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PREFACE 

Progress in scientific research is dependent on the quality and accessibility of 

software at all levels. True progress in software development depends on embracing the 

best traditional--and emergent-- practices in software engineering, especially agile 

practices that intersect with the tradition of software engineering [1]. Measuring software 

quality can lead to developers following good software engineering practices. Software 

processes can use the best features and practices of various models which is suitable for 

that project. To identify these features and practices it becomes necessary to measure 

software quality. Measurement, in essence, captures information about the attributes of an 

entity being measured. When it comes to software measurement, it becomes essential to 

identify these attributes that would eventually contribute towards providing meaningful 

(although not complete) information about a software product. This could lead the 

embracement of best practices that is important to develop and maintain good reusable 

software. In this thesis, we aim to identify software metrics derived from commonly used 

metrics like defect count and lines of code; we then implement these derived metrics and 

provide a dashboard view to the software teams which would give them an outline of 

how the software development is progressing. With this work, we hope to lay the 

groundwork for using software metrics to identify software engineering problems and 

come up with software engineering practices to fix them. 
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ABSTRACT 

There is an emerging consensus in the community that “progress in scientific 

research is dependent on the quality and accessibility of software at all levels” [1]. This 

progress depends on embracing the best traditional---and emergent---practices in 

software engineering, especially agile practices that intersect with the more formal 

tradition of software engineering. As a first step in our larger exploratory project to study 

in-process quality metrics for software development projects in Computational Science 

and Engineering (CSE), we have developed the Metrics Dashboard, a working platform 

for producing and observing metrics by mining open-source software repositories on 

GitHub. The Metrics Dashboard allows the user to submit the URL of a hosted repository 

for batch analysis, whose results are cached. Upon completion, the user can interactively 

study various metrics over time (at different granularity), numerically and visually. We 

currently support project size (KLOC), defect density, defect spoilage, and productivity. 

The Metrics Dashboard distinguishes itself in various ways: 1) it is free/open-source 

software distributed under a license still to be determined; 2) it has an extensible 

architecture that makes it easy to study additional metrics; 3) it provides both a human-

facing web application and a RESTful web service for consumption by programmatic 

clients; 4) it is hosted as a publicly available software-as-a-service (SaaS) instance, and 

users and contributors can choose to self-host their own instance; and 5) batch 

processing. We have implemented the Metrics Dashboard using modern web
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service/application technologies and a scalable architecture. While this work is part of an 

effort to address sustainable practices in scientific software development, we believe it to 

be more broadly applicable to any interdisciplinary software development community. 
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CHAPTER ONE 

INTRODUCTION 

Software engineering as practiced today (especially in the industry) is no longer 

about the stereotypical monolithic life cycle processes (e.g. waterfall, spiral, etc.) found 

in most software engineering textbooks (aimed at large scale software teams). These 

heavyweight methods historically have impeded progress for small or medium sized 

development teams owing to their inherent complexity and rather limited data collection 

strategies that predominated the 1980s (a fervent period for emerging software 

engineering research) until relatively recently in the mid-2000s. In addition, the discipline 

and practice of software engineering includes software quality, which has an established 

theoretical foundation for doing software metrics (a fancy word for measuring). In our 

work, we try to explain how software processes can be pragmatic and use best features or 

practices of various models without impeding developer productivity, especially with a 

growing number of cloud-based solutions for hosting projects (the most famous being 

GitHub). The challenge is to cherry-pick the most-effective practices from a large suite of 

tools and incorporate them into existing cloud-based workflows. Development teams are 

particularly likely to resist using a practice if it incurs any additional workload on already 

short-staffed teams, especially if the solution is not integrated into existing infrastructure 

(e.g. GitHub, used by many open-source, computational science projects alike). The tools  
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we are developing can be incorporated in any existing GitHub based workflow without 

requiring the developers to install anything. 

We begin by focusing our energy on the Metrics Dashboard, developed as a part 

of an NSF-funded effort for looking at Software Engineering in computational science 

projects. We implement traditional software metrics as described in the classic reference 

by Fenton [11] with a web-based dashboard so project teams can just use them to 

understand quality in their projects.  

We provide a brief overview of what practices from software engineering can be 

helpful to open source and computational science and engineering projects. Many 

projects already use version control. But what else can they be using that would be 

helpful to improve software quality? Issue tracking is one that can have huge impact on 

projects, not only for tracking code but also for textual content. 

We provide a brief overview of (software) quality: Many of us know the English 

definition of quality, but this definition differs from the one created by W. Edwards 

Deming--an exponent of quality (in manufacturing) who focused his definition on 

customer expectations being met or exceeded.  Customer expectations (a.k.a. satisfaction) 

is a key driver of process improvement (the idea being that you cannot improve 

something you don’t understand; measurement is a key to establishing an understanding 

of any process). 

We provide an overview of software metrics, focused on so-called in-process 

metrics (as opposed to code-based metrics, which are also useful but not the scope of 

work).  
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We look at two specific (and challenging) software metrics (defect density and 

spoilage) for 10 active open source projects on GitHub that employ software practices to 

help us compute the metrics accurately (git commits and issue tracking). The Metrics 

Dashboard effort itself is built using agile software development methods. 

Lastly, we analyze all of the GitHub projects history (git and issues, among 

others) and the process is highly data intensive. Our current focus is only on 10s of 

projects but will be scaled to all-known computational science projects in 2016. 

Broader Context 

Software metrics are a critical tool that provide continuous insight to products and 

processes and help build reliable software in mission-critical environments. Using 

software metrics we can perform calculations that help assess the effectiveness of the 

underlying software or process. The two broad categories of metrics are: 

1. Structural metrics, which tend to focus on intrinsic code properties like code 

complexity. 

2. In-process metrics, which focus on a higher-level view of software quality, 

measuring information that can provide insight into the underlying software 

development process. 

We understand that metrics are often used to evaluate individual developer 

productivity rather than overall project quality and progress. For example, a large number 

of commits made to a project may or may not have any impact on the software quality 

(yet it is displayed prominently on sites like GitHub). Optimizing on one metric could 

result in unintended consequences for a project. For example, these commits could be 
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overly complex or introduce defects. Therefore, we seek to identify metrics that will be 

useful to the project as a whole. 

Our aim is to develop and evaluate a Metrics Dashboard to support Computational 

Science and Engineering (CSE) software development projects. This task requires us to 

perform the following activities: 

1. Assess how metrics are used and which general classes or types of metrics will be 

useful in CSE projects. 

2. Develop a Metrics Dashboard that will work for teams using sites like GitHub, 

Bitbucket etc. 

3. Assess the effectiveness of the Metrics Dashboard in terms of project success and 

developer attitude towards metrics and process. 

Our current focus is on identifying requirements for the Metrics Dashboard, 

which include the types of metrics that will help understand and improve the software 

quality.  

Related Work 

During the design and implementation of the Metrics Dashboard, we have relied 

on methods and insights from the mature yet dynamic field of software architecture. By 

unifying a body of independent prior work, the seminal report by Garlan and Shaw [2] 

defines software architecture as a design perspective that focuses on the overall module 

structure of increasingly complex software systems (as opposed to details of data 

structures and algorithms); the report surveys common architectural styles and compares 

their effectiveness and responsiveness to change based on several case studies. Updated, 
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comprehensive studies of this subject are available as well [3]. During the last two 

decades, it has become increasingly common to design distributed systems that provide 

common functionality by combining separate applications and services. This trend has 

drawn attention to the field of (enterprise) application integration, where common 

integration styles include file transfer, shared databases or repositories, remote procedure 

invocation, and messaging [4]. The research on comparison between the metrics 

identified is similar to the comparison of defect density and change density by [5]. The 

work done by Shah, Morisio and Torchiano [6] studied 19 papers that reported defect 

density for 109 software projects and found that larger projects exhibit lower defect 

density than medium and small projects. They have compared defect density for the 

programming language, Java, C++ and C and state that the difference in defect density 

could be attributed to different level of detail and expressive power between the two 

languages. In [6] the analysis of size, age, programming language and development mode 

of project (close vs. open) could be factors for defect density was tested for and it was 

found that development mode is a factor with programming language affecting the values 

in some cases. In addition it was found that projects size is relevant, while age was not a 

factor.  

In the study by Gala et al. [7] the ratio of the email messages in public mailing 

lists to versioning system commits which has remained constant along the history of the 

Apache Software Foundation (ASF), was found to be independent of the size, activity 

and number of developers and relatively independent of the technology and functional 

area of the project but seems to be technical effervescence and popularity of the project. 
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They have studied ratio of developer message to commits and ratio of issue tracker 

message to commits. The metrics identify stagnant projects or projects in the verge of 

stagnation. They is still verification pending to see if these results apply to other open 

source projects and if these results are practical. Defect density is a high level metric 

which may lead to different interpretations so two different variants of this metric are 

used, in the work by Shah et al. [8] standard(steadily increasing variability) and 

differential(large variability). The conclusion here is that the standard defect density 

provides a global (with all history included) quality view of the project and differential 

defect density provides a local (specific to a version) quality view to a project. 

Differential defect density varies between 1 - 100 defects per KLOC which could be 

attributed to defects between releases which belongs to the previous release. The steady 

growth of standard defect density means either that the quality of a project decreases over 

time, or that this metric is not a reliable quality indicator. As for differential density, its 

high variability could be either normal behavior, or an indicator of a project that is not 

under control. In the latter case, projects should try to reduce differential defect density as 

much as possible. The work done by Nagappan and Ball [9] determines if the defect 

density identified by static analysis tools like PREfix and PREfast help predict the pre-

release defect density i.e. the defect density identified by developers. In order to address 

the fact that the results were not coincidental they repeated the data splitting experiment 

several times and provided consistent results each time. The static analysis tool used in 

this paper mainly works with C and C# modules to identify defects and calculate the 

defect density. This highly limits its usage to projects that use C and C#. The static tools 
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sometimes detect false positives that could identify modules as error prone even if they 

are not as error prone as reported. Static Analysis tools are known to miss deep functional 

and design errors which are normally caught by programmers while testing, so this type 

of automated testing is less efficient than manual testing by programmers. 

The paper by Bower et al. [10] proposes a catalog-driven approach to look at 

qualitative and quantitative dimensions of software metrics. This approach is needed 

because there are so many metrics, and there is little or no attempt to collect (in one 

place) which are effective and in what situations. Most approaches are ad hoc and 

provide little structure. This paper is an attempt to bring structure to the forefront by 

having a sound cataloging scheme. There are many surveys for certain metrics (e.g. 

object-oriented, etc.) but most discussions about them are qualitative, so there is little 

way of knowing which work. This paper is taking some baby steps toward addressing this 

issue. There is a table of qualitative aspects and quantitative aspects. A particularly 

interesting aspect of quantitative is to distinguish between base metrics vs. derived 

metrics, which has come up in our discussions. In this thesis, we work with derived 

metrics. The vocabulary in the table could be helpful to us for thinking more deeply about 

the metrics we are implementing and understanding their long-term value in actual 

projects during the evaluation phase of our work. 



                                                                       8 

CHAPTER TWO 

DESIGN AND IMPLEMENTATION 

Metrics Dashboard Functionality 

Longitudinal metrics and sampling 

Any process, including the software development process, occurs over time and is 

therefore longitudinal in nature. In this study, we aim to study the development process 

through metrics that must themselves be longitudinal, that is, they are functions of time. 

For example, code size (KLOC) may change over time whenever a committer inserts or 

deletes portions of the code. While these metrics are conceptually continuous functions of 

time, it is impractical to treat them as such, and one typically uses sampling to convert 

them to discrete functions of time. The choice of sampling rate (frequency) is a practical 

one. If one wanted to observe, say, intra-day phenomena, one would choose a relatively 

high sampling rate, such as hourly or even every 15 minutes. Our study, however, focuses 

on longer-term phenomena, so the commonly used daily sampling rate will be sufficient. 

In practice, daily measurements are taken at midnight local time (00 hours). Less frequent 

samples can always be obtained by downsampling (decimation) as follows. The 

measurement for a metric y(d) for a calendar interval [d_0;d_1], where d_i are calendar 

dates, is given as the daily average of y over the time interval: 

 
𝑦([𝑑0; 𝑑1]) =

∑ 𝑦(𝑑)𝑑1
𝑑=𝑑0

𝑑1 − 𝑑0
 (1) 
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Using this definition, we can obtain measurements by week, month, or other arbitrary 

period. 

Module size computation 

Figure 1 shows how the module size is calculated for a GitHub project named 

Astropy. In software engineering, the module size is calculated using LOC. A project will 

consist of large number of files, each file with its own commit history. In this thesis, the 

final metrics results are grouped with granularity of week or month, therefore the module 

size is calculated for the requested granularity. Keeping this in mind, the module size for 

the entire project is calculated by looking at the commit history of each file in the project 

and partitioning the commit history based on the requested granularity. Referring to 

figure 1, the calculations are shown for weekly granularity with the commit history for 

the file astropy/table/column.py starting from November 24, 2013 to December 15, 2013. 

The first commit for the file was made on November 27, 2013 and hence the LOC value 

for the dates before the first commit for the file remains zero. Week one shows one 

commit for the file, therefore, the LOC value for the file is 793, from the file first commit 

date (November 27, 2013) to the second commit date (December 1, 2013). On the second 

commit, the LOC of the previous commit is added to the current commit, in this case, the 

second commit was 7 LOC giving a cumulative commit result, after the second commit 

date to the third commit date, of 800 LOC. The process continues for subsequent 

commits on the file. A point to note here is that the LOC can contain zero or negative 

values, in each case we simply add these signed values to the previously calculated 

cumulative LOC.  



10 
 

                                                                                    

Figure 1. Commit history flow diagram for a file (astropy/table/column.py) 
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Due to longitudinal nature of our computation we calculate the time that has 

elapsed between each commit in milliseconds. These results are later converted to 

seconds for visualization, therefore giving us a result of cumulative LOC multiplied with 

the time range between the current commit to the next commit. The final result for each 

file (time range * cumulative LOC) added with every other file in the project that falls 

under the same granularity (week or month) or window. The merged result (time range * 

cumulative LOC) is divided by the duration of the requested granularity, therefore we end 

up with the with the module size with the unit in LOC instead of seconds-LOC. The 

calculations of module size is crucial for the metrics calculations of issue density and 

productivity.  

Supported metrics 

Issue density is the number of confirmed defects detected in software/component 

during a defined period of development divided by the size of the software or component 

[11]. 

Defect density is usually shown as the number of reported software defects per 

1,000 lines of source code (KLOC). 

 𝐷𝑒𝑓𝑒𝑐𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑓𝑒𝑐𝑡𝑠 / 𝑀𝑜𝑑𝑢𝑙𝑒 𝑆𝑖𝑧𝑒 (2) 

In this thesis, the focus is on open source projects in GitHub, therefore this metric 

is referred to as issue density. GitHub provides a feature for tracking tasks, enhancements 

and bugs for a project and is referred to as issues. Since, open-source projects in GitHub 

use the issue tracking feature extensively for tracking their project bugs, we use the count 

of issues for calculating the number of defects, in this case issues, for the computation of 
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issue density. For our work, we are focused on projects that use the issue tracking feature 

of GitHub extensively, one of the reasons being that, the issue count in GitHub gives us 

an idea about how active the open-source user community is for the identified projects 

along with how actively the contributors to the project keep track of issues. For example, 

how promptly the issues are closed or updated, how well the software is being tested, 

how promptly the outcomes of various types of tests and peer code reviews are tracked. 

The module size for a given project in a repository is calculated using the KLOC 

(thousands of lines of code) for that project. To count the KLOC for a chosen project we 

count the lines of code at each commit for that file, multiply that with the duration until 

the next commit; this is repeated for the entire history of the file till the current date and 

the final result is divided by the entire range for which the file exists in GitHub. The 

section on module size computation explains, in detail, how we calculate the KLOC and 

how we arrive at the KLOC result. KLOC per file is given as follows: 

  (3) 

The file commit duration above is the duration for which the KLOC for a project is 

calculated by considering all source files that belong to the project and is given by 

 

 

(4) 

where n = number of files in a repository and m = granularity requested by the client; for 

example, week, month.  

The defect density metrics can be granulated to give the result grouped either by 

month or week. Instead of using the direct measurement of faults we compute the fault 
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density, i.e. derived measures (combination of  measures) defined as issues per KLOC. 

The idea here is intuitively comprehend how the software development is progressing. 

For example, if a project has very few issues but the KLOC metric is increasing, this 

could either mean that the issues identified in the given window (month, week) is being 

closed within the window or it could be an indicator of a much larger problem of the user 

community or contributors for the project are not as active as they should be in testing or 

tracking the issues. In this way, we try to encourage better project maintenance by the 

users and developers while the project is being developed.  

Issue spoilage refers to how much effort was spent in fixing faults rather than 

building. This can also incorporate the idea of  cost  of  fault  prevention  compared  with  

the  cost  of  fault detection and correction.  

Issue spoilage = effort spent fixing faults / total project effort. 

 

 
(5) 

where n = number of issues. 

We calculate the time taken to fix issues logged in GitHub. An issue is considered 

to be fixed when its status is changed to close. An issue in any other state is considered to 

be open. Our approach is to intuitively identify the project health. If the spoilage value 

increases over time, this could indicate the following: 

1. The project issues are being neglected and not closed as quickly as they should 

be. 
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2. The project doesn't have enough contributors and the developers working on the 

project are overwhelmed with too much work. 

On the other hand, if the spoilage values are reducing this could indicate the following: 

1. The user community is not actively participating in identifying issues. 

2. The project issues are being closed fairly quickly and this is a good indicator of a 

project that is doing well. 

One can be fairly certain about the project health, when it comes to spoilage, by looking 

at other metrics like issue density, which gives us the issues per KLOC: 

1. If the issue density value has increased for the chosen granular window and the 

spoilage has reduced for the same window then it is a good indicator that the 

project is being maintained well. 

2. If the issue density value has decreased for the chosen granular window and the 

spoilage has reduced for the same window, it could signify that the currently 

active issues are being closed fairly quickly but not much effort is being expended 

at identifying new issues. 

3. If the issue density value has increased for the chosen granular window and the 

spoilage has increased for the same window, this could indicate that the user 

community is actively identifying issue in the code base but the issues aren't being 

closed quickly enough.  

4. If the issue density value has decreased for the chosen granular window and the 

spoilage has increased for the same window this is an indicator that the project 
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development has slowed down for that window and steps should be taken to 

improve these values.  

Productivity is the most commonly used model for productivity measurement 

expresses productivity as the ratio of “process output influenced by a personnel” divided 

by the “personal effort or cost during the process”. Since our work is focused on 

measuring the productivity of a team we define productivity as follows: 

  (6) 

Module size is one of the measures that is used to compute productivity and is 

calculated as per the examples provided in the section module size computation. The 

module size is given by (3). The team effort is calculated by considering the development 

time of the project. Since the results are sampled based on the chosen frequency, the team 

effort is given by the time elapsed between the first commit for the project and the last 

commit for the project made in that window. 

  (7) 

This metric combines the process measure (Team Effort) and the product measure 

(module size). Our goal is to check how much effort is being spent in fixing issues when 

compared to actual code development. In order to facilitate the production of quality 

software any software development team should be focused on releasing code with 

minimal defects or in this case, code that would have minimal issues associated with it. 

This in turn makes sure that the less effort is expended on fixing issues and allows for 

more focus on software development, thereby reducing the overall development time and 

hence reducing the cost of development. A lower value in productivity means poor 
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software quality which could result from using too few people or people with the wrong 

skills. 

Our approach with these identified metrics is to give a clearer picture of software 

quality. From our experience in both industry and academia, we understand that no one 

metric can give a clear indication of project health. Viewing the metrics results in 

conjunction will give us a better idea of software health and pave the way towards 

stronger development strategies in future deployments and releases. 

Metrics Dashboard 

Architectural overview 

Figure 2. Architectural overview of the metrics dashboard service 

 

Figure 2 gives the architectural overview of the Metrics Dashboard service. The 

Metrics Dashboard service is currently hosted on the Ubuntu Linux instance running on 

the Amazon Elastic Compute Cloud (Amazon EC2) on the Amazon Web Services 

platform. The server side application is developed using Spray which a lightweight Scala 
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library providing server side and client side REST-HTTP support on top of the Akka 

toolkit. One can build highly concurrent, distributed and message driven applications on 

the JVM using the Akka toolkit. The persistence of the computed results is done via 

MongoDB which is a document based database and since the server side application 

provides a JSON result this proves to be a suitable choice. The Metrics Dashboard API 

can be accessed using the URL structure, 

https://tirtha.loyolachicagocs.org/metrics/api/{metric-

type}/{user/organization}/{repository}/{branch}?groupBy={frequency}. 

1. Metric type tells the web service what metric one is looking for. Currently, we 

support three types of metrics which include issue density, which is accessed 

using the term density, issue spoilage, which is accessed using the term spoilage 

and Productivity, which is accessed using the term productivity. 

2. User or Organization refers to the username or organization name in GitHub 

under which the project of interest is stored. 

3. Repository is a container in GitHub within which a project resides. 

4. Branch is the name of the project branch that one would like to access. A GitHub 

branch could contain different versions of the same project. 

5. The parameter groupBy in the URL is the frequency or granularity with which 

one would like to view the final results. Currently, we compute the result based on 

monthly and weekly frequencies.  

The following GitHub open-source projects are being tracked by the Metrics 

Dashboard Service by default. 
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Table 1. Open source projects tracked by default as of May 2016 

Project Commits 

Open 

Issues 

Issue Density 

(Issues/KLOC) 

Issue 

Spoilage 

Productivity 

(KLOC/ms) 

IPython 21,518 959 2.321 5.6609 6.2445 

SymPy 25,010 2340 1.7566 17.4247 4.4758 

Astropy 15,480 718 0.7850 10.5402 4.0056 

Simbody 4,542 82 0.1367 0.4798 3.1635 

Numpy 14,777 1211 3.3737 5.6239 6.7095 

Go  28,460 2295 2.3565 3.4880 1.8716 

 

 

When we take a look at a project like Simbody, one can immediately note that the 

number of issues for the project is 82. Thereby, the issue density (issues per LOC) is a 

lower value, 0.1367. This would lead us to conclude that the developers are fixing the 

issues that are identified fairly quickly. However, the matter of concern here is that for a 

project with KLOC in the range of approximately 599 

https://tirtha.loyolachicagocs.org/metrics/api/density/simbody/simbody/master?groupBy

=month} in May, 2016, the issue count seems to be lower. This could mean the team is 

more focused on fixing currently identified errors in their codebase rather than testing 

and identifying potential bugs or issues that could break the project. Productivity for the 

project seems to be a decent value, one way to come to this conclusion is to make sure 

that this metric stays above one. We want a project where effort spent is lower, so 

whatever the value is for a particular window of chosen granularity, that value should 
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either stay the same or steps should be taken to increase the value for the next window of 

chosen granularity. 

Analysing sample visualisations 

An attempt at a brief analysis of the projects that are tracked by default is 

performed in this section. 

Project Go is an open-source programming language developed by Google and 

the repository is hosted in GiHub. Figure 3 shows the issue density and KLOC for the 

project against month. 

Figure 3. Go: Line chart for density and KLOC against month 

 

At first glance, the steep dip in the issue density catches the eye. This dip occurs 

without any corresponding changes in the KLOC for the code. We can intuitively come 

to the conclusion that a large number of issues were closed in a very small time frame for 

this project. To check this assumption for correctness, we can do the following: 

1. Navigate to the GitHub issues section for the project 

(https://github.com/golang/go/issues?utf8=✓&q=sort%3Acreated-asc%20). 
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Here, we notice that the first issue for the project was created in October, 

2009. 

2. Check the metrics dashboard service 

(https://tirtha.loyolachicagocs.org/metrics/api/density/golang/go/master?grou

pBy=week), to identify the window where the dip occurred. The results 

obtained from the service will be in JSON format as shown below, which 

contains the fields open or close and openCumulative and closeCumulative 

which specify the issues opened or closed in the chosen granularity and the 

issues that are in the open or close state in the current window of chosen 

granularity. 

{{ 

    "start_date": "2014-11-24T00:00:00Z", 

    "end_date": "2014-12-01T23:59:59Z", 

    "kloc": 651.0461298714263, 

    "issues": { 

      "open": 30, 

      "closed": 0, 

      "openCumulative": 9161, 

      "closedCumulative": 0 

    }},{ 

    "start_date": "2014-12-01T00:00:00Z", 

    "end_date": "2014-12-08T23:59:59Z", 
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    "kloc": 653.9527515172911, 

    "issues": { 

      "open": 34, 

      "closed": 0, 

      "openCumulative": 9195, 

      "closedCumulative": 0 

    }},{ 

    "start_date": "2014-12-08T00:00:00Z", 

    "end_date": "2014-12-15T23:59:59Z", 

    "kloc": 639.6212584045984, 

    "issues": { 

      "open": 120, 

      "closed": 7968, 

      "openCumulative": 1347, 

      "closedCumulative": 7968 

    }}} 

On close inspection, we notice that the date 2014-12-08T23:59:59Z is when 

the dip occurs, also notice that issues closed is 0 and closedCumulative is 0  

For the next window, (2014-12-15T23:59:59Z) closed and closedCumulative 

is 7968. 

3. Navigate to GitHub issues (https://github.com/golang/go/issues) to check if 

the values reported by the metrics dashboard service is correct. If we filter 
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using the criteria closed:\textless 2014-12-08, we see that no issues were 

closed before this date 

(https://github.com/golang/go/issues?utf8=✓&q=closed%3A%3C2014-12-

08), even though the first issue was opened in October, 2009. 

4. Change the filter to closed:\textless 2014-12-09 

(https://github.com/golang/go/issues?utf8=✓&q=closed%3A%3C2014-12-09) 

and we will see that 7926 issues were closed. Change the date to 2014-12-15 

(https://github.com/golang/go/issues?utf8=✓&q=closed%3A%3C2014-12-15) 

and you will see 7968 issues were closed, which matches the result obtained 

through the metrics dashboard service. 

So to summarize, the Go programming team managed to close 7926 issues in one 

day, which is not considered to be a good programming practice, considering the fact that 

the team hadn't closed any of the identified issues since October, 2009. A point to note 

here is that the status of issues in GitHub can be changed, however here were are 

concerned only with the open and closed dates of issues and having an issue for five 

years is simply not excusable. For the above analysis we choose the granularity to help 

easily narrow down the exact date when the dip occurred. 
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Figure 4. Go: Line chart for density and spoilage against month 

 

Figure 4, shows the issue density and spoilage against month, as one expects the 

spoilage value dips at around the same window when the issue density dips. 

Another observation one can make using the visualization is that spoilage 

increases until the end of the year 2014 to a peak of almost 7.0, as the time to fix issues 

increased. After the dip the spoilage has remained constant which is a good indicator that 

the issues are being closed regularly and newer issues are identified and tracked. For an 

active project to be healthy, the spoilage should not drop too low, which could indicate 

that the project isn't being tested and the user community isn't actively identifying or 

reporting issues. 
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Figure 5. Go: Line chart for issues grouped by week 

 

Figure 5, shows the issues for the Go project against week, as one expects the 

issues for the project were opened until the end of the year 2014 (cumulative open issues 

are shown in red). The closed cumulative issue count, shown in yellow, shows that the 

issues for the project were closed beginning the end of the year 2014. Since 2015, the 

team or users have continued to open and close issues at a fairly steady rate and no 

drastic changes in the values are seen. This means that the team is improving its 

improving its workflow when it comes to resolving issues. 

Project SymPy is an open-source project in GitHub and is a Python library used 

for symbolic mathematics and is one of the projects that is being tracked by default by the  

Metrics Dashboard service. 
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Figure 6. Sympy: Line chart for issue density and KLOC against month 

 

Figure 6, shows the issue density and KLOC for the project against month. At 

first glance, we notice that the KLOC or module size has increased significantly since 

2012 but the issue density has reduced during the same period. Normally, it is expected 

that as the module size increases the number of issues for a project will also increase, 

giving higher values of issue density. However, this may not always be the case. As seen 

from figure 7, the yellow line, which indicates the closed issues cumulatively added since 

the beginning of the projects' lifetime, shows significant increase compared to the issues 

opened (shown in the color red) shows a steeper increase staring from the year 2012. 

Therefore, this would lead us to the conclusion that the issues are being closed at a faster 

rate than the rate at which they are opened, which in turn reduces the issue density during 

that period. 
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Figure 7. Sympy: Line chart for issues grouped by week 

 

Figure 8, shows the spoilage for SymPy, one would expect that since the issue 

density has reduced and the larger number of issues are being closed than they are 

opened, the spoilage should also show significant reduction. It is interesting to note that 

this isn't always the case. 

Figure 8. Sympy: Line chart for issue density and spoilage against month 

 

Note that spoilage is a measure of how long it takes to fix an issue, therefore, even 

though a team manages to close issues at a fairly decent rate, if there are older issues in 
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the project that are still in the open state, this will significantly add to the spoilage and we 

may not see a drop in spoilage as seen for this project. 
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CHAPTER THREE 

CONCLUSION 

Simplistic measurements can cause more harm than good, but a combination of 

simplistic and derived metrics can serve as a useful tool at making software quality easily 

comprehensible to software developers. This thesis, aims at providing a clear idea of how 

the identified metrics are calculated and how we arrive at the results. A brief evaluation 

of the results obtained so far helps us identify areas in the time line where a project might 

have deviated from the norm. These results gives a team better insight on how the 

software development progresses over time. However, the metrics implemented by the 

Metrics Dashboard team, in no way, provides a thorough understanding of a projects' 

health, instead it serves as an initial step towards better understanding of a software 

development process which would help teams address many new challenges related to the 

development, deployment, and maintenance of reusable software. 

Evaluation 

The metrics implemented so far, have given us a basic idea of the development 

process for a project. The AWS server side implementation of the identified metrics can 

be used by teams with a simple request to the Metrics Dashboard team to track a project. 

The success of the work done so far depends heavily on whether the teams find the 

dashboard useful in identifying potential faults or areas that need to be worked on, for 

e.g. testing and logging issues, fixing older issues, reducing the time required to fix 
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issues. A sort of balance needs to be maintained between these metrics avoiding any high 

peaks and drops in the metrics. The metrics implemented so far by no means completely 

or fully understand a projects' health but when compared to simplistic measures like 

KLOC, count of issues, project contributors etc., these derived measures give a deeper 

view into a projects' development process overtime which could in turn help software 

development teams understand and improve software quality. The next steps to 

evaluation of metrics identification and usage is comprised of the following steps: 

1. Evaluate whether CSE teams find the Metrics Dashboard useful: It is known that 

CSE software development teams embrace some aspects of Software Engineering. 

We can then capitalize on this to gauge interest in the idea of using metrics. It is 

key to understand what information an SE team is looking for while using the 

Metrics Dashboard service. Since the three metrics implemented so far depend on 

popular measures like KLOC, Issues, time to fix issues, this should serve as a 

useful addition to the already popular metrics. 

2. Evaluate the effect of the Metrics Dashboard on software quality and software 

process: Software metrics serves as a useful tool in monitoring software 

development process, so it is key to track the effects these measures have on the 

maintenance of existing software modules or development of newer modules. 

3. Add new metrics as they become necessary: Substantial interest in metrics is 

expected about reported defects (via the issue tracker in GitHub) over time and 

the mean time to resolve (fix) issues over time. While there are a large number of 

metrics that we could include in the dashboard, we will focus on metrics that can 
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be derived from information already collected by the tools projects are currently 

using. 

4. We will migrate towards using Apache Spark, a cluster computing platform which 

serves as a general purpose engine for large scale data processing. The reason 

being that, GitHub allows a maximum of 5000 requests per hour (also called rate 

limit) for an authenticated request. Each request to GitHub API gathers 

information about a project and is useful in computing the derived metrics. This 

rate limit won't pose a problem for smaller projects, however, for larger CSE 

projects with a rate limit of 5000 the metrics computation and storage could take 

hours, which is not a feasible option. We plan to overcome this delay by cloning 

the repository locally and computing KLOC with the help of Apache Spark. We 

will still be using GitHub API to gather information on issues. 

We aim not to tag projects as being good or bad, instead we want to ensure that teams 

focus on following good software engineering practices and we hope that our initial 

attempts at Metrics Dashboard will help achieve this goal. 
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