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CHAPTER I 

INTRODUCTION 

Studies utilizing a rat renal cortical slice system (1) or the 

isolated, perfused rat kidney (2), suggest that peripheral dopamine 

directly stimulates renin release through a beta-adrenergic receptor 

mechanism similar to that postulated for norepinephrine by several in-

vestigators (3-8). Recent studies in this laboratory (9-10) utilizing 

the dopamine-beta-hydroxylase inhibitor FLA-63 which effectively pre-

vents the conversion of dopamine to norepinephrine in in vitro tissue 

(11-12), have provided added support for this view as well as for the 

possibility that cyclic AMP may mediate the stimulatory effect of dopa-

mine on renin release via this beta-receptor pathway. However, the re-

sults obtained in these studies have left unanswered the question as to 

whether or not dopamine may also influence renin secretion through an 

interaction with a specific dopamine receptor located in the membranes 

of the juxtaglomerular cells. 

In order to effectively evaluate specific factors that may dir-

ectly control renin release, various humoral and hemodynamic influences 

that also affect renin secretion in vivo must first be eliminated. 

Therefore, an in vitro rat kidney cortical slice preparation devoid 

of these influences was utilized in this study to further examine the 

type of mechanism involved in mediating a direct effect of dopamine on 

renin release. In addition, a number of in vivo and in vitro studies 
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have shown that the sensitivity of the renin-secreting cells to catechol

amine stimulation is potentiated by dietary sodium deficiency (8,9,13,14). 

Thus, cortical tissue obtained from rats maintained on a sodium deficient 

diet was used in this investigation. 

Since further characterization of the receptor type mediating the 

renin responses to dopamine administration is necessary, the present 

study was designed to 1) provide additional in vitro evidence regarding 

the involvement of a beta-adrenergic receptor mechanism in mediating the 

effect of dopamine on renin secretion, by utilizing the phosphodiesterase 

inhibiting agent, theophylline; 2) examine the possibility of dopamine

specific receptor participation, by evaluating the effect of the dopa

mine-receptor blocker, d-butaclamol; 3) determine if the renin secretory 

responses to these agents are coupled with tissue cyclic AMP content 

changes at various incubation times; and 4) evaluate if new synthesis 

of renin occurs as a result of administration of these agents to our 

cortical slice preparation. 



CHAPTER II 

LITERATURE REVIEW 

A. Control of Renin Secretion 

There is no question as to the importance of the glycoprotein 

hormone, renin (15), acting as a circulatory proteolytic enzyme, in 

the control of arterial blood pressure (16) and in the primary regula

tion of aldosterone secretion and thus of sodium and blood volume homeo

stasis (17-19). The mechanisms participating in the control of renin 

release have been the subject of intensive study for numerous years. 

Three major theories have been proposed to explain how a number of stim

uli known to affect renin secretion activate the juxtaglomerular cells 

that produce it in the kidney; 1) a "Baroreceptor" or "Stretch Receptor" 

theory states that renin is regulated by changes in tone of the afferent 

arteriolar walls in response to changes in renal perfusion pressure (20), 

2) a "Macula Densa" Theory holds that the rate of renin secretion is in

versely related to sodium and/or chloride concentration in the distal 

tubular fluid, as sensed by specialized cells in that area (21), and 3) 

a "Neural" Theory postulates that there is a sympathetic nervous regu

lation of renin secretion either directly through nerve terminals syn

apsing with the juxtaglomerular cells or indirectly via circulating 

adrenal medullary catecholamines (20). Additional factors such as cir

culating angiotensin II, antidiuretic hormone (ADH), and intrarenal 

prostaglandins also appear to play a role in the regulation of renin 

3 
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secretion (21) although not as importantly as the three major ones, and 

by mechanisms which are still largely unknown. It is clear, however, 

that in the live animal renin release depends to a large degree upon 

the simultaneous interaction of all of these various stimuli. 

1. Baroreceptor Control of Renin Release 

The development of the baroreceptor concept came about as a re

sult of studies on renal hypertension. Goldblatt found in the early 

1930's that hypertension of renal origin could be induced by renal ar

tery constriction and he, therefore, concluded that renal ischemia was 

an important factor stimulating the release of renin from the kidney 

(22). Subsequent studies have demonstrated that reduced renal perfu

sion pressure rather than an impaired renal blood flow is the primary 

stimulator of renin release (23-25), although they both are interrela

ted to a certain degree. This view led investigators to study the ef

fect of changes in perfusion pressure on juxtaglomerular cell granula

tion as an index of juxtaglomerular cell synthetic activity and metab

olism. Tobian (26) found an inverse correlation between renal perfusion 

pressure and juxtaglomerular cell granularity, which resulted in his 

support of the existence of an intrarenal stretch receptor in the renal 

afferent arteriole which responds to changes in blood pressure. Added 

evidence for the baroreceptor theory has been obtained through studies 

utilizing the denervated, non-filtering dog kidney model, which effect

ively isolates the afferent arteriolar mechanism of renin release reg

ulation for those mediated by the renal nerves and macula densa. Uti

lizing this model, Blaine and co-workers (27-29) found that the increase 
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in renin release seen after hemorrhage occurred as a result of afferent 

arteriole constriction and decreased renal perfusion pressure despite 

the absence of macula densa and neural influences, supporting the con

cept of a renal vascular receptor involved in the regulation of renin 

secretion. Furthermore, the renin secretory responses to hemorrhage 

were abolished when this vascular receptor was blocked by administration 

of the smooth muscle relaxant, papaverine, to the denervated, non-filter

ing dog kidney (30). Some investigators, however, have shown an increas

ed renin release rate associated with dilatation of the afferent arteri

ole during renal autoregulation (31,32). 

2. Macula Densa Receptor Regulation of Renin Secretion 

Electron microscopic studies have clearly shown that the macula 

densa cells in the renal distal tubule are in close anatomical associ

ation with the juxtaglomerular cells (33,34). The macula densa has 

therefore been implicated as an additional regulatory site participating 

in the overall control of renin secretion. Whether the stimulus to the 

macula densa to influence renin release is an increased (35) or decreased 

(24,36,37,38) sodium load to that area, remains unclear. Based on data 

from numerous distal tubule microinjection studies, Thurau and co-workers 

have suggested that it is an increase in sodium concentration rather than 

load, in this area which is the signal influencing renin secretion (39-

41). Meyer et al. (42) and Cooke (43) using osmotic diuretics to in

crease sodium concentration to the macula densa have confirmed Thurau's 

conclusions. Conversely, Nash (35) has shown that an increase in sodium 

flux across the macula densa cells into the interstitium surrounding the 
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juxtaglomerular cells is responsible for the resulting increase in renin 

' release •. Increased chloride load to the macula densa has also been pro-

posed as the possible signal for renin release (41,44). In contrast, 

Vander's experiments involving the use of diuretics during aortic con-

striction in order to vary distal tubular sodium load without altering 

arterial pressure (38) have led to the view that a decreased sodium 

load to the macula densa results in an increased release of renin. Van-

der (45) and DiBona (46) have conducted experiments in which decreases 

in both distal sodium load and concentration were produced by occluding 

the ureter during mannitol diuresis. Their results further support the 

concept of decreased sodium load to the macula densa as the stimulus 

for renin secretion. 

3. Humoral Control of Renin Release 

Angiotensin II and antidiuretic hormone (ADH) are two circulating 

factors known to exert an inhibitory effect on the secretion of renin 

(47,48). Shade (48), in experiments using dogs with a nonfiltering kid-

ney found that renal artery infusion of angiotensin II or antidiuretic 

hormone inhibits renin secretion. He suggested that these agents exert 

their effects directly on the juxtaglomerular cells. A direct negative 

feedback action exerted by angiotensin II on renin release has been con-

firmed by others in vitro (3) and in vivo (49-51), although the mechan-

ism involved remains unclear. 

Bunag (47) and Vander (52) have confirmed Shade's findings con-

cerning the inhibitory effect of ADH on renin release. Moreover, Ta-

gawa (53) reports that increases in plasma ADH lowers plasma renin ac-
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tivity in sodium deficient dogs. Even though the exact mechanism involved 

in the renin responses to ADH is not known, a direct effect is generally 

accepted. Vandongen's work in vitro supports this view (54). 

Recently, intrarenal prostaglandins have been implicated in Che 

control of renin secretion (61,62). In vitro studies have shown that 

PGE2 increases release of renin whereas PGFll has no effect on renin re

lease in rabbit renal cortical cell suspensions (55). Gerber (56) has 

also demonstrated in vivo that administration of PGE2 increases plasma 

renin activity. Conversely, Weber et al. (57,58) have shown that PGE2 

has no effect on the secretion of renin in vitro and that PGF2a actually 

decreased release in vitro and depressed plasma renin activity in ~· 

Administration of prostaglandin precursors such as arachidonic acid and 

of prostaglandin synthetase inhibitors such as indomethacin are known to 

increase and decrease plasma renin activity, respectively, in the rabbit 

(59). Using filtering and nonfiltering kidneys in anesthetized dogs, 

Seymour and Zehr (60) have shown that various intrarenal prostaglandins 

have a direct effect on the juxtaglomerular cells to increase renin re

lease. In view of these conflicting data, further investigation is in 

order to evaluate a possible regulatory action of prostaglandins on the 

release of renin. 

4. Neural Control of Renin Release; Action of Sympathetic Nerves and 

Catecholamines 

The kidney cortex is innervated by the lesser splanchnic nerve, 

a branch of the sympathetic nervous system (63), and a great supply of 

sympathetic nerve terminals in close association with the juxtaglomeru-
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lar cells has been demonstrated (64-67). Thus, approximately two dec

ades ago~ a direct neurogenic control of renin secretion was postulated 

and a large body of evidence supporting this concept has been provided 

since then (68-72). A significant decrease in renin release occurs when 

the kidney is denervated (69,70). Electrical stimulation of the renal 

nerves in the nonfiltering kidney results in an increase in the release 

of renin when the baroreceptors are inactivated (71). In some experi

ments, renal vasoconstriction has been observed in association with an 

increased renin activity after renal nerve stimulation (72). 

Besides the peripheral neural control of renin release, central 

nervous system stimulation has also been shown to modify renin responses 

via the renal nerves (73-75). In these studies, electrical stimulation 

of the midbrain (73), pons (75), or medulla (74) increased renin release. 

In all cases, the responses were abolished by renal denervation. How

ever, Ueda (73) observed a simultaneous increase in circulating catechol

amines associated with diminution of the renin responses to midbrain 

stimulation after renal denervation. He thus suggested that the central 

nervous system regulates release of renin through a circulating catechol

amine mechanism. Furthermore, the catecholamines epinephrine and nore

pinephrine (71,76) and tyramine (77), an amine capable of releasing nor

epinephrine from nerve endings (78), are known to stimulate renin release 

when infused directly into the renal artery. In a recent study by John

son (79), epinephrine and isoproterenol infused into the inferior vena 

cava caused a marked increase in plasma renin activity, whereas renal 

artery infusion of epinephrine did not increase plasma renin activity. 
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L-propranolol blocked the increase in plasma renin activity caused by 

vena cava infusion of epinephrine, suggesting an extrarenal beta-recep

tor mediation. 

On the other hand, norepinephrine administration induces release 

of renin when infused intravenously during aortic constriction (72) al

though Wathen et al. (76) disputes this. Intravenous infusion of nor

epinephrine and isoproterenol increases renin secretion acco~ding to 

Ueda (80), a response that is inhibited by administration of propranolol 

and not affected by denervation. Thus, sympathetic catecholamines may 

act either directly on the juxtaglomerular cells to stimulate renin re

lease or indirectly by affecting the intrarenal receptors. 

The direct effect of catecholamines on renin secretion has been 

studied extensively utilizing various agonistic and antagonistic agents 

in vitro to determine the mechanism mediating the renin release responses 

to these agents (3-10, 14, 81-86). Renal cortical slices (5-10,14), ren

al cortical suspensions (81), isolated glomeruli (84), or isolated per

fused kidney preparations (85,86) have been used in these studies to 

evaluate a number of factors which may directly influence renin release, 

and Braverman (87), Hammersen (88), and Corsini (89) have shown that ren

in release in vitro is a metabolically active process. 

It is generally agreed from these in vitro studies that a beta

adrenergic receptor mechanism is involved in the mediation of the stim

ulatory effect of norepinephrine on renin secretion (3-6,8,81-83) and 

that this mechanism appears to utilize cyclic AMP as the intracellular 

messenger (4-6,8-10,14-81). Support for cyclic AMP participation has 
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been obtained in in vivo (91-94) and in vitro (3,4,95,96) studies utiliz

ing the phosphodiesterase inhibitor theophylline which effectively pre

vents the intracellularly generated nucleotide from being degraded, thus 

potentiating the renin secretory responses to catecholamine stimulation. 

The type of beta-adrenergic receptor that is involved in the dir

ect regulation of renin release is still under debate. Some studies 

have shown that renin release responses are mediated via a beta1 or car

diac type receptor (97-99) while others (83,100) have demonstrated that 

a betaz-type (peripheral vascular type) is inv9lved. 

In addition to the stimulatory effect On renin release exerted 

by norepinephrine via a beta-adrenergic receptor mechanism, Lopez et al. 

(9) have shown that stimulation of renal alpha-adrenergic receptors by 

large concentrations of norepinephrine inhibits renin secret2~n and that 

this effect is coupled with decreases in tissue cyclic AMP. This concept 

of alpha-adrenergic receptor inhibition of renin release was clearly dem

onstrated by the fact that addition of alpha-adrenergic receptor antagon

ist agents result in removal of the renin release inhibition caused by 

norepinephrine. This view has been supported by others working with the 

isolated rat kidney (101), the cortical slice system (4,7,8), or the live 

animal (102). 

5. Dopaminergic Regulation of Renin Release 

Dopamine is a catecholamine (3,4-dihydoxybenzene) (103) which is 

structurally similar to its beta-hydroxylated derivative, norepinephrine. 

Studies of the actions of dopamine indicate that many metabolic effects 

produced by this catecholamine are different from those caused by nor-
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epinephrine (104-112), suggesting the existence of dopamine-specific re

ceptors. For instance dopamine turnover rates are greater in certain 

areas of the brain than others even though norepinephrine concentration 

is the same (113). Also, despite the fact that over 50% of the total 

catecholamine content of the mammalian brain is dopamine, Carlsson (114-

115), Sano (116), and others (117-118) have demonstrated that brain dopa

mine, unlike norepinephrine, is concentrated in a few specific areas, 

namely the corpus striatum of the basal ganglia and substantia nigra of 

the mesencephalon. Additionally, dopaminergic neurons are identifiable 

in the hypothalamus (119-120) , possibly terminating at the origin of the 

hypophyseal portal system (119). These neurons are thought to play a 

role in the regulation of prolactin (121-122) and gonadotropin (123) re

lease from the anterior pituitary gland. 

In addition to its role as a neurotransmitter in the midbrain 

and hypothalamus, numerous studies have shown that dopamine can exert 

peripheral effects on organs controlled by the autonomic nervous system 

(124) and on the coronary (104-106) and renal (108-112) vasculature. 

Specifically, dopamine is known to 1) increase cardiac muscle force of 

contraction and heart rate by an action on beta-adrenergic receptors 

(104-106), 2) exert an effect on alpha-adrenergic receptors to cause 

vasoconstriction in peripheral vascular beds (104,107) and 3) produce 

vasodilatation in the kidney (108-110) via specific dopaminergic vas

culature receptors (110-112). McDonald and Goldberg (125) have shown 

that intravenous infusion of dopamine stimulates renal blood flow, and 

increases glomerular filtration rate and sodium diuresis. Most of these 
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renal effects by dopamine are inhibited by haloperidol, a specific dopa

mine-receptor blocking agent (112,126). These findings are supportive 

of the existence of a specific vascular receptor by which dopamine causes 

renal vasodilatation and have recently been confirmed by Nakajima (127). 

Dopamine has been identified in the kidney of several species 

(128-129), and the release of dopamine from sympathetic nerves (130) and 

the adrenal medulla (131) has been demonstrated. Because of these obser

vations, and in view of the evidence Goldberg has produced in support of 

the existence of a specific dopamine receptor in the renal vasculature, 

a number of laboratories are currently evaluating the potential role 

which dopamine may play in the regulation of renin release from the renal 

juxtaglomerular cells. 

Various in vivo studies have demonstrated that dopamine either 

increases (132-134) or decreases (135-136) renin secretion in the dog 

or in man. Such conflicting evidence is not unusual in view of the num

ber of factors in the live animal which simultaneously interact to in

fluence renin release. Thus, in vitro studies have been undertaken in 

which the direct effects of dopamine may be more effectively studied, 

in the absence of hemodynamic, humoral, and other in vivo influences 

(1,2,9,10). 

Utilizing a rat renal cortical slice preparation, Henry et al. 

(1) found that addition of dopamine at concentrations of 10-5M or greater 

significantly increased renin release, and that the known beta-adrenergic 

receptor blocker, propranolol, prevented the stimulatory effect of dop

amine on renin secretion. They concluded that dopamine directly stim-
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ulated renin release by a mechanism involving a beta-adrenergic receptor, 

a view supported by recent observations of Quesada (2). Additionally, 

Lopez et al. (9,10) have shown that this direct stimulatory effect of 

dopamine on renin release is coupled with tissue cyclic AMP changes, 

which suggest the involvement of adenyl cyclase in the stimulatory path

way. 

Data from studies by Nakajima et al. (127,137) utilizing spiro

peridol, a dopamine receptor antagonist, in a rat kidney particulate 

preparation indicate that specific dopamine receptors mediate the ele

vation of cyclic AMP levels in renal tissue after addition of dopamine 

leading to renal vasodilation. These observations by Nakajima and those 

seen in our laboratory (9,10) constitute evidence for the existence of 

a cyclic-AMP-mediated receptor mechanism by which dopamine influences 

renal mechanisms. However, these data do not elucidate whether or not 

dopamine may influence renin secretion through an interaction with a 

specific dopamine receptor, as opposed to its clear beta-adrenergic re

ceptor mediation on renin release. Furthermore, recent evidence by 

Kebabian suggests that more than one type of dopamine receptor exists 

(138). In view of these conflicting results, further characterization 

of the receptor type mediating the renin responses to dopamine is in 

order. 



c:IAPTER II I 

MATERIALS AND METHODS 

Thirty-six male Sprague-Dawley rats (Sprague-Dawley Co., Madison, 

Wisconsin) with initial weights of 210 + 10 g were used in this study. 

They were kept in a temperature-and-light-controlled room (23 ± 2°C; 12 

hour light-12 hour dark photoperiod), two animals per cage, with unlim

ited access to distilled, deionized water. The animals were fed a sodi

um-deficient diet (Teklad Test Diet Co., Madison, Wisconsin), providing 

less than 0.02 mEq of sodium per day for a period of 10-20 days. They 

were subsequently sacrificed by decapitation and their kidneys excised 

and placed in Robinson's buffer at 4°C (139). The isolated kidneys 

were then gassed again for'30 sec with the same gas mixture. 

Slices of renal cortex, approximately 0.3 mm thick, were prepared 

from the decapsulated kidneys using a Stadie-Riggs microtome (A. Thomas 

Co.). Each slice was subsequently divided into six similarly-sized sec

ti~s which were randomly distributed to incubation beakers containing 

2.5 ml of Robinson's buffer media at 4°C. The procedure was repeated 

using slices from other cortical areas until each beaker contained 50 + 

30 mg of homogeneously distributed cortical tissue. The sliced tissue 

was preincubated at 37°C for 15 min in a Shaking Dubnoff Metabolic In

cubator (Precision Scientific Co.) under an atmosphere of 95% 02 - 5% 

co2 • The preincubated tissue was then transferred to beakers containing 

2.5 ml of fresh Robinson's buffer at 37°C and incubated for 5,20 or 60 

14 
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minutes under identical conditions as in the preincubation period. 

One of each group of six tissue-containing beakers was used as 

an untreated:. control sample, while the remaining tissue samples were 

treated with dopamine (1o-3M; Sigma):. added either alone or in conjunc

tion with the dopamine-receptor blocking agent d-butaclamol (1o-6M; Ayer

st), its inactive isomeric form 1-butaclamol (10-6M), or the phosphodi

esterase inhibitor theophylline (1o-3M). D- and 1-butaclamol and theo

phylline were also administered alone to the tissue preparation. In a 

simultaneous study:. the specific dopamine receptor agonist, apomorphine 

(10-~), was added to the tissue preparation either alone or with dop

amine (10-3M). The dopamine beta-hydroxylase inhibitor FLA-63 (10-4M; 

Regis) was added to all samples to prevent conversion of dopamine to 

norepinephrine in the tissue system (11,12). 

Theophylline:. the blocking agents, apomorphine, and FLA-63 were 

added to the tissue preparation prior to both the pre-incubation and 

incubation periods, while dopamine was added prior to the incubation 

period only. D- and 1-butaclamol, dopamine, apomorphine, and FLA-63 

were preparaed in a 0.1% ascorbic acid solution (Sigma) to prevent oxi

dation (5), while theophylline was prepared in Robinson's buffer. 

Following incubation:. the supernatant medium was collected and 

stored at -20°C until assayed for renin concentration by angiotensin I 

radio~unoassay (142). The incubated tissue was immediately frozen 

on dry-ice, homogenized in 1 ml of 8% trichloracetic acid:. transferred 

to tubes containing 5 drops of 0.1 N HCl, vortexed for 5 sec, and stored 

at -20°C until assayed for cyclic AMP content by a modification of the 



16 

protein-binding assay of Gilman (141). In some instances, the incubated 

tissue was collected for determination of its renin content. The tissue 

was purified by a series of dialysis steps and measured for renin concen

tration by radioimmunoassay of angiotensin I. 

A. Determination of Renin Concentration 

Renin concentration in incubated supernatant was estimated in

directly by measuring the amount of angiotensin I generated when aliquots 

of the renin-containing samples were allowed to react with dog renin sub

strate in the presence of an appropriate inhibitor of converting enzyme 

and angiotensinases. When these enzymes are inactivated, the accumula

tion of angiotensin I during a given generation period reflects renin 

activity. Blockade of converting enzyme and angiotensinase activity was 

achieved in this study by the use of a 1% solution of phenylmethylsul

fonylfluoride (PMSF; 142). 

To generate angiotensin I, the frozen samples were thawed in an 

ice bath at 4°C and vortexed for ten seconds. Aliquots of 0.025 m1 

frGm each sample were then transferred to tubes containing 0.1 m1 of 

saturated NaCl. Six-hour nephrectomized dog plasma containing renin 

substrate (angiotensinogen) and previously treated with PMSF (0.05 ml/ml 

plasma) was then added to each tube (0.4 ml/tube). The mixture was in

cubated for one hour at 37°C and diluted with one m1 of distilled, de

ionized water. The samples were vortexed for five sec, covered with 

aluminum foil, and placed in a boiling water bath for three min to pre

vent further angiotensin I generation. The samples were then allowed 

to cool to 25°C and stored at -20°C. The amount of angiotensin I gener-
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ated was measured by a modification of Angiotensin I ( 125I) Radioimmuno

assay (N~w England Nuclear) • Renin concentration was expressed in ng/mg/ 

hr -(ng of angiotensin I generated/ mg of tissue/ hour of generation) • 

B. Tissue Renin Determination 

Tissue collected for determination of renin content was homogen

ized in 1 m1 of 0.9% NaCl at 4°C and centrifuged for 15 min at 3500 g. 

The supernatant was subsequently dialyzed for 24 hours against an EDTA

acetic acid buffer (pH 3.3), followed by heating to 32oc for 1 hour to 

selectively denature endogenous renin substrate and angiotensinases, 

and dialyzed again for 24 hours against an EDTA-phosphate buffer (pH 

7.5) as described by Skinner (143). 

The purified tissue homogenates were then used to generate angio

tensin I as described previously and subsequently measured for renin con

centration by Angiotensin I (125I) Radioimmunoassay (New England Nucle

ar) • The values were expressed in ng of angiotensin I generated/ mg wet 

tissue/ hour of generation. 

C. Determination of Tissue Cyclic Adenosine 3',5'-Monophosphate (cAMP) 

Content 

The frozen tissue homogenates collected for cAMP determination 

were thawed in an ice bath at 4°C, and centrifuged at 4000 g for ten 

min at 4°C. The supernatant was transferred, while the protein pellet 

was discarded. Two m1 of water-saturated ether were added to each 

sample, vortexed for ten sec, and the ether phase aspirated and dis

carded. This extraction procedure was repeated three additional times. 
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The cAMP-containing water soluble phase was then decanted into vials 

previously placed on dry ice~ and the frozen samples were subsequently 

lyophyilized. The lyophilized material was then stored at -2ooc until 

assayed for cAMP content by a modification of the competitive protein 

binding assay of Gilman (141) • Tissue cAMP concentration was expressed 

in pmol/mg (pmol of cAMP/mg wet tissue). 

Calculations 

Statistical significance of the data was evaluated by Student's 

paired and unpaired t tests using a programmable desk top calculator 

(Hewlett-Packard) at Argonne National Laboratory (Argonne~ Illinois). 

A Linear Regression Analysis was performed on the control data (144) • 



CHAPTER IV 

RESULTS 

Resting renin release and tissue cyclic AMP content of untreated 

(control) renal cortical tissue from sodium deficient rats are shown in 

Fig. 1. Renin release increased linearly with time of incubation (r: 

0.62; p < 0.001). In contrast to renin, tissue cyclic AMP content val

ues were maximal at 20 min of incubation and decreased by 60 min to lev

els seen at 5-m.in incubation. 

The effect of 1o-3M dopamine on three parameters, renin release, 

tissue renin content, and tissue cyclic AMP at various incubation times, 

is depicted in Fig. 2. Renin release responses to dopamine administra

tion gradually increased over control by 5 and 20 min and were signifi

cantly greater by 60 min. In contrast, cyclic AMP content values in re

sponse to added dopamine appeared significantly greater than those of 

control samples as early as 5 min of incubation. Although mean tissue 

renin content of the dopamine-treated samples appeared higher than that 

of controls by about 60 nanograms at 60 min, this difference was not 

statistically significant. 

The effect of the phosphodiesterase inhibitor theophylline 

(10-3M) added alone or together with dopamine (1o-3M) on the same three 

parameters in relation to time of incubation, is demonstrated in Fig. 3. 

Theophylline appeared to increase the renin release responses to added 

dopamine at 20 and 60 min, while significantly potentiating the cyclic 

19 



20 

AMP responses to dopamine administration at the same time periods. Theo

phylline py itself significantly increased renin release by 60 min, not 

only in relation to controls but in regard to dopamine alone (p < 0.02). 

Cyclic AMP content changes in response to theophylline alone were signifi

cantly potentiated when compared to those exerted by dopamine alone at all 

times of incubation (p < 0.01, p < 0.02, p < 0.02 for 5,20, and 60 min, 

respectively), but were not different from those seen in response to 

theophylline plus dopamine treatment at corresponding.times. 

Mean tissue renin content at 60 min appeared increased by about 

25 nanograms in response to theophylline plus dopamine and by an additi

onal 85 nanograms in the presence of theophylline alone when compared 

to that observed in response to dopamine added alone, although these dif

ferences were not significant. 

Addition of the specific dopamine-receptor blocker d-butaclamol 

(1o-6M) to the cortical slice preparation increased the mean renin re

lease levels in relation to those seen with dopamine alone at 60 min, 

but not significantly (Fig. 4). Also, d-butaclamol administration did 

not further alter the significant stimulation of tissue cyclic AMP lev

els seen with dopamine alone at the same time period. By itself, d-buta

clamol had no effect on renin release or tissue cyclic AMP content. Mean 

tissue renin content in the presence of d-butaclamol added together with 

dopamine was increased by about 40 nanograms in relation to that seen in 

response to dopamine alone, but the difference was not significant. 

L-butaclamol at 1o-6M, added alone or with dopamine was inef

fective in altering the renin release and cyclic AMP levels seen with 
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dopamine alone (Fig. 5). A 60 nanogram increase in tissue renin content 

occurred .in response to dopamine plus 1-butaclamol treatment relative to 

control at 60 min, but this difference was again not significant. 

Figure 6 summarizes the results of this study utilizing theophyl

line and d-butaclamol, and those obtained in a parallel study with apomor

phine, a dopamine-receptor agonist. From this figure it is clear that in 

addition to the data reported in this section, apomorphine (1o-6M) preven

ted the stimulatory effect of 1o-3M dopamine on renin release and cyclic 

AMP content at 60 min incubation. The overall significance of these ob

servations will be discussed. 
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Figure 1. Renin release rate and tissue cyclic AMP content of unstim

ulated (control) renal cortical slices from sodium deficient rats 

at incubation times of 5, 20, and 60 min. The renin release data 

represent the mean control value + S.E. of 14-32 observations for 

each time period. Similarly, the cyclic AMP content data represent 

the mean control value + S.E. of 12-14 observations for each time 

period. The dopamine beta-hydroxylase inhibitor FLA-63 (10-4M) was 

added to all samples in this and subsequent experiments. 
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Figure 2. Effect of 1o-3M dopamine on renin release, tissue cyclic 

AMP content, and tissue renin content of renal cortical slices from 

sodium deficient rats. The data represent the mean renin release 

rate+ S.E. of 14-32 observations, and the mean tissue cyclic AMP 

content+ S.E. of 12-14 nontreated (control) and dopamine-treated 

samples at various incubation times. The data also show that mean 

tissue renin content+ S.E. of 23 observations in control and dop

amine-treated samples at 60 min incubation. 
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Figure 3. Changes in renin release, tissue cyclic AMP content, and 

tissue renin content, in response to 1o-3M dopamine and 1o-3M theo

phylline, added together or separately to renal cortical slices 

from sodium deficient rats. The data represent the mean renin re

lease change + S.E. of 7-13 observations, the mean tissue cyclic 

AMP content change± S.E. of 9-11 observations for each treatment 

at 3 incubation times. The mean renin release rates for nontreated 

(control) tissue at 5, 20, and 60 min incubation were 2.55 + .276 

ng/mg wet tissue/hr, 3.86 + .801 ng/mg/hr, and 10.28 + 1.01 respec

tively. The corresponding mean control cyclic AMP content values 

were, respectively, .397 + .032 pmol/mg, .616 + .076 pmol/mg, and 

.437 + .046 pmol/mg. The mean control tissue renin content at 60 

min was 1419 + 103 ng/mg/hr. 
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Figure 4. Changes in renin release, cyclic AMP content, and tissue 

renin content in response to 10-3M dopamine and 10-6 d-butaclamol, 

added together or separately to renal cortical slices from sodium 

deficient rats. The data represent the mean renin release change 

+ S.E. of 2-18 observations, the mean tissue cyclic AMP content 

change + S.E. of 2-12 observations, and the mean tissue renin con

tent change+ S.E. of 13 observations for each treatment at various 

incubation times. The mean control (nontreated) values for renin 

release rate, tissue cyclic AMP content, and tissue renin content, 

for each time period are the same as those in Figure 3. 
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Figure 5. Changes in renin release~ tissue cyclic AMP content, and 

tissue renin content in response to 1o-3M dopamine and 1o-6M 1-

butaclamol, added alone or together to renal cortical slices from 

sodium deficient rats. The data represent the mean renin release 

change+ S.E. of 4-14 observations, the mean tissue cyclic AMP con

tent change+ S.E. of 2-11 observations, and the mean tissue renin 

content change + S.E. of 10 observations for each treatment at vari

ous incubation times. The mean control (untreated) values for ren

in release rate, tissue cyclic AMP content, and tissue renin content, 

for each time-period are the same as those described in Figure 3. 
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Figure 6. Changes in renin release, tissue cyclic AMP content, and 

tissue renin content in response to dopamine (1o-3M) added alone 

or together with 1o-3M theophylline, 1o-6M d-butaclamol, or 1o-6M 

apomorphine, to renal cortical slices from sodium deficient rats. 

The data represent the mean renin release change± S.E. of 2-18 

observations, the mean tissue cyclic AMP content change± S.E. of 

2-12 observations, and the mean tissue renin content change+ S.E. 

of 9-24 observations for each treatment at various incubation times. 

The mean control (untreated) renin release rate, tissue cyclic AMP 

content, and tissue renin content at various times of incubation, 

are the same as those indicated in Figure 3. The corresponding 

' mean control values at 3 incubation times, for treatments involving 

dopamine alone or together with apomorphine were, respectively, 

2.56 + 0.48, 4.69 + 1.51, and 10.60 + 1.39 ng/mg/hr for renin re

lease; 0.39 + 0.03, 0.53 + 0.09, and 0.45 + 0.01 pmol/mg for cyclic 

AMP content; and 489 + 399 ng/mg/hr for tissue renin content at 60 

min. 
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CHAPTER V 

DISCUSSION 

Renal cortical slice preparations have been successfully utilized 

in numerous studies to evaluate the direct effect of catecholamines and 

other agents on renin release (5-10, 14), or to examine renin secretory 

rates in unstimulated cortical tissue (6, 90, 145, 146). The results 

obtained in this study support previous observations in studies utilizing 

rat kidney slice systems (6, 90, 145, 146), that renin release in resting 

renal tissue is directly proportional to time of incubation which is to 

be expected of metabolically active, oxygen-consuming (147) endocrine 

tissue. Furthermore, these data provide added evidence for the postu-

lation that resting renin secretory rates in renal -slices from sodium 

deficient rats are comparably greater than those seen in sliced tissue 

obtained from rats maintained on sodium replete diets (6, 90, 145), 

which may reflect an increased responsiveness of the juxtaglomerular 

cells in the sodium deficient state. 

Studies in this laboratory (9,10) have recently shown that dop-

amine at 1o-3M can directly stimulate renin release through a beta-ad-

renergic receptor mechanism apparently mediated by tissue cyclic AMP 

changes, which confirm previous observations by Henry ( 1) and Quesada 

(2). The data generated in the present study offer further support for 

the concept of a cyclic AMP-mediated beta-receptor regulation of renin 

release by dopamine, by demonstrating that cyclic AMP content of the 

34 
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incubated tissue in response to dopamine administration was significantly 

increased over that of controls as early as 5 min of incubation, whereas 

renin release appeared significantly stimulated only after 60 min of in

cubation. These observations are consistent with the model proposed by 

Sutherland (148) regarding mediation of stimulus-hormonal responses by 

adenylate cyclase/cyclic AMP, and they agree with the postulated beta

adrenergic receptor mechanism of action by which other catecholamines 

stimulate renin secretion (3,5,7-10). Furthermore, the results of this 

study utilizing the phosphodiesterase inhibitor theophylline, provide 

added evidence for this concept by showing that both tissue cyclic AMP 

and renin secretory rates were potentiated in the presence of this agent, 

as suggested in previous studies with other catecholamines (4,81). Al

though the data are not conclusive in this regard, the apparent increase 

in tissue renin content in response to dopamine and theophylline admini

stration in this study, may be suggestive of new synthesis of renin in 

addition to increased release as suggested by Katz in studies with dog 

renal cortical slices (149). Effective binding of dopamine to receptors 

other than dopamine-specific ones is not unusual, since Goldberg (150) 

has demonstrated that this amine has the biochemical flexibility to bind to 

beta- and perhaps also to alpha-adrenergic receptors. Thus, it appears 

that dopamine stimulates renin release by a beta-adrenergic receptor 

mechanism, a view supported by other investigators (1,2,10) who have 

shown that the stimulatory effect exerted by dopamine on renin release 

can be suppressed by addition of the beta-receptor blocker, propranolol. 



36 

Recently, Quesada et al. (2) have produced evidence showing that 

the dopamine-receptor blocking agent, haloperidol, potentiates the renin 

release responses to dopamine administration. The results of the present 

study utilizing the dopamine-receptor blocker, d-butaclamol, agree with 

their observations and further suggest that dopamine-specific receptors 

may have no effect or may participate in an inhibitory fashion in the 

regulation of renin release. Whether or not tissue cyclic AMP is also 

involved in mediating this apparent inhibitory control of renin secre

tion by dopamine is not clear, since d-butaclamol administration did 

not further alter the content of the nucleotide in relation to that 

seen with dopamine alone. However, data from another study using the 

dopamine-receptor agonist agent, apomorphine, appear to indicate that 

decreases in tissue cyclic AMP content may mediate the action of the 

inhibitory component of dopamine, in view of the fact that specific 

stimulation o·f dopamine receptors by this agent prevented the increase 

in renin release and tissue cyclic AMP content observed with dopamine 

alone. Thus, dopamine may stimulate renin release via a beta-receptor 

mechanism involving cyclic AMP content changes and it may inhibit it by 

its interaction with a dopamine-specific receptor. 

Although the possibility of a dual regulatory control exerted 

by dopamine on renin secretion is attractive and a similar concept has 

been postulated in regard to the regulation of renin release by norepine

phrine (6,8,101,102), further work is needed to determine if the apparent 

inhibition mediated by a dopamine receptor is real, since the results seen 

in this study with the inactive isomer, 1-butaclamol (151) are contradic-
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tory and do not fit the proposed model. Therefore, additional doses of 

apomorphine and d,- and 1-butaclamol need to be evaluated and other known 

dopamine-receptor agonist and antagonist agents must be examined, before 

this question can be effectively answered. 

In summary, the data reported in this study suggest that, 1) 

dopamine is capable of directly stimulating the renal juxtaglomerular 

cells to influence renin release via a beta-adrenerg~c receptor mechan

ism involving tissue cyclic AMP changes; 2) new synthesis of renin, in 

addition to stimulation of its release, may result from the interaction 

of dopamine with this postulated beta-adrenergic receptor; and 3) dop

amine may also exert a simultaneous inhibitory regulation of renin re

lease via a dopaminergic-receptor mechanism, but further investigation 

is needed before this possibility can be properly evaluated. 
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