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ABSTRACT 
 

 Successful activity recognition in patients with motor disabilities can improve 

patient care by providing researchers and clinicians with valuable information on patient 

movements and quality of life in real-world settings. Understanding the everyday 

activities of patients is important for rehabilitation. For researchers, having convenient, 

objective, and continuous data can drastically improve outcome measures to better 

compare therapies, and ultimately make recommendations. For clinicians, individual 

assessment of compliance and outcomes outside the clinic can be more objective, 

permitting much more tailored recommendations to patients. Most importantly, for 

individual patients, activity recognition can make this improved health care possible by 

simply having patients wearing a small sensor, minimizing the need for clinical visits but 

reaping all the benefits of tailored healthcare.  

There are many activity trackers available in the market. But most of them have 

been designed for healthy subjects. Studies have shown that activity tracking systems 

designed for healthy subjects can perform poorly on mobility-impaired populations, like 

those with incomplete spinal cord injury (iSCI) due to their unique patterns of movement. 

Because iSCI patient populations move in distinct ways, algorithms can and should be 

specifically tailored for them. By applying machine learning to collect movement data 

from this specific patient population, we demonstrate how an iSCI-specific system can 

improve activity recognition with this population.  



ix 

Traditional activity recognition approaches analyze individual clips of 

accelerometer data to perform activity recognition. These static classifiers are easier to 

construct, as each clip of data is treated independently, but the structure of events over 

time is lost. This thesis attempts to improve upon the standard static classification method 

by augmenting these static classifiers with a dynamic state estimation model—a hidden 

Markov model (HMM). An HMM takes into account not only the information present in 

a clip of sensor data, but also the context of that clip over time, which leads to a higher 

classification accuracy. By using an HMM to go over the predictions made by the static 

classifier, unlikely sequences of events can be removed and corrected.  

Data were collected from thirteen ambulatory incomplete spinal cord injury 

subjects who were instructed to perform a standardized set of activities while wearing a 

waist-worn accelerometer in the clinic. Activities included lying, sitting, standing, 

walking, wheeling, and stair climbing. The accelerometer data was parsed into two-

second clips and a standard set of time-series features were extracted from those clips. 

Those features were then analyzed by a static classifier to produce probabilistic estimates 

of the likely activity the subject was performing. Those estimates were then input as 

observations into the HMM to reclassify ambiguous or improbable sequences of activities 

made by the static classifier. Multiple classifiers and validation methods were used to 

assess the ability of the machine learning techniques.  

Using within-subject cross validation, static classifiers provided a classification 

accuracy of 86.3%. By adding another layer of a hidden Markov model, the accuracy 

improved an additional 2.6% to 88.9%. In subject-wise cross validation, a hybrid static 

classifier and HMM model gave the highest classification accuracy of 64.3%, a 1.2% 
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improvement over the model using only static classifiers. Our prediction accuracy was 

subtle because we dealt with activities that are almost undistinguishable: sitting and 

wheeling, walking and stair climbing.  

Individuals with impaired movements can benefit from improved activity 

recognition to more objectively, conveniently, and continuously measure patient 

outcomes. Such measures support therapists, clinicians, and clinical researchers to select 

the right physical or drug therapies, and further refine selected therapies to improve 

mobility in patients.  
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CHAPTER I 
 

INTRODUCTION 
 

  Activity tracking plays an important role in the field of rehabilitation, including 

motivating patients to exercise, allowing clinicians to track patient progress objectively, 

and for researchers to collect more reliable data to determine what are the best 

rehabilitation strategies (Arif & Kattan, 2015). While commercial activity trackers on the 

market, such as smart watches and wristbands, have surged in popularity in recent years, 

the use of wearable activity trackers in clinical contexts is still very limited (Lester, 

Choudhury, & Borriello, 2006). Product designers of those devices rarely consider 

patients with impaired movement to be a practical user group; thus, those activity 

monitoring devices do not work effectively for motor-disability populations.  

In the United States, there are more than 8,000 people who suffer from a 

traumatic spinal cord injury each year (Wirz et al., 2005). After the initial injury, 50% of 

motor recovery takes place within two months, and full neurologic recovery takes up to 

two years of the injury (Wirz et al., 2005). During the process of recovery, the patients 

undergo treatments that lead to partial functional recovery. While a vast majority of 

patients indicate that exercise is important for functional recovery, more than half of them 

either did not have access to exercise equipment or did not have access to a trained 

therapist to monitor their exercise (Anderson, 2004). With activity trackers, the patients 

can have the ability to exercise anywhere without traveling to a health care provider, and 



 

 

2 
not only do their therapists not have to directly observe them while exercising but also 

therapists are able to obtain accurate feedback on the quality and quantity of the patients’ 

movements.  

The traditional means of evaluating patient mobility are very limited. Patients 

with motor disabilities, such as those with incomplete spinal cord injury, often must 

travel to their health care provider or a rehabilitation center to be periodically evaluated 

and perform a set of exercises, which are overseen by a trained therapist. A trained 

therapist also must supervise other patients; therefore, he/she must split his/her time 

among several patients at different locations, or the patients must be grouped together 

(Lester et al., 2006). The cost of such evaluations, for both patients and therapists, is very 

time and resource intensive, which makes evaluations difficult to perform frequently. 

Alternatively, a patient can exercise at home where they have to complete an activity 

report at the end of the day. Self-reporting, however, is often inaccurate and impractical. 

Patients may intentionally or unintentionally misreport their activities due to their mental 

state or forgetfulness. Patients may report more or fewer activities than what they actually 

accomplish throughout the day (Lester et al., 2006). As an alternative, activity tracking 

through the use of wearable sensors minimizes expenses and travel while providing 

objective and continuous measures of a patient’s exercise performance (Albert, Toledo, 

Shapiro, & Koerding, 2012). 

As they become more commercialized, activity tracking devices have become 

smaller, more affordable, and more available to consumers; they have made a transition 

from being personal wellness tools to patient-centered clinical tools. Bringing wearable 
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activity tracking to populations with movement impairment, however, is particularly 

challenging. Many consumer-based activity monitors currently available on the market, 

e.g., Fitbit and Jawbone UP, typically perform limited analyses to estimate step counts, 

calories, sleep quality, and general activity levels (Chiauzzi, Rodarte, & DasMahapatra, 

2015; Lee, Kim, & Welk, 2014). They have been designed to track the movement of 

healthy populations, and therefore not considering the impact of motor impairments that 

may include muscle weakness, muscle spasms and overactive reflexes. Consumer-based 

wearable devices for activity tracking are known to not be as accurate when worn by 

patients with irregular patterns of movement, such as those with incomplete spinal cord 

injury. In addition to that, the data, generated from the same consumer-based activity 

tracking devices, is not often integrated into a treatment regimen, thus making it very 

difficult to be used in a clinical setting (Chiauzzi et al., 2015). Those unresolved 

obstacles make commercial activity tracking difficult to apply to patients with motor 

impairments.  

Although performing activity recognition in movement-impaired populations is 

challenging, algorithms can be tailored specifically for populations with unique 

movement patterns. Activity recognition strategies have been performed for other 

populations, including individuals with Chronic Obstructive Pulmonary Disease (COPD) 

(Patel, Mancinelli, Healey, Moy, & Bonato, 2009), patients with Parkinson’s disease 

(Albert et al., 2012), and elderly subjects (Najafi, 2003). The studies indicate that their 

unique movements have a dramatic impact on activity recognition algorithms. These 

studies also demonstrate that by specifically designing activity recognition strategies for 
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those populations, tracking accuracy significantly increased. Consequently, it is indeed 

possible for activity recognition algorithms to be tailored for unique populations, such as 

incomplete spinal cord injury patients.  

In a recent study on activity recognition in ambulatory subjects with incomplete 

spinal cord injury, researchers tailored static supervised machine learning techniques to 

categorize the activities of patients with incomplete spinal cord injury (Albert, Azeze, 

Courtois & Jayaraman, 2016). The subjects were instructed to perform a standardized set 

of movements including lying, sitting, standing, walking, wheeling, and stair climbing. 

These activities were performed both in the lab and at home while wearing a tri-axial 

accelerometer around the waist. The data was parsed into ten-second clips. In the same 

study, they used five different static classifiers: Support Vector Machines, Naïve Bayes, 

Regularized Logistic Regression, K Nearest Neighbors, and Decision Trees. While this 

approach yielded promising results, the accuracy is limited as each clip of data is treated 

independently of the neighboring clips—a significant loss of valuable information for 

classification.  

A hidden Markov model (HMM), on the other hand, has the potential to minimize 

those misclassifications by combining the dynamic nature of the HMM with the 

information provided by a static classifier. As the HMM considers activities over a long 

timeframe, it will be able to leverage the predictions made by the static classifier and 

make the most logical predictions based on observations. Hidden Markov models are 

frequently used to classify various activities with regular rhythms, such as speech 

recognition, handwriting, gesture recognition, and activity recognition (Gaikwad, 2012). 
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After taking advantage of the relative strengths of these classification paradigms, 

improvements in speech and activity recognition were statistically significant 

(Ganapathiraju, Hamaker, & Picone, 2000; Lester, Choudhury, Kern, Borriello, & 

Hannaford, 2005). Similar improvements in performance were found when using the 

hybrid model of a static classifier (SVM) with an HMM on activity tracking for 

Parkinson’s populations (Antos, Albert, & Kording, 2014).  

In this research study, we attempt to improve upon the standard static 

classification method for accelerometer-based activity recognition in the context of 

activity tracking for people with incomplete spinal cord injury. We will be augmenting 

standard machine learning classifiers with an HMM to further improve the prediction 

accuracy as compared to using only static classifiers. This technique will be applied to 

movement data from subjects with incomplete spinal cord injury, which was acquired 

through the Rehabilitation Technologies and Outcomes lab directed by Arun Jayaraman, 

PT/Ph.D. at the Rehabilitation Institute of Chicago (RIC).   
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CHAPTER II 
 

BACKGROUND 
 

 In this chapter the intent is to establish an understanding of activity recognition, 

hidden Markov models and previous work. The first section presents activity recognition 

using a standard machine learning approach through static classifiers, followed by 

activity recognition tailored for specific patient populations. The later sections introduce  

Markov models, laying the foundations for the concepts in hidden Markov models 

(HMMs) in the following section. Upon this foundation, insight and previous work in 

using hidden Markov models for activity recognition will be presented.  

Activity Recognition using Static Machine Learning Classifiers 

Activity recognition aims to predict human activities, particularly those that are 

likely to occur in real-life settings. Successful activity recognition can lead to many 

potential applications, especially in the health care field. Although accurate activity 

recognition is particularly challenging because human activities are complex and highly 

diverse, there has been significant improvement in predicting human activity in recent 

years.  

As accelerometers in consumer products, including smart phones, have become 

widely available and cheap, the use of accelerometers in activity recognition has gained 

more attention. The latest generation of smart phones contain tri-axial accelerometers that 

measure acceleration along the x, y and z axes (Figure 1). The ability to detect orientation 
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of the device provides useful information for activity recognition (Ravi, Dandekar, 

Mysore, & Littman, 2005; Kwapisz, Weiss, & Moore, 2011). 

 

Figure 1. The axes of the accelerometer relative to the orientation of the phone. 

Data collected from accelerometer sensors is used to train standard supervised 

machine learning classifiers in an attempt to recognize/predict human activities. Even 

though some pairs of activities are particularly difficult to distinguish based solely on 

accelerometer readings, such as standing and sitting for a waist-worn sensor, as shown in 

Figure 2, standard machine learning classifiers are generally quite capable of recognizing 

human activities from accelerometer data with fairly high accuracy. 

In previous work on activity recognition, Ravi et al. (2005) attempted to recognize 

human activities using accelerometer data. Subjects had an accelerometer-enabled device 

worn on the waist while performing activities, which include standing, walking, running, 

climbing up stairs, climbing down stairs, doing sit-ups, vacuuming, and brushing teeth. 

With 10-fold cross-validation for each classifier, and using only static classifiers, such as 

Naïve Bayes (NB), Support Vector Machines (SVM), K Nearest Neighbors, and 
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Figure 2. Examples of accelerometer readings for three activities: standing, sitting and 
walking for a typical user. Red, green, and blue lines are the x, y, and z-axis 

accelerations. 
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Decision Trees, more than 90% accuracy was achieved (Ravi et al., 2005). Kwapisz et 

al. (2011) also conducted a similar activity recognition experiment, where twenty-nine 

volunteer subjects carried an Android phone in their front pants leg pocket while 

performing certain activities, including walking, jogging, ascending stairs, descending 

stairs, siting, and standing for specific periods of time. In most cases, they achieved high 

levels of overall accuracy.  

Patient-centered Activity Recognition 

Activity recognition has the potential to better inform patient care by offering 

patients and their healthcare providers a real-time assessment of their activities. The 

evaluation is useful, especially for patients with motor disabilities, in quantifying levels 

of everyday movements and their symptoms both in the clinic and at home (Albert, 

Toledo, Shapiro, & Koerding, 2012). The patient-centered activity recognition strategies, 

however, are much more challenging since subjects with ambulatory impairments move 

in significantly different ways from healthy subjects.  

There have been a large number of activity recognition systems designed for and 

tested on healthy subjects. However, many approaches that perform well on healthy 

subjects may perform poorly on populations with impaired mobility that move in unique 

ways. Albert et al. (2012) applied accelerometer-enabled activity recognition in 

populations with Parkinson’s Disease (PD). Data was collected on both PD subjects and 

healthy subjects. The study participants, both healthy and Parkinson’s subjects, were 

asked to carry phones with a standard built-in tri-axial accelerometer in their front 

pockets while performing a series of activities. While they achieved fairly high accuracy 
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on healthy subjects, the accuracy level significantly dropped from 92.2% to 60.3% 

when the model trained with healthy subject data was applied to Parkinson’s subjects. 

However, the researchers achieved significantly better accuracy when the classification 

model was cross validated on Parkinson’s participants—though still not as high in 

comparison to the accuracy achieved with healthy participants. Figure 3, adapted from 

the same work of Albert et al (2012), demonstrates some differences in accelerometer 

readings between Parkinson’s patients and healthy subjects for three activities: standing, 

sitting and walking. This indicates the necessity of taking into account the population’s 

symptoms and their movement patterns when designing the activity recognition 

algorithm.  

 Previous studies show the possibility of classifying human activities for specific 

patient populations with reasonably high accuracy using standard machine learning 

classifiers. Many previous approaches, however, are best at recognizing activities that 

involve significant changes in acceleration, such as jogging and walking (Kwapisz et al., 

2011). But, they work poorly at classifying activities with accelerometer readings that 

present subtle distinctions, such as standing and sitting. This task is even more 

challenging for patients with movement impairment, adding additional, uncharacteristic 

motion to the activities. Combining those classifiers with a hidden Markov model, on the 

other hand, can significantly increase the accuracy of activity recognition (Lester, 

Choudhury, Kern, Borriello, & Hannaford, 2005; Ganapathiraju, Hamaker, & Picone, 

2000; Antos, Albert, & Kording, 2014). Before presenting the description of a hidden  
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Figure 3. Example of accelerometer readings of healthy and Parkinson’s patients for three 
activities: standing, sitting and walking. Adapted from “Using mobile phones for activity 
recognition in Parkinson’s patients,” by Albert, Toledo, Shapiro and Koerding Author, 
2012, Frontiers in Neurology, 3, p. 4. Copyright © 2012 Albert, Toledo, Shapiro and 

Koerding. 
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Markov model, the observed Markov model, upon which HMMs are based, is 

presented. 

Markov Models 

A Markov model, also known as a Markov process, is based on the concept of 

“memorylessness.” In other words, it is a stochastic model in which the future state is 

only dependent on the current state, not the past states. A first-order Markov assumption 

is that the probability of a current event at time n, given all past and present events, only 

depends on the most recent event proximal to time n - 1 (Fosler-Lussier, 1998). In a 

sequence {w1, w2, w3, ..., wn}: 

! "#	 	"#%&, 	"#%( … ,"&) = !("#	|	"#%&) 

In a classic Markov model, states are directly visible to observers. Therefore, the 

only parameters of the model are the transition probabilities. The transition probability is 

the chance of moving from one state to another at each point in time. In the context of 

activity recognition, Figure 4 demonstrates a simple Markov model with three states: 

standing, sitting and walking. By knowing which state someone is currently at, we can 

make probabilistic estimates on how long they will remain in the current state, and when 

they may transition to other states if we know which states they are likely to transition to. 

Let’s assume we know the probability of someone remaining in the same state 

and the transition probability that someone is likely to transition from one state to 

another, as shown in Figure 4. The states are activities in this context. We know the 

current activity of the person. We are now trying to observe the next activity that he/she 

will be doing, given the transition probabilities as shown in Table 1. Assuming that the 
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current activity is sitting, the probability that the next activity will be sitting and the 

activity after that one will be standing can be translated into:  

 

The fundamental limitation of the Markov model is that, in the real world, the 

states are not always known, so inferences that can be made assuming the state is known 

are not as helpful. To handle this situation, we use what is referred to as a hidden Markov 

model.  

 

Figure 4. A graphical representation of a Markov model. 
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    Next Activity 

   Standing Sitting Walking 

C
ur

re
nt

  
A

ct
iv

ity
 Standing 0.3 0.3 0.4 

Sitting 0.19 0.8 0.01 

Walking 0.3 0.05 0.65 

Table 1. Transition probabilities of the next activity based on the current activity. 

Hidden Markov Models 

A hidden Markov model (HMM) is a Markov model with unobserved (hidden) 

states. Hidden Markov models are frequently used to classify various activities with 

temporal structure such as speech, handwriting, part-of-speech tagging and gesture 

recognition (Gaikwad, 2012). The main goal of the model is to find the hidden states 

from observable data. Unlike in a regular Markov model, the state of the data in a hidden 

Markov model is not directly visible to an observer, but observations related to each state 

are visible. Observations are probabilistically related to their (hidden) states, and so the 

states themselves can be inferred from the observations. In other words, the sequence of 

observations allows us to make probabilistic inferences about the sequence of the hidden 

states (Gaikwad, 2012; Kim, Helal, & Cook, 2010).  

As illustrated in Figure 5, a hidden Markov model consists of two main 

parameters: transition probabilities and observation/emission probabilities. Given the 

observed output sequence (y1, y2, y3), one use of an HMM is to determine the hidden state 

sequence (x1, x2, x3). In order to accomplish that, HMM requires two independent 

assumptions. 
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The first assumption refers to a first-order Markov assumption as described in 

the Markov Models section. The assumption states that the future state depends only on 

the current state. That is, at time t, the hidden state xt, is conditionally independent of the 

past states, but dependent only on the previous hidden state xt-1 (Kim et al., 2010).  

! ./	 	.( … , ./%&) = !(./	|	./%&) 

 Another HMM assumption is that observation probabilities are conditionally 

independent of all other past states and observable variables, given the current hidden 

state x. In other words, the observable variable at time t, yt, depends only on the current 

hidden state xt (Kim et al., 2010).  

! 0/	 ./, 0&, 0( … , 0/%&, .&, .( … , ./%&) = !(0/	|	./) 

 

Figure 5. Probabilistic parameters of a hidden Markov model. 
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Therefore, to find the probability of a hidden state sequence (x1, x2, …, xt) from 

an observed output sequence (y1, y2, …, yt), an HMM finds the probability that outcome yt 

is observed in state xt, which is a joint probability P(y, x) of the transition probability   

P(xt | xt-1) and the observation probability P(yt | xt) (Kim et al., 2010).  

! 0, . = ! ./	 ./%&)	!(0/	|	./)
1

/%&
 

 

Hidden Markov Models for Activity Recognition 

Markov models can accurately model simple states and transitions, but when 

activities are complex or unfamiliar, it is often difficult to fit an appropriate Markov 

model. Fortunately, a hidden Markov model allows us to indirectly build a model of 

activities by observing signals from complex or unfamiliar activities (Kim et al., 2010). 

Through investigating the effect of the activities on our observations, a hidden Markov 

model is able to model sequential data in activity recognition.   

Figure 6 illustrates an HMM which is used in the context of activity recognition. 

Hidden states are standing, running, and walking. In the hidden Markov model approach, 

those states are not obvious to an observer who may only have access to sensor readings. 

Transition probabilities between states are shown in Table 2. The possibility that a person 

remains in the same state is generally higher than the possibility that he/she transitions to 

any other states. Those numbers can be measured or estimated by investigating how often 

the person changes from one state to another. The states “Low”, “Medium” and “High” 

are activity levels or average acceleration changes in accelerometer data. They are the 

observable output of the model. Based on the transition probabilities and the output 
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sequence of the observations, we can mathematically infer the most logical activity of 

those hidden states.  

 

Figure 6. A graphical representation of a HMM for activity recognition. 

    To Activity 

   Standing Running Walking 

Fr
om

  
A

ct
iv

ity
 Standing 0.8 0.1 0.1 

Running 0.015 0.9 0.075 

Walking 0.05 0.05 0.9 

Table 2. Transition probabilities between activities. 

 HMMs have been successfully used in modeling different types of time-series 

data, e.g. speech recognition, gesture recognition, and activity recognition. Instead of 
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using only standard static machine learning classifiers, Lester et al. (2005) used a 

hybrid approach, combining static supervised machine learning classifiers with HMMs 

for modeling human activities. He used the results of static classifiers as input for HMMs. 

That is, the posterior probabilities of static classifiers were used as observations to train 

HMMs. By using the posterior probabilities, we can take advantage of the results from 

the discriminatively trained classifier, as well as reduce the complexity of the HMMs 

(Lester et al., 2005). Naïve Bayes and Decision Stumps were used as static classifiers in 

their experiment. Although results from both static classifiers were accurate on their own, 

there are some scattered misclassifications. With an additional HMM layer on top of 

static classifiers, the accuracy was slightly improved.  

 In another experiment on activity recognition, twelve subjects were prompted to 

perform a sequence of activities: walking, sitting, standing and periodically changing 

their phones’ location (Antos et al., 2013). The researchers examined the accuracy of 

activity tracking when the phone was placed in different locations and orientations. Using 

SVMs + HMMs to track activities and phone locations, accuracy improved as compared 

to using only SVMs. Due to temporal irregularities from spastic movements or occasional 

bouts of tremor, the use of SVM static classifiers alone can often lead to 

misclassifications. HMMs, on the other hand, help smooth out those misclassifications by 

inferring the most logical activities based on neighboring activities when ambiguity 

arises. The study shows the combination of SVMs with HMMs provides a more robust 

approach to activity recognition.� 
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Previous Work 

Taking advantage of the temporal integration of HMMs and the high immediate 

discriminative power of static machine learning classifiers, we will extend the previous 

work that used solely static classifiers to perform activity recognition on incomplete 

spinal cord injury patients. In that study, data was collected both in-lab and at-home with 

subjects performing a standardized set of activities: lying, sitting, standing, walking, 

wheeling and stair climbing. Activity-labeled ten-second clips were extracted, and a 

standard set of time-series features were automatically selected, weighed, and combined 

to maximize classification accuracy. They used five different static classifiers: Support 

Vector Machine (SVM), Naïve Bayes, Regularized Logistic Regression, K Nearest 

Neighbors, and Decision Trees (Albert, Azeze, Courtois & Jayaraman, 2016). 

Consequently, SVMs yielded the most promising result with 91.2% accuracy for 

in-lab activities and 85.6% accuracy for at-home activities using within-subject 10-fold 

cross-validation. Note, however, that these accuracy measures are averages with some 

pairs of activities, such as standing vs sitting, and walking vs stair climbing, are more 

likely to be misclassified due to their similarities on accelerometer readings.  

One significant drawback in using static classifiers, such as SVMs, is that they are 

not sufficient to classify activities that could be easily misread on accelerometer readings, 

such as sitting vs standing. A static classifier analyzes a clip of data independently, 

without taking into consideration either pre- or post-activities. This approach is 

problematic when some pairs of activities are similar on accelerometer readings but 

easily to interpret by context. By classifying those clips independently and ignoring the 
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fact that people’s actions are extended over time, this static classification method is 

prone to errors. An example of this would be an individual lying down for a long period 

of time then rolling over while continuing to lie down. An SVM without a “rolling over” 

class would likely classify the data during rolling over as an action, such as standing up 

or walking, then would continue to predict that the individual is laying down. To 

eliminate such problems, Lester et al. (2005) have shown that adding an HMM layer on 

top of the static classification can lead to more accurate predictions. 

In this research study, we take advantage of both static and dynamic classifiers by 

combining static classifiers with HMMs, and applying them to the same dataset collected 

from incomplete spinal cord injury patients to further improve prediction accuracy. 

Improved activity recognition can improve clinical assessments in individuals, and 

provide valuable data to validate and refine therapies to improve mobility in patients. 
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CHAPTER III 
 

METHODOLOGY 
 

  This chapter chronologically follows the sequence of events necessary to 

complete the study. First, the data is collected, features are extracted from the data, and 

the static classification stage is described. The way the HMM approach is specifically 

used is presented, and the various validation methods are presented to assess its accuracy 

in different contexts. 

Data Collection 

 In previous studies, researchers use supervised static machine learning classifiers, 

including Support Vector Machines (SVMs), Naïve Bayes, Regularized Logistic 

Regression, K Nearest Neighbors, and Decision Trees, to perform in-lab and at-home 

activity recognition for incomplete spinal cord injury patients (Albert, Azeze, Courtois & 

Jayaraman, 2016). To further improve the accuracy, as well as to show how good hidden 

Markov models are in smoothing out the misclassifications produced by the static 

machine learning classifiers, we apply the static classifier-HMM hybrid approach to the 

same dataset that was used in their experiment.  

The data set was collected from thirteen ambulatory incomplete spinal cord injury 

subjects—nine males and four females with an age range from 22 to 50. They performed 

a series of activities with an accelerometer worn on their waists. Subjects were instructed 
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to carry out the same activity set twice: in the lab and then at home. At home, subjects 

had to perform the following activities: lying, sitting, walking, standing, wheeling, and 

 

Figure 7. Subjects performed the set of physical activities at home in the order shown. 

 

Figure 8. Subjects performed the physical activities in the lab in a displayed order that 

allows every combination of transitions between activities. Adapted from “In-lab versus 

at-home activity recognition in ambulatory subjects with incomplete spinal cord injury” 

by Albert, Azeze, Courtois and Jayaraman Author, 2016, submitted.  
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stair climbing in a sequence shown in Figure 7. In the lab, as illustrated in Figure 8, 

subjects were asked to do the same activity set in an order that allows every combination 

of transitions between activities, except stair climbing due to accessibility of the stairs. 

The accelerometer data has the following attributes: time and acceleration on each 

axis. Movement data was recorded using an Actigraph wGT3X tri-axial accelerometer 

worn on subjects’ waists using a provided waist strap. An in-house developed MATLAB 

GUI was used to label the recorded accelerometer data (Figure 9). The accelerometer 

sampled at a rate of 100 Hertz with a dynamic range of +/- 8 g's.  

 

Figure 9. The accelerometer readings for different activities. 

Feature Extraction 

Activities were visually identified based on the acceleration values on a specific 

axis and the expected temporal order of the instructed activities. The accelerometer 

signals were then segmented into two-second clips, and a series of features were 

extracted from each of those data clips.  
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 Thirty seven features were extracted from each clip of the tri-axial accelerometer. 

The extracted features were shown in Table 3. Those features have been proven effective 

in prior work (Albert, Toledo, Shapiro, & Koerding, 2012; Albert, Azeze, Courtois, & 

Jayaraman, 2016). Among those features, standard machine learning classifiers 

automatically select, weigh, and combine a standard set of time-series features on these 

clips. 

Description Total number 
of values 

Mean: meanX, meanY, meanZ 3 
Absolute value of the mean 3 
Moments: standard deviation, skew, kurtosis 9 
Root mean square 3 
Extremes: min, max, abs min, abs max 12 
Cross product means: xy, xz, yz 3 
Absolute mean of the cross products 3 
Overall mean acceleration 1 
Total 37 

Table 3. Features used for activity recognition. 

Static Classification 

 Although there are many supervised machine learning algorithms, Figure 10 

shows the basic steps to obtain a prediction model, from data preprocessing to fitting and 

testing a model for predictions. In a supervised machine learning algorithm, there are two 

major parts: training and testing. Training data includes both the input and the desired 

results, while test data is used for prediction. When the true class of the test data is 

known, it can be used to evaluate the effectiveness of the model. Sets of time-series 
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features were then extracted from each data set. In this research study, we consider the 

following static classifiers for the static classification algorithm.  

1. Support Vector Machines (SVM) 

2. Naïve Bayes 

3. Regularized Logistic Regression 

4. K Nearest Neighbors 

5. Decision Trees 

6. Random Forest 

The output of the static classifiers are posterior probabilities which we use as 

input for the HMM classifier later on. A static classifier predicts the label for each data 

clip independently. This independent assumption may be invalid, but the outcome of this 

assumption can help with the HMM classification. “A temporal model that uses the 

confidence of predictions from previous classifiers instead of using raw features is likely 

to have greater impact on the performance” (Lester, Choudhury, Kern, Borriello, & 

Hannaford, 2005). The HMM model classifies sequences of activities with consideration 

to how people transition between activities. In the next section, we describe how we 

combine the results of static supervised machine learning classifiers to build time-series 

activity recognition models 
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Figure 10. Supervised machine learning classification. 
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HMM Classification 

 Hidden Markov models have been successfully used in modeling different types 

of sequential pattern recognition tasks, such as speech recognition, gene prediction, 

gesture recognition, and activity recognition. Although HMMs can work with raw signals 

directly, they are more effective when applied to features that are expected to improve 

recognition accuracy. In our case, our HMMs use posterior probabilities of static 

classifiers as shown in Figure 11. In other words, HMMs use output from the static 

classifiers as input to reclassify the probabilistic inferences made by the static classifiers. 

The entire classification process using hidden Markov models on top of static 

classification is illustrated in Figure 12. 

To create an HMM model, there are two important parameters: the state transition 

matrix and the emission probability matrix. All the parameters were set to be uniform 

across all analyses. A transition matrix, as shown in Table 4, was calculated by 

determining the probability from hidden state Ri to state Rj, which results in the following 

transition matrix P wherein indexes one to six indicate the following states, respectively:  

lying, sitting, stair climbing, standing, walking, or wheeling. 

! =
!#,# !#,%
!%,# !%,% ⋯ !#,'

!%,'
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Table 4. HMM transition probability matrices. 

 

Figure 11. HMM emission probability. 

Observation or emission probabilities were the results of static classifiers as 

shown in Figure 11. Although, static classifiers provide the HMM with a sequence of 

observations which correlate with the correct activity, it is not best to directly infer the 
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activities/hidden states from those observations because they are prone to error due to the 

limits of static classification as discussed before.  

We were able to construct the expected observation probabilities using known 

clips of data. The probabilities are modelled using guassian distributions. The mean of 

each gaussian was found by observing the mean probability for each predicted state over 

the set of all samples from a given true state, proving a distribution of means similar to 

the output of Figure 11. A constant standard deviation * = 0.05 was assigned to all 

emission distributions for simplicity, as the results are robust to a large variation in 

standard deviations. To test our models, we first made probabilistic predictions from the 

static classifiers and then used them as the input for our HMM to infer the most likely 

occurring activity.  
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Figure 12. Classification process using hidden Markov models. 
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Within-Subject Cross Validation 

 Cross validation is used to assess the accuracy of the model. In this study, we use 

within-subject cross validation and subject-wise cross validation to explore the influence 

of training context on classification accuracy. We applied cross validation technique on 

both static classification and HMM classification.  

 

Figure 13. Within-subject 20-fold cross validation technique. 

In within-subject cross validation, each subject’s data is trained and tested 

individually using a 20-fold cross validation technique. Figure 13 demonstrates within-

subject 20-fold cross validation. For each subject, the original dataset is partitioned into 

20 equal-sized subsets. Of the 20 subsets, a classifier is trained on 19 of the datasets, and 

tested on the one remaining dataset. This is repeated twenty times, and a mean accuracy 

is then measured. Overall accuracy is based on the mean accuracy of all the subjects’ 

accuracy scores.  
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Subject-Wise Cross Validation 

For a fairer comparison when a system is not trained on an individual’s particular 

movements, we also performed subject-wise cross validation. For this type of validation, 

the classifier was trained on twelve of the subjects, and tested on the one remaining 

subject. This is repeated thirteen times, so that each subject is tested once (Figure 14). 

 

Figure 14. Subject-wise cross validation technique. 

Hyperparameter Optimization 

To optimize the classification algorithm’s performance, a set of hyperparameters 

for those classifiers were chosen using a grid search of 10x where x is an integer between 

-5 and 5.  We applied the following the following parameters for the classifiers. For 

SVM, we normalized each feature to have 0 mean and unit variance.  We applied radial 

basis functions, giving us two hyperparameters—the soft slack variable, C, and the size 

of the Gaussian kernel, γ. Naïve Bayes had no hyperparameters.  For logistic regression, 
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we applied the soft slack variable, C that was set to 100 and used a L1 penalty.  K nearest 

neighbor employed with a k value up to 30.  For the decision tree classifier, we applied a 

value of 10 corresponding to the minimum sample needed to split a node. For random 

forest, we applied n_estimators with a value up to 100, indicating the number of decision 

trees to be averaged. 

We also used cross validation techniques to avoid the potential for overfitting. For 

each iteration of the cross validation process in Figure 13 and Figure 14, we split the data 

into training and testing folds. On the complete training set, we used a grid search in 

combination with k-fold cross validation to find tune the optimum hyperparameters for 

each loop.  The grid search will divide the training set into two halves: training fold and 

validation fold. After training the hyperparameters, the values will be evaluated on the 

validation set for each model. The model with the best hyperparameters will then be 

tested on the testing fold at the outer loop to evaluate the model performance.  
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CHAPTER IV 
 

RESULTS AND DISCUSSION 

 Our first goal was to augment a static standard machine learning classifier with a 

hidden Markov model in a laboratory setting. That is, we use in-lab data as input for the 

traditional, static supervised machine learning classifier, and use the results from the 

static classifier as input for the HMM classifier.  

Static Classification Results 

Using lab-acquired data, we tested the performance of the hybrid classifier for six 

different static classifiers—Support Vector Machine, Naïve Bayes, Regularized Logistic 

Regression, K Nearest Neighbor, Decision Tree, and Random Forest. Using within-

subject 20-fold cross validation technique, we were able to predict the activity with 

86.3% accuracy. The highest accuracy was from the random forest classifier followed by 

the support vector machine (SVM) classifier at 83.7%. Overall accuracies from each 

classifier are presented in Table 5. The in-lab activity achieved an overall precision of 

83.27% and an overall recall of 84.13%. Lying was the most accurately predicted with 

93.62% precision followed by wheeling at 91.30% and walking at 90.53%. Table 6 

illustrates the precision and recall numbers for multiple static machine learning classifiers 

and HMM classifiers. 
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The lower accuracies were the result of misclassification of similar physical 

activities. The classification matrix, also known as the confusion matrix, shows the 

performance of the classification model (Table 8). The model tends to confuse between 

sitting and wheeling, and walking and stair climbing. In general, although the behaviors 

are quite, these particular pairs of activities are difficult to distinguish distinct due to the 

movement of the accelerometers on the waist, and thus the observed sensor readings, are 

quite similar.  

 For a better indication of the accuracy of our model when applied to new 

individuals (ones for which it has not been trained), we used subject-wise cross 

validation. Because individual subjects move in unique ways, especially among people 

with varying degrees of spinal cord injury, the overall accuracy was, as expected, lower 

than within-subject cross validation. The subject-wise cross validation was 63.1% 

accuracy (Table 5). The SVM classifier achieved the highest accuracy followed by 

random forest classifier. Table 9 illustrates the precision and recall numbers acquired 

from the SVM classifier using subject-wise cross validation. 

HMM Classification Results 

Using in-lab data, we trained HMM classifiers with the output probabilities of the 

static classifier, and tested with the test dataset. With the within-subject cross validation 

technique, the accuracy improved from 86.3% to 88.9%. The hybrid model of random 

forest and HMM classifier produced 2.6% higher accuracy compared to the one using 

random forest alone. We were able to accurately predict the activity with an overall 

precision of 87.2% and a recall of 86.9%. The precision increased by 3.9% while the 
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recall increased by 2.8%. Each activity achieved higher accuracy compared to the prior 

classification. Table 7 lists the precision and recall of all activities for random forest with 

HMM. Stair climbing was accurately predicted with the lowest 64.29% precision using 

random forest alone. The result was expected, as stair climbing is easily misclassified 

with walking. HMM, on the other hand, correctly reclassified the activity as stair 

climbing and improved the accuracy to 82.4%.  

In subject-wise cross validation, a hybrid SVM and HMM model gave the highest 

accuracy of 64.3%. We were able to increase the overall accuracy by 1.2%, as compared 

to the model using only SVM. Overall recall moved from 56.78% to 62.75%. The result 

shows the temporal power of HMM in reclassifying the activities that static classifiers 

fail to correctly recognize. 

 
Within-subject 20-fold Subject-wise 
Static 

classifier 
HMM with 

static classifier 
Static 

classifier 
HMM with 

static classifier 
Support Vector 
Machine 83.7% 86.5% 63.1% 64.3% 

Naïve Bayes 82.3% 82.9% 56.1% 57.5% 
Regularized 
Logistic Regression 83% 85.7% 61.8% 60.5% 

K Nearest 
Neighbors 71% 76.9% 50.3% 55.7% 

Decision Tree 82.5% 83.6% 49.9% 54.8% 

Random Forest 86.3% 88.9% 60% 62% 

Table 5. Overall accuracy for multiple generative and discriminative classifiers. 
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Table 6. Precision and recall numbers for random forest classifier using within-subject 
cross validation. Overall precision is 83.3% and recall is 84.1%. 

 

Table 7. Precision and recall numbers for HMM classifier using within-subject cross 
validation. Overall precision is 87.2% and recall is 86.9%. 
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Table 8. Classification matrix of random forest and HMM classifier using within-subject 
20-fold cross validation.  

 

Table 9. Precision and recall numbers for SVM classifier using subject-wise cross 
validation. Overall precision is 57.81% and recall is 56.78%. 



 

 

39 

 

Table 10. Precision and recall numbers for HMM classifier using subject-wise cross 
validation. Overall precision is 61.06% and recall is 62.75%. 

 

 
Table 11. Classification matrix of SVM and HMM classifier using subject-wise cross 

validation. 
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Discussion 

By using HMMs to correct misclassifications produced by static classifiers in 

activity recognition, we were able to increase the prediction accuracy by 2.6% when 

using within-subject cross validation. With subject-wise cross validation, the accuracy 

increases by 1.2%. This confirms our hypothesis of increased accuracy in activity 

recognition when using HMMs to supplement a static classifier. 

Our results have aligned with other studies regarding the use of hidden Markov 

models with increased accuracy in activity recognition rather than using static classifiers 

alone (Olguín & Pentland, 2006; Lester, Choudhury, Kern, Borriello, & Hannaford, 

2005). Antos, Albert and Kording (2014) have also shown the improved classification 

accuracy in activity and location tracking by integrating static classifiers into HMMs to 

smooth out temporal irregularities.   

Our prediction improvement, however, was subtle because we dealt with activities 

that are almost undistinguishable. As shown in confusion matrix in Table 8 and Table 11, 

the model mostly confuses between sitting and wheeling, and walking and stair climbing. 

In general, sitting and wheeling are difficult to differentiate when one subject had to use 

joystick-controlled wheelchair during data collection, which makes sitting and wheeling 

on a wheelchair are relatively similar on the accelerometer readings. Some patients walk 

and climb up the stair at the same slow pace, which made it hard for the classification 

model to recognize between walking and stair climbing. If we did not distinguish those 

activities, we were able to achieve up to approximately 96%. Beyond the concern of these 

movement variations, the performance of static classifiers could also affect the overall 
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accuracy. If static classifiers perform very poorly on a consistent basis, the HMM has 

little useful information to work with.  In order to increase the overall effectiveness and 

applicability of this program more work will likely need to be done at the static 

classification stage.  

With results and observations that we have gathered, there are many directions 

this project could be taken in the future. For example, smart phones have been used 

activity recognition purposes using HMMs (Antos, Albert, & Kording, 2014). In this 

particular example, the models were trained from different locations on the body, 

something we could consider doing in the future. Alternatively, there have been studies 

which use multiple accelerometers at once at different locations on the body with the 

hope that the accelerometers could collectively provide better data than the use of a single 

accelerometer (Olguín & Pentland, 2006). On the other hand, instead of training our 

model with incomplete spinal cord injury patients only, we would have trained our model 

to detect each form of activity that is unique to the population of each physical therapy 

group, such as incomplete spinal cord injury and Parkinson’s disease as these individuals 

move in similar ways compared to others within their group, but not necessarily others. 
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CHAPTER V 
 

CONCLUSION 
 

 In this research study, we developed a model that integrates static classifiers with 

a hidden Markov model (HMM). The objective of this approach is to improve accuracy 

by leveraging the individual, discriminative ability of static classifiers and the ability of 

HMMs to use temporal relationships of classified activities. Results show that 

augmenting static classifiers with HMMs, in general, gives better classification accuracy 

over static machine learning classifiers alone.   

 Through the improved prediction accuracy, this hybrid approach brings more 

advanced activity recognition closer to clinical application. People with mobility 

impairments, such as those with incomplete spinal cord injury, have an extensive need for 

physical therapy to improve recovery outcomes. Assessing the impact of therapy at home 

benefits from the type of data that can be collected through activity recognition. Wearable 

devices are capable of measuring patient outcomes objectively, conveniently, and 

continuously compared to more traditional assessment tools—like clinical visits and 

home journaling. In this way we hope this work, and activity recognition in general, will 

lead to better therapeutic interventions and patient outcomes.  
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