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CHAPTER I: INTRODUCTION 

 Streams are naturally dynamic systems with most physical aspects exhibiting 

spatial and temporal heterogeneity that influence lotic macroinvertebrates.  Differences in 

stream substrates (Minshall 1977), vegetation (Vincent 1983), discharge and temperature 

(Townsend et al. 1983, Bourhard et al. 1987) and channel morphology (Ward 1998, 

Wesche 1985) lead to variations in macroinvertebrate distribution and abundances.   

 Water temperature plays an integral role in the growth and development times of 

stream macroinvertebrates (Anderson and Cummins 1979, Vannote and Sweeney 1980). 

Adult size is maximized at an optimal temperature, but at nonoptimal temperatures, 

insects mature at smaller body sizes (Vannote and Sweeney 1980).  Merritt et al. (1982) 

showed that an increase in stream temperatures reduced larval development time and 

final larval body size in blackflies (Diptera: Simuliidae), which optimally develops at a 

narrow range of cold temperatures.  

 Aquatic insect growth and development can differ appreciably in streams in close 

geographic proximity because of differences in water source, such as in groundwater-fed 

(GWF) and surface water-fed (SWF) streams. Groundwater-fed streams experience few 

flooding and disturbance events due to the constant flow from their water source (Gordon 

2004).  Temperatures in GWF streams exhibit little temporal variation (Vannote and 

Sweeney1980) due to the relative stability of groundwater temperatures. 

Macroinvertebrate community diversity in GWF streams is typically low because species 
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composition is restricted to taxa adapted to a narrow temperature range (Vannote and 

Sweeney 1980).  

 In contrast, SWF streams, experience frequent flooding and disturbance events, 

and temperatures are more variable with a higher daily range than in GWF streams. 

Water temperatures in SWF streams are strongly influenced by the temperature of major 

inputs, such as precipitation and glacial melt.  Macroinvertebrate diversity is generally 

higher in SWF streams due to the greater temperature range, which would favor a larger 

number of taxa (Vannote and Sweeney 1980).  

 In addition to groundwater or surface water inputs, channel morphology and water 

depth can strongly influence water temperatures  (Gordon 2004). Side channels in 

streams are shallow with reduced current velocity. These channels are more readily 

warmed by solar radiation than main channel areas due to their reduced depth and 

increased residence time of the water (McRae and Edwards 1994, Hawkins et al. 1997). 

Understanding how aquatic insect community structure and function differs in areas of 

contrasting thermal regimes provides insights on the impact of climate change. 

 Effects of climate change will be most pronounced in northern latitude streams as 

they are expected to experience the greatest change and show effects of climate change 

the earliest (IPCC 2007). Northern latitude streams are predicted to have increased winter 

flow and more unpredictable and frequent flooding (Elsner et al. 2010).  Although stream 

temperatures will increase with rising air temperatures, local geomorphic and hydrologic 

factors such as the presence of shallow side channels and the relative contribution of 

groundwater and surface water inputs can modify these effects (Arismendi et al. 2012). 

These areas may serve as early sentinels for climate change since northern latitudes are 
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projected to experience greater temperature changes than lower latitudes.  

Copper River Delta 

 Groundwater-fed streams along the Copper River Delta (CRD) in southcentral 

Alaska are stable both thermally and hydrologically year round, whereas SWF streams 

exhibit more variable temperatures and hydrology. Within each hydrologic type, GWF 

and SWF, water temperature can differ substantially in the main channel and side 

channels. Side channels of SWF streams on the CRD can be as much as 5°C warmer than 

the main channel early in the growing season (May), however differences in water 

temperature dissipate as the growing season progresses due to warming of the main 

channel. In contrast, side channel water temperatures in GWF streams are typically > 5°C 

warmer than the main channel and these differences are maintained throughout the 

growing season (G. Reeves, pers. comm.).   

 Groundwater and surface water- fed streams of the CRD sustain healthy 

populations of salmon, which are important for commercial and sport fishing along the 

CRD (Christensen et al. 2000). Aquatic insects are an integral component of salmon diets 

prior to their migration from freshwater to the marine environment (Burgner 1991).  Data 

from previous work on coho salmon (Oncorhynchus kisutch) have shown higher total 

salmon biomass of 0+ fish in GWF than in SWF streams (G. Reeves, pers. comm.). 

These data also indicate that 0+ salmon are more abundant in side channels than in main 

channel areas (G. Reeves, pers. comm.).  Although juvenile salmonid distribution can be 

dependent on stream velocity and channel morphology (Quinn 2005), higher densities 

and/or biomass of insects in side channels could also be an explanation for salmon fry 

congregating in these warm, calm, backwater areas, although this has not been previously 
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studied.  

 The Copper River Delta (CRD), Alaska, is an ideal location to study the effects of 

contrasting thermal and hydrologic regimes on aquatic insect communities in vulnerable 

northern latitudes. The CRD is the largest contiguous wetland on the Pacific coast of 

North America (Thilenius 1990) and encompasses braided streams from the Copper 

River, glacial melt-waters and groundwater inputs.  Streams on the delta are relatively 

pristine, have numerous side channels (Kruger & Tyler 1995), and streams in the same 

vicinity can have contrasting thermal and hydrologic regimes associated with being 

primarily GWF or SWF. These combinations of characteristics provide an opportunity to 

examine the effects of thermal heterogeneity (i.e. across hydrologic regimes and within 

streams - main channels vs. side channels) and hydrologic regimes (GWF vs. SWF) on 

aquatic insect community structure and secondary production. 
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CHAPTER II: AQUATIC INSECT COMMUNITY STRUCTURE 

Introduction 

Stream insect community structure is strongly influenced by a variety of regional 

and local environmental factors including flow permanency, substrate types (Minshall 

1977), discharge and temperature regimes (Townsend et al. 1983, Bourhard et al. 1987). 

Milner et al. (2001) compiled a synthesis of studies examining macroinvertebrate 

community structure in glacier-fed streams along a temperature gradient.  Results showed 

Baetidae (Ephemeroptera) were present in high densities at temperatures >12 C, whereas 

Simuliidae (Diptera) were present in high densities > 6C, indicating different thermal 

ranges.  Subfamilies of Chironomidae are also known to have thermal ranges. 

Chironominae and Tanypodinae are prevalent in warm streams, whereas Diamesinae, 

Prodiamesinae and Orthocladiinae are commonly found in cooler temperatures (Beckett 

1992; Coffman and de la Rosa 1998). Within cool streams, Milner et al. (2001) found that 

Diamesinae occurred at high densities < 6 C, whereas Orthocladiinae was more 

prevalent at temperatures > 6C. 

  Streams in close geographic proximity can have contrasting aquatic insect 

communities because of differences in water source (Friberg et al. 2001). Streams can be 

fed by groundwater or surface water. Groundwater-fed (GWF) streams exhibit little 

thermal variation (Vannote and Sweeney 1980). Macroinvertebrate community diversity 

in GWF streams is typically low because species composition is restricted to taxa adapted 

to a narrow temperature range (Vannote and Sweeney 1980). In contrast, surface water-

fed (SWF) streams are more thermally variable due to the influence of temperature of 
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major inputs such as precipitation and glacial melt. Macroinvertebrate diversity is 

generally higher in SWF streams due to the greater temperature range, which would favor 

a larger number of taxa (Vannote and Sweeney 1980).  

 Channel morphology and water depth can also strongly influence water 

temperatures (Gordon 2004). Shallow side channels are more readily warmed by solar 

radiation than main channel areas due to reduced depth and longer residence time of 

water (McRae and Edwards 1994, Hawkins et al. 1997). The effect of thermal regime on 

macroinvertebrate communities in streams in close geographic proximity has not been 

extensively studied. 

Study Objectives 

 The goal of this project was to examine the influence of thermal and spatial 

heterogeneity (i.e. across hydrologic regimes and within streams) on aquatic insect 

community structure. These results can be expanded beyond the study region to other 

systems and ecological habitats, and provide a baseline for the community structure and 

diversity that can potentially be expected. Results from this study will provide insights as 

to how streams in close geographic proximity with differing thermal regimes can have 

different aquatic insect community structure. 

Methods 

Study Site 

 This study was conducted along the Copper River Delta (CRD) in southcentral 

Alaska (Figure 1). The CRD, located in the Chugach National Forest, is the largest 

contiguous wetland on the Pacific coast of North America extending 120 km along the 
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Gulf of Alaska (Christensen et al. 2000). The CRD is a diverse landscape comprised of 

streams, sloughs, marshlands and tidal flats with the present study focusing on the 

wetlands tundra ecosystem. Heavy summer rainfall and seasonal melt of glaciers and  

snowfields contribute to the varying hydrologic conditions on the delta. Streams on the 

delta are relatively pristine, have numerous side channels (Kruger & Tyler 1995), and 

exhibit thermal variability and contrasting hydrologic types associated with being either 

groundwater-fed (GWF) or surface water-fed (SWF).  

 Four streams (two GWF and two SWF) west of the Copper River were studied 

that exhibited contrasting thermal and hydrologic regimes. Groundwater-fed streams are 

were thermally and hydrologically stable year round, whereas SWF streams exhibited 

greater thermal and hydrologic variability compared to GWF streams.  

 The GWF streams in this study were 25 Mile and Hatchery Creeks. (Figure 1, 

Table 1).  25 Mile is located at mile marker 25 (40km) on the Copper River Highway and 

has an open canopy with the riparian zone consisting of primarily grasses and sedges.  

Sitka spruce (Picea sitchensis) and alder (Alnus spp.) are scattered throughout the 

riparian zone. The main channel, on average, is deeper than side channel areas and 

consists of runs, riffles and pools with a substrate comprised of cobble, pebble and fine 

sand.  Side channels consist of shallow pools with substrates of primarily fine organic 

material and silt. The study site at Hatchery Creek is located 8km from the town of 

Cordova, AK on Power Creek Rd and has a closed canopy with a riparian zone of dense 

Sitka spruce, alder, devil’s club (Oplopanax horridus) and ferns. The main and side 

channels are similar to those in 25 Mile with respect to habitats (runs, riffles, pools) and 
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substrate type. 

 Surface water-fed streams were 18 Mile and Blackhole Creek.  18 Mile is located 

at mile marker 18 (29km) on the Copper River Highway and has an open canopy (sparse
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Figure 1. Map of Copper River Delta, AK, study area showing replicate streams with the two hydrologic types, 

 triangle = groundwater-fed and circle = surface water-fed.
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Sitka spruce and alder) with numerous runs, riffles and pools.  Substrate type in the main 

channel consists of cobble, pebbles and fine sand, and a thin layer of iron precipitate 

covers the substrate.  Side channels consist of backwater pool areas with a substrate of 

primarily fine organic material, however some pool areas also had fine sand and pebbles 

with iron precipitate.  Blackhole Creek is located at mile marker 21 (34km) on the 

Copper River Highway and has a closed canopy with the riparian zone comprised of 

Sitka spruce, alder, salmonberry (Rubus spectabilius) and ferns.  The main channel 

consists of runs, riffles and pools with similar substrate types as in the other three 

streams. Side channels consisted of fine organic material found in the backwater pools. 

Sampling Regime 

 Each stream was sampled bimonthly from late April 2013 to August 2013 and 

once in September (fall) and November (early winter). Sampling in each stream occurred 

along a 300-meter reach in the main channel and side channel areas, the latter are shallow 

with little to no current.   

 Hobo
®
 temperature loggers were deployed in all study reaches to track thermal 

variation within each stream.  Two temperature loggers were placed in the main channel, 

two in the side channel, and one attached to a nearby tree to record air temperature.  In-

stream temperature loggers were submerged and attached to logs with wire.  Air 

temperature loggers were placed in a Hobo
®
 RS-1 Solar Radiation Shield. Temperature 

loggers were set to record every two hours from spring through summer because a return 

to the study sites after August was uncertain.  Additional water temperature data from 

main and side channel areas for the period early May 2013 to early March 2014 were  
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Table 1. Descripton of study sites of streams on the Copper River Delta, Alaska, April - November 2013. GWF = groundwater-fed, 

SWF = surface water-fed, Main = main channel, Side = side channel.   

 

 

 

 

 

 

 

 

 

Hydrologic 

Type 
Stream Channel Abbreviation Latitude (°N) Longitude (°W) Canopy Substrate 

GWF 

25 Mile 
Main 25mi-M 

60.44234 -145.11804 Open 
Cobble, pebble, fine sand 

Side 25mi-S Fine organic material, slit 

Hatchery Creek 
Main Hat-M 

60.591126 -145.631869 Closed 
Cobble, pebble, fine sand 

Side Hat-S Fine organic material, slit 

SWF 

18 Mile 
Main 18mi-M 

60.463259 -145.309639 Open 
Cobble, pebble, iron precipitate 

Side 18mi-S Fine organic, iron precipitate 

Blackhole Creek 
Main Blk-M 

60.460497 -145.356674 Closed 
Cobble, pebble, fine sand 

Side Blk-S Fine organic material, slit 
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 provided by collaborators (E. Campbell, pers. comm.).  These loggers recorded 

temperature every 30 minutes.  

 On each sampling date, three replicate benthic samples were collected from main 

and side channel areas of each stream using a 0.1m Hess sampler (mesh size = 250μm).  

Benthic samples were collected from three randomly selected locations in each stream 

area and the enclosed substrate was agitated for 30 seconds.  In side channel areas with 

little water current, a current was manually created within the Hess sampler to ensure 

organisms were swept into the net.  Samples were transferred to Uline
®
 poly bags, 

preserved with 70% ethanol and transported to the laboratory for sorting.  

Aquatic Insect Sample Processing 

 The contents of each poly bag were elutriated to separate aquatic insects from fine 

sand substrate before being sorted under a Leica dissecting microscope at 6.3 – 50X 

magnification.  Aquatic insects from each replicate sample were sorted into 30 ml 

scintillation vials and preserved in 70% ethanol. Chironomidae from each replicate 

sample were placed into separate vials. Chironomid samples with high numbers of 

organisms were split using a Folsom Plankton Splitter (Wildlife Supply Company, 

Florida, USA) to facilitate counting. A subset of three sampling dates (May, July and 

September) was used for community structure analysis of all aquatic insects.  

 Once sorted, aquatic insects were measured to the nearest millimeter (body 

length) and identified to the lowest possible taxonomic level, usually genus using Merritt 

et al. (2008). Chironomids in only two of the three replicates were used in analyses 

because of logistical constraints associated with identifying the high number of larvae 

collected. Aquatic insects from benthic samples were used to examine aquatic insect 
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community structure and to quantify insect densities. 

Stream Physicochemical Parameters 

 General physicochemical parameters of the study reaches were recorded during 

each sampling period.  Water temperature, pH, dissolved oxygen, conductivity, salinity, 

and total dissolved solids were measured with a YSI 556 MPS multimeter. Stream 

discharge data were provided by collaborators (E. Campbell, pers. comm.). Substrate type 

at each site was visually assessed during spring.  

 Water samples for nutrient analyses (soluble reactive phosphorus, ammonium, 

and nitrate) were collected monthly from main and side channel areas of each stream.  

Water was collected with a 60ml Luer-Lok tip syringe (BD, Franklin Lakes, NJ) in 15 ml 

increments and filtered using a 25mm diameter Pall Type A/E Glass Fiber Filter (pore 

size 1 um) held into place by a Pall 25mm Syringe Filter holder. Filtered water was 

placed into 15 ml centrifuge tubes and frozen for later analysis using an Auto Analyzer 3 

(Seal Analytical, Inc., Mequoun, WI, USA).     

 Benthic algal samples were collected monthly for chlorophyll a analyses. 

Replicate algal samples were collected by scrubbing a 5cm area from each of three rocks 

collected from the main and side channel areas in each stream.  The algal slurry was 

filtered through 25mm diameter Pall Type A/E Glass Fiber Filter (pore size 1 um) and the 

filter was placed in a black 15 ml centrifuge film canister and frozen for later analysis.   

Chlorophyll a analysis and extraction was conducted in the laboratory according to 

Steinman et al. (2006).  Extractant was analyzed with a UV-1700 spectrophotometer 

(Shimadzu Corp., Kyoto, Japan) at 750 nm and after acidification at 665nm.  Calculations 

based on absorbance yielded chlorophyll a concentration.  
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Data Analyses 

 Non-metric multidimensional scaling (nMDS) was used to compare aquatic insect 

community composition for three months (May, July and September) based on taxa and 

functional feeding group relative abundances among hydrologic types (GWF vs. SWF) 

and within streams (main vs. side channels) (Primer 6, PRIMER-E Ltd, Plymouth). Non-

metric multidimensional scaling (nMDS) is an ordination method that characterizes 

objects (i.e., streams) by multiple variables so that in a graphical representation similar 

communities are clustered close together and dissimilar communities are far apart. 

Community composition values based on taxa and functional feeding group relative 

abundances were square root transformed and similarity matrices were created using 

Bray-Curtis, which were then analyzed with nMDS. Non-metric multidimensional 

scaling can be graphically represented in 2- or 3-dimensions, and the 2-dimensional 

representation of nMDS was used for this study. Analysis of variance (ANOVA) was 

used for all statistical comparisons. Aquatic insect abundance data were square root 

transformed to meet the assumptions of ANOVA and Shannon-Wiener diversity values 

were also analyzed with t-tests using SYSTAT 13 (SYSTAT Vers. 13 Software, San 

Jose, CA). 
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Results 

Physicochemical Parameters 

 Physicochemical parameters of channel types (main and side) in each stream were 

measured from late April through August 2013. Average stream temperature and ranges 

differed between hydrologic types. Mean water temperature in groundwater-fed (GWF) 

streams (4.6
 o
C) was lower than in surface water-fed (SWF) streams (7.5

 o
C). Water 

temperatures in GWF streams ranged from 0.8
o
C in May to 9.7

o
C in August, whereas 

temperatures in SWF streams ranged from 0.3°C (May) to 18.8°C in August. Mean daily 

temperatures in GWF streams increased slightly over the sampling period but were 

relatively consistent in comparison to SWF stream daily mean temperatures, which 

increased at a faster rate and reached higher temperatures (Figure 2).  

 Mean daily temperatures in 25 Mile (GWF) were consistently warmer in side 

channels than in the main channel throughout the study, whereas in Hatchery Creek, the 

other GWF stream, mean daily temperatures were similar in both channel areas (Table 2). 

In contrast, temperatures in both SWF streams were consistently higher in main channels 

than in side channels during the study (Figure 2). In both hydrologic types, however, side 

channels were more thermally variable such that their monthly temperature range was 

greater than in the main channel.  For example, water temperatures in 18 Mile main 

channel during August ranged from 9.3
 o
C – 13.8

 o
C, whereas the side channel range was 

exhibited cooler low temperatures and warmer high temperatures (4.2
 o
C – 18.8

 o
C) 

(Table 2). 

 Physicochemical parameters of the streams and channels were variable or low 

throughout the sampling period. Dissolved oxygen (DO), pH, and oxidation-reduction
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Figure 2. Mean daily water temperatures (°C) from study streams on the Copper River Delta, AK, April – August 2013. 

GWF = groundwater-fed, SWF = surface water-fed, Main = main channel, Side = side channel. 
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Table 2. Physicochemical parameters of four study streams on the Copper River Delta, AK, April - November 2013, presented as 

sampling period means. Variation in physicochemical parameters presented as coefficient of variation (CV, %). GWF = groundwater-

fed, SWF = surface water-fed. Site abbreviations as in Table 1. 

 GWF SWF 

  25mi-M 25mi-S Hat-M Hat-S CV 18mi-M 18mi-S Blk-M Blk-S CV 

Maximum Depth (cm) 40 20 50 30  60 30 30 25  
           

Temperature (°C) 4.9 5.6 4.0 4.1 34.7 8.4 7.7 7.7 6.2 55.4 

Range 2.7 - 9.4 2.5 - 10.4 0.8 – 9.7 0.8 – 9.4  0.9 - 16.4 1.3 - 18.8  0.3 - 12.2 0.5 - 11.7  
           

pH  6.6 6.3 5.3 6.0 16.6 6.5 6.5 7.2 7.6 17.1 
           

Dissolved Oxygen (mg/L)  9.3 8.7 8.5 8.8 13.9 8.3 6.7 9.2 8.4 24.5 
           

Conductivity (µS/cm)  0.05 0.05 0.06 0.06 10.4 0.02 0.04 0.02 0.03 51.5 
           

Salinity (ppt) 0.02 0.03 0.03 0.03 17.2 0.01 0.02 0.01 0.01 63.2 
           

Total Dissolved Solids (g/L) 0.03 0.04 0.04 0.04 9.2 0.01 0.03 0.02 0.02 50.6 
           

Oxidation Reduction Potential (mV) 63.3 60.5 58.5 51.1 41.5 68.2 53.7 72.5 45.7 55.6 
           

Chlorophyll a (µg/cm
2
)

 
0.07 0.9 0.5 1.8 140 0.6 0.8 0.1 0.2 154 

           

Soluble reactive phosphorous (µg/L)  2.4 4.9 2.6 2.3 105 2.5 2.9 5.3 8.3 152 
           

Ammonium (µg/L)  11.9 25.1 19.8 19.5 71.7 24.3 69.6 32.3 53.0 94.4 
           

Nitrate (µg/L)  91.5 97.4 66.6 54.0 44.9 74.4 42.5 42.2 37.8 50.7 
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potential (ORP) were variable throughout the sampling period in the streams and channel 

types (Table 2). Conductivity, salinity, and total dissolved solids (TDS) were consistently 

low in all study sites (Table 2). Chlorophyll a and soluble reactive phosphorus (SRP) 

levels were relatively low in all streams and channel types throughout the sampling 

period with no obvious patterns between hydrologic type or channel type (Table 2). 

Ammonium concentrations in SWF streams were significantly higher than in GWF 

streams over the study period (one-way ANOVA, df=1,30; F= 5.4, p=0.02), whereas 

nitrate concentrations were significantly higher in GWF streams than in SWF streams 

(one-way ANOVA, df=1,30; F=7.3, p=0.01).  

 Variation (coefficient of variation, % CV) in physicochemical parameters 

between hydrologic type was uniformly higher for all parameters in SWF streams than in 

GWF streams  (Table 2).  

Taxonomic Composition 

 A total of 35,665 aquatic insects representing six orders, 18 families, and 60 

genera were collected from the four study streams (Table 3, Appendix Table 14). 

Chironomids comprised 93.6% of all aquatic insects collected in GWF streams followed 

by non-chironomid Diptera (2.8%), Plecoptera (1.6%), and Ephemeroptera (1.3%) (Table 

3). In SWF streams, chironomids represented 81% of aquatic insects collected followed 

by non-chironomid Diptera (8.2%), Ephemeroptera (4.5%), Plecoptera (3.7%), and 

Hemiptera (1.5%) (Table 3). 

 Although non-biting midges (Diptera: Chironomidae) were numerically dominant 

in all streams and accounted for 89.6% of all aquatic insects collected, there was a 

significant difference in relative abundance between hydrologic types.  Chironomid
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Table 3. Aquatic insect abundance (% total abundance in each stream) in groundwater-fed (GWF) and surface water-fed (SWF) study 

streams on the Copper River Delta, Alaska, April – November 2013. Taxa grouped by order (family for Chironomidae). Main = main 

channel, Side = side channel. 

  Total Chironomidae Other Diptera Plecoptera Ephemeroptera Trichoptera Hemiptera Coleoptera 

25 Mile Main 4074 3748 (92%) 166 (4%) 31 (<1%) 107 (<1%) 22 (<1%) 0 0 

25 Mile Side 5180 4857 (94%) 255 (5%) 3 (<1%) 0 35 (<1%) 24 (<1%) 6 (<1%) 

Hatchery Creek Main 9197 8560 (93%) 132 (1%) 301 (3%) 195 (2%) 9 (<1%) 0 0 

Hatchery Creek Side 5517 5307 (96%) 128 (2%) 56 (1%) 5 (<1%) 21 (<1%) 0 0 

GWF Streams 23968 22472 (94%) 681 (3%) 391 (2%) 307 (1%) 87 (<1%) 24 (<1%) 6 (<1%) 

18 Mile Main 3885 3059 (79%) 504 (13%) 81 (2%) 171 (4%) 2 (<1%) 3 (<1%) 0 

18 Mile Side 1970 1742 (88%) 65 (3%) 2 (<1%) 7 (<1%) 6 (<1%) 144 (7%) 4 (<1%) 

Blackhole Creek Main 3167 2262 (71%) 236 (7%) 309 (10%) 328 (10%) 32 (1%) 0 0 

Blackhole Creek Side 2675 2429 (90%) 134 (5%) 46 (2%) 19 (<1%) 11 (<1%) 34  (1%) 2 (<1%) 

SWF Streams 11697 9492 (81%) 939 (8%) 438 (4%) 525 (4%) 51 (<1%) 181 (2%) 6 (<1%) 

Total 35665 31964 (90%) 1620 (5%) 829 (2%) 832 (2%) 138 (<1%) 205 (<1%) 12 (<1%) 
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 relative abundance was significantly higher in GWF streams than in SWF (one-way 

ANOVA, hydrologic type main effect, df=1,6; F=6.6, p=0.04) (Table 3).  

 Within the Chironomidae, the subfamilies Orthocladiinae and Chironominae were 

numerically dominant and accounted for 76.1% and 18.6% of all chironomids, 

respectively.  In GWF streams, Orthocladiinae comprised 87% of chironomids collected 

followed by Chironominae (8.6%), with the remaining 4% represented by Prodiamesinae, 

Diamesinae and Tanypodinae (Table 4). Orthocladiinae comprised 50% of chironomids 

collected in SWF streams followed by Chironominae (42.4%), with the remaining 8% 

comprised of Prodiamesinae, Diamesinae, Tanypodinae and Podonominae (Table 4).  

 Chironomids were more abundant in side channels than in main channels for both 

hydrologic types, however this difference was significant only in SWF streams (one-way 

ANOVA, channel main effect, df=2,5; F=26.1, p=0.002).  Chironomid abundance at the 

subfamily level, however, revealed a different pattern. Orthocladiinae were more 

abundant in main channels than side channels in both GWF and SWF streams, although 

this difference was not significant (Table 4).  Chironominae and Prodiamesinae followed 

the general chironomid pattern of higher abundance in the side channels than in main 

channels, but this was only significant for Prodiamesinae (one-way ANOVA, Channel 

main effect, df=1,6; F = 13.6, p=0.01) (Table 4).   

 The numerically dominant non-chironomid taxon in GWF streams was Baetis 

spp. (Ephemeroptera: Baetidae), although six additional taxa occurred in high abundance: 

Dicranota spp. and Hexatoma spp. (Diptera: Tipulidae), Bezzia spp. (Diptera: 

Ceratopogonidae), Capnia spp. (Plecoptera: Capniidae), Suwallia spp. (Plecoptera:
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Table 4. Chironomidae abundance (% total abundance) by subfamily in groundwater-fed (GWF) and surface water-fed (SWF) study 

streams on the Copper River Delta, Alaska, April – November 2013. Main = main channel, Side = side channel.  
 

  Total Orthocladiinae Chironominae Prodiamesinae Diamesinae Tanypodinae Podonominae 

25 Mile Main 3748 3589 (96%) 35 (<1%) 28 (<1%) 97 (<3%) 0 0 

25 Mile Side 4857 4294 (88%) 153 (3%) 383 (8%) 12 (<1%) 19 (1%) 0 

Hatchery Creek Main 8560 7504 (88%) 952 (11%) 0 105 (1%) 0 0 

Hatchery Creek Side 5307 4173 (79%) 792 (15%) 95 (2%) 247 (5%) 0 0 

GWF Streams 22472 19560 (87%) 1932 (9%) 506 (2%) 461 (2%) 19 (<1%) 0 

18 Mile Main 3059 2051 (67%) 932 (30%) 12 (<1%) 12 (<1%) 51 (2%) 0 

18 Mile Side 1742 937 (54%) 649 (37%) 125 (7%) 3 (<1%) 28 (2%) 0 

Blackhole Creek Main 2262 1211 (54%) 958 (42%) 0 0 78 (3%) 16 (<1%) 

Blackhole Creek Side 2429 566 (23%) 1484 (61%) 125 (5%) 0 254 (10%) 0 

SWF Streams 9492 4765 (50%) 4023 (42%) 262 (3%) 15 (<1%) 411 (4%) 16 (<1%) 

Total Chironomidae 31964 24325 (76%) 5955 (19%) 768 (2%) 476 (1%) 430 (1%) 16 (<1%) 
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 Chloroperlidae), and Ecclisomyia spp. (Trichoptera: Limnephilidae). The numerically 

dominant taxon in SWF streams was Probezzia spp. (Diptera: Ceratopogonidae) with the 

following taxa occurring in high abundance: Baetis spp., Simulium spp. (Diptera: 

Simuliidae), Callicorixa vulnerata (Hemiptera: Corixidae), Capnia spp. (Plecoptera: 

Capniidae), Suwallia spp. (Plecoptera: Chloroperlidae), and Zapada cinctipes 

(Plecoptera: Nemouridae) (Appendix Table 14).   

 Taxa richness among streams ranged from 31 in the GWF Hatchery Creek to 43 

in the SWF Blackhole Creek (Table 5).  Taxa richness was significantly higher in SWF 

than in GWF streams (two-way ANOVA, hydrologic type main effect, df = 1,4; F-value 

= 8.3, p = 0.04) (Table 5).  

  Taxa richness in main channels ranged from 24 in Hatchery Creek (GWF) to 28 

in Blackhole Creek (SWF), whereas side channel taxa richness ranged from 25 in 25 Mile 

(GWF) and Hatchery Creek to 34 in Blackhole Creek.  There was no significant 

difference between main and side channel taxa richness or the interaction of hydrologic 

type and channel (Table 5).  Non-chironomid taxa richness among streams ranged from 

14 in Hatchery Creek (GWF) to 22 in Blackhole Creek (SWF) (Table 5); there was no 

significant difference between hydrologic types.  

Community structure 

 Aquatic insect diversity (chironomid and non-chironomid diversity) (H') was 

higher in SWF streams (18 Mile H'=2.56; Blackhole Creek H'=2.64) than in GWF 

streams (25 Mile H'=2.27; Hatchery Creek H'=2.04), however these differences were not 

significant (Table 6). Main channel diversity ranged from 1.53 in Hatchery Creek (GWF) 

to 2.48 in Blackhole Creek (SWF), whereas side channel diversity ranged from 
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Table 5. Aquatic insect taxa richness and non-chironomid taxa richness for study streams 

on the Copper River Delta, Alaska, April – November 2013. GWF = groundwater-fed, 

SWF = surface water-fed, Main = main channel, Side = side channel. Stream 

abbreviations as in Table 1. Values with different superscripts are significantly different. 

Hydrologic 

Type 
Stream 

 Stream 

Taxa 

Richness 

Non-chironomid 

Stream Taxa 

Richness 

Channel 
Taxa 

Richness 

Non-

chironomid 

Taxa Richness 

GWF 

25mi 
 

36
 

17
 Main 27 13 

 Side 25 14 

Hat 
 

31
 

14 
Main 24 13 

 Side 25 11 

  Mean 34
a 16    

SWF 

18mi 
 

39
 

17
 Main 27 13

 

 Side 29 14
 

Blk 
 

43
 

22
 Main 28 16

 

 Side 34 22
 

  Mean 41
b 

20    

Stream taxa richness significantly higher in SWF (b) than in GWF streams (a) (Two-way ANOVA, p=0.04) 
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Table 6. Aquatic insect diversity (H') and non-chironomid diversity for study streams on the Copper River Delta, Alaska, April – 

November 2013. GWF = groundwater-fed, SWF = surface water-fed, Main = main channel, Side = side channel. Site abbreviations as 

in Table 1. Values with different superscripts are significantly different. 

Hydrologic 

Type 
Stream 

 Stream 

Diversity 

(H') 

Non-chironomid 

Stream Diversity 

(H') 

Channel Diversity (H') Non-chironomid Diversity (H') 

GWF 

25 Mile 
 

2.3 0.41
 Main 2.13 0.44 

 Side 1.77 0.34 

Hatchery 

Creek 

 
2.0 0.32

 Main 1.53 0.37 

 Side 2.23 0.23 

  Mean 2.2 0.36
a   - 

SWF 

18 Mile 
 

2.56 0.83
 Main 2.32 0.89

 

 Side 2.22 0.51
 

Blackhole 

Creek 

 
2.64 0.96

 Main 2.48 0.85
 

 Side 2.34 0.50
 

  Mean  0.89
b   Main = 0.87

c
, Side = 0.51

d 

Non-chironomid stream diversity significantly higher in SWF (b) than in GWF streams (a) (t-test, p=0.03).  

SWF non-chironomid diversity significantly greater in main (c) than in side channel (d) (t-test, p=0.03).   
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 1.77 in 25 Mile (GWF) to 2.34 in Blackhole Creek (SWF). There was no significant 

difference between main and side channel diversity or the interaction of hydrologic type 

and channel (Table 6).   

 Aquatic insect diversity excluding chironomids was analyzed to reveal patterns 

that may have been not apparent due to their strong influence on diversity.  Non-

chironomid diversity was significantly higher in SWF streams (Blackhole Creek H'=0.96; 

18 Mile H'=0.83) than in GWF streams (25 Mile H'=0.41; Hatchery Creek H'=0.32)(t-

test, df = 1,2; p = 0.03)(Table 6). Diversity in main channels of SWF streams was 

significantly higher (mean main channel H'=0.87) than in side channels (mean side 

channel H'=0.51)(t-test, df = 1,2; p = 0.03) (Table 6). Non-chironomid diversity in main 

and side channels of GWF streams was low and ranged from (0.23 to 0.44) (Table 6).  

 Non-metric multidimensional scaling (nMDS) using aquatic insect taxa relative 

abundance indicated that community structure within SWF and GWF streams was similar 

but differed between hydrologic types (Figure 3). Two distinct groups are evident on 

opposite sides of the plot and correspond to aquatic insect communities in GWF and 

SWF streams, indicating that streams in the same hydrologic type are relatively similar to 

each other. Channel types in SWF streams also ordinated separately indicating that 

aquatic insect community structure in main channels was distinct from those in side 

channels. In contrast, main and side channel community structure in GWF streams was 

similar in Hatchery Creek, whereas community structure in 25 Mile channel types was 

distinct (Figure 3).  

 Most of the dissimilarity between hydrologic groups was due to chironomids, 

which accounted for 78% of the total dissimilarity. The chironomid subfamilies
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Figure 3. Non-metric multidimensional scaling of aquatic insect taxa relative abundance 

for four study streams on the Copper River Delta, AK, on the basis of hydrologic type 

(GWF = groundwater-fed, SWF = surface water-fed) and channel type (M = main 

channel, S = side channel) (April – November 2013). Site abbreviations as in Table 1.  
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 Orthocladiinae and Chironominae contributed most to the dissimilarity and accounted 

for 44% and 13% of the total dissimilarity, respectively. Orthoclads comprised the 

majority of chironomids in both GWF and SWF streams; however, they were present in 

higher relative abundances in GWF (87% chironomid relative abundance) than in SWF 

(50%) streams  (Table 4).  The relative abundance of the subfamily Chironominae was 

higher in SWF (42% chironomid relative abundance) than in GWF (9%) streams (Table 

4).   

 An nMDS incorporating the relative abundance of aquatic insect functional 

feeding groups (FFG) was also used to compare communities in streams of different 

hydrologic regimes by channel type.   Relative abundances of FFGs were dissimilar in 

GWF and SWF streams, however channel types could not be distinguished on the basis 

of functional feeding groups (Figure 4). The major contributors to the dissimilarity 

between hydrologic groups were collector-gatherers and shredders.  Collector-gatherers 

contributed to 37.8% of the dissimilarity and shredders contributed to 22% of the 

dissimilarity between GWF and SWF streams.  

 Collector – gatherers had the highest relative abundance of FFGs in both GWF 

and SWF streams; however, they were present in higher relative abundances in GWF 

(73% relative abundance) than in SWF (50%) streams (Table 7). Shredders had higher 

relative abundance in SWF (24% relative abundance) streams than in GWF (21%) 

streams, and scrapers (SWF: 10%, GWF 1%) and predator-engulfers (SWF: 14%, GWF: 

3%) were also higher in SWF than in GWF streams (Table 7).   
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Figure 4. Non-metric multidimensional scaling of aquatic insect functional feeding group 

relative abundance for four study streams on the Copper River Delta, AK, on the basis of 

hydrologic type (GWF = groundwater-fed, SWF = surface water-fed) and channel type 

(M = main channel, S = side channel) (April – November 2013). Site abbreviations as in   

Table 1.  
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Table 7. Functional feeding group abundance (% total abundance) in groundwater-fed (GWF) and surface water-fed (SWF) study 

streams on the Copper River Delta, Alaska; May, July, September 2013. Main = main channel, Side = side channel. 

  Total Collector-Gatherer Collector-Filterer Shredder Scraper Predator-Engulfer Predator-Piercer 

25 Mile Main 678 535 (79%) 59 (9%) 62 (9%) 2 (<1%) 12 (<2%) 8 (1%) 

25 Mile Side 1661 857 (52%) 0 746 (45%) 4 (<1%) 43 (<3%) 11 (<1%) 

Hatchery Creek Main 2689 2408 (90%) 1 (<1%) 162 (6%) 26 (1%) 90 (3%) 2 (<1%) 

Hatchery Creek Side 1892 1254 (66%) 0 509 (27%) 52 (3%) 61 (3%) 16 (<1%) 

GWF Streams 6920 5054 (73%) 60 (1%) 1479 (21%) 84 (1%) 206 (3%) 37 (<1%) 

18 Mile Main 1370 681 (50%) 25 (2%) 302 (22%) 126 (9%) 233 (17%) 3 (<1%) 

18 Mile Side 705 470 (67%) 0 60 (9%) 145 (21%) 18 (<3%) 12 (<2%) 

Blackhole Creek Main 694 342 (49%) 16 (2%) 195 (28%) 38 (5%) 99 (14%) 4 (<1%) 

Blackhole Creek Side 667 242 (36%) 1 (<1%) 252 (38%) 19 (3%) 147 (22%) 6 (<1%) 

SWF Streams 3436 1735 (50%) 42 (1%) 809 (24%) 328 (10%) 497 (14%) 25 (<1%) 

Total 10356 6789 (66%) 102 (1%) 2288 (22%) 412 (4%) 703 (7%) 62 (<1%) 
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Discussion 

Physicochemical Parameters 

 Aquatic insect community structure can be influenced by a suite of 

physicochemical variables including water temperature, pH, and nutrient concentrations 

(Lemly 1982, Jacobsen 1997), however most parameters did not reveal any consistent 

significant pattern in the Copper River Delta (CRD) streams examined in this study.  

Water temperature did exhibit patterns and can be used to explain trends across 

hydrologic and channel types.  

 Water temperature in the four study streams exhibited expected patterns based on 

hydrologic type.  Groundwater-fed (GWF) stream temperatures were relatively stable 

during the growing season, whereas temperatures in surface water-fed (SWF) streams 

increased substantially during summer and reflected ambient air temperatures.   Although 

water temperatures in side channels are expected to be warmer than in main channels due 

to reduced water depth and, as a result, more readily warmed by solar radiation (McRae 

and Edwards 1994), this only occurred in mean daily temperatures of GWF streams.    

 Mean daily temperatures in side channels of 25 Mile (GWF stream) were 

consistently higher than in the main channel throughout the study.  Although Hatchery 

Creek (GWF) side channels had slightly warmer mean daily high temperatures compared 

to the main channel, mean daily temperatures in side channel and main channel areas 

were similar. These differences can be due to the extent of canopy cover, which 

influences stream water temperatures (Macdonald et al. 2003), as 25 Mile has an open 

canopy and Hatchery Creek has a closed canopy. 

 Mean daily temperatures of side channels in SWF streams were consistently 



31 

 

lower than in the main channel throughout the study. Side channel temperature ranges, 

however, were generally greater than those in main channels. The greater temperature 

range in side channels is likely due to shallower water allowing for these areas to be more 

readily cooled and warmed than the deeper main channel. Temperature ranges in main 

and side channel areas of Blackhole Creek were not as large as in 18 Mile and is likely 

due to shading from the closed canopy.   

 Aquatic insect distribution and abundance is strongly influenced by the annual 

thermal regime (Merritt et al. 2006) and corresponds to different assemblages of aquatic 

insects in GWF and SWF streams examined in this study.  The abundance of aquatic 

insects with optimal thermal regimes in cool water was greater in GWF than in SWF 

streams. For example, Orthocladiinae prefer cooler temperatures (Beckett 1992, Coffman 

and de la Rosa 1998), and are often reported as a dominant insect in springs and 

groundwater-fed systems (Lindegaard 1995). In contrast, aquatic insects with wider 

temperature ranges and preferring warmer temperatures are expected to occur in higher 

abundances in SWF streams than in more temperature-restricted GWF streams.  

 While nutrient availability also can influence aquatic insect assemblages (Lemly 

1982) however; streams along the CRD are relatively nutrient poor systems (Boggs 2000) 

and likely does not explain differences in aquatic insect communities. These study 

streams are consistent with the characterization of Alaskan coastal systems to be 

oligotrophic (Kyle et al. 1997).  Ammonium and nitrate concentrations were low in all 

study streams and channel types  

Community Composition 

 Stream hydrologic type had a strong influence on aquatic insect community 
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composition with differences in Chironomidae (Diptera) abundance and taxonomy 

between GWF and SWF streams. Chironomidae (Diptera) are commonly the numerically 

dominant and most taxonomically rich aquatic insects found in lotic systems (Ferrington 

et al. 2008) and comprised 94% and 81% of aquatic insects in GWF and SWF streams, 

respectively. Midges in the subfamily Orthocladiinae comprised 87% of chironomids in 

GWF streams, whereas the Chironominae comprised 9%.  The high percentage of 

Orthocladiinae in CRD streams is consistent with values reported in other studies (Stur et 

al. 2005, Lencioni 2011). Orthoclads are generally cold-stenotherms (Lindegaard 1995), 

and their numerical dominance in these cold GWF streams (mean temperature = 4.6
 o
C) is 

expected.  Orthocladiinae was also one of the numerically dominant chironomid 

subfamilies in SWF streams, comprising 50% of chironomids, whereas Chironominae 

accounted for 42% of midges collected. Water temperatures in SWF streams are at or 

near freezing in winter and are cold in early spring (mean temperature in April = 1.3
 o
C, 

May = 3.8
 o
C). These temperatures are consistent with the cold-stenothermic 

characteristic of orthoclads.  Higher water temperatures in late spring and summer, 

however, would facilitate the presence of Chironominae in SWF streams, as taxa within 

this subfamily are more abundant in warmer habitats (Lindegaard 1995).   

 The relative abundance of non-chironomid Diptera, Plecoptera, and 

Ephemeroptera was higher in SWF streams than in GWF streams, however this 

difference may be due to the very large contribution of chironomids in GWF streams, 

thereby reducing the relative abundance of other taxonomic groups.   

Community Structure 

 Chironomid taxa in both stream hydrologic  types comprised at least 50% of taxa 
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richness and supports the findings of Oswood et al. (1992, 2006) that Chironomidae are 

often numerically dominant in high-latitude lotic systems (Oswood et al. 1992, 2006). 

Aquatic insect taxa richness and diversity are relatively low in CRD streams (taxa 

richness ranged from 31 to 43, diversity (H’) ranged from 2.0 to 2.6. This is consistent 

with studies conducted in other Alaska and northern latitude streams. Lessard and Merritt 

(2006) reported taxa richness of 25 – 30 in Alaskan streams while Kubo et al. (2013) 

reported taxa richness of 8 -28 and diversity of 1.7 – 2.7 in streams of Washington near 

Mt. Rainier. Despite these overall low values, taxa richness and diversity differed across 

hydrologic groups in our study streams. Surface water-fed streams had higher diversity 

and significantly higher taxa richness than GWF streams and likely results from higher 

thermal variability in SWF streams. The broader range of annual water temperatures in 

SWF streams (0.3°C – 18.8°C) will allow for taxa with differing optimal thermal 

preferences to predominate at different times of the year.  Groundwater-fed streams were 

expected to have relatively low taxa richness and diversity due to relatively stable, but 

low, water temperatures (~4ºC) throughout the year.  Taxa richness or diversity did not 

differ between main and side channels due to the considerable predominance of 

chironomids in both channel types.  

 Non-chironomid diversity was significantly higher in SWF streams than in GWF 

streams. This is consistent with Vannote and Sweeney’s (1980) description of higher 

macroinvertebrate diversity in SWF streams. This is due to a greater temperature range, 

which favors a larger number of taxa compared to GWF streams. The narrow temperature 

range in GWF streams restricts the taxa composition. In addition, main channel diversity 

was significantly higher than side channel diversity in SWF streams.  These differences 
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can be explained by habitat heterogeneity and substrate type.  Hynes (1970) described 

that high insect diversity would be expected with more complex microhabitats such as 

those with differing substrates. Substrates in side channel areas were primarily fine 

organic material, whereas the main channel was heterogeneous with cobble, pebbles, 

sand and woody debris.  

Non-metric Multi-Dimensional Scaling 

 Aquatic insect community structure in GWF streams was distinctly different than 

in SWF streams as reflected in the relative abundance nMDS ordination. The difference 

in community structure, associated with temperature is consistent with other studies, 

(Vannote and Sweeney 1980, Ward and Stanford 1982). Groundwater-fed streams had 

lower diversity and taxa richness compared to SWF streams.  While chironomids 

accounted for 94% of all insects collected from our study streams, the relative abundance 

of Orthocladiinae and Chironominae accounted for much of the difference in community 

structure between GWF and SWF streams. Orthocladiinae were abundant in both GWF 

and SWF streams, though their relative abundance was higher in GWF streams (87%) 

than in SWF streams (50%) as previously stated.  Once again, Chironominae comprised 

of 9% relative abundance in GWF streams and 42% in SWF streams.  These differences 

accounted for the divided community structure along hydrologic type in the nMDS plot.  

 Looking within the SWF grouping on the nMDS plot, aquatic insect community 

structure in main and side channels was distinct and was due primarily to the presence of 

Corynoneura sp. (Orthocladiinae) and Polypedilum sp. (Chironominae). These taxa are 

numerically dominant in both SWF streams and in each channel type, however higher 

non-chironomid diversity and taxa abundances in main channels resulted in distinct 
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community structures in main and side channels.    

 Within GWF cluster on the nMDS, Hatchery Creek channels were similar to each 

other while 25 Mile channel types are distinctly dissimilar. Two taxa, Cricotopus sp. 

(Chironomidae: Orthocladiinae) and Orthocladius sp. (Chironomidae: Orthocladiinae) 

are found in all GWF streams but are present in higher densities in both Hatchery Creek 

channel types than in 25 mile channel types which accounts the tight clustering of those 

sites. Cricotopus sp.and Orthocladius sp. are both cold stenotherm orthoclads and are 

probably found in high densities in Hatchery Creek due to its cold temperatures. 

Furthermore, there was little to no difference of mean daily water temperature between 

the main and side channel of Hatchery Creek throughout the growing season.   

 Differences in community structure between main and side channel areas of 25 

Mile are due to the numerical dominance of different taxa in each channel type.  The 

main channel has one numerically dominant taxon whereas the side channel has five 

dominant taxa. One explanation for the difference in the number of dominant taxa could 

be due to the habitat preference of chironomids. Jowett (1991) reported that some 

chironomid taxa prefer habitats with low stream velocity and finer substrates, which 

would coincide with characteristics of the side channels in this study. Another 

explanation could be the difference in temperature range between main and side channels 

of 25 mile. Side channels have a larger temperature range than the main channels 

throughout the growing season. Vannote and Sweeney (1982) showed that streams with 

larger temperature ranges tend to have higher number of taxa then those with a narrower 

temperature range, which could account for the five dominant taxa present in side 

channels and one taxon in the main channel.  
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Implications  

 Aquatic insect communities of GWF and SWF streams were numerically 

dominated by chironomids. However, overall community structure differed between 

GWF and SWF streams, based on two subfamilies of Chironomidae. Orthocladiinae 

(87% relative abundance) dominated GWF streams where as Orthocladiinae (50%) and 

Chironominae (42%) both dominated SWF streams. Aquatic insects are an essential 

component to salmon diets during their first years of development. Current salmon 

research on these streams indicate that the majority of 0+ salmon diet consists of 

chironomids (E. Campbell, pers. comm.), which is consistent with the community 

composition data from this study. Salmon in streams along the Copper River Delta 

(CRD) are economically vital for the commercial and sport fishing industries in Cordova, 

AK.  

 Alaskan streams are highly valued ecosystems that provide a suite of ecosystem 

services, including recreational and economic opportunities. These ecosystems, however, 

are particularly vulnerable to the effects of climate change because these effects will be 

experienced earliest in northern latitudes. Understanding how northern latitude streams 

with contrasting thermal regimes will respond to changes in climate has implications for 

aquatic insect community structure, and ultimately, food resources for salmon.   Results 

from this study provide insights that can inform management decisions concerning these 

critically important CRD salmon habitats and the ecosystem services they provide. 
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CHAPTER III: AQUATIC INSECT SECONDARY PRODUCTION 

Introduction 

 Aquatic insects are integral components in stream energy flow because they 

provide a link between lower and higher trophic levels (Benke et al. 1984). One of the 

most common approaches used to understand energy flow is by quantifying secondary 

production, which is the rate of biomass accumulation over time (Huryn and Wallace 

2000). Water temperature has a strong influence on secondary production of aquatic 

insects (Wallace and Anderson 1996, Sweeney 1984) through its effects on growth and 

development (Anderson and Cummins 1979, Vannote and Sweeney 1980, Sweeney 

1984).  

 Streams in close geographic proximity can have contrasting thermal regimes 

because of differences in hydrologic type.  Groundwater-fed (GWF) streams exhibit little 

thermal variation due to the stability of groundwater temperatures (Vannote and Sweeney 

1980); whereas surface water-fed (SWF) streams are more thermally variable due to the 

influence of major inputs such as precipitation and glacial melt. In addition, channel 

depth also can strongly influence water temperatures (Gordon 2004). Shallow side 

channels are more readily warmed by solar radiation than main channels due to reduced 

depth and increased residence time of water (McRae and Edwards 1994, Hawkins et al. 

1997).  

 Aquatic insects within streams of different hydrologic types, and subsequently 

different temperatures, would have different growth rates and secondary production 
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(Vannote and Sweeney 1980, Merritt et al. 1982). Huryn and Wallace (2000) reviewed 

systems around the world with aquatic insect taxa that have low and high growth rates as 

well as low and high secondary production rates.  Aquatic insects with low growth and 

secondary production rates tended to be indicative of streams in more northern locations 

with cooler temperatures, whereas insects with high growth and secondary production 

rates were associated with streams in warmer climates (Huryn and Wallace 2000).  

Optimal temperature regimes exist for insects where adult size is maximized. However, at 

nonoptimal temperatures, whether warmer or cooler, insects mature at smaller body sizes 

(Vannote and Sweeney 1980).  Merritt et al. (1982) showed that an increase in stream 

temperatures reduced larval development time and final larval body size in blackflies 

(Diptera: Simuliidae), which optimally develops at cold temperatures. 

Study Objective 

 The goal of this research was to understand the influences of thermal 

heterogeneity (i.e. across hydrologic regimes and within streams) on aquatic insect 

growth and secondary production rates. Results from this study will provide insights as to 

how contrasting thermal and hydrologic regimes influence aquatic insect secondary 

production in critically important salmonid streams along the Copper River Delta.   

Methods 

 The Copper River Delta (CRD) in south central Alaska is an ideal location to 

study the effects of thermal variability and hydrologic types on aquatic insect secondary 

production. Streams on the delta are relatively pristine, have numerous side channels 

(Kruger & Tyler 1995), and exhibit contrasting thermal and hydrologic types associated 

with being primarily groundwater-fed (GWF) or surface water-fed (SWF).  
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 Four streams, two groundwater-fed (GWF; 25 Mile and Hatchery Creek) and two 

surface water-fed (SWF; 18 Mile and Blackhole Creek), were used in this study.  25 Mile 

is located at mile marker 25 (40 km) on the Copper River Highway and Hatchery Creek 

is located 8 km from the town of Cordova, AK on Power Creek Rd. 18 Mile and 

Blackhole Creek are located mile marker 18 (29 km) and mile marker 21 (34 km) on the 

Copper River Highway, respectively.  A more detailed description of sites is provided in 

Chapter 2.   

  Streams were sampled bimonthly in spring and summer (late April 2013 through 

August 2013) and once seasonally in fall (September) and early winter (November). 

Sampling in each stream occurred along a 300-meter reach in the main channel, which is 

deeper with a more rapid current than side channel areas, which are shallow with little to 

no current. Aquatic insect growth and secondary production were quantified by sampling 

benthic substrates using a 0.1m Hess sampler (mesh size = 250 μm). Three replicate 

benthic samples were collected from both areas in each stream on each sampling date. 

The Hess sampler was randomly placed in each stream area and the enclosed substrate 

was agitated for 30 seconds. If there was little or no current in the side channel areas, a 

current was manually created within the Hess Sampler to ensure organisms were swept 

into the collection net. Samples were transferred to Uline
®
 poly bags, preserved with 70% 

ethanol and transported to the laboratory for sorting and identification. The high numbers 

of chironomids (Diptera: Chironomidae) collected required subsampling using a Folsom 

Plankton Splitter (Wildlife Supply Company, Florida, USA).  A more detailed description 

of chironomid sample processing is provided in Chapter 2. Aquatic insects were 

identified to the lowest possible taxonomic level, usually genus, using Merritt et al. 
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(2008) and were measured to the nearest millimeter under a Leica dissecting microscope 

at 6.3 - 50X magnification.  

Growth Rates 

 Growth rates were calculated for five aquatic insect taxa present in all four 

streams (Table 8). Growth rates of congeneric taxa occurring in both channel types (main 

and side channels) within a stream were calculated separately.  Only insect growth rates 

in main channels were compared across hydrologic types (groundwater-fed (GWF) vs. 

surface water-fed (SWF)), as no single taxon was present in side channels of all four 

streams (Table 8). There were insufficient data for comparing chironomid growth rates at 

the genera level because only three sampling dates (May, July, September) were used for 

chironomid identification and subsequent analyses due to logistical constraints associated 

with identifying the high number of chironomid larvae collected. Growth rates were 

calculated for the following taxa: Dicranota spp. (Diptera: Tipulidae), Baetis spp. 

(Ephemeroptera: Baetidae), Suwallia spp. (Plecoptera: Chloroperlidae), Capnia spp. 

(Plecoptera: Capniidae) and Ecclisomyia spp. (Trichoptera: Limnephilidae). 

Instantaneous growth rates (Waters 1977, 1979) were calculated as mg ash-free dry mass 

(AFDM)mg/d. Growth rates of taxa with multiple cohorts were calculated as a mean 

growth rate of all cohorts, and was used in subsequent analyses.  One-way analysis of 

variance was used to compare mean growth rates across hydrologic types for each taxon 

(SYSTAT Software Vers. 13, San Jose, CA).  

Secondary Production 

 Secondary production was estimated for the most abundant aquatic insect taxa 

using the size-frequency method adjusted for cohort production interval (CPI) (Hynes & 
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Table 8. Growth rates (mg AFDM/mg/d) of aquatic insect taxa across hydrologic types (groundwater-fed (GWF) vs. surface water-fed 

(SWF)) from study streams on the Copper River Delta, AK, April-November 2013.  

 

Growth Rates 

   Dicranota spp. Baetis spp. Capnia spp. Suwallia spp. Ecclisomyia spp. 

GWF 

25 Mile 
Main 0.003 0.003

 
0.004 0.002 0.001 

Side 0.004 - - - 0.01 

Hatchery 
Main 0.003 0.003

 
0.02 0.002 0.004 

Side 0.003 0.01 0.004 0.002 0.005 

Mean (±SE) 0.003 (0.0003) 0.005 (0.002)
 a 

0.008 (0.004) 0.002 (0.0002) 0.005 (0.002) 

        

SWF 

18 Mile 
Main 0.002 0.04

 
0.002 0.01 0.003 

Side - - - - - 

Blackhole 
Main 0.007 0.05

 
0.004 0.0009 0.001 

Side 0.008 0.007 0.01 - 0.004 

 Mean (±SE) 0.006 (0.002) 0.03 (0.01)
 b 

0.005 (0.003) 0.005 (0.004) 0.003 (0.0009) 
Different superscripts indicate significant differences in mean growth rates  (one-way ANOVA, p=0.03)
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Coleman, 1968; Benke 1979, 1984). Secondary production was estimated for 17 taxa: 

five chironomid subfamilies, six non-chironomid dipterans, and six non-dipterans (Table 

9).    

 Insects in each taxon were sorted into size classes and placed on pre-weighed 

aluminum weigh boats.  Insects were dried at a constant 60 ºC for 6 hours in a drying 

oven.  Samples were then reweighed with a Kern & Sohn GmbH analytical balance, 

placed in a muffle furnace at 550 ºC for 12 hours and reweighed to calculate ash-free dry 

mass by subtracting ash weight from dry weight.  Size class-specific AFDM of 

congeneric taxa were determined separately in each hydrologic type (GWF or SWF).  

 Cohort production interval (CPI) for each taxon was determined by interpreting 

size-frequency graphs of taxa collected throughout the study period. Cohort production 

intervals for congeneric taxa occurring in both GWF and SWF streams were assigned 

separate CPI values (e.g., Baetis spp.: GWF CPI = 6, SWF CPI = 4) based on taxon-

specific size class distributions within each hydrologic regime. A mean CPI was used for 

taxa with multiple cohorts within a given hydrologic regime. Secondary production 

values were calculated as mg AFDM/m
2
/yr.  

 Total secondary production values were square root transformed to meet the 

assumptions of ANOVA and compared across hydrologic and channel type with a two-

way analysis of variance.  Secondary production of trophic levels, i.e., predators and non-

predators, and functional feeding groups (FFGs) were also estimated separately, square 

root transformed, and analyzed with a three-way ANOVA comparing hydrologic type, 

channel type, and trophic level or FFG.  All statistical analyses were conducted using 

SYSTAT Ver. 13 (SYSTAT Software, San Jose, CA).  
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* Taxa classified into trophic guilds and function feeding groups based on classifications 

from Merritt et al. 2008.  

Table 9. Aquatic insect taxa classified
*
 into trophic guilds and functional feeding groups 

from study streams on the Copper River Delta, AK, April - November 2013. 

Abbreviations as listed: Non-predator (N), predator (P), collector-gatherer (C-G), 

collector-filterer (C-F), shredder (Sdr), scraper (Spr), engulfer (Eng), and piercer (Pcr). 

Taxa 
Trophic 

Guild 

Functional 

Feeding Group 

Ephemeroptera   

      Baetidae   

             Baetis spp.  N C-G 

      Heptageniidae   

             Cinygmula spp. N Spr 

Plecoptera   

      Capniidae   

            Capnia spp. N Sdr 

      Chloroperlidae   

             Suwallia spp.  P Eng 

       Nemouridae   

             Zapada cinctipes N Sdr 

Trichoptera   

       Limnephilidae   

           Ecclisomyia spp.  N C-G 

 Diptera   

       Ceratopogonidae   

             Bezzia spp. P Eng 

             Probezzia spp. P Eng 

       Chironomidae   

             Chironominae  N C-G 

             Diamesinae N C-G 

             Prodiamesinae   N C-G 

             Orthocladiinae N C-G 

             Tanypodinae P Eng 

       Empididae   

             Chelifera spp. P Pcr 

      Simuliidae    

            Prosimulium spp. N C-F 

            Simulium spp. N C-F 

      Tipulidae   

            Dicranota spp. P Eng 
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Results 

Growth Rates 

 Aquatic insect growth rates in GWF streams were highest for Capnia spp. and 

lowest for Suwallia spp., whereas in SWF streams growth rates were highest for Baetis 

spp. and lowest for Ecclisomyia spp. (Table 8). Dicranota spp. and Suwallia spp. growth 

rates were low in GWF and SWF streams with no significant difference between 

hydrologic types for each taxa (Table 8).  Growth rates of Capnia spp. were not 

significantly different between hydrologic types and were highly variable within GWF 

and SWF streams. Growth rates of Baetis spp. in main channels of SWF streams were 

significantly higher (mean = 0.04 ± 0.008 mg/mg/d) than in GWF streams (0.003 ± 

0.0002 mg /mg/d; one-way ANOVA, df=1,2; F=27.1, p = 0.03) (Table 8).   

 While growth rates of chironomid subfamilies were not calculated, there were 

differences in mean individual biomass of two chironomid subfamilies between 

hydrologic types. Mean individual biomass (mg AFDM) of Orthocladiinae and 

Chironominae differed between GWF and SWF streams.  Orthocladiinae mean individual 

biomass was relatively high in GWF streams compared to SWF streams (GWF: 0.11 mg, 

SWF: 0.02 mg).  In contrast, mean individual biomass of Chironominae was relatively 

low in GWF streams compared to SWF streams (GWF: 0.07 mg, SWF: 0.20 mg).   

Secondary Production 

 I examined the influence of hydrologic and channel type on total secondary 

production, trophic guild secondary production and functional feeding group secondary 

production. Secondary production rates were calculated for the most abundant taxa 

collected in a range of size categories (Tables 10 and 11). These taxa included five  
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Table 10. Densities (no./m
2
) and secondary production rates (mg AFDM /m

2
/yr) of taxa from groundwater-fed (GWF) study streams 

on the Copper River Delta, AK, April – November 2013.  The contribution of each taxon to total density (% Density) and total 

secondary production (% Sec. Prod.) are presented. Maximum body lengths  (Max BL; mm) also are presented and were similar in 

main and side channels and between streams. 
25 Mile           Hatchery Creek          

  

Main Channel  Side Channel Main Channel  Side Channel    

Density Sec. Prod.  Density Sec. Prod. Density Sec. Prod.  Density Sec. Prod. 
% 

Density 

% Sec. 

Prod. 

Max 

BL 

Ephemeroptera              

Baetis spp. 356.7 1312.6  - - 630.0 1440.6  20.0 59.7 4 16.4 9 

Plecoptera              

Capnia spp. 66.7 23.3  - - 426.7 164.9  163.3 69.2 2.6 1.5 8 

Suwallia spp. 43.3 52.8  - - 556.7 697.4  83.3 110.9 2.7 5 11 

Trichoptera              

Ecclisomyia spp. 56.7 80.7  46.7 125.8 30.0 17.2  53.3 103.5 <1 1.9 14 

Diptera              

Chironominae 16.7 1.5  166.7 41.3 910.0 311.1  886.7 388.7 7.8 4.3 9 

Diamesinae 46.7 0.3  13.3 1.8 100.0 218.0  276.7 663.7 1.7 5.1 15 

Orthocladiinae 1733.3 1310.3  4673.3 3367.2 7173.3 3112.1  4673.3 1854.4 71.8 56.1 10 

Prodiamesinae 13.3 1.4  416.7 207.1 - -  106.7 14.5 2.1 1.3 12 

Tanypodinae - -  30.0 32.5 - -  - - <1 <1 10 

Bezzia spp. 13.3 0.7   486.7 23.3 - -   - - 1.9 <1 5 

Chelifera spp. 103.3 14.4  63.3 8.9 16.7 5.8  33.3 14.0 <1 <1 7 

Prosimulium spp. 233.3 222.1  - - - -  - - <1 1.3 7 

Dicranota spp. 100.0 149.1  80.0 114.9 316.7 547.8  210.0 312.6 2.8 6.5 16 
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Table 11.  Densities (no./m
2
) and secondary production rates (mg AFDM /m

2
/yr) of taxa from surface water-fed (SWF) study streams 

on the Copper River Delta, AK, April – November 2013.  The contribution of each taxon to total density (% Density) and total 

secondary production (% Sec. Prod.) are presented. Maximum body lengths  (Max BL; mm) also are presented and were similar in 

main and side channels and between streams. 
18 Mile           Blackhole Creek          

  

Main Channel  Side Channel Main Channel  Side Channel    

Density Sec. Prod.  Density Sec. Prod. Density Sec. Prod.  Density Sec. Prod. 
% 

Density 

% Sec. 

Prod 

Max 

BL 

Ephemeroptera              

Baetis spp. 500.0 598.8  - - 753.3 396.9  43.3 22.7 8.6 18 7 

Cinygmula spp. 90.0 74.9  - - 336.7 201.9  20.0 16.2 3 4.1 7 

Plecoptera               

Capnia spp. 303.3 73.0  - - 246.9 28.6  - - 3.7 1.8 6 

Suwallia spp. - -  - - 246.9 96.5  56.7 41.4 2 2.4 8 

Zapada cinctipes 146.7 46.6  - - 320.0 45.9  33.3 3.8 3.3 1.7 4 

Trichoptera              

Ecclisomyia spp. - -  - - 106.7 42.7  20.0 12.2 <1 1 14 

Diptera              

Chironominae 1030.0 460.6  846.7 595.6 616.7 217.3  1110.0 770.7 23.9 36.2 14 

Diamesinae 13.3 1.8  3.3 0.1 - -  - - <1 <1 4 

Orthocladiinae 2266.7 342.7  1223.3 96.6 780.0 64.1  423.3 33.9 31.1 9.5 6 

Prodiamesinae 13.3 3.4  163.3 35.1 - -  93.3 90.9 1.8 2.3 9 

Tanypodinae 56.7 53.5   36.7 62.0 50.0 20.8   190.0 258.2 2.2 7 13 

Probezzia spp. 1150.0 364.6  206.7 47.0 263.3 76.1  333.3 102.1 13 10.4 11 

Prosimulium spp. - -  - - 86.7 11.7  - - <1 <1 5 

Simulium spp.  420.0 112.7  - - 220.0 128.3  13.3 3.8 4.3 4.3 7 

Dicranota spp. 30.0 5.1  - - 166.7 41.4  40.0 12.0 1.6 1 12 
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chironomid subfamilies and twelve non-chironomid genera, however not all taxa were 

present or had sufficient densities within each of the four streams and/or channel types to 

estimate production. Therefore, patterns in secondary production were analyzed as total 

secondary production  (summing separate estimates of predator and non-predator 

production), and by trophic guild (predator and non-predator), and functional feeding 

groups (FFGs)(Table 9). 

Total Secondary Production 

 There was no significant effect of channel type or interaction between hydrologic 

and channel type on total secondary production (two-way ANOVA), however there was a 

significant difference between hydrologic types. Total secondary production (mean ± SE) 

was significantly higher in GWF (4369 ± 738 mg/m
2
/yr) than in SWF streams (1412 ± 

268 mg/m
2
/yr) (two-way ANOVA, df = 1,4; F = 17.3 p = 0.01) (Figure 5). 

Trophic Guild Secondary Production  

 Two-way ANOVA was used to examine differences in secondary production 

between hydrologic type and trophic guilds (predator vs. non-predator).  There were 

significant differences in hydrologic type and in trophic guilds (two-way ANOVA, 

hydrologic type main effect, df=1,12; F=18.4, p =0.001; two-way ANOVA trophic guild 

main effect, df=1,12; F= 55.4, p<0.001). However, there was a significant interaction 

between hydrologic type and trophic guild, (two-way ANOVA, df=1,12; F=9.7, p= 

0.008) indicating that hydrologic type was influencing trophic guild secondary 

production.  

 To explore this interaction two separate one-way ANOVAs were used to examine 
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          b 

 

 

 

Figure 5. Mean (± SE) aquatic insect secondary production (mg AFDM/m
2
/yr) from two 

groundwater-fed (GWF) and two surface water-fed (SWF) streams on the Copper River 

Delta, AK, April-November 2013.  Bars with different letters are significantly different 

(two-way ANOVA; p=0.01).  
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the differences in hydrologic type for each trophic guild. There was no significant 

difference between GWF and SWF predator secondary production.  Non-predator 

secondary production was significantly higher in GWF streams (one-way ANOVA, 

df=1,6; F=22.2, p=0.003).   

 To examine the differences in secondary production between channel type and 

trophic guilds, a two-way ANOVA was used. There was no significant difference 

between channel types or the interaction between channel types and trophic guilds.  There 

was a significant difference between trophic guilds (two-way ANOVA, df=1,12; F=17.6, 

p=0.001). As there was no interaction between channel types and trophic guild, a one-

way ANOVA was used to examine differences in secondary production based on trophic 

guild.  Non-predator secondary production was significantly higher than predator 

secondary production (one-way ANOVA, df=1,14; F=19.3, p <0.001) (Table 12).  

Functional Feeding Group Secondary Production   

 There were six functional feeding groups, collect-gatherer, shredders, engulfers, 

scrapers, collector-filterers and piercers.  Collector-gatherers had the highest secondary 

production regardless of hydrologic or channel types, compared to the other five 

functional feeding groups (Figure 6).  Secondary production rates were analyzed using 

two-way ANOVA to examine the differences between hydrologic type and functional 

feeding groups. There were significant differences in hydrologic type and in functional 

feeding group (two-way ANOVA, hydrologic type main effect, df=1,36; F=21.9, 

p<0.001; two-way ANOVA functional feeding group main effect, df=5,36; F= 53.4, 

p<0.001). The interaction between hydrologic type and functional feeding group was also 

significant (two-way ANOVA, df=5,36; F=7.9, p<0.001). Separate one-way ANOVAs  
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 Table 12. Secondary production (mg AFDM/m2/yr) of aquatic insect trophic guilds (predator and non-predator) in main and 
side channel areas of two groundwater-fed (GWF) and two surface water-fed (SWF) streams on the Copper River Delta, AK, 
April-November 2013. Different superscripts denote significant differences in trophic guild production (one-way ANOVA, 
p<0.001). 
 GWF SWF 

 25 Mile Hatchery Creek 18 Mile Blackhole Creek 

  Main Side Main Side Main Side Main Side 

Non-Predator 2951.5 3741.7 5262.6 3152.7 1714.5 727.4 1081.5 948.8 

Mean (± SE) 3447.6 ± 801 
a
 
 

Predator 217.0 179.5 1251.0 437.5 423.1 109.0 234.7 413.7 

Mean (± SE) 408.2  ± 181 
b 

Total Channel 3168.5 3921.2 6513.6 3589.8 2137.6 836.4 1316.2 1362.6 

Total Stream 7089.7 10103.5 2974.1 2678.8 
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Figure 6. Overall functional feeding group secondary production across study streams.  Functional 

feeding group abbreviations as in Table 9.  Bars with different letters indicate significant 

differences yielded from Tukey’s multiple comparison’s test.  
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were used to examine the differences in hydrologic type for each functional feeding 

group to further examine the interaction between hydrologic type and functional feeding 

group. Secondary production was significantly higher in GWF than in SWF streams for 

following three functional feeding groups: collector-gatherer (one-way ANOVA, df=1,6; 

F=36.7, p<0.001), shredder (one-way ANOVA, df=1,6; F=10.9, p=0.01) and piercer 

(one-way ANOVA, df=1,6; F=93.9, p<0.001). 

 Differences in secondary production between channel type and functional feeding 

group were analyzed using a two-way ANOVA. There was no significant difference 

between channel types or the interaction between channel types and functional feeding 

groups.  There was a significant difference between functional feeding groups (two-way 

ANOVA, df=5,42; F=22.9, p<0.001). A Tukey’s multiple comparisons test was then 

conducted to determine which FFGs were different from one another (Figure 7).  

Collector-gatherer secondary production was significantly higher than any other FFG. 

Two chironomid subfamilies accounted for 69% of collector-gatherer secondary 

production: Orthocladiinae (54.5%) and Chironominae (14.9%). Piercer secondary 

production was significantly lower than all other FFGs except for collector-filters.  

 The effect of hydrologic and channel type, and their interaction on secondary 

production of FFGs, excluding piercers (no secondary production values from SWF 

streams), was examined using two-way ANOVAs, only collector-gatherers yielded 

significant results.  Collector-gatherers was significantly higher in GWF (2965 mg/m
2
/yr) 

than in SWF (724 mg/m
2
/yr) streams (two-way ANOVA, df=1,4; F=33.7, p = 0.004). 

Channel type and the interaction of hydrologic and channel type had no significant effect 

on FFG secondary production.  
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Figure 7. Secondary production (mg AFDM /m
2
/yr) of aquatic insect functional feeding groups by channel type (main and side 

channels) from two groundwater-fed  (GWF) and two surface water-fed (SWF) streams on the Copper River Delta, AK, April-

November 2013. Functional feeding group abbreviations as in Table 9.  
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Groundwater-fed Streams 

Main Channels 

Orthocladiinae dominated secondary production in main channels of both GWF 

streams, with the highest densities and secondary production occurring in Hatchery 

Creek, 7173 /m
2
 and 4673 mg/m

2
/yr,

 
respectively (Table 10). Baetis spp. secondary 

production was also high in main channels of GWF streams (25 Mile: 1312 mg/m
2
/yr, 

Hatchery Creek: 1440 mg/m
2
/yr). Although secondary production rates of Orthocladiinae 

and Baetis spp. were similar in 25 Mile main channels, 1310 mg/m
2
/yr and 1312 

mg/m
2
/yr, respectively, Orthocladiinae densities (1733 /m

2
) were greater than Baetis spp  

(357 /m
2
).  

Side Channels 

Orthocladiinae had the highest secondary production in side channels of both 

GWF streams. Orthoclad densities were identical in both streams (4673 /m
2
), however 

secondary production values were greater in 25 Mile (3367 mg/m
2
/yr) than in Hatchery 

Creek (1854 mg/m
2
/yr) (Table 10).  Secondary production of Ecclisomyia spp. in both 

GWF streams was higher in side channel areas than in the main channel although this 

difference was not significant (side channel mean: 115 ± 11 mg/m
2
/yr; main channel 

mean: 49 ± 32 mg/m
2
/yr).  Orthocladiinae secondary production was higher in main 

channels (mean: 2991 ± 1681 mg/m
2
/yr) than in side channels (mean: 2610 ± 756 

mg/m
2
/yr), although this difference was not significant.  

Surface water-fed Streams  

Main Channels 

 Baetis spp. and Chironominae dominated secondary production in main channel 
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areas of both SWF streams. Baetis spp. secondary production was 599 mg/m
2
/yr and 397 

mg/m
2
/yr in 18 Mile and Blackhole, respectively. Chironominae secondary production 

was 461 mg/m
2
/yr and 217 mg/m

2
/yr in 18 Mile and Blackhole, respectively. Although 

Orthocladiinae had the highest densities in main channels of both SWF streams (18 Mile: 

2266 /m
2
, Blackhole Creek: 780 /m

2
), secondary production (18 Mile: 343 mg/m

2
/yr, 

Blackhole: 64 mg/m
2
/yr) did not reflect these high densities (Table 11).    

Side Channels  

 Chironominae dominated secondary production in both SWF streams in the side 

channels (18 Mile: 596 mg/m
2
/yr, Blackhole Creek: 771 mg/m

2
/yr) (Table 11).  

Orthocladiinae density (1223 /m
2
) was highest in 18 Mile side channels, however 

secondary production was relatively low (97 mg/m
2
/yr). Chironominae density was 

highest in the side channels of Blackhole Creek (1110/m
2
).  Chironominae secondary 

production was higher in side channels (mean: 683 ± 124 mg/m
2
/yr) than in main 

channels (mean: 339 ± 122 mg/m
2
/yr) although this difference was not significant.  

GWF vs. SWF 

 The subfamilies Orthocladiinae and Chironominae had the highest secondary 

production rates in GWF and SWF streams, respectively and represent a substantial 

proportion of total secondary production..  The subfamily Orthocladiinae accounted for 

72% of total insect density and 56% of total secondary production in GWF streams, 

whereas in SWF streams orthoclads represented 31% of total insect density and 9% of 

total secondary production. Orthocladiinae secondary production was significantly higher 

in GWF (2411 ± mg/m
2
/yr) than in SWF (134 ± mg/m

2
/yr) streams (two-way ANOVA, 

df=1,4; F=31.7, p = 0.004) (Figure 8), there was no significant effect of channel type or  
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   Orthocladiinae  Chironominae 

          a 

 

 

 

 

 

 

            b 

 

 

 

Figure 8. Mean secondary production (mg AFDM /m
2
/yr) of Orthocladiinae and 

Chironominae in two groundwater-fed (GWF) and two surface water-fed (SWF) streams 

along the Copper River Delta, AK, April-November 2013. Grey bars = main channels; 

white bars = side channels. Error bars are ± 1 SE.  Hydrologic types with different letters 

are significantly different (two-way ANOVA; p=0.004).  
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interaction between hydrologic and channel type.  The subfamily Chironomidae 

accounted for 8% of total density and 4% of total secondary production in GWF streams, 

and 23% of total insect density and 36% of the total secondary in SWF streams. 

Main channel vs. Side channel 

 There was no significant difference in Orthocladiinae secondary production in 

main and side channels within hydrologic type. There was no significant difference 

between Chironominae secondary production in GWF and SWF streams or between main 

and side channel areas within both hydrologic types. 

Discussion 

Growth Rates 

 Aquatic insect growth rates are strongly influenced by water temperature, which 

increases or decreases developmental times (Humpesch 1979, Sweeney 1984).  

Differences in mean water temperature of groundwater-fed (GWF) and surface water-fed 

(SWF) streams in this study provide an explanation for differences observed in growth 

rates of Baetis spp. between the hydrologic types.  Growth rates of Baetis spp. were 

significantly higher in SWF streams than in GWF streams. During the study, mean water 

temperature in SWF streams was 2.9°C warmer than in GWF streams (SWF: 7.5°C; 

GWF: 4.6°C). High growth rates of Baetis spp. during the growing season, in warmer 

streams such as the SWF streams of this study, are consistent with those reported in other 

studies (Huryn and Wallace 2000). Higher mean temperatures in SWF streams increase 

growth rates of aquatic insects due to the accumulation of more degree-days over a 

shorter period of time.  Merritt et al. (1982) reported similar results for blackflies, where 

an increase in stream temperature decreased in larval development time.    
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 Baetis spp. were smaller in SWF streams than in GWF streams (maximum body 

length; SWF: 7 mm; GWF: 9 mm). Higher growth rates of Baetis spp. in SWF streams 

would result in less time for biomass accumulation(i.e., a smaller body size).  Vannote 

and Sweeney (1980) noted that insects growing at temperatures other than their thermal 

optimum, whether warmer or cooler, would result in smaller body size. The smaller body 

size of Baetis spp. observed in SWF streams is consistent with Vannote and Sweeney 

(1980). As indicated by the larger body size, GWF stream temperature is closer to the 

thermal optimum range for Baetis spp., than is SWF stream temperature.   

Secondary production 

 Aquatic insect secondary production in GWF streams was significantly higher 

than in SWF streams.  Stream water temperature affects secondary production of aquatic 

insects (Wallace and Anderson 1996) through its effects on developmental time, which 

influences biomass accumulation. High Chironomidae (Diptera) secondary production, 

resulting from either high densities (Smock 1985) or high mean individual biomass 

(Benke 1984), also contributed to differences in secondary production in these study 

streams.  

 Although chironomids are ubiquitously distributed (Ferrington 2008), subfamilies 

can generally be considered either cold- or warm-adapted (Ward and Stanford 1982, 

Lindegaard 1995) and could be expected to have higher secondary production rates 

consistent with their thermal preferences.  Cold adapted taxa such as Orthocladiinae and 

Diamesinae had higher secondary production rates in GWF streams, whereas warm 

adapted taxa such as Chironominae and Tanypodinae had higher secondary production 

rates in SWF streams. In this study total secondary production, trophic guild secondary 
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production, and functional feeding group secondary production were compared across 

hydrologic types (GWF vs. SWF) and channel types (main channel vs. side channel). 

Total Secondary Production 

 Significantly higher total secondary production in GWF streams compared to 

SWF streams is primarily due to the high secondary production rates of the chironomid 

subfamily Orthocladiinae in GWF streams. Orthocladiinae secondary production was 

significantly higher in GWF than in SWF streams and represented 55% of total secondary 

production in GWF streams. The substantial contribution of orthoclads to secondary 

production was a result of higher mean individual biomass and higher densities (mean 

GWF density 4563 /m
2
; 72% of total density) in GWF streams (biomass: 0.11mg) than in 

SWF streams (biomass: 0.02 mg). Orthoclad densities in the study streams are 

comparable to those reported in other Alaskan streams (Lessard et al. 2009). 

Orthocladiinae are commonly found in cool waters (4ºC - 6ºC) (Milner 2001), and water 

temperatures of GWF streams in this study are within this range (Chapter 2).   

  Secondary production in SWF streams was dominated by the chironomid 

subfamily Chironominae, which accounted for 36% of total secondary production.  

Although Chironominae was not the most abundant taxon in SWF streams, accounting 

for 23% of total aquatic insect density, the high contribution of Chironominae to total 

secondary production suggests that this was due to high mean individual biomass. 

Chironominae mean individual biomass was higher in SWF than in GWF streams (SWF: 

0.20 mg, GWF: 0.07mg). In contrast, Orthocladiinae was the most abundant taxon in 

SWF streams (31% of total insect density), however, orthoclads only accounted for 9% of 

the total secondary production in SWF streams. This suggests that low secondary 
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production was due to relatively low mean individual biomass (SWF: 0.02 mg, GWF: 

0.10 mg). Thus, higher Chironominae secondary production in SWF streams, despite 

higher orthoclad densities, was likely due to the higher mean individual biomass of 

Chironominae (0.20 mg) than Orthocladiinae (0.02 mg).    

 Total secondary production in main and side channels across both hydrologic 

types were not significantly different due to high densities and secondary production of 

Orthocladiinae in both channel types. This influence of high orthoclad secondary 

production potentially conceals any additional secondary production patterns. For 

example, Baetis spp. secondary production across GWF and SWF streams was higher in 

main channel areas than in the side channels. Baetis is a rheophilic insect common in 

riffles (Wingfield 1939), which primarily occur in main channels of the study streams. 

Functional Feeding Group Secondary Production  

 Among the six functional feeding groups, collector-gatherers had the highest 

secondary production across all hydrologic types, and was also higher in GWF than in 

SWF streams. Other studies in groundwater streams also reported high collector-gatherer 

secondary production compared to other FFGs. Dobrin (2002) and Iversen (1988) found 

high collector-gatherer secondary production in streams in Canada and Denmark, 

respectively. While Krueger et al. (1983) reported similar results in cool water streams of 

Minnesota.  A likely explanation for high collector-gatherer secondary production in this 

study is the high number of taxa comprising the FFG. Six taxa were categorized as 

collector-gatherers, whereas most other FFGs were represented by only two taxa, except 

for engulfers, which included five taxa. Of the six collector-gatherer taxa, four were 

Chironomidae subfamilies, however, high collector-gatherer production is primarily 
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associated with two subfamilies, Orthocladiinae and Chironominae. These subfamilies 

collectively represented 69% of collector-gatherer secondary production.  

Implications  

 Alaskan streams are particularly vulnerable to the effects of climate change 

because these effects will be more pronounced in northern latitudes (Hinzman et al. 

2005). Although streams in high latitudes are expected to experience increased water 

temperatures as a result of climate change, local hydrologic type, such as groundwater 

inputs, may mediate rising stream temperatures (Arismendi et al. 2012). Thus, streams 

with contrasting hydrologic types, i.e., GWF vs. SWF, will respond differently to climate 

change. Energy flow in more vulnerable systems will be substantially altered, which will 

have broad ranging impacts on the ecosystem services provided by these streams. 

 In this study, higher aquatic insect secondary production in GWF than in SWF 

streams indicates more energy is potentially available to higher trophic level organisms 

such as coho salmon (Oncorhynchus kisutch), an important economic and recreational 

resource throughout streams on the Copper River Delta (CRD).  Aquatic insects, 

particularly chironomids, are important food resources for larval salmonids with midges 

often comprising the majority of their aquatic insect diet (E. Campbell, pers. comm.). 

Groundwater-fed streams have been shown to provide juvenile coho salmon refuge from 

ice as they overwinter in streams (Woody and Higman 2011).  

 The protection of salmonid habitats is a major issue in the Pacific Northwest 

where many salmon populations have declined over the past several decades causing a 

nutrient deficit in those systems (Gresh et al. 2000).  Migratory salmon introduce marine-

derived nutrients into freshwater systems via eggs, sperm, and adult carcasses.  Aquatic 
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insects uptake marine-derived nutrients during decomposition of carcasses and aid in the 

transfer of these nutrients throughout the stream (Cederholm 1999). These nutrients are 

an important component in sustaining healthy ecosystems and food webs (Lessard et al. 

2006, 2009, Cederholm 1999). Results from this study have important implications for 

the management of these critical habitats. 
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Table 13. Physicochemical parameters of four study streams on the Copper River Delta, AK, April – November 2013, presented as 

monthly means. Temperature includes (range) to show max and minimum temperatures. Variation in physicochemical parameters 

presented as coefficient of variation (CV, %). GWF = groundwater-fed, SWF = surface water-fed. Site abbreviations as in Table 1. 
 

GWF SWF 

  25mi-M 25mi-S Hat-M Hat-S CV 18mi-M 18mi-S Blk-M Blk-S CV 

Maximum Depth (cm) 40 20 50 30  60 30 30 25  

           

Temperature °C     34.7     55.4 

        Apr 4.2 
(3.7-5.5) 

3.7 
(2.8-5.1) 

1.2 
(1.1-1.3) 

1.3 
(1.1-1.8)  

1.9 
(1.2-2.3) 

1.9 
(1.8-2.3) 

0.8 
(0.3-1.1) 

0.7 
(0.5-0.9)  

        May 4.3 
(2.7-7.1) 

4.7 
(2.5-9.1) 

2.4 
(0.8-4.9) 

3.2 
(0.8-5.2)  

4.5 
(0.9-9.5) 

4.1 
(1.3-8.6) 

3.5 
(0.6-8.2) 

3.2 
(0.56-7.98)  

        June 5.4 
(4.0-9.4) 

6.6 
(4.8-10.4) 

5.0 
(2.6-8.0) 

5.0 
(2.7-8.0)  

7.7 
(3.9-13.4) 

6.5 
(3.3-13.1) 

8.0 
(4.9-11.9) 

5.8 
(3.8-9.6)  

        July 5.3 
(4.5-9.0) 

6.5 
(5.8-9.8) 

5.5 
(4.1-7.5) 

5.5 
(4.2-7.7)  

11.0 
(7.3-16.4) 

10.1 
(6.5-14.8) 

9.7 
(7.3-11.9) 

7.4 
(5.5-10.5)  

        Aug 5.3 
(4.4-7.5) 

6.6 
(5.7-9.5) 

5.8 
(4.6-9.7) 

5.0 
(4.6-9.4)  

11.9 
(9.3-13.9) 

11.6 
(4.2-18.8) 

10.5 
(8.3-12.2) 

9.5 
(7.2-11.7)  

Sampling period Mean 4.9 5.6 4.0 4.1  8.4 7.7 7.7 6.2  

           

pH     16.6     17.1 

       Apr 6.0 5.8 4.6 5.3  5.9 6.0 8.8 9.6  

       May 7.9 8.0 9.1 9.0  6.7 6.7 7.9 8.0  

       June 6.8 6.9 7.0 7.2  6.7 6.9 6.5 7.0  

       July 6.9 6.1 7.6 7.7  6.9 7.0 8.4 8.3  

       Aug  7.1 6.8 8.3 8.2  10.5 10.2 8.0 8.1  

Mean 6.6 6.3 5.3 6.0  6.5 6.5 7.2 7.6  

           

Dissolved Oxygen mg/L      13.9     24.5 

       Apr 9.9 8.6 8.7 9.8  9.8 9.7 11.7 12.2  

       May 7.6 7.0 8.0 8.5  8.8 7.6 7.9 7.9  

       June  7.6 7.3 8.0 7.9  7.1 6.5 6.8 7.1  

       July 10.0 9.1 8.6 8.2  7.5 4.4 8.3 6.7  

       Aug 11.4 11.5 9.0 9.4  8.2 5.3 11.2 8.0  

Mean 9.3 8.7 8.5 8.8  8.3 6.7 9.2 8.4  
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Table 13 Cont. GWF SWF 

 25mi-M 25mi-S Hat-M Hat-S CV 18mi-M 18mi-S Blk-M Blk-S CV 

Conductivity µS/cm      10.4     51.5 

       Apr 0.06 0.06 0.06 0.06  0.03 0.03 0.01 0.02  

       May 0.05 0.05 0.05 0.05  0.02 0.02 0.02 0.02  

       June 0.05 0.06 0.06 0.06  0.02 0.03 0.03 0.03  

       July 0.05 0.06 0.06 0.06  0.02 0.07 0.03 0.03  

       Aug 0.05 0.05 0.06 0.06  0.02 0.07 0.03 0.03  

Mean 0.05 0.05 0.06 0.06  0.02 0.04 0.02 0.03  

           

Salinity ppt     17.2     63.2 

        Apr 0.03 0.03 0.03 0.03  0.01 0.01 0.01 0.01  

       May 0.02 0.03 0.02 0.02  0.01 0.01 0.01 0.01  

       June 0.02 0.03 0.03 0.03  0.01 0.01 0.01 0.01  

       July 0.02 0.03 0.03 0.03  0.01 0.03 0.01 0.01  

       Aug 0.02 0.03 0.03 0.03  0.01 0.04 0.01 0.01  

Mean 0.02 0.03 0.03 0.03  0.01 0.02 0.01 0.01  

           

Total Dissolved Solids g/L     9.2     50.6 

        Apr 0.04 0.04 0.04 0.04  0.02 0.02 0.01 0.01  

       May 0.03 0.03 0.03 0.03  0.01 0.01 0.01 0.02  

       June 0.03 0.04 0.04 0.04  0.01 0.02 0.02 0.02  

       July 0.03 0.04 0.04 0.04  0.01 0.05 0.02 0.02  

       Aug 0.03 0.04 0.04 0.04  0.01 0.04 0.02 0.02  

Mean 0.03 0.04 0.04 0.04  0.01 0.03 0.02 0.02  

           

Oxidation Reduction Potential mV     41.5     55.6 

        Apr 89.7 103.0 61.7 39.7  78.8 44.6 69.6 20.0  

       May 69.5 46.2 76.1 60.4  122.1 94.4 77.1 69.5  

       June 63.0 57.3 79.6 62.1  75.8 80.5 100.7 59.9  

       July 37.9 29.6 55.8 42.3  41.5 24.8 88.8 68.9  

       Aug 56.5 66.5 19.4 NA  22.7 24.0 26.5 10.0  

Mean 63.3 60.5 58.5 51.1  68.2 53.7 72.5 45.7  
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Table 13 Cont. GWF SWF 

 25mi-M 25mi-S Hat-M Hat-S CV 18mi-M 18mi-S Blk-M Blk-S CV 

Chlorophyll a µg/cm2      140     154 

       Apr 0.0 1.4 1.1 0.0  0.1 1.2 0.0 0.0  

       May 0.0 0.0 1.4 3.2  0.0 0.0 0.0 0.0  

       June 0.0 0.4 0.0 0.5  2.4 1.2 0.0 0.6  

       July 0.3 2.6 0.0 1.8  0.0 1.4 0.6 0.4  

       Aug 0.0 0.0 0.0 3.3  0.3 0.0 0.1 0.3  

Mean  0.1 0.9 0.5 1.8  0.6 0.8 0.1 0.2  

           

Soluble reactive phosphorus µg/L      105     152 

       May 1.1 2.8 1.1 0.5  0.0 0.0 0.2 0.3  

       June 2.6 0.0 0.1 0.0  0.4 0.0 0.7 0.0  

       July 3.0 11.3 1.1 2.8  6.0 3.1 1.2 9.3  

       Aug 3.1 5.4 8.0 5.9  3.7 8.6 19.3 23.6  

Mean  2.4 4.9 2.6 2.3  2.5 2.9 5.3 8.3  

           

Ammonium µg/L      71.7     94.4 

       May 5.0 7.0 15.1 16.7  16.6 33.9 12.4 26.9  

       June 6.5 12.5 15.2 8.4  13.9 10.1 13.3 12.6  

       July 15.3 57.3 10.1 23.0  35.4 123.3 18.9 42.8  

       Aug 21.0 23.7 39.0 29.9  31.3 110.9 84.8 129.9  

Mean  11.9 25.1 19.8 19.5  24.3 69.6 32.3 53.0  

           

Nitrate µg/L      44.9     50.7 

       May 89.9 90.0 84.4 86.5  108.1 46.6 13.2 19.2  

       June 86.0 143.1 92.7 63.5  58.8 38.7 70.1 66.3  

       July 131.8 106.8 69.6 51.0  86.8 48.6 58.4 35.1  

       Aug 58.4 49.7 19.9 15.3  44.0 35.9 27.2 30.7  

Mean  91.5 97.4 66.6 54.0  74.4 42.5 42.2 37.8  
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Table 14. Aquatic insect taxa and mean densities (no./m
2
) in main and side channel areas of study streams on the Copper River Delta, 

AK, April – November 2013. Taxa with SE = 0 were only collected on one occasion; therefore means could not be calculated. 

  GWF SWF 

  25 Mile Hatchery Creek 18 Mile Blackhole Creek 

 Main Side Main Side Main Side Main Side 

Ephemeroptera         

Baetidae         

Baetis 44 (17) - 69 (24) 4 (1) 53 (17) 7 (3) 84 (40) 11 (15) 

Heptageniidae         

Cinygmula - - 5 (1) - 18 (9) - 34 (9) 5 (2) 

Epeorus - - - - - - 3 (0) - 

Plecoptera         

Capniidae         

Capnia 10 (4) 3 (0) 67 (25) 14 (8) 21 (12) 3 (0) 40 (11) 8 (6) 

Chloroperlidae         

Suwallia 9 (2) 7 (0) 38 (9) 10 (3) 108 (105) - 44 (18) 22 (32) 

Nemouridae         

Zapada cinctipes - - 4 (1) 3 (0) 29 (15) 3 (0) 40 (16) 8 (4) 

Perlodidae         

Isoperla katmaiensis - - 3 (0) - - - - - 

Hemiptera         

Corixidae         

Callicorixa vulnerata - 20 (13) - - 7 (3) 96 (84) - 57 (61) 

Trichoptera - 13 (10) - - - - - - 

Limnephilidae         

Ecclisomyia 11 (3) 12 (5) 6 (2) 11 (2) 3 (0) 3 (0) 13 (5) 5 (3) 

Lenarchus - - - - - 3 (0) - 3 (0) 

Limnephilus - 13 (10) - - - - - - 

Onocosmoecus - - - - - - - 3 (0) 

Psychoglypha 5 (2) 14 (6) - 4 (1) - 10 (0) - 3 (0) 

Coleoptera         

Dytiscidae         

          Agabus - 7 (3) - - - 3 (0) - 3 (0) 



 

 

6
8 

Table 14 Cont. GWF SWF 

 25 Mile Hatchery Creek 18 Mile Blackhole Creek 

 Main Side Main Side Main Side Main Side 

Diptera         

Athericidae          

         Atherix - - - - - - 5 (1) 3 (0) 

Chironomidae         

  Tanypodinae         

Derotanypus - - - - - 7 (0) - - 

Larsia - - - - 40 (0) - - - 

     Macropelopia - 13 (0) - - - - - 40 (0) 

     Monopelopia - - - - 13 (0) - 12 (4) 15 (5) 

Psectrotanypus - 23 (0) - - - 3 (0) - 133 (0) 

     Thienemannimyia grp. - - - - 3 (0) 27 (0) - - 

  Podonominae         

Paraboreochlus - - - - - - 10 (0) - 

  Diamesinae         

Diamesa 10 (3) - 7 (0) - - - - - 

Pagastia - - 15 (8) 37 (0) 13 (0) - - - 

     Potthastia - - 27 (0) - - 3 (0) - - 

Protanypus - 13 (0) - - - - - - 

Pseudodiamesa - - 18 (8) 81 (27) - - - - 

Prodiamesinae         

Prodiamesa 13(0) 121 (73) - 13 (0) - 83 (0) - 120 (0) 

Odontomesa - 53 (0) - 93 (0) 13 (0) 80 (0) - 13 (0) 

Orthocladiinae         

Chaetocladius 482 (465) 27 (0) - 87 (70) - - 3 (0) - 

Corynoneura 22 (12) - 40 (33) 13 (0) 152 (98) 427 (80) 186 (90) 128 (48) 

     Cricotopus 61 (28) 821 (738) 373 (0) 1493 (0) 13 (0) - 5 (2) - 

     Diplocladius 67 (0) - 278 (140) 454 (317) - 3 (0) - - 

Eukiefferiella 33 (3) - 30 (0) 17 (0) 368 (363) 68 (65) 7 (0) 27 (0) 

     Heterotanytarsus - - - - - - 3 (0) 3 (0) 

     Hydrobaenus 7 (0) 328 (290) 43 (18) 27 (0) 177 (163) 80 (0) 33 (0) 27 (0) 
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Table 14 Cont.  GWF SWF 

 25 Mile Hatchery Creek 18 Mile Blackhole Creek 

 Main Side Main Side Main Side Main Side 

Nanocladius - - - - - 40 (0) - 30 (0) 

     Orthocladius 13 (10) 159 (61) 1734 (1719) 509 (424) 33 (0) - - - 

Orthocladius/Cricotopus - - 267 (0) - 7 (0) 3 (0) 120 (0) 7 (0) 

Parorthocladius 79 (1) - 8 (5) 27 (0) - - - - 

     Psectrocladius - 15 (8) - - - 3 (0) - - 

Rheocricotopus - - - - 47 (0) 40 (0) 7 (0) - 

Thienemanniella - - 347 (0) - 53 (31) 40 (0) 27 (0) 3 (0) 

Tvetenia 163 (0) 747 (0) - - - - 3 (0) - 

Unidentified genus A - - - 159 (139) - - - 3 (0) 

     Unidentified genus B - 3 (0) - 13 (0) - - - 67 (0) 

Unidentified genus C 3 (0) - - - 93 (0) 3 (0) - - 

Unidentified genus D - - - 187 (0) - - - - 

Chironominae         

  Chironomini         

Chironomus - - - - - 102 (32) - 53 (0) 

     Phaenopsectra - 13 (0) - 73 (47) 10 (0) 200 (173) - 27 (0) 

     Polypedilum 3 (0) - 3 (0) 177 (0) 280 (179) 66 (31) 453 (0) 413 (387) 

Unidentified genus A - - - 27 (0) - - - - 

  Tanytarsini         

Micropsectra - 17 (0) - 32 (22) 13 (0) 3 (0) 22 (18) 47 (25) 

Micropsectra/Tanytarsus 3 (0) 13 (0) 907 (0) 189 (172) 70 (63) 3 (0) 60 (40) 35 (18) 

     Paratanytarsus 10 (0) 41 (33) - - 27 (0) 47 (0) - - 

Tanytarsus - - - - - - - 3 (0) 

Ceratopogonidae         

Bezzia/Palpomyia 6 (1) 76 (31) - - - 13 (10) 8 (2) 10 (7) 

Probezzia 7 (3) 18 (6) - 3 (0) 131 (38) 42 (22) 44 (14) 67 (39) 

Dolichopodidae - - - - - - - 3 (0) 

Empididae         

Chelifera/Metachela 15 (3) 13 (8) 3 (0) 14 (10) - 3 (0) 3 (0) 3 (0) 

Ephydridae - - - - - - 3 (0) 7 (0) 
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Table 14 Cont. GWF SWF 

 25 Mile Hatchery Creek 18 Mile Blackhole Creek 

 Main Side Main Side Main Side Main Side 

Psychodidae         

Pericoma/Telmatoscopus - - - - - - - 3 (0) 

Simuliidae         

Prosimulium 47 (38) - 5 (2) - 15 (6) - 22 (14) 3 (0) 

Simulium 8 (5) - 3 (0) - 85 (41) - 32 (18) 6 (0) 

Tipulidae         

Dicranota 14 (4) 11 (5) 30 (8) 23 (5) 8 (1) 3 (0) 19 (5) 7 (4) 

Hexatoma 16 (11) 7 (2) 28 (9) 47 (33) - - - 3 (0) 

Molophilus 3 (0) - - - - - - - 

Pedicia - - - - 3 (0) - - - 

Tipula - 7 (0) - - - - - - 
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