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CHAPTER ONE 

INTRODUCTION 

1.1 Skin Cancer and Ultraviolet Radiation DNA Damage 

Skin is one of the vital organs of our body and act as a protective barrier from 

the external world. Because of its primary barrier function, the skin is exposed to 

environmental carcinogens, such as ultraviolet radiation (UV), which can lead to the 

malignant transformation of several skin cell types [1]. UV is divided into three 

wavelengths, UVA (315-400 nm) is the longest wavelength, which is penetrates deep 

into the dermis of the skin and is primary responsible for photoaging and actinic 

elastosis [2, 3]. UVB (280-315 nm) wavelength is shorter than UVA and is absorbed by the 

epidermis of the skin causing reactive oxygen species (ROS), immunosuppression as well 

as DNA damage. UVB is most carcinogenic and principal cause of skin cancer [2, 4, 5]. The 

shortest wavelength UVC (100 -280 nm) is a high energy UV and can cause substantial 

DNA damage [2, 6]. The majority of the UVC and some of the UVB is absorbed by ozone 

layer, thus the solar UV which reaches the earth’s surface is about 95% UVA and 5% UVB 

[6-9].   

In part, due to its environmental exposure, skin cancer is the most common type 

of cancer in United States [10]. Skin cancer can be divided into malignant melanomas and



1 

 

non-melanoma skin cancers (NMSC). With an estimated 3.5 million cases each year, 

NMSC put a large burden on our healthcare system [11]. NMSC are further subdivided 

into basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) [12, 13]. Basal cell 

carcinoma is believed to arise from the hair follicle stem cells. Homozygous loss of 

function of tumor suppressor gene PATCHED 1 (PTCH1) and activation of hedgehog 

signaling, or overexpression of transcription factors Gli1/Gli2 in the hair follicle stem 

cells induces BCC [14-17]. About quarter of a million new cases of SCC are diagnosed every 

year [18]. SCC originates from the interfollicular epidermis to form squamous 

differentiating cancers of keratinocytes [19]. In cutaneous SCC, tumor cells are believed 

to arise in the keratinocyte stem cells localized to the basal layer of the interfollicular 

epidermis [20]. Aggressive forms of SCC involve multiple genetic alterations such as 

mutated HRAS, TP53, Cyclin-dependent kinase inhibitor 2A (CDKN2A), NOTCH1 and 

Mixed-lineage leukemia protein 3 (MLL3) [21]. 

Melanoma is the third form of skin cancer and it is derived from the pigment 

producing melanocytes which are present in the basal layer of epidermis. With poor 

prognosis and high incidences of metastasis, melanoma is the most deadly of the three 

skin cancer subtypes [22]. Skin cancers, including melanoma have a higher incidence of 

mutations than most other cancers and the majority of these mutation are caused by 

UV radiation. The most prominent driver mutations in melanoma are in BRAF, 

Neuroblastoma Ras Viral (V-Ras) Oncogene Homolog (NRAS), Retinoblastoma (RB), 

Phosphatidylinositol-3, 4, 5-Trisphosphate-Dependent Rac Exchange Factor 2 (PREX2) 

and TP53 [23-25]. UV radiation from the sun is the prevalent environmental cause of skin 
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cancer [26-28]. Apart from sunlight, tanning beds and other forms of UV lamps are 

common sources of exposure to artificial UV [29, 30].  

In addition to UV, therapeutic ionizing radiation or occupational exposure to 

radiation can cause NMSC. Skin cancers can be also caused by exposure to hazardous 

chemicals such as arsenic or polycyclic hydrocarbons [31, 32]. Organ transplant recipients 

who are on immunosuppressive medications have high risk of developing skin cancers, 

including fatal metastatic melanomas [33]. Infection with Human papilloma virus (HPV) 

[34], Human immunodeficiency virus (HIV) [35] or Merkel cell polyomavirus [36] in 

immunosuppressed patients is also linked to skin cancer development.  

Exposure to UV radiation is dangerous because UV radiation causes DNA damage 

by creating DNA adducts such as dimers between adjacent pyrimidine residues of DNA. 

These adducts are called as cyclobutane pyrimidine dimers (CPDs) and 6-(1, 2)-dihydro-

2-oxo-4-pyrimidyl)-5-methyl-2, 4-(1H, 3H) photoproducts (6-4 PP). ROS are generated in 

the cells exposed to UV radiation as well as a byproduct of cell metabolism, and this 

creates oxidative stress-induced cyclopurines [37-44]. All of these DNA adducts, if not 

repaired, can give rise to mutation by the activity of trans-lesion DNA polymerases. The 

Y family trans-lesion polymerases seldom utilize high fidelity while synthesizing new 

strands and can polymerize through the damaged bases, introducing mutation in the 

process [45]. This event is very dangerous because mutations in tumor suppressor genes 

like TP53 can promote skin cancer development [46, 47]. All types of skin cancers exhibit 

such UV specific mutations, for example, more than 58% of invasive squamous cell 

carcinoma show TP53 mutations [24, 48-50]. It has been observed that CPDs are more 
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mutagenic than 6-4 PP after UV-induced DNA damage, thus CPD are the most 

carcinogenic UV-induced DNA adducts [51].  

1.2 Nucleotide Excision Repair 

UV-induced DNA adducts are repaired by a DNA damage repair pathway called 

nucleotide excision repair (NER). It is a multi-step pathway employing a large number of 

proteins [43]. When this repair pathway is impaired, the DNA damage is not repaired 

completely, leading to development of large number of disorders, including cancers, 

neurodevelopment and photo-sensitivity disorders [52]. For example, Xeroderma 

Pigmentosum (XP) patients have a defect in XP complementary group components 

leading to extreme UV sensitivity and skin cancers [53]. Additionally, expression of NER 

components was reduced in head and neck SCC samples [54]. Multiple melanoma cell 

lines also displayed defects in Ataxia telangiectasia and Rad3-related protein (ATR) 

mediated DNA damage repair signaling [55].  

NER repairs the damage at two levels, the whole genome i.e. global genomic NER 

(GG-NER) and actively transcribing region i.e. transcription coupled NER (TC-NER) [56].  

After UV inflicts damage in DNA, the damage is recognized and verified. In GG-NER, 

Xeroderma Pigmentosum complementation group C (XPC) and ultraviolet radiation 

DNA-damage binding factor 2 (DDB2) are the early DNA damage recognition proteins 

[57]. The damage is recognized by XPC-RAD23B-CENT2 (Xeroderma Pigmentosum 

complementation group C, UV excision repair protein RAD23 homolog B, Centrin 2) 

complex in co-ordination with DDB2 [57-60]. Whereas in TC-NER, RNA polymerase gets 

blocked by the distorted DNA adduct to trigger damage recognition. Cockayne 
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syndrome proteins A and B (CSA & CSB) form a complex, and are summoned when RNA 

polymerase II is stalled in the transcribing region. They engage DNA damage repair 

proteins such as Transcription factor II H (TFIIH) to the site of damage [61].  

Henceforth, the GG-NER and TC-NER have similar steps of damage verification, 

excision, and the gap filling using a undamaged strand as a template. Ligation is done in 

the end to seal the nick [56]. DNA repair protein complementing Xeroderma 

Pigmentosum- A (XPA) is one of the important proteins in NER. XPA coordinates multiple 

proteins at damage verification and excision steps. That is why XPA is also termed as a 

‘rate limiting factor’ of NER [62, 63]. XPA, TFIIH, Xeroderma pigmentosum-D (XPD) and 

Replication protein A (RPA) work together to verify the damaged and undamaged strand 

[64, 65]. Xeroderma pigmentosum-G (XPG) and Xeroderma pigmentosum-F (XPF) 

endonucleases are recruited to excise the damage by XPA or RPA [66, 67]. DNA 

polymerases, with the help from Proliferating cell nuclear antigen (PCNA), fill the gap 

with correct bases using a template strand. DNA ligases seal the nick [43, 56, 68, 69]. 

These NER DNA damage response proteins can be regulated by different factors 

and at different levels (i.e. transcriptional, post-translational). For example, early DNA 

damage recognition protein XPC is regulated by ubiquitination by DDB-ubiquitin ligase 

complex and de-ubiquitination by Ubiquitin specific protease 7 (USP7) [70, 71]. XPA 

protein is also heavily controlled by multiple factors. ATR phosphorylates XPA on serine 

196 and physically interacts with XPA at lysine 188 to facilitate nuclear translocation of 

XPA. In the nucleus, ubiquitin ligase HERC2 ubiquitinates and degrades XPA in the 
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nucleus [72-75].The XPA- RPA activity is enhanced by deacetylation of XPA by Sirtuin-1 

(SIRT1) [76].  

Additionally, the tumor suppressor protein p53 is also involved in regulating NER 

proteins [53]. p53 is involved in the recruitment of proteins at the DNA damage site, such 

as XPC and TFIIH after DNA damage [77]. p53 is also involved in the DNA damage-induced 

gene expression of NER factors DDB2 and XPC [78-80]. Furthermore, cells harboring 

homozygous TP53 mutation are defective in global genomic repair of CPD and 6-4 PP 

[81]. 

1.3 Protein Kinase C Delta (PKCδ) 

Structure of PKCδ 

Figure 1. Domain Structure of PKCδ 

PKCδ is a 78 kD serine/threonine calcium-independent protein kinase made up 

of a regulatory domain and a catalytic domain connected by a hinge region. The 

regulatory domain at the amino terminal contains two C1 regions, C1A and C1B one 

after the other, and a non-calcium binding-C2-like region. The C1 domains are involved 

in diacylglycerol (DAG) and phorbol esters binding. The C2-like region is a 

phosphotyrosine binding domain and implicated in protein-protein interactions. The 

catalytic domain at the carboxyl terminal contains a C3 region and a C4 region. The C3 

C2-like C3 C4 N  C 

  

Regulatory domain Catalytic domain 

Nuclear localization signal 

Hinge region 

pseudosubstrate 

C1A C1B 

ATP-binding DAG/phorbol ester 
binding 

Phospho-tyrosine  
binding 

Substrate binding 
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region contains an ATP- binding site and the C4 region contains the PKCδ substrate 

binding site and a nuclear localization signal. The regulatory domain of PKCδ also 

contains a pseudo-substrate sequence which binds to the substrate binding part at the 

catalytic domain at C4 region [82-86]. This induces the catalytic domain to fold over the 

regulatory domain and this folded conformation is the inactive state of PKCδ.  

1.3.1 Regulation of PKCδ 

PKCδ can be activated by membrane bound diacylglycerol (DAG) binding to the 

C1 region. DAG is produced by hydrolysis of phosphatidylinositol 4, 5-bisphosphate 

[PI(4, 5)P2] by receptor tyrosine kinase activated Phospholipase C γ (PLCγ) or by G 

protein-coupled receptors activated Phospholipase C β (PLCβ). Furthermore, PKCδ can 

be activated by treatment with pharmacological analog of DAG such as phorbol esters. 

PKCδ is also activated by external stimuli such as UV, ionizing radiation and genotoxic 

agents like 1-[beta-D-arabinofuranosyl] cytosine (ara-c) [82, 86-94]. Upon activating stimuli 

such as UV, caspase 3 proteolytically cleaves full length PKCδ at the hinge region and 

produces a PKCδ active catalytic fragment (CF) of 40 kD [89, 95-98]. This PKCδ catalytic 

fragment is constitutively active and has been localized to both the mitochondria and 

the nucleus. A proteolytic cleavage resistant isoform of PKCδ has also been reported. 

The caspase 3 cleavage site structure at the hinge region is abrogated by insertion of 

new amino acid sequence in this splice variant. This change has decreases caspase 3 

proteolytic sensitivity, resulting in a cleavage-resistant isoform of PKCδ variant [99].  

Tyrosine phosphorylation is also a mechanism for PKCδ regulation which is 

independent of DAG-related activation. For example, H2O2 treatment induces PKCδ 
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phosphorylation at Tyrosine-311 (Tyr- 311), Tyr- 332 and Tyr-512 resulting in increased 

enzymatic activity [100]. PKCδ also auto phosphorylates itself at serine 643[101] and there 

is a correlation between tyrosine phosphorylation of PKCδ by Platelet-derived growth 

factor receptor beta (PDGFRB) [102] and increased PKCδ enzymatic activity. In contrast, 

tyrosine phosphorylation can be an inhibiting mechanism for PKCδ, such as 

phosphorylation by Src family kinases such as c-Src and c-Fyn [103-105]. Without physically 

associating with PKCδ, these membrane bound Src kinases inactivate PKCδ by tyrosine 

phosphorylation [104]. 

1.3.2 Functions of PKCδ  

Apoptosis is one of the most effective tumor suppressive mechanisms to 

eliminate cells with mutations and to maintain genetic integrity of a tissue, when repair 

of DNA damage is no longer possible [46]. PKCδ has a major role in inducing apoptosis 

[106]. Generally, upon apoptotic stimuli, caspase 3 is activated and it cleaves full length 

PKCδ at the hinge region to create a 40 kD constitutively active catalytic fragment 

(PKCδ-cat) [91]. Also, PKCδ has been found working upstream of caspases. Our lab found 

that this PKCδ-cat can cause apoptosis by localizing to mitochondria, phosphorylating 

anti-apoptic protein Myeloid leukemia cell differentiation protein (Mcl-1) and thus 

decreasing Mcl-1 protein half-life [107]. The reduction of Mcl-1 promotes activation of the 

pro-apoptotic protein Bax and disruption of the outer mitochondrial membrane 

releasing cytochrome c and stimulating further activation of caspases [93, 108]. Tyrosine 

phosphorylation of PKCδ is required for etoposide-mediated activating cleavage of 

caspase 3 indicating a positive feedback loop [106, 109]. The PKCδ-cat is also sufficient for 
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apoptosis. Apoptosis can be induced if PKCδ-cat is expressed in the human keratinocytes 

[93]. Our lab has also shown that re-expression of full-length PKCδ in Ras-transformed 

HaCaT keratinocytes which have lost expression of PKCδ, induces apoptosis and 

suppresses tumorgenicity in nude mice [110]. Additionally, PKCδ induces apoptosis in 

keratinocytes through p38delta-ERK1/2 complex [111].  It has been observed that upon 

ionizing radiation-induced DNA damage, a p53-dependent apoptosis cascade is 

activated by Abelson murine leukemia viral oncogene homolog 1 (c-Abl) where PKCδ is 

found to be activated [112]. PKCδ also induces apoptosis in an endometrial cancer cell line 

and inhibits their transformation [113]. In some cases of PKCδ-dependent apoptosis is 

induced upon etoposide treatment [114], Fas-ligation and cytokine deprivation in T cells 

[115, 116]. PKCδ is also involved in activation of Mitogen activated protein kinases (MAPK) 

in 3T3-F442A cells as well as in salivary epithelial cells where PKCδ induces apoptosis via 

MAPK activation [117, 118]. PKCδ also induces apoptosis by activating topoisomerase IIα 

[119] and death promoting transcription factor Bcl-2-associated transcription factor (Btf) 

[120]. Additionally, apoptosis is also started by phosphorylation of Lamin B and p53 by 

PKCδ[121, 122]. Furthermore, PKCδ interacts with Abelson murine leukemia viral oncogene 

homolog 1 (ABL1) [123], TNF-related apoptosis-inducing ligand (TRAIL)/CDKN1A [124] and 

topoisomerase II α [119] to induce apoptosis. Thus, PKCδ is activated by a wide range of 

apoptotic stimuli and promotes apoptosis through multiple mechanisms. 

PKCδ is also found to be involved in promoting cell cycle checkpoints. Upon DNA 

damage or acute stress-induced by chemical agents, radiation, or internal metabolic 

sources, the cell cycle is halted at various checkpoints. These cell cycle checkpoints are 
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vital to allow time for DNA damage repair and for mutation free survival of the damaged 

cell. Overexpression of PKCδ induces cell cycle arrest in late G1 phase in BALB/MK-2 

mouse keratinocytes [125]. PKCδ overexpression in capillary endothelial cells arrested the 

cells in S-phase. This arrest was mediated through Cyclin-dependent kinase inhibitor 1 B 

(CDKN1B) [126]. Furthermore, our lab has shown that PKCδ catalytic fragment is involved 

in the maintenance of G2/M cell cycle checkpoint after UV-induced DNA damage [127]. 

The Nishizuka lab found similar results in the Chinese hamster ovary cells (CHO) cells 

where PKCδ overexpressing CHO cells arrested at the G2/M after treatment with 

phorbol ester [127, 128]. Additionally we found that inhibiting Ataxia telangiectasia 

mutated (ATM)/ATR signaling in primary keratinocytes or HaCaT cells with the ATM/ATR 

inhibitor caffeine had no effect on PKCδ-cat-induced G2/M checkpoint, indicating that 

PKCδ is working downstream of ATM/ATR in the G2/M checkpoint[127].  

While analyzing human SCC samples, previous members of our lab found that 

the PKCδ is lost at the mRNA and protein levels in about 30% of human SCCs, but the 

PKCδ gene was not deleted [110]. Additionally, PKCδ expression is also found to be 

decreased in endometrial tumor samples, and the reduction was associated with high 

tumor grade [129]. Furthermore, rat fibroblast cells displayed increased 12-O-

Tetradecanoylphorbol-13-acetate (TPA)-induced transformation when PKCδ was 

depleted [130] and reduction in tumorigenicity was observed when PKCδ was transduced 

in the human colon cancer cells [131]. PKCδ is found to be decreased in colon carcinoma 

cells and tumors developed in nude mice when xenografted with PKCδ knocked down 
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colon carcinoma cells [132, 133]. Taken together, these observations support a tumor 

suppressive function for PKCδ and call for further investigation of this kinase  
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1.4 p53 

1.4.1 Structure of p53 

p53 is a 53 kD tumor suppressor protein encoded by the TP53 gene located on 

the short arm of chromosome 17 [134]. p53 acts as a transcription factor for a large 

number of genes spanning diverse functions including cell cycle arrest, apoptosis, 

senescence, autophagy and DNA damage repair [135, 136]. p53 is a 393 residues protein 

made up of transcription activation domain/transactivation domain (TAD) (residues 1-

61) and a proline rich domain (residues 64-92) at the N-terminus. The DNA binding 

domain (DBD) (residues 94-293) is situated in the center followed by a nuclear 

localization signal domain (residues 312-323), tetramerization domain (TET) (residues 

326-355) and a regulatory C-terminal domain (CTD) (residues 363-393) at the C-

terminus. The TAD domain is further subdivided into TAD1 and TAD2 [135, 137]. The TAD is 

involved in transcription activation as well as repression through binding to transcription 

factors and co-activators, such as TATA-binding protein [138-140]. The proline rich domain 

contains five PXXP (P-proline, X-any amino acid) motifs [141] and is involved in apoptosis 

and oxidative stress response [142]. The p53 DNA binding domain (DBD) is made up of 

immunoglobulin-like-β sandwich which binds to major and minor grooves of particular 

DNA response elements [143]. The nuclear localization signal next to the DBD, enables 

p53 to translocate to nucleus and interact with DNA or transcription machinery proteins 

[144]. The TET domain is involved in building of p53 tetramer which is essential for its 

activation and function, and this tetramer formation is independent of presence or 

absence of DNA [137, 145]. These tetramers, two at a time, can bind to one DNA response 
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elements at the same time [146]. Usually the CTD is modified by post-translational 

modifications depending on internal or external stimuli [147]. The CTD regulates the 

function of p53 by controlling binding of DBD to specific DNA response elements [148].  

The CTD does that by creating steric hindrance with the conformation of p53 protein or 

binding to long segments of non-specific DNA, which prevents binding of DBD to specific 

sequences of DNA [149, 150].  

1.4.2 Regulation of p53 

p53 regulation is thoroughly supervised because in the absence of an inhibitory 

regulator, p53 is embryonic lethal [151]. p53 activity is supervised on two levels; 

regulating p53 protein level and regulating the p53-mediated transcription of target 

genes. First the E3 ubiquitin ligase Mouse double minute 2 homolog (Mdm2) is the 

major negative regulator of p53 protein levels. Under normal DNA damage and stress 

free cellular conditions, p53 levels are kept low by Mdm2 [152]. Mdm2 binds and poly-

ubiquitinates the TAD and CTD of p53 protein and transports p53 from nucleus to the 

cytoplasm where p53 is degraded through the ubiquitin-mediated proteosomal 

degradation pathway. Thus, lack of Mdm2 causes accumulation of the p53 protein [153-

156]. In the CTD, more than 6 lysine (Lys) residues of p53 are targets for ubiquitination 

and degradation by Mdm2. Ubiquitination requires multiple Lys residues for successful 

ubiquitination of p53 [157, 158]. This regulation is controlled by a negative feedback 

mechanism where activated p53 activates transcription of Mdm2 by binding to its 

promoter region. Increased Mdm2 levels in turn inhibit p53 [159]. This negative regulation 

is disrupted by inhibitory binding of p19Arf (ARF) to Mdm2 resulting in activation of p53 
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[160]. Opposing this, Yin Yang 1 (YY1) creates a complex with Mdm2 to promote p53 

degradation [161].  Additionally, Mdm2 in complex with nuclear matrix associated protein 

Scaffold/matrix-associated region-binding protein 1 (SMAR1) recruits Histone 

deacetylase 1 (HDAC1) to deacetylate and thus converts p53 to a less active form [162]. 

Furthermore, Mdm2 via NEDD8 E3 ligase promotes NEDDylation of p53 on Lys 370, Lys 

372 and Lys 373 and this modification impede p53 activity [163]. 

On the other hand, after DNA damage, p53 needs to be activated and stabilized. 

Phosphorylation of Mdm2 by ATM on serine 395 [164] or by c-Abl on tyrosine 394 [165] 

inhibits Mdm2 and promotes p53 accumulation. In response to the ribosomal stress, 

p53 activation is induced by inhibition of Mdmd2 by ribosomal proteins L5, L11 and L23 

[166-168]. Furthermore, Mdm2 also self-ubiquitinates itself to control its levels in the cells 

[169].  

p53 governs the transcription of large number of target genes [135]. Mdm2 also 

inhibit transcription of p53 target genes by binding to the N-terminus of p53 and 

restricting its role as a transcription factor [170]. For example, Mdm2 competes with 

transcriptional coactivators such as p300 for binding sites located in the p53 TAD. 

Transcription of p53 target genes is thus abrogated because their coactivators cannot 

bind to p53 anymore [171]. Additionally, Mdm2 creates a complex with Euchromatic 

Histone-Lysine N-Methyltransferase 1 (EHMT1) to inhibit p53 target gene transcription 

by methylating histone 3 Lys 9 (H3K9) on promoters of p53 target genes as well as 

mono-methylating p53 at Lys 373 [172]. Mdm2 independent ubiquitin ligases, such as 

COP1 and Pirh2, supervise p53 regulation by degrading p53 through the ubiquitin-
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mediated proteosomal degradation pathway [173, 174]. Mdm2 is assisted by the Mdm2 

splice variant Mouse double minute 4 homolog (Mdm4/MdmX). MdmX lacks the E3-

ubiquitin ligase activity and thus cannot degrade p53, but it can bind to p53 and help 

Mdm2 to bind to p53. MdmX is termed as ‘negative regulator of p53’ and lack of MdmX 

induces aberrant apoptosis in embryonic neuro-epithelium [175, 176]. 

Upon acute stress or DNA damage, p53 needs to be activated rapidly in order to 

start transcription of its downstream genes, followed by repression when its role is 

fulfilled. For this quick response, p53 is regulated by numerous post-translational 

modifications, such as phosphorylation, acetylation, ubiquitination, neddylation, 

methylation and sumoylation [155]. Numerous p53 phosphorylation sites have been 

discovered spanning the TAD, DBD and CTD. Upon DNA damage, p53 is phosphorylated 

by DNA-dependent protein kinase (DNA-PK) [177] or by ATR [178] on serine 15 and serine 

37 or phosphorylated by ATM [179] on serine 15 in the TAD. These are p53 stabilizing 

phosphorylations. By creating Mdm2-binding-resistant conformation changes in the p53 

structure, these phosphorylations protect p53 from Mdm2-mediated degradation 

[177][178][179]. Additionally, DNA damaging agents such as UV also induce phosphorylation 

of p53 by Checkpoint kinase 2 (Chk2) on serine 20; Casein 1-like kinase (CK1) on 

threonine 18 [180] or on Serine 6 and 9 [181]; PKCδ on serine 46 [122], Jun NH-2 terminal 

kinase (JNK) on threonine 81 [182], and p38 kinase on serine 33 and serine 46 [183]. 

Furthermore, after DNA damage, Checkpoint kinase 1 (Chk1) and Chk2 phosphorylate 

the CTD of p53 on serine 366, serine 378 and threonine 387, and these 

phosphorylations are important for promoting acetylation (Lys 382) of p53 on CTD [184]. 
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Apart from phosphorylation, p53 is acetylated on multiple sites. Mdm2 cannot 

bind to acetylated p53, thus acetylation and deacetylation are used as a switch to turn 

on or turn off p53 activity quickly [185]. Furthermore, acetylation is a crucial step for p53-

mediated target gene transcription [186] and induction of apoptosis [187]. DNA damage 

induces Lys 120 acetylation in the DBD of p53 by ATM downstream effectors Tat-

interactive protein 60 (Tip-60) or by Males absent on the first (hMOF) and promotes 

p53-mediated apoptosis [188, 189]. Coactivator p300 acetylates p53 on 6 different lysines 

[292, 305 [190], 370, 372, 373, 381 [191], and 382 [192]] spanning the DBD, TET and CTD. 

Additionally, p300 in complex with CBP acetylates p53 at Lys 164 which prevents Mdm2 

binding and p53 degradation [187]. Lys 320 in the nuclear localization signal of p53 is 

acetylated by P300/CBP-associated factor (PCAF) resulting in increased DNA binding [192]. 

Conversely, Histone deacetylase (HDAC) deacetylates p53 to make it more vulnerable 

for Mdm2 binding and subsequent degradation and reduces p53 target gene 

transcription [193, 194]. Similarly, Silent information regulator 2 (SIR2) protein family 

deacetylases Sir2α and SIRT1 also deacetylates p53 residues and decrease p53 functions 

such as DNA damage induced apoptosis and target gene activation [195, 196].  

Apart from acetylation, p53 lysines are also targeted for methylation and 

neddylation. Methylation at different sites of p53 yields different outcomes. p53-

mediated gene activation is inhibited by mono-methylation of p53 on either Lys 382 by 

SET-domain containing protein 8 (SET8) [197] or at Lys 370 by methyltransferase SET and 

MYND Domain Containing 2 (Smyd2) [198]. The methyltransferase enzyme Set9 mono-

methylates p53 on Lys 372, where this methylation protects p53 from repressing 
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methylation by Smyd2 (Lys 370) as well as confines p53 to the nucleus, where p53 

activates target gene transcription [199]. Protein arginine methyltransferase (PRMT) 5 

methylates p53 on arginine (Arg) 333, 335 and 337 in p53-mediated DNA damage 

responses [200]. F-Box protein 11 (FBXO11) represses p53-mediated target gene 

activation by NEDDylating p53 on Lys 320 and Lys 321 [201].  

1.4.3 Functions of p53 

p53 protects cells from oncogenic transformation by implementing various anti- 

proliferative programs such as inducing cell cycle checkpoints, promoting DNA damage 

repair and promoting apoptosis or senescence as a final resort, to protect the integrity 

of the genome. Upon DNA damage, p53 triggers reversible arrest of cell cycle at various 

checkpoints so that the damage can be repaired. Upon DNA damage, p53 

transcriptionally activates p21 which inhibits CDK to execute G1 checkpoint arrest [202]. 

Additionally, p53-dependent activation of Phosphatase of regenerating liver-3 (Prl-3) 

[203] and protein tyrosine Phosphatase receptor type V (PTPRV) [204] induce G1 cell cycle 

arrest. p53 also imposes G2/M cell cycle checkpoint after UV-induced DNA damage via 

activation of Growth arrest and DNA-damage-inducible alpha (Gadd45a) as well as 

upregulation of 14-3-3σ [205, 206]. 

As p53 arrests damaged cells at various checkpoints, it also assist in repair of the 

damage by participating in NER, mismatch repair, base excision repair non-homologous 

end joining and homologous recombination. As mentioned previously, p53 regulates 

NER DNA damage repair proteins such as XPC, TFIIH [77] and DDB2 [79, 80, 207]. In mismatch 

repair, p53 preferentially binds to insertion/deletion mismatch DNA structures [208]and 
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interacts with DNA mismatch repair protein MutS protein homolog 2 (MSH2) [209]. 

Additionally, in complex with c-Jun, p53 initiates transcription of MSH2 upon UV-

induced DNA damage [210]. p53 is also involved in base excision repair of DNA damage, 

where lack of p53 decreases base excision repair of methyl methanesulfonate-induced 

damage [211]. This decrease in repair may be because p53 is found to be interacting with 

apurinic/apyrimidinic (AP) endonuclease as well as enhancing interaction between DNA 

polymerase β and AP DNA [212]. Furthermore, p53 can facilitate non-homologous end 

joining of double strand breaks (DSB) [213]. This activity was attributed to the affinity of 

p53 CTD towards non-specific DNA strands [214]. p53 actively contributes to homologous 

recombination (HR) where it interacts with many HR proteins such as, RAD51, RAD54 

[215] and Bloom syndrome associated helicase (BLM) [216]. Furthermore, p53 inspects HR 

fidelity and halts HR in case of mismatches [217, 218].  

When DNA damage cannot be repaired completely, for a mutation-free genome, 

p53 induces apoptosis [219]. p53-mediated apoptosis is carried out by the ability of p53 

to act as a transcription factor i.e. transcription-dependent, or transcription-

independent activities. In the transcription-dependent apoptosis pathway, upon 

external apoptotic stimuli, cellular stress, unrepairable DNA damage, 

genotoxin treatment or hypoxia [220-222], p53 is activated and translocate to nucleus, 

where it activates transcription of apoptotic proteins such as Bax [223], Bid [224], p53 

upregulated modulator of apoptosis (Puma) [225], Noxa [226] and p53-induced death 

domain (PIDD)[227]. p53 also induces transcription of microRNA-34a (mir-34a) which is 

responsible for apoptosis [228]. Additionally, p53 can also activate transcription of death 



18 

 

receptors such as KILLER/DR5 [229] or Fas [230, 231]. Furthermore, apoptosis is also induced 

via p53-mediated activation of caspase 6 [232] and caspase 9 [233].  In the transcription-

independent apoptosis pathway, activated p53 translocates to mitochondria and 

interacts with BclXL to release cytochrome c and compromises the integrity of the 

mitochondrial outer membrane [234]. p53 also activate caspase 8 which in turn, activates 

pro-caspase 3 to induce apoptosis [235, 236].  

Senescence is another p53-mediated anti-cancer activity where the senescence 

is induced upon replicative stress, oncogene activation or genotoxic exposure such as 

chemotherapy agents [237]. Cellular senescence induced by telomere shortening is also 

mediated through p53 where ATM/ATR kinases induce constant cell cycle arrest [238]. 

Activation of oncogenes such as Ras activates p53 to induce either ARF-dependent 

senescence [239], or activates transcription of Differentiated embryo-chondrocyte 

expressed gene 1 (DEC1) which activates senescence [240]. Additionally, Ras activates 

Promyelocytic leukemia protein (PML) which induces acetylation of p53 and formation 

of a p53-CBP-PML complex which generates senescence in the cells [241]. Tumor 

suppressor inactivation can also induce senescence, for example inactivation of 

Phosphatase and tensin homologue (PTEN) generates p53-dependent senescence [242]. 

1.4.4 Mutations in TP53  

Unfortunately, the TP53 anti-cancer gene is susceptible to enormous numbers of 

mutations, where more than 10,000 somatic mutations have been reported [243]. The 

majority of the TP53 mutations have been reported in its DNA binding domain 

(mentioned in review hotspot mutations at R175, R248, R249, R273, R282 and G245), 
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where the presence of a mutation abrogates the ability of p53 to bind DNA and promote 

the transcription of p53 target genes. These mutations are divided into two types, 

“contact mutants” which have mutations in the residues which directly bind to the DNA, 

and “structural mutants” where mutation changes the structure of p53 in a way that it 

can no longer bind to the DNA [244-248]. 

Mutation in TP53 can change its structure in a way that partner proteins cannot 

bind to it, or the affinity of p53 for a different set of protein increases, and this changes 

the transcriptional outcome. Mutant p53 can repress or activate genes abnormally. For 

example, the p53 repressed gene Microtubule-Associated Protein 4 (MAP4) is activated 

when p53 corepressor mSin3a removes p53 from promoter of MAP4. Mutations modify 

p53 so that the corepressor cannot bind to it and p53 remains on the promoter region 

of MAP4 constantly repressing its transcription [249]. Similarly, mutant p53 binds to p63 

and p73 and prevents transcription of its target genes [250]. Furthermore, the p53 TAD 

also associates with various transcription factors and promotes expression of genes 

which might advance oncogenic transformation such as PML which helps the 

proliferation of mutant TP53 carrier cancer cells [251]. Additionally, gain-of-function 

mutant TP53 can acquire certain characteristics which differ from its normal function, 

and thus is responsible for catastrophic biological outcomes such as inducing tumors 

[252], genomic instability  by polyploidy [253], gene amplification [254] and non-reciprocal  

chromosome translocations [255]. p53 exists in tetrameric form. If mutation arises in one 

mutant allele, then 50% of the tetramer will be composed of mutant p53. This semi-

mutant tetramer decreases the affinity of p53 for DNA binding especially [256-258] to 
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genes involved in apoptosis thus cells carrying mutant TP53 are resistant to genotoxin-

induced mediated apoptosis [259, 260].  

1.4.5 UV Mutations of TP53 

UV causes dipyrimidine site C--T substitution or CC--TT double base change or 

G:C-A:T transition mutations [261, 262]. UV-induced mutations have a particular sequence 

specificity and can be distinguished from other mutations. They are termed as UV 

signature mutations. Mutated TP53 in skin cancer display this UV signature in mutations 

[263]. TP53 is found to be mutated in 53% of actinic keratosis [264], 58% of cutaneous SCC 

[265] and 50% of BCC [266]. Additionally normal appearing epidermis was found to be 

harboring patches of TP53 mutated cells where each clone measured about 60 to 3000 

cells [267] with frequency of 40 cells per cm2 [268]. Furthermore, with continuing UV 

exposure, the TP53 mutant clones can invade nearby stem cell compartments [269]. It has 

been postulated that SCC originates in stem cells harboring early mutations, such as 

TP53 mutations induced by UV. Lack of TP53 reduces destruction of mutation carrier 

cells and these stem cells expand to produce pre-neoplastic clones. These cells, usually 

at the actinic keratosis level, proliferate and give rise to SCC [270-272]. 

Moreover, mice lacking Tp53 spontaneously developed tumors [273]. Taken 

together, p53 fulfills its role as the ‘guardian of the genome’ by suppressing oncogenic 

transformation via multitude of mechanisms such as triggering cell cycle arrest after 

damage, aiding in DNA damage repair and inducing apoptosis or senescence if the repair 

fails.   
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SUMMARY 

RATIONALE AND HYPOTHESIS 

PKCδ is found to be lost or mutated in many cancers, including cutaneous SCC. 

PKCδ is activated by wide array of DNA damaging agents including UV. Upon UV 

radiation induced DNA damage, PKCδ is involved in the maintenance of G2/M cell cycle 

checkpoint arrest, while the damage repair machinery, such as NER, repair the damage. 

Cells lacking PKCδ are defective in maintaining the G2/M cell cycle checkpoint. Cell cycle 

checkpoints are linked to DNA damage repair. Therefore we hypothesize that cells 

lacking PKCδ will have a defect in repair of UV-induced DNA damage. We further wanted 

to investigate the mechanism behind the defective DNA damage repair. Being a major 

regulator of DNA damage repair as well as cycle checkpoints, p53 was a prime suspect 

for the investigation. Additionally, some published reports describe regulation of p53 by 

PKCδ [122, 274-276].  
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CHAPTER TWO 

MATERIALS AND METHODS 

2.1 Cell Culture 

a. Cell Lines- In this project, we have used murine embryonic fibroblasts (MEFs), HaCaT 

cells and normal human epidermal keratinocytes (NHEK). We have wild type (WT) MEFs 

and PKCδ knockout MEFs (PKCδ null MEFs), which helped us to investigate DNA damage 

repair in the absence of PKCδ. These MEFs were obtained from Dr. Anning Lin, 

University of Chicago [277]. HaCaTs are spontaneously immortalized human keratinocytes 

with biallelic TP53 mutations [278, 279]. MEFs and HaCaTs were grown in DMEM (Gibco) 

with 4.5g/L D-glucose, L-glutamine and without sodium pyruvate + 10% FBS +1% 

Penicillin/Streptomycin (Gibco). NHEKs from foreskins were obtained from the Loyola 

University Medical Center nursery and used below passage five. NHEKs were fed with 

Medium 154 CF (Gibco Invitrogen M-154CF-500) with 0.07 mM calcium and Human 

keratinocyte growth supplement kit (HKGS Kit S-001-K).  

b. UV Exposure- Cells were irradiated with either UVB or UVC. Before irradiation, the 

cells were washed with PBS+ (PBS with calcium and magnesium. UV irradiation was 

carried out in the presence of PBS+ (volume used was similar to amount of media used). 

After UV irradiation, the cells were fed with warm media and incubated at 37 °C for the 

indicated time period. UVB was generated from a UV light box (Ultralite Enterprises Inc. 

Lawrenceville, GA, USA) (34% UVA, 65% UVB, 1% UVC) with broadband UVB bulbs (Light 
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Emission Tech FS36T12/UVB/ VHO). The UVB dose was measured using 

radiometer/photometer model IL 1400A (International Light Inc. Newburyport, MA, 

USA) with a UVB detector attachment. UVC was generated with Bio-Rad GS GENE 

LINKER (Five G8T5 bulbs installed. 8W each. >2 mW/cm2 output).  

2.2 Western Blotting 

a. Protein was harvested after cells were lysed in lysis buffer (20 mM Tris-HCl pH 7.5, 1% 

Triton-X 100, 5 mM EDTA) with 22 µM sodium fluoride, 1 mM sodium orthovanadate, 

Complete Protease Inhibitor (Santa Cruz Biotechnology SC-29130 1X) and phosphatase 

inhibitor cocktail (Pierce phosphatase inhibitor mini tablets 88667SPCL, 1 tablet in 200 

µL for 50X stock). Protein concentration was determined using Bradford protein assay. 

40-50 µg of protein was loaded in each well and proteins were separated using the SDS-

PAGE technique. Proteins were transferred to nitrocellulose membrane and protein 

transfer was confirmed by Ponceau-S stain. Membranes were blocked with Odyssey 

blocking buffer for 1 hour. Primary antibody was diluted in PBS+ 1:1 with Odyssey 

blocking buffer according to the recommendations of the manufacturer, and the 

membrane was stained overnight at 4 °C. Secondary antibody was diluted 1:10,000 in 

PBS+ 1:1 with Odyssey blocking buffer, and the membrane was stained for 1 hour. 

Membrane was washed with Tris buffered saline (TBS) (Bio-Rad Cat#170-6435) and TBS 

–T (TBS+ 0.05% Tween 20). The intensity of protein bands was detected using Odyssey 

LI-COR scanner. 
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b. Antibody Details- 

Primary Antibody Cat# /Company Dilution Species 

p53 FL393 SC-6243 Santa Cruz 1:1000 Rabbit 

p-p53 serine 15 9284 Cell Signaling 1:1000 Rabbit 

Mcl-1 SC-56152 RC13 Santa Cruz 1:250 Mouse 

Mcl-1 D35A5 5453 Cell Signaling 1:1000 Rabbit 

Actin 691002 MP Biomedicals 1:5000 Mouse 

p-MARCKS 2741 Cell Signaling 1:500 Rabbit 

PKCδ SC-937 Santa Cruz 1:1000 Rabbit 

PKCδ 610397 BD Biosciences 1:1000 Mouse 

XPC SC-30156 Santa Cruz 1:100 Rabbit 

XPA 12F5, MC-340 clone 1:500 Mouse 

Secondary antibody Cat# /Company Dilution Species 

IgG, anti-Mouse 680 A21057 Molecular Probes Alexa 1: 10,000 Mouse 

IgG, anti-Mouse 800 610-131-121 IR Dye 1: 10,000 Mouse 

IgG, anti-Rabbit 680 A21076 Molecular Probes Alexa 1: 10,000 Rabbit 

IgG, anti-Rabbit 800 611-131-122 IR Dye 1: 10,000 Rabbit 

2.3 Immunofluorescence 

a. Cells were plated on flame sterilized glass coverslips (Fisherbrand 12-541-B 22x22-1.5) 

and used for immunofluorescence.  

Micropore Filters- 5 µm TMTP micropore filters (Millipore, ISOPORE Membrane Filters 

Catalog number TMTP02500) were used to induce DNA damage at selective parts of a 

cell. Cultured cells on coverslips were washed with PBS+ and a drop of PBS+ was left on 

the coverslip. Micropore filter was gently placed on the coverslip with help of flame 
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sterilized forceps. After irradiation with UVC, the micropore filter is gently removed 

without scrapping on the cells on the coverslip. 

Cells were fixed with either Acetone-methanol (1:1) (20 minutes at 20 °C) or 3.7% 

formaldehyde in PBS+ (10 minutes at room temperature). Cells were permeabilized 

using 0.1% Triton-X 100 in PBS+ (10 minutes at room temperature). For CPD staining, 

cells were treated with antigen retrieval chemicals (see below). Normal goat serum in 

PBS+ 1:20 was used to block the non-specific binding of antibody. Blocking was done for 

one hour at room temperature in a humidor. Primary antibody was diluted according to 

manufacturer’s recommendations in 1:20 normal goat serum in PBS+. The staining was 

done for 1-2 hours in a humidor. Secondary antibody was diluted in 1:20 normal goat 

serum and PBS+ at dilution of 1:400. Staining was done for 1 hour followed by 

counterstaining the DNA for 10 minutes with 300 nM DAPI stain. Coverslips were 

washed with FA buffer (Difco FA Buffer BD Biosciences) between antibodies for 30 

times, changing solution after every 10th wash. After washing, the coverslips were 

mounted on slides in gelvatol. Staining was observed in microscope (Olympus AX80 

Fluorescent Microscope) and photographs were taken using a Retiga-4000R 

monochrome digital camera (QImaging). 

b. CPD Antigen Retrieval- CPD staining requires denaturing of the chromatin, so the 

anti-thymine dimer antibody can reach the CPD adduct and recognize the epitope. For 

this purpose, we used 2 M HCl (for 30 minutes) or NaOH (70mM in 70% ethanol in PBS+; 

followed by 0.1% Triton-X 100 in FA buffer). After that coverslips were washed multiple 

times with PBS+ to remove residual chemicals prior to blocking and antibody staining. 
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c. Antibody Details- 

Primary Antibody Cat# /Company Dilution Species 

Thymine Dimer  H3, NB600-1141 NovusBio 1:500 Mouse 

Secondary antibody Cat# /Company Dilution Species 

IgG, anti-Mouse 488 A11001 Molecular Probes Alexa 1: 400 Mouse 

IgG, anti-Mouse 594 A31623 Molecular Probes Alexa 1: 400 Mouse 

 

d. Processing of Images- Pictures were taken using QIMAGING RETIGA 4000R FAST 1394 

cooled Mono 12-bit camera. The camera is interfaced to a Precision T3400 computer 

workstation loaded with Olympus CellSens image capture software. Images were 

processed with Adobe Photoshop software. ImageJ software was used to quantify 

intensity of fluorescence. Fluorescence signal of each cell was quantified manually. A 

circle was drawn around nucleus and the area was kept constant for all the cells in the 

sample. ImageJ measures the fluorescence in the selected circle. Blank reading was used 

to subtract the background fluorescence.  

2.4 Flow Cytometry 

a. Cells were trypsinized and resuspended in PBS- (PBS without calcium and 

magnesium). Cells were fixed with ice-cold 100% ethanol on ice for 30 minutes. For 

antigen-retrieval, cells were incubated with 2 M HCl in 0.5% Triton-X 100, for 30 

minutes. The acid was neutralized using 0.1 M Borax pH 9. Washing with 2 mL PBS-T 

(0.5% Tween-20 in PBS-) was done after every antibody staining. Primary antibody was 

diluted in 1% BSA in PBS-T at 1:200. Staining with primary antibody was done for 1 hour 

at room temperature. Secondary antibody was diluted in 1% BSA in PBS-T (0.5% tween-
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20 in PBS-) at 1:400. Staining with secondary antibody was done for 1 hour at room 

temperature. 

b. Antibody Details- 

Primary Antibody Cat# /Company Dilution Species 

Thymine Dimer  H3, MC-062 Kamiya Bio 1:200 Mouse 

Secondary antibody Cat# /Company Dilution Species 

IgG, anti-Mouse 488 A11001 Molecular Probes Alexa 1: 400 Mouse 

 

c. Data Analysis Using FlowJo- Data files were opened in FlowJo and the cell population 

of interest was selected. Geometric mean of fluorescence from each sample (about 

10,000- 30,000 cells) was calculated. Those values were used as measurement of CPD 

levels present in each sample. The amount of fluorescence was selected on X- axis 

versus number of cells on Y-axis to create histograms. 

2.5 Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) 

a. Primer Details- All primers were ordered from Integrated DNA Technologies. GAPDH, 

Gadd45a, XPC, DDB2, Tp53 and PKCδ primers were mouse species because they were 

used in MEFs samples. NCBI Reference Sequences (RefSeq) was used as reference to 

create specific primers. ‘http://genome.ucsc.edu/’ website’s In-Silico PCR tool was used 

to test the selected primers before ordering. Two sets of primers (batch 1 and batch 2) 

were used to avoid off target effects.  

  

http://genome.ucsc.edu/
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Primer name Sequence 
Tm   

°C 

GC 

content 

Gadd45a BATCH 1 FORWARD 5’-TGC TGC TAC TGG AGA ACGAC-3’ 56.9 55% 

Gadd45a BATCH 1 REVERSE 5’TCC ATG TAG CGA CTT TCC CG-3’ 57 55% 

Gadd45a BATCH 2 FORWARD 5’-CTG CTG CTA CTG GAG AAC GA-3’ 56.7 55% 

Gadd45a BATCH 2 REVERSE 5’-ACC CAC TGA TCC ATG TAG CG-3’ 56.9 55% 

GAPDH BATCH 1 FORWARD 5’-GCG ACT TCA ACA GCA ACT CC-3’ 56.7 55% 

GAPDH BATCH 1 REVERSE 5’-CCC TGT TGC TGT AGC CGT AT-3’ 57.1 55% 

GAPDH BATCH 2 FORWARD 5’-ATG TGT CCG TCG TGG ATC TG-3’ 57 55% 

GAPDH BATCH 2 REVERSE 5’-GTG TAG CCC AAG ATG CCC TT-3’ 57.5 55% 

PKCδ BATCH 1 FORWARD 5’-AGG AAA CAT CAG GAT TCA CCC C-3’ 56.9 50% 

PKCδ BATCH 1 REVERSE 5’-GTT GCT GTA GTC TGA AGG GGA-3’ 56.5 52.4% 

PKCδ BATCH 2 FORWARD 5’-CAG GAA ACA TCA GGA TTC ACC C-3’ 55.7 50% 

PKCδ BATCH 2 REVERSE 5’-AGT TGC TGT AGT CTG AAG GGG-3’ 56.5 52.4% 

p21 BATCH 1 FORWARD 5’-GCT GTC TTG CAC TCT GGT GT-3’ 57.7 55% 

p21 BATCH 1 REVERSE 5’-TGG GCA CTT CAG GGT TTT CT-3’ 56.9 50% 

p21 BATCH 2 FORWARD 5’-TTG CAC TCT GGT GTC TGA GC-3’ 57.5 55% 

p21 BATCH 2 REVERSE 5’-AGA CCA ATC TGC GCT TGG AG-3’ 57.6 55% 

p53 BATCH 1 FORWARD 5’-ACT TGA TGG AGA GTA TTT CAC CCT-3’ 55.5 41.7% 

p53 BATCH 1 REVERSE 5’-TCT GTA GCA TGG GCA TCC TTT-3’ 56.5 47.6% 

p53 BATCH 2 FORWARD 5’-CCT CTC CCC CGC AAA AGA AA-3’ 57.7 55% 

p53 BATCH 2 REVERSE 5’-GGG CAT CCT TTA ACT CTA AGG C-3’ 55.5 50% 
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b. mRNA was isolated using TRIZOL RNA extraction technique. RNA concentration and 

quality was determined using a spectrophotometer (Thermo Scientific ND 1000 

NANODROP). cDNA was prepared using 1 µg of RNA, cDNA synthesis kit (iScript cDNA 

synthesis kit 1708891) and thermal cycler (Applied Biosystem 2720).  Bio-Rad iTaq 

Universal SYBR Green Supermix was used with above created cDNA. QuantStudio 6 qRT-

PCR instrument with Fast 96 well PCR plates (AXYGEN PCR MICROPLATE PCR-96-LP-AB-

C) were used for PCR reaction. Comparative ΔΔCT was calculated by QuantStudio 6 flex 

system. GAPDH was used as a housekeeping control and all the values of mRNA were 

normalized to GAPDH. 

2.6 CPD ELISA 

a. The CPD ELISA was carried out using the protocol recommendations from Cosmo Bio 

Co LTD. A 96 well microplate (Costar 3590) was coated with 70 µl 0.003% protamine 

sulfate solution in distilled water and incubated at 37 °C overnight. Each well was 

washed 3 times with 100 µL of distilled water. DNA was harvested using QIAGEN DNeasy 

Blood and Tissue kit 69504. DNA concentration and quality were determined using a 

spectrophotometer (Thermo Scientific ND 1000 NANODROP). DNA was heat denatured 

at 100 °C for 10 minutes and chilled rapidly on ice for 15 minutes. Two hundred ng DNA 

diluted in 50 µl was loaded on the 96 well plate coated with protamine sulfate 

incubated at 37 °C overnight. Blocking was performed using 2% FBS in PBS- (150 µl) for 1 

hour. Hundred µl primary antibody was diluted in PBS- and incubation was done for 2 

hours at 37 °C. Biotinylated horse anti-Mouse IgG secondary antibody (Vectastain Elite 

PK- 6102 ABC kit, Vector Laboratories Inc.) was diluted in 5% BSA in PBS+ 1:200 and 
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incubated for 2 hours at 37 °C. Between antibodies, wells were washed 5 times with 150 

µL of PBS-T (0.05% Tween 20 in PBS-). Peroxidase-Streptavidin reaction step was 

performed using ABC reagents from the Vectastain kit. Five µL Elite Reagent A was 

diluted in 250 µL of 0.1% Tween in PBS+. Five µL of Elite Reagent B was added to the 

diluted Reagent A. Solution was incubated for 30 minutes at room temperature. 

Hundred µL of ABC reagent was added to each well and incubated for 30 minutes at 

room temperature. Wells were washed 3 times with 150 µL of PBS-T.  Seventy five µL of 

TMB substrate (BioLegend) was added to the wells and development of reaction was 

observed by development of color. The reaction was stopped by adding 50 µL of 1 M 

H3PO4. The plates were read at 450 nm (minus 570 nm for wavelength correction) and 

values were plotted in graph in Microsoft Excel. 

b. Antibody Details- 

Primary Antibody Cat# /Company Dilution Species 

Anti-Cyclobutane 

Pyrimidine Dimer 
Clone TDM2 Cosmo Bio Co LTD 1:1000 Mouse 

Secondary antibody Cat# /Company Dilution Species 

Biotinylated horse anti-

Mouse IgG, 

Vectastain Elite PK- 6102 ABC Kit, 

Vector Laboratories Inc. 
1:200 Mouse 
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2.7 Mutagenesis Assay 

a. To determine the optimum concentration of 6-Thioguanine (6-TG) for the 

endogenous resistance, WT and PKCδ null MEFs were plated 1 X 104/well in a 6-well 

plate. Increasing concentration of 6-TG (10 µM to 60 µM) was used to feed the MEFs 

through media. After 14 days, MEFs were fixed with 3.7% formaldehyde in PBS+ and 

stained with 0.05% crystal violet stain.  

b. WT and PKCδ null MEFs were plated at an average of 5 X 105 cell/100 mm tissue 

culture plate and irradiated with UVB 5 mJ/cm2 or UVC 1 mJ/cm2. After they have 

recovered from the irradiation (24-48 hours), cells were replated for 6-TG treatment 

(preferably 3 X 105 cells/100 mm plate) as well as for colony forming efficiency (plating 

efficiency) (50 to 200 cells/ 60 mm plate). After 24 hours, the mutagenesis plates were 

continuously treated with 30 µM of 6-Thioguanine (6-TG) (Abcam Biochemicals 

ab142729). Colony forming efficiency plates were not treated with 6-TG. After 14 days, 

the cells were fixed with 3.7% formaldehyde in PBS+ and stained with 0.05% crystal 

violet stain. Visible colonies were counted and mutation rate was calculated from the 

number of 6-TG resistant colonies divided by plating efficiency.  

2.8 Retroviral Transduction 

a. Virus Details- Retrovirus was produced in Phoenix-Ampho retroviral packaging cell 

line by transfection of plasmids by calcium phosphate transfection method [108]. PKCδ 

was expressed as MYC-tagged full length PKCδ (LZRS-myc-PKCδ) [108, 280]. PKCδ was also 

produced in LZRS based retroviral vector as a pEGFP fusion protein (LZRS-pEGFP- PKCδ 

WT) based on constructs provided by Dr. Mary Reyland (University of Colorado Health 
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Sciences Center). As a negative control, LZRS-pEGFP was transduced. Transduction 

efficiency was determined by observing GFP fluorescence in cells. 

pSUPER.retro.puro.PKCδ.toker shRNA [107, 281, 282] was used to knockdown PKCδ in cells. 

pSUPER.retro.puro.control (empty) was used as a negative control. 

(Virus details- pSUPER.retro.puro.control 8/22/2013+ pSUPER.retro.puro.control 

11/29/2014; pSUPER.retro.puro.PKCδ toker 8/22/2013+ pSUPER.retro.puro.PKCδ toker 

11/29/2014; pSUPER.retro.puro.control 8.22.13; pSUPER.retro.puro.PKCδ toker 8.21.13 

DS3p.91-92). 

b. Cells were plated at a concentration of 105 cells/well in a 6 well plate the day before 

viral transduction. A Jouan centrifuge (CR412) was pre-warmed with plate holders by 

spinning at 3000 rpm for 15 minutes. The virus was thawed rapidly at 37 °C and 4 µg/mL 

polybrene (Hexadimethrine Bromide, Sigma H-9268) was added to the virus. Media was 

removed from cells, and cells were washed with PBS+ followed by addition of 0.5 mL of 

virus to each well. The plate was sealed with parafilm and spun at 1300 rpm for 1 hour 

at 32 °C. After 1 hour, virus was removed and fresh pre-warmed media was fed to the 

cells.  

c. Puromycin-resistance gene was encoded with the pSUPER.retro.puro virus and 

transduced cells were selected with 1 µg/mL of puromycin 48 hours after the infection. 

Transduction was confirmed by detecting the target protein using western blot analysis. 

2.9 UVC Dose Response Curve with MTT Cell Proliferation Assay 

a. NHEK NN1185 passage 2 were irradiated with increasing amounts of UVC (0, 1, 2, 3, 4 

or 5 mJ/cm2) and incubated for 72 hours. Cell viability was measured using MTT assay-
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Cell Proliferation Kit I (MTT) [Roche Diagnostics GmbH Cat. No. 11465 007001] according 

to instructions by the manufacturer. 
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CHAPTER THREE 

RESULTS 

3.1 PKCδ is Required For Repair of UV-Induced DNA Damage 

 We assessed the role of PKCδ in repair ofUV-induced DNA damage by using cells 

lacking expression of PKCδ. If PKCδ is required for repair of the DNA damage, then cells 

lacking PKCδ will have a defect in the repair of the DNA damage. We have used 

immunofluorescence microscopy to detect UV-induced CPDs. Cultured WT and PKCδ 

null MEFs were irradiated with a non-apoptotic dose of UVB (5 mJ/cm2) to avoid any 

confounding effects of cell death on CPD detection. The maximum initial damage was 

detected after 1-2 hours of incubation and repair was observed at 48 hours post-UV 

(Figure 2A). As seen in the immunofluorescence images, WT and PKCδ null MEFs 

accumulated large amounts of DNA damage after 1 hour post-UV. After 48 hours, WT 

MEFs repaired the vast majority of the CPD damage as seen by the greatly reduced CPD 

staining. In contrast, PKCδ null MEFs still harbored large amounts of DNA damage after 

48 hours. 

We were able to quantify the fluorescence intensity using ImageJ software as 

shown in Figure 2B. The WT and PKCδ null MEFs display similar levels of CPD 

fluorescence at 1 hour post-UV. After 48 hours, the WT MEFs repaired the damage 

(p<0.001) but the PKCδ null MEFs have a significantly high amount of DNA damage still
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present. We confirmed the reduced repair of UV-induced CPDs in PKCδ null MEFs using 

flow cytometry (data not shown). This confirms that PKCδ promotes repair of UV-

induced DNA damage. 
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Figure 2. PKCδ is Required For the Repair of UV Induced DNA Damage 

Immunofluorescence staining of CPD in MEFs. A) WT and PKCδ null MEFs were 
irradiated with 5 mJ/cm2 UVB and stained with an anti-CPD antibody at indicated times.  
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2B. 

 

Figure 2. PKCδ is Required For the Repair of UV Induced DNA Damage 

Immunofluorescence staining of CPD in MEFs. A. WT and PKCδ null MEFs were 
irradiated with 5 mJ/cm2 UVB and stained with an anti-CPD antibody at indicated times. 
B. Nuclear CPD fluorescence was quantified using ImageJ. Only WT MEFs significantly 
repaired the damage while PKCδ null MEFs failed to repair the damage. ‘N’ indicate 
number of nuclei quantified. * p value<0.001 (T-Test); # N.S.=Not Significant. 
  

0

5

10

15

20

25

30

35
Fl

u
o

re
sc

en
ce

 (
A

U
)

5mJ/ cm2 UVB

WT

PKCδ Null

* p< 0.001

*

*

N= 60 
N= 49 

# # 

N= 48 

N= 60 

N= 35 

N= 61 



38 

 

3.2 PKCδ Reduces UV Mutagenesis Frequency 

 Cells lacking PKCδ are defective in repairing the UV-induced DNA adducts thus 

we hypothesized that these cells will harbor more UV-induced mutations. To test our 

hypothesis, we have used the Hypoxanthine phosphoribosyltransferase (Hprt) 

mutagenesis assay. 

 When mutations arise in the Hprt gene, and are not repaired, it can lead 

to loss of the only expressed copy of Hprt on X-chromosome. Cells that failed to repair 

the DNA damage will have more mutations on the Hprt locus and thus cells will be 

incompetent to utilize the 6-TG and will survive. The resultant colonies were counted 

[283-288]. The mutation frequency was determined by seeding known number of cells in 

media containing 6-TG to detect the mutant cells, and in media without 6-TG to 

determine the cloning efficiency.  
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3. 

Figure 3. Hypoxanthine Guanine Phosphoribosyltransferase Mutagenesis Scheme:  

Hprt is a gene located on the X-chromosome, and thus cells have only one functional 
copy of the gene. Hprt encodes the Hypoxanthine guanine phosphoribosyltransferase 
(HGPRT) enzyme which recycles the purines through purine salvage pathway. If a toxic 
purine analogue [6-Thioguanine (6-TG)] is fed to a normal cell carrying Hprt gene, it 
incorporates the toxic purine into its DNA, which results in death of the cell. A mutated 
Hprt gene cannot produce the HGPRT enzyme and thus cells cannot utilize the toxic 
purine analogue and survive.  
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To determine the optimum dose of 6-TG and to determine the endogenous 6-TG 

resistance frequency, MEFs were continuously treated with various concentrations of 6-

TG (10 µM to 60 µM) for 14 days. No visible colonies were observed in both WT and 

PKCδ null MEFs at any 6-TG doses suggesting low (Less than 2 X 10-5) endogenous 

resistance in MEFs, as seen in Figure 4.  

In the mutagenesis experiment, the colony forming efficiency (CFE) of non-

irradiated WT MEFs was 1.3 and PKCδ null MEFs was 1.2. This is surprising because the 

values of the CFE are over the maximum of the theoretical impossible. However, the 

values were similar to each other indicating that PKCδ does not influence the CFE of 

non-irradiated MEFs. The CFE of UV irradiated WT MEFs was 0.045, significantly lower 

(p<0.05) than 0.218 for PKCδ null MEFs, indicating that the PKCδ null MEFs were more 

resistant to UVB than WT MEFs. UV-induced mutations in both WT and PKCδ null MEFs, 

but the PKCδ null MEFs have significantly (p<0.05) higher frequency of mutations at the 

Hprt locus (Figure 5), about 5 time higher compared to WT MEFs (Figure 5). About 5 

cells per 104 cells of PKCδ null MEFs had UV-induced mutations compared to less than 1 

cell per 104 cells in WT MEFs. The experiment was repeated for 4 independent times 

and displayed similar trend.  

A mutagenesis assay was also carried out in WT and PKCδ null MEFs with the 

mutations induced by UVC. High cell death was observed initially with 2 or 3 mJ/cm2 of 

UVC stopping the experiment. We chose 1 mJ/cm2 UVC as the irradiation dose because 

it is the lowest dose we can deliver and induces minimal cell death.  
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UVC also induced mutations at the Hprt locus but again PKCδ null MEFs had 

elevated mutation frequency than WT MEFs (Figure 6). Thus PKCδ reduces mutation 

frequency after UV. 

We found that the WT and PKCδ null MEFs had very low (less than 2 X 10-5) 

endogenous Hprt mutation frequency. UVB-irradiation induced mutations at the Hprt 

locus in both WT and PKCδ null MEFs, however PKCδ null MEFs showed a significantly 

increased mutation frequency, Also, PKCδ null MEFs showed higher colony forming 

efficiency than WT MEFs after UVB irradiation, indicating that they are more resistant to 

UV than the WT MEFs. 

The UV dose used here (5 mJ/cm2 UVB or 1 mJ/cm2 UVC) was high enough to 

induce DNA damage but was low enough to not start the apoptosis pathway. Thus the 

cells will survive and will need to repair the damage or produce mutations. In the PKCδ 

null cells, the mutations may have developed due to defective NER machinery leading to 

incomplete DNA damage repair. These damages then would accumulate as well as 

would be passed down to the daughter cells. This is the first study done to investigate 

the role of PKCδ in UV-induced mutagenesis and to demonstrate that the reduced NER 

in PKCδ null cells leads to enhanced mutagenesis, thereby contributing to 

carcinogenesis. 
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4.  

 

 

 

 

 

 

 

 

Figure 4. MEFs Have Low Endogenous 6-Thioguanine Resistance 

Dose response of 6-TG for toxicity was determined in MEFs. WT and PKCδ null MEFs 
were continuously treated with indicated concentrations of 6-TG to investigate 
endogenous resistance in MEFs. After 14 days, MEFs were fixed with formaldehyde and 
stained with crystal violet to see colonies. The absence of colonies indicated very low 
endogenous 6-TG resistance in both WT and PKCδ null MEFs. 
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5.  

 

Figure 5. PKCδ Reduces UVB-induced Mutagenesis 

Hprt mutagenesis assay was used in WT and PKCδ null MEFs to investigate mutation 
frequency after UVB irradiation. This graph is an average of four experiments with 
p<0.05 (T-Test). PKCδ null MEFs harbor significantly higher mutations at Hprt locus than 
WT MEFs. The mutagenesis rate was calculated by the number of 6-TG resistant 
colonies divided by plating efficiency. 
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6.

  

Figure 6. PKCδ Reduces UVC-induced Mutagenesis 

Hprt mutagenesis assay was used in WT and PKCδ null MEFs to investigate mutation 
frequency after UVC irradiation. PKCδ null MEFs displayed higher amounts of mutations 
at Hprt locus compared to WT MEFs. Note, mutation frequency was normalized to 
plating efficiency. 
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3.3 Mechanistic Role of PKCδ in DNA Damage Repair 

 Upon UV-induced DNA damage, NER proteins are recruited to the sites of 

damage. If PKCδ promotes recruitment of NER proteins at sites of DNA damage then 

lack of PKCδ will reduce recruitment of these repair proteins. To find out more about 

the mechanistic role of PKCδ in UV DNA damage repair, we used micropore filter 

immunofluorescence. UV radiation can pass only through the small holes in the TMTP 

micropore filter and induces DNA damage at specific parts of the nucleus whereas the 

rest of the cell remains undamaged and acts as an internal negative control. The small 

damaged part can be then stained with an anti-CPD antibody (immunofluorescence) co-

stained with an antibody against NER proteins. This way we can observe and compare 

the recruitment of proteins at the damage sites in the WT or cells lacking PKCδ. To test 

the micropore filters, we used CPD immunofluorescence in HaCaT keratinocytes (Figure 

7) irradiated with 50 mJ/cm2 UVB or 10/100 mJ/cm2 UVC. As a negative control we had 

non-irradiated cells. Without the micropore filter, both UVB and UVC-induced large 

amounts of CPD damage which was absent in the non-irradiated cells. Surprisingly, the 

micropore filter efficiently blocks only UVC and not UVB. In UVC-irradiated cells with the 

micropore filter, damage was observed only at small regions of the cells whereas 

micropore filter could not obstruct the UVB and thus CPD staining was observed in 

almost the entire nucleus.  
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7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Micropore Filters Block UVC Effectively But Not UVB 

HaCaT cells were exposed to UVC and UVB in the presence or absence of TMTP 
micropore filter as indicated. Immunofluorescence staining with an anti-CPD antibody 
was carried out at 2 hours post-UV. Micropore filter was successful in blocking the UVC 
however it only partially blocked the UVB.  
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We had chosen to examine the XPC and XPA proteins for their recruitment to the 

damage sites because XPC an important early DNA damage recognition protein, and 

XPA, being at the center of the NER process, interacts with multiple NER factors. 

Additionally, a former student of our lab, Chris Negro, found a defect on nuclear 

translocation of XPC and XPA in PKCδ null MEFs using immunofluorescence microscopy 

[289]. Initially, however the chromatin denaturing agent (70% NaOH in 70% EtOH) used 

for CPD staining destroyed the proteins staining making it impossible to co-localize CPDs 

with the repair proteins. To optimize this co-staining technique, we tested combinations 

of chemicals (Table 1) to fix and denature the chromatin to identify conditions that 

would not destroy the protein staining (Figure 8). NHEK were irradiated with 10 mJ/cm2 

UVC, fixed and permeabilized using combination of chemicals, followed by staining with 

anti-CPD and anti- PKCδ antibodies (Santa Cruz SC-937).  
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Table 1: Methods For Optimizing Immunofluorescence Co-staining of CPD and Protein 

 

Only acetone/methanol or formaldehyde+ triton-X 100 treatment with 2N HCl produced 

no CPD staining. Although acetone/methanol followed by 70 mM NaOH gave the 

strongest CPD staining, the protein staining (PKCδ) was very weak. Acetone/methanol at 

-20 °C for 10 minutes followed by 2N HCl for 20 minutes gave weaker CPD staining but 

was found to be effective for co-staining of proteins with CPD. However, because MEFs 

are a mouse cell line and most of the XPC or XPA antibodies were not compatible with 

mouse antigens, the XPC and XPA staining produced non-specific staining or no staining 

in MEFs. Similar weak staining results were observed when XPC or XPA protein levels 

were detected using western blot analysis in MEFs (data not shown). 

  

  Fixative agent Antigen Retrevial/Permeabilizing agent 

 1  Acetone/Methanol at -20 °C  
for 10 mins - 

2  Acetone/Methanol at -20 °C  
for 10 mins 

70mM NaOH in 70% EtOH for 2 mins +0.1% 
Triton-x 100 in FA buffer 

 
3  Acetone/Methanol at -20 °C  

for 10 mins 
70mM NaOH in 70% EtOH for 1 min +0.1% 

Triton-x 100 in FA buffer 

 
4  Acetone/Methanol at -20 °C  

for 10 mins 
2 N HCl for 20 mins 

5  3.7% Formaldehyde +PBS for 
10 mins 

2 N HCl for 20 mins 



49 

 

8. 

 

Figure 8. Combinations For Optimizing Immunofluorescence Co-staining of CPD and 

Protein  

NHEK were irradiated with 10 mJ/cm2 UVC and incubated for two hours. A variety of 
combinations of fixative and antigen retrieval chemicals were used to find the best 
method to co-stain CPD and proteins. Acetone-Methanol with 2 N HCl was found to be 
effective in preserving the red PKCδ staining and green CPD staining 
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Since the micropore filter immunofluorescence technique was not helpful, we 

next decided to observe protein levels of XPC and XPA in MEFs by western blot. If PKCδ 

influences protein levels of NER proteins in response to UV-induced damage, then lack 

of PKCδ will alter protein levels of XPC or XPA. As the antibodies against XPA/XPA were 

not compatible with mouse cells, we used NHEK for our investigation. We transduced 

NHEK with control or PKCδ shRNA to knock down PKCδ (Figure 9) and the protein levels 

were observed at 1, 3 and 6 hours post 5 mJ/cm2 UVB.  

As can be observed in Figure 9, the shRNA knocked down the PKCδ effectively 

(64% knockdown). XPA protein levels were found to increase 3 and 6 hours post-UV in 

WT MEFs. However, no difference was observed in the XPA protein induction between 

control and PKCδ knockdown samples indicating that there was no effect of PKCδ 

knockdown on basal levels or UV-mediated induction of XPA.  

Without UV irradiation, PKCδ knockdown sample had slightly higher basal levels 

of XPC proteins than control sample. UV-induced increase in XPC protein levels in both 

control and PKCδ shRNA samples. But the increase was similar in both control and PKCδ 

knockdown samples. Taken together, PKCδ knockdown did not affect basal or UV 

induction of XPC. 

In these NHEK, we came across an observation that phosphorylated p53 on 

serine 15 was not induced by UV as much in the samples with knockdown of PKCδ 

(Figure 9). With UV, total p53 levels increased 1-6 hours in both control and PKCδ shRNA 

samples, but p-p53 S15 was induced only in the control group and not in the PKCδ 

shRNA samples.   
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9. 

 

Figure 9. XPC and XPA Protein Levels Were Not Changed After UV and PKCδ 

Knockdown Decreases Phosphorylated p53 at Serine 15 in NHEKs 

Normal human epidermal keratinocytes were transduced with control or PKCδ shRNA. 
NHEK were irradiated with 5 mJ/cm2 UVB and lysates were analyzed using western 
blotting. PKCδ shRNA reduced the PKCδ levels in the knockdown samples. UV was able 
to induce p53 protein in both control and PKCδ shRNA samples. However, p53 S15 levels 

were lower in the PKCδ knockdown samples compared to control. XPA and XPC protein 
levels were induced by UV irradiation (3 and 6 hours) however no significant difference 
in XPA and XPC protein levels between the control and PKCδ knockout samples was 
observed.  
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3.4 PKCδ Null MEFs Have Lower Levels of p-p53 S15 and Total p53 Protein 

We also explored p53 levels and S15 phosphorylation in MEFs. PKCδ null MEFs 

also had delayed UV-induced serine 15 phosphorylation of p53 (p53 S15) (Figure 10A). 

This S15 phosphorylation of p53 is important for activation and stabilization of the p53 

protein. UV-induced p53 phosphorylation was delayed in the PKCδ null MEFs compared 

to WT MEFs. Additionally, the total levels of basal and UV-induced p53 were also greatly 

reduced in the PKCδ null MEFs compared to WT (Figure 10B).  

To investigate whether this reduction in the p53 total levels in MEFs was at the 

transcription level, Tp53 mRNA levels were analyzed by qRT- PCR (Figure 11). PKCδ null 

MEFs had more Tp53 mRNA than WT MEFs and thus the reduced p53 protein in PKCδ 

null MEFs is not due to reduced Tp53 mRNA. GAPDH levels were not significantly 

different between non-irradiated and UV irradiated MEFs. 
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Figure 10. PKCδ Null MEFs Have Delayed Phosphorylation of p53 At S15 and Reduced 

Total p53 

p53 levels in MEFs. WT and PKCδ Null MEFs were irradiated with 5 mJ/cm2 UVB and 
incubated for indicated times. Protein lysates were analyzed by western blotting. 
A. PKCδ Null MEFs had lower levels of phosphorylated p53 serine 15 (p-p53 S15) 
compared to WT.  
B. PKCδ Null MEFs had lower levels of p53 protein as well as phosphorylated p53 serine 
15.
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Figure 11. Tp53 mRNA Levels in WT and PKCδ null MEFs 

WT and PKCδ null MEFs were irradiated with/without 5 mJ/cm2 UVB and incubated for 3 
hours. RNA was extracted, cDNA was prepared and levels of Tp53 mRNA were 
determined using qRT-PCR. mRNA levels are normalized to GAPDH control. 
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3.5 p53 in WT MEFs Has a Longer Half-Life Than in PKCδ Null MEFs 

To investigate the p53 protein stability in the MEFs, the protein translation 

inhibitor cyclohexamide (CHX) was used. WT and PKCδ null MEFs were treated with 250 

µg/mL CHX for 1, 2 or 4 hours and p53 protein levels were analyzed using western 

blotting (Figure 12A). Mcl-1 protein which was used as a positive control, which started 

to degrade at 2 hours in WT MEFs whereas the degradation started at 4 hours in PKCδ 

null MEFs. The half-life of the p53 protein was determined by plotting the levels of p53 

after CHX treatment average from 2 experiments on Y-axis and time of incubation with 

CHX on X-axis in both WT and PKCδ null MEFs (Figure 12B). The half-life of p53 was 

found to be longer in WT MEFs (4.6 hours) compared to PKCδ null MEFs (2.6 hours). The 

p53 protein was less stable in PKCδ null MEFs compared to WT, and this may explain the 

lower levels of p53 in PKCδ null MEFs. 
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Figure 12. p53 in WT MEFs Has a Longer Half-Life than in PKCδ Null MEFs 

A. MEFs were treated with/without CHX for indicated times and protein lysates were 
analyzed using western blotting. Mcl-1 was used as a CHX positive control.  
B. Half-life of p53 plotted in graph from two independent experiments. Linear 
regression was used to calculate the half-life of p53. Trendline was plotted by computer.  
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3.6 Re-expression of PKCδ in PKCδ Null MEFs Did Not Rescue the Lower Levels of p53  

 To determine if ectopic PKCδ expression could rescue the decreased p53 levels in 

PKCδ null MEFs. Myc-tagged PKCδ was re-expressed in the PKCδ null MEFs and the p53 

protein expressions were investigated using western blotting (Figure 13). Transduction of 

PKCδ into PKCδ null cells was successful indicated by elevated PKCδ in the western blot, 

however the total p53 levels were similar to that of un-transduced PKCδ null MEFs. 

Additionally, delayed phosphorylation of p53 at S15 was also not rescued by PKCδ re-

expression in the null MEFs. Thus, PKCδ does not appear to be a direct positive regulator 

of p53 levels or S15 phosphorylation in MEFs, although the PKCδ transduction efficiency 

is not known, and may be low. Furthermore, we do not know if the PKCδ re-expression 

here restored UV-induced CPD repair in PKCδ null MEFs.  

  



58 

 

UVB 5mJ/cm2 

13. 

 

 

 

 

 

 

Figure 13. Re-expression of PKCδ in PKCδ Null MEFs Did Not Rescue the Lower Levels 

of p53  

Myc tagged PKCδ was transduced into PKCδ null MEFs and irradiated with 5 mJ/cm2 UVB 
for the indicated times. Protein lysates were analyzed by western blotting. 
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3.7 p53 Was Not Directly Phosphorylated By PKCδ On Serine 15 In Vitro 

Since serine 15 phosphorylation is important for the activation and stabilization 

of p53 and was delayed in PKCδ null MEFs following UV exposure, the possibility of PKCδ 

directly phosphorylating p53 was investigated using an in vitro kinase assay (Figure 14). 

One µg of recombinant GST-p53 was incubated with 200 ng recombinant PKCδ in the 

presence of complete assay buffer containing phosphatidylcholine/phosphatidylserine 

(PC/PS) and ATP, with or without of 100 nM TPA. The GST-p53 was tested for being able 

to be phosphorylated on S15 by incubating it with whole cell lysates (WCL) from 

NHEK with/without 5 mJ/cm2 UVB exposure. Phosphorylation was detected using anti-p-

p53 S15 or p-MARCKS (Myristoylated alanine-rich C-kinase substrate). We found that 

PKCδ was not able to phosphorylate p53 on S15 in vitro as indicated by the absence of 

p-p53 S15 bands on the blot. PKCδ successfully phosphorylated MARCKS in vitro 

although TPA did not increase MARCKS phosphorylation further. Unknown kinases in 

the WCL were able to phosphorylate GST-p53 (75 kD) even in the absence of UV 

exposure, and endogenous p-p53 S15 (53 kD) phosphorylation in NHEK was induced 

with UV irradiation, indicating that the GST-p53 was competent for S15 

phosphorylation.  
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Figure 14. p53 Was Not Phosphorylated By PKCδ On Serine 15 In vitro 

Recombinant GST-p53 was incubated with recombinant PKCδ, in complete assay buffer 
containing PC/PS and ATP, with or without TPA as indicated. PKCδ did not phosphorylate 
p53 on S15 as deduced by absence of p-p53 S15 band. The GST-p53 was inspected for 
being able to phosphorylated by incubating with whole cell lysates (WCL) of 
NHEK with/without 5mJ/cm2 UVB. PKCδ activity was observed with PKCδ 
phosphorylation target protein MARCKS. Phosphorylation was detected using anti-p-p53 
S15 or p-MARCKS.   
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3.8 PKCδ Knockdown Did Not Affect Repair of UV-Induced DNA Damage in HaCaTs 

with Mutant TP53  

 UV induces mutations in the TP53 gene and it was found that normal appearing 

epidermis can be harboring patches of TP53 mutated cells with each clone measured 

about 60 to 3000 cells [267][268]. Since HaCaTs have UV signature mutations in the TP53 

gene, they can be used as a model to investigate DNA damage repair role of PKCδ in 

cells with mutant TP53. 

 To investigate the role of PKCδ in repair of UV-induced CPDs in HaCaTs, PKCδ 

shRNA was used to knockdown PKCδ (Figure 15A). shRNA reduced the PKCδ protein 

levels 83% (analyzed by ImageJ) as seen in the blots. Flow cytometry technique was 

used to confirm the CPD repair the HaCaTs (Figure 15B). UV-induced concomitant CPD 

damage in both control and PKCδ shRNA samples at 2 hours post-UV. The damage was 

significantly and equally repaired at 48 hours in control as well as in PKCδ shRNA 

samples. This confirms that knockdown of PKCδ did not affect repair of UV-induced DNA 

damage in cells with TP53 mutation. Immunofluorescence technique was also used to 

look at the CPD DNA damage repair (Figure 15C). HaCaTs were irradiated with 5 mJ/cm2 

UVB and immunofluorescence microscopy was used to detect UV-induced CPDs. UV-

induced DNA damage in both control and PKCδ shRNA samples as seen at 1 hour post-

UV. Reduction of CPD fluorescence at 48 hours indicated repair of CPD, however the 

repair was similar in both control and PKCδ shRNA samples. Almost all the CPDs were 

repaired by 72 hours in both control and PKCδ shRNA samples indicating PKCδ 
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knockdown did not affect UV-induced CPD repair in HaCaTs. The fluorescence from the 

immunofluorescence experiment was calculated using the ImageJ software (Figure 15D).  
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15A. 

15B. Flow Cytometry 
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15C. 

15D. Quantification of fluorescence 
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Figure 15. PKCδ Knockdown Did Not Affect Repair of UV Induced DNA Damage in 

HaCaTs with Mutant TP53  

A. Western blot analysis of PKCδ knockdown. PKCδ was knocked down in HaCaTs using 
shRNA and protein lysates were harvested. PKCδ protein levels were analyzed using 
western blotting. PKCδ levels were decreased in samples treated with PKCδ shRNA (83% 
knockdown analyzed by ImageJ). 
B. Flow cytometry analysis of CPD in HaCaTs. Cells were irradiated with 5 mJ/cm2 UVB 
and incubated as indicated. Flow cytometry was used to detect CPD fluorescence 
intensity in cells. CPD levels were determined by calculating geometric mean of 
fluorescence values of 30,000 cells in each sample. $,@ p value< 0.05. 
C. Immunofluorescence microscopy of CPD in HaCaTs. HaCaTs were irradiated with 5 
mJ/cm2 UVB and incubated as indicated. Cells were fixed, permeabilized and stained 
with an anti-CPD antibody, followed by incubation with secondary antibody. 
D. Quantification of fluorescence from immunofluorescence using ImageJ software. 



66 

 

3.9 Investigation of Transcript Levels of p53 Target Genes 

 Because p53 protein levels were reduced in the PKCδ null MEFs, we investigated 

whether p53-target genes had reduced induction following UVB exposure. mRNA of 

p53-target genes involved in cell cycle arrest (p21 and Gadd45a) [202][205] as well as in 

NER (XPC and DDB2) [79, 80, 290] were investigated in WT and PKCδ null MEFs. MEFs were 

exposed with 5 mJ/cm2 UVB and incubated for 24 hours. mRNA levels were investigated 

using qRT-PCR.  

 50-fold UV induction of p21 mRNA was observed in WT MEFs, however PKCδ null 

MEFs had only 14-fold induction. Thus, WT MEFs had 3.5-fold higher UV induction of 

p21 mRNA than PKCδ null MEFs 24 hours after UV exposure (Figure 16). However there 

was no statistical significant difference between the UV groups. 

UV induction was observed in Gadd45a mRNA as well. WT MEFs had 7-fold UV 

induction while PKCδ null MEFs had only 4-fold induction of Gadd45a mRNA (Figure 17). 

WT MEFs had significantly (p<0.05) higher UV induction of Gadd45a transcript than 

PKCδ null MEFs. 
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Figure 16. PKCδ Null MEFs Have Reduced UV Induction of p21 mRNA  

WT and PKCδ null MEFs were exposed to 5 mJ/cm2 UVB as indicated and incubated for 
24 hours. p21 mRNA levels were analyzed using qRT-PCR and normalized to GAPDH 
control. Average of 3 independent experiments is shown in this graph. WT MEFs had 50-
fold UV induction of p21 mRNA while PKCδ null MEFs had only 14-fold UV induction. 
However, there was no statistically significant difference between the UV groups.  
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Figure 17. PKCδ Null MEFs Have Reduced UV Induction of Gadd45a mRNA 

WT and PKCδ null MEFs were exposed to 5 mJ/cm2 UVB as indicated and incubated for 
24 hours. Gadd45a mRNA levels were investigated using qRT-PCR and were normalized 
to GAPDH control. This graph is showing average of 3 independent experiments. 7-fold 
UV induction of Gadd45a mRNA was observed in the WT MEFs whereas only 4-fold UV 
induction was observed in the PKCδ null MEFs. WT MEFs had significantly higher 
(p<0.05) UV induction of Gadd45a than PKCδ null MEFs. 
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PKCδ Null MEFs Have elevated UV Induction of XPC and DDB2 mRNA 

 Additionally, UV induction of mRNA of NER proteins XPC and DDB2 was 

investigated. PKCδ null MEFs had 4-fold UV-induction of XPC mRNA whereas only 1.5-

fold increase was observed in the WT MEFs (Figure 18). There was no statistically 

significant difference in the UV induction of XPC mRNA between WT and PKCδ null 

MEFs. PKCδ null MEFs had 3-fold UV induction of DDB2 mRNA, however UV failed to 

induce increase in mRNA levels of DDB2 in WT MEFs (Figure 19) 24 hours after UV 

exposure. There was no statistically significant difference between the groups.  

The basal expression of XPC mRNA were 1.4-fold higher in the PKCδ null MEFS 

than WT MEFs but  the basal DDB2 mRNA levels were almost similar in the WT and PKCδ 

null MEFs  (1.1-fold difference). There was no statistically significant difference in the 

basal levels of the XPC and DDB2 mRNA between WT and PKCδ null MEFs.  
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Figure 18. PKCδ Null MEFs Have Increased UV Induction of XPC mRNA 

WT and PKCδ null MEFs were exposed to 5 mJ/cm2 UVB as indicates and incubated for 
24 hours. XPC mRNA levels were investigated using qRT-PCR and normalized to GAPDH 
control. This graph is indicating average of 3 independent experiments. No statistical 
difference was observed between the UV-induction of XPC mRNA in WT and PKCδ null 
MEFs. 
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Figure 19. PKCδ Null MEFs Have Increased UV Induction of DDB2 mRNA 

WT and PKCδ null MEFs were exposed to 5 mJ/cm2 UVB as indicated and incubated for 
24 hours. DDB2 mRNA levels were investigated using qRT-PCR and normalized to GAPDH 
control. Average of 3 independent experiments exhibited here.  
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CHAPTER FOUR 

DISCUSSION 

PKCδ may repress tumorigenicity in cells by activating cell cycle arrest at various 

checkpoints after DNA damage or inducing apoptosis, when the repair is not possible. 

However, very little is known about the involvement of PKCδ in DNA damage repair and 

the DNA damage repair interacting partners of PKCδ. In this project, we investigated the 

role of PKCδ in UV-induced DNA damage repair. PKCδ maintains genetic integrity and 

suppresses oncogenic transformation in cells after DNA damage using various 

mechanisms. PKCδ overexpression was found to be inducing G1 [125] or p27 (Kip1) 

dependent S-phase cell cycle arrest [291]. Additionally, PKCδ is also responsible for the 

maintenance of G2/M checkpoints after DNA damage [127]. 

For its pro-apoptotic function, PKCδ is cleaved and transformed into a 

constitutively, pro-apoptotic active catalytic fragment by caspase 3 [98]. Additionally, 

upon DNA damage, PKCδ promotes apoptosis by activating the MAPK pathway [117, 118]. 

PKCδ also interacts with pro-apoptotic proteins such as Bax [93], BAK [292] and Btf [120] to 

induce apoptosis. PKCδ also promotes apoptosis by phosphorylating the anti-apoptotic 

protein Mcl-1 and inducing proteosomal degradation [107]. Upon ionizing radiation 

induced DNA damage, PKCδ translocates to the nucleus and induces p53-dependent 

apoptosis in association with c-Abl with PKCδ nuclear localization sequence [293].  
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TP53 mutations are a common phenomenon in skin cancer and in fact normal 

appearing skin harbors patches of TP53 mutated cells [294]. These TP53 mutant clones 

are particularly dangerous because they can invade neighboring stem compartments 

called epidermal proliferative units after repeated UV exposure [295]. PKCδ re-expression 

induces apoptosis in HaCaT keratinocytes exhibiting TP53 mutations and suppresses 

their tumorigenicity in nude mice [280]. PKCδ plays very important role in eliminating 

these TP53 mutated cells by inducing apoptosis to maintain genetic integrity of the 

tissue.  

PKCδ is implicated in interacting with proteins involved in DNA damage repair. 

PKCδ is found to be physically interacting with Ribosomal protein S3 (rpS3), which is a 

part of 40S ribosomal subunit. rpS3 usually functions in the translation machinery but 

can also act as an endonuclease to cleave a DNA adduct [296]. Upon genotoxin-induced of 

DNA damage, PKCδ-mediated phosphorylation of rpS3 enhances its endonuclease 

activity and nuclear localization [297]. The G2 checkpoint protein Rad9 forms a complex 

with Rad1 and Hus1 and formation of this Rad9-Rad1-Hus1 (9-1-1) complex is important 

for the G2 checkpoint control [298]. Upon genotoxin ara-C treatment, PKCδ 

phosphorylates Rad9 and promotes formation of 9-1-1 complex. PKCδ is also required 

for the induction of Rad9-mediated apoptosis after ara-C treatment [299]. Similarly, PKCδ 

knockdown reduced activating phosphorylation of Checkpoint kinase 2 (chk2) on 

threonine 68 [300, 301] upon genotoxin treatment. Thus PKCδ can participate in multiple 

DNA damage repair pathways, but no published studies have explored its involvement 

in NER. 
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PKCδ Is Involved In Repair of UV-Induced DNA Damage 

To investigate the involvement of PKCδ in UV-induced DNA damage repair, 

immunofluorescence microscopy and flow cytometry techniques were used in WT and 

PKCδ null MEFs. Both techniques showed similar trend of reduced CPD repair in MEFs 

lacking PKCδ indicating that PKCδ is involved in the repair of UV-induced DNA damage 

(Figure 2A and B). UV-induced CPDs are repaired by NER, where the repair of the DNA 

damage can be either via the TC or GG [43] components of NER. We can speculate 

whether UV DNA damage repair in WT MEFs was TC or GG-NER. If the DNA damage 

repair defect observed in the PKCδ null MEFs was only TC, then a very small amount of 

damage would have been unrepaired. However, we saw widespread repair defect in the 

PKCδ null MEFs. Thus we can be fairly confident to conclude that the UV DNA damage 

repair requiring PKCδ was GG NER. We still cannot exclude a role for PKCδ in TC NER.  

PKCδ is required for the maintenance of G2/M cell cycle checkpoint following UV 

exposure [127]. Arresting DNA damaged cells at G2/M checkpoint provides time to repair 

the DNA damage. PKCδ null MEFs are not able to sustain the G2/M cell cycle checkpoint 

compared to WT MEFs, suggesting in these MEFs, the NER machinery does not get 

enough time provided by the cell cycle arrest required for the DNA damage repair, and 

thus the NER machinery is functionally compromised resulting in defect in the DNA 

damage repair. Furthermore, PKCδ null MEFs are resistant to the DNA damage due to 

reduced apoptosis and thus have a survival advantage over WT MEFs. 

NER is a promiscuous DNA damage repair pathway and thus cells lacking PKCδ 

may be resistant to other forms of DNA damaging agents such as chemotherapy drugs. 
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NER repairs the DNA adducts formed by the platinum based chemotherapy drugs such 

as cisplatin and thus reduces the effectivity of the drug [302-304].  It is unknown whether 

PKCδ participates in the repair of the DNA adducts formed by the chemotherapy drugs. 

However, it has been found that PKCδ is activated by cisplatin treatment and induces 

apoptosis in renal cells [305, 306]. 5-fluorouracil (FU) is used in treatment of skin cancer 

and many skin cancers have mutated TP53. PKCδ induces apoptosis in colorectal cancer 

cells upon treatment with FU [307]. Additionally, PKCδ and c-Abl are involved in FU-

mediated apoptosis in Hep3B cells in the absence of p53, p73 and Fas receptor [308]. On 

the contrary, PKCδ is also found to be responsible for chemo-resistance in cisplatin 

treated thyroid [309, 310] and breast cancer cells [305] where pharmacological inhibition of 

PKCδ increased sensitivity to chemotherapy. Thus, the role of PKCδ in chemotherapy-

induced apoptosis pathways might be organ dependent. 

PKCδ Reduces UV-Induced Mutagenesis 

Previously, UV Hprt mutagenesis assay has been used in diverse contexts in 

multiple cell lines to investigate the mutagenic potential of a chemical agents and the 

requirement of a protein in DNA damage repair and to compare genotoxic agents [311-

315]. PKCδ null MEFs have a defect in maintaining the G2/M cell cycle checkpoint as well 

as a defect in repairing the UV-induced DNA damage (Figure 2). Because we found a 

defect in the DNA damage repair in the PKCδ null MEFs, we investigated the influence of 

PKCδ on the frequency of UV-induced mutations at the Hprt locus (Figure 4) in WT and 

PKCδ null MEFs. If the DNA damage were not repaired completely, DNA damage would 

be accumulated, thus leading to mutations. We found that the WT and PKCδ null MEFs 



76 

 

had very low (less than 2 X 10-5) endogenous Hprt mutation frequency. UVB-irradiation 

induced mutations at the Hprt locus in both WT and PKCδ null MEFs however, PKCδ null 

MEFs showed a significantly increased mutation frequency, 5 time higher compared to 

WT MEFs (Figure 5). Also, PKCδ null MEFs showed higher colony forming efficiency than 

WT MEFs after UVB irradiation, indicating that they are more resistant to UV than the 

WT MEFs. 

The UV dose used here (5 mJ/cm2 UVB or 1 mJ/cm2 UVC) was high enough to 

induce DNA damage but was low enough to not start the apoptosis pathway. Thus the 

cells will survive and will need to repair the damage or produce mutations. In the PKCδ 

null cells, the mutations may have developed due to defective NER machinery leading to 

incomplete DNA damage repair. These damages then would accumulate as well as 

would be passed down to the daughter cells. This is the first study done to investigate 

the role of PKCδ in UV-induced mutagenesis and to demonstrate that the reduced NER 

in PKCδ null cells leads to enhanced mutagenesis, thereby contributing to 

carcinogenesis. 

Other investigators found a role of polymerase ζ subunits hREV3, hRev7 and 

REV1 in UV-induced mutagenesis using the Hprt mutagenesis assay [311, 312, 316]. The 

involvement of trans-lesion polymerase eta (Pol η) in UV-induced mutagenesis is well 

established [317]. Likewise involvement of Pol η in benzo[a]pyrene diol epoxide (BPDE)-

induced mutagenesis was investigated using Hprt mutagenesis assay, where Pol η was 

found to be promoting mutagenesis by bypassing UV DNA damages [313]. 
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DNA Damage Repair Interacting Partners of PKCδ 

While investigating the mechanistic role of PKCδ in UV DNA damage repair, we 

found that MEFs lacking PKCδ had reduced total p53 and phosphorylated p53 S15 

protein levels (Figure 10A and B). This is very significant given the central role of p53 in 

DNA damage responses, including NER. Notably, Tp53 mRNA levels were not reduced in 

the PKCδ null MEFs (Figure 11) indicating that the cause for reduction in p53 protein 

levels was not reduced Tp53 mRNA. However some studies have shown that PKCδ 

positively regulates TP53 basal transcription upon 12-O-tetradecanoylphorbol-13-

acetate (TPA) or genotoxin doxorubicin treatment, and inhibition of PKCδ reduces TP53 

transcript levels. Additionally, PKCδ promotes TP53 transcription by interacting with the 

transcription factor Btf upon genotoxin exposure. The researchers used a reporter assay 

and chromatin immune-precipitation (ChIP) assay to look at the TP53 transcriptional 

activity and found that PKCδ upregulates TP53 transcription by co-occupying the TP53 

core promoter element with Btf upon genotoxin treatment [318][120]. Above mechanisms 

indicate that PKCδ can be involved in transcriptional upregulation of p53 upon DNA 

damage, but we did not find lower levels of TP53 mRNA in PKCδ null MEFs 

PKCδ null MEFs have impaired DNA damage repair, loss of G2/M cell cycle 

checkpoint and reduced apoptosis. Since p53 is involved in apoptosis, cell cycle 

regulation, and involved in transcription of various DNA damage response factors, 

decreased p53 levels in the PKCδ null MEFs may enhance the susceptibility to mutations 

due to compromised NER, reduce cell cycle arrests and diminished apoptosis. 
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Furthermore, due to decreased p53 in PKCδ null MEFs, the cells may have great risk of 

oncogenic transformation. 

Surprisingly, the p53 levels in the WT MEFs were not induced after UV exposure 

(Figure 10B). In the absence of UV, the p53 basal levels were also higher in WT MEFs and 

appeared to be stabilized. The mutation status of p53 is unknown in the WT or PKCδ null 

MEFs. It is highly unlikely that the p53 in the WT MEFs in mutated because the WT MEFs 

are capable of repair the UV DNA damage and mutated p53 would hinder the repair. 

Determining the mutation status of the p53 in WT and PKCδ null MEFs is a future 

direction in this investigation. 

p53 in WT MEFs Has a Longer Half-Life Than in PKCδ Null MEFs 

The stability of p53 protein was investigated using the protein translation 

inhibitor cyclohexamide in MEFs (Figure 12A and B), which revealed that the p53 in WT 

MEFs had longer half-life (4.6 hours) than in the PKCδ null MEFs (2.6 hours). It is 

unknown why p53 in WT MEFs is more stable than p53 in PKCδ null MEFs. p53 half-life is 

predominantly regulated by E3-ubiquitin ligase Mdm2 [152]. Mdm2 binds and poly-

ubiquitinates/degrades p53 protein through the ubiquitin-mediated proteosomal 

degradation pathway [153-156]. Upon stress, p53 needs to be stabilized rapidly to perform 

its functions, thus upon genotoxic stress, p53 is stabilized by Herpesvirus-associated 

ubiquitin-specific protease (HAUSP/USP7). It forms a direct complex with p53 and 

deubiquitinates it, thus rescuing p53 from proteosomal degradation. HAUSP keeps 

deubiquitinating p53 even in the presence of excess Mdm2 protein [319, 320]. Similarly, 

Ubiquitin-specific protease 42 (USP42) and Ubiquitin-specific protease 29 (USP29) 
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physically bind to p53 and deubiquitinate it [321, 322]. Furthermore, Ubiquitin-specific 

protease 10 (USP10) also deubiquitinates p53 and stabilize its levels [323]. Apart from 

deubiquitination, p53 protein is also stabilized by phosphorylation by DNA-PK, ATM and 

ATR on serine 15 or serine 37. These phosphorylations induce conformation change in 

the p53 structure in a way that Mdm2 cannot bind it anymore [177, 324, 325].  

Various direct and indirect interactions between PKCδ and p53 have been 

previously reported. Apart from transcription regulation, PKCδ indirectly positively 

regulates p53 through IKKα [274] and p53DINP1 [326]. PKCδ induces p53 accumulation and 

translocation to the mitochondria to initiate apoptosis upon H2O2 treatment induced 

damage [276, 327]. Thus PKCδ indirectly stabilize the p53 levels but a direct mechanism is 

not known yet. 

The half-life of p53 is highly variable in different treatments and cells lines. 

Determination of p53 half-life using CHX had been carried out in the past in colon 

carcinoma cell line RKO cells. One group reported p53 half-life in UV-irradiated (UV 50 

J/cm2) RKO cells was found to be 1-2 hours [328] whereas another study determined the 

p53 half-life to be greater than 3.5 hours in UV-irradiated (UV 20 J/cm2) RKO cells [329]. 

Gamma radiation-induced (10 Gy) p53 stabilization in the RKO cells was found to result 

in a half-life longer than 3.5 hours [329]. Similarly, p53 half-life was found to be 33.42 

minutes in untreated mouse melanoma cell line 8B20 [330] and 20 minutes in un-

transformed NIH-3T3 cells [331, 332]. Furthermore, p53 half-life was 72.5 minutes in 

etoposide treated nuclear lysates of MCF-7 cells [333] and 22.5 minutes control 

transfected MCF7 cells [334]. 
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PKCδ Did Not Phosphorylate p53 on Serine 15 In Vitro 

 PKCδ null MEFs had reduced phosphorylated p53 S15 protein levels compared to 

WT MEFs (Figure 10A and B). We speculated that the decreased p53 S15 levels in PKCδ 

null MEFs were because PKCδ may phosphorylate p53 on S15. In vitro kinase assays 

were performed to test this. In our experiments, PKCδ did not directly phosphorylate 

p53 on serine 15 in vitro; whereas, PKCδ phosphorylation target MARCKS was found to 

be phosphorylated by PKCδ (Figure 14). Thus, PKCδ is not responsible for p53 

phosphorylation on Ser 15. Additionally, the S15 site is not close to a consensus PKCδ 

phosphorylation site [335].  

The S15 phosphorylation is usually induced upon genotoxin exposure or stress, 

such as UV. In the p53 half-life experiment (Figure 12A and B), the p53 half-life was 

determined without UV and p53 S15 phosphorylation was not different between 

unexposed WT and PKCδ null MEFs. Thus, phosphorylation on serine 15 is not the 

mechanism for the PKCδ-mediated stabilization of p53 in MEFs and cannot explain the 

difference in the half-life between WT and PKCδ null MEFs. 

It has been observed that PKCδ phosphorylates p53 on C-terminal domain in 

other system [335]. PKCδ was reported to be involved in phosphorylation of p53 on serine 

15 in sodium nitroprusside-treated dopaminergic neuron cells SN4741, however this 

was not demonstrated to be direct [336]. Similarly, it has been previously reported that 

PKCδ can phosphorylate p53 on serine 46 in vitro [122]. To initiate apoptosis after DNA 

damage p53 is phosphorylated in vitro on serine 46 by ATM kinase [337].  
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PKCδ Knockdown Did Not Affect Repair of UV-Induced DNA Damage in HaCaTs with 

Mutant TP53 

 UV-induced DNA damage repair was examined in the human keratinocyte cell 

line HaCaT with or without PKCδ knockdown using immunofluorescence and flow 

cytometry techniques (Figure 16A, B and C). Coequal DNA damage repair was observed 

in control and PKCδ shRNA HaCaTs at 48 and 72 hours post-UV. This observation is in 

agreement with PKCδ being involved in DNA damage repair via p53. If PKCδ-mediated 

DNA damage repair involves p53, then knockdown of PKCδ should not affect the UV-

induced DNA damage repair in HaCaTs because they harbor mutant TP53 [278, 279]. Note, 

PKCδ knockdown inhibits UV-DNA damage repair in normal human keratinocytes, which 

contain wild type p53 (Jack O’Sullivan unpublished observation). 

Investigation of Transcript Levels of p53 Target Genes 

Since p53 is a transcription factor, reduced p53 protein levels in PKCδ null MEFs 

raised questions about the transcription of its target genes. We investigated the 

expression of p53 target genes in WT and PKCδ null MEFs upon UVB irradiation. UV 

irradiation-induced 3.5-fold higher mRNA levels of the cell cycle checkpoint protein p21 

in WT MEFs than PKCδ null MEFs (Figure 17A). Indirect regulation of p21 by PKCδ had 

been previously reported in colon cancer cell [338]. In keratinocytes, PKCδ regulates p21 

transcription by controlling p21 transcription factor Krüppel-like transcription factor 

(KLF4) [339]. However, the basal expression levels of p21 mRNA were on average higher 

(31-fold) in PKCδ null MEFs than in WT, but this was highly variable and was not 

statistically significant. One possible explanation for the higher basal levels of the p21 in 
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PKCδ null MEFs could be that the MEFs lacking PKCδ have impaired DNA damage repair 

as well as tendency for increased mutagenesis. This induces constant genomic stress on 

PKCδ null MEFs and that might be the reason for their slower growth than WT MEFs, 

and may induce elevated basal transcription of cell cycle inhibitor p21. 

Gadd45a is activated by stress or DNA damage and is involved in cell cycle arrest 

and apoptosis [340]. WT MEFs had significantly (p<0.05) higher levels of UV-induced 

Gadd45a mRNA compared to PKCδ null MEFs (Figure 18). WT and PKCδ null MEFs had 

approximately the same levels of basal expression of the Gadd45a mRNA. Thus, p53 or 

PKCδ in WT MEFs may be responsible for higher levels of Gadd45a mRNA. Gadd45a is 

responsible for dissociation of cdc2/cyclin B1 complex and thus inhibiting the cell cycle 

at G2/M [341]. While PKCδ-mediated UV Gadd45a regulation has not been reported 

before, PKCδ was found to be involved in the stabilization of Gadd45a protein under 

Epidermal growth factor (EGF) treatment [342]. 

UV induction of NER factors XPC and DDB2 transcript levels were also analyzed in 

WT and PKCδ null MEFs (Figure 19 and 20). PKCδ null MEFs had elevated UV induction 

of XPC and DDB2 mRNA compared to WT MEFs was not induced by UV. This is surprising 

because the WT MEFs were more proficient in repair of UV DNA damage than the PKCδ 

null MEFs, and the mRNA levels of NER factors should have reflected that. However, 

NER proteins get recruited to the sites of DNA damage and the PKCδ null MEFs had 

higher levels of CPD DNA damage; thus, their mRNA levels may be induced higher in the 

PKCδ null MEFs to compensate for the persistent DNA damage. On the other hand, the 
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WT MEFs had repaired the CPD damage and the NEF factors are no longer required and 

thus their mRNA levels decrease.  

Thus, despite PKCδ being required for repair of UV-induced DNA damage, it 

appears to not be required for the UV induction of p53 target NER genes XPC and DDB2. 

Concluding Remarks 

Here we investigated the involvement of PKCδ in repair of UV-induced DNA 

damage. We found that PKCδ is involved in the repair of UV-induced CPDs and protects 

from UV-induced mutagenesis. This is the first study to show that PKCδ reduces UV 

mutation frequency. We also found that p53 may be involved in the PKCδ-mediated 

DNA damage repair. PKCδ was found to be required for the cell cycle checkpoint genes 

and not for NER genes. Thus it can be speculated that the cell cycle defect is more 

important for PKCδ DNA damage response. It is still unknown how p53 is directly 

regulated by PKCδ in UV DNA damage repair but future investigations may clarify the UV 

DNA damage-induced interplay between p53 and PKCδ.  

The reason behind the decreased half-life of p53 in PKCδ null MEFs compared to 

the p53 in WT MEFs, may be the decreased stability of p53 protein. Further role of PKCδ 

in mediating p53 protein turnover in the MEFs needs to be investigated. The p53 

stability is dependent on it’s negative regulators, major regulators which are directly 

involved in the p53 protein destabilization such as Mdm2 and USPs (7, 42, 29 10). It 

might be possible that the PKCδ is destabilizing Mdm2 or USPs by either 

phosphorylating or physically binding to them. This binding might cause structural 

changes in a way that Mdm2 or USPs cannot binds to p53 and ubiquitinates it. Thus, in 
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the absence of PKCδ, the Mdm2 or USPs can actively ubiquitinate and degrade p53. On 

contrary, p19/ARF binds to MDM2 and inhibits Mdm2 activity against p53 thus 

stabilizing the levels of p53 [160]. Activated PKCδ can translocate to nucleus and might act 

as a coactivator of p19/ARF. Additionally, PKCδ might be involved in stabilization of the 

p19/ARF by phosphorylating it. Thus, Mdm2, USPs and p19/ARF are prominent suspects 

for fiture investigations. 

Taken together, PKCδ is involved in multiple tumor suppressing mechanisms. It is 

well established that PKCδ induces apoptosis after DNA damage to eliminate cells with 

catastrophic DNA damage. PKCδ is also involved in arresting cell cycle at G1 or S-phase 

as well as maintenance of G2/M checkpoint. Additionally, lack of PKCδ has been 

observed in many cancers and decrease in tumorigenicity was observed when PKCδ was 

re-introduced into tumor cells. Finally, PKCδ participates in UV-induced DNA damage 

repair, reduces UV mutagenesis and is required for cell cycle checkpoint genes. Thus, 

DNA damage repair-coupled cell cycle checkpoints may be an important tumor 

suppressor mechanism for PKCδ. 
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20. Working Model 

 

Figure 20. PKCδ Mediated DNA Damage Repair 

PKCδ increase stability of p53 protein by inhibiting its degradation. This increases levels 
of the p53 and p53 starts transcription of Gadd45a. Gadd45a is known to disrupt and 
inhibit cdc2/cyclin B1 complex. This arrests the cell cycle at G2/M checkpoint and the 
DNA damage repair machinery gets ample time to repair the DNA damage. Additionally, 
because the cell cycle is arrested, the DNA damage is not passed down to the daughter 
cells and that protects the genetic integrity of the cell. In the absence of this cell cycle 
checkpoint, the DNA damage repair machinery would not have enough time to repair 
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the damage and the damage will be passed down to the daughter cells leading to 
mutations. 
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