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INTRODUCTION 

Amygdalin (D-mandelonitrile-/-D-glucosido-6-f-D­

glucoside), a cyanogenic glucoside, is broken down pri-

marily by an enzymatic mechanism. Ernst Krebs Jr. (1970) 

originally proposed a hypothesis explaining this mechanism. 

According to Krebs the hydrolysis of amygdalin in 

mammals proceeds as follows. Amygdalin is hydrolyzed by 

the hydrolytic lysosomal enzyme, beta-glucosidase (E. c. 3. 

2.1.2l,f-D-glucoside glucohydrolase) to prunasin and glu­

cose; prunasin to 1-mandelonitrile and glucose; 1-mandelo-

nitrile to benzaldehyde and hydrocyanic acid. Rhodanese 

(E.C. 2.8.1.1), properly known as thiosulfate: cyanide 

sulfur transferase, is a mitochondrial enzyme which cata-

lyzes the conversion of HCN to non-toxic thiocyanate in 

the following reaction (Lang, 1933): 

HCN + Rhodanese> HSCN + 

Hydrogen + 
Cyanide 

Sodium 
Thiosulfate 

Thiocyanate + Sodium 
Thiosulfite 

The end product, thiocyanate, is excreted in the urine 

(De Brabander and Verbeke, 1977; Tinker and Michenfelder, 

1980). More recent investigations, however, (Flora et al., 

1978; Ames et al., 1978) completely discount the idea that --
mice and humans metabolize amygdalin into urinary thio-

cyanate. It was also demonstrated that thiocyanate in the 
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urine of rats originated from amygdalin metabolized by gas­

trointestinal bacteria (Car~er et al., 1980). 

Rhodanese is an enzyme confined to the mitochondria 

in mammals (Schubert and Brill, 1968). Current evidence 

indicates that rhodanese is also present in certain bac­

terial strains (Vandenbergh et al., 1979). Sulfur is 

transferred by rhodanese from thiosulfate to cyanide to 

yield thiocyanate, the neutral, non-toxic substance ex­

creted in the urine (Lang, 1933). Since the initial 

studies of rhodanese, due to the earlier discovery of 

cyanide detoxification (Lang, 1933), it has been found 

that rhodanese exists in all murine tissues, the highest 

concentration in the liver (Westley, 1973; Manner et al., 

1978; Ploegman et al., 1979; Dudek et al., 1980), the next 

highest in the kidney (Rosenthal, 1948; Schievelbein et 

al., 1969; Ploegman et al., 1979), the least in muscle 

and brain (Manner et al., 1978). 

Thus, the existence, distribution and mechanism of 

action has been established for both enzymes, beta-glu­

cosidase and rhodanese. Thiocyanate has not been detected 

in the urine of mice due to the activity of these enzymes 

(Greenberg, 1980). In order to test the Krebs hypothesis, 

the presence of thiocyanate in the urine of mice was in­

vestigated, as various selected doses of injected amygdalin 

increased. The correlation between the amount of amygdalin 

injected and the amount of thiocyanate measured in a 24 



hour urine sample was determined. This paper presents the 

results of this investigation and a discussion of how they 

relate to the Krebs hypothesis. 

3 



LITERATURE REVIEW 

A. Hydrolysis of Amygdalin 

Amygdalin is a naturally occurring cyanoglucoside 

which can be obtained from various plant sources (cassava, 

millet, lima beans, lettuce) and most notably, the pits of 

edible fruits and berries (apricots, peaches, plums) (Vier­

hover and Mack, 1935; Greenberg, 1975). The empirical for­

mula of amygdalin is c20 H27No11 . It has a molecular weight 

of 457.42 (Merck, 1968). Amygdalin was first isolated by 

Robiquet and Boutron in 1830 and its chemical properties 

were first described by Liebig and Wohler (1837). The syn­

thesis of amygdalin was first reported in 1924 by Van Meter 

and Gennaro. They found the glycone portion of amygdalin 

consisted of two 2-D-glucose molecules (beta l-6 linkage) 

attached to the aglycone, 1-mandelonitrile. In 1935, 

Vierhover and Mack, discovered that on hydrolysis, amygdal­

in yielded one mole each of benzaldehyde and HCN and two 

moles of glucose. 

More recent researchers have speculated that in mam­

mals the beta-glucosidic linkage in amygdalin is hydrolyzed 

specifically by the enzyme beta-glucosidase (Conn, 1973; 

Dorr et al., 1978) to yield glucose and mandelonitrile. 

This beta-glucosidase is a lysosomal enzyme with an opti­

mum pH of 5.0 (Beck and Tappel, 1968). It is naturally 

4 
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occurring in many nuts (almonds, etc.), stone fruit kernels 

and vegetables (green peppers, lettuce, mushrooms, etc.) 

(Conn, 1973). Beta-glucosidase is the enzyme that is nec­

essary to initiate the enzymatic hydrolysis of amygdalin 

(Weidenhagen, 1932; Haisman and Knight, 1967; Krebs, 1970; 

Dorr et al., 1978; Freeze et al., 1980). 

One major issue, which at this time is not resolved 

is to what extent the beta-glucosidase cleaves the amygdal­

in molecule in-vivo or in-vitro. Some investigators claim 

that the enzyme cleaves the terminal glucose molecule, and 

continues to cleave the molecule until the liberation of 

HCN, benzaldehyde, and the other glucose molecule (Weiden­

hagen, 1932). Later investigators (Ames et al., 1978; 

Flora et al., 1978) have cast doubt on this theory since 

the type of bonds involved in the hydrolysis of amygdalin 

are not all beta-D-glucoside bonds, the only type acted 

upon by beta-glucosidase. 

Another hypothesis states that three different en­

zymes catalyze the successive stages of the total hydrol­

ysis of amygdalin in-vitro. In this theory originally dem­

onstrated by Haisman and Knight (1967), the terminal glu­

cose bond (beta 1-6 bond) of the gentiobiose is hydrolyzed 

by beta-glucosidase to yield prunasin and glucose. Pru­

nasin is then hydrolyzed by prunasin lyase to yield man­

delonitrile and glucose. Finally, hydroxynitrile lyase 

hydrolyzes mandelonitrile to HCN and benzaldehyde. 
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Another explanation of amygdalin cleavage states that 

beta-glucosidase cleaves the terminal glucose bond, result­

ing in prunasin and glucose. The prunasin is degraded by 

beta-glucosidase yielding mandelonitrile and glucose. It 

is claimed that mandelonitrile is an unstable compound and 

dissociates instantaneously into cyanide and benzaldehyde. 

This view is supported by current investigators (Dorr et 

al., 1978; Greenberg, 1980). 

The hypothesis regarding the breakdown of amygdalin 

which is of particular concern in this paper was postulated 

by Krebs (1970). According to the Krebs hypothesis, when 

amygdalin enters the body, much of it is excreted unchanged. 

However, an undetermined fraction of it is hydrolyzed by 

beta-glucosidase to yield benzaldehyde, two glucose mole­

cules, and HCN. When the HCN is released, rhodanese is 

thought to act upon it to produce thiocyanate. Krebs has 

hypothesized that activity of these enzymes in non-neoplas­

tic and neoplastic tissues releases cyanide from the amyg­

dalin molecule, which can destroy cancer cells. The pres­

ent study was undertaken to test that aspect of the Krebs 

hypothesis concerned with the detoxification of cyanide to 

thiocyanate, due to the proposed clinical applications of 

the hypothesis. No attempt was made to ascertain whether 

the thiocyanate appeared due to a consequence of mammalian 

versus microbial metabolism of amygdalin. 



B. The Detoxification of Cyanide 

The toxicity of the cyanide liberated from the amyg-

dalin molecule is essentially due to its ability to form 

complexes with metal ions (Warburg, 1911). In the body, 

this is particularly true with those enzymes containing 

trivalent iron, such as cytochrome oxidase. This results 

in the instantaneous blockage of the cellular respiration 

pathway, of which cytochrome oxidase is ~n important en­

zyme (Warburg, 1924; Wolfsie and Shaffer, 1959). The en-

7 

zyme that plays a crucial role in cyanide detoxification is 

rhodanese, the second enzyme central to the Krebs hypothe-

sis. This enzyme is found in the mitochondria of the cells 

of warm-blooded an~mals (Dudek, 1980). The red blood cell 

is the only known exception in that practically no rhodan­

ese is present (Schubert and Brill, 1968). In addition, a 

survey of 411 bacterial strains revealed the presence of 

rhodanese in all tested strains of Escherichia coli, Pseudo-

monas aeruginosa, Acinetobacter, Bordetella, Shigella, and 

Citrobacter. No activity was present in Salmonella, Kleb-

siella, Serratia, or Proteus species (Vandenbergh et al., 

1979). Lang (1933) demonstrated that rhodanese activity 

has an optimum pH of 8. 

Rhodanese transfers sulfur from thiosulfate (a sulfur 

rich compound) to cyanide, according to the equation pro­

posed by Lang in 1933: 

HCN + Na
2
s

2
o

3 
Rhodanese HSCN + Na

2
so

3 
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Sulfur availability and permeability limited the rate of 

this reaction (Himwich and Saunders, 1948). Also, the 

cleavage of thiosulfate-sulfur-sulfur bonds limit the over­

all rate of the reaction (Mintel and Westley, 1966). In 

1952, Wood and Cooley investigated the possibility of other 

sulfur-containing compounds serving as sulfur donors in 

addition to thiosulfate. They demonstrated the production 

of labelled thiocyanate from administered cyanide and 35s­

cystine. Sorbo (1953) found that thiosulfonates that con­

tain a free thiol group serve as a substrate for rhodanese. 

Beta-mercaptopyruvic acid was shown by Wood and Fiedler 

(1953) to convert cyanide to thiocyanate as rapidly as thio-

sulphate. In 1973, Westley determined that polysulfides 

and persulfides can also serve as sulfur-donor substrates. 

The rhodanese reaction in rats represents a detoxifi­

cation reaction which is accompanied by a 200-fold decrease 

of toxicity (Williams, 1963). Furthermore, in 1953, Gold­

stein and Rieders demonstrated the irreversibility of this 

reaction. This finding was later confirmed by Leininger 

and Westley (1968). In 1971, Chung and Wood found that 

formation of sulfate and cyanide from thiocyanate was due 

to the peroxidase activity of hemoglobin. A very minimal 

amount of cyanide was produced by this mechanism, which 

rapidly converted back to thiocyanate. Spiegel and Kucera 

(1977) speculate that about one percent of generated 

thiocyanate can be oxidized back to cyanide by the side-



reaction catalyzed by the peroxidase activity of hemoglo­

bin. 

9 

The conversion of cyanide to thiocyanate by rhodanese 

was determined to be the major means of cyanide detoxifica­

tion in the body (Boxer and Rickards, 1952; Ansell and Lew­

is, 1970; Smith and Kruszyna, 1974). It was found that ap­

proximately 80 percent of cyanide injected intraperitoneal­

ly in mice was recovered in the urine as thiocyanate (Oke, 

1969). Smith and Foulkes (1966) concluded that the rhodan­

ese/thiocyanate excretory pathway was the primary factor in 

detoxification of cyanide in rats injected subcutaneously 

with cyanide. Once again, 80 percent of the cyanide dose 

was excreted as thiocyanate. 

Other methods of cyanide detoxification also exist. 

Cyanide can combine with cystine to form 2-imino-thiazol­

idine-4-carboxylic acid. About 15 percent of cyanide en­

tering the body is excreted in the urine as this acid (Wood 

and Cooley, 1956). Small amounts of cyanide may also com­

bine with the hydroxy-form of vitamin B12 to form cyanoco­

balamin (Wokes and Picard, 1955; Dastur et al., 1972). 

C. Detection of Thiocyanate in Biological Fluids 

Thiocyanate present in body fluids is usually de­

rived from preformed thiocyanate in food (milk and veget­

ables) and from detoxification of cyanide (Stoa, 1957; 

Matthews and Wilson, 1970; Newman, 1975). The thiocyanate 

ion has been demonstrated to occur normally in all extra-



cellular fluids and in higher concentrations in gastric 

juice, saliva and urine (Boxer and Rickards, 1952). 

10 

The influence of dietary ingestion of thiocyanate in 

urine of rats was investigated by Funderburk and Middles­

worth (1968). They removed exogenous thiocyanate in the 

diet by fasting the animals. Urinary thiocyanate excretion 

decreased by approximately 50 percent for animals on the 

fasting diet. 

S. Lang (1895) demonstrated that some of the thio­

cyanate present in body fluids is derived from cyanide de­

toxification. He was the first to show that after an in­

jection of cyanide into rabbits, an increased amount of 

thiocyanate was excreted into the urine. Similar findings 

were reported by Heymans and Mesoin (1896) . These inves­

tigators speculated that the minute amounts of cyanide 

from protein metabolism and from nitriles ordinarily pre­

sent in food, as well as the conversion of the cyanide to 

thiocyanate, accounted for the thiocyanate normally ex­

creted from the body. Mukerji and Smith (1943) reported 

that rabbits excreted almost all injected cyanide as thio­

cyanate in 24 hours in the urine. 

Hartmann and Wagner (1949) determined that urinary 

thiocyanate was found to be increased by the ingestion of 

cyanide. Mehta and McGinity (1977) determined that injec­

tions of 5 mg/kg KCN in rats did not indicate any signifi­

cant difference in thiocyanate excretion. However, doubling 
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the dose resulted in significantly higher levels of urinary 

excretion of thiocyanate. Also, DeBrabander and Verbeke 

(1977) administered Ks 14cN to rats and collected 24 hour 

urine samples. The excretion of thiocyanate was signifi­

cantly higher than that of the controls. 

Currently, research involving the detection of thio­

cyanate in biological fluids is important for clinical, 

diagnostic, and therapeutic purpose. For example, thio­

cyanate is one compound which has been found to be signi­

ficantly higher in the urine, and blood serum of smokers 

than of non-smokers (Matthews et al., 1965; Wilson, 1965). 

More specifically, the smoke zrom a cigarette may contain 

up to 0.5 mg cyanide (Boyland and Walker, 1974) accounting 

for the significantly higher levels of urinary thiocyanate 

excretion (Djuric et al., 1962). Pettigrew and Fell (1972) 

determined a colorimetric test for thiocyanate in biolo­

gical fluids for the clinical investigation of toxic 

toboacco ambylopia. They found that treatment involves 

the promotion of the conversion of cyanide to thiocyanate. 

Vogt et al. {1979) established a success rate for a smoking 

cessation program by determining serum thiocyanate levels. 

Persons who failed to quit had higher thiocyanate levels 

than those who quit successfully. 

Vanderlaan and Vanderlaan (1947) found that thio-

cyanate behaves in many respects like iodide. It specifi-

cally inhibits the trapping mechanism for iodide (Stanbury 



and Hedge, 1950; Anderson, 1951; Jong and de Wied, 1966). 

Pyska (1977) found that chronic administration of thio-

cyanate in drinking water, resulted in marked inhibition 

of mammary gland growth in rats. Nagasawa et al. (1980) 

studied the effects of thiocyanate on mammary development. 

They reported that chronic treatment with thiocyanate re-

sulted in the inhibition of mammary gland development in 

12 

mice. This was thought to be due to decreased secretion of 

thyroid hormones (Vonderhaar, 1977). 

A related compound of amygdalin is linamarin, also a 

cyanogenic glucoside. Linamarin taken orally has been 

demonstrated to be metabolized. Osuntokun (1970) and Van 

Der Velden et al. (1973) demonstrated significantly elevated 

plasma thiocyanate levels in rats that ingested chronic 

levels of linamarin. Barret et al. (1978) added pure lin-

amarin to the diet of rats. They found that tr1e amount of 

thiocyanate excreted in the urine by linamarin-administered 

animals was higher than that excreted by controls. Bour-

doux et al. (1978) determined a correlation between lin-

amarin ingestion and urinary thiocyanate excretion in 

humans. They found that increased linamarin consumption 

elevated urinary thiocyanate excretion. 

D. Beta-glucosidase and Rhodanese Activity in Bacteria 

Veibel, in 1950, stated that beta-glucosidase (the 

enzyme necessary to initiate the enzymatic hydrolysis of 

amygdalin) was widespread in plants, fungi, and, referring 
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to Hoffman's work (1934), stated that it also occurred in 

sulfatase bacteria. Hildebrand and Schroth (1964) tested 

fifty-eight isolates from 24 species in five genera (Er-

winia, Pseudomonas, Agrobacterium, Corynebacterium, and 

Xanthomonas for beta-glucosidase activity. The gall-non-

forming phytopathogenic pseudomonads and the soft rot 

group showed the highest beta-glucosidase activity, whereas 

the gall-forming and soil-inhabiting pseudomonads showed 

no activity. The other groups of organisms showed moderate 

activity. 

Carter et al. (1980) compared the toxicity and metab-

olism of amygdalin after administration to germfree and 

conventional rats. They found that when conventional rats 

were given a single oral dose of amygdalin (600 mg/kg), 

they became increasingly lethargic and experienced res-

piratory difficulties and convulsions. Death usually 

occurred in 2-5 hours. On the other hand, germfree rats 

did not exhibit any visible signs of toxicity, nor died af-

ter receiving the same amygdalin dose. Rats showing signs 

of toxicity had high blood cyanide levels (2.6 to 4.5 micro-

grams/ml), while germfree rats had low or normal blood 

cyanide levels (0.4 micrograms/ml or below). The cyanide 

concentrations in germfree rats were indistinguishable 

from those of control animals. Also, amygdalin was re-

covered in the feces of germfree but not conventional rats. 

Blood thiocyanate concentrations remained normal in 
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germfree rats dosed with amygdalin. However, in convention-

al rats, the concentration of thiocyanate was elevated. 

This correlated well with the level of blood cyanide. 

The absence of significant toxicity or released cyan-

ide when amygdalin was administered to germfree rats in 

doses which were lethal to conventional rats suggested that 

cyanide released is dependent on the presence of the gas-

trointestinal flora. Carter et al. (1980) stated that it 

is most likely that the flora is obligatory for cleavage 

of the beta-glucosidic bonds which release the aglycone, 

mandelonitrile. In addition, they stated that beta-glu-

cosidase activity is present in cecal contents of the con-

ventional rat as well as in several gastrointestinal bacte-

rial strains. 

Following parenteral administration in man, amygdal-

in was found to be excreted primarily as the unchanged 

molecule (Ames et al., 1978). Although Greenberg (1975) 

proposed that amygdalin would be excreted primarily intact 

after parenteral administration, the study conducted by 

Ames et al. (1978) was the first evidence to demonstrate 

urinary recoveries approaching 100 percent. The test used 

for amygdalin detection by Ames et al. (1978) was developed 

by Flora et al. (1978). In mouse urine studies, 69.3 per-

cent of the intravenously administered dose was recovered 

in urine as amygdalin equivalents as opposed to 19.5 per-

cent of the oral dose detected over 96 hours. In either 
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case, 95.8 percent of the total amount was recovered in 24 

hours. This route dependence is believed to be due to cy­

anide released from amygdalin by normal intestinal flora 

(Reitnauer, 1972). Thus, the study conducted by Carter et 

al. (1980) confirmed that routes of administration that 

provide the most direct contact of amygdalin with the gas­

trointestinal flora appear to maximize cyanide release and 

toxicity. 

Rhodanese, the enzyme necessary to detoxify cyanide 

to thiocyanate, was found in a variety of bacteria includ­

ing ~- coli and ~- aeruginosa. The presence and activity 

of this enzyme suggested that it was a stable, heritable 

property not easily lost or transferred from one genus to 

another. A proposed function associated with the presence 

of rhodanese in bacteria is cyanide detoxification (Vanden­

bergh et al., 1979). 

Because of the significance of the findings of in­

vestigators regarding the hydrolysis of amygdalin and post­

ulated mechanisms of action of the released HCN, an invest­

igation of amygdalin activity is indicated with respect to 

the detection of thiocyanate, a non-toxic end-product of 

cyanide metabolism. It should be mentioned that this in­

vestigation was designed to demonstrate a correlation be­

tween various increasing doses of amygdalin and amount of 

thiocyanate in urine. The experimental design does not 

allow the identification of the origin of the end-product 



(thiocyanate) . Thiocyanate could have originated in the 

animal or out of the animal. 
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MATERIALS AND METHODS 

600 five to six week old male and female mice, strain 

JAX C57 BL/KsJ (Jackson Laboratory, Bar Harbor, Maine) were 

used. After having been weaned, females were caged sepa­

rately from the male animals. This separation was the case 

throughout the remainder of the experiment. 

Environmental parameters were strictly regulated in 

the animal room. Humidity varied between 30%-55%, the tem­

perature was 21°C, and the photoperiod was twelve hours of 

light and 12 hours of darkness. Soft background music was 

played continuously to neutralize ambient noise. All ani­

mals received Purina Mouse Chow and tap water ad libitum. 

Thiocyanate was assayed by a modification of the Bo 

H. Sorbo procedure (1953). All chemicals were purchased 

from Sigma Chemical Co., St. Louis, Mo. Also, distilled, 

deionized water was used for preparation of all solutions. 

A standard curve was prepared for varying concen­

trations of 0.02 to 0.2 mg/ml. This curve was used to find 

the relative concentrations of thiocyanate in control and 

experimental data. 

All animals were first weighed, then injected at 

10:30 A.M. Also, all control and experimental animals were 

injected intramuscularly with 22 gauge, 1-~" needles into 

the right rear thigh. The intramuscular route of injection 

17 



18 

was selected since other types of parenteral injections were 

more difficult in small animals. Also previous research in 

our laboratory used this form of administration. A total of 

120 control animals were used. 60 control males and 60 

control females were injected with Locke's solution. A 

total of 480 experimental animals received injections of 99 

percent pure amygdalin. The doses were 500, 1000, 1500, 

2000, 3500, and 5000 mg per kilogram body weight. 40 males 

and 40 females were injected with each dose. These doses 

were selected because it was found by Manner et al. (1977) 

that doses up to 2500 mg/kg/day, when injected intramus­

cularly, did not cause any fatalities for a period of 15 

days. Also, Greenberg (1980) stated that huge doses were 

virtually non-toxic if administered parenterally. After the 

injections, five animals of the same sex were placed into 

one metabolic cage for 24 hours. Thus, the mouse urine was 

collected from five animals into one collecting container 

per cage per 24 hour period. Volumes were recorded but not 

reported in the results. No preservatives or freezing tech­

niques were used to minimize microbial activity. 

The pH of the urine samples were recorded. They av­

eraged between 5.7 to 6.9. From each collecting container 

per metabolic cage, one ml of urine was collected and then 

diluted with 19 ml distilled, deionized water. Ten ml of 

this mixture was pipetted into a tube marked blank. The re­

maining ten ml was pipetted into a tube marked experimental. 
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A volume of 0.6 ml 20% lead acetate solution was added to 

each tube. All tubes were centrifuged at 20,200 x g in the 

Sorvall Superspeed RC2-B-refrigerated centrifuge for ten 

minutes and supernatants were decanted into new tuses. The 

assumption was made that all volumes were identical. Two 

ml of 37% formaldehyde was added to each tube. Five ml 

ferric nitrate reagent were added to the experimental tube. 

Five ml of distilled, deionized water were added to the 

blank tube. Presumably this procedure significantly al-

tered results from values which could be obtained if ferric 

nitrate had been added to the blank. After mixing, all 

tubes were left to stand for 15 minutes, then centrifuged 

again for ten minutes at 20,200 x g. All solutions were 

transferred to corresponding cuvettes and read at 460 mil-

limicrons in the Bausch and Lomb spectrophotometer. 

The iron-thiocyanate complex which formed displayed 

a red color, which was stable for at least one hour. This 

test was selected because it is a relatively specific 

colorimetric method for assay of thiocyanate. The reaction 

is: 

F +3 
e + SCN FeNCS+ 2 

(deep red color) 

There may be some interference from other urinary compounds 

such as cystine, acetoacetate, salicylate and sulfosalicylic 

acid. Nevertheless, this method has been successfully 

applied in the determination of higher concent~ations of 
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thiocyanate in urine (Sorbo, 1978; Shih, 1979). 

The data collected from this study was·analyzed for 

statistical significance using the one-tailed Student's 

t-test. 



EXPERIMENTAL DATA 

All data represent 24 hour samples. The animals were 

injected once, then sacrificed, eliminating the possibility 

of cumulative effects. 

Figure I represents mg thiocyanate in one ml of urine 

in relation to injected doses of amygdalin for both male and 

female mice. Standard deviations are plotted for all actual 

mean values obtained. Linear regression was performed on 

the data to determine the best-fit line. On the graph, a 

dotted best-fit line is plotted representing the theo-

retical mean values for female animals. A solid best-fit 

line is plotted to represent the theoretical mean values 

for the male animals. 

There was a correlation between the amount of thio-

cyanate detected and amount of injected amygdalin for fe-

male mice. As the dose of amygdalin increased from 500 

to 5000 mg/kg, there also was a corresponding increase of 

thiocyanate. The correlation coefficient between the 

actual means and theoretical means was 0.969, showing a 

very close linear relationship. The data demonstrated ~ 

high, positive correlation. 

There was also a correlation between the amount 

thiocyanate detected and amount of injected amygdalin for 
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male mice. As the dose of amygdalin increased from 500 to 

5000 mg/kg there was also a corresponding increase of 

thiocyanate. The correlation coefficient between the actual 

mean values and the theoretical mean values is 0.995, 

demonstrating a high, positive linear correlation. 

It should be noted that the amount of thiocyanate 

detected for females was consistently less than for males 

for all injected doses. The difference proved to be 

statistically significant. A one-tailed Students t-test 

was performed between male and female data. It was 

determined that there was a significant difference at the 

0.001 level between the two. 
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FIGURE I 

EXCREI'ED THIOCYANATE OF FEMALE AND 

MALE MICE VS. INJECTED AMYGDALIN OOSFS 
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DISCUSSION 

The experimental results showed that a direct linear 

correlation existed between the amount of amygdalin injected 

and the amount of thiocyanate detected in the urine. The 

results correlate well with those of researchers who ad­

ministered cyanide and detected elevated thiocyanate levels 

in biological fluids (S. Lang, 1895; Heyman and Mesoin, 

1896; Hartman and Wagner, 1949; Mehta and McGinity, 1977) 

and those who administered the cyanogenic glucoside, lin­

amarin, and demonstrated elevated thiocyanate levels (Barret 

et al., 1978; Bourdoux et al., 1978). 

From Figure I, it was noted that the amount of thio­

cyanate detected for female mice was consistently less than 

that for male mice at all dose levels. In 1944, Vassel et 

al. found that female dogs excreted 2-15 mg thiosulfate in 

24 hours, whereas the males excreted 50-125 mg. They pro­

posed that the intestinal tract of female dogs differed in 

an unknown respect to make microbic thiosulfate formation 

more difficult. If this difference in thiosulfate levels 

applied to mice, female mice may have manufactured less 

thiosulfate than male mice. This could account for the 

statistically different production of thiocyanate found in 

the present investigation between urine of male and female 
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animals. On the other hand, less thiosulfate excretion 

from females may decrease thiosulfate availability for 

microbes in the urine collection containor to convert cya­

nide to thiocyanate. Consequently there would be less thio­

cyanate detected for female animals. Also, males have 

greater body mass than females, the statistical difference 

may be due to the volume of fluid output specific for each 

sex. 

Ballantyne et al. (1972) administered cyanide intramus­

cularly in rabbits. They discovered a significantly lower 

LD 50 for HCN in female rabbits. This is possible if female 

rabbits, like female dogs, manufactured less thiosulfate 

than male animals. In relation to this study, once again, 

less thiosulfate excretion from female mice may decrease its 

availability for bacteria, reflecting less thiocyanate. 

Stoa (1957) showed some variation in thiocyanate level 

in blood during the human menstrual cycle. He proposed that 

the slightly higher elevated levels may be related to the 

state of hydration. The state of hydration during the men­

strual cycle may involve estrogenic effects on electrolyte 

balance. Estrogens cause water retention by the kidney 

tubules (Guyton, 1971). If amygdalin is metabolized and if 

thiocyanate is produced by the animal, it is proposed that 

due to the water retention, there is an increase in extra­

cellular space. Consequently more thiocyanate is retained 

in the body, less excreted. 



26 

At this point it is necessary to present the strong 

possibility of toxicity occurrence in this investigation. 

The clinical dose of amygdalin is about 680 mg/kg (Ames 

et al., 1978). The doses used in this investigation were 

up to eight times this amount. Toxicity decreases urine 

output, giving the illusion of increased thiocyanate ex-

cretion when actually an increased concentration effect may 

have been present (West and Todd, 1962). Hill et al. (1976) 

were other investigators who administered doses up to 

5000 mg/kg of amygdalin to mice. Injections were intra-

peritoneal and performed once daily for four days. They 

found that mortality was dose related. At 5000 mg/kg, the 

overall mortality was 20 percent. At 4000 mg/kg it was 15 

percent and for 2000 mg/kg it was five percent. No deaths 

occurred at doses below 2000 mg/kg. It is possible that the 

deaths at the highest doses were related in part to injected 

volumes and osmotic balance. Although Hill et al. (1976) 

found some mortalities at the higher doses, it was still de-

cided to inject elevated doses in this study to investigate 

the effect of these doses on urine thiocyanate content over 

a 24 hour period. Current evidence indicates that amygdalin 

is not broken down in the body (Ames et al., 1978). Conse-

quently toxicity may not be the result of cyanide cleaved 

from the amygdalin molecule within the animals. 

The apparent non-toxicity of amygdalin at high doses 

raises the question of the origin of thiocyanate in this 
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investigation. The original Krebs hypothesis (1970) as-

sumed that amygdalin is metabolized in the animal tissues. 

However, current evidence demonstrates that the gastroin-

testinal flora are obligatory for reactions which lead to 

the release of toxic amounts of cyanide from amygdalin 

(Carteret al., 1980). Carter et al. (1980) showed that 

upon a single oral dose of amygdalin (600 mg/kg) adminis-

tered to conventional rats, death usually occurred within 

two to five hours. Germfree rats did not· exhibit any 

visible signs of toxicity after receiving the same dose of 

amygdalin. The absence of toxicity in germfree rats of 

doses which are lethal to the conventional rat suggested 

that cyanide release is dependent on gastrointestinal 

flora. It was speculated that enzymes of the intestinal 

flora cleave the beta-glucosidic bond, eventually liber-

ating cyanide. Beta-glucosidase is present in several 

strains of bacteria indigenous to the gastrointestinal 

tract (Holdeman et al., 1977). 

Greenberg (1980) stated that amygdalin taken paren-

terally is virtually non-toxic and can be administered in 

huge doses with slight evidence of toxicity. ~..roes et al. 

(1978) determined amygdalin content in urine following 

parenteral administration to humans. It was found that 

amygdalin was excreted primarily as the unchanged molecule. 

Urinary recoveries approached 100 percent. Flora et al. 

(1978) found that mice administered 100 mg/kg of amygdalin 
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intravenously excreted about 70 percent of the administered 

dose. When the same dose was administered orally, about 20 

percent of the dose was excreted. In both cases more 

than 96 percent of amygdalin was obtained within the first 

24 hours. Taking into consideration that when amygdalin 

is administered parenterally it is excreted largely un­

changed in the urine, Carter et al. (1980) concluded that 

enteral routes of administration which provide the most 

direct contact of amygdalin with the gastrointestinal 

microflora maximize the release of cyanide and enhance 

toxicity. 

If amygdalin is not metabolized in the animal tissues, 

as Krebs (1970) postulated then the thiocyanate detected in 

the urine in this investigation may have been produced by 

bacteria, since no preservative was used, nor were the 

specimens refrigerated. It can be postulated that the 

faces in the metabolic cage contained microbes. The feces 

mixed with the urine in the collecting container of the 

metabolic cage. The microbes metabolized the amygdalin 

excreted by the mice, which is possible under aerobic 

conditions (Goldman, 1978). The pH of the mouse urine was 

5.7 to 6.9. The optimum pH of the rhodanese is 8 (Lang, 

1933) and the optimum pH of beta-glucosidase is 5 (Beck 

and Tappel, 1968). The optimum pH for most bacteria is 

6.5-7.5 (Pelczar and Reid, 1972). Thus, the pH of the 

urine in the collecting containers was suitable for 
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microbial beta-glucosidase and rhodanese activity. The 

microbes could have converted amygdalin to thiocyanate. 

With more amygdalin present, more thiocyanate would be de­

tected, resulting in the correlation presented in this 

paper. 

This investigation was designed to demonstrate a 

correlation between increasing doses of amygdalin and the 

amount of thiocyanate in urine. A positive high correlation 

was demonstrated. However, the experimental design in 

this investigation did not permit any conclusions as to 

where the thiocyanate originated. It is unclear whether 

the amygdalin was metabolized in the animal or originated 

from bacterial activity. To resolve this issue further 

investigation is needed. 



SUMMARY 

The thiocyanate content of urine was determined 

spectrophotometrically from male and female JAX C57 BL/KsJ 

mice. The control group was injected intramusculary with 

Locke's solution, the experimental with increasing doses 

of amygdalin. A high, positive correlation was demon­

strated between the amount of amygdalin injected and the 

amount of thiocyanate detected for botn male and female 

animals. The experimental design did not allow the identi­

fication of the metabolic source of the thiocyanate. The 

urinary thiocyanate may have originated from the enzymatic 

activity of the animals, of the microbes, or perhaps both. 
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