT.  Similarly to fibrin foam, ARTISS remained 

in the wound cavity at 30 minute, 1 hour, and 2 hour time points.   

 

Figure 27. Negative-Pressure Wound Therapy Feasibility with Fibrin Foam.  A) 

Negative-pressure wound therapy vacuum system apparatus attached to a 12-mm biopsy 

punch porcine skin wound treated with fibrin foam.  B/E) Fibrin foam-treated wound 

after 30 minutes of set time followed by 2-5 minutes under negative pressure (-200 

mmHg).  C/F) Fibrin foam-treated wounds after 30 minutes of set time followed by 

application of vacuum directly onto wound.  D/G) Fibrin foam-treated wounds after 1 

hour and 2 hour set times, respectively, followed by application of vacuum treatment.  In 

each instance, fibrin foam remained within wound cavities.  
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Figure 28. Negative-Pressure Wound Therapy Feasibility Testing with ARTISS.  

Negative-Pressure Wound Therapy Feasibility for ARTISS fibrin sealant.  Images taken 

at 30 minutes, 1 hour, and 2 hours after ARTISS treatment of wound punch biopsies (A, 

B, C).  At each time point, negative pressure (-200 mmHg) was applied for 2-5 minutes 

using negative pressure vacuum system.  Wound images were taken after the application 

of NPWT (D, E, F).  ARTISS remained in wounds at each time point after application of 

NPWT.  Three wounds were treated at each time point. 
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In vivo murine model assessment of fibrin foam.  Since this research had 

characterized fibrin foam and shown the feasibility of the foam as a wound therapy in 

vitro, I wanted to evaluate its in vivo wound healing abilities.  To accomplish this, I 

utilized a full-thickness murine wound biopsy punch model in collaboration with Loyola 

University Chicago and the W. Keith Jones Laboratory.  The BKS.Cg-Dock7m +/+ 

Leprdb/J (db/-) mice (8-12 weeks of age) were anesthetized, and a 6 mm biopsy punch 

was used to make four excision wounds (1 cm apart) on the dorsal surface of the animal.  

Each of the four wounds was treated separately and covered using experimental materials 

and dressings, including ARTISS, fibrin foam (FF), polyurethane (PU) foam, and control 

(no treatment) (Figure 11).   

To assess the wound closure of each treatment, a digital camera was used to take 

photographs of the wounds at days 0, 3, 7, 10, and 14.  From the photographs taken, the 

wound area was measured.  A wound was considered completely closed when the wound 

area was equal to zero (grossly).  FIJI ImageJ imaging software was used to measure the 

wound area using manual technique as previously described.
119

  Briefly, wound area was 

assessed by tracing the wound area with a fine-resolution computer mouse and 

calculating the pixel area within.  The wound closure analysis was performed blinded and 

only the mouse identification number was known. 

In general, the healing rate of fibrin foam-treated mice was greater than those of 

the other three treatments (Fig. 29).  At day 7, fibrin foam-treated mice demonstrated 

significantly accelerated wound closure when compared to control (p = 0.045), ARTISS 

(p = 0.007), and PU (p < 0.001).  Similar results were noted at day 14, when fibrin foam-

treated wounds healed with wound closure significantly greater than the other treatment 
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groups (p < 0.05).  This data indicates the fibrin foam wound therapy improved wound 

closure, which resulted in an overall better wound healing effect on the animals.  Wound 

closure was also calculated based on percent wound closure based on day 0 wounds as 

100% open.  The results were identical as fibrin foam still showed significant ability to 

close the murine wounds compared to all other treatments (Fig. A2).  Fibrin foam-treated 

wounds also yielded the most fully-closed wounds as detailed by the Loyola surgical staff 

at day 14.  Fibrin foam had 5 fully-closed wounds (of 12 total mice) compared to 2 of 

control, 1 of ARTISS, and 0 of polyurethane foam (data not statistically significant).   
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Figure 29. Fibrin Foam Performance in Murine Wound Model.  A) Initial wound 

sizes (cm
2
) were equivalent for the four treatments but significantly different subsequent 

days (p < 0.001 for days 3-14).  By day seven, wounds treated with fibrin foam (FF) were 

smallest compared to all other treatments (*p < 0.05).  Wounds were significantly larger 

for polyurethane foam (PU) compared to the other treatments (#p < 0.001).  C) At day 14, 

initial wound sizes were similar for all treatments.  Similar to day 7, wounds were 

significantly larger for PU compared to all other treatments (#p < 0.001) at day fourteen.  

Wounds treated with fibrin foam were significantly smaller compared to the other 

treatments (*p < 0.05).  Twenty-four mice were analyzed for panel A and twelve mice 

were analyzed in panel B. 
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 To obtain a further understanding into the tissue regeneration in the biopsy punch 

wound site, hematoxylin & eosin (H&E) and Masson’s Trichrome staining were 

performed at Loyola to assess the cellular change of the skin throughout the wound 

model.  At days 7 and 14, wounds were assessed on several histological parameters.  The 

main histological parameters for wound healing were:  reepithelialization, neovascular 

proliferation, acute and chronic inflammation, and collagen deposition.  These parameters 

were scored on a 0-3 scale as shown in Table 8.
120

  Additionally, epithelial maturation, 

granular tissue formation, and granular tissue maturation were assessed on a yes-or-no 

basis.  The degree of granular tissue formation/maturation was determined by the 

structure and alignment of fibroblasts in the wound area. 

 Representative histological images of wounds from days 7 and 14 are shown in 

Figure 30.  As the H&E staining details, fibrin foam-treated wounds had already begun 

the processes of reepithelialization and granular tissue formation by day 7 (Fig. 30C), and 

these wounds exhibited almost complete wound closure by day 14 (Fig. 30G).  This was 

comparable to ARTISS and control based on histological samples.  However, the 

polyurethane foam-treated wounds showed lack of epithelialization as clearly noted in 

Figure 30D and 30H.  The polyurethane foam matrix is wedged within the wound cavity, 

and upon debridement, leads to re-injuring of the wound site.   

 Collagen deposition was also assessed using Masson’s Trichrome stain.  Figure 

31 shows representative images of day 14 wounds from each treatment group.  Control 

(31A) and fibrin foam (31C) treated wounds showed an abundant level of collagen 

deposition.  This is in contrast to the polyurethane foam-treated wound (31D) which 

showed scant deposition of collagen by day 14 as these wounds failed to properly heal.  
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Figure 30. Histological Assessment of Murine Acute Wounds.  Images of wound 

specimens from each wound treatment group at day 7 (top panel) and day 14 (bottom 

panel) using H&E stain.  Sections were prepared and stained as per methods.  A/E) 

Section from a wound from Control treatment group; B/F) Section from a wound from 

ARTISS treatment group; C/G) Section from a wound from Fibrin Foam treatment group; 

D/H) Section from a wound from Polyurethane Foam dressing treatment group.  The 

scoring for the wound healing parameters for these samples with respect to 

reepithelialization, neovascular proliferation, and acute and chronic inflammation were, 

respectively:  A) 0, 1, 0, 2 B) 2, 1, 1, 1 C) 2, 3, 1, 2 D) 1, 1, 3, 2 E) 3, 2, 1, 1 F) 3, 1, 1, 1 

G) 3, 3, 1, 1 H) 0, 1, 3, 2.  E:  epithelium; D:  dermis; G:  granulation tissue; S:  

subcutaneous tissue; M:  muscle.  Scale bars:  700um.   
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Figure 31. Collagen Deposition Analysis of Wound Samples.  Images of day 14 wound 

specimens from each treatment group using Masson’s Trichrome stain for collagen 

deposition.  A) Section from control group wound B) Section from ARTISS group wound 

C) Section from fibrin foam group wound and D) Section from polyurethane foam group 

wound.  The scoring of collagen deposition was, respectively:  A) 3 B) 2 C) 3 D) 1.  

Scale bars:  500 µm. 

 

 The histological slides from Figures 30 and 31 were blindly assessed by a Loyola 

pathologist on the aforementioned parameters.  The raw data of these results are found in 

Table A2 and A3, while the graphical data is shown below in Figures 32 and 33.  Figure 

32 details a comparison of the parameters – reepithelization, neovascular proliferation, 

acute and chronic inflammation, and collagen deposition – at days 7 and 14.  While none 

of the comparisons were found to be significant, the data is useful for determining the 

cellular and wound-healing responses to the fibrin foam matrix and the other treatments.   
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Figure 32. Histological Comparisons of Wounds at Days 7 and 14.  Histological 

analyses at days 7 (A, C, E, G, I) and 14 (B, D, F, H, J) from Tables A2 and A3.  n = 12 

for all groups, except collagen deposition (n = 6). 
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 From Figure 32, the parameters and scoring for the wounds treated by fibrin foam 

were further assessed.  The green bars, representing fibrin foam-treated wounds, show a 

sharp increase in reepithelization from day 7 to day 14 (Fig. 32A, 32B).  Additionally, 

these wounds have revascularization occurring at both time points, which is a hallmark of 

proper wound healing.  Similarly, collagen deposition increased in fibrin foam wounds 

over the two week period.  While inflammation is necessary in proper wound healing, an 

abundance or prolonged periods of inflammation can lead to improper or chronic wound 

healing.  As shown in Figure 32E-H, fibrin foam wounds have scores of 0-1 for acute and 

chronic inflammation over the study.  There were no signs of prolonged inflammation in 

the fibrin foam-treated wounds.   

 ARTISS and control treated wounds also showed similar results to fibrin foam in 

the five categories of Figure 32.  Polyurethane foam, however, had distinct lack of proper 

wound healing parameters, including sustained inflammation and lack of collagen 

deposition over the two weeks.  

 Lastly, granular tissue formation and maturation as well as epithelial maturation 

were assessed.  Figure 33 representatively details the results of that analysis.  While no 

significance was observed, trends of increases in granular tissue maturation and epithelial 

maturation were noted for the fibrin foam-treated wounds over the 14-day study.  Again, 

this signifies proper wound healing processes occurring within the wounds treated with 

fibrin foam. 
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Figure 33. Quantification of Histological Data from Murine Model.  Positive 

observations (YES/NO outcomes) for the histological and pathological parameters of 

epithelial maturation, granular tissue formation, and granular tissue maturation at days 7 

and 14 from Tables A2 and A3 (n = 12 per group). 
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As shown, the polyurethane foam-dressed wounds produced the worst histological 

response as noted by the lack of reepithelialization and other features (Fig. 30).  This 

result goes in line with the wound closure data (Fig. 29), which showed PU-treated 

wounds had the significantly poorest wound closure when compared to any other 

treatment (p < 0.001).  This was due to the debridement of the wounds on dressing-

change days – a typical clinical disadvantage to use of non-biodegradable dressings.  I 

chose to analyze the debrided polyurethane foam on dressing-change days.  In Figure 34, 

H&E staining of debrided polyurethane foam dressings was performed.  The debrided 

dressings contained skin and tissue on the periphery as well as intercalated within the 

polyurethane foam matrix at both days 7 and 14.  This confirmed previous observations 

in literature as to one of the key disadvantages of polyurethane foam dressing use in 

clinical situations – debridement.    

From the combined in vivo analyses, the fibrin foam-treated wounds exhibited 

vastly improved wound healing and were able to provide an environment suitable for 

wound healing processes, such as reepithelialization and granulation tissue formation and 

maturation. 
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Figure 34. Histological Assessment of Debrided Polyurethane Foam Dressings.  

Images of A) day 7 and b) day 14 debrided polyurethane foam dressings from the 

polyurethane foam treatment group using H&E stain.  Images show tissue embedded into 

the polyurethane foam matrix, which was debrided from each wound.  Scale bars:  2 mm. 
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CHAPTER FIVE 

DISCUSSION 

Wound care is an impactful clinical and economical issue.  In the United States 

alone, patients suffer from over 38 million acute and 6.5 chronic wounds each year.
8
  Due 

to this ever-growing clinical problem, wound care has evolved significantly from gauze 

and sutures to regenerative dermal substitutes and implanted stem cells.  Wound healing 

is a complex process that involves a vast array of cells, growth factors, and cellular 

matrices.
7,9

  To treat the multifaceted wound healing process, tissue engineering 

researchers have devoted their efforts to finding an efficient and enhanced wound 

therapy.  However, an optimal wound therapy still escapes the scientific and medical 

communities.  Current research in the fields of tissue engineering and wound therapy are 

vying for the ideal therapy.  This therapy must include the following features:  

biocompatible with tissues, biodegradable, mechanically suitable for wound cavity and 

movement, and permeable to cell and fluid transfer, among others.  Certain scaffolds, 

such as collagen, polyesters, and fibrin have been studied in great detail.
10

  Fibrin 

sealants, for instance, have been investigated as a wound healing matrix due to their 

functioning as a critical treatment methodology in hemostasis, inflammation, 

angiogenesis, and cellular interactions – all hallmarks of proper wound healing.
16

   

In the present study, I describe a novel biopolymer – fibrin foam – that is 

generated through a patented aeration mixing process using a commercially-available 
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fibrin sealant.
24-27

  Fibrin foam is created by manually passing fibrinogen and thrombin 

components through a porous, sintered mixing disc (Fig. 9A).  Its foam-like consistency 

and porous structure are formed through the addition of air prior to mixing.  Fibrin foam 

was characterized on several levels, including preparation and formulation, 

biocompatibility, and biomechanical strength.  I also showed its use as a superior therapy 

in a murine wound model. 

 Initial tests on fibrin foam assessed the preparation and formulation to devise an 

optimal foam.  I experimented with the number of manual passes to generate fibrin foam 

as well as the thrombin concentration and other additives.  The requirements for the foam 

were that it must be easily handled during preparation, have a foam-like consistency, and 

have a pore size distribution < 200 µm.  The manual mixing tests revealed a 4 IU 

thrombin fibrin foam generated from 6 passes through the Mix-F device to be the optimal 

foam (Fig. 13, Table 10).  This foam met the requirements and would allow for ease of 

preparation by medical professionals in a wound therapy situation.   

The biomechanical and structural properties of a biomaterial are crucial for use in 

wound care.  Many studies have detailed the performance characteristics of effective 

wound therapies, including substantial tensile strength to remain in a wound cavity, but 

also the elasticity to move with the tissue throughout the healing process.  I thereby 

assessed the tensile and wound closure strengths of fibrin foam.  A decrease in strength 

was noted when compared to the fibrin sealant (Fig. 18A, 18C).  This was hypothesized, 

however, as the aeration process leads to a more open matrix, which could cause this 

weakening effect on its structure.  The elasticity of fibrin foam was significantly superior 

to that of the sealant (Fig. 18B).   
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Along with strength and elasticity, an optimal wound therapy must also have 

sufficient permeability and a porous structure to allow for both fluid and cellular 

movement.  Shown in Table 12, structural analyses were performed on fibrin foam and 

ARTISS.  Fibrin foam’s compaction was significantly higher than that of ARTISS, which 

correlates to its aerated and porous state compared to the denser fibrin network of 

ARTISS.  Fibrin foam also had increased porosity and permeability, as I would expect 

given its structure.  These qualities are vast improvements from that of commercially-

available fibrin sealants and are advantageous to promoting an enhanced wound healing 

response.  Lastly, to examine the biodegradability of fibrin foam, an in vivo murine 

model was used to assess the degradation of fibrin foam over a two-week span.  Similar 

degradation of fibrin foam was noted when compared to fibrin sealant; the porous 

structure of fibrin foam did not cause any increase (or decrease) in biodegradability, 

which gives confidence to the use of fibrin foam as an in vivo therapy (Fig. A1).   

Next, I tested the in vitro biocompatibility of fibrin foam.  Biocompatibility of the 

foam was expected, as its material composition is identical to the commercialized fibrin 

sealant, ARTISS, with demonstrated biocompatibility.  However, the effects of aeration 

had not been previously studied.  Thus, fibrin foam was confirmed as highly 

biocompatible through the use of SEM and confocal microscopy (Figs. 22, 23) as well as 

the cellular viability assays (Figs. 20, 21). 

 After characterizing the optimal preparation of fibrin foam, it was assessed in an 

in vitro wound assay using 3D collagen matrices.  Fibrin foam qualitatively showed the 

greatest migration of cells into and onto its matrix.  ARTISS also promoted migration of 

cells onto its surface; however, the more porous foam allowed for greater cellular 
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penetration into the wound space as compared to ARTISS (Figs. 24-26).  Moving from 

these promising results from the characterization, I studied the use of fibrin foam as a 

novel wound therapy in an acute murine wound model.  BKS.Cg-Dock7m +/+ Leprdb/J 

(db/-) mice were used due to their genetic background.  These mice have the same 

genetic background as diabetic mice (db/db); however db/- mice do not exhibit the 

diabetic phenotype.  The db/- mice were used as a gateway to study diabetic and impaired 

wound healing models in future animal work. 

 As seen from the murine model, at days 7 and 14, fibrin foam promoted 

significantly increased wound closure when compared to control and other wound 

treatments (Fig. 29).  This superior ability of fibrin foam can be attributed to several 

factors.  First, the fibrin-based foam is an optimal matrix for a wound site.  Fibrin has 

been studied greatly for its interactions with extracellular matrices, keratinocytes, 

fibroblasts, and other major cellular components of the wound healing process.
16

  These 

interactions are both integrin and non-integrin (e.g. VE-Cadherin, P-selectin, and I-CAM-

1) receptor driven.  Fibrin foam also possesses a pore size distribution that is applicable 

to the migration of these same wound healing cells and infiltration of cellular factors.  

Lastly, the inherent hemostatic ability of fibrin foam lends itself to actively supporting 

the pathways of hemostasis and the coagulation cascade – the first phase of wound 

healing.   

The same trend and significance in wound closure was seen when wound closure 

was computed based on a percentage of day zero wound size (Fig. A2).  

Immunohistochemistry was analyzed to assess the host’s reaction to the different wound 

treatments.  The histological analysis showed an efficacious response to fibrin foam 
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(Figs. 30-33).  While no significance was noted from analyzing the histological parameter 

scores of each treatment group, reepithelialization, granular tissue formation/maturation, 

and collagen deposition were all abundant in the fibrin foam-treated wounds. 

Along with the in-depth comparisons of fibrin foam to its parent fibrin sealant, I 

also assessed the differences between fibrin foam and a current acute and chronic wound 

treatment, polyurethane foam.  Polyurethane foam dressings are often used in these 

instances for their ability to provide a porous matrix (400-600 µm pores), which allows 

for high fluid and cellular transfer in a wound healing situation.  A clinical drawback to 

these dressings is that they are non-biodegradable structures that must be debrided from 

wound sites at periodic time intervals.
126,127

  In each of the characterization experiments 

as well as the in vitro and in vivo models, fibrin foam had significantly different attributes 

when compared to polyurethane foam, including its increased porosity, ideal pore size 

distribution, and better biocompatibility.  This led to the testing of the feasibility of fibrin 

foam for use in negative-pressure wound therapy (NPWT).  NPWT is a current vacuum-

based wound therapy that utilizes polyurethane foam dressing or gauze as a wound 

healing treatment.  The results, shown in Figure 27, detailed the ability of fibrin foam to 

remain within a wound cavity after application of subatmospheric pressure system.  

Fibrin foam was able to remain in the wounds over several time intervals as well.   

The overall effectiveness of fibrin foam compared to the commercially-available 

fibrin sealant and polyurethane foam is, I believe, dependent on the hybridization of a 

fibrin-based scaffold and a structural matrix of pores suitable to sustain a wound healing 

environment.  The fibrin portion of the foam allows it to facilitate the critical aspects of 

the wound healing process, such as cellular interactions and functioning in hemostasis 
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and angiogenesis.  Additionally, the aeration process through the patented Mix-F mixing 

device allows for the generation of a porous scaffold with pore size distribution (100-250 

µm), porosity, and permeability that is able to support cellular proliferation and migration 

that is not seen in either commercially-available fibrin sealants (0-50 µm) or 

polyurethane foam dressings (400-600 µm) (Fig. 35).   

Taken together, this presented research has characterized a novel fibrin 

preparation.  The optimal fibrin foam preparation has proven to meet and exceed the 

requirements needed for an effective wound therapy in today’s clinical atmosphere.  The 

fibrin-based biopolymer is:  prepared with ease, biocompatible with cells and tissue, 

biodegradable in vivo, possesses mechanical strength and elasticity for wound closure, 

allows for fluid and cell infiltration, and reduces healing time – all hallmarks of an 

optimal wound therapy.  These combined qualities were ever-apparent in the murine 

wound model, where fibrin foam was significantly superior to all other treatments and 

resulted in positive wound healing in all mice.   
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Figure 35. Fibrin Foam Functioning in Wound Healing.  Fibrin foam (6 passes + 4 

IU) preparation contains a pore size range from approximately 100-250 µm as compared 

to fibrin sealant (0-50 µm) and polyurethane foam dressings (400-600 µm).  Due to this 

pore size spectrum within then fibrin foam matrix, key cellular processes could find fibrin 

foam a suitable environment.  Additionally, fibrin foam contains specific wound-healing 

attributes and added hemostatic influence (derived from fibrin sealant components) that 

generates a suitable wound therapy.  SMC:  smooth muscle cell. 

 

Future Directions.  

The results from this dissertation research present several possibilities for further 

investigations.  First, additional experiments can be done to delve deeper into the vast 

potential of fibrin foam and its preparation and formulation.  Within this study, I was 

restricted to the Mix-F and Vyon-F devices to generate fibrin foam (Fig. 9).  This mixing 

apparatus allowed for only a finite number of manual passes to be performed, while also 

limiting the constituents that could be passed through the porous Vyon-F.  As mentioned, 

the addition of HSA and Tween 80 as well as increased thrombin concentrations were, in 

some instances, prevented by the mixing apparatus due to clogging.   
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Permutations to the Vyon-F porous disc (i.e. increasing its porous structure) could 

allow for mixing and aeration of more viscous preparations of fibrin foam.  The addition 

of HSA, Tween 80, or other surfactants may allow for a far greater foaming process to 

occur during the mixing process.  In preliminary work on fibrin foam, I assessed the total 

foamed volume as compared to the volume of constituents used to generate the foam.  In 

these experiments, there was no noted increase in foam growth or expansion (data not 

shown).  An expanding foam, however, even one with faster clotting abilities, would be a 

highly attractive medical therapy.  Traumas that occur in combat, for instance, could use 

a foaming hemostat and wound healing agent for severe bleeds and amputations.   

It must be noted that ultimately the foam presented in this research becomes a 

rigid structure due to the fibrin clot formation immediately following the mixing process 

and application.  While drainage and coarsening occur within the foam, the fibrin 

structure holds strong until, and with in vivo situations, the fibrin is ultimately degraded 

by proteolysis and fibrinolysis.  Thus, fibrin foam forms a quasi-foam – aeration and the 

presence of liquid/surfactant allows for the foam generation; however, after the initial 

mixing process (lasting only seconds), the fibrin fibers begin to clot yielding the set, 

foamed fibrin matrix. 

While generating a larger foamed matrix or one that sets faster, could be 

beneficial to cover more wound space in vivo or stop a larger bleed, respectively, fibrin 

foam may also take on additional constituents to be used in a multitude of clinical 

applications. Fibrin sealants have been supplemented with living cells, growth factors, 

cytokines, and pharmaceutical drugs.
16,87,89,90

  Future studies spiking fibrin foam with 

such growth factors, as platelet-derived growth factor (PDGF) or fibroblast growth factor 
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(FGF) could allow for improved wound healing over what has already been seen within 

this research.  These factors would allow for the recruitment and activation of cells to 

promote a wound healing response at the site of fibrin foam application.  Vascular 

endothelial growth factor (VEGF) is another potential candidate to supplement into fibrin 

foam.  With VEGF, fibrin foam could have added abilities to promote increased 

neovascularization within a wound as well.  Supplementation of wound-specific cell 

types, such as keratinocytes and fibroblasts, is another possibility for use of the foam.   

Outside of the realm of wound healing, fibrin foam could be subjected to the 

addition of bone morphogenic protein (BMP) or human mesenchymal stem cells to aid in 

the regrowth of cartilage and bone and differentiation into osteoblasts, respectively.  A 

final example could be the addition of antibiotics or other pharmaceutical drugs to fibrin 

foam.  Antibiotics could be used to prevent bacterial infection in any number of surgical 

situations, while drugs, such as analgesics or anti-cancer medications could be added into 

fibrin foam for improved treatment of patients.  The options for further additives are 

plentiful.   

 While the animal model showed significant results in favor of fibrin foam, there 

are some additional experiments that need to be performed to properly assess fibrin 

foam’s efficacy in vivo.  Mice are a highly-used species for animal models and 

translational research due to their ability to produce reproducible data, generate large 

sample sizes, and can be manipulated genetically with ease.  Mice also share over 95% of 

genes with the human species.  However, and in wound healing, mice heal through a 

contractile process as opposed to reepithelization (humans).
129

  In the animal model, I 

was not as concerned with this caveat, as one of the key portions of this research was to 
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study the ingress of cells and tissues into the fibrin foam matrix and other treatments.  

Additionally and to adjust for possible error, treatments were blindly and evenly rotated 

on the dorsal surfaces of each mouse within the study.  Future studies could also use a 

splinted-wound murine model whereby the epidermis is held back via splints to prevent 

the contractile healing response.
119

  Instead, these mice are forced to heal by 

reepithelialization, which would better mimic the wound healing processes of humans.  

The shown animal model also utilized the BKS.Cg-Dock7m +/+ Leprdb/J (db/-) mouse 

strain, which has the same genetic background as their counterpart db/db mice that 

possess a diabetic phenotype.
119

  These db/db mice would be subjects of further studies in 

a similar wound model.  The db/db mice, in this instance, heal slower and have traits of 

chronic wound healing.  Thus, the use of these mice would allow for preliminary in vivo 

research on fibrin foam as a chronic wound therapy, and this data could be compared 

back to their db/- littermates. 

 An additional animal study that would need to be performed to assess the validity 

of fibrin foam as a novel wound therapy would be a larger animal study.  Pigs would be 

used, as porcine skin structure is highly similar to that of humans and correlates greatly.  

Alterations to the histological parameter assessment would also be performed, as this 

study lacked significance within the histology and pathology analyses of the treated 

wounds.  These changes would include an expanded scoring scale for the histological 

parameters and immunohistochemical analysis of the wounds.  The scoring scale used in 

this research were scored from 0-3 (Table 8) or on a yes-or-no basis.  While these scales 

allowed for an overall assessment of the wound histology, a more detailed scale could 

elucidate differences among the treatments.  Furthermore, the use of 
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immunohistochemistry to study the wound samples could be advantageous to gain a 

better understanding of the wound environment under each treatment.  Antibodies, such 

as anti-Loricrin and CD28, could be utilized to stain for epidermal cell differentiation and 

angiogenesis, respectively.
130

  Combined, these multiple animal studies would provide 

deep insight as to the efficacy and performance of fibrin in not only acute wounds, but 

chronic as well. 

Fibrin foam was also tested for its use as a novel therapy in NPWT, since the 

foam showed superior wound healing abilities over the current dressing, polyurethane 

foam.  While the in vitro feasibility results were positive, the next steps would require an 

animal model.  A similar biopsy punch model performed on pigs would allow for the 

utilization of the actual NPWT vacuum system in vivo.  Fibrin foam would be applied to 

the pigs after wounding, the vacuum system would be applied for several days, and 

wound healing would be compared to polyurethane foam.  This experiment would be 

crucial for the overall efficacy assessment of fibrin foam for use as a therapy in a NPWT 

situation. 

 While fibrin foam seems to have abundant options in the clinical field, this 

research has also shown some other promising results for future applications.  As shown 

in Figure 36, fibrin foam has the ability to be applied through laparoscopic applicators for 

use in minimally-invasive and endoscopic surgeries.  With successful manipulations to 

the foam structure and/or clotting time, variations of the foam could be used 

laparoscopically in gastrointestinal anastomoses, perforated ulcer treatment, and hernia 

repair.  Additionally, fibrin foam was able to be lyophilized and reconstituted to its native 
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fibrin foam structure.  The lyophilization process could allow for a longer shelf life and 

quicker reconstitution, preparation, and application of fibrin foam at a wound site. 

 

 
 

Figure 36. Additional Applications of Fibrin Foam.  A) Fibrin foam usage through 

Baxter endoscopic applicator onto an inverted surface, such as used in minimally 

invasive surgeries.  B/E) SEM images of lyophilized fibrin foam.  C/F) SEM images of 

reconstituted fibrin foam. D/G) SEM images of native fibrin foam.  Scale bars:  100 µm 

(B-D), 1 mm (E-G). 
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Throughout this combined research, I demonstrated that the biodegradable fibrin 

foam has unique macroscopic and microscopic structural characteristics from those of 

typical fibrin sealants.  The foamed scaffold generates greater porosity, increased fluid 

permeability, and pore sizes suitable for cells and processes associated with a wound 

healing environment.  Fibrin foam was also shown to be biocompatible and proved to be 

an efficacious and significantly superior acute wound healing treatment in both in vitro 

and in vivo model systems.  This research sheds light on a novel fibrin matrix and its 

potential use as a wound therapy (Fig. 37).  The results of this dissertation can also serve 

as the basis to develop innovative treatments – utilizing variants of fibrin foam – for 

specific surgical and regenerative medicine applications. 

 

Figure 37. Fibrin Foam as a Novel Wound Therapy.  An acute wound treated with the 

novel biopolymer, fibrin foam.  With its pore size distribution, fibrin network, and 

wound-healing attributes, fibrin foam is a potential candidate for use in wound therapy.   

 

Significance.  

Wound healing products have been used in a variety of indications for many 

years.  From acute lacerations to chronic pressure ulcers, wound healing products, such as 
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sutures and surgical sealants, have been the mainstay in this medical field.  However, 

each wound healing treatment comes with its own set of caveats and flaws.
1
  Sutures and 

staples can often lead to dehiscence or infection in wound closure space; while 

polyurethane foams can cause painful debridement from the tissues. An ageing 

population and increased occurrence of chronic wounds are additional trends that are 

affecting the wound healing field.
 
 Thus, the development and advancement of more 

efficacious and safe products is a substantial need for current and future patients.  This 

research is significant because it served to improve the wound field by evaluating fibrin 

foam in two-fold – through characterization of its physical and biological properties, and 

analysis of the foam’s use as an innovative wound therapy.   

 This research is impactful because it was the first to look at characterizing and 

understanding the unique set of qualities that fibrin foam possesses and how this 

knowledge could be translated to the medical field.  The previously-mentioned attributes 

of the foam make it applicable for use in specific surgical and wound healing 

applications.  The greater viscosity allows for fibrin foam to be applied on vertical or 

inverted surfaces, such as in laparoscopic surgeries or diabetic and pressure ulcer 

treatments.  The foam’s ability to polymerize independently of temperature is 

advantageous for a wide array of surgeries as the foam could be generated in the 

operating suite and be applied in a bodily cavity without the risk of altering the foam’s 

structure and attributes.   

Furthermore, the unique preparation method and characteristics of the foam 

alleviates some of the issues clinicians have with the current product and treatment 

options as well.  The patented mixing device used for generation of the foam obviates the 
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need for gas-powered spray devices that are used in current surgeries to produce foam-

like substances.  These gas-powered spray devices are contraindicated for their use near 

open wounds and intravascular procedures due to the potential for thromboembolisms.
23

  

Fibrin foam allows for a similar foaming structure without the need for the additional 

surgical equipment.   

This research has also provided a better understanding of novel aerated 

biopolymer – a fibrin-based foam – as a wound therapy agent as well.  Fibrin and surgical 

sealants have been used as acute wound closure treatments for years.  The benefits to 

fibrin sealants are that they mechanically seal the wound, aid in the hemostatic phase of 

wound healing, and are biocompatible and biodegradable.  The foam’s structure is 

important to understanding its potential significance in the wound healing field.  Fibrin 

foam’s open pore clot structure promoted migration and invasion of cells into the foam.  

This elicited an improved wound healing response when compared to current treatments.  

In the wound healing field, a specific treatment called negative-pressure wound therapy 

(NPWT) utilizes polyurethane foam or gauze to cover the wound site to treat acute and 

chronic wounds.  Vacuum pressure is then applied to the site to mechanically seal the 

wound.  However, discomfort, pain, and impaired wound healing can result from the use 

of the polyurethane foam or gauze dressings.  Polyurethane foam dressing must be 

periodically debrided from the wound, a process which disrupts the wound and can 

remove healing tissue.  Therefore, there is a critical need for a biodegradable wound 

dressing in this therapy.  The research here evaluated fibrin foam for its use in NPWT.  

Fibrin foam’s matrix and wound-healing ability are beneficial for cells and tissues to 

grow into the biodegradable foam under vacuum treatment.     
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While this research was centered on understanding how fibrin foam is generated, 

defining its key attributes, and assessing its function as a wound therapy in both acute 

wound and NPWT models, the significance of the research is much greater.  The 

thorough analyses that were performed on fibrin foam will serve as a platform for the 

foam’s use in other surgical fields.  It is imperative to realize the foam’s full potential 

while evaluating its concept as a wound healing treatment and beyond.   
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APPENDIX A 

SUPPLEMENTAL DATA 
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Parameter ARTISS 

fibrin 

sealant 

Fibrin 

foam (6 

Passes) 

Fibrin 

foam (4 

Passes) 

Fibrin 

foam (8 

Passes) 

Fibrin 

foam (6 

Passes + 

20IU) 

Fibrin 

Foam (6 

Passes + 

10% 

HSA)  

R (clot 

formation, 

minutes) 

0.6 ± 0.4 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 

K (degree of 

elasticity, 

minutes) 

4.5 ± 1.8 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 

Maximum 

amplitude 

(MA; clot 

strength, mm) 

85.0 ± 6.6 88.1 ± 1.8 87.3 ± 2.0 89.7 ± 1.0 86.4 ± 

1.9 

87.8 ± 

0.9 

G (shear 

modulus, 

kd/sec) 

35.5 ± 

18.9 

38.0 ± 6.5 35.3 ± 7.4 43.8 ± 4.6 32.3 ± 

5.5 

36.2 ± 

3.0 

α-angle (clot 

kinetics, 

degrees) 

49.8 ± 

11.4 

86.0 ± 0.7 84.4 ± 0.6 86.1 ± 0.4 87.5± 0.0 85.8 ± 

0.3 

Table A1. Thromboelastography Analysis of Fibrin Foam Preparations.  

Thromboelastography (TEG) results obtained for fibrin foam and commercially-available 

fibrin sealant, ARTISS.  Parameters measured included:  fibrin clot formation (R), degree 

of elasticity (K), α-angle, and clot (MA) and shear strengths (G).  Any other fibrin foam 

preparations not listed were not feasible for TEG analysis due to clotting and viscosity 

issues with the TEG test system.   
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Figure A1. In Vivo Degradation Analysis of Fibrin Foam.  Fluorescence of remaining 

ARTISS fibrin sealant (left boxes) or fibrin foam (right boxes) at each time point is 

presented in percent of day 0 fluorescence. Degradation of both materials followed a 

sigmoidal pattern over the observational period of 14 days.  No significant differences in 

the degradation process were detected.  n = 6 per group. 
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Figure A2. Wound Closure Assessment of Fibrin Foam.  Initial wound sizes 

(considered 100% open) were equivalent for the four treatments but significantly 

different subsequent days (p < 0.001 for days 3-14).  A) By day seven, wounds treated 

with fibrin foam (FF) were smallest compared to all other treatments (*p < 0.05).  

Wounds were significantly larger for polyurethane foam (PU) compared to the other 

treatments (#p < 0.001).  B) At day 14, initial wound sizes were similar for all treatments.  

Similar to day 7, wounds were significantly larger for PU compared to all other 

treatments (#p < 0.001) at day fourteen.  Wounds treated with fibrin foam were 

significantly smaller compared to the other treatments (*p < 0.05).  Twenty-four mice 

were analyzed for panel A and twelve mice were analyzed in panel B. 
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n (%) 0 1 2 3 

Reepithelization     

   Artiss 3 (25.0) 5 (41.7) 3 (25.0) 1 (8.3) 

   Control 5 (41.7) 3 (25.0) 2 (16.7) 2 (16.7) 

   FF 2 (16.7) 4 (33.3) 3 (25.0) 3 (25.0) 

   PU 5 (41.7) 5 (41.7) 2 (16.7) 0 (0.0) 

Neovascular 

proliferation 

    

   Artiss 0 (0.0) 6 (50.0) 4 (33.3) 2 (16.7) 

   Control 2 (16.7) 5 (41.7) 3 (25.0) 2 (16.7) 

   FF 0 (0.0) 4 (33.3) 4 (33.3) 4 (33.3) 

   PU 0 (0.0) 3 (25.0) 5 (41.7) 4 (33.3) 

Acute inflammation     

   Artiss 0 (0.0) 5 (41.7) 6 (50.0) 1 (8.3) 

   Control 0 (0.0) 8 (66.7) 4 (33.3) 0 (0.0) 

   FF 3 (25.0) 8 (66.7) 1 (8.3) 0 (0.0) 

   PU 0 (0.0) 3 (25.0) 1 (8.3) 8 (66.7) 

Chronic inflammation     

   Artiss 0 (0.0) 7 (58.3) 3 (25.0) 2 (16.7) 

   Control 0 (0.0) 9 (75.0) 3 (25.0) 0 (0.0) 

   FF 2 (16.7) 8 (66.7) 2 (16.7) 0 (0.0) 

   PU 0 (0.0) 5 (41.7) 6 (50.0) 1 (8.3) 

Collagen Deposition     

   Artiss 0 (0.0) 2 (50.0) 2 (50.0) 0 (0.0) 

   Control 0 (0.0) 3 (75.0) 1 (25.0) 0 (0.0) 

   FF 0 (0.0) 4 (100.0) 0 (0.0) 0 (0.0) 

   PU 3 (75.0) 1 (25.0) 0 (0.0) 0 (0.0) 

Table A2a. Day 7 Mice Histological Assessment. 
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 n (%) Yes 

Epithelial Maturation  

   Artiss 1 (8.3) 

   Control 3 (25.0) 

   FF 5 (41.7) 

   PU 1 (8.3) 

Granulation Tissue 

Formation 

 

   Artiss 12 (100.0) 

   Control 10 (83.3) 

   FF 12 (100.0) 

   PU 12 (100.0) 

Granulation Tissue 

Maturation 

 

   Artiss 1 (8.3) 

   Control 1 (8.3) 

   FF 3 (25.0) 

   PU 2 (16.7) 

Table A2b. Day 7 Mice Histological Assessment. 
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n (%) 0 1 2 3 

Reepithelization     

   Artiss 2 (16.7) 5 (41.7) 1 (8.3) 4 (33.3) 

   Control 0 (0.0) 3 (25.0) 0 (0.0) 9 (75.0) 

   FF 0 (0.0) 0 (0.0) 1 (8.3) 11 (91.7) 

   PU 2 (16.7) 2 (16.7) 4 (33.3) 4 (33.3) 

Neovascular proliferation     

   Artiss 1 (8.3) 5 (41.7) 3 (25.0) 3 (25.0) 

   Control 0 (0.0) 7 (58.3) 3 (25.0) 2 (16.7) 

   FF 3 (25.0) 6 (50.0) 1 (8.3) 2 (16.7) 

   PU 1 (8.3) 5 (41.7) 4 (33.3) 2 (16.7) 

Acute inflammation     

   Artiss 2 (16.7) 7 (58.3) 1 (8.3) 2 (16.7) 

   Control 3 (25.0) 7 (58.3) 2 (16.7) 0 (0.0) 

   FF 6 (50.0) 4 (33.3) 2 (16.7) 0 (0.0) 

   PU 1 (8.3) 3 (25.0) 0 (0.0) 8 (66.7) 

Chronic inflammation     

   Artiss 0 (0.0) 7 (58.3) 5 (41.7) 0 (0.0) 

   Control 0 (0.0) 9 (75.0) 3 (25.0) 0 (0.0) 

   FF 3 (25.0) 9 (75.0) 0 (0.0) 0 (0.0) 

   PU 0 (0.0) 7 (58.3) 5 (41.7) 0 (0.0) 

Collagen Deposition     

   Artiss 0 (0.0) 0 (0.0) 3 (75.0) 1 (25.0) 

   Control 0 (0.0) 0 (0.0) 2 (50.0) 2 (50.0) 

   FF 0 (0.0) 0 (0.0) 3 (75.0) 1 (25.0) 

   PU 0 (0.0) 3 (75.0) 1 (25.0) 0 (0.0) 

Table A3a. Day 14 Mice Histological Assessment. 
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 n (%) Yes 

Epithelial Maturation  

   Artiss 4 (33.3) 

   Control 10 (83.3) 

   FF 7 (58.3) 

   PU 5 (41.7) 

Granulation Tissue 

Formation 

 

   Artiss 12 (100.0) 

   Control 10 (83.3) 

   FF 11 (91.7) 

   PU 12 (100.0) 

Granulation Tissue 

Maturation 

 

   Artiss 9 (75.0) 

   Control 10 (83.3) 

   FF 9 (75.0) 

   PU 5 (41.7) 

Table A3b. Day 14 Mice Histological Assessment. 
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