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INTRODUCTION 

BK virus (BKV) is a member of the papovavirus family. This 

group of viruses is capable of the in vitro transformation of cells 

and possesses oncogenic activity in animals (Howley, 1980). The family 

consists of two genera, the papillomaviruses and the polyomaviruses, 

which physically differ primarily in particle size and amount of nu­

cleic acid in their genomes (Fareed and Davoli, 1977; Howley, 1980). 

The Shope rabbit papilloma virus and the human wart virus belong to the 

papilloma subgroup. These viruses are capable of inducing benign tu­

mors in their respective hosts (Howley, 1980). The polyoma subgroup 

includes the rodent polyoma virus, Simian virus 40 (SV40), and the 

human papovaviruses JCV and BKV. The rodent polyoma virus was first 

isolated by Gross in 1953 from inbred strains of mice (Gross, 1953) 

and has the ability to induce a variety of tumors in mice and hamsters 

(Stewart et al., 1957). SV40 was first isolated in 1960 by Sweet and 

Hilliman from rhesus monkey kidney cultures being used to propagate 

poliovirus for vaccine production (Sweet and Rilliman, 1960; Eddy et 

al., 1962). SV40 has the ability to malignantly transform human, rat, 

mouse,and hamster cells in vitro (Koprowski et al., 1962; Black and 

Rowe, 1963; Butel et al., 1972). JCV and BKV, the human papovaviruses, 

were isolated from immunosuppressed hosts in 1971 (Gardner et a1., 1971; 

Padgett et al., 1971). JCV was first isolated by Padgett et al. fro~ 

the brain of a patient with progressive multifocal leukoencephalopathy 

(PML). JCV is capable of inducing tumors in hamsters and owl monkeys 

1 
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(Padgett et al., 1971; London et al., 1978). BKV was first isolated by 

G_ardner et al. ftom urine of a renal transplant recipient. Although 

the significance of BKV in human pathology has not been established, 

it has been shown that the virus can lytically infect permissive cells 

such as human embryonic kidney (HEK), muscle~ brain, and lung; a human 

lung fibroblast cell line (WI38); and African green monkey kidney cells 

(BSC-1) in tissue culture (Major and diMayorca~ 1973; Seehafey et al., 

1978). Infection of these cells results in the production of infectioos 

virus particles. BKV has also been found to cause the in vitro malig­

nant transformation of certain nonpermissive cells such as baby hamster 

kidney (BHK), primate, rabbit, and mouse cells (Major and diMayorca, 

1973; Portoloni et al., 1975; Mason and Takemoto~ 1977; Bradley and 

Dougherty, 1978; Portoloni et al., 1978). Human cells may become abort­

ively transformed if the viral lytic genes are repressed (Portoloni et 

al., 1978; Manaker et al., 1979). 

BKV is an icosahedral shaped virus with cubic symmetry and a 

nonenveloped, protein capsid composed of 72 skewed capsomers (Fareed 

and Davoli, 1977; Howley, 1980). The virus has a diameter of 40.5 to 

44 nm. It is composed of 88% protein and 122 DNA. The DNA has a mo­

lecular weight of 3.3 x 106 daltons, contains 5196 base pairs, and is 

a circular, duplex, covalently closed,superhelical molecule (Howley, 

1980). The virus is capable of coding for only 5 or 6 proteins because 

of the small genome size. Host cell functions must therefore be uti­

lized for viral replication and transcription. 

The BKV genome is divided into 100 map units for reference pur­

poses. The unique restriction endonuclease Eco Rl cleavage site is 



3 

designated 0 map units (Yang and Wu, 1978). The region extending from 

.74 to .14 map units is transcribed clockwise from the L strand into 

RNA late in infection, following DNA replication (Howley, 1980). This 

region codes for the major structural protein VPl and the minor struc­

tural proteins VP2 and VP3, which form the virion capsid (Howley, 1980). 

The region extending from .67 to .17 map units is transcribed counter­

clockwise from the opposite or E strand into RNA early in infection, 

prior to viral DNA synthesis (Howley, 1980). These BKV early genes 

encode two proteins having molecular weights of 94,000 and 22,000 dal­

tons (Rundell et al., 1977; Olive et al., 1980) by producing spliced 

messenger RNAs (mRNA) (Manaker et al., 1979). The synthesis_of these 

nonstructural, viral proteins, the large and small tumor or T pro­

teins, occurs in permissive cells early in lytic infection and also in 

nonpermissive cells which usually become malignantly transformed (Major 

et al., 1977). The functions of the large T protein in transformation 

and the necessity of its continuous synthesis to initiate and maintain 

transformed cells is uncertain. Initiation and maintenance of trans­

formation, stimulation of cellular DNA synthesis, and initiation of 

viral DNA replication as a DNA binding protein are the primary func­

tions associated with the large T protein (Butel et al., 1974; Carroll 

et al., 1974; Osborn and Weber, 1974; Jessel et al., 1975; Kimura and 

Itagaki, 1975; Reed et al., 1975; Spillman et al., 1975; Frisque et al., 

1979; Griffin et al., 1979; Martinet al., 1979; Tjian et al., 1979). 

The functions and importance of the small 1 protein in transformation 

are not certain. It may be essential for transformation maintenance, 

but may not be capable of establishing cells as transformed (Bouck 
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et al., 1978; Sleigh et al., 1978; Frisque et al., 1979). 

The expression and functions of the early gene products are 

being studied in order to establish the relationship between BKV and 

nonpermissive hosts resulting in malignant transformation. Experiments 

involving the use of viral and host cell mutants have dominated the 

field, but to date have not clearly defined the exact role of these 

viruses in transformation. The SV40 system has been most extensively· 

studied. Temperature sensitive (ts) mutants, failing to function in 

transformation or infection at high temperatures, deletion (dl) mutants, 

missing specifically defined viral DNA regions, and host range (hr) mu­

tants, able to grow only on specific host cells, were utilized in at­

tempts to define T protein functions. 

An SV40 dl mutant lacking a portion of the early region "A gene" 

was used to show that the large T protein was specified by the SV40 A 

gene (Rundell et al., 1977). Stable transformation of cells and main­

tenance of growth characteristics of some transformed cell lines were 

shown to be dependent on A gene function (Brugge and Butel, 1975; 

Kimura and Itagaki, 1975). Specific SV40 ts mutants were incapable of 

stably transforming host cells during incubation at the restrictive 

temperature (Tegtmeyer and Rundell, 1977). Results were less consist­

ent when cells transformed by ts A mutants at the permissive tempera­

ture were shifted to the restrictive temperature to determine if con­

tinuous function of the A gene was required to maintain the transformed 

state. In some transformation events, A gene function seemed necessary 

for initiation but not maintenance of transformation. A gene expres­

sion in SV40 mutants influenced the behavior of cells long after stable 
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transformation, and many new growth properties characteristic of trans­

formed cells were affected by a shift to restrictive temperatures. 

Specific deletions in the SV40 early gene region resulted in mutants 

incapable of initiating transformation although the large T protein was 

expressed (Sleigh et al., 1978). The use of SV40 ts mutants demon­

strated that the large T protein could directly or indirectly regulate 

host cell DNA synthesis in SV40 transformed cells (Butel and Soule, 

1978). Deletions between .54 and .59 map units resulted in normal pro­

duction of the large T protein and alterations in or the absence of the 

small T protein (Crawford et al., 1978). Mutants with deletions be­

tween .50 and .54 map units transformed cells with 1/100 the efficiency 

of wild type SV40 (Bouck et al., 1978). Actively growing Chinese ham­

ster lung (CHL) cells were transformed by a mutant with a deletion be­

tween .54 and .59 map units as effectively as by wild type SV40. Rest­

ing CHL cells were transformed at a much lower frequency, indicating 

that the physiological state of the host cell was also important in the 

transformation process (Martinet al., 1979). 

As evident from the conflicting genetic data, the use of SV40 

mutants has not clearly established the functions of the T proteins. 

Functions seem to depend in part on the properties and physiological 

state of the host cell. Host cell contributions must be determined for 

the above results to be explained in order to define the role of the T 

proteins in transformation. 

Another approach to this study is the development of a host cell 

system which regulates the expression of the early genes, allowing de­

termination of the functions of the gene products along with factors 
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affecting their synthesis. Cell hybrids between permissive and nonper-

missive cells in which one species of chromosomes usually predominates 

have been developed (Ozer and Jha, 1977; Barrett et al .• l978). In hy­

brids between human and rodent cells, for example, preferential loss of 

human chromosomes has been demonstrated (Weiss, 1970; Croce and Koprow­

ski, 1974; Ozer and Jha, 1977; Croce, 1980). The rate of chromosome 

loss may not be constant throughout hybrid cell propagation. Also, the 

mechanism of chromosome loss has not yet been elucidated. The rapid 

elimination of one species of chromosomes has allowed localization of 

genes on definite chromosomes and the study of specific gene functions 

(Ozer and Jha, 1977). 

The most extensively studied cell hybrid systems in vitro involv­

ing gene expression in virally transformed cells have utilized SV40 and 

polyoma (Ozer and Jha, 1977). The dominance or recessiveness of the 

transformed phenotype has been determined by constructing cell hybrids 

between virus transformed and nonpermissive or nontransformed permissive 

host cells (Weiss, 1970; Basilica and Wang, 1971; Marin, 1971; Croce et 

al., 1973; Wiblin and Macpherson, 1973). Somatic cell hybrids between 

animal papovavirus transformed cells such as SV40 transformed human 

cells and nontransformed cells such as mouse cells have been found to 

maintain the transformed phenotype and to express the large T protein 

(Marin, 1971; Croce et al., 1974, 1975; McDougall, 1975). Expression 

of the large T protein and rescuability of the SV40 genome has been 

shown to correlate with the presence of human chromosome number 7, ~ch 

was necessary for the expression of the transformed phenotype (Croce 

et al., 1974, 1975, 1976). It has been shown that only ribosomal RNA 
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(rRNA) genes of the dominant species were expressed in hybrids between 

rodent and human cells, although rRNA genes of both species were pres­

ent (Soprano et al., 1979). SV40 infection was capable of inducing the 

expression of the silent rRNA genes, and results have indicated that 

this reactivation required the presence of the large T protein (Soprano 

et al., 1980, Soprano et al., 1981). 

Another set of experiments attempted to define primate factors· 

that influenced cell permissiveness to viral infection (Garver et al., 

1980). Cell hybrids between cercopithecoid monkey and Chinese hamster 

cells differing in primate chromosome content also differed in their 

susceptibility to SV40 viral replication. The presence of rhesus mon­

key chromosome 11 or African green monkey chromosome 12 correlated with 

elevated SV40 viral replication. The presence of either chromosome in 

hybrid cells allowed SV40 virus rescue from transformed rodent cells. 

Investigations have shown that infection of most murine cells 

with SV40 leads to the production of early gene products. The large 

and small T proteins are not produced by murine embryonal carcinoma 

cells, the stem cells of teratocarcinomas, when infected with SV40. 

The nature of host cell range restriction to SV40 early gene expression 

in embryonal carcinoma cells has been studied by constructing hybrids 

between SV40 transformed cells expressing T protein and embryonal car­

cinoma cells (Balint et al., 1980). All clones expressed the large T 

protein. Host range, therefore, was shown to be a recessive property. 

Embryonal carcinoma cells appeared to lack cellular functions required 

for SV40 early gene expression. 

This laboratory has observed that in BKV transformed BHK cells, 
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clones can be isolated in which only the small T protein can be de-

tected. The entire BKV genome is present as demonstrated by virus res­

cue. It is possible that BHK cells inhibit the synthesis of the large 

T protein. Both T proteins are produced during BKV infection of HEK 

cells, indicating that synthesis of the T proteins is not inhibited in 

these cells. The main objective of this work has been the development 

of hybrid cells which could be used to test whether the expression of­

BKV early genes was under host control. Through the use of this soma­

tic cell hybridization system, hybrids between BHK and HEK cells could 

be constructed, infected with BKV, and tested for their susceptibility 

to either lytic or transforming infection. 

In order to accomplish the stated objectives, a selection system 

that would eliminate all parental cells had to be designed because the 

efficiency of fusion of BHK and HEK cells is only 20 to 30%. This was 

estimated by light microscopic examination to determine the percentage 

of multi-nucleated cells. By use of this selection system, somatic 

cell hybrids could be cloned and propagated. The following narrative 

briefly describes the development of this selection system, based on 

properties of the parental cells. 

HEK cells are highly susceptible to BXV lytic infection during 

which both the large and small T proteins are produced. For this rea­

son, HEK cells were selected as one parental cell type for the fusion 

studies. HEK cells can only be passaged five times after primary cul­

ture establishment and fail to clone at low density. Therefore, drug 

selection markers could not be induced in these cells. HEK cells main­

tain a normal phenotype in culture, are anchorage dependent for growth, 
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and are able to propagate in Dulbecco's Modified Eagle Medium (DME) 

supplemented with 10-5M hypoxanthine, 10-6M aminopterin, and 10-5M thy-

midine (HAT) (Ozer and Jha, 1977) because of the presence of a func-

tional thymidine kinase enzyme (TK+). However, these cells are sensi-

tive to ouabain even at concentrations -7 as low as 10 M (Kucherlapati 

et al., 1975). The use of ouabain at -5 10 M along with continual pas-

sage in culture allowed for selection against HEK cells. 

BHK cells were selected as the other parental cell type because 

they are capable of being transformed by BKV. BKV transformed BHK cells 

are characterized by anchorage independent growth in agar suspension 

and can be selected on the basis of this phenotypic trait. BHK-Bl cells 

are a thymidine kinase deficient (TK-) cell line established by contin-

ual passage in 5-bromodeoxyuridine (BrdU) (Littlefield and Basilico, 

1966), a thymidine analog, and have been used in the cell hybridization 

experiments. BHK-Bl cells are resistant to 10-5M BrdU and 10-5M ouahrln 

but are sensitive to HAT because they lack a functional thymidine kinase 

enzyme. Cells that are TK- cannot utilize the thymidine in HAT. BHK-

Bl cells, like HEK cells, can be propagated in conventional growth me-

dium because of their de novo pathways of thymidylate and purine nucle-

otide synthesis. Inhibitors of folate reductase, such as aminopterin, 

a folic acid analog, block the primary pathways of thymidylate and pu-

rine nucleotide synthesis. Therefore, the salvage pathways must be 

utilized, and the thymidine kinase enzyme becomes essential for growth. 

The absence of this enzyme is recessive to its presence, so hybrids be-

tween BHK-Bl (TK-) cells and HEK (TK+) cells are phenotypically TK+ and 

are viable in HAT. Propagation in HAT therefore allowed for selection 
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against the BHK-Bl cells. 

This thesis details the development of a cell hybridization and 

selection system based on properties of the parental cells. The sys­

tem has been developed in order to provide another method for studying 

the regulation of the expression of the early genes and the functions 

of the BKV early gene products. 



MATERIALS AND METHODS 

A. Materials. 

Cell Culture and Medium Requirements. Human embryonic kidney 

(HEK) cells were established in this laboratory from primary cultures 

and passed up to 5 times. These cells were propagated in Dulbecco's 

Modified Eagle Medium (DME) supplemented with 10% fetal calf serum (FCS~ 

Baby hamster kidney (BHK) cells (Stoker and Macpherson, 1964), subline 

Bl, deficient in thymidine kinase (Littlefield and Basilica, 1966), 

were propagated in DME supplemented with 10% calf serum (CS) and 10% 

tryptose phosphate broth (TPB). The BHK-Bl cell line was a generous 

gift from Dr. Harriett Meiss. Hybrid cells between BHK and HEK cells 

-5 were cultivated in DME supplemented with 10% FCS plus 10 M hypoxan-

-6 -5 thine, 10 M aminopterin, 10 M thymidine (HAT) (Ozer and Jha, 1977), 

and 10-SM ouabain (Kucherlapati et al., 1975). Stock solutions of HAT 

were prepared in 1.0 ml volumes at concentrations of 10-2 , 10-3 , and 

10-~ respectively. Hypoxanthine was prepared in 20% lN HCL and 80% 

DME, aminopterin in 20% lN NaOH and 80% DME, and thymidine in DME. A 

-3 10 M ouabain stock was prepared in 10.0 ml of DME. Stock solutions 

were filtered using 0.45 Millipore filters, stored at 4°C, and used 

only for periods of 1 week. Cells were passaged at a density of 3.5 x 

105 cells per 60 or lOOmm culture dish and incubated at 37°C in a hu-

midified, 8% co2 atmosphere. 

Virus. To propagate BK virus (BKV) or to determine the response 

to infection with BKV, HEK, BHK-Bl, or BHKxHEK hybrid cells were grown 

11 



12 
6 to semi-confluency in lOOmm culture dishes (approximately 1 to 3 x 10 

cells per lOOmm plate). The BKV stock was diluted in DME to obtain the 

desired multiplicity of infection (moi) (1.0 or 0.1 pfu per cell for 

HEK cells and 10.0 pfu per cell for BHK-Bl and BHKxHEK hybrid cells) 

(Seehafer et al., 1978). Exisiting medium was aspirated from plates, 

and cells were washed twice with DME. Cells were inoculated with 0.5 

ml of the virus suspension. Control cells were inoculated with 0.5 ml 

of DME. Cells were incubated at 37°C for 90 minutes with tilting of 

the plates every 15 minutes to allow even distribution of the virus 

suspension. The HEK and BHK cells were refed with 10 ml of DME plus 1% 

FCS or CS respectively, and the BHKxHEK hybrid cells were refed with 

the appropriate selective medium supplemented with 1% FCS. Cells were 

incubated at 37°C until cytopathic effects (CPE) were evident. 

Sera. Antisera developed against SV40 virions in horses and 

normal horse sera were obtained from Flow Laboratories. Antisera raised 

against BK virions in rabbits and normal rabbit sera were provided by 

Dr. E. 0. Major. Anti-BKV tumor sera were raised against RF194 cells, 

hamster embryo fibroblast cells transformed by a BKV isolate, RF194, 

in Syrian golden weanling female hamsters. Hamsters were inoculated 

6 subcutaneously in the upper back with 1 x 10 cells per 0.5 ml sterile 

Dulbecco's phosphate buffer solution (PBS) (137mM NaCl, 3mM KCl, 8mM 

Na2HP04 , 1.5mM KH2Po4 , 0.5mM MgC12 , 0.9mM CaC12), pH7.2. When tumors 

grew to 2 to 3 em in diameter, hamsters were exsanguinated by cardiac 

puncture. The blood was centrifuged for 10 minutes at 800 rpm at room 

temperature and the sera collected and pooled. The anti-BKV tumor sera 
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were tested for activity against the BKV T proteins by immunofluores-

cense. Normal hamster sera were obtained by cardiac puncture and cen­

trifugation as described. 

B. Routine Procedures. 

Plating Efficiencies (PE) and Clone Isolation in Liquid Medium. 

Cells were harvested by trypsinization, counted using a hemacytometer; 

and plated at 500 or 1000 cells per 60 or lOOrnm culture dish in the ap­

propriate liquid medium. Media including DME, DME supplemented with 

10-5M ouabain or 10-5M bromodeoxyuridine (BrdU), HAT, and HAT plus oua­

bain were used in PE studies. At least 10 60mm plates were used for 

each test. After visible colonies appeared in 1 to 2 weeks, the per­

centage of cells forming colonies was determined. Colonies with the 

characteristics of the particular cell type were selected for cloning. 

For example, BHK cells should demonstrate a swirling pattern of growth 

with flat fibroblastic cells. Existing medium was aspirated from the 

plates. Sterile aluminum cylinders 5mm in diameter (cloning chambers) 

dipped in sterile vaseline were placed over the selected colonies and a 

few drops of 0.5% trypsin (w/v) in versene buffer (137mM NaCl, 3mM KCl, 

SmM Na2HP04 , 6mM Na2EDTA), pH7.10, were added with pasteur pipets. Fol­

lowing a 5 to 10 minute incubation period at 37°C, cells were trans­

ferred with pasteur pipets to 35mm cloning dishes containing 2 ml of 

the appropriate medium. Clones reaching confluency in 35mm cloning 

dishes were trypsinized and transferred to 60 or lOOmm dishes for ex­

pansion of the cultures. 

Virus Purification. BKV was purified according to the protocol 
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described by Wright and diMayorca (1975). After virus infection had 

been established (3+ to 4+ CPE), the infected culture plates were al­

lowed to stand at room temperature for 2 to 3 hours until the medium 

became alkaline. This aided release of virus from the cells. Virus 

lysates were scraped into flasks, frozen-thawed for 3 to 5 cycles, and 

clarified by centrifugation at 5000 rpm for 10 minutes at 20°C using 

the Sorvall (RC5) GSA rotor. Supernatant fractions were collected, and 

virus was concentrated onto a 10.0 ml cushion of saturated KBr (50mM 

Tris, lOmM EDTA), pH7.95, by centrifugation of the lysate in a SW25.2 

rotor at 24,000 rpm at 20°C for 3 hours. Virus was removed from the 

gradient by pumping from the bottom of the tube using a peristaltic pump 

and capillary tube system. After 12 to 16 hours of dialysis against TD 

buffer (137mM NaCl, 5mM KCl, 0.7mM Na2HP04 , 25mM Tris Base), pH6.8 to 

7.0, (1 ml material to 1 1 buffer) at 4°C, virus was resuspended in 

CsCl (p=l.3649) and centrifuged for 16 to 18 hours at 20°C to equilib­

rium in a Type 50 fixed angle rotor at 36,000 rpm. Virus was removed 

from the gradient by side puncture of the tube with a 21 gauge needle, 

dialyzed against TD buffer 12 to 16 hours at 40°C, and stored at -70°C 

until use. Cellular debris resulting from the first low speed centrif­

ugation was treated with 0.25% deoxycholate sodium salt (DOC) in DME. 

After 1 hour of incubation with stirring at 37°C, the suspension was 

centrifuged at 10,000 rpm for 10 minutes at 20°C in a Sorvall GSA rotor. 

The supernatant was underlayered with 5.0 ml of 15 or 20% cold sucrose 

in TD buffer to prevent precipitation of the DOC with the KBr, followed 

by underlayering with 10.0 ml of saturated KBr, and centrifuged at 

24,000 rpm for 4 hours at 20°C in the SW25.2 rotor. Virus was collected, 
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dialyzed, and centrifuged to equilibrium as previously described. 

Plaque Assay. The plaque assay was performed according to the 

method of Major and diMayorca (1973). HEK cells at passages 3 to 5 were 

grown to confluency in 60mm dishes. Serial 10-fold dilutions of BKV 

samples to be titrated were made in DME. Existing medium was aspirated 

from the plates and cells were washed twice with DME. Cells were inoc-

ulated with 0.4 ml of the appropriate virus dilution, with dilutions · 

being titrated in triplicate. Cell controls were inoculated with 0.4 ml 

of DME. Cells were incubated for 90 to 120 minutes at 37°C with tilting 

of the plates every 15 minutes to allow even distribution of the virus 

suspension. Cells were then overlaid with 9.0 ml of 0.9% agar in DME 

supplemented with 1% FCS and 50 units of mycostatin per ml and incubated 

at 37°C for 2 weeks. Plaque development was visualized by staining 

cells with neutral red (0.017% neutral red in distilled water), a vital 

dye, incorporated into agar. Cells were overlaid with 5.0 ml of 0.9% 

neutral red agar in DME plus 1% FCS. After a 24 hour incubation period 

at 37°C, plaques were counted and virus titers determined on the basis 

of the number of plaques and the virus dilution factor. 

Determination of the Cell Phenotype of Anchorage Independence by 

Growth in Agar Suspension (Transformation Assay). The procedure for 

cell transformation was adapted from the method of Macpherson and Man-

tagnier (1964) and modified by Major and diMayorca (1973). One lOOmm 

plate of each cell type was harvested by trypsinization, counted using 

a hemacytometer, and resuspended in TD buffer supplemented with 1% FCS 

7 at a concentration of 10 cells per ml. Each test tube with a small 

stir bar contained 5 x 105 cells (0.05 ml of cell suspension) and 50 
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pfu of virus per cell. Volumes were adjusted to 0.5 ml with TD buffer. 

Virus was not added to control tubes, and TD buffer was used to adjust 

the volumes to 0.5 ml. Suspensions were incubated with stirring at 

37°C for 1 hour. Clumps of cells were broken apart using pasteur pi­

pets drawn out to capillary size after adsorption of the virus. Top 

agar (0.33%: 10% filtered FCS or CS, 10% TPB, 40% 2xDME, 40% of a 1.275% 

agar solution) in a 10.0 ml volume was added to 0.2 ml of virus-cell 6r 

cell suspension and 4.8 ml of Eagle's diluent (10% filtered FCS or CS, 

10% TPB, 80% DME). The virus-cell or cell suspension in volumes of 1.5 

ml was plated onto 60mm plates containing 5.0 ml of bottom (feeder) a~ 

(0.5%: 10% FCS orCS, 10% TPB, 40% 2xDME, 40% of a 1.275% agar solutio~, 

resulting in 2 x 104 cells being added to each plate. Top and bottom 

agar were supplemented with selective mediumwhen appropriate. Agar 

was allowed to set for 5 to 10 minutes before incubating the cells at 

37°C. Visible colonies appeared after 2 weeks of culturing. The per­

centage of cell transformation was determined by counting the number of 

colonies and comparing this to the total number of cells plated multi-

plied by 100. 

Clone Isolation from Agar Suspension. Cells were cloned from 

colonies growing in agar suspension (0.33%) by picking them with pasteur 

pipets and plating them into 35mm cloning dishes containing 2 ml of the 

appropriate medium. The cells were well dispersed by pipetting. Clones 

reaching confluency in 35mm dishes were trypsinized and transferred to 

60 or lOOmm plates for expansion of the cultures. 

Immunofluorescence Assay (Fluorescent Antibody Technique). The 

assay was adapted from the protocol of Pope and Rowe (1964). Cells were 
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grown to confluency on coverslips in lOOmrn culture dishes and washed 

twice for periods of 5 minutes with PBS. Cells were fixed for 10 min-

utes in cold (-l0°C) acetone and washed 3 times for periods of 5 minu-

tes with cold PBS. A 1 to 5 dilution in PBS of hamster anti-BKV tumor 

serum was added so that the cells were completely covered. Cells were 

incubated at 37°C for 1 hour and then washed 3 times for periods of 5 

minutes with PBS. Fluorescein conjugated rabbit anti-hamster IgG 

(Cappel) was added at a 1 to 10 dilution in PBS, and the cells were in-

cubated at 37°C for 1 hour. Cells were washed 3 times for periods of 5 

minutes with PBS. Coverslips were mounted in glycerol, and the cells 

were examined under a fluorescent microscope. Cells were graded on a 

scale from 0 (negative control) to 4+ (positive control). 

Hemagglutination and Hemagglutination Inhibition Assays (HA and 

HI). The HA and HI were adapted from the methods described by Casals 

(1967) and Major et al. (1977). Human type 0 erythrocytes in Alsever's 

buffer (llOmM d-glucose, 27mM sodium citrate·2H20, 72mM NaCl), pH6.5, 

-
were centrifuged 3 to 5 minutes at 1250 rpm at room temperature until 

the supernatant appeared clear. The supernatant was aspirated, and a 

0.4% solution of erythrocytes (~109 erythrocytes per ml) in Alsever's 

buffer was prepared. Round bottom microtiter plates containing 96 

wells were used, with 12 wells being used per sample. Samples were run 

in duplicate. For the HA, 0.05 ml of Alsever's buffer was added to each 

microtiter well using a micropipet. To the first well of each series 

was added 0.05 ml of the virus sample. Serial 2-fold dilutions were 

made using microdiluters. A micropipet was used to add 0.05 ml of the 

0.4% erythrocyte suspension to each well. A control series of 0.05 ml 
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of the 0.4% erythrocyte solution plus 0.05 ml of Alsever's buffer per 

well was included. Microtiter plates were incubated for at least 1 hour 

at 4°C, until hemagglutination was visually evident. The last well 

where hemagglutination was observed was taken to be the virus titer. 

For the HI, 0.05 ml of Alsever's buffer was added to each well with a 

micropipet. To the first well of each series was added 0.05 ml of the 

test serum. Serial 2-fold dilutions were made using a microdiluter. A 

micropipet was used to add 0.05 ml of virus to each well. The test 

serum was challenged with the appropriate concentration of virus (8 HA 

units) as determined by the HA. The microtiter plates were allowed to 

stand at room temperature for 30 to 45 minutes to permit virus and anti­

body to combine. A micropipet was used to add 0.05 ml of the 0.4% eryth­

rocyte solution to each well. The last well that did not show aggluti­

nation indicated the highest dilution of serum that had the ability to 

prevent agglutination. Control series of 0.05 ml of Alsever's buffer 

plus 0.05 ml of the 0.4% erythrocyte suspension; 0.05 ml of Alsever's 

buffer, 0.05 ml of the 0.4% erythrocyte suspension, and 0.05 ml of serum 

(serially diluted); and 0.05 ml of Alsever's buffer, 0.05 ml of the 0.4% 

erythrocyte suspension, and 0.05 ml of virus (serially diluted) were 

included. Normal horse and rabbit sera, anti-RK virion sera, and anti­

SV40 virion sera were used. Test sera were treated prior to use in the 

assays to eliminate nonspecific inhibitors of agglutination such as mu­

copolysaccharides and mucoproteins. The addition of 0.1 ml of lOmM KI04 

to 0.1 ml of serum resulted in oxidation of glycol, aldehyde, and ketone 

groups and the breakage of bonds between vicinal hydroxyl groups. Fol­

lowing incubation at 56°C for 30 minutes, 0.8 ml of 1% glycerol in 
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distilled water was added to terminate oxidation and cleavage reactions. 

Virus Density Determination. Virus samples were centrifuged in 

CsCl (p=l.3649) as described. Collection of virus samples was perform-

ed by side puncturing the tubes or fractionating the gradients into 0.2 

ml aliquots by bottom puncturing the tubes and counting drops. Optical 

density readings were taken at 260 nm using a spectrophotometer (Beck-

man Recording Quartz). The refractive index was measured with a refrac-

tometer (Zeiss). The density of the fractions containing the virus 

25 ° bands was determined using the formula p25 o=anD -b (Ifft et al., 196D 

where a and b are coefficients (a=l0.8601, b=l3.4974) based on density 

range (1.25 to 1.90) of the CsCl gradient, and n is the refractive in-

dex of the fraction. 

C. Experimental Methods. 

Cell Fusion. The procedure for cell fusion followed Norwood et 

al. (1976), and was adapted for use in this laboratory by Major et al. 

(1980). HEK cells at passage 3 or. 4 were allowed to grow 48 to 72 hours 

until confluent. The existing medium was then aspirated, and the BHK-Bl 

cells were plated onto the HEK monolayers at a concentration of 5 x 105 

cells per lOOmm plate. Cells were allowed to settle in 1.0 ml of DME 

during a 30 to 40 minute incubation period at 37°C, gently refed with 

9.0 ml of DME plus 1% FCS, and allowed to grow for 24 to 48 hours until 

the BHK-Bl cells formed a visible layer on the HEK cells. The existing 

medium was aspirated, cells were washed once with DME, and 1 to 2 ml of 

a solution of 44% polyethylene glycol (PEG-6000) in DME plus 15% di-

methylsulfoxide (DMSO) was added to the top of a tilted plate. The PEG-
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DMSO solution was allowed to run over the cells until it collected at 

the bottom of the dish. Approximately 15 to 30 seconds were required 

for the PEG-DMSO to cover the cells. Residual PEG-DMSO was aspirated 

from the plate, and the cells were immediately washed 4 to 5 times with 

DME plus 15% DMSO and then 2 times with DME. Cells were fed with 10 ml 

of DME plus 1% FCS and then refed with selective medium 24 hours fol­

lowing PEG-DMSO treatment. Cells were passaged twice at 1 week inter­

vals and then plated at 500 or 1000 cells per 60mm plate in HAT medium 

plus ouabain. Selected colonies were cloned as previously described. 

Karyotype Analysis. Karyotyping procedures were adapted from 

the techniques used by the clinical genetics laboratory at Northwestern 

University, Chicago, Illinois and from procedures learned at the Chromo­

some Banding Techniques seminar held at the W. Alton Jones Cell Science 

Center, Lake Placid, New York. Cells were cultured in 25 cm2 T-flasks 

and subcultured 48 hours prior to harvest. When adequate cell growth 

was obtained and high mitotic indices evident as determined by light 

microscopic examination, the existing medium was replaced with lO.Oml of 

fresh medium. Cells were allowed to incubate at 37°C for 12 to 18 horr& 

One to 4 hours prior to cell harvesting, 0.02% colchicine in Hank's bal­

anced salt solution (5 x 10-5M) was added to each flask, giving a final 

colchicine concentration of 2 x 10-7M. An alternate method was to add 

0.1 ml of a stock solution (10 ~g per ml) of Colcemid in Hank's balanced 

salt solution (Grand Island Biological Company) to every 10.0 ml of me­

dium, giving a final Colcemid concentration of 0.01 ~g per ml. 

The following procedures were used for BHK-Bl and HEK cells. The 

existing culture medium was aspirated and centrifuged at 1500 rpm for 
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5 minutes at room temperature in plastic centrifuge tubes to collect 

cells and to minimize mitotic cell loss. Supernatants were decanted mrl 

cells gently resuspended in the remaining liquid. To each flask was 

added 2.5 ml of 0.7% sodium citrate, and to each tube was added 0.5 ml 

of 0.7% sodium citrate. Flasks and tubes were incubated for 6 to 8 min­

utes at 37°C, and flasks were monitored by light microscopy for removal 

of cells from surfaces. Flasks were tapped gently with a large rubbe~ 

cork to aid removal of cells from surfaces. Cell suspensions were 

transferred from flasks to the tubes containing the previously collected 

0.5 ml cell suspensions and centrifuged at 1500 rpm for 5 minutes at 

room temperature. Supernatants were decanted and cells gently resus­

pended in the small amount of remaining liquid by tapping. Fixative, 1 

part glacial acetic acid to 1 part absolute methanol prepared and chilled 

at 4°C prior to use, was added dropwise very slowly to the tubes, with 

the first drops being allowed to run down the sides of the tubes. Sus­

pensions were thoroughly mixed by gentle tapping. Fixative was then 

added dropwise with mixing until 0.5 ml had been added to each tube. 

Additional fixative was added more rapidly with mixing to give a final 

volume of 3 ml per tube. The cells suspended in fixative were refrig­

erated for 30 minutes. Cell suspensions were then centrifuged, super­

natants decanted, and cells gently resuspended in the remaining liquid. 

Fixation was repeated with 3 ml of fixative being added more rapidly 

than before with thorough mixing of cell suspensions. Suspensions were 

centrifuged at 1500 rpm for 5 minutes at room temperature, supernatants 

decanted, and cells gently resuspended in the remaining liquid. Cold 

fixative was added to a total volume of 0.5 ml to give adequate cell 
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suspensions for preparation of 2 or 3 slides per cell suspension. Acid 

or alcohol cleaned glass slides stored in distilled water at 4°C were 

placed in the freezer for 30 minutes to chill prior to use. Slides 

were used when a thin layer of ice crystals formed. Four to 8 drops of 

cell suspension from a pasteur pipet were dropped onto a wet slide from 

a height of approximately 6 inches. Slides were briefly held level, 

then slanted to allow the liquid to drain, and blotted along the edges. 

Slides were air-dried, briefly placed on a warm surface, and then 

steamed for 10 seconds.· Microscopic examination of the slides under 

low power was performed to evaluate the number and quality of the meta­

phase spreads. Slides were then aged for at least 3 days, dried in a 

50 to 55°C drying oven for 1 to 2 hours, and individually stained for G 

banding, using a trypsin-Giemsa method. Slides were agitated 11.5 sec­

onds in 0.1% trypsin (1:250) in isotonic saline, pH6.8, briefly drained, 

quickly dipped 5 to 7 times in isotonic saline supplemented with 6% 

FCS, drained briefly, dipped 5 to 7 times in isotonic saline, and quick­

ly drained. Slides were stained for 7.5 minutes in a 2% Giemsa solution 

(GT Gurr's Giemsa R66 Stock stain in Gurr buffer, pH6.8) and then dipped 

quickly once or twice in Gurr buffer, pH6.8. The backs of slides were 

blotted with paper towel, and slides were placed on end until dry. 

Slides were then dried for 1 to 2 hours in a 50 to 55°C drying oven, 

and smears were mounted in Protex (Scientific Products) with coverslips. 

The following procedures were used for the BHK-BlxHEK hybrid 

cells. Cells were collected by shaking the flask or pipetting the me­

dium over the cell monolayer several times. The medium containing the 

cells was poured into a conical plastic centrifuge tube, and the cells 
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were centrifuged at 800 rpm for 7 minutes at room temperature. Cells 

were gently resuspended in 5 ml of hypotonic 75rnM KCl and left at room 

temperature or at 37°C for 5 minutes. Cells were centrifuged at 800 

rpm for 7 minutes at room temperature and resuspended in freshly pre­

pared 3 to 1 methanol to acetic acid fixative. A small amount of hypo­

tonic 75mM KCl was left in the tube to prevent cells from clumping. 

Cells were left at room temperature for 1 hour. Fixative was changed 2 

to 3 times as previously described before slides were prepared. Cells 

were stored in fixative in pellet form at 4°C if slides were not im­

mediately prepared. Slides were individually cleaned with soap and 

water, rinsed thoroughly in running tap water, rinsed twice in distilled 

water, and chilled at 4°C in distilled water. Cells were resuspended 

in 0.5 ml of fixative following the final wash in fixative or after 

storage at 4°C. A chilled slide was removed from the distilled water 

and the excess water drained, leaving a thin film of water on the slide. 

One to 2 drops of cell suspension from a pasteur pipet were dropped on 

the slide from a height of 6 inches. The cell suspension was gently 

blown over the slide, and slides were allowed to dry at room tempera­

ture. The slides were stored at 4°C until stained. Slides were in­

cubated in a 60°C drying oven for 16 to 18 hours prior to staining and 

then incubated in 25mM KH2Po4 , pH6.8, in a 56~C water bath for 10 min­

utes. Slides were gently flooded with the Giemsa-trypsin mixture at 

room temperature for 10 minutes. The Giemsa stock solution was pre­

pared and aged. One gram of Giemsa powder (Fisher G-146) was added 

with stirring to 66 ml of glycerin, and the container was covered and 

placed in a 56°C water bath for 2 hours. The mixture was stirred 2 or 3 
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times. After addition of 66 ml of methanol, the mixture along with the 

sediment was transferred to an amber bottle. The stock Giemsa solution 

was stored at 4°C and allowed to age at least 2 weeks before use. The 

Giemsa-trypsin mixture was prepared by combining 36.5 ml of 25mM KH2Po4 , 

pH6.8; 12.5 ml of methanol from a fresh bottle; 1.0 ml of the Giemsa 

stock solution; and 0.25 ml of the trypsin-EDTA-lOX solution (Grand Is­

land Biological Company). The amount of Giemsa stock solution required 

for optimal chromosome banding varied from 0.8 to 2.0 ml depending on 

the age of the solution. After staining, slides were rinsed and dipped 

once in distilled water and allowed to air dry. Slides were examined 

under low power using bright field microscopy to determine the quality 

of staining. 

Slides were scanned using low power bright field microscopy to 

evaluate the chromosome spreads, and high power oil immersion bright 

field microscopy was used for chromosome counts. Well spread metaphases 

with optimal banding were photographed using high power oil immersion 

bright field microscopy. An Olympus Vanox Research Microscope with a 

narrow-band pass interference filter with maximum transmission at 546 

nm (Zeiss 467808) was used. Kodak Panatomic-X or panachromatic high con­

trast copy film was used. Developing procedures were those suggested 

by the manufacturer. Photographed metaphase spreads were cut apart so 

that chromosomes could be identified according to species by the banding 

pattern, size, and centromere location. 



RESULTS 

The main objective of this work, as previously described, was 

the development of a model cell culture system in which the regulation 

of BKV early gene expression could be evaluated. The system would 

provide a means for studying the functions of the early gene products 

along with factors affecting their synthesis. The approach this lab~ 

oratory utilized was to construct somatic cell hybrids between BHK 

cells, a nonpermissive host capable of being transformed by BKV, and 

HEK cells, a permissive host for BKV multiplication. The major por­

tion of the investigation reported in this thesis involved development 

of a selection system based on parental cell characteristics that 

would eliminate the parental cells and allow for isolation of these 

hybrid cells. Hybrid cell cultures could then be infected with BKV 

and tested for their susceptibility to either lytic or transforming 

infection. 

25 
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A. Selection of BHK-Bl x HEK Hybrid Cells. 

1. Parental Cell Sensitivity to Selective Media. 

The selection system for obtaining somatic cell hybrids was de­

veloped by utilizing properties of the parental cell types. The paren­

tal cells, HEK and BHK-Bl cells, were first tested for their ability 

to grow in selective media. Since HEK cells fail to clone at low den­

sity and can only be passaged up to five times following establishment 

of primary cultures, selection of these cells using biochemical markers 

cannot be done. Therefore, experiments were designed to utilize ex­

isting HEK cell properties. Since selection of the cells must begin 

at the time of cell fusion, HEK cell sensitivity studies were performed 

in a manner that mimicked the conditions established for cell hybrid­

ization. To test HEK cell sensitivity to various selective agents, 

the cells were first grown to confluency. This correlated with cell 

fusion being performed with PEG-DMSO when the HEK cells reached con­

fluency. Cell cultures were then refed with selective medium, which 

paralleled the cultures being refed with selective medium following 

cell fusion. Cell sensitivity to the selective medium was determined 

by performing cell counts at various times during the study. Cell 

counts were done on specific days that paralleled events in the hybrid­

ization procedure, such as refeeding the cells with selective medium 

and passage. 

Since BHK-Bl cells are able to clone at low density, they were 

tested for their ability to propagate in various selective media by 

performing plating efficiencies. The percentage of cells plating in 

selective medium compared to the percentage of cells plating in growth 
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medium determined cell sensitivity to the various selective agents. 

The response of HEK cells to medium containing HAT was first 

studied. HEK cells were plated at 3.5 x 105 cells per 60mm plate in 

growth medium and allowed to grow for 4 days until monolayers were 

confluent. One set of cultures was refed with growth medium plus HAT 

and the other set refed with growth medium, as diagrammed in Figure 1. 

Cell counts were performed in triplicate on days 4, 5, 12, and 19 fol-

lowing plating and the resulting counts averaged. HEK cells were able 

to propagate in medium containing HAT, as shown in Figure 1. Cells 

reached confluency on day 4 at 3 x 106 cells per 60mm culture dish. 

The gradual decrease in the number of cells per culture dish was pro-

bably due to senescence of the cells. This observation can be consist-

ently made in various HEK derived cell cultures. 

HEK cells were then tested for their ability to propagate in 

growth medium containing ouabain. 5 Cells were plated at 3.5 x 10 cells 

per 60mm culture dish in growth medium and allowed to grow for 4 days 

until confluency was reached at 3 x 106 cells. Cultures were refed 

-5 -6 -7 with growth medium supplemented with 10 , 10 , or 10 M ouabain. 

One set of cultures was refed with growth medium~ as diagrammed in 

Figure 2. Cell counts were performed in triplicate on days 4, 5, 12, 

and 19 following plating and averages taken. HEK cells were unable to 

survive in medium containing ouabain, as shown in Figure 2. Cells were 

sensitive to ouabain even at concentrations as low as 10-7M. By day 

12, cell counts were reduced to 1.5 to 2 X 105 cells per 60mm plate. 

There were too few cells to count using a hemacytometer by day 10. 

-5 Therefore, 10 M ouabain along with continual passage in culture could 
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Figure 1. HEK cell sensitivity to 10-5M hypoxanthine, 10-6M aminop­

terin, and 10-5M thymidine (HAT). One set of HEK cell cultures was 

refed with growth medium containing HAT when monolayers reached con­

fluency. The time of refeeding is indicated by the arrow. Cell counts 

were performed at various times during culture to determine HEK cell 

sensitivity to HAT. 
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Figure 2. HEK cell sensitivity to ouabain. HEK cultures were refed 

-5 -6 -7 with growth medium containing 10 , 10 , or 10 M ouabain when mono-

layers reached confluency. The time of refeeding is indicated by the 

arrow. Cell counts were performed at various times during culture to 

determine HEK cell sensitivity to ouabain. 
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be used to select against the parental HEK cells. 

Cell counts performed on days 4 and 5 paralleled, respectively, 

cell fusion with BHK cells using PEG-DMSO and refeeding the fused cells 

with selective medium. Cell counts done on days 12 and 19 corresponded 

to passage of the hybrid cells at weekly intervals. 

BHK-Bl cells were then tested for their ability to grow in var-

ious selective media. Cells were plated at 500 cells per 60mm culture 

dish in multiples of 10. Colonies were counted 10 days following plat-

ing. Table 1 illustrates the ability of the BHK-Bl cells to grow in 

the selective media. In experiment 1, cells were plated in growth me-

-5 dium, growth medium supplemented with 10 M BrdU, or HAT medium. The 

percentage of cells plating in growth medium (28.8%) and growth medium 

plus BrdU (30.4%) was approximately equal. No cells survived in HAT 

medium. In experiment 2, the percentage of cells growing in growth 

medium (11.6%) and growth medium plus 10-5M ouabain (9.6%) was approx-

imately the same. BHK-Bl cells were able to propagate in growth medium 

-5 supplemented with 10 M BrdU or ouabain but were sensitive to HAT me-

dium. These results demonstrated the lack of a functional thymidine 

kinase enzyme in the BHK-Bl cells. Therefore, selection against the 

parental BHK-Bl cells could be achieved by propagating the cells in 

HAT medium. 

2. Hybridization of BHK-Bl and HEK Cells. 

Initial work in this laboratory involved fusion of BKV trans-

formed BHK cells, resistant to high concentrations of BrdU, with HEK 

cells (Major et al., 1980). The main objectives of this work were to 
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Table 1. BHK-Bl plating efficiencies1 in liquid culture. 

Experiment 1 Experiment 2 

II 
II 

DME BrdU HAT 
II 

DME Ouabain II 
II 

II 
II 
II 

BHK-Bl 28.8% 30.4% <0 .02% 
II 

11.6% 9.6% II 
II 
II 
II 
II 

1. 500 cells per 60mm culture dish were plated in multiples of 10. 

-5 -5 -5 BrdU was at 10 M, ouabain was at 10 M, and HAT was at 10. M hypoxan-

thine, 10-6M aminopterin, and 10-5M thymidine final concentration per 

plate. Colonies were counted 10 days after plating. 
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determine if the transformed phenotype was dominant in these interspe­

cies hybrids and to study the synthesis of the BKV T proteins. BHK 

cells were selected against by propagation in HAT medium. Anchorage 

independent growth, the most stringent criteria for malignant transfor­

mation of cells, was used to select against HEK cells. Following fu­

sion of BKV transformed BHK cells and HEK cells with PEG-DMSO, the 

cells were plated in agar suspension in HAT medium. This selection 

system did not allow for isolation of BKV-BHK x HEK hybrid clones ex­

pressing phenotypes other than anchorage independent growth. It was 

also difficult to obtain BHK cells that remained resistant to high con­

centrations of BrdU and sensitive to HAT medium. Therefore, the selec­

tion system was modified. 

As in the previous work, somatic cell hybrids between normal and 

transformed cells were utilized. In order to isolate hybrid clones with 

the potential of expressing various transformed phenotypes, selection 

of the cells was not performed utilizing anchorage independent growth 

in soft agar. At this time, BHK-Bl cells, lacking a functional thymi­

dine kinase enzyme, were obtained from Dr. Harriett Meiss. The modi­

fied selection system involved propagating the cells in HAT medium im­

mediately following fusion. It was felt that continual passage of the 

cells in culture would eliminate the parental HEK cells. BHK-Bl cells 

would not grow in HAT medium. Therefore, hybrid clones could be iso­

lated after several passages in HAT medium. Hybrid clones between BKV 

transformed BHK-Bl clones and HEK cells were characterized. 

BHK-Bl cells were transformed by BKV prior to fusion of the 

cells with PEG-DMSO. BKV transformed BHK-Bl clones were selected from 
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colonies growing anchorage independently in soft agar suspension and 

expanded in culture. Two clones, BKV-BHK-Bl Clone 13 and BKV-BHK-Bl 

Clone 16, were selected for use in the fusion studies. Following fu­

sion, cells were propagated in HAT medium through several passages. 

The hybrid cells were then plated at 500 cells per 60mm culture dish 

in HAT medium. BKV-BHK-Bl Clone 13 x HEK cells did not plate at low 

density whereas BKV-BHK-Bl Clone 16 x HEK cells plated at low density. 

BKV-BHK-Bl Clone 13 x HEK cells were positive for virus rescue, with 

all cells displaying CPE and undergoing lysis. BKV-BHK-Bl Clone 16 x 

HEK cells were negative for virus rescue. The culture supernatants 

were tested for the presence of virus by plaque assay using confluent 

HEK cell monolayers. Virus was present in the BKV-BHK-Bl Clone 13 x 

HEK cell culture supernatant. T protein expression could not be stud­

ied in BKV-BHK-Bl Clone 13 x HEK cells by indirect immunofluorescence 

because all cells underwent viral induced lysis. BKV-BHK-Bl Clone 16 x 

HEK cells were negative for T protein expression. These results are 

summarized in Table 2. 

Whenever virus transformed cells are fused with nontransformed, 

permissive cells, there is the possibility of virus rescue occurring. 

This was evident when BKV transformed BHK-Bl cells were fused with HEK 

cells. Therefore the selection system was further modified in order 

to obtain hybrid clones between two normal cell types having the po­

tential of expressing various transformed phenotypes. 

Ouabain was introduced into the system as a more definite way 

of selecting against the HEK cells (Baker et al., 1974; Mankovitz et 

al., 1974; Kucherlapati et al., 1975; Corsaro and Migeon, 1978). 



Table 2. Properties of two BKV transformed BliK-Bl clones and these BKV transformed BHK-Bl clones fused 
with HEK cells. 

Cell Derivative Plating Efficiency 1 in Virus T Protein 

Liquid Culture Released 2 Expression 

BKV-BHK-Bl Clone 13 NT* <1 pfu/0.13 ml (-) 

Clone 16 NT <1 pfu/0.13 ml (-) 

BKV-BHK-BlxHEK Clone 13xHEK <0.02% 6 2.3xl0 pfu/ml NT 

Clone 16xHEK 4% <1 pfu/0 .13 ml (-) 

*NT = not tested 

1. Plating efficiency is determined as the number of colonies per number of cells plated x 100. 500 
cells were plated per 60mm culture dish in HAT medium. 

3 

2. CPE was present and virus was released during cell propagation. Virus titer is determined as pfu per 
ml of cell culture lysate by plaque assay method. 

3. Positive indicates the presence of cells demonstrating fluorescence by indirect immunofluorescence. 
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Ouabain at 10-5M along with continual passage in culture would elimi-

nate the parental HEK cells. Growth in HAT medium would select against 

the BHK-Bl cells. These modifications improved the effectiveness of 

the selection system. It was hoped that this would allow for isola-

tion of clones expressing a wider range of phenotypes as a result of 

BKV infection or transformation. Therefore, an improved system for 

studying BKV-host cell interactions would have been developed. 

The generalized experimental protocol for cell hybridization 

and clone isolation is diagrammed in Figure 3. Fusion of the parental 

cells was achieved by use of PEG-DMSO. No toxicity was observed when 

PEG-DMSO was applied to the cells for 15 to 30 seconds under the es-

tablished experimental conditions. This fusion technique effectively 

produced hybrid cells as evidenced by the presence of multi-nucleated 

cells during light microscopic examination. The ability of the cells 

to survive propagation in the selective medium, HAT plus ouabain, sub-

stantiated the effectiveness of this fusion technique. Following fu-

sian, cells were refed with growth medium for 24 hours and then refed 

with growth medium supplemented with HAT and ouabain. Cells were pas-

saged twice at 1 week intervals and then plated at low density for 

cloning. A total of 1.7 x 105 cells were plated at 500 or 1000 cells 

per 60mrn culture dish in HAT medium plus ouabain. Five colonies were 

successfully cloned and expanded in culture, resulting in a cloning 

-5 frequency of 3 x 10 . To the best of our knowledge, this is the first 

time interspecies hybrids have been successfully isolated between hu-

man embryonic kidney cells and Syrian hamster cells. 
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Figure 3. Generalized experimental protocol for cell hybridization and 

hybrid clone isolation. 
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B. Analysis and Characterization of BHK-Bl x HEK Hybrid Cells. 

BHK-Bl x HEK hybrid cells were analyzed by several methods in 

order to characterize the clones and verify the hybrid nature of the 

cells. The effectiveness of the selection system was substantiated by 

these techniques. BHK-Bl x HEK hybrid Clone 1 was chosen as the proto-

type clone in some experiments. 

1. Phenotypic Characteristics of Hybrid Cells. 

The five isolated clones were passaged twenty-five times in se-

lective medium,HAT plus ouabain. Phenotypic characteristics were 

studied. The phenotypes of the BHK-Bl x HEK hybrid clones differed 

from those of the parental BHK-Bl and HEK cells. BHK-Bl cells are fi-

broblastic and display a swirling pattern of growth. HEK cells are 

mostly epithelial in morphology and exhibit no structured growth pat-

tern. The hybrid clones appeared more epithelial than fibroblastic 

and displayed no structured pattern of growth. Hybrid cells within a 

clone were irregularly shaped, and cell size varied with the hybrid 

cells generally appearing larger than the parental cells. The clones 

appeared to be contact inhibited, which is more characteristic of HEK 

cells than of BHK-Bl cells. Saturation densities of the clones (4 x 

106 cells per lOOmrn culture dish) were higher than that of HEK cells (2 

6 to 3 x 10 cells per lOOmrn culture dish) but were lower than the satur-

ation density of BHK-Bl cells (6 x 106 cells per lOOmm culture dish). 

Hybrid clones grew poorly in HAT medium plus ouabain supplemented with 

10% CS or newborn calf serum (NCS) but grew well when 10% FCS was used. 

This indicated a FCS dependence which is characteristic of HEK cells. 
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These phenotypic characteristics helped to establish the hybrid nature 

of the five isolated clones and are summarized in Table 3. 

2. Karyotype Analysis of Hybrid Cells. 

One species of chromosomes usually predominates in cell hybrids 

between permissive and nonpermissive cells (Ozer and Jha, 1977; Barrett 

et al., 1978). Preferential loss of human chromosomes most often 

occurs in hybrids between human and rodent cells (Weiss, 1970; Croce 

and Koprowski, 1974; Croce, 1980). The mechanism of chromosome loss 

has not yet been elucidated, but the rate of chromosome loss is not 

constant throughout hybrid cell propagation (Bernhard, 1976; Labella 

et al., 1976; Schall and Rechsteiner, 1978). 

SV40 and polyoma have most frequently been utilized in hybrid 

cell systems to study gene expression in virally transformed cells 

(Ozer and Jha, 1977). As previously explained, our laboratory is 

studying BKV early gene expression by utilizing BHK-Bl x HEK hybrid 

cells. One approach we are using is to identify the chromosome com­

plements of the hybrid clones and relate these to the permissiveness 

or nonpermissiveness of the cells to BKV infection. 

Karyotype analysis of other somatic cell hybrid models corre­

lated the presence of specific chromosomes with the response of the 

cells to SV40 lytic or transforming infection. For example, the trans­

formed phenotype and expression of the large T protein was maintained 

in somatic cell hybrids between SV40 transformed human cells and mouse 

cells (Marin, 1971; Croce et al., 1974, 1975; McDougall, 1975; Croce, 

1977). The presence of human chromosome number 7 correlated with the 



Table 3. Phenotypic characteristics of parental and hybrid cells. 

Cell Sensitivity Sensitivity Unlimited Morphology Contact Saturation 
Identification to 

1 
to Generation and Inhibition Density 

HAT Ouabain Number in Growth (number of 
(lo-sM) Culture Pattern cells per 

lOOmm plate) 

BHK-Bl Yes No Yes Fibroblastic, No 6x106 

Swirling 

HEK No Yes No Epithelial, Yes 2-3x10 6 

Non-structured 

BHK-BlxHEK No No Yes Epithelial, Yes 4xl06 

Hybrid Clones Non-structured 

1. HAT was at 10-SM hypoxanthine, 10-6M aminopterin, and 10-SM thymidine 
final concentration. 

FCS 
Dependence 

No 

Yes 

Yes 
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expression of the large T protein and rescuability of the SV40 genome. 

This chromosome was necessary for the expression of the transformed 

phenotype (Croce et al., 1974, 1975, 1976). The SV40 integration site 

in hybrids between another SV40 transformed human cell line and mouse 

cells was assigned to human chromosome 17 (Croce, 1977). This chromo­

some was responsible for T protein expression and correlated with tu­

morigenicity of the hybrid cells in vivo. 

Susceptibility of cell hybrids between cercopithecoid monkey and 

Chinese hamster cells to SV40 infection was dependent on the chromosome 

complement. Elevated SV40 viral replication occurred when rhesus mon­

key chromosome 11 or African green monkey chromosome 12 was retained 

(Garver et al., 1980). 

The karyotypes of the five BHK-Bl x HEK hybrid clones were ana­

lyzed to verify the hybrid nature of the cells. The presence of human 

and hamster chromosomes had to be demonstrated. Emphasis was placed 

on locating human chromosome number 17, the chromosome that carries the 

gene for the soluble thymidine kinase (Boone et al., 1972). This was 

the only chromosome specifically selected for by use of HAT medium. It 

was possible that only a small fragment of chromosome 17 remained in 

the hybrid cells due to chromosome pulverization (Wullems et al., 1977). 

The presence of the same human chromosome or chromosomes in the hybrid 

clones would have indicated a specific retention pattern. 

It was important to first karyotype the parental HEK and BHK-Bl 

cells. Chromosomes were identified according to trypsin-Giemsa G band­

ing pattern, size, and centromere location. This identified the chro­

mosome complements of the parental cells before fusion. Normal Syrian 
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hamster cells contain a 44 chromosome complement, distributed into 21 

pairs of autosomes and 2 sex chromosomes, X andY (Lehman et al., 1963; 

Migeon, 1968; Popescu and DiPaolo, 1972). BHK-Bl cells, an established 

cell line, may contain diploid, pseudodiploid, aneuploid, or tetraploid 

cells. Numerous chromosomal rearrangements occur, with translocations 

of entire arms of chromosomes being common. The chromosomal banding 

patterns of established cell lines may vary somewhat from the banding· 

patterns of the standard karyotype due to continual passage of the 

cells in culture. 

The BHK-Bl cells fixed well and lysed easily as evident from 

light microscopic examination of the preparations. Numerous metaphase 

spreads banded well. The modal chromosome number for the BHK-Bl cells 

was 39, with a range of 26 to 87 (Table 4). The karyotype of a BHK-Bl 

cell containing 39 chromosomes is shown in Figure 4. The normal male 

Syrian hamster chromosome complement was fairly well preserved, with 

most chromosomes being present in pairs. Chromosome numbers 12, 13, 

16, 18, and 21 were each present in a single copy. The p arm of the X 

chromosome and the q arm of the Y chromosome fused. A q arm of chromo­

some number 2 fused with a chromosome number 6, and one chromosome num­

ber 11 contained a chromosome number 5 q arm and centromere region 

translocation. Many chromosomes had slightly altered banding patterns 

when compared to the standard trypsin-Giemsa G banded karyotype of the 

Syrian hamster. This and the chromosomal rearrangements were probably 

due to continual passage of the BHK-Bl cells in culture. It was also 

possible that treatment of the BHK cells with BrdU in order to establis~ 

the TK- BHK-Bl cell line resulted in slight banding pattern alterations 



Table 4. Karyotypic characteristics of parental and hybrid cells. 

Cell Identification Chromosome Number Chromosome Number3 Human 
1 2 Chromosome Range Mode Marker Hamster Human Identification 

BHK-Bl 26-87 39 0 NA NA NA 

HEK 44-46 46 0 NA NA NA 

BHK-Bl x HEK Hybrids 

Clone 1 64-89 78 8 64 6 3,6,8,17*,18 

Clone 2 57-81 68 8 57 3 11,16,17 

Clone 3 63-90 77 12 57 8 6*,11,16*,17*,18 

Clone 4 59-88 78 7 67 4 8,11,17,22 

Clone 5 51-83 62 8 52 2 3,17 

NA = not applicable 
* indicates chromosome pair 

1. Range was determined from chromosome counts of 25 metaphase spreads. 

2. Modal chromosome number was determined from chromosome counts of 25 metaphase spreads. 

3. Number of hamster, human, and marker chromosomes refers to the number of these chromosomes in the 
karyotypes shown in Figures 6 through 10. 
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Figure 4. Karyotype from trypsin-Giemsa G banding preparation of the 

parental BHK-Bl cells. 
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and chromosomal rearrangements. 

Normal human diploid cells have a complement of 46 chromosomes 

distributed into 22 pairs of autosomes and 2 sex chromosomes, X and Y 

(Tjio and Levan, 1956; Drets and Shaw, 1971; Aula and Saksela, 1972). 

The diploid nature of the HEK cells was well preserved. All chromo­

somes were present in pairs with the sex chromosomes being X, X. The 

modal chromosome number was 46, with a range of 44 to 46 (Table 4). 

The loss of chromosomes during metaphase spread preparation would most 

likely account for the slight variation from the diploid state. No 

chromosomal rearrangements were evident. Karyotypes of HEK cells are 

shown in Figure 5. 

HEK cells were well fixed, underwent lysis easily, and banded 

well, although only a limited number of metaphase spreads were evident. 

HEK cells have a long generation time of approximately 36 hours. This 

made~ it more difficult to obtain enough metaphase cells for spread 

preparation. Therefore, a longer Colcemid treatment time was used to 

increase the yield of metaphase cells. Colcemid was added to the cul­

tures for 5 hours following 40 hours of cell propagation. An increased 

number of metaphase cells was obtained. Addition of Colcemid for long 

periods of time can be toxic to cells and often results in extreme con­

densation of the chromosomes. This results in the obliteration of 

banding patterns. Therefore, cells were carefully monitored by light 

microscopic examination during the Colcemid treatment. Two HEK cell 

karyotypes are shown to demonstrate the appearance of the banding pat­

terns of chromosomes at different stages of condensation (Figure 5). 

The presence of human and hamster chrom.osomes was demonstrated 
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Figure 5. Karyotypes from trypsin-Giemsa G banding preparations of the 

parental HEK cells. 
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in the BHK-Bl x HEK hybrid clones by karyotype analysis. Chromosomes 

were again identified by trypsin-Giemsa G banding pattern, size, and 

centromere location. The BHK-Bl chromosomes in the hybrid clones were 

identified and read out of the karyotypes as background. Unidentifi­

able or marker chromosomes were also present in the hybrid clones. The 

species of origin of the marker chromosomes could not be determined, 

but they were probably altered Syrian hamster chromosomes. 

Results of the karyotype analysis of the five BHK-Bl x HEK hybrid 

clones at an intermediate passage level demonstrated that all clones 

retained human chromosomes (Figures 6, 7, 8, 9, 10) (Table 4). Chromo­

some number 17 was the only human chromosome retained in every clone. 

This chromosome was specifically selected for by use of HAT medium. 

The number of human chromosomes per clone ranged from 2 to 8. 

BHK-Bl x HEK hybrid Clone 1 modal chromosome number was 78, with 

a range of 64 to 89 (Table 4). There were 8 marker chromosomes present 

(Figure 6). Sixty-four hamster chromosomes were identified, with P..t 

least one copy of every chromosome in the complement being present. 

One hamster chromosome number 11 contained a chromosome number 5 q arm 

and centromere region translocation. Human chromosome numbers 3, 6, 8, 

and 18, and a pair of human number 17 chromosomes were identified. 

The modal chromosome number of BHK-Bl x HEK Clone 2 was 68, with 

a range of 57 to 81 (Table 4). Eight marker chromosomes were present, 

along with 57 hamster chromosomes (Figure 7). At least a single copy 

of every hamster chromosome was identified. Three human chromosomes, 

numbers 11, 16, and 17, were identified. 

BHK-Bl x HEK hybrid Clone 3 had a range of 63 to 90 with a modal 
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Figure 6. Karyotype from trypsin-Giemsa G banding preparation of the 

BHK-Bl x HEK hybrid Clone 1. 
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Figure 7. Karyotype from trypsin-Giemsa G banding preparation of the 

BHK-Bl x HEK hybrid Clone 2. 
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Figure 8. Karyotype from trypsin-Giemsa G banding preparation of the 

BHK-Bl x HEK hybrid Clone 3. 
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Figure 9. Karyotype from trypsin-Giemsa G banding preparation of the 

BHK-Bl x HEK hybrid Clone 4. 
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Figure 10. Karyotype from trypsin-Giemsa G banding preparation of the 

BHK-Bl x HEK hybrid Clone 5. 
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chromosome number of 77 (Table 4). Twelve marker chromosomes were pre-

sent (Figure 8). Fifty-seven hamster chromosomes were identified, with 

every chromosome being present in at least one copy. Eight human chro­

mosomes were present. Chromosome number 11 and 18 were identified, 

along with pairs of human chromosome numbers 6, 16, and 17. 

The modal chromosome number of BHK-Bl x HEK hybrid Clone 4 was 

78, with a range of 59 to 88 (Table 4). Seven marker chromosomes were 

present (Figure 9). Sixty-seven hamster chromosomes were identified, 

with at least one copy of every chromosome being present. The X chro­

mosome p arm and Y chromosome q arm fusion product was also present. 

Four human chromosomes, numbers 8, 11, 17, and 22, were identified. 

BHK-Bl x HEK hybrid Clone 5 modal chromosome number was 62, with 

a range of 51 to 83 (Table 4). Eight marker chromosomes were present, 

along with 52 hamster chromosomes (Figure 10). At least one copy of 

every chromosome was identified. The X chromosome p arm and Y chromo­

some q arm fusion product was also present. Two human chromosomes, 

numbers 3 and 17, were identified. 

The BHK-Bl x HEK hybrid cells were more difficult to lyse. In­

tact nuclei were often present in the metaphase spread preparations. 

Cell membrane characteristics different from those of the parental 

cells due to cell fusion could have accounted for the difficulty in 

lysing the cells. Therefore, the hypotonic treatment time was doubled 

to increase the number of cells undergoing lysis. Since the chromosome 

complements of the hybrid cells contained approximately twice as many 

chromosomes as those of the· parental cells, it was difficult to find 

metaphase cell preparations that were well spread with few overlapping 
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chromosomes and at the same time, well banded. 
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C. Response of BHK-Bl x HEK Hybrid Clones to BKV Adsorption. 

Once the clones were verified as being hybrid cells, response of 

the clones to BKV adsorption was studied. It was hoped that a range of 

phenotypic expression would occur as a result of cell interactions with 

BKV. Following infection with BKV, cells were plated for productive in­

fection in monolayers or for transformation in agar suspension. 

1. Lytic Infection. 

Hybrid clones were infected with BKV to determine if BKV could 

multiply in this system. BKV infection of the clones at 10 pfu per cell 

in HAT medium plus ouabain resulted in productive infection (Table 5). 

Lytic infection occurred at low and high passage levels, with CPE char­

acteristic of BKV appearing 4 to 5 days post infection. Virus resulting 

from productive infection of hybrid Clone 1 was capable of reinfecting 

HEK cells. Neutralization by viral specific antisera of virus isolated 

from the clones occurred in the HI (Table 6). Virus samples for buoy­

ant density determination were collected by side puncturing the tubes. 

Purified virus from the hybrid clones had buoyant densities in CsCl at 

25°C consistent with that of wild-type BKV, 1.34 g per ml (Table 7). Pu­

rified virus from hybrid Clone 1 was collected by gradient fractionatio~ 

Optical density readings of the fractions at 260 nm and density readings 

in CsCl at 25°C of the virus-containing fractions were used to further 

characterize this virus (Figure 11). Virus lysates from BKV infections 

of the clones at both passage levels were tested by plaque assay using 

HEK cells. Undiluted lysates and 10-l dilutions lysed the cell mono­

layers. These results provided evidence that BKV propagated efficiently 
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* Following cell hybridization, the hybrid clones were isolated and 

propagated in selective medium. Hybrid clones were infected with BKV 

at low and high passages. BKV infected cells were plated for trans-

formation in agar suspension or for productive infection in monolayer 

culture. 

1. Transformation frequency is determined as the number of colonies 

which grow to 0.5mm or greater in 2 weeks following virus treatment 

divided by the number of cells plated per 60mm plate x 100. 2 x 10
4 

uninfected or BKV infected cells were plated per 60mm culture dish in 

HAT medium plus ouabain. 

2. CPE was noted in cultures 4 to 5 days post infection. Cultures 

were harvested 7 days following BKV infection. Virus was isolated by 

equilibrium sedimentation and buoyant density centrifugation. 



Table 5. Response of BHK-BlxHEK hybrid clones to BKV infection.* 

Clone 
Identification 

1 

2 

3 

4 

5 

Low Passage 

Transformation1 Frequency 

uninfected 50 Efu/cell 

-4 <2.5xl0 % -4 <2.5xl0 % 

-4 <2.5xl0 % -4 <2 .5xl0 % 

-4 <2 .5xl0 % 
-4 

<2.5xl0 % 

-4 <2.5xl0 % -4 <2.5xl0 % 

-4 <2. 5xl0 % 
-4 

<2.5xl0 % 

Productive 2 Transformation 
Infection 

10 Efu/cell uninfected 

(+) -4 <2.5xl0 % 

(+) 0.44% 

(+) 0.08% 

(+) 0.01% 

(+) 0.01% 

High Passage 

Frequency Productive 
Infection 

50 pfu/cell 10 Efu/cell 

0.64% (+) 

1.02% (+) 

0.43% (+) 

0.58% (+) 

0.30% (+) 
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Table 6. Serologic properties of virus produced from BKV infection of 
BHK-BlxHEK clones. 

Clone Identification 

HA titer1 of cell 
lysate per ml of 
sample 

HI2 of purified 
virus using a 
1 to 5 dilution 
of rabbit hyper­
immune anti-BK 
virion antisera 

1 2 3 4 5 

Low Passage 

256 256 512 128 128 

(+) (+) (+) (+) (+) 

1 2 3 4 5 

High Passage 

512 256 1024 256 256 

(+) (+) (+) (+) (+) 

====================================================================== 

Titer of Normal Rabbit Serum <2 

Titer of Normal Horse Serum <2 

Titer of Anti-SV40 Specific 
Horse Antisera 

~- Reciprocal of dilution. 

16 

2. HI assay performed using 8HA units of CsCl purified virus based on 
above HA titers. 
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Table 7. 
1 

Buoyant density at 25°C in CsCl of virus isolated from BHK-

BlxHEK hybrid clones infected with 10 pfu of BKV per cell. 

Hybrid Clone Buoyant Density (p) 

Identification 

Low Passage High Passage 

1 1.3484 1. 3494 

2 1.3484 1.3429 

3 1. 3473 1.3462 

4 1.3462 1.3505 

5 1.3483 1.3484 

1. Collection of virus samples for density determinations performed by 
side puncture of tubes. 
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Figure 11. CsCl equilibrium centrifugation of virus isolated from BHK­

Bl x HEK hybrid Clone 1 infected with 10 pfu of BKV per cell. Collec­

tion of virus was performed by gradient fractionation. Optical density 

readings of the fractions at 260 nm and density readings in CsCl at 25°C 

of virus-containing fractions were used to characterize the virus. This 

virus was established as being similar to wild-type BKV based on its 

buoyant density at equilibrium. 
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in thehybrid clones, and that wild-type BKV was purified from the ly­

sates following infection of the BHK-Bl x HEK hybrid clones with BKV. 

2. Transforming Infection. 

Anchorage independent growth is considered the most important 

in vitro criteria when determining malignant transformation of cells. 

Growth in agar suspension correlates with in vivo oncogenicity. Trans­

formation assays are based on the observation that malignantly trans­

formed cells are anchorage independent for growth whereas normal cells 

maintain anchorage dependent growth (Macpherson and Montagnier, 1964; 

Shin et al., 1975). 

Transformation assays demonstrated that BHK-Bl and BHK-Bl Clone 

6 cells, like BHK-21 cells, could be stably transformed (Table 8). 

BHK-Bl Clone 6 was unable to grow in agar suspension and was selected 

for use in the assay because of this property. Normal BHK cells are 

anchorage dependent for growth whereas virus transformed cells are 

anchorage independent for growth. BKV transformed BHK-Bl cells were 

cloned from agar suspension and tested for their ability to grow in 

selective media. Cells were able to propagate in medium containing 

BrdU but were unable to grow in HAT medium. This indicated that the 

BHK-Bl cells remained TK- following transformation by BKV. 

Transformation of the hybrid clones did not effectively occur 

at the lower passage level (Table 5). An approximately equal percent­

age of background colonies appeared when BKV infected or uninfected 

cells were plated in agar suspension. The colonies were less than 0.5 

mm in diameter. Colony diameters of O.Smm or greater indicate stable 
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Table 8. 1 BKV transformation frequency of BHK-Bl cells in agar 
suspension. 

Cell Line uninfected 50 pfu/cell 

BHK-21 0.18% (ave 35 colonies 
per plate) 

BHK-Bl 0.19% (ave 38 colonies 
per plate) 

BHK-Bl Clone 6 0.03% (average 6 
colonies per 
plate) 

0.16% (ave 32 colonies 

1 

per plate) 

Transformation frequency is determined as the number of colonies 
which grow to O.Smm or greater in 2 weeks following virus treatment 
divided by the number of cells plated in 60mm culture dishes x 100. 
2 x 104 virus infected or uninfected cells were plated per culture 
dish. 
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transformation of the cells. Small background colonies are not uncom­

mon in transformation assays utilizing BHK cells (Marin, 1980). When 

cloned in liquid medium, these clones failed to plate in 35mm cloning 

dishes containing HAT medium plus ouabain. Therefore, stable viral 

transformation of the BHK-Bl x HEK hybrid clones did not occur at the 

lower passage level. 

BKV transformation of the five hybrid clones occurred at the 

higher passage level (Table 5). Colonies growing in agar suspension 

had diameters greater than O.Smm and appeared stably transformed. 

These colonies were cloned and expanded in liquid culture containing 

HAT medium plus ouabain. Isolated clones remained viable and pheno­

typically transformed, growing to confluency in 35mm dishes containing 

liquid medium supplemented with HAT and ouabain. Upon reaching con­

fluency, these clones were passed into 60mm plates containing the se­

lective medium. Approximately half of these clones failed to plate 

following passage. Other clones remained viable but did not reach con­

fluency. Cells grew anchorage dependently, underwent a few cell divi­

sions, and then detached from the surface of the culture dishes before 

reaching semiconfluency. Clones that reached confluency in 60mm cul­

ture plates were transferred to lOOmm dishes containing HAT medium plus 

ouabain. These clones could not be passaged more than one time fol­

lowing transfer to lOOmm plates, and none of these clones reached semi­

confluency. Cells grew anchorage dependently, underwent a few cell 

divisions, and then detached. 

To further study the observed growth characteristics, colonies 

were picked from soft agar, dispersed in selective medium, and plated 
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both in liquid culture and agar suspension. All clones grew in agar 

suspension, with colony diameters being greater than O.Smm. The size 

of the colonies indicated that the cells were stably transformed. To 

reach this size, cells had to undergo many divisions while growing 

anchorage independently. Cells also grew to confluency in liquid cul­

ture in 35mm cloning dishes. Once again, these clones could not be 

successfully passaged after transfer to 60 or lOOmm plates containing 

selective medium. Cells attached, underwent a few cell divisions, and 

then detached from the surfaces. Cells remained viable for 24 to 48 

hours following detachment as indicated by their ability to exclude 

trypan blue dye. 

These observations were unexpected and puzzling. Other experi­

ments were performed in order to better understand the above results. 

An attempt was made to grow the detached clones in suspension culture 

to determine if the BKV transformed hybrid clones were constitutively 

anchorage independent for growth. Due to laboratory limitations, it 

was difficu:lt to establish these cultures. Suspension medium, Minimum 

Essential Medium (MEM) lacking magnesium and calcium ions, was unavail­

able. HAT medium requiring an 8% co2 concentration was utilized. 

Therefore, the Spinner culture flask had to be adapted to allow co2 to 

pass through the medium while cells were being maintained in suspension. 

The experimental conditions were not optimal for establishment of the 

cells in suspension_ culture. 

It is possible that the BHK-Bl x HEK hybrid cells could be semi­

permissive for BKV infection. A transitory state of cell transform­

ation could be established. Virus could later be released, resulting 
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in lysis of the cells. This has been shown to occur in polyoma and 

SV40 systems. Populations of BHK cells have been shown to be semi­

permissive rather than absolutely nonpermissive for polyoma (Fraser 

and Gharpure, 1963; Bourgaux, 1964; Folk, 1973). Semipermissiveness 

for SV40 has been demonstrated in human and Syrian hamster cells (Burns 

and Black, 1968, 1969; Rothschild and Black, 1970; Dubbs and Kit, 1971; 

Boyd and Butel, 1972; Butel et al., 1972; Kaplan et al., 1972). 

In order to rule out viral lysis of the cells as the reason for 

detachment, culture supernatants were analyzed for the presence of BKV. 

Supernatants containing the detached cells were collected. Following 

centrifugation, cells were lysed by resuspending the pellets in 0.6% 

sodium dodecyl sulfate (SDS) in TES buffer (lOmM Tris, lOraM EDTA, lOmM 

NaCl), pH7.2. The method of Hirt (1967) was used to extract DNA from 

the lysed cells. Extracted DNA was separated by agarose gel electro­

phoresis. No BKV DNA was detected. Culture supernatants were also 

tested by HA for the presence of BKV. No hemagglutination was ob­

served. These results could rule out cell lysis by activation of the 

inherent viral genome and virus multiplication as the cause of cell 

detachment. 

3. Presence of T Proteins. 

Indirect immunofluorescence was performed on the BKV trans­

formed hybrid clones at the higher passage level to detect the expres­

sion of the BKV nuclear T proteins. All hybrid clones tested were 

negative by immunofluorescence for the T proteins. SV80 cells, human 

fibroblasts transformed by SV40, were used as the positive control and 
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exhibited 4+ nuclear fluorescence. Negative controls included BHK 

cells and hybrid clones not transformed by BKV. These cells displayed 

no nuclear fluorescence. BHK-Bl cells transformed by BKV exhibited 1+ 

nuclear fluorescence, which is typical of BKV transformed BHK cells. 

The assay was not performed using confluent cell monolayers. 

Clones were not successfully grown to confluency, as discussed previ­

ously. Assays were performed when the cells had plated and undergone 

a few cell divisions, although cells were beginning to detach. The 

cells remaining attached to the coverslips appeared well fixed by the 

acetone. 



In summary, the results presented above report the successful 

isolation of interspecies hybrids between human embryonic kidney and 

Syrian hamster cells. The selection system utilizing HAT medium plus 

ouabain was based on properties of the parental BHK-Bl and HEK cells. 

Cell fusion was achieved with PEG-DMSO, and five hybrid clones were 

successfully expanded in culture. Phenotypic characteristics and karyo­

type analysis were used to verify the hybrid nature of the clones. BKV 

lytic infection of the hybrid cells occurred at low and high passage 

levels with the virus being purified from all clones. Transformation 

of the hybrid cells only occurred at the high passage level. The bi­

ology of the tranformed cells proved to be complicated. The cells 

could not be propagated in liquid culture, indicating that the trans­

formed clones might be anchorage independent for growth. Although the 

cells appeared stably transformed when cultured in soft agar, no ex­

pression of the T proteins as detected by indirect immunofluorescence 

was evident. The phenotypic characteristics displayed by the BHK-Bl x 

HEK hybrid cells in response to BKV must be studied in greater detail 

to explain the biology of this system. 



DISCUSSION 

The most significant accomplishment of this thesis is the iso­

lation of unique interspecies hybrids between Syrian hamster cells and 

human embryonic kidney cells. The selection system utilized in hybrid 

clone isolation and propagation, the fusion protocol, characteristics 

of the hybrid cells, and the response of these cells to BKV lytic and 

transforming infections comprise the component parts of this work. 

The biology of established cell lines and their use in con­

structing somatic cell hybrids is complex. Therefore, experiments uti­

lizing such cells can become difficult to design. In our investigation, 

for example, a continual cell line such as the BHK-Bl line does not 

maintain a constant complement of 44 chromosomes. Cells often do not 

remain diploid, becoming pseudodiploid, aneuoploid, or tetraploid. Nu­

merous chromosomal rearrangements occur, with translocations of entire 

arms of chromosomes being common. This was evident in our BHK-Bl cells 

(Figure 4). Chromosome identification by standard banding techniques 

then is more difficult in established cell lines because standard chro-

mosome banding patterns may be slightly altered in continual cell lines 

due to passage in culture. 

In contrast, human diploid cells in culture maintain a constant 

chromosome complement of 46, with essentially no variation from the 

diploid state. No HEK cells had fewer than 44 chromosomes. Loss of 

chromosomes during preparation of the metaphase spreads would account 

for the incomplete chromosome complements. Few chromosomal rearrange­

ments occur in human diploid cells. This was evident in our HEK cells 

66 
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as no translocations were present (Figure 5). In this case, standard 

banding techniques are very useful in identifying human chromosomes in 

diploid cells. 

Somatic cell hybrids contain a single nucleus composed of func­

tioning chromosomes from both parental cells (Bernhard, 1976; Croce, 

1980). Duplication or triplication of one chromosome complement ini­

tially occurs after cell fusion. This initial multiplication of one 

genome is followed by a rapid, extensive, irregular elimination of 

chromosomes from the other parental cell complement. In hybrids be­

tween human and rodent cells, preferential loss of human chromosomes 

has most often been demonstrated (Bernhard, 1976; Ozer and Jha, 1977). 

Our BHK-Bl x HEK hybrid clones are an example of this phenomenon, with 

hamster chromosomes being present in high copy number (Figures 6, 7, 8, 

9, 10). As many as six or eight copies of some hamster chromosomes 

were present in the hybrid clones. Loss of human chromosomes occurred 

in the BHK-Bl x HEK hybrid clones during propagation, with few human 

chromosomes being retained in these cells (Figures 6, 7, 8, 9, 10). 

Hybrid Clone 1 retained single copies of human chromosome numbers 3, 6, 

8, and 18 along with a pair of human number 17 chromosomes. Single 

human chromosome numbers 11, 16, and 17 were identified in Clone 2. 

Clone 3 retained single copies of human chromosome numbers 11 and 18 

and pairs of chromosome numbers 6,16, and 17. Clone 4 retained single 

copies of human chromosome numbers 8, 11, 17, and 22. Single copies of 

chromosome numbers 3 and 17 were identified in Clone 5. 

Chromosome pulverization in these interspecies hybrids could 

account for the extensive loss of human chromosomes. Pulverization 



68 

results from premature chromosome condensation of the interphase genome 

(Kato and Sandberg, 1968; Johnson and Rao, 1970; Rao, 1977) and occurs 

due to initial mitotic asynchrony of the nuclei of multi-nucleated 

cells (Johnson and Rao, 1970; Rao and Johnson, 1972, 1974; Sperling and 

Rao, 1974). The small elements of chromosomal material coding for es­

sential gene products, such as the human thymidine kinase in the BHK-Bl 

x HEK hybrid cells, would be maintained during cell propagation in se­

lective medium. Detection of these chromosomal fragments by standard 

banding techniques would be impossible as they '"ould not be evident by 

karyotype analysis. 

Chromosome loss may also be directed by spindle formation in the 

somatic cell hybrids. Retention of one species of chromosomes would 

occur because of the prevalence of that parental cell's spindle fibers. 

The failure of the other genome to replicate or interact correctly with 

the spindle apparatus would result in extensive chromosome loss (Bern­

hard, 1976). 

As is evident by analysis of the BHK-Bl x HEK hybrid cell karyo­

types, clones containing different chromosome complements can be iso­

lated. The copy number of the BHK-Bl chromosomes varied greatly. The 

copy number of eight hamster chromosomes, numbers 7, 8, 9, 13, 15, 16, 

18, and 19, was fairly consistent within the hybrid clones and with the 

copy number of these chromosomes present in the BHK-Bl modal chromosome 

complement. Six hamster chromosomes, numbers 3, 11, 12, 14, 20, and 

21, were generally present in high copy number in the hybrid clones. 

Three of the hybrid clones had one hamster chromosome, number 5, 10, or 

17, present in a much higher copy number when compared to the modal 
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chromosome complement. The specific chromosomes were present in the 

other clones in copy numbers similar to those of the BHK-Bl modal chro­

mosome complement. Hamster chromosome numbers 1, 2, 4, and 6 were pre­

sent in slightly elevated copy number. The copy numbers of the X and Y 

chromosomes were similar to those in the BHK-Bl modal chromosome com­

plement. The human chromosome complement retained differed in each of 

the five clones. Unfortunately, there is little known about the gene 

map of the Syrian hamster. Most gene products of these chromosomes 

have not been identified. The five hybrid clones did not retain the 

same human chromosomes, except number 17, as previously discussed (Ta­

ble 4). Chromosome number 11 was identified in three of the five 

clones, chromosome numbers 3, 6, 8, 16, and 18 in two clones each, and 

chromosome number 22 in one clone. This allows study of individual 

chromosome functions and determination of chromosome retention patterns. 

Isolation of several BHK-Bl x HEK hybrid clones containing different 

chromosome complements would allow evaluation of host cell contributions 

to the regulation of BKV early gene expression. Permissiveness and 

nonpermissiveness of the hybrid clones to BKV infection could then be 

related to chromosome content. 

A possible reason why the BHK-Bl x HEK hybrids retained specific 

human chromosomes was that these chromosomes may have conferred selec­

tive growth advantages on the cells. Human chromosome number 17 carry­

ing the gene coding for the soluble thymidine kinase was selected for 

by use of HAT medium. This gene was vital for maintaining hybrid cell 

viability under conditions imposed by this selection system. As ex­

pected, this chromosome was present in all five clones as demonstrated 
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by karyotype analysis. Only those human chromosomes or fragments of 

chromosomes necessary for maintaining viability and conferring growth 

advantages may have been retained. Loss of the other nonselected human 

chromosomes would not have been lethal to the hybrid cells because ham­

ster vital genes were present in high copy number. The gene maps of 

the human chromosomes identified in the BHK-Bl x HEK hybrid cells are 

listed in Appendix B (Sandberg, 1980). It is possible that the human 

chromosomes retained in the hybrid clones, but not specifically se­

lected for, conferred growth advantages on the cells. These chromo­

somes in conjunction with a specific hamster chromosome complement may 

be important in maintaining the viability of the hybrid cells. These 

chromosomes may somehow increase the potential for growth of the hybrid 

cells. 

The identification of different combinations of human chromo­

somes in numerous hybrid clones under identical selective pressure 

would indicate that the chromosomes were not retained due to the in­

fluence of the selection system. These chromosomes probably would not 

confer selective growth advantages on these cells. The mechanism of 

cell hybridization could be responsible for retention of these chromo­

somes. Consistent combinations of chromosomes identified in numerous 

clones could be attributed to the selection system or to the nature of 

the hybrid cells. If these chromosomes were retained because of the 

conditions imposed by the selection system, then changes in selection 

conditions should result in alteration of the human chromosome comple­

ments maintained. Retention of the same combinations of chromosomes 

under different selective conditions would implicate the nature of the 
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hybrid cells in regulation of chromosome elimination. In order to at­

tribute the patterns of chromosome retention in the BHK-Bl x HEK hybrid 

clones to the conditions imposed by the selection system or to the 

mechanism of cell hybridization, more clones would have to be isolated 

and the combinations of human chromosomes present identified. The se­

lection system using HAT medium plus ouabain would have to be altered, 

and the combinations of human chromosomes retained under various con­

ditions determined. 

It is interesting to note that human chromosome number 17 was 

found to carry the integration and transformation sites for SV40 in GM-

54 VA cells, a human cell line transformed by SV40, when these cells 

were fused with mouse cells (Croce, 1977). As discussed previously, 

human chromosome number 17 was the only chromosome retained by all the 

hybrid clones, due to continual selective pressure. It would be inter­

esting to specifically study this chromosome in relationship to BKV 

lytic and transforming infections. 

Once the hybrid nature of the cells had been established, pri­

marily by karyotype analysis, the preliminary investigations of BKV 

early gene regulation were initiated. The system utilized somatic cell 

hybrids between a permissive host capable of BKV multiplication and a 

nonpermissive host capable of being transformed by BKV. The response 

of the BHK-Bl x HEK hybrid cells to BKV adsorption was studied. Lytic 

infection occurred at the low and high passage levels, whereas trans­

forming infection occurred only at the high passage level (Table 5). 

BHK-Bl x HEK hybrid Clone 1 was also lytically infected with BKV at 

intermediate passage levels. It was possible that specific combinations 
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of hamster and human chromosomes determined the response of the cells 

to BKV adsorption. The majority of human chromosomes may not have been 

segregated at the lower passage level. Therefore, the influence of 

these permissive host chromosomes may have allowed lytic infection to 

occur. The cells that had segregated most of the human chromosomes at 

this time would have been in very low concentration within the popula­

tion. Transformation of these cells may not have been detected by our 

assay procedure. At the higher passage level, some cells may have seg­

regated enough human chromosomes to allow BKV transformation to occur. 

This would have resulted from the influence of the BHK-Bl chromosome 

complement present in the hybrid cells. The concentration of cells 

within the hybrid population containing fewer human chromosomes would 

have greatly increased by the high passage level. Therefore cell trans­

formation would have been detected utilizing our assay system. 

Another explanation for the occurrence of lytic infection at both 

passage levels and transforming infection only at the high passage level 

may be that BHK-Bl cells, and therefore, the BHK-Bl x HEK hybrid clones, 

are semipermissive for BKV infection. As discussed previously, semi­

permissiveness exists in polyoma and SV40 systems. Our laboratory has 

found that some BHK-Bl cells can be lytically infected using 10 pfu of 

BKV per cell. Evidence for this was the presence of viral CPE and cell 

lysis 4 to 5 days post infection. Virus was purified from these cul­

tures by equilibrium sedimentation and buoyant density centrifugation. 

This purified virus was neutralized by virus specific antisera in the 

hemagglutination inhibition assay and had a buoyant density in CsCl at 

25°C characteristic of wild-type BKV. Therefore, we feel that the 
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purified virus was BKV. Our laboratory also demonstrated that BHK-Bl 

cells could be transformed at approximately the same frequency as BHK-

21 cells (Table 8). The cells were stably transformed as shown by their 

ability to propagate in liquid medium when cloned from soft agar sus­

pension. Defective virus particles were not responsible for BHK-Bl 

cell transformation. This was demonstrated by rescue of infectious BKV 

from BKV-BHK-Bl Clone 13 following cell fusion with HEK cells. There­

fore, due to these experimental results it was felt that our BHK-Bl 

cells contained subpopulations of cells permissive or nonpermissive for 

BKV infection. The permissive BHK-Bl cells probably were present in 

low concentration within the population. It may therefore be possible 

to correlate the BHK-Bl karyotype with the permissiveness or nonpermis­

siveness of the cell to BKV infection. Specific factors such as chro­

mosome copy number, the loss of certain chromosomes, or chromosomal re­

arrangements may have influenced the BHK-Bl cell's response to BKV in­

fection. 

It should therefore be possible to establish subclones of BHK­

Bl cells and determine their permissiveness or nonpermissiveness to 

BKV infection. Clones transformed by BKV should not allow BKV lytic 

infection to occur. Extensive subcloning would have to be performed to 

isolate and characterize such clones. Once these subpopulations of 

BHK-Bl cells were established, they could be utilized in future cell 

hybridization experiments to study BKV early gene expression. The ab­

solute permissiveness or nonpermissiveness of the BHK-Bl cells would 

be established by subcloning and determining each clone's response to 

BKV adsorption. 
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Assuming that the BHK-Bl cells did contain subpopulations of 

nonpermissive and permissive cells, then fusion of these cells with HEK 

cells permissive for BKV infection would result in subpopulations of ~s 

expressing different phenotypes. Hybrids between two permissive cells 

or between a nonpermissive and permissive cell would be present. This 

would result in different responses of the cells to BKV infection. Cell 

hybrids between two permissive cell types such as permissive BHK-Bl and 

HEK cells would lytically infect at low and high passage levels. It 

may be an inherent property of some of these hybrid cells to undergo 

transformation at some point in passage (Marin, 1980). BHK-Bl x HEK 

hybrid Clone 2 may be an example of a clone expressing this phenotype. 

A high frequency of transformation occurred both in BKV infected and 

noninfected cells at the high passage level (Table 5). Some alteration 

in the BHK-Bl chromosome complement with passage may have resulted in 

the cells being able to undergo viral transformation. 

If fusion between a nonpermissive BHK-Bl cell and permissive 

HEK cell occurred, then it would be important to consider the influence 

of the chromosome complement on the response of the hybrid cells to BKV 

infection. The karyotypes of the cells would have to be examined at 

every passage level to determine which human chromosomes segregated and 

to identify the hamster chromosome complement. A loss of most human 

chromosomes from some cells in the population may have occurred at the 

higher passage level. This could have resulted in these cells becoming 

transformed at this passage level. The contribution of both parental 

genomes would be important in determining the cell's response to BKV 

lytic or transforming infection. 
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It would also be important to study the karyotypes of the hybrid 

cells during lytic and transforming infections. This may identify 

which chromosomes were responsible for the permissiveness or nonpermis­

siveness of the cells to BKV infection. It may be possible to subclone 

these populations of cells. Permissive and nonpermissive hybrid clones 

would result. Therefore, it is critical to our experiments to be able 

to propagate the BKV transformed BHK-Bl x HEK hybrid cells. It may be 

that once transformed by BKV, these hybrid cells are constitutively 

anchorage independent for growth. Therefore suspension cultures would 

have to be utilized. Once the karyotypes of the transformed and lytic­

ally infected hybrid clones are determined, it may be possible to sub­

clone populations of cells on the basis of karyotype before infection 

with BKV. Subcloned hybrid cell populations would each be tested for 

response to BKV lytic and transforming infections. Either transform­

ation or permissive infection should occur if subpopulations of cells 

were successfully cloned. The response of BHK-Bl x HEK hybrid sub­

clones to BKV infection would be evaluated on the basis of chromosome 

complement. The use of karyotype analysis provides another approach to 

the study of the regulation of BKV early gene expression. 

The valuable insight into viral gene regulation provided by such 

an experimental approach warrants continuing our study of BKV trans­

forming and lytic infections in the BHK-Bl x HEK hybrid cells. A brief 

discussion of other investigations and the information obtained from 

similar systems will focus attention on what experiments could be per­

formed using our somatic cell hybrids. 



76 

1. Expression of the large T protein and rescuability of the 

SV40 genome in somatic cell hybrids between SV40 transformed human 

cells and mouse cells, segregating human chromosomes, correlated with the 

presence of human chromosome number 7 (Croce et al., 1974, 1975, 1976). 

This chromosome was also responsible for expression of the transformed 

phenotype in vitro and for the ability of the hybrid cells to form tu-

mors in vivo. The SV40 integration site was assigned to human chromo-

some number 17 in cell hybrids between another SV40 transformed human 

cell line and mouse cells (Croce, 1977). T protein expression and tu-

morigenicity in vivo correlated with the presence of this chromosome. 

2. Cell hybrids between mouse cells and'spontaneous yielder 

SV40 transformed hamster cells, segregating hamster chromosomes, were 

isolated to investigate w~ematuration of SV40 (Suarez et al., 1978). 

Hybrid cells were positive for T protein production, but infectious 

SV40 DNA was only occasionally detected due to the inability of the 

hybrid cells to correctly activate the integrated SV40 genome. This 

result could not be attributed to loss of essential hamster chromosomes 

or to the presence of inhibitory mouse components. Superinfection of 

the hybrid cells with SV40 did not result in virus assembly although 

capsid proteins were synthesized. This system is being utlilized to 

more thoroughly investigate the dependence of SV40 maturation on cellu-

lar functions. 

3. Somatic cell hybrids between embryonal carcinoma cells (ECC) 

and SV40 transformed murine cells were utilized to elucidate the nature 

of the host cell range restriction to SV40 early gene expression in ECC 
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(Balint et al., 1980). The hybrid cells were positive forT protein 

production, indicating that the host range restriction to SV40 in ECC 

was a recessive property, with the required cellular functions for SV40 

early gene expression not being present. The regulation of viral tra~ 

forming genes during cell differentiation and development is being eval­

uated. This system should provide a means of determining if the block 

in the expression of the SV40 early gene products occurs at the tran­

scriptional or post-transcriptional level. 

4. The role of the SV40 A gene product in initiation of cellu­

lar DNA synthesis was investigated by isolation of somatic cell hybrids 

between mouse kidney cells transformed by a SV40 tsA mutant and dormant 

chick erythrocytes (CE) (Dubbs and Kit, 1977; Dubbs et al., 1978). SV-

40 transformed mouse cells, depleted of T protein by grow~h in medium 

containing a reduced serum level, fused with CE activated CE DNA syn­

thesis before the CE nuclei became positive for T protein production. 

These results indicated that the SV40 A gene product probably was not 

the direct initiator of cellular DNA synthesis. 

5. Primate factors involved in determining susceptibility to 

SV40 lytic infection were studied by use of somatic cell hybrids be­

tween cercopithecoid monkey and Chinese hamster cells (Garver et al., 

1980). The cell hybrids differed in their primate chromosome comple­

ment and in their susceptibility to SV40 infection. The presence of 

rhesus monkey· chromosome 11 or African green monkey chromosome 12 cor­

related with elevated SV40 replication in the hybrid cells. The ability 

of the hybrid cells to rescue virus from SV40 transformed rodent cells 

was correlated with the presence of these chromosomes. 
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6. In hybrids between mouse and human cells, rRNA genes of both 

species are present although only the rRNA of the dominant species is 

expressed (Soprano et al., 1979, 1980). Infection of these hybrids 

with SV40 resulted in reactivation of the silent rRNA genes. SV40 re­

activation of the silent rRNA genes required the presence of the large 

T protein, although sequences of the A gene from 0.27 to 0.17 and from 

0.67 to 0.39 were not necesary for reactivation (Soprano et al., 1981). 

This investigation indicated that certain cellular functions were sup­

pressed in somatic cell hybrids. The mechanism of cell transformation 

is being studied in this system since the transforming genes of SV40 

can activate silent genes. 

All of the systems discussed utilized somatic cell hybrids to 

evaluate the regulation of viral gene expression, factors influencing 

expression, and functions of the gene products. The rationale for hy­

bridization of BHK-Bl and HEK cells as another means of studying the 

expression of the BKV T proteins and the regulation of this expression 

is strongly supported by the results of these investigations. 

What is necessary for continuation of our study is the determin­

ation of which human chromosomes remain in the BHK-Bl x HEK hybrid 

cells and which preferentially segregate in relationship to the hamster 

chromosome complement. The presence of specific human chromosomes 

along with the multiple copies of hamster chromosomes may allow produc­

tive infection of the hybrid cells to occur. Certain combinations of 

human and hamster chromosomes or specific hamster chromosome comple­

ments may determine the permissiveness or nonpermissiveness of the cells 

to BKV infection. The preferential loss of human chromosomes during 
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cell passage may correlate with the ability of the hybrid clones to be­

come transformed at higher passage levels. More fusions of BHK-Bl and 

HEK cells must be performed, and more hybrid cells must be isolated, 

subcloned, and infected with BKV. In this way, clones retaining dif­

ferent numbers and combinations of chromosomes will be analyzed for 

their response to BKV adsorption. Viral gene regulation will be stud­

ied by infecting the subcloned hybrid cells with BKV and determining 

which parental cell predominates, resulting in lytic or transforming 

infection. Karyotype analysis of the hybrid cells must be performed at 

every passage in order to determine if there is a consistent pattern of 

chromosome loss during propagation or if chromosome loss is a random 

event. It should be possible to determine specifically which chromo­

some complements allow productive infection and which allow transform­

ation to occur. Phenotypes of the BKV infected hybrid cells will be 

correlated with the preferential segregation of human chromosomes and 

the hamster chromosome complements. The dominance or recessiveness of 

the transformed phenotype will be determined and correlated with the 

presence of specific human chromosomes. Permissiveness and nonpermis­

siveness of cells to BKV infection will be related to human and hamster 

chromosome complements. 

Evidence to date suggests that our BHK-Bl cells transformed by 

BKV express the small T protein but lack large T protein expression, as 

demonstrated by immunoprecipitation, gel electrophoresis, and autoradio­

graphy. HEK cells synthesize both T proteins during BKV lytic infection. 

Therefore, hybridization of BHK-Bl and HEK cells appeared to be the 

ideal system for studying BKV early gene expression. The introduction 
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of human chromosomes into BHK-Bl cells through cell hybridization may 

allow evaluation of the regulation of expression of both the large and 

small BKV T proteins during BKV transformation. Karyotype analysis of 

the hybrid clones at every passage should permit identification of 

those human chromosomes in relationship to the hamster chromosome com­

plements that allow transformation and those that allow lytic infection 

to occur. We feel that correlation of BKV cell transformation with the 

presence or absence of the large and small T proteins should be possi­

ble. This correlation could then be related to the presence or ab­

sence of one or a combination of human chromosomes. 
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Appendix A 
Cell Identification 

HEK 

BHK-21 

BHK-Bl 

BKV-BHK-Bl Clone 13 
Clone 16 

BKV-BHK-Bl Clone 13xHEK 
Clone 16xHEK 

BHK-BlxHEK Hybrid Clone 
Clone 
Clone 
Clone 
Clone 

1 
2 
3 
4 
5 

II 
II 
II 
II 
II 

II 

Derivation 

II -Human embryonic kidney 
II -Primary and secondary cell 
II 
11 strains 
II 

-Baby hamster kidney 
-Male Syrian hamster fibroblasts 
-Continuous cell line 

-Subline of BHK cell line 
-Thymidine kinase negative 
-Established by growth in BrdU 
medium 

-BKV transformed BHK-Bl cells I 
11 -Anchorage independent growth II 
II 
I 

-BKV-BHK-Bl Clones x HEK fusions 
-Selection in HAT medium 

-BHK-Bl x HEK fusions 

II -Selection in HAT medium plus 
II ouabain II 
II 

II 
II 
II 
II 
II 

Source of Cells 

-Lab derived 

-Stoker and Macpherson (1964) 

-Meiss (personal communication) 
-Littlefield and Basilico (1966) 

-Lab derived 
-Virus transformed 

-Lab derived 
-Somatic cell fusions 

-Lab derived 

-Somatic cell fusions 
\0 
0 
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Appendix B 

Chromosome #3 

Chromosome #6 

Chromosome 118 

Chromosome 1111 

Chromo s orne /116 

Chromosome 1117 

Chromosome 1118 

Chromosome 1122 
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The gene map of each human chromosome present in the 
karyotypes of the BHK-Bl x HEK hybrid clones. 

S-Galactosidase 
Glutathione peroxidase 
Herpes virus sensitivity 
Temperature-sensitive complement 

Glyoxylase-1 
Major histocompatibility complex HLA-A, B, C, D 
C2, C4, C8 
Rogers blood group 
Chido blood group 
Properdin factor B 
Phosphoglucomutase-3 
Malic enzyme (soluble) 
Superoxide dismutase (mitochondrial) 
Glutamic oxaloacetic transaminase (mitochondrial) 
Pepsinogen 

Glutathione reductase 

Lactate dehydrogenase-A 
Lethal antigen 
Acid phosphatase-2 (tissue) 
Esterase-A4 
Species antigen 

Adenine phosphoribosyl transferase 
Thymidine kinase (mitochondrial) 
Cholinesterase (serum) 
a-Haptoglobin 
a-Hemoglobin 
Lecithin-cholesterol acyltransferase 

Thymidine kinase (soluble) 
Acid a-glucosidase 
Galactokinase 
Adenovirus-12 chromosome modification site-17 
Collagen-1 
SV40 integration site 
SV40 transformation site 

Peptidase-A 

Ribosomal RNA 
Arylsulfatase-A 
Aconitase (mitochondrial) 
NADH diaphorase 
a-Galactosidase B 
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