
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Master's Theses Theses and Dissertations 

1980 

Aging Effects on Ova Maturation and RNA and Protein Synthesis Aging Effects on Ova Maturation and RNA and Protein Synthesis 

In Vitro In Vitro 

Reinhold Joseph Hutz 
Loyola University Chicago 

Follow this and additional works at: https://ecommons.luc.edu/luc_theses 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Hutz, Reinhold Joseph, "Aging Effects on Ova Maturation and RNA and Protein Synthesis In Vitro" (1980). 
Master's Theses. 3105. 
https://ecommons.luc.edu/luc_theses/3105 

This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It 
has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more 
information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
Copyright © 1980 Reinhold Joseph Hutz 

https://ecommons.luc.edu/
https://ecommons.luc.edu/luc_theses
https://ecommons.luc.edu/td
https://ecommons.luc.edu/luc_theses?utm_source=ecommons.luc.edu%2Fluc_theses%2F3105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=ecommons.luc.edu%2Fluc_theses%2F3105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.luc.edu/luc_theses/3105?utm_source=ecommons.luc.edu%2Fluc_theses%2F3105&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


AGING EFFECTS ON OvA MATURATION AND 

RNA AND PROTEIN SYNTHESIS IN VITRO 

by 

Reinhold J. Hutz 

A Thesis Submitted to Graduate School of 

Loyola University of Chicago in Partial Fulfillment of the 

Requirements for the Degree of Master of Science 

April 

1980 



ACKNOWLEDGMENTS 

The author desires to express his gratitude to 

his advisor, Dr. John Pe~uso, in appreciation for his 

instruction in relating a clearer understanding of the 

world of science, and his perseverance, guidance and 

friendship. The author is appreciative of the services 

rendered by the members of his committee, Dr. Genaro Lopez 

and Dr. Albert Rotermund, in reviewing the manuscript 

and for making the author•s graduate career a valuable 

experience. 

The expert technical assistance of Ms. Marcia Xenakis 

is gratefully acknowledged. 

Special thanks must go to the author 1 s parents and 

a special friend, Ms. Irene 0 1Shaughnessy, for their love 

and understanding. 

ii 



VITA 

The author, Reinhold Joseph Hutz, son of Josef 

and Eva Hutz, was born in Salzburg, Austria, on March 18, 

1956. 

He obtained his primary education at Immaculate 

Heart of Mary Elementary School, and secondary education 

at Gordon Technical High School, graduating in 1974. 

Accepted to Loyola University of Chicago in 1974, 

he majored in Biology and received the degree of Bachelor 

of Science in 1978. In September, 1978, he enrolled in 

the Master of Science program at Loyola University of 

Chicago. 

iii 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 11 

VITA • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • iii 

LIST OF TABLES • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • vi 

LIST OF FIGURES • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • vii 

Chapter 

I. REVIEW OF LITERATURE ••••••••••••••••••••••• 1 

AGING AND REPRODUCTIVE DECLINE •••••••••• 1 

HYPOTHALAMIC-PITUITARY FUNCTION AND AGE • 2 

CHANGES IN OVARIAN FUNCTION WITH AGE •••• 4 

AGING EFFECTS ON UTERINE FUNCTION ••••••• 6 

ABERRATIONS IN THE AGED OOCYTE AND 
RESULTING ANOMALIES ••••••••••••••••••••• 7 

RESUMPTION OF MEIOTIC MATURATION WITHIN 
TilE, OOCYTE • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 0 

~Vivo Oocyte Maturation •••••••••• 10 

~Vitro Oocyte Maturation ••••••••• 12 

Macromolecular Synthesis During 
Oocyte Maturation~ Vitro ••••••••• 15 

II. STATEMENT OF THE PROBLEM ••••••••••••••••••• 18 

III. MATERIALS AND METHODS •••••••••••••••••••••• 20 

EXPERIMENT I: RATE OF GVB AND PBF IN 
AGED OOCYTES ••••••••••••• 20 

EXPERIMENT II: RNA AND PROTEIN SYNTHESIS 
IN AGED OOCYTES ••••••••• 21 



Page 

IV. RESULTS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 25 
EXPERIMENT I: RATE OF GVB AND PBF IN 

AGED OOCYTES •••••••••••• 25 
EXPERIMENT II: RNA AND PROTEIN SYNTHESIS 

IN AGED OOCfTES •••••••• 25 
v. DISCUSSION • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 44 

BIBLIOGRAPHY •••••••••••••••••••••••••••••••••••••••• 47 



LIST OF TABLES 

Table 

1 Effect of Age and Length of the Cycle on 
the Ability of the Oocyte to Undergo 
Germinal Vesicle Breakdown (GVB) and Polar 

Page 

Body Formation (PBF) in vitro. ••••••••••••••• 26 

... 

vi 



LIST OF FIGURES 

Figure Page 

1 In Vitro Maturation of Liberated Mature 
and Aged Oocytes ••••••••••••••••••••••••••••• 28 

2A An Autoradiograph of an Aged Oocyte In­
cubated for 3 h in 3H-uridine-supplemented 
Medium and Treated with RNase •••••••••••••••• 30 

2B An Autoradiograph of an Aged Oocyte In­
cubated for 3 h in 3H-uridine-supplemented 
Medium and Treated with RNase •••••••••••••••• 30 

3 Transmission Curve Correlating Percent Light 
Transmission and Voltage ••••••••••••••••••••• 33 

Standard Curve Correlating Densitometry Read-
outs (Volts) and Grain Densities ••••••••••••• 35 

5A An Autoradiograph of a Mature Oocyte In-
cubated for 1.5 h in 3H-uridine-supplemented 
Medium •••••••••••••••••• • • ••••••••••• •. • • • •. • 37 

5B An Autoradiog3aph of an Aged Oocyte Incubated 
for 1.5 h in H-uridine-supplemented Medium •• 37 

5C An Autoradiograph of ~wo Mature Oocytes In­
cubated for 1.5 h in H-leucine-supplemented 
Medium ••••••••••••••••••••••••••••••• • • • • • •• • 37 

5D An Autoradiog~aph of an Aged Oocyte Incubated 
for 1.5 h in JH-leucine-supplemented Medium •• 37 

6 RNA Synthesis in Mature and Aged Oocytes ••••• 39 

7 Protein Synthesis in Mature and Aged Oocytes • 41 

8 .Time Course for Maximal Incorporation of 3H-
leucine into Protein by both Control and 
Aged Oocytes ••••••••••••••••••••••••••••••••• 43 

vii 



CHAPTER I 

REVIEW OF LITERATURE 

AGING AND REPRODUCTIVE DECLINE 

The general decline in reproductive capacity due 

to advancing maternal age is evident as measured by 

several parameters. There is a gradual decrease in the 

number of oocytes present within the aging ovary (Mandl 

and Shelton, 1959; Jones and Krohn, 1961). Yet, the 

wane in fertility occurs long before the population of 

ovarian oocytes is depleted (Talbert, 1968; Jones, 1970), 

and ovulation rate is not altered by increasing age 

(Jones, 1970; Fugo and Butcher, 1971; Harman and Talbert, 

1970, 1974; Peluso et. al., 1979). Fertilization and 

implantation rates do, however, diminish with age 

(Talbert, 1968, 1971; Harman and Talbert, 1970; Fugo 

and Butcher, 1971; Maurer and Foote, 1972). Litter size 

also decreases with advancing age (Ingram et. al., 1958; 

Blaha, 1964b), and the incidence of chromosomal and de­

velopmental abnormalities increases (Carr, 1969; Fechheimer, 

1972; Gosden, 1973; Yamamoto et. al., 1973; Tsuji and 

Nakano, 1978). Clearly, defects associated with aging 

must be due to intrinsic functional factors. Consequent­

ly, the decline in fertility characteristic of aged 

females has been attributed to alterations at all levels 
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of the hypothalamic-pituitary-ovarian-uterine axis 

(Talbert, 1968). 

HYPOTHALAMIC-PITUITARY FUNCTION AND AGE 

The reproductive pattern of female rats appears 

to be sequentially altered with age due mainly to a 

progressive desensitization of the hypothalamo-hypo­

physeal complex (Huang et. al., 1978). Consequently, 

the regular 4- or 5-day estrous cycle of the rat be­

comes irregular (irregularly-cycling, IRC) at 10-12 

months, exhibits persistent cornification (constant 

estrus, CE) at 19 months, subsequently undergoes pro­

longed diestrus (pseudopregnant, PP) with intermittent 

estrous cycles and ultimately develops into a persis­

tent diestrous or anestrous (AS) state at 25-27 months 

(Huang and Meites, 1975; Lu et. ~., 1979). Although 

anestrous rats possess atrophic ovaries, when trans­

planted to young ovariectomized (OVX) rats these ovaries 

grow and develop large follicles and corpora lutea (CL) 

and therefore remain responsive to pituitary gonado­

tropin stimulation (Peng and Huang, 1972). This indi­

cates aging results in a malfunction of this neuroendo­

crine axis. 

Although basal serum LH and FSH levels in old CE 

and PP rats are not appreciably different from young 

cyclers (Huang~· al., 1976), LH and FSH secretion is 
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decreased in response to castration and/or to the pos­

itive feedback action of estrogen (Howland and Preiss, 

1975; Shaar et. al., 1975; Huang et. al., 1976; Lu et. 

~., 1977; Peluso gi. al., 1977). The impaired positive 

feedback effect of estrogen correlates with a decreased 

hypothalamic and pituitary uptake of 3H-estrad1ol 

(Peng and Peng, 1973). However, old anestrous rats 

have extremely low LH and FSH levels and a decreased 

capacity to release the gonadotropins in response to 

synthetic gonadotropin-releasing hormone (GnRH) (Bruni 

~· al., 1977). Exogenous estrogen treatment of aged 

non-cycling rats restores the capacity to release 

gonadotropins in response to GnRH (Watkins et. al., 1975; 

Peluso et. al., 1977). However, aged cycling rats are 

still able to respond to exogenous GnRH alone (Steger 

and Peluso, 1979). 

In very old male rats (21 months of age), the bio­

genic amine content of the hypothalamus is altered 

(Meites et. al., 1979). There is a decrease in the 

hypothalamic catecholamines (norepinephrine, NE, and 

dopamine, DA) and an increase in serotonin (5-hydroxy­

tryptamine, 5-HT). NE increases gonadotropin release, 
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DA i~~ibits prolactin (PRL) release (Meites et. al., 1977; 

Simpkins et. al., 1977) and 5-HT inhibits the gonado­

tropins and stimulates PRL (Meites ~· al., 1979). 

Therefore, reciprocal changes in these amines would 



reduce LH and FSH levels and enhance PRL levels to those 

characteristic of very aged rats (Meites ~· al., 1979; 

Simpkins et. al., 1977; Lu et. al., 1979; Clemens and 

Meites, 1971; Shaar et. al., 1975; Huang et. al., 1976). 

The hypothalamus of old CE rats. also exhibits lower 

GnRH and prolactin inhibiting factor (PIF) activity 

which may be due to a decrease in NE and an increase in 

5-HT levels. This would also result in lowered LH and 

FSH (Clemens and Meites, 1971) and enhanced PRL levels 

(Riegle et. al., 1977; Shaar ~· al., 1975). 

CHANGES IN OVARIAN FUNCTION WITH AGE 

4 

There ~s also a significant reduction in ovarian 

function in aging rats due to the alteration of the 

hypothalamic-pituitary complex (Aschheim, 1979). The 

pattern of estrous cycles is changed considerably with 

advancing age as previously stated. In addition, serum 

levels of gonadotropins and gonadal steroids are mutually 

dependent and both are influenced by advancing age and 

the particular reproductive state (Huang et. al., 1978). 

Hence, CE rats have lowered LH and progesterone and 

elevated FSH and estradiol levels, thereby enhancing 

vaginal cornification and follicular cyst formation 

(Huang~· al., 1978; Ste.ger et. al., 1976; Peluso et. al., 

1979). Old PP rats possess high progesterone and 

moderate estradiol levels due to many corpora lutea 



present. Finally, anestrous rats have very low levels 

of gonadotropins and gonadal steroids and hence atrophic 

ovaries (Huang et. al., 1978). 

Aged rats show fewer compensatory ovulations 

(Peppler, 1971) and varying degrees of contralateral 

ovarian compensatory hypertrophy in response to uni­

lateral OVX, ranging from normal hypertrophic com­

pensation (Peppler, 1971), to moderate (Howland and 

Preiss, 1975) or very limited compensation (Labhsetwar, 

1970; Lu et. al., 1977). Alterations in luteal cell 

morphology also appear in aged PP rats, although luteal 

LH binding in PP rats (Steger et. al., 1976) and gran­

ulosa LH binding in CE rats is maintained (Erickson et. 

al., 1979). The ovaries of aging IRC rats also have a 

decrease in the total number of both atretic and non­

atretic follicles, although ovulation rate is maintained 

(Peluso et. al., 1979). Therefore, a compensatory 

"rescue" mechanism appears to exist that allows the nor­

mal number of preovulatory follicles to dev.elop and 

ovulate (Peluso et. al., 1979, 1980). 

Ovarian estradiol levels in aged cycling rats 

(Peluso et. al., 1979) and ovarian androgen levels in 

aged CE and PP rats (Chan and Leathem, 1977) are ele­

vated. Deficiencies of ovarian enzymes regulating 

steroidogenesis have also been demonstrated: glucose-

6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate 
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dehydrogenase (6PGD) (Leathem and Appel, 1977) and 

5-3B-hydroxysteroid dehydrogenase (3B-HSD) (Leathem 

and Shapiro, 1975). However, granulosa aromatase 
.. 

activity is unaffected by age (Erickson~. al., 1979). 

Any alterations in the ovaries' ability to synthesize 

steroids would also be detrimental to the normal func-

tioning of their target organ, the uterus. 

AGING EFFECTS ON UTERINE FUNCTION 

Aging exerts drastic effects on the capacity of 

the uterus to function normally. These alterations are 

evident in that the aged uterus has a reduced decidual 

6 

cell reaction (DCR) in response to mechanical stimulation 

or intraluminal oil injection (Blaha, 1967; Biggers, 1969; 

Finn, 1970; Holinka et. al., 1977; Holinka and Finch, 

1977; Gosden, 1979) and a decreased blastocyst implanta­

tion rate (Harman and Talbert, 1970; Talbert, 1971; Maurer 

and Foote, 1972; Butcher, 1975). Some investigators have 

shown a reduced sensitivity of the aged uterus to exo­

genous steroids (Blaha, 1967; Finn, 1970; Larson et. al·, 

1973; Peng and Peng, 1973). Aging impairs 14c-estradiol 

and 3H-progesterone uptake in tl.Y.Q. by uterine muscle tissue 

(Larson et. al., t972). In addition, the estrogen recep­

tor content of the aged uterus is reduced, although re­

ceptor affinity remains constant (Hsueh ~· al., 1979). 

An alteration in estrogen receptor content may, in part, 



account for the reduced capacity of the uterus to under­

go normal implantation. 

7 

Embryonic transfer experiments have indicated 

uterine complicity in aging anomalies to a certain extent. 

Gosden (1974, 1979) demonstrated a significant reduction 

in survival of embryos collected from young donor mice 

and transferred to aged mice uteri. Talbert and Krohn 

(1966) demonstrated a 14% survival rate of morulae and 

blastocysts transferred from young mice donors to old 

recipients as compared to 48% in 11 young-to-young" trans­

fers. However, Blaha (1964a) observed a significant in­

crease in fetal viability only in 11young-to-young 11 trans­

fers in hamsters. Both young-to-old and old-to-young 

embryo transfers resulted in resorption and abnormal 

fetal development, indicating that defective oocytes may 

also be at fault. Thus, alterations in the intrauterine 

environment and detects within the oocyte may be respon­

sible for decreased implantation rates and increased em­

bryonic death associated with age (Butcher,. 1975). 

ABERRATIONS IN THE AGED OOCYTE AND RESULTING M~OMALIES 

Alterations at any level of the hypothalamic­

pituitary-ovarian-uterine axis could ultimately cause the 

deterioration of the oocyte, which would result in 

chromosomal and developmental errors. Several theories 

have been espoused regarding chronological aging effects 
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on the oocyte's chromosomal complement. Penrose (1966) 

has suggested that kinetochore weakening during the great­

ly-prolonged dictytene stages in the rat and human may 
~ 

be responsible for random distribution of disrupted bi-

valents at the first metaphase plate. 

Evans (1967) has proposed that failure of nucleolar 

dissolution in the aged oocyte would result in non-dis­

junction of chromosomal pairs. Recent electron-micro­

graphic analysis has demonstrated Evan's contention that 

the nucleolus is shared by bivalent pairs; thus, its re­

tention would lead to a physical difficulty in chromo­

somal separation (Calarco~· al., 1972). This is par­

ticularly true in the case of human chromosomes 21 and 

22, which maintain nucleolar remnants (Polani et. al., 

1960). 

Several investigators have demonstrated a precipi­

tous decline in chiasma frequency, a change in their 

chromosomal location when present, and a concomitant sharp 

increase in the frequency of univalents with advancing age 

in the mouse oocyte (Henderson and Edwards, 1968; Luthardt 

~. ~., 1973). Although Polani and Jagiello (1976) pro-

duced similar findings, no parallelism was found in old 

female mice between u.~ivalents present at metaphase I (MI) 

and chromosomal errors at the second metaphase (MII) plate. 

They therefore postulated that much of what had pre­

viously been designated MI univalents was actually tech-



nical artifact. MII mouse oocytes show increased 

hyperploidic frequency to intermediate age and then a 

reduction in old age (Martinet. al., 1976). The pecu­

liar decrease in hyperploid oocytes in the aged group 

9 

may be due to the decreased number of oocytes reaching 

MII, in vitro, with age (Martinet. al., 1976). However, 

the preponderance of hypoploid oocytes in all groups, par­

ticularly the middle-aged group, must be partly attributed 

to chromosome loss during oocyte fixation (Rohrborn, 1972; 

Uchida and Lee, 1974; Martinet. al., 1976). Any or all 

three of the above mechanisms may be responsible for the 

non-disjunction of chromosomal pairs within the chron­

ologically-aged oocyte. As a consequence, there exists a 

higher incidence of aneuploidy in embryos of aged mice 

(Yamamoto et. al., 1973; Gosden, 1973), and embryos and 

abortuses of women reaching the climacteric (Carr, 1969; 

Fechheimer, 1972; Tsuji and Nakano, 1978). 

Other types of oocyte "aging" also contribute to 

chromosomal aberrations. These may be associated with 

chronological age of the mother (Butcher, 1972). Spindle 

fiber degeneration and chromosomal and developmental 

anomalies due to delayed ovulation (follicular aging of 

the oocyte), either spontaneous or artificially-induced, 

have been demonstrated in Xenopus laevis (Mikamo, 1968), 

the rat (Fugo and Butcher, 1966; Butcher and Fugo, 1967; 

Butcher, 1969; Butcher et. al., 1969; Fugo and Butcher, 
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1971; Butcher, 1975; Butcher et. al., 1975), and man 

(Iffy, 1963; Hertig, 1967; Arrata and Iffy, 1971). Ob­

servations of 34 human ova showed that 1 of 13 ova ovu­

lated on or before day 14 of the menstrual cycle was 

cytologically abnormal, while 12 of 21 ova ovulated after 

day 14 were abnormal (Hertig, 1967). Similarly, Iffy 

(1963) demonstrated that of 19 abortuses recovered from 

women, 14 were conceived after day 17 of the cycle, in­

dicating that delayed ovulation contributed to alterations 

within the oocyte. 

Aging alters the morphology and chromosomal com­

plement of the oocyte such that embryonic viability is 

diminished. However, since even a brief exposure of the 

oocyte to the environment of the aged uterus could affect 

its viability, the viability of the aged oocyte prior to 

ovulation needs to be assessed. An indicator of the pre­

ovulatory oocyte's viability is its ability to resume 

meiosis, both in~ and in vitro. 

RESUMPTION OF MEIOTIC MATURATION WITHIN THE OOCYTE 

In Vivo Oocyte Maturation 

Resumption of meiotic divisions within the oocyte 

(oocyte maturation) can be induced by a hormonal stim­

ulus in~ (Freeman et. si·, 1970; Tsafriri and Kraicer, 

1972; Ayalon et. al., 1972). Oocyte maturation is also 

temporally associated with estrous behavior and gonado­

tropin release in the rat. 



The female rat exhibits a regular 4- or 5-day 

estrous cycle (Long and Evans, 1922), with acceptance of 

the male on the afternoon of proestrus (4-10 P.M.). 

Ovulation occurs 9-10 h after the onset of 11heat" or 

estrous behavior (Blandau et. al., 1941). The surge of 

1 1 

LH found during a critical period on the afternoon of pro­

estrus is responsible for the ensuing oocyte maturation-

al changes (Everett and Sawyer, 1950; Ayalon ~. al., 1972; 

Tsafriri ~· al., 1972). The oocyte nucleus or germinal 

vesicle (GV) remains intact up to 2 h after the LH surge 

in the rat. The GV persists throughout chromosomal con­

densation and up to spindle formation. At the end of 

chromatin condensation, chromosomes are circularly arranged 

at the first metaphase plate (circularly arranged chromo­

some, or CAC, stage), 2-4 h after the LH surge. Telophase 

follows at 4-7 h, with polar body abstriction and formation 

of the second metaphase spindle occurring at 7-10 h, and 

ovulation 2 h later (Odor, 1955; Calarco~· al., 1972; 

Tsafriri and Kraicer, 1972; Butcher~· al., 1975). 

Follicularly-enclosed oocytes explanted prior to 

the LH-surge undergo meiotic maturation only in suitable 

medium supplemented with LH, FSH or prostaglandin E2 
(PGE2) (Tsafriri ~· al., 1972). Microinjection of di­

butyryl 3',5'-cyclic-M1P (dbcAMP) into cultured follicles 

also stimulates oocytes to resu~e ~eiotic divisions. LH, 
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FSH and PGE
2 

have been shown to increase cAMP activity as 

evidenced by 3H-adenine uptake and actual measurement of 

cAMP. Cyclic-AMP, in turn, increases protein kinase act­

ivity (Tsafriri ~· al., 1972; Tsafriri et. al., 1976a). 

Although LH and FSH increase cAMP levels, FSH's effects 

on ovum maturation, ovulation and steroidogenesis in the 

rat could be regarded as largely pharmacological (Schwartz 

~. al., 1973; Schwartz et. al., 1975). Therefore, LH is 

the dominant hormone responsible for these physiological 

effects, and its action appears to be mediated via cAMP 

and prostaglandins. Further work with follicularly-en­

elosed oocytes allowed Tsafriri and associates (1973) to 

propose the involvement of two different proteins in cAMP­

mediated LH action on the follicle: one protein necessary 

for the resumption of meiosis, regulated at the transla­

tional level, and another, essential for steroidogenesis, 

which is under transcriptional control (Lindner et. al., 

1974). 

Since Chang (1955) first indicated the presence 

of a meiotic inhibitor in follicular fluid, it has been 

postulated that LH may remove this inhibitory influence 

of the granulosa cells on oocyte maturation (Foote and 

Thibault, 1969; Tsafriri and Channing, 1975a). This 

oocyte maturation inhibiting factor (OIF) has been derived 

from porcine follicular fluid (PFF) (Tsafriri and Channing, 

1975b) and its effect can be overcome by exogenous LH 
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(Tsafriri et. al., 1976b). Working with highly-purified 

porcine OIF, several experimenters have demonstrated a 

molecular weight of approximately 2000 and heat stability 

to 6o•c, indicating that OIF is a small polypeptide 

(Tsafriri et. al., 1976b; Stone et. al., 1978). 

In Vitro Oocyte Maturation 

Resumption of meiosis can also be induced by re­

moving the oocyte from the follicle and placing it in 

suitable culture medium (Chang, 1955; Edwards, 1965; Cross 

and Brinster, 1970; Donahue, 1968). A timing sequence for 

in vitro oocyte maturation has been delineated in the 

mouse (Donahue, 1968), rat (Tsafriri and Kraicer, 1972; 

Zeilmaker and Verhamme, 1974; Zeilmaker et. al., 1974) 

and human (Edwards, 1965b; Jacobson et. al., 1970). 

Donahue found that 90-95% of mouse oocytes cultured in 

a Krebs-Ringer salt solution with pyruvate resumed meio­

sis, i.e., had undergone GVB and proceeded to metaphase I. 

GVB ~vitro requires 2-6 h in the mouse, 2 h in the rat, 

and 30-40 h in man. Donahue also characterized three 

chromatin condensation stages occurring during the first 

1.5 h in vitro: 1) filament shortening, 2) condensation 

about the nuclear and nucleolar periphery as the nucleo­

lus itself disperses, and 3) discrete bivalents (tetrads), 

circularly arranged. As early as 8 minutes after folli­

cular liberation, the oocyte's nuclear envelope appears 

undulated, an event occurring prior to GVB both in vivo 



and in vitro (Calarco et. al., 1972; Szollosi et. al., 

1972). Furthermore, no significant ultrastructural 

differences were detected between in vivo and in vitro 

oocytes regarding meiotic maturation. 

14 

In vitro activation of oocyte maturation requires 

specific metabolic substrates. Biggers and associates 

(1967) demonstrated that oocytes denuded of cumulus cells 

matured in pyruvate- or oxaloacetate (OAA)-supplemented 

medium, but required follicular cells when cultured with 

phosphoenolpyruvate (PEP), lactate or glucose as added 

energy sources. Donahue and Stern (1968) noted that the 

mouse oocyte undergoes GVB in medium containing glucose 

if the cumulus cells are present, indicating that the 

cumulus cells convert glucose to pyruvate which can then 

be used by the oocyte. Limited maturation of rat oocytes 

can occur with lactate alone or no energy substrate avail­

able in the medium, implying a possible endogenous energy 

substrate (Zeilmaker and Verhamme, 1974; Zeilmaker, 1978). 

Therefore, metabolic requirements for maturation of the 

rat oocyte are different from those which exist in the 

mouse. This may be responsible for the 4 h shorter matur­

ation in vitro for the rat oocyte (Van Vliet and Zeilmaker, 

1972). 

Recent metabolic studies have indicated that several 

other factors are required for oocyte maturation in vitro. 

Cytochrome oxidase involvement has been implicated in GVB 



of mouse oocytes as cyanide effectively blocks GVB 

(Zeilmaker et. al., 1974). The use of phosphorylation­

uncoupling agents also prevents GVB, indicating ATP-de­

pendence of mouse oocyte maturation. Dekel and co­

workers (1976) showed that 90% of the oxygen uptake of 

the cumulus-oocyte complex was due to the cumulus. With 

15 

the onset of maturation, there follows a decrease in 

cumulus oxygen consumption and a corresponding increase 

in oxygen uptake by the oocyte. Magnusson and associates 

(1977) demonstrated that the increased oocyte oxygen 

consumption associated with GVB and PBF is due to the 

meiotic process rather than hormonal stimulation. However, 

LH is postulated to have a direct effect on in vitro 

oocyte maturation via an accumulation of lysosome-like 

organelles about the GV and apparently involved in its 

dissolution (Ezzell and Szego, 1979). 

Macromolecular Synthesis During Oocyte Maturation, 

In Vitro 

RNA and protein synthesis is required for in vitro 

oocyte maturation. Intense incorporation of 3H-uridine 

occurs within the GV of the preovulatory oocyte follow­

ing a two-hour incubation period with 3H-uridine (Bloom 

and Mukherjee, 1972; Wassarman and Letourneau, 1976a). 

Bloom and Mukherjee (1972), using actinomycin-D, demon­

strated that RNA synthesis is required for GVB and chromo-



somal arrangement at the first metaphase plate. The 

pre-m-RNA synthesized prior to GVB is associated with 
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the condensing chromosomes of porcine ovarian oocytes 

undergoing meiotic maturation in vitro. This RNA syn­

thesized within the GV is subsequently transferred to the 

cytoplasm during maturation (Rodman and Bachvarova, 1976; 

Bloom and Mukherjee, 1972; Wassarman and Letourneau, 

1976a; Motlik gi. £1., 1978) and appears to serve as a 

template to code for specific maturational proteins 

(Rodman and Bachvarova, 1976; McGaughey and Van Blerkom, 

1977). 

Proteins synthesized prior to GVB are also nec­

essary for GVB and polar body extrusion (Wassarman and 

Letourneau, 1976b; Stern gi. al., 1972; Ekholm and 

Magnusson, 1979). Rate of protein synthesis is greatest 

prior to GVB (McGaughey and Van Blerkom, 1977; Warnes 

gi. al., 1977; Stern and Wassarman, 1974), and there-

after decreases with time (Schultz et. al., 1978a). How­

ever, the most marked changes in the pattern of protein 

synthesis appear after GVB (Schultz and Wassarman, 1977a,b; 

Schultz et. al., 1978b; Wassarman and Letourneau, 1979), 

and are associated with specific maturational events, in­

cluding PBF (McGaughey and Van Blerkom, 1977; Van Blerkom 

and McGaughey, 1978). 

Inhibitors of meiotic maturation can be used to 

elucidate the role of de ~ protein synthesis in oocyte 
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maturation. Dibutyryl 3',5'-cyclic-AMP (dbcAMP) arrests 

mouse oocytes in the dictyate stage of the first meiotic 

prophase (Stern and Wassarman, 1974; Schultz and Wassarman, 

1977a). However, protein synthesis was not affected, as 

dictyate oocytes accumulated exogenous valine to the same 

extent as those undergoing maturation (Stern and Wassarman, 

1974). Therefore, it appears that cytoplasmic maturation 

of mammalian oocytes proceeds independently of nuclear pro­

gression in the first meiotic division, in vitro, (Stern 

and Wassarman, 1974; Schultz~· al., 1978b). DbcAMP, in 

conjunction with puromycin, blocks short-lived proteins 

which are necessary for GVB (Ekholm and Magnusson, 1979). 

However, puromycin alone inhibits incorporation of several 

amino acids, preventing oocyte maturation beyond the CAC 

stage (Stern et. al., 1972; Wassarman and Letourneau, 1976; 

Schultz and Wassarman, 1977a). 



CHAPTER II 

STATEMENT OF THE PROBLEM 

The general decline in reproductive capacity 

associated with advancing maternal age has been al-

most entirely attributed to defects within the hypo­

thalamic-pituitary-ovarian axis (Huang and Meites, 1975; 

Aschheim, 1979) or a steady deterioration of the uter-

ine environment (Finn, 1970; Butcher, 1975). Several 

investigators have suggested that defects within the 

aged oocyte may be one cause of the reproductive wast­

age characteristic of aged females (Blaha, 1964a; Butcher, 

1975; Peluso, 1976). However, little has been done 

concerning the effect of chronological age on the pre­

ovulatory oocyte. Therefore, the viability of the aged 

oocyte prior to ovulation must be assessed. An indi­

cator of the preovulatory oocyte's viability is its abil­

ity to resume meiotic divisions (oocyte maturation), in 

vitro. A study was therefore designed to ~etermine the 

effect of age on oocyte maturation, in vitro. 

De novo RNA and protein synthesis is required for 

oocyte maturation (GVB and PBF) (Bloom and Mukherjee, 

1972; Wa~sarman and Letourneau, 1976a,b; Ekholm and 

Magnusson, 1979). Consequently, experiments were de­

signed to determine the effects of age on 3H-uridine and 

18 
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3H-leucine incorporation in preovulatory oocytes, in vitro. 

It has been demonstrated that follicular (preovula­

tory) aging of the oocyte is a potent cause of alterations 

within the oocyte which leads to developmental anomalies 

(Butcher and Fugo, 1967; Butcher, 1969; Butcher et. al., 

1969; Butcher, 1975). Since cycle length increases in the 

older female rat, the effect of follicular aging on the 

ability of the oocyte to mature, in vitro, was also exam­

ined in aged oocytes collected from irregularly-cycling 

rats. 



CHAPTER III 

MATERIALS AND METHODS 

Female Sprague-Dawley rats were housed under con­

trolled conditions of temperature (22°C), humidity (50%), 

and photoperiod. The animals were exposed to equal hours 

of light and dark with midnight corresponding to the mi.d­

point of darkness. Estrous cycles were monitored by 

vaginal smears taken daily between 0800 and 1000 hours. 

Only those mature animals exhibiting three consecutive 

~-day cycles and those aged rats with cycles between ~ 

and 9 days in length were used for the experiment. Also 

healthy-appearing rats without signs of respiratory dis­

tress, mammary tumors, or other gross pathologies were 

selected for these experiments. 

EXPERIMENT I: RATE OF GERMINAL VESICLE BREAKDOWN ( GVB) 

AND POLAR BODY FORMATION (PBF) IN AGED 

OOCYTES 

In this study, mature rats (~-5 months old) on day 

3 (proestrus) of the estrous cycle, and aged rats (10-11 

months-old) on days 3, ~ and 5 of the estrous cycle were 

autopsied. In the aged rats, days 3-5 were considered to 

be proestrus if the vaginal smears were epithelial or epi­

thelial/cornified and the uteri ballooned. The ovaries 

20 
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were excised and oocytes collected from the ~argest pre­

ovulatory follicles by puncturing with a 26-gauge needle. 

Thirty minutes elapsed between time of sacrifice and in­

itiation of oocyte culture. 

Oocytes were placed in a microdroplet (0.1 ml) of 

Brinster's Ova Culture Medium (BMOC-3) and incubated un­

der paraffin oil for 20 h at 37•c in a humidified atmo­

sphere of 5% co2 and air. After incubation, the cumulus 

cells were removed from oocytes by incubating them for 10 

to 15 minutes in either 2.5% pancreatic trypsin or 800 

I.U./ml hyaluronidase. Oocytes were then examined under 

phase-contrast optics for germinal vesicle breakdown (GVB) 

and first polar body formation (PBF). The percentage of 

ova undergoing GVB, PBF and degeneration or fragmentation 

were calculated. Maturation parameters were statistically 

evaluated using either Fisher exact or chi-square test. 

EXPERIMENT II: RNA AND PROTEIN SYNTHESIS IN AGED OOCYTES 

In this study, oocytes were collected from preovula­

tory follicles of mature day-3 (proestrus) rats and aged 

day-3 (proestrus) rats. Oocytes were then placed in a 

microdroplet (0.1 ml) of BMOC-3 supplemented with 50 uCi/ 

ml 3H-uridine (specific activity= 5Ci/mmole) for 1.5 and 

3 hours. After incubation with radioactive media, oocytes 

were washed three times in non-radioactive media, fixed 

in Carnoy's solution for 15 minutes and prepared for radio-
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autography (Weitlauf and Greenwald, 1971). Oocytes were 

embedded in paraffin and serially sectioned at 5 um. Al­

ternate paraffin sections were mounted on two sets of 

slides and deparaffinized. One set was treated with ribo­

nuclease A (specific activity= 3798 U/mg) in phosphate 

buffer (1 mg/1; pH= 7.4). The other set of slides re­

ceived only buffer treatment. All slides were incu-

bated at 37•c for one hour and then treated with 5% TCA 

for 10 minutes at 4•c. Finally, the slides were washed 

in tap water for 15 minutes, air-dried, and dipped in 

Kodak NTB-3 emulsion. Slides were exposed for 14 days, 

developed, and stained with hematoxylin and eosin (Peluso 

and Butcher, 1974). In addition to the autoradiographic 

analysis, these slides were also examined to determine the 

percentage of oocytes undergoing GVB and nucleolar disper­

sion. 

In this second study, liberated oocytes were incu­

bated in a microdroplet of BMOC-3 containing 10 uCi/ml 

4,5-3H-leucine (specific activity= 52 Ci/mmole) for 1.5, 

3 and 4.5 hours. After incubation, these oocytes were 

washed with non-radioactive media, fixed in Bouin's fluid 

for 24 hours and prepared for radioautography. The slides 

were exposed for 18 days. 

Autoradiographic Analysis 

The relative amount of 3H-uridine incorporation 
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into RNA at 1.5 and 3 hours was quantitated by counting 

the total number of silver grains over 78.54 um2 of either 

nucleoplasm or cytoplasm of oocytes subjected to buffer 

and TCA treatment using a microdensitometer (Hughes et. al., 

1977). RNase treatment reduced grain density to that 

within the emulsion adjacent to the oocyte section. There-

fore, background readings were taken 200 urn from the 

oocyte and the number of grains associated with background 

subtracted from non-RNase-treated sections. This grain 

density represented the relative amount of newly-synthe-

sized RNA. 

The amount of protein synthesis at 1.5 h was quanti­

tated by counting grains over 78.54 um2 of cytoplasm using 

the .microdensitometer and subtracting background readings 

taken 200 um from the oocyte. Since previous studies have 

shown that fixation in Bouin's fluid removes inincorpor­

ated amino acids (Weitlauf and Greenwald, 1971), this mea-

surement was considered to represent the relative amount 

of protein synthesized. Oocytes too heavily labelled with 

3H-leucine to be quantitated were considered to have maxi-

mally incorporated this amino acid. 
-The area read by the densitometer was converted to 

100 um2 to facilitate calculation and graphical represen­

tation. Relative amounts of RNA and protein synthesis 

within the oocyte were statistically evaluated using ei­

ther Student's "t" test or Mann-Whitney U test. Maturation 



parameters were evaluated using either Fisher exact or 

chi-square test. 

• 
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CHAPTER IV 

RESULTS 

EXPERIMENT I: RATE OF GERMINAL VESICLE BREAKDOWN ( GVB) 

AND POLAR BODY FORMATION (PBF) IN AGED 

OOCYTES 

After 20 h of incubation, 95% of control oocytes 

had undergone GVB. Aged oocytes showed no alteration in 

GVB rate (Table 1). Of aged ova undergoing GVB, three 

had retained a clearly visible nucleolus. Aged oocytes 

showed a reduced ability to form a polar body and an in­

creased tendency to fragment or degenerate, with respect 

-· to mature controls (p<0.05) (Table 1). No further effects 

of day of cycle (follicular aging) were observed as 

judged by the parameters tested. 

EXPERIMENT II: RNA AND PROTEIN SYNTHESIS IN AGED OOC YTES 

After 1.5 and 3 h of incubation, 43.8% and 61.5% of 

control oocytes, respectively, had undergone GVB. Rate 

of GVB in aged oocytes was not affected (Fig. 1). While 

over 80% of control oocytes showed nucleolar dissolution 

at both 1.5 and 3 p, the percentage of aged oocytes under­

going nucleolar dispersion was reduced by 50% at both 

times tested (p<0.05) (Fig. 1; compare Fig. 2A and 2B). 

Preliminary observations using the densitometer 

demonstrated that a linear relationship between amount of 
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Table 1. Effect or age and length of the cycle on the ability or the 
oocyte to undergo germinal vesicle breakdown (GVB) and polar 
body formation {PBF) in vitro. 

Day of No. of Ova J ~Fragmented &/or 
Cycle/Age No. of Rats Examined % _Q_f__GVBa __1__oLPBF Degenerated 

Day 3 
Mature 4 45 95 30 0 

Day 3 
98b 15.4a Aged 6 52 9.6a 

Day 4 
9·7a 

a 
Aged 5 31 100 9·7 

Day 5 
. 4 93c 7·4a 22.2a Aged 27 

a. Significantly different from mature day 3 controls (p 0.05) 
b. Nucleolus retained in two ova after GVB 
c. Nucleolus retained in one ovum after GVB 

1\) 

"' 
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-· 

Figure 1. In vitro maturation of liberated mature and 

aged oocytes. Parameters measured were per­

centage of oocytes undergoing GVB and nucleolar 

dispersion. Data from the mature oocytes are 

represented in the open bars, while the shaded 

bars represent the data from the aged oocytes. 

Fifteen to twenty oocytes were examined in both 

age groups at each time tested. 

There was no significant difference in the per­

centage of oocytes with nucleolar dispersion 

between mature and aged oocytes at each time 

of incubation. However, when the data for both 

incubation periods were pooled, a significant 

decrease in nucleolar dispersion in the aged 

oocytes was apparent. 
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Figure 2A. An autoradiograph of an aged oocyte incubated 

for 3 h in 3H-uridine-supplemented medium and 

treated with RNase. Note the distinct nucleo-

lus still surrounded by remants of the GV 

(x 1000). 

Figure 2B. An autoradiograph of an aged oocyte incubated 

for 3 h in 3H-uridine-supplemented medium and 

treated with RNase. Note presence of intact 

nucleolus after completion of GVB (x 1000). 
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light (as represented by % transmission) and voltage 

exists (Fig. 3). A standard curve regressing densitom­

etry on grain density as determined by visual counting 

and voltage showed a positive correlation (Fig. 4). 

3H-Uridine was incorporated into nuclei and cyto­

plasm of control oocytes (Fig. 5A). Both cytoplasmic 

and nuclear incorporation of 3H-uridine into RNA in 

aged oocytes was significantly reduced at both 1.5 and 

3 h (p<0.05) (Fig. 6; compare Fig. 5A and 5B). 3H-

Leucine incorporation into protein was not altered in 

aged oocytes with respect to mature controls at 1.5 h 
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(Fig. 7). In addition, the percentage of ova incorpor­

ating 3H-leucine maximally was not altered by age (Fig. 8). 

Although cumulus cells were more closely associated with 
3 control oocytes, maximal H-leucine uptake by oocytes 

was neither dependent on density nor proximity of the 

cumulus mass, regardless of age (compare Fig. 5C and 5D). 



J2 

Figure 3· Transmission curve correlating percent 

light transmission and voltage. 
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Figure 4. Standard curve correlating densitometry 

readouts (volts) and grain densities. 
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Figure 5~. An autoradiograph of a mature oocyte, in­

cubated for 1.5 h in 3H-uridine-supplemented 

medium. Note the high grain density local­

ized within the germinal vesicle (x 900). 

Figure 5B. An autoradiograph of an aged oocyte incubated 

for 1.5 h in 3H-uridine-supplemented medium. 

The number of silver grains within the GV is 

reduced (x 900). 

Figure 5C. An autoradiograph of two mature oocytes in­

cubated for 1.5 h in 3H-leucine-supplemented 

medium. The oocyte on the left incorporated 

3H-leucine maximally. The grain density of 
2 the oocyte on the right was 52 grains/100 um 

of ooplasm (x 600). 

Figure 5D. An autoradiograph of an aged oocyte incubated 

for 1.5 h in 3H-leucine-supplemented medium. 

Although the cumulus cells were not closely 

associated with the oocyte, the aged oocyte 

incorporated 3H-leucine maximally (x 600). 
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Figure 6. RNA synthesis in mature and aged oocytes. 

Fifteen to twenty oocytes were examined in 

each group. Values are expressed as mean + 

one standard error. Data from the mature 

oocytes are presented in the open bars, while 

the data from the aged oocytes are represent­

ed by the shaded bars. 

*Significantly different from respective mature 

control group (p<0.05). 
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Figure 7· Protein synthesis in mature and aged oocytes 

incubated in 3H-leucine-supplemented medium 

for 1.5 hours. Twenty-seven mature and twenty-

one aged oocytes were examined. 

N.s. Not significantly different from respec­

tive mature control group. 



41 

80 ~ 

:E 
(/) 
<[ .'" 
...J 60 -a.. 
0 N.S. 
0 ... 

N 

5--
0 ,.. 40 ~ ....... 
(/) 
z -<[ 
a: 
CJ 

20 -

MATURE AGED 



42 

Figure 8. Time course for maximal incorporation of 

3H-leucine into protein by both control and 

aged oocytes. Twenty to thirty oocytes were 

examined at each time in each group studied. 

There was no significant difference between 

mature and aged oocytes with regard to the 

percentage of oocytes maximally incorporating 

3H:leucine at all times examined. 
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CHAPTER V 

DISCUSSION 

The decline in fertility characteristic of aged 

animals may be due to a number of factors: defects in 

the hypothalamic-pituitary-ovarian axis (Huang and Meites, 

1975), an inadequate intrauterine environment (Biggers, 

1969; Finn, 1970; Butcher, 1975), or defects within the 

aged oocyte itself (Butcher, 1975; Peluso, 1976; present 

study). 

The results from the present study indicate that 

chronological aging affects the oocyte such that these 

ova 1) have a reduced ability to extrude the first polar 

body, 2) tend to degenerate and/or fragment in culture, 

3) are prone towards nucleolar retention and 4) are im­

paired in their ability to synthesize RNA, although 

protein synthesis appears unaltered by age. However, no 

further effects of follicular aging were observed with 

respect to the parameters examined in this study. 

Therefore, it appears that aging alters both the 

cytoplasm and nucleus of many oocytes such that they are 

not allowed to complete meiotic maturation. Failure to 

extrude the first polar body would result in the reten­

tion of an extra chromosomal complement. Failure of nu­

cleolar dissolution would result in non-disjunction of 

44 
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chromosomal pairs since the nucleolus is shared by sev­

eral bivalent pairs, and its presence would lead to a 

physical diffi.cul ty in chromosome separation·< Calarco et. 

~., 1972; Polani et. al., 1960; Evans, 1967). Subse­

quent fertilization of digynic eggs or those retaining 

the nucleolus would produce triploid (Chang and Hunt, 

1968) or aneuploid embryos (Yamamoto~. al., 1973; 

Gosden, 1973), respectively. 

De ~ RNA and protein synthesis is necessary for 

oocyte maturation. RNA synthesis is required for GVB and 

subsequent stages of oocyte meiotic maturation and per­

sists for 2-6 h in vitro (Bloom and Mukherjee, 1972; 

Wassarman and Letourneau, 1976a; Rodman and Bachvarova, 

1976). RNA synthesized within the GV is subsequently 

transferred to the ooplasm during maturation (Rodman and 

Bachvarova, 1976; Bloom and Mukherjee, 1972; Wassarman 

and Letourneau, 1976a; Motlik ~· ~., 1978). Proteins 

synthesized prior to GVB are also necessary for GVB and 

polar body extrusion (Wassarman and Letourneau, 1976b; 

Stern et. al., 1972; Ekholm and Magnusson, 1979). Rate 

of protein synthesis is greatest prior to GVB (McGaughey 

and Van Blerkom, 1977; Warnes et. al., 1977; Stern and 

Wassarman, 1974), and thereafter decreases with time 

(Schultz et. al., 1978a). However, the most marked changes 

in the protein synthetic pattern appear after GVB (Schultz 

and Wassarman, 1977a,b; Schultz ~· al., 1978b; Wassarman 
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and Letourneau, 1979) and are associated with specific 

maturational events, including polar body formation (PBF) 

(McGaughey and Van Blerkom, 1977; Van Blerkom and McGaughey, 

1978). 

It is apparent from the autoradiographic analyses 

of this study that the capability of the aged oocyte to 

incorporate 3H-leucine into protein, in vitro, was not sig­

nificantly altered with respect to mature controls. How­

ever, the ability of the aged oocyte to synthesize RNA was 

impaired. Since RNA synthesized prior to GVB appears to 

serve as a template for specific maturational proteins 

(Rodman and Bachvarova, 1976; McGaughey and Van Blerkom, 

1977), defects in RNA synthesis in the aged oocyte could 

alter these specific proteins. Such an alteration in 

protein synthesis may be responsible for the decrease in 

first polar body formation characteristic of aged rat 

oocytes observed in the present study. 
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