Product Identification of Ameloblastoma

Hasan Nadimi
Loyola University Chicago

Recommended Citation
http://ecommons.luc.edu/luc_theses/3408

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 1985 Hasan Nadimi
PRODUCT IDENTIFICATION OF AMELOBLASTOMA

BY

Hasan Nadimi, D.M.D.

A Thesis Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of

Master of Science

May

1985
DEDICATION

To my family and friends
ACKNOWLEDGEMENTS

The author would like to offer his special thanks to Dr. Patrick Toto, thesis director, for his excellent guidance throughout this investigation. Special thanks is also offered to Dr. Anthony Gargiulo and Dr. Harold McReynolds for serving as members of the thesis committee.

I am especially grateful to Mr. Robert Martinez for his great laboratory work during this investigation.
VITA

The author, Hasan Nadimi, was born October 10, 1946, in Tehran, Iran.

His elementary and high school education was obtained in Nassiri School where he graduated in 1964.

In July, 1964, he attended Law School in Tehran, and Civil License was awarded to him in 1967.

In September, 1970, he enrolled at Tehran University School of Dental Medicine in a six year program. He received his DMD degree in October 1976.

From July, 1981 through June, 1983 he took post graduate education toward a Certificate of Specialty in Oral Pathology under Dr. Patrick D. Toto, and then in 1983 for the Master of Science in Oral Biology at Loyola University School of Dentistry, Chicago, Illinois.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>VITA</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td>III. MATERIAL AND METHODS</td>
<td>25</td>
</tr>
<tr>
<td>IV. RESULTS</td>
<td>31</td>
</tr>
<tr>
<td>V. DISCUSSION</td>
<td>43</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>57</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>59</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>60</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Immune Labeling Indices for Normal Developing Tooth.</td>
<td>34</td>
</tr>
<tr>
<td>2. Immune Labeling Indices for Plexiform Ameloblastoma</td>
<td>37</td>
</tr>
<tr>
<td>3. Immune Labeling Indices for Follicular Ameloblastoma</td>
<td>40</td>
</tr>
<tr>
<td>4. Immune Labeling Indices for Plexiform Unicystic and Unicystic Ameloblastoma</td>
<td>42</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Normal Developing Tooth, Bell Stage, RCA-I.</td>
<td>71</td>
</tr>
<tr>
<td>2.</td>
<td>Normal Developing Tooth, Bell Stage, H & E.</td>
<td>72</td>
</tr>
<tr>
<td>3.</td>
<td>Normal Developing Tooth, Odontoblasts</td>
<td>73</td>
</tr>
<tr>
<td>4.</td>
<td>Normal Developing Tooth, Laminin.</td>
<td>74</td>
</tr>
<tr>
<td>5.</td>
<td>Normal Developing Tooth, Laminin.</td>
<td>75</td>
</tr>
<tr>
<td>6.</td>
<td>Normal Developing Tooth, Fibronectin.</td>
<td>76</td>
</tr>
<tr>
<td>7.</td>
<td>Normal Developing Tooth, Keratin.</td>
<td>77</td>
</tr>
<tr>
<td>8.</td>
<td>Normal Developing Tooth, Con A.</td>
<td>78</td>
</tr>
<tr>
<td>9.</td>
<td>Plexiform Ameloblastoma, H & E.</td>
<td>79</td>
</tr>
<tr>
<td>10.</td>
<td>Plexiform Ameloblastoma, Laminin.</td>
<td>80</td>
</tr>
<tr>
<td>11.</td>
<td>Plexiform Ameloblastoma, RCA-I.</td>
<td>81</td>
</tr>
<tr>
<td>12.</td>
<td>Follicular Ameloblastoma, H, E.</td>
<td>82</td>
</tr>
<tr>
<td>13.</td>
<td>Follicular Ameloblastoma, Keratin.</td>
<td>83</td>
</tr>
<tr>
<td>14.</td>
<td>Follicular Ameloblastoma, Laminin.</td>
<td>84</td>
</tr>
<tr>
<td>15.</td>
<td>Follicular Ameloblastoma, Fibronectin.</td>
<td>85</td>
</tr>
<tr>
<td>16.</td>
<td>Follicular Ameloblastoma, RCA-I.</td>
<td>86</td>
</tr>
<tr>
<td>17.</td>
<td>Follicular Ameloblastoma, WGA.</td>
<td>87</td>
</tr>
<tr>
<td>18.</td>
<td>Plexiform Unicystic Ameloblastoma, H & E.</td>
<td>88</td>
</tr>
<tr>
<td>19.</td>
<td>Plexiform Unicystic Ameloblastoma, Fibronectin.</td>
<td>89</td>
</tr>
<tr>
<td>20.</td>
<td>Plexiform Unicystic Ameloblastoma, Con A.</td>
<td>90</td>
</tr>
<tr>
<td>21.</td>
<td>Ameloblastoma Coexisting With Aneuryamal Bone Cyst.</td>
<td>91</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

During the past recent decades the views concerned with pathological sciences have been immensely evolved in many aspects. Among instrumentals for such accomplishments, immunohistology has been conferred a novel, reliable, and valid contribution for the enhancement of the knowledge of intricacies in diagnostic pathology. Founded on such disciplines, scientific attitudes in this field, to date, have started to learn how to translate static impressions, practiced since the inception of light optic microscopy into a more dynamic parameters and access beyond this precur- sive stage to explanations with greater causal explanatory power. The legacy for that, firstly, relates to the limited values inherent to the art of morphology also to the subjectivism, innate to the traditional surgical pathology disciplines. Histochemical devices, once attempted to exploit predictable chemical reactions between the components of the rea- gents and molecules to demonstrate these tissue elements.

Its restriction, however, soon manifested by the fact that many en- zymes and chemical reactants are, indeed, common to different cells. Immunohistology, in contrast, by conjoining the specificity of serological probes, as complementary, offers an invaluable strength to anatomical pathology in that it delineates functional moieties as distinct antigenic determinants, and, as a consequence of interaction of antibodies relevant
to these biomolecules, illuminate the magnitude of expression relevant to
the level of cell differentiation, the fact of prime concern in prognosis
and treatment of modalities of any given neoplasm.

On the subject of ameloblastomas, i.e., growths derived from the
misfunctioning epithelial anlage of the developing tooth, the objective
of this research is formulated as:

1) To present tentative classification of ameloblastomas;

2) To trace immunohistopathologic profile for the given classes in
terms of inter-, intracellular, and basement membrane product differences.
Normal developing tooth at different stages of maturation is used as con­
trol.

3) To study the views relevant to proliferations of this nature,
and to advance possible histogenetic concept for ameloblastomas.
CHAPTER II

LITERATURE REVIEW

A. TERMINOLOGY AND EVOLUTIONARY HISTORIC EVENTS

1) Early literature: Aside from the poorly documented examples as the one describing multilocular cystic mandible in an archaic fossil skull, Salama (1951), and the narration of vague entities under the names of "follicular cysts" and "odontomes," Sprawson (1937), the earliest authentic and in-detail clinical study of the ameloblastoma focusing on behavior of the neoplasm is credited to Cusack (1827), cited by McFarland (1931).

Dupuytren (1837), cited by Robinson (1937), described a lesion akin to ameloblastoma and coined the term "fibrous bodies of the jaws." He suggested infection as the causative etiologic factor. It was Forget (1840), cited by Robinson (1937), who proposed the curious name "cystic disease of the jaw" and cystosarcoma adenoides reported by Wedl (1853).

On December 30, 1867, Paul Broca presented the first comprehensive study of odontogenic neoplasms before the Academy of Science of Paris, Sprawson (1937). Broca used the general term "embryoplastic odontome" to those lesions arising during the stage of histodifferentiation of the dental organ. This included the ameloblastoma and ameloblastic fibroma.

Folkson (1879), narrated by McFarland (1931), made the earliest histopathologic observation of the neoplasm. He recognized follicular architecture, squamous metaplasia, degenerative changes of stellate
reticulum, and microcyst formation. The author proposed the names "follicular cystoid" and later on "cystoma proliferum folliculare." This was an inappropriate choice and a misleading nomenclature in that it was irrelevant to the known biological behavior of the neoplasm, at that time. Nonetheless, Falkson's contribution to the knowledge of pathology of the neoplasm remains significant.

2) Development of histopathological concepts: Malassez's extensive investigations (1885), cited by Bump (1927), was a turning point and, indeed, provided new insights into the concept. Since then, the ameloblastoma was considered a genuine neoplasm. Malassez called the lesion "adamantin epithelioma." The evolving term "adamatinom" was suggested by Drujinsky in 1890, and, finally, the word adamationoma was coined by Blum (1901) and Borst (1902), both cited by McFarland (1931).

Gallippe (1910), cited by Bump (1927), gave his commentary on the word adamantinoma. The terminology derived from the Greek "ADAMAS" meaning the hardness of stone, analogous to enamel. Ethymologically, adamantinoma indicates a growth composed of enamel rather than enamel-forming cells or adamantino-blasts. The term adamantinoma was thought to be inappropriate.

Krompecher (1917), introduced the word "epithelioma adamantinum malignum, and, later on he proposed the term "basalioma." Churchill and Evy (1934), then coined the term ameloblastoma and, at that time, it was predicted that the new term may generally be accepted in the future, an anticipation which has been fulfilled.

Other suggested names include: epithelioma of basal cell variety, Cahn (1938), adamantoblastoma, Thoma (1946), premeloblastoma Byars (1946),
carcinoma of the tooth germ residue, Willis (1948) and basal cell carcinoma of the jaw, Schulenburg (1951).

Yet, there remain other terminologies proposed for the ameloblastoma of which, central papilloma of the jaws, chorioblastoma, central epithelioma, adamantinosarcoma, adamantinocarcinoma, adenoma adamantinum, and proliferating cysts of the jaws may be mentioned, Masson (1959).

B. THE ORIGIN OF AMELOBLASTOMAS

Given the myriad of names and synonyms simply indicate that ambiguity overshadowed the origin and pathogenesis of ameloblastomas for many years.

The earliest authentic classification of odontogenic anomalies, including ameloblastoma, is entitled to Broca (1968), cited by Sonesson (1950). This author applied the term "odontome" to any type of neoplastically-derived odontogenic lesion. In his "Treatise on Tumors" analogous to periods in embryonal normal developing tooth, he advanced the following grouping: 1) Odontome related to the period of histodifferentiation. This category also covered "epithelial odontome" or "adamantinomata." 2) Odontome related to period of morphodifferentiation. This included calcified odontome or "petrified epulis." 3) Odontome related to the period of crown maturation. 4) Odontome related to the period of root formation and tooth eruption.

The "in-growth theory" of Buchtemann (1881) cited by Bump (1927), regarded adamantinoma to originate from the mucous membrane or mucous glands of the mouth, and to extend into sinuses or infiltrate along the
roots of the teeth into the bone. This author, evidently, failed to correlate the lesion to the developing enamel organ.

Folkson (1879), cited by Robinson (1937), believed that ameloblastomas originate from the supernumerary dental germ. However, it was Malassez in 1885, quoted by Bump (1927), who conceptualized that "adamantin epithelioma originates from the atrophied and isolated group of cells, known as "pardental epithelial debris." Malassez's contribution to the recognition of odontogenic lesions remains basic in that not only does it make clear the distinction between the cysts, neoplasms, and concise histopathologic description of ameloblastoma, but also provides a unified view for the histogenesis of such lesions from cell rests of Malassez.

The cell-rest theory was supported by Ewing. However, Bland-Sutton argued against that theory because the adamantin epithelioma, if stemmed from the embryonal rests, like other blastomata, it should have predilection for younger age, cited by McFarland (1931).

Kruse, (1891), cited by Bump (1927), mentioned three potential sources for ameloblastomas. These were: 1) epithelial anlagen from the heterotopic tooth bud, 2) surface epithelium, and 3) cell rests vestigia. Krompecher (1918) in analogy with basal cell carcinoma of the skin inferred "basaliomata" to arise from the surface epithelium of the mouth, cited by Simpson, et al, (1974).

Kronfeld (1930), determined adamantinomata as pathologic overgrowth of tooth anlage and outlined the spectrum of the neoplasm based on his morphologic observations. The author divided adamantinomas into: 1) solid variety, corresponding to the earlier stage of tooth development,
composed of strands and cords of dense spindle cells embedded in an embryonic, loosely-arranged, connective tissue stroma. 2) Solid adamantinoma, corresponding to the later stage of tooth development in which stellate reticulum, palisading basilar cells surrounding follicles (gano-blasts), well-defined basement membrane (membrana limitans) all embedded in a dense "ripe" and vascularized connective tissue stroma. 3) Cystic adamantinoma (multilocular cystoma) as the consequence of progressive cystic degeneration in solid type.

Solid variety: Equivalent to the earlier stage of odontogenic epithelium

Solid variety: Equivalent to the later stage, pre-ameloblastic maturation

Cystic variety: Multilocular cystoma

The Summary of KRONFELD'S VIEW OF AN AMELOBLASTOMA

In Churchill's classification of oral neoplasms in 1932, cited by Churchill (1934) and Robinson (1937) under the heading "Epidermal Blastomata", a subgroup of odontogenic neoplasms is mentioned. Within that subgroup, the ameloblastomas are divided under solid, cystic and melanotic variants, see below.

BLASTOMATA

I. Tumors of epidermis, its degenerated tissue and squamocellular mucosa.
II. Tumors of odontogenic apparatus (dentocytic tumors).

A. Benign

1. Ameloblastoma:
 solid, cystic, melanotic
2. Dentigerous cyst:
 simple, compound, eruptive, heterotopic

B. Malignant

1. Carcinoma ameloblasticum
2. Sarcoma ameloblasticum

Churchill's grouping of ameloblastoma (modified from Robinson, 1937).

Cahn, (1933), raised the concept of the dentigerous cyst as a potential source for the origin of the ameloblastoma. In his case presentation, he introduced the descriptive term "dentigerous cystic adamantinoma." He illustrated intraluminal nodules associated with dentigerous cyst wall, analogous to the currently used term plexiform unicystic ameloblastoma. Gardner (1981). Churchill, (1934) reported two cases under "invading dentigerous cysts," and made a distinction between these entities and the conventional ameloblastomas. Churchill observed marked vascularization of connective tissue enclavements associated with the invading epithelia in the cysts which has never been encountered in the stellate reticulum of ameloblastomas. Thoma and Goldman (1946) reiterated the solid/cystic concept in their classification, and also added "calcifying
adamanto-blastomata" as the third entity. Thoma's classification was accepted by the Fifth Annual Meeting of the American Academy of Oral Pathology, Robinson (1952).

Small and Waldron (1955) gave an account that the enamel organ, vestigium of enamel organs, epithelium of odontogenic cysts, surface epithelium, and displaced epithelium in the other parts, extramaxillary, are the potential sources for the neoplasm. These authors also mentioned that cystic changes in ameloblastomas occur as function of time. In their proposal, ameloblastomas are classified as:

1. Follicular, or follicular with cystic changes or squamous metaplasia.
2. Ameloblastoma composed of ramified cords and irregular masses.
3. Other variants: Adenoameloblastoma, hemangioameloblastoma.

Pindborg and Clausen (1958), presented functional classification of odontogenic neoplasms based on embryonic principles and experimental evidences obtained from transplantation of developing tooth and tissue culture studies as follows:

I. Mesenchymally derived neoplasms
 A. With inductive effect
 B. Without inductive effect: (ameloblastoma)
1. Hemangioameloblastoma
2. Adenoameloblastoma
3. Simple ameloblastoma
4. Ameloblastic neurinoma

III. Mixed types of neoplasms

Masson (1959), in a clinicopathologic survey, stated that adamantinomas corresponded to very early stages of tooth development and that they might reveal solid epithelial strands embedded in loose connective tissue stroma. Similarly, in ameloblastomas relevant to a later stage of tooth development, stellate reticulum surrounded by palisading ganoblasts (pre-ameloblasts) would predominate. In Masson's view, ameloblastomas lie within four categories as:

1. Plexiform
2. Squamous
3. Glandular
4. Sarcoma-like

Gorlin, Chaudhry and Pindborg (1961), proposed the subdivision of ameloblastomas based on their histopathologic patterns as

1. Follicular
2. Plexiform
3. Acanthomatous
4. Mucoepidermoid
5. Vascular (hemangioameloblastoma)

These investigators also determined epithelial lining of dentigerous
cysts, remnants of dental lamina, enamel organ, and the basal layer of oral mucous membrane as the sources of neoplastic growth.

Spouge (1967) in his extensive studies of odontogenic neoplasms considered ameloblastomas as a benign proliferation of dental lamina-like cells.

In World Health Organization's Classification of odontogenic neoplasms, Pindborg et al (1971), ameloblastomas are defined as benign but locally invasive neoplasms. WHO classification considers ameloblastomas as:

1. Follicular type
2. Plexiform type
3. Acanthomatous type
4. Basal cell type
5. Granular cell type
6. Other variants:
 a. Ameloblastic hemangioma
 b. ameloblastic neurinoma
7. Ameloblastomas arising in odontogenic cyst wall, i.e., dentigerous cyst

Unicystic and plexiform unicystic concept of ameloblastomas are described by Robinson, et al (1977). Within their conclusive survey, they pointed, once again, to the ameloblastomatous proliferating potential of epithelial linings of dentigerous cysts in young, 2nd, and 3rd decade of life, individuals. These investigators advanced morphological criteria
for ameloblastomatous epithelium (see Material and Methods). Shteyer et al (1978) collated the entity with the so-called mural ameloblastoma and arrived at a similar conclusion.

Gardner (1981), and Gardner, et al (1983) further rectified the concept. Gardner introduced the term plexiform unicystic ameloblastoma. He applied the term to those intraluminal or intracapsular patterns of plexiform epithelial proliferations occurring within the wall of dentigerous cyst which does not exhibit those histologic criteria proposed for the true ameloblastoma, Vickers, et al (1970). Gardner, et al (1983) concluded that plexiform unicystic ameloblastoma is an undifferentiated variant of conventional unicystic ameloblastomas. However, none of these studies document histogenetic assessment for ameloblastomas. Up to this point, the functional classification of ameloblastomas includes the following:

1. Central (intraosseous)
 Solid or multicystic (includes WHO variants)
 Unicystic
 Plexiform unicystic

II. Peripheral (extraosseous)

Odontogenesis: Current biological concepts

Ontogenetic relevance to odontogenesis, at best, is defined as an interdisciplinary science, integrating embryology, anatomy, biochemistry, genetic and immunology, Hall (1983). This field as a developing
subsection of biology, has motivated biologists, especially those extra-
cellular matrix specialists, to investigate circumstances that provoke
cells to activate or regulate their genomic apparatus. Among these grow-
ing concepts are those of cellular interactions and recognition of the

Interphase may be defined as an interaction zone, chemical or physi-
cal, between similar, homotypic, or disparate, heterotypic, tissues through
which communications, functional relationships, and, ultimately, morphogen-
esis are conducted, Lash (1977). With particular emphasis on odontogenic
developmental events, interaction interphase is mediated as transduction
events of the extracellular basement membrane matrix, Kollar (1983). In
this context, the reciprocal theory of interdependent epithelial-ecto-
mesenchymal interaction provides a unified view and is the best-fitted
on the epigenetic influences implicated in tooth morphogenesis, Thesleff,

Tissue recombination studies provide significant break-through, per-
taining to these intermediary effects and controls exerted on de novo
heterotypic genomic function and determination, Hall (1982). These tech-
niques also highlight the pathway through which the extracellular micro-
environment evokes irreversible differentiation and specific gene expres-
sion, through either cell to cell (direct) contact or extracellular sur-

For the specific tooth-forming organ, instructive tissue induction
governing the determination and differentiation of odontoblasts are medi-
ated by the presumed macromolecular signal substances. Such substances
are secreted by preameloblasts, the basement membrane integer, and the
developmental information communicable between the two adjacent circuits
are thus postulated to be through the functional properties of these hetero-
egeneous products, Slavkin (1976), Thesleff, et al (1978), and Lesot
et al (1981). Some of these macromolecules are now identified. These
include fibronectin, laminin, type IV collagen varieties of proteogly-
cans, glycoproteins and in combination with certain inorganic ions, Kefa-

DESCRIPTION OF PRODUCTS: AN OVERVIEW

Fibronectin

This component is a high molecular weight glycoprotein found in its
insoluble phase within the connective tissues and in the early basement
membrane framework (vide infra). Fibronectin also is found as well as in
soluble phase circulating within plasma and other body fluids, Ruoslahti,
gestive of its diverse histological activities have been specified for
fibronectin. They include those among which Cold-Insoluble Globulin (CIG)
and Large External Transformation Sensitive Protein (LETS) may be men-

Structurally, fibronectin is composed of the two nearly identical
disulfide-linked polypeptide chains with a combined molecular weight of

Relevant to the synthesis and secretion of fibronectin by mesenchymal cells, there are some practical points that warrant clarification. Of them are the quantities of fibronectin proportionate to the levels of maturation of the producing cells as reported earlier, Thesleff, et al (1979). In the present research, it was substantiated that the less mature and less differentiated mesenchyma was found to be the more intensely reactive with monoclonal antibody to fibronectin. Also, appreciated is the key role this glycoprotein plays in the supportive stromal groundwork organization and in the presumed morphology of the parenchymal tissue, Hay

Laminin

This glycoprotein molecule while sharing several biological functions with fibronectin, differs substantially in shape and domain organization, Hynes et al (1982). It expresses complex conformational, Beta-pleating and Alpha helix, as well as aperiodic or undefined structural elements, mapped in an exotic cross-shaped, one long and three similar short polypeptide arms, arrangement, Timpl, et al (1983).

Clues to the biological role of laminin originate from different studies. This high molecular weight (MW 950,000) glycoprotein mediates, primarily, the attachment of epithelial cells to type IV collagen substrate, Terranova, et al (1980). It, also, displays strong affinity for the other glycoproteins and proteoglycan, fibronectin-proteoglycans and in combination with these elements, laminin incorporates within the insoluble phase of the basement membrane, Johansson, et al (1981), Foidart, et al (1980), Timpl (1979). Laminin is a universal product of all kinds of basement membrane so far studied, Timpl (1983). Also, it is known as the first extracellular matrix protein to appear during the embryonic development between cells at 16-cell (morula) embryo, Levio, et al (1980).

DENTAL ORGAN: MORPHOLOGY AND DIFFERENTIATION

For some vertebrates, such as the murine and rabbit, for example, preameloblastic differentiation from the evolving predetermined odontogenic epithelium to a terminally differentiated ameloblast have been extensively investigated, Kallenbach (1971), Saliva, et al (1972), Slavkin, et al (1976), Mosher, et al (1981), Bernfield, et al (1978), Osman, et al (1981) and Slavkin, et al (1983, 1984). These investigations unanimously show that when the dividing cuboidal cells in the inner enamel epithelium mature into columnar cells, preameloblasts with reverse polarization of their nuclei, there is simultaneous evidence of thickening of juxtapositional basement membrane. These are known as hypothetical signal substances which target their instructive, inductive effect action over the underlying ectomesenchyme and induce the preodontoblasts to differentiate (Grobstein (1967, 1975), Kallenbach (1971), Kollar (1972, 1983).

At the next step, simultaneous with late proliferative and early differentiative stage of inner enamel epithelium, the predontoblasts
extend their cytoplasmic processes crossing the basement membrane toward
the preameloblasts with reversed polarized nuclei. This has been inter-
preted as the earliest evidence of direct, cell-to-cell, heterotopic in-

In the mouse, terminal cytodifferentiation of the inner enamel ep­
ithelium is accompanied by a complete degradation of the basement membrane,
Thesleff, et al (1981). In vitro studies, however, substantiate that such
basement membrane degradation is not a prerequisite for epithelial cyto-
differentiation and morphogenesis in tissue culture conditions Slavkin,

Extrapolating from the normal embryonic pathway of ameloblastic cy­
todifferentiation and, also, from Pierce's theory of neoplasia (1974), am­
eloblastomas, hypothetically, may recapitulate cellular morphology, rang­
ing from cuboidal to predetermined columnar preameloblast prior to differ­
entiating to secretory, mature ameloblasts.

Epithelial tonofilaments:

The cytoskeletal fibrillar proteins comprise heterogeneous groups of
microtubules, microfilaments and, the recently discovered, intermediate­
These 7-11 nm diameter class of filaments are part of the major cytoplas­
mic organization of the cell and exert an enormous effect upon the dynamic

These filaments are expressed either singly or in laterally aggre­
filaments include: 1) nuclear anchorage, 2) mechanical integrator of

The polymorphic character of these medium-sized filaments, in terms of their peptide mappings and physicochemical properties, relevant to a given cell type, is a working hypothesis for the following five subclasses: cytokeratin, vimentin, desmin (skeletin), glial fibrillary acidic proteins, and neurofilaments, Franke, et al (1978), Gabbiani (1981).

Cytokeratin filaments are incorporated by a variety of polypeptides having molecular weights ranging from 48,000 to 68,000 Franke, et al (1978). Using antisera for identification, these filaments act as reliable markers for those epithelia expressing true desmosomes, Weber (1982).

In the human epidermis and oral mucosa, antisera against total keratin labeled all keratinocytes in all structural layers in normal and pathological conditions, Loning et al (1980). The staining intensity for prekeratin was studied for the sections of normal epithelium and related neoplastic lesions. It was found that the intensity of fluorescent staining was proportional to the degree of differentiation of tumor cells, Sieinski, et al (1981).

Relevant to this research, the significance of prekeratin antibody lies, to a great extent, in their utility for differential diagnosis of those plexiform variants of the ameloblastomas in comparison with the other variants.
LECTINS:

The cell surface is the locus for performing distinct biological activities essential to the viability of the cell, Singer (1982). In terms of interaction with adjacent cell surfaces such as molecular recognition on neighboring cells, extracellular matrices and the functional motilities and attachment reactivities of cells, it requires certain components such as glycoproteins and glycolipids on cell membrane which impose definitive action, Roth (1980). The common denominators in all these events are the terminal carbohydrates, exposed on cell surfaces, Young et al (1974).

A few decades earlier, the specificity and innate affinity of certain plant proteins, lectins, toward these terminal sugar moieties or cell membranes was acknowledged. In this context, it was disclosed that the agglutinability of blood group antigens was due to the specificity of the reaction between the lectin and the cell's carbohydrate ligand, Boyd (1945).

Neoplastic transformation of cells, either benign or malignant, modifies the normal pathway of expression of the cell surface terminal carbohydrate components. Along with the other misfunctioning genomic products expressed on cell surfaces, the altered terminal carbohydrates enhance proliferation of cells beyond normal limits, apparently without being affected by contact inhibition mechanism, Rapin et al (1974).

The earliest research in lectin binding capacities delineated an increased quantity of membrane bound receptors for lectins on transformed
cancer cells. It was found that a remarkable avidity of the malignant phenotype for agglutination occurred with a lipase derivative of wheat germ agglutinin, Easty et al (1960). The cell surface carbohydrate ligand molecule was then recognized to be a glycoprotein-containing $\beta-(1->4)$ di-N-acetyl glucosamine termini, Monsigny, et al (1978).

The immunohistochemical methods currently in use employ lectins as highly sensitive and specific reagents, to demonstrate differences in the terminal carbohydrates on the surfaces of cell populations, functions, and their level of differentiation. The immunohistochemical technique, however, when applied to the formalin-fixed tissues poses certain limitations, Rittman, et al (1982), Leathem, et al (1983).

Upon using lectins certain generalization could be made: 1) none of the lectins now known are exclusively tumor-specific, 2) that the binding capacity of the lectins with respect to differentiation may render results as positive, negative or, on occasion, of no difference. The latter is not an uncommon observation; on the other hand, the binding differences between neoplastic phenotype and the normal phenotype may not be extensive.

The following lectins are used for this research: Concanavalin A (Con A): the lectin was extracted from Jack bean, Canavalia ensiformis, Goldstein (1978). The lectin is composed of four identical protomer subunits, each of 26,000 molecular weight. Each subunit contains the cations of Ca^{++} and Mn^{++}, which are required for biological activity of the lectin, Goldstein (1974). Con-A binds and forms precipitates with
either of the polysaccharides containing a D-glucopyranosyl, a-D-arabino-
furanosyl, a-D-mannopyranosyl, or B-D fructofuranosyl residues in their
non-reducing termini, Nicholson (1979). Such capacity will provide for
interaction with dextran, yeast mannan, D-fructan, glycogen and a variety
of glycoproteins, Sharon (1972), Goldstein (1978) and Debray (1980).

The distribution pattern of Con-A in formalin-fixed materials for a
variety of normal tissue entities, hyperplastic lesions and in some neo-
plasias have been studied. At the inception of such studies, it was a
common concept that the cells binding Con A to be virtually restricted to
malignancies. A recent immunofluorescence study considered clear cut-
differences between normal and malignant cells in terms of Con A binding

Studies on embryonic tissues disclosed features similar to the
transformed phenotype, Moscona (1971). Distribution of Con A in the nor-
mal palatal and buccal mucosa was found intercellularly in basal and
prickle cell layers and for the palatal epithelium, additionally, the
cytoplasm was also positively decorated, Dabelsteen (1978).

Ricinus communis agglutinin I, (RCA-I, RCA 120). RCA is a disulfide-
linked glycoprotein with a molecular weight of 120,000 Dalton extracted
from the toxic castor bean, Goldstein (1978). The lectin binds oligosac-
charides of (1 --4) galactopyranose configuration, in general, and, prefer-
entially to B(1 --4) D galactopyranase-ending sugars, Debray (1980);
it may also interact with N-acetylgalactosamine, Baenziger (1979).

Topographic distribution and the expression of the receptors for
RCA-I in histologically different epithelial cell surfaces have been studied. RCA-I was found deposited in keratinocytes of the skin epidermis, in different locations of the oral mucosa, and in the esophageal squamous epithelium where it was reactive intercellularly at prickle and basal cell layers, Dabelsteen (1978 b), Hyum, et al (1984). A similar pattern of reaction has been observed for keratoacanthomas; while actinic keratosis and Bowen's disease reportedly displayed a decreased reactivity toward the lectins, Graem (1983).

The agglutinin property of transformed malignant mouse fibroblasts in culture was found to substantially decreased by RCA-I, Nicholson, et al (1972).

RCA-I binding reactivities in formalin-fixed tissues of oral squamous cell carcinomas and in epithelial outgrowths from the edge of healing wounds have been shown to be accompanied by a heavy loss of the ligands specific for the lectin, Graem (1982) and Dabelsteen (1978-a).

Vedtofte, et al (1981), studied binding reactivity of solid ameloblastomas for RCA-I. They found distribution differences for RCA-I in the peripheral cells of ameloblastomas and related these features to the possible biologic behavior of differentiation and migration in the neoplasm.

Wheat germ agglutinin (WGA); Tritium vulgaris: The lectin as indicated was one of the earliest probes used for surface changes occurring in cancer cells, Easty (1960). It was the prevailing view, at that time, that the reactivity to the lectin ought to be relevant to the underlying neoplastic process, rather than growth and division, Aub (1963). The lectin is a 36,000 MW protein consisting of two identical, dimeric, subunits
each of 8000 MW, Goldstein (1978). Membrane bound receptors for this lectin are oligosaccharides containing terminal non-reducing N-acetyl glucosamine and N-acetylgalactosaminic acid, Debray (1980).

Embryonic ectodermal tissues and retina, dissociated with EDTA, were found to agglutinate with WGA, like the adult untransformed culture cells, only after treatment with trypsin to unmask the receptors, Moscona (1971).

In the oral mucosa, receptors for WGA were found on the basal and prickle cell layer, Vedtofte et al (1981). Also, by using WGA in immunofluorescence techniques to sections of ameloblastoma, the lectin was found to bind peripheral cuboidal or polyhedral cells and spindle cells; columnar cells were found to be non-reactive, Vedtofte et al (1981).
CHAPTER III

MATERIAL AND METHODS

Materials:
Formalin-fixed paraffin embedded sections of forty-two cases of unequivocal ameloblastomas of different classes and subtypes which were courteously provided by the: 1) Department of Pathology, Division of Oral Pathology, Northwestern University; 2) University of Chicago, Billings Hospital, Zoller Dental Clinic; 3) Surgical Pathology Section, McGaw Hospital; and 4) the files of the Department of Oral/General Pathology, Loyola University School of Dentistry.

Antisera to laminin, fibronectin and prekeratin were supplied from the following companies:
Keratin: Dako Corp., Santa Barbara, Ca.
Laminin: Bethesda Research Lab, Bethesda, Md.
Fibronectin: Cappel Lab, Westchester, Pa.
The following biotinylated lectins all were supplied from Vector Laboratories, Burlingame, Ca.
Concanavalin-A (Con-A):
Ricinus communis agglutinin I (RCA-I).
Wheat germ agglutinin (WGA).

Methods:
and, also, upon the current immunohistological proofs suggestive of product differences pertaining to the level of maturation of the neoplasm, observed in our laboratory and that which had been confirmed ultrastructurally by others, Nasu et al (1983), the following sub-grouping of the neoplasm was prepared for study:

A. Intraosseous solid, or multicystic, Gardner et al (1980). Of the twenty-nine specimens of ameloblastomas of this type, two distinct sub-groups were recognized:

1) Solid or multicystic ameloblastoma, follicular type, 25 cases.
2) Solid ameloblastoma, plexiform type, 4 cases.

Ameloblastomas were considered follicular when these features in combination were present: The follicles were composed of central spindle or star-shaped cells resembling stellate reticulum surrounded by peripheral and clearly columnar or cuboidal, preameloblastic-like epithelia, which met the criteria of Vickers and Gorlin (1970). Neoplastic parenchymal cells also were found to be embedded within dense, ripe, mature, fibrous connective tissue stroma.

The plexiform variant was considered only when the following morphological observation were made: the plexiform network of anastomosing strands of epithelium in which the central cells did not reveal similarities to the stellate reticulum, rather, they presented a more flattened and squamoid appearance. Also, the peripheral palisade of the plexiform variant cells did not meet the criteria of Vickers et al (1970) for
ameloblastomas. Neoplastic cells of the plexiform variant were found to be embedded within primitive, loose, or at times, an inconspicuous connective tissue stroma.

The unicystic and plexiform unicystic ameloblastomas were regarded in a single category. The basis for this single category was that some of the cases in this study showed unicystic feature, primarily and, when such lesions clinically recurred, were found as plexiform unicystic variant and vice versa. In the unicystic ameloblastoma, the epithelium was considered to be neoplastic when the following criteria, singly or in combination, were present: 1) downgrowth of epithelium invading the connective tissue capsule; 2) columnar basal cells containing hyperchromatic nuclei.

The plexiform unicystic ameloblastoma was defined when, in addition to the above pattern, there was present evidence of intraluminal or capsular epithelial proliferation in a plexiform fashion. For such nodular plexiform pattern of epithelial proliferation, the criteria of Vickers et al (1970) was almost invariably absent.

One normal human developing tooth was also provided from the file of Surgical Pathology Division McGaw Hospital.

The following immunohistochemical technique was applied to the above group of neoplasms and normal developing human tooth as control. 1) Peroxidase anti-peroxidase (PAP) technique, Sternberger (1979) for the identification of the glycoproteins, laminin and fibronectin, within the substance of the basement membrane, and the prekeratin protein within the cytoplasm of epithelial cells. 2. Avidin-biotin-peroxidase complex (ABC) of Hsu, et al (1980) for lectins.
Avidin-biotin-peroxidase complex (ABC), technique: the high affinity lectins used in this study were: 1) Con-A, representative of the group of lectins with a specificity for α-mannose, α-glucose; 2) RCA-I, from the group of lectins with a specificity for galactose or N-acetyl galactosamine; 3) WGA, representative of the group of lectins with a specificity for N-acetylglucosamine.

Procedures:
A: 1) The specimens of ameloblastomas and the normal developing teeth were cut into 3 microns sections and mounted on glass slides, pretreated with 2% aqueous Elmers glue.

2) Following drying at 60°C, the sections were deparaffinized in two changes of xylene. The xylene was removed by immersion in absolute alcohol.

3) The sections were treated with 0.075% hydrochloric acid and absolute ethanol for 15 minutes to remove any pseudoperoxidase and endogenous peroxidase.

4) Following washing in tap-water, the sections were immersed in tris-buffered saline, pH 7.4, containing 0.2% bovine serum albumin, (TBS/BSA) for twenty minutes.

5) Biotinylated lectins in TBS with 10% (W/V)BSA were applied at concentrations: 10 ug/ml for Con A, and 50 ug/ml for RCA and WGA, for thirty minutes.

6) After washing in three changes, of TBS, each for five minutes, the section was treated with avidin-biotin-peroxidase complex in TBS for 60 minutes, and washed in three changes of TBS each for five minutes.
7. The sections then were treated with the chromogen diaminobenzidine tetrahydrochloride, 40 mg% in ammonium acetate-citrate buffer, pH 5.5 containing 0.0075% H₂O₂ for 2.5 minutes.

8) Following rinsing in de-ionized water, the sections were counterstained in hemotoxylin for one minute.

B. The peroxidase antiperoxidase (PAP) technique, Sternberger (1979), was used for definition of the basement membrane, laminin, fibronectin and for cytoskeleton prekaratin. The PAP method was applied as follows:

The sections were cut at 3 µm, mounted on glass slides, pretreated with 2% aqueous Elmers glue.

After drying and deparaffinization in two changes of xylene and alcohol, pseudoperoxidase and endogenous peroxidase were inactivated by the treatment with 0.075% hydrochloric acid in absolute ethanol for 15 min., Weir et al (1974). Duplicate sections to be stained for Keratin were trypsinized in prewarmed pancreatic trypsin, 0.1% in 0.01% M Tris buffer, pH 7.6 containing 0.1% calcium chloride at 37°C for 15 minutes, followed by thorough washing in cold tris buffer, Curran et al (1977) and Mepham, et al (1979). Sections to be stained for laminin or fibronectin were pretreated with pepsin, 0.1% in 0.1 N HCl for 45 minutes at 37°C.

In a moist chamber, the sections were covered with a 3% solution in PBS with 0.2% bovine serum albumin (PBS/BSA), (of normal serum from the species in which the link antibody was raised). This was used to block non-specific tissue binding of the subsequent reagent, the primary specific immunoglobulin, Sternberger (1979). The sections were blotted on
filter paper and covered with primary antibodies in PBS/BSA at a dilution of 1:1000 containing 1% normal serum from the link antibody species, for keratin, laminins and fibronectin, respectively. Keratin antibodies were applied for 30 minutes at ambient temperature; antilaminin and antifibronectin were applied for 18-24 hours at 4°C. This was followed by washing in three changes of PBS to remove unreacted primary antibodies.

The link antibodies for prekeratin, laminin and fibronectin were diluted at 1:100 in PBS and applied to the sections for 30 minutes, 25°C. These reagents consist of whole antisera from which antihuman IgG cross reactivity had been removed by absorption onto CNBr-Sepharose linked human gamma globulins, antibodies. After washing in PBS, the sections were treated with PAP, of the appropriate species, diluted at 1:200 in PBS/BSA with 1% normal serum for 30 minutes. The slides were washed in PBS and rinsed with deionized water. The slides were placed in peroxidase substrate solution for 2.5 minutes. This solution consists of ammonium acetate-citric acid buffer, pH 5.5, containing 0.05% of 3,3' diaminobenzidine tetrahydrochloride, prepared immediately before use, filtered to which 0.0075% hydrogen peroxide is added, Weir et al (1974), Vacca et al (1978). Finally, the sections were counterstained with hematoxylin for one minute and mounted with Permount.
CHAPTER IV

RESULTS

A. Normal developing tooth (control).

1) Hematoxylin and eosin sections of the dental organ, corresponding to early and late bell stage of differentiation, revealed a proliferative burst of ectomesenchymal and enamel organ epithelium both surrounded by the radially arranged fibrils of dental follicles. The dental lamina was seen to break into discrete islands of rosetting epithelial aggregates and showed a loss of continuity of dental organ with the surface epithelium, evidence of the late bell stage of odontogenesis. The enamel organ at bell stage showed four structurally distinct layers, indicative of histodifferentiation of the epithelium (Fig. 1). The outer enamel epithelium, one to two layers in thickness, was composed of cuboidal epithelium with high nuclear cytoplasmic ratio, numerous buddings and protruding of epithelial outgrowths, extending from outer enamel epithelium were also noted. The stellate reticulum was formed by a multilayer of cells, and delicate cytoplasmic extensions. No evidence of vascularization was noted at this stage of development of the enamel organ. The stratum intermedium, two to three cell layers in thickness, was located subjacent to the inner enamel epithelium. Within the inner enamel epithelium a distinct maturation pattern of the vestigium of enamel forming cells through the preameloblasts was noted. Structurally, this layer was composed of single small round cells with hyperchromatic nuclei in and around the cervical loop area. Assuming cuboidal and further columnar features and repositioning of the nuclei in reverse polarity to the basement membrane, characteristic for preameloblasts,
were found in the more centrally located inner enamel epithelium.

The epithelial-mesenchymal basement membrane interface at the presumed cuspal area showed an increased thickening, parallel with preodontoblastic differentiation. The earliest reciprocity of heterotypic tissue interaction was traced as preodontoblastic protoplasmic extensions, across the basement membrane. Direct, cell-to-cell contact, basement membrane degradation, and predentin matrix deposition were the observed features for late bell stage of the enamel organ (Fig. 2).

The developing tooth during matrix deposition and calcification, revealed amylase-resistant, secretory ameloblasts and odontoblasts and the absence of a basement membrane (Fig. 3).

2) Immunoperoxidase studies of the sections of normal developing tooth at the histodifferentiation stage and crown stage were performed as follows:

LAMININ: Monospecific antibody to laminin revealed a distinct linear deposition outlining the epithelial-mesenchymal interface and the associated outgrowth of blood vessels (Fig 4). Laminin was traced also around the vestigia of the dental lamina. However, laminin was absent at the site of organic matrix deposit (Fig. 5).

FIBRONECTIN: Monospecific antisera against this glycoprotein decorated fibronectin in a diffuse pattern with moderate intensity in the mesenchyme of the immature dental pulp tissue. Following histodifferentiation of the tooth germ, the staining intensity was substantially less than in previous stages, a feature which corresponded well with mesenchymal maturation. In the same background, the fibronectin reaction was fairly detectable in the
cytoplasm of odontoblasts. In contrast, the mesenchymal component was mildly reactive. In the basement membrane zone, fibronectin was found during histodifferentiation stage of tooth development. Ectodermally-derived epithelium, in general, was non-reactive at the inner and outer enamel epithelium. Blood vessel walls in all instances disclosed the greatest stainability (Fig. 6).

Cytokeratin: Monoclonal antibody to prekeratin revealed a positive cytoplasmic reaction in all four layers of enamel epithelium (Fig. 7).

Con A: In the enamel organ epithelium, the lectin was found to be intensely positive intercellularly, in and adjacent to the cervical loop. Secretory ameloblasts were also found to be intensely positive and was amylase resistant (Fig. 8). Within the outer enamel epithelium there was variability in staining reaction and few cells were found to be more reactive. The epithelium in the stratum intermedium was diffusely positive. In the mesenchymal part of the tooth germ, preodontoblastic maturation was associated with an intense intracytoplasmic positive reaction, as also seen for the secretory ameloblasts (Fig. 3). In contrast, the pre-ameloblasts were reactive only intercellularly. The tissue of the pulp at this stage was entirely negative.

RCA-I: This lectin specified two groups of reacting and non-reacting population of cells within the enamel organ epithelium. The preameloblasts were reactive both intercellularly and intracellularly (Fig. 1), whereas the secretory ameloblasts and odontoblasts were non-reactive. Such reacting and non-reacting population within the outer enamel epithelium was also noted.
<table>
<thead>
<tr>
<th>CELL TYPE</th>
<th>CON A</th>
<th>RCA</th>
<th>WGA</th>
<th>FN</th>
<th>LN</th>
<th>KER</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEE, at cervical loop area</td>
<td>+/-</td>
<td>-/+</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Preameloblasts</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Secretory ameloblasts</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Stellate reticulum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>OEE</td>
<td>+/-</td>
<td>-/+</td>
<td>+/-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>BMZ: Bell/crown</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>Ectomesenchyme/Pulp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Predentin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
WGA: For WGA, cells of the epithelial enamel organ at different stages of maturation through secretory ameloblasts were positive, whereas, connective tissue mesenchyme remained non-reactive.

PLEXIFORM AMELOBLASTOMA

Histopathology: Hematoxylin and eosin preparation of the sections of four cases in this group revealed heterogeneous strands of odontogenic epithelium, predominantly resembling dental lamina type showing hyperchromatic pleomorphic nuclei and, occasional, bipolar mitotic figures. The central part of the plexiform strands did not display the star-shaped or spindle stellate reticulum-like cells observed in the enamel organ, nor did it undergo cystic degeneration. Rather, they assumed a flattened or squamoid appearing features. Within epithelial strands, the peripheral cells did not exhibit preameloblastic maturation. In general, the Vicker's criteria for early ameloblastomatous epithelium, i.e., palisading with polarization of hyperchromatic nuclei and inter--, intracytoplasmic vacuolization, Vickers et al (1970) was found extremely rigid when applied to this group of neoplasms (Fig. 9). The connective tissue stroma appeared primitive, loose in texture and free from inflammation.

Laminin: All sections of plexiform ameloblastomas after treatment with pepsin, showed linear arrangement of laminin within their basement membrane (Fig. 10).

Fibronectin: The pattern of expression of this glycoprotein within the basement membrane of plexiform ameloblastoma was unremarkable and, for the most part, negative.
Con A: Receptor-lectin complexes were found positive for polyhedral and negative for those mature cells. The polyhedral cells with high N/C ratio were reactive to Con A in and around their cytoplasm and cell membrane.

RCA-I: The receptor sites for RCA-I in the plexiform ameloblastoma was found to be undetectable (Fig. 11), as indicated by very weak stainability of the sections.

WGA: Two distinct populations in the plexiform ameloblastoma were noted: polyhedral cells were found reactive; while the more mature, columnar, preameloblasts were unreactive.

Cytokeratin: All sections treated with antibody to keratin were positive in the plexiform ameloblastoma.

Immunohistological findings for plexiform ameloblastoma is summarized in Table 2.

FOLLICULAR AMELOBLASTOMA:

Histopathology: Hematoxylin and eosin sections of this group of neoplasms revealed islands, follicles or occasional strands of odontogenic epithelium with some resemblance to the enamel organ. Such features included palisading peripheral columnar cells with hyperchromatic nuclei and inter-, intracellular vacuolization (Fig. 12). The central epithelial follicular cells revealed stellate, spindle or, occasional, squamous changes. Marked vascularization, hemorrhage, cystic changes were also seen. In four cases, superimposed features of the aneurysmal bone cyst characterized by large blood-filled spaces lined by septae of vascularized
TABLE 2

IMMUNE LABELING INDICES FOR SOLID TYPE OF AMELOBLASTOMA, PLEXIFORM VARIANT

<table>
<thead>
<tr>
<th>CELL TYPE</th>
<th>CON A</th>
<th>RCA</th>
<th>WGA</th>
<th>FN</th>
<th>LN</th>
<th>KER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ameloblastomatous epith.</td>
<td>+/-</td>
<td>-</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Basement membrane zone</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
connective tissue, osteoclast-like giant cells and osteoid or woven bone were noted.

Cytokeratin: Keratin antibody to all types of cells in the follicular ameloblastoma were found to be positively reactive (Fig. 13).

Laminin: Within the basement membrane, laminin was uniformly positive (Fig. 14).

Fibronectin: Polyclonal monospecific antibody to fibronectin disclosed a kaleidoscopic distribution pattern in the follicular ameloblastoma. The neoplastic cells, when associated with dense, mature, fibrous tissue, were found to be invariably negative for fibronectin within their basement membrane (Fig. 15). However, neoplastic tissue revealed incorporation of fibronectin within their basement membrane, whenever inflammation and/or blood extravasation was noted in the stroma. In such events, the basement membrane within and subjacent to the follicular ameloblastomas was positive for fibronectin.

Con A: The cuboidal and polyhedral cells in the periphery of the follicles or strands were positively reactive to Con A on their cell surfaces; to a lesser extent columnar cells were positive on their cytoplasmic surfaces. However, foci of squamous metaplasia were associated with an intense intracytoplasmic staining reaction with Con A.

RCA I: The lectin revealed reactive and non-reactive patterns, in most of the sections of the follicular ameloblastomas. In general, columnar differentiation was accompanied by the expression of the lectin in the plasma membrane, whereas populations of polyhedral or oval cells were found alternatively positive or negative. In foci of squamous metaplasia,
however, RCA-I was shown found to be positive intercellularly (Fig. 16).

WGA: This lectin revealed columnar and the stellate appearing cells to be positive on surface. Squamous differentiation was found positive to WGA in their cytoplasm (Fig. 17). Table 3 is a summary of immunohistological findings for follicular ameloblastoma.

UNICYSTIC AND PLEXIFORM UNICYSTIC AMELOBLASTOMA:

Histopathology: Hematoxylin and eosin sections of this group of lesions revealed non-keratinized, cystic lining epithelium of various thickness and morphologic organization. In many instances, the unicystic ameloblastoma was composed of few layers of flattened squamous cells bearing little or no morphologic resemblance to ameloblastomatous epithelium described earlier, Vickers et al (1970). The overlying epithelium, in many instances, was discohesive and loosely texture, suggestive of intracellular edema. The latter feature was always accompanied by vascularization and intense edema of the underlying capsular fibrous connective tissue stroma. Numerous down-growth of epithelium into the connective tissue and/or intraluminal extensions composed of anastomosing cords of proliferating cells, forming plexiform pattern, were the prominent feature, in some cases. In one case, the primary lesion disclosed only a unicystic type of growth. However, as the clinical history revealed, it was a genuine plexiform unicystic type of ameloblastoma. Correspondingly, the cystic lining epithelium of the plexiform pattern of epithelial proliferation hardly, if any, revealed the criteria for ameloblastoma (Fig. 18).

Cytokeratin: Monospecific antibody to laminin delineated foci of sharp
TABLE 3

IMMUNE LABELING INDICES FOR SOLID AMELOBLASTOMA

FOLLICULAR VARIANT

<table>
<thead>
<tr>
<th>CELL TYPE</th>
<th>CON A</th>
<th>RCA</th>
<th>WGA</th>
<th>FN</th>
<th>LN</th>
<th>KER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral Columnar</td>
<td>+</td>
<td>+/−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Central:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Spindle type</td>
<td>+</td>
<td>−/+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>2) Squamous metaplasia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Basement Membrane:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) In proximity with dense fibrous stroma</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>2) In proximity with ABC or hemorrhage</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>3) Stromal infiltration by inflammatory cells</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>
and an evenly distributed reaction product at epithelial-connective tissue interface. However, laminin, at some sites was found to be discontinuous or absent at or around the tip of the epithelial ridges extending into the underlying connective tissue.

Fibronectin: In unicystic and plexiform unicystic ameloblastoma fibronectin distribution followed the same character cited earlier for solid, follicular variant (Fig. 19).

Con A: The reaction pattern for the cells having a spindle appearance were positive either around the nuclei or on their plasma membrane. In foci of squamous differentiation, cytoplasm of the cells were intensely positive for Con A (Fig. 20).

RCA-I: The epithelium lining the cystic cavity are plexiform epithelial proliferations, were positive for RCA-I.

WGA: This lectin intensely reacted with cytoplasm of the mature keratinocytes around the lumen, or those flattened cells found in plexiform strands of epithelium. However, the spindle cells were to a lesser extent reactive on their surface.

Cytokeratin: In trypsin pretreated sections keratin in squamous and flattened epithelial cells stained positively. However, basaloid cells in aggregates and proliferating nodules were occasionally negative.
<table>
<thead>
<tr>
<th>CELL TYPE</th>
<th>CON A</th>
<th>RCA</th>
<th>WGA</th>
<th>FN</th>
<th>LN</th>
<th>KER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle and basal cells</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
</tr>
<tr>
<td>Flattened cells or sq. metaplasia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Basement membrane:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) In proximity with dense</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>fibrous stroma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) In proximity with massive</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>vascularization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Stromal infilt. by inflam-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>matory cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. **FIBRONECTIN:**

The distribution pattern of this macromolecule in developing dental organ at different stages of maturation was studied. Using immunoperoxidase techniques and monoclonal antibody, fibronectin decorates within the substances of the epithelial-mesenchymal basement membrane at histodifferentiation - the Bell Stage. This feature is also accompanied by the diffuse deposit of fibronectin in the mesenchymal dental papilla. Also, there is evidence of fibronectin accumulation within the stellate reticulum. Such features, whenever present, suggests an absorption phenomenon of plasma from the blood circulation.

Calcification of the tooth germ modifies the preexisting feature in that mesenchymal dental papilla undergoes maturation, which is associated by a reduction in staining intensity of fibronectin. Highly differentiated secretory odontoblasts are absolutely non-reactive. The predentin matrix, however, is mildly positive, indicative of incorporation of fibronectin into the stromal matrix, similar to uncalcified bone matrix (osteoid). In contrast, ectodermally-derived enamel organ does not manifest fibronectin by the immunoperoxidase within its organic matrix. These findings are consistent with previous immunofluorescence studies of the enamel organ in different species, Thesleff et al (1979, 1981), and Lesot et al (1981). Plexiform ameloblastomas embedded within loose fibrous connective tissue, as well as those follicular variants embedded within dense, exudate-free
connective tissue stroma both were found negative for fibronectin.

In vitro studies, however, display ectoderm or ectodermal-derivatives during their formative phase to incorporate fibronectin within their basement membrane in order to secure the presumed morphology of the tissues, Brownell et al (1981), Osman et al (1981). The disappearance and loss of fibronectin from the face of the basement membrane in subsequent stages of differentiation is a known chronologic functional event, Madri et al (1980).

The majority of ameloblastomas of different classes reveal fibronectin significantly reactive in their basement membranes by using specific antiserum immunohistochemically. However, in such instances where fibronectin is present, the neoplasm invariably is associated with inflammation, massive exudation, extravasation or co-existing aneurysmal bone cyst. In such instances, the basement membrane positivity, therefore, is attributed to the blood borne plasma.

It is appreciated that fibronectin bears peculiar affinity for a number of basement membrane constituents, among which type IV collagen, proteoglycan and glycosaminoglycan should be mentioned, Yamada, et al (1978)

In this context, it is significant to mention that ameloblastic fibromas reveal unequivocal positive reaction for fibronectin at the epithelial-mesenchymal interface and is suggestive of a function attributed to the mesenchyme in elaboration of the glycoprotein. Accordingly, it is reasonable to apply the above explanation made for solid and multicystic ameloblastomas to unicystic and plexiform unicystic variants of ameloblastomas, as well.

B. LAMININ

Within the sections of solid follicular or plexiform ameloblastomas laminin decorates the basement membrane in a continuous linear fashion. Also, in developing human tooth, prior to organic matrix deposition, the basement membrane is reactive for laminin. Earlier studies of tooth development also have shown that, at the time of reciprocal interaction and predentin deposition, laminin is absent along with the other constituents of the basement membrane, Kallenbach (1971), Slavkin et al (1976).
It is interesting to note that the cystic lining epithelium in the unicystic ameloblastomas is found, in some instances, to be non-reactive to laminin, suggestive of failure of synthesis or degradation.

Malignancy also is known to modify the expressional pattern of laminin. The normal distribution pattern of laminin, as exemplified in this study, when compared to an ameloblastic carcinoma (unpublished) laminin was found uneven in distribution and frequently absent.

Laminin, while serving as a biological marker of differentiation, may also be used as an indicator product for the differential diagnosis of ameloblastomas. Additionally, such aberrations in synthesis or incorporation of laminin within the integrity of the basement membrane for the other kinds of cancers also has been reported, Timpl, (1979), Albrechtsen, et al (1981) and Hayman, et al (1981).

C. KERATIN:

In the normal developing tooth, keratin is found in all enamel epithelial cell layers, including secretory ameloblasts.

In the ameloblastomas, solid or cystic variants, keratin is not detected in some basaloid-appearing cells, aggregating in proliferating nodules. Relevant to the possible immaturity of ameloblastomatous neoplastic cells, it is suggestive that the cellular expression of keratin polypeptides may correlate with their state of differentiation, in analogy with basal cell carcinomas, Loning, et al (1980).

D. LECTINS:

The lectins, RCA-I, Con -A, and WGA are useful in the study of
ameloblastomas. The distribution patterns of glycoconjugate receptors or specific free sugars on cell membrane and in the cytoplasm, pertaining to these lectins, in normal developing tooth and morphologically different ameloblastomas suggest the following proposed models:

1) Con-A: Con A has the specificity for α-mannose and α-glucose, which displays two distinct patterns of decoration. The developing tooth germ of all stages of differentiation reveals the cells within proliferative compartment. This includes those, yet, capable of division and multiplication, morphologically characterized as cuboidal, polyhedral cells, columnar preameloblasts, and some flattened cells within the outer enamel epithelium. All such cells express mannose and glucose on their cytoplasmic membranes. Whereas, in the secretory ameloblasts Con-A intensely decorates their cytoplasmic mannose and glucose.

Cell membrane binding reaction to mannose and glucose by Con A in cells of this nature in the developing tooth is similar to the previous findings on EDTA-dissociated embryonal cells when agglutinated by Con-A, Moscona (1971).

In ameloblastomas, in general, proliferative and less differentiated, dental lamina-like cells, and ameloblastomatous columnar cells reveal the same features of their analogous normal counterparts. Squamous metaplasia, however, is associated with intense cytoplasmic reaction. These observations suggest that at earlier, embryonic or proliferative, stages, Con-A reaction with mannose and glucose lies on cell surface. However, with maturation the cytoplasm of the odontogenic epithelia becomes intensely reactive.
RCA I:

Studies on sections of normal developing tooth, and the follicular, plexiform, unicystic and plexiform unicystic ameloblastomas reveal binding differences by galactosyl residues by RCA-I, among different cell populations in each given section. Cuboidal and polyhedral cells of the inner enamel epithelium, proliferative compartment, close to the cervical loop area with high nuclear/cytoplasmic ratio are found non-reactive. Cells with similar morphology identifiable within the outer enamel epithelium are non-reactive, suggestive of the absence from failure of synthesis or low concentration.

Earlier studies with lectins, Nicolson et al (1973), on non-epithelial tissues, show a cell-contact dependent increase of membrane D-galactopyranosyl-like residues in normal murine fibroblasts, but not in the transformed phenotype. Subsequent findings of the RCA-ligand complex on cell surfaces of normal flattened keratinocytes in the upper prickle and granular layer, well differentiated keratinocytes in squamous cell carcinomas, as well as squamous metaplasia in follicular ameloblastomas, all are in perfect analogy with the suggestion of a disorder of galactosyl residues synthesis or loss as indicated by RCA-I, Dabelsteen et al (1978 a,b). Nicolson, et al (1972) found decreased agglutinability of dissociated malignant cells by RCA-I.

Recent studies on formalin fixed tissue materials disclose further clues about RCA-I receptors. It has been shown in squamous cell carcinoma and healing epithelial wounds, that some population of cells are less reactive with RCA-I, Dabelsteen, et al (1978 b), Graem (1982). This event
has been attributed to an increase physiologic or pathologic motility of the cells.

RCA-I binding profiles in variants of ameloblastomas and the developing tooth germ are in agreement with the above explanation. On this context, some cuboidal or polyhedral cells with high nuclear cytoplasmic ratio and negative for RCA are virtually from the same compartment of the cells previously found reactive for Con A. RCA-I binding receptor intensity on metaplastic squamous cells in ameloblastomas and all flattened keratinocytes, in general, may, on the other hand, be interpreted as a maturation event on cell surfaces.

Applying immunofluorescence techniques, RCA-binding receptors were studies in solid ameloblastomas. Vedtofte et al (1981) found preameloblastic columnar cells to be negative. In contrast, in this study preameloblasts react positively on their cell surfaces. This may indicate a greater sensitivity of the immunoperoxidase technique over that of immunofluorescence.

WGA

By the immunoperoxidase techniques and using biotinylated wheat germ agglutinin, the lectin decorates B-D-N-acetylglucosamine and sialic acid. In this study it was found WGA to react with preameloblasts on their surface. Squamous differentiation in follicular ameloblastoma was found to be positive intracellularly, the pattern more or less similar to that of Con A. This observation is also consistent with ultrastructural localization of WGA binding sites on mouse myocardium, Gros et al (1982).

WGA bound-fluorescent isothiocyanate-labeled sections of
ameloblastomas, Vedtofte, et al (1981), demonstrated barely positive re-
action of preameloblasts. However, by the immunoperoxidase technique ap-
plied in this study, these populations of cells are frankly reactive to
WGA.

DISTURBED TISSUE INTERACTIONS: THEIR POSSIBLE IMPACT ON MORPHOGEN-
ETIC MALDEVELOPMENT.

In epithelial-mesenchymal interacting systems, e.g. exocrine glands,
embryonic tubuli and glomeruli, lower respiratory system, and feather-
forming organs, organization of the interacting tissues and their subse-
quent differentiation require participant heterotopic tissues to be "aware"
of each other. This enables them to communicate in a developmentally sig-
nificant way, Saxen (1977). In all epithelial-mesenchymal interacting
circumstances, the eventual informative and transmissible signal substances
act on the genome of the target cells. The precise mode of action of these
"organizers" and the current state of knowledge about their molecular func-
tion is fragmentary and, to a greater extent, is speculative, Lash, et al
(1977). However, the principles of these interdisciplinary orders between
heterotopic cells have been known for decades under the epithet "induction."

Among the many definitions for inductions, Brill's contention is the
most succint one in the English literature. Accordingly, induction im-
plies "evocative action of one tissue over another." Embryonic induction
operates when one population of cells act upon the other to induce changes
in the behavioristic biologic character of the latter, and the outcome is
known as determination.
Theoretically, two forms of inductive influences have been discussed: directive influences imply when an embryonic cells yet possessing more than one developmental option and the choice between the options is affected, largely, by the extracellular factors. Permissive influences, on the other hand, refer to a level of development in which the cells have become committed to a certain pathway, but yet require an exogenous stimulus to express their ultimate phenotypic character, Saxen, (1977). These two types of influences may alternate during progressive differentiation and gradual restriction of the number of developmental options of the already determined embryonal tissue, Gluecksohn-Wealsch (1977).

The determination relevant to the developing dental organ may be defined as those transcriptional and translational events at final steps of differentiation in which all other somatic possibilities are excluded, and the only stable option, i.e., "amelogenetic repertoire" remains available to the regulatory instructive effects of the subjacent mesenchyme. Developmental programming and sequential ameloblastic maturation, thereafter, operates through transduction effect of the signals, receiving and translation of such signals into a specific phenotypic product resulting in morphologic differentiation.

Experiments on developing limbs and investigations on disturbed interaction and teratogenesis in this system have led to some interesting speculations. There are some sorts of analogies between the developing tooth and limb in terms of sequences in morphogenetic tissue interaction and functional reciprocity. In the latter system, it is known under the circumstances where the inductor's contact is disrupted, or mesenchymal
blastoma when absent or the inducer when defective, there are abnormalities in apical ectodermal ridge (AER) development. Hypothetically, AER acts under a maintenance factor (MF) secreted by the mesenchymal blastoma. Derangement in secretion of this mesenchymal product led to the oversized and elongated AER. According to this model, maintenance factor also acted on the process of programmed ectodermal degeneration and setting of the "death clock" in ectodermal cells via its interactive effect Saunders, et al (1966).

Similarly, defective ectodermal responses to mesenchymal inductive influences, and also, faults in homotypic interactions may affect differentiation and morphogenesis, Sawyer (1972). In this connection, it has been suggested that altered adhesive property of the cell surface may interfere with the aggregative capacity and, thereby, normal morphogenetic movement of the cells, Sawyer (1972).

For odontogenic anomalies, it is a permissive influence of ectomesenchyme upon the already committed cells of dental lamina. By today's available knowledge, molecular specification of these inductive influences are not yet practical. Monoclonal antibodies with their innate property selectively make fine distinctions between minute molecular constituents of the cells and their products, however, by virtue of their unique potential, are promising to the investigator of this field.

AMELOBLASTOMA: PATHOGENETIC CONCEPT

Ameloblastoma may be defined as a developmental pathological entity, characterized by a unique cellular phenotype indicative of its embryonal
origin. The neoplasm is derived from the predetermined and proliferative cells of dental lamina in its embryonal phase. The cells of dental lamina are proliferating actively and continuously for a minimum of at least four years in man, prior to the formation of third molar tooth bud, Manley (1954), Moe et al (1961) and Spouge (1967).

Ameloblastomas, phenotypically speaking, do not meet the criteria for a genuine adult life neoplasm in several respects, Willis (1962), Bolande (1967, 1979). Adult neoplasms, firstly, benign or malignant, are induced as a regressive mutation of the cells within mature tissues, whereas, ameloblastomas arise from the embryonal laminal tissue and sustain invasive properties of their progenitor cells of dental lamina without any change. Secondly, adult neoplasms, despite ameloblastomas, may arise in cells retaining their ability to multiply and regenerate in adulthood. The dental lamina does not possess such a function.

Ameloblastomas, however, display pathogenetic characters as follows:
1) They arise in a primitive and transient tissue of dental lamina.
2) They are virtually restricted to the specific organ of the jaw.
3) They are composed of predetermined cells for a specific type of histogenesis.
4) The growth is composed of odontogenic cells retaining many features of a more primitive stage of their development. These features all together are shared by the entity called embryomas, Willis (1962).

It is already appreciated that higher incidences of proliferative growth arise in developmental vestiges while being kept in the body as
embryonal rests or heterotopias, Willis (1962). Examples include: craniopharyngiomas, developing from the epithelial vestigia of Rathke's pouch; chondromas, where notochord remnants are persisting within the nucleus pulposus after birth; papillary adenocarcinoma of cervix, uterus, and ovary in young girls as a developmental anomaly in mesonephric ducts or Wolffian ducts; carcinomas, though rare, arising in thyroglossal duct or branchial cleft cyst; high incidence of seminoma in undecendent testes, cryptorchidism, Willis (1962) Warkany (1971).

For the ameloblastomas, being in analogy with some of the above mentioned entities, the challenge for proof or disproof of their embryonic concept and malfunctioning heterotypic tissue interaction are in prospect and mandate further studies.

Aneurysmal bone cysts (ABC) secondary to a ameloblastomas: ABC is one of the most rapidly growing, solitary non-neoplastic and expansile lesion of the bone, Mira (1980). The true nature of the anomaly since its original description has been controversial, Jaffe, et al (1942), Lichtenstein (1950). It has been variably thought to be neoplastic, localized reaction to a precursor lesion or, alternatively, a developmental error, Sherman et al (1957).

In co-existence with the other bony lesions, non-ossifying fibroma, giant cell tumor, giant cell granuloma, osteoblastoma, chondroblastoma, fibromyxoma, solitary bone cyst, fibrous dysplasia and low grade osteosarcoma have been included, Levy at al (1975), Buraczewski, et al (1971), Biesecker, et al (1970), Mira (1980). These others have observed an incidence of 32% to 60% of ABC's associated with other lesions.
Theories on the evolution and pathogenesis of ABC now follow the contention that ABC is essentially an arteriovenous anomaly engrafted upon a precursor benign or low grade malignant lesion. These precursor benign or low grade malignant lesions have that potential to initiate an intra-osseous arteriovenous malformation (fistula) and, subsequently, via hemodynamic forces within the induced cavernous spaces create further resorption of the adjacent bone. These events would manifest, histologically, as blood filled labyrinths bounded by the non-endothelial lined fibrous trabeculae, reparative osteoid and/or woven bone, and reactive multinucleated giant cells.

In this study, secondary ABC was discovered in intimate association with 4 (16%) of multicystic, follicular type, of ameloblastomas, (Fig. 21). With respect to ameloblastomas, the phenomenon has generally been referred under: adamantinohemangioma, Aisenberg (1950), hemangioblastoma, Grover, et al (1971), hemangioameloblastoma, Pindborg, et al (1971), and vascular ameloblastoma, Lucas (1975). No conclusive explanation for cause and effect relationship of coexisting ameloblastomas with aneurysmal bone cyst is known in the literature. It is believed that the blood-filled spaces result from dilation of vessels caused by stromal degeneration, Pindborg et al (1971), Lucas (1975).

In follicular ameloblastomas, the process of central cell necrosis, cystic changes of the follicles, and their continuous expansile growth may exert mechanical pressure upon the stromal vasculature. These hemodynamic alterations, due to local destructive effect of ameloblastomas, may cause formation of ABC within the vicinity of the precursor neoplastic growth.
In considering modality of treatment, finding ABC associated with precursor ameloblastoma is significant in that the anomalous vascular communication has also to be eliminated, Ruiter et al (1976).
SUMMARY

Immunohistochemical studies using the peroxidase-antiperoxidase method employed to specific antibodies for laminin and fibronectin within the basement membrane and for the three plant lectins WGA, Con A and RCA-I for the cell surface oligosaccharide receptors on 42 cases of ameloblastomas were performed.

Based upon the classification resulting from recent findings on the ameloblastomas, the neoplasms were tentatively categorized into: 1) follicular solid and multicystic, 2) plexiform-solid, and 3) unicystic and plexiform unicystic variants.

Sections of normal developing teeth at different stages of maturation, also, were used as normal control.

For the lectins, ameloblastomas of plexiform class, under the same conditions, compared to the other variants, were found to be very weakly reactive to RCA-I.

Con-A and WGA showed more or less similar reaction patterns as RCA-I. These were found, predominantly, on the periphery, cytoplasmic membranes of those less mature population of cells in different compartments. Whereas, terminally differentiated cells in both neoplastic proliferation and normal developing teeth were reactive intracellularly.

Laminin was an ubiquitous product found in the basement membrane of ameloblastomas of different classes, as well as that of the developing tooth. Odontoblasts producing a predentin matrix secretion, however,
revealed the complete loss of the basement membrane including laminin.

Fibronectin was found to be invariably absent in the basement membrane zone of ameloblastomas of the different classes. Additionally, however, in the presence of edema, inflammation or hemorrhage, fibronectin was easily detectable in the basement membrane. The latter observation was interpreted as an absorption phenomenon from the blood circulatory source.
CONCLUSION

Product identification of ameloblastomas in terms of their lectin and glycoprotein-antisera binding reactivities disclose subtle clues for advancing a biologically, as well as prognostically, more valuable classification of this group of odontogenic neoplasms. Despite the currently used groupings of the neoplasm, WHO 1971, here, the differences between the two classes of plexiform and the follicular variants are substantial and characteristic for each class, morphologically, and in terms of their behavior.

Innate to such retrospective studies of odontogenic tissues are the question of the suitability of formalin fixed-paraffin embedded materials. Such disadvantage, naturally, provides some limitations in degrees of scientific accuracy. Therefore, similar studies on fresh tissues of ameloblastomas are mandate to be performed.

There are several aspects on the pathogenesis of ameloblastomas and many basic biologic questions raised in this study which, yet, have remained unanswered. The findings reported in this work need to be supported through new and additional scientific experimentations.

Finally, the issue of uncoordinated and invasive growth relevant to ameloblastomas should be thoroughly revisited, in order to determine whether such invasive and proliferative character is simply reflective of the innate capacity of dental lamina or to a true neoplastic clonal proliferation.

60
Cahn, L.S.: The dentigerous cyst is a potential adamantinoma. Dental Cosmos 75: 889-893, 1933.

Figure 1. Normal developing tooth at histodifferentiation, Bell, stage. Note four structurally distinct layers within enamel organ epithelium (PAP staining for RCA-I, X125)
Figure 2. Normal developing tooth at late stage of histodifferentiation. Note degradation of the basement membrane and odontoblastic protoplasmic extensions (arrow) toward ameloblasts as the earliest evidence of epithelial mesenchymal cell-to-cell contact. H.E. stain (X250)
Figure 3. Normal developing tooth at late crownal stage. Note odontoblastic protoplasmic extensions across the calcified matrix, IPO-Con A (X400)
Figure 4. Normal developing tooth at early bell stage. Note linear deposition of laminin at the epithelial-mesenchymal basement membrane interface, (IPO X 250)
Figure 5. Normal developing tooth at the stage of calcified matrix deposition. Laminin is absent at the site of calcified enamel matrix deposition (IPO X 250)
Figure 6. Normal developing tooth at bell stage. Fibronectin was undetectable at the site of basement membrane epithelial-mesenchymal interface (IPO X 250)
Figure 7. Normal developing tooth at the stage of matrix deposition. Note enamel epithelium in all four layers are reactive for Keratin (IPO X 400)
Figure 8. Normal developing tooth at the stage of calcified matrix deposition. Secretory odontoblasts are intensely reactive to Con A (PAP, X 400)
Figure 9. Plexiform Ameloblastoma (H&E, X 250)
Figure 10. Plexiform ameloblastoma: Note linear deposit of laminin at the site of epithelial-mesenchymal interface and blood vessels (IPO, X 400)
Figure 11. Plexiform ameloblastoma: receptor sites for RCA are undetectable for this group of ameloblastomas (PAP - X 250)
Figure 12. Follicular ameloblastoma (H & E X 400)
Figure 13. Follicular ameloblastoma. Keratin antibody is reactive with neoplastic cells. (IPO, X 250)
Figure 14. Follicular ameloblastoma. Laminin antibody is reactive at the basement membrane zone. (IPO X 250)
Figure 15. Follicular ameloblastoma with acanthomatous changes. Fibronectin appears to be undetectable at the site of basement membrane (IP0 X 250)
Figure 16. Follicular ameloblastoma with acanthomatous changes. RCA-I being sharply delineated intercellularly (PAP X 250)
Figure 17. Follicular ameloblastoma. The lectin WGA is reactive within cytoplasm (PAP X 250)
Figure 18. Unicystic ameloblastoma (H&E X 250)
Figure 19. Plexiform unicystic ameloblastoma. Monospecific antibody to fibronectin is reactive at the site of basement membrane. Note inflammatory infiltrates. (PAP X 400)
Figure 20. Plexiform unicystic ameloblastoma. The lectin Con A is positively reactive within the cytoplasm of the cells. (PAP X 400)
Figure 21. Coexisting follicular ameloblastoma and aneurysmal bone cyst (H & E X 125)
APPROVAL SHEET

The thesis submitted by Hasan Nadimi has been read and approved by the following committee:

Dr. Patrick Toto, Director
Professor, Gen/Oral Pathology, Loyola

Dr. Anthony Gargiulo
Professor, Periodontics Loyola

Dr. Hal McReynolds
Associate Professor, Histology, Loyola

The final copies have been examined by the director of the thesis and the signature which appears below verifies the fact that any necessary changes have been incorporated and that the thesis is now given final approval by the Committee with reference to content and form.

The thesis is therefore accepted in partial fulfillment of the requirements for the degree of Master of Science in Oral Biology.

June 14, 1985
Date

Patrick Toto
Director's Signature