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FORWARD 

Using unrepresentative sampling techniques to study unusual, or 

rare populations creates statistical problems that reduces the likeli­

hood of obtaining statistically significant results. This paper refers 

to these problems as exclusion bias. The term "exclusion" is used to 

connote that potential observations from the population are filtered or 

selected into or excluded from the study sample. 

This paper presents a description of how exclusion bias is related 

to statistical power. Decision Theory is used to develop a statistical 

model of exclusion bias and several computer simulations are presented 

that demonstrate how exclusion bias reduces statistical power. These 

simulations can be used by researchers to determine the statistical 

power of their studies just as Cohen's (1977) power tables are used to 

assess the sample size required to obtain a certain degree of statisti­

cal power. Ways in which exclusion bias may have produced misleading 

study findings for research on the relationship between Type A behavior 

and arteriosclerosis, and techniques for assessing and controlling for 

exclusion bias, are discussed. 
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INTRODUCTION 

Using unrepresentative sampling techniques to study unusual, or 

rare populations creates statistical problems that reduces the likeli­

hood of obtaining statistically significant results. This paper refers 

to these problems as exclusion bias. Exclusion bias is present whenever 

the probability of selecting certain observations for study is associ­

ated with the predictor and/or the criterion. The term "exclusion" is 

used to connote that potential observations from the population are fil­

tered or selected into or excluded from the study sample. The purpose 

of this paper is to present a detailed quantitative description of the 

influence exclusion bias can have on statistical power. This paper 

attempts to demonstrate that exclusion bias is an important and often 

overlooked problem in many areas of research. 

Exclusion bias is often present in applied research where the pur­

pose is to find predictors of differences between normal and unusual, 

rare, or abnormal individuals. For example, personnel psychologists 

have constructed psychological tests to identify the most qualified 

individuals for a particular job from an applicant pool. For research 

on depression, the focus has been on finding differences (e.g., cogni­

tions and/or biochemical abnormalities) between depressives and non-de­

pressives. Similarly, health psychology researchers have attempted to 

find predictors (e.g., research on stress, Type A behavior, and hardi­

ness) of disease. 

1 
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In many cases, these applied researchers have used convenience or 

purposive sampling techniques because of practical and/or ethical prob­

lems associated with using representative sampling techniques. For 

example, to conduct studies using representative sampling techniques to 

determine the degree of statistical association between job performance 

and personnel selection tests is very difficult. In most cases, hiring 

all available job applicants in the general population would be too 

costly. Similarly, college students have commonly been used for 

research on the etiology of depression because of the inconvenience 

associated with obtaining large samples of individuals that are actually 

depressed. 

A common result of studies that use unrepresentative sampling 

techniques is that extreme scores on the variables of interest are 

over-represented in the study sample. In the case where depressed indi­

viduals are sampled from outpatient clinics, most individuals would 

receive high scores on a measure of depression and few low scores would 

be present in the study sample. Conversely, most depression scores 

would be in the low range if a college student population was examined. 

Similarly, only a selected few individuals with exceptional qualifica­

tions are hired for most jobs. Therefore, studies on the predictors of 

job performance only use individuals with high job performance test 

scores. 
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This paper addresses a number of issues concerned with obtaining 

statistical significance from studies mainly sample individuals with 

extreme scores on the study variables. Some researchers have referred 

to the problem of selecting study samples from a narrow range of test 

values as a problem of restriction of range (viz. Pearson, 1903). One 

section of this paper discusses previous work on range restrict'ion and 

its implications for exclusion bias. However, this paper demonstrates 

that sampling from extreme ranges of values has different consequences 

than if the researcher selects observations from the middle of the popu­

lation. Therefore, statistical parameters in addition to a reduction in 

variance determine whether a study finds statistical significance. 

Thus, the term exclusion bias as opposed to restriction of range is used 

so as not to suggest that the only effect of sampling from extreme 

ranges is a reduction in variance. 

Cohen (1977) has illustrated how sample size influences statisti­

cal power. This paper uses an approach similar to Cohen's (1977) to 

illustrate how other statistical parameters influenced by exclusion bias 

can reduce statistical power. One section of this paper defines exclu­

sion bias in terms of Decision Theory (DT). Several computer simula­

tions are used to illustrate the extent to which various statistical 

parameters influenced by exclusion bias can reduce statistical associa-

tions between study variables. These simulations can be used by 

researchers to determine the degree to which their study's statistical 
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power has been influenced by exclusion bias just as Cohen's work is used 

to assess the sample size needed for a given degree of statistical 

power. 

In addition, this paper discusses ways that exclusion bias can 

confuse or obfuscate research findings and attempts to illustrate why 

exclusion bias is an important and often underated problem in many areas 

of research. Another section of this paper discusses methods of con­

trolling for problems of exclusion bias. Finally, a summary section 

discusses the implications of controlling exclusion bias for future 

research endeavors. 



TYPE A BEHAVIOR AND ARTERIOSCLEROSIS 

To ease exposition, the statistical definitions and computer simu­

lations of bias are presented in the context of a research problem. The 

research problem chosen for this paper is determining whether Type A 

behavior is related to coronary arteriosclerosis. This section of this 

paper is an introduction to relevant theory and research on the rela­

tionship between Type A behavior and arteriosclerosis. 

The idea that Type A behavior might be predictive of heart disease 

has been given some notice because traditional risk factors predict only 

about half of the new cases of coronary heart disease each year (Jen­

kins, 1976). Type A behavior (Friedman & Rosenman, 1974) has been 

defined as "any person who is aggressively involved in a chronic, inces­

sant struggle to achieve more and more in less and less time, and if 

required to do so against the opposing efforts of other things and per­

sons." Type A behavior is considered to have three core components: (a) 

hostility/aggressiveness, (b) a sense of time urgency, and (c) competi­

tive/ achievement striving (Glass, 1977). Type A behavior has been 

described as a set of behaviors elicited by a challenging or threatening 

environment (Matthews, 1982). In addition, Type A's exhibit behaviors 

that would appear as typical reactions to continuous stress whether 

stressers are present in the environment or not. Type A's may actually 

seek out challenging and threatening environments that produce stress 

(Smith & Anderson, 1986). 

5 
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One theory of how Type A behavior induces heart disease suggests 

that Type A's exhibit elevated blood pressure in response to challenge. 

The increased lability in blood pressure results in micro fine tears in 

the endothelial lining and/or smooth muscle wall of the artery. When 

tears in the endothelial lining and/or smooth muscle wall heal, athero­

matous plaque remains in the walls of the arteries. Presumably, 

repeated vessel injury leads to a build up of plaque. This build up of 

plaque is referred to as arteriosclerosis. Presumably, when severe 

arteriosclerosis leads to complete occlusion of one or more of the coro­

nary arteries a heart attack occurs. Severe occlusions of at least one 

artery are present in over 90% of all heart attacks (cited in Pearson, 

1984, pp. 142). For a more detailed summary of this theory of how Type 

A behavior produces heart disease, see Williams (1979). 

A diagnosis of arteriosclerosis requires validation through a sur­

gical procedure known as a coronary angiography (Conti, 1977). The pro­

cedure involves inserting a catheter into an artery in the patient's arm 

or thigh. Next, the catheter is advanced until reaching the heart where 

contrast medium is injected into the heart and monitored by fluoroscopy. 

The presence of fibrous plaque in the heart appears as a narrowing of 

the diameter of the image of the dye column appearing on the fluoro­

scope. The actual measurement of the dye column is often quite subjec-

tive. Pearson (1983) reports that angiographies agree with actual 

degree of occlusion determined by autopsy from 61 to 84 percent of the 
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time. In general, angiographies tend to underestimate the degree of 

occlusion present. 

After correction for traditional risk factors (i.e., age, blood 

pressure, smoking, and serum cholesterol) Type A 1 s have a risk 1. 97 

times greater than Type B1 s (Brand, Rosenman, Sholtz, & Friedman, 1976) 

for having a first myocardial infarcation (MI) and are five times more 

likely to experience a second MI. Brand (1977) found evidence that tra­

ditional risk factors serve as moderator variables. In other words, the 

presence of Type A behavior characteristics combined with other risk 

factors multiplies one 1 s risk for coronary heart disease. For a more 

thorough review of research on Type A behavior, see Matthews and Haynes 

(1986). 

The most common measures of Type A behavior have been the Jenkins 

Activity Survey (JAS; Jenkins, Zyzanski, & Rosenman, 1971) and the 

Structured Interview (SI; Rosenman, 1978). The JAS is a 52-item ques­

tionnaire that yields four subscale scores and an overall score. Scor­

ing is based on optimal weights generated from a discriminant function 

analysis that predicted SI classification from the white collar men that 

participated in the Western Collaborative Group Study (Rosenman, Fried­

man, Straus, Wurm, Kositchek, Hahn, & Werthessen, 1964). 

The SI classifies individuals into one of five categories: A1, the 

subject strongly indicates the Type A personality; A2, displays some 

Type A characteristics; X, displays some Type A and some Type B quali-
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ties: B3, displays some Type B characteristics, B4 displays mostly Type 

B characteristics. The SI was developed in a middle class nondiseased 

male population by content validity judgments made by Rosenman and 

Friedman (see Rosenman, 1978). 



STATISTICAL MODELS OF THE SELECTION PROCESS 

Previous Research on Range Restriction 

Research on the problem of range restriction is directly related 

to the problem of exclusion bias because exclusion bias produces range 

restriction. That is, when researchers select observations that repre­

sent an extreme range of scores on a predictor and/or criterion a 

restriction in range and thus variance, occurs. 

The problem of range restriction was first identified in personnel 

selection research when employers began to use psychological tests to 

select employees. Researchers became interested in knowing how well 

psychological test scores predicted job performance. When researchers 

began to compare scores from the group of individuals that were hired on 

the basis of their psychological test scores, they found low correla­

tions between job performance and their test scores. 

The first published report of the problem of restriction of range 

was by Thorndike (1947). For pilot trainees whose psychological test 

scores indicated they would be successful, the correlation between a 

composite aptitude test score and a measure of pilot trainee performance 

was a most unimpressive .18. For a measure of complex motor coordina-

tion, the correlation with job preformance was -.03. However, the 

Thorndike (1947) study was different from previous studies. The test 

scores were not used to select applicants. Instead, all applicants to 

9 
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the training program were admitted. The correlation between all appli-

cants and measures of pilot performance was . 64 while the correlation 

between pilot performance and the complex motor skills test was .40. 

These correlations suggested that the psychological tests were highly 

predictive of pilot performance. 

Thorndike (1949) and many others have since attributed the rather 

striking differences in correlations between the selected and unselected 

groups as due to "range restriction." That is, they attributed the 

reduction in correlation between performance and predictive test score 

for the selected group to the restriction in variance in test scores. 

In the Thorndike study, only pilot trainees with test scores in the top 

10% were predicted to be successful. Therefore, only a narrow range of 

test scores were present in the selected group. 

Pearson (1903) presented a formula to correct for the range 

restriction problem. The correction for range restriction when selec-

tion is based solely on the predictor variable is 

S /s r 
X X xy 

R = --------------------------xy 
2 - l)r ) xy 

where R = the estimate of the correlation in the population, S xy x 

= the standard deviation of the predictor variable in the population, s 
X 

= the standard deviation of the predictor variable in the sample, and 

r = the sample correlation. The key parameter in the formula that is 
xy 

difficult to estimate from most studies is S . The formula illustrates 
X 
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that range restriction formulas only correct for a reduction in vari-

ance. 

Range restriction formulas have been applied to a number of areas 

of research including evaluating college entrance examinations (Linn & 

Dunbar, 1982) and determining the monetary impact of valid selection 

procedures (Schmidt, Hunter, McKenzie, & Muldrow, 1979). Gulliksen 

(1950) developed formulas for correcting for range restriction on the 

criterion variable and multiple predictor variables. These correction 

formulas are endorsed by the American Psychological Association (1980) 

and are presented without criticism in many standard works on measure­

ment and testing (e.g., Ghiselli, Campbell, & Yedeck, 1981). 

However, there is another body of work that criticizes the use of 

these formulas. These criticisms are concerned with the plausibility of 

the various assumptions underlying these correction formulas. In par-

ticular, this literature suggests that correction formulas will be the 

least accurate when the study sample includes mostly extreme scores. 

Unfortunately, this is the situation that occurs most frequently in 

applied research. The review of the literature below suggests range 

restriction formulas do not take into account the effects that sampling 

from extreme ranges has on the sample correlation. 

Range restriction formulas are based upon six basic assumptions: 

(a) linearity, (b) homoscedasticity, (c) symmetry in the shapes of the 

distributions of scores for the predictor and criterion variables, (d) 
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that either the predictor or the criterion completely determines how 

observations are selected into the study sample, (e) the population var­

iance is known, and (f) the variables are continuous. First, the cor­

rection formulas assume that the relationship between the predictor and 

criterion variable is linear and homoscedastic. Greener and Osburn 1 s 

(1979, 1980) computer simulation studies found that the correction for­

mulas are somewhat robust to violations of the assumption of homoscedas­

ticity, but are sensitive to violations of nonlinearity. 

A study by Lee and Foley (1986) demonstrated what Lord and Novick 

(1968) suggested that because violations of homoscedasticity and linear­

ity are likely to occur in the tails of bivariate test data, range 

restriction formulas are least appropriate when applied to extreme score 

groups. Lee and Foley found that samples taken from extreme scores on 

an armed services vocational battery test did not accurately reflect the 

population validity coefficient. 

Although range restriction formulas do not depend on the variables 

being normally distributed (Rydberg, 1963), Brewer and Hill 1 s (1969) 

computer simulation study found that these formulas were sensitive to a 

lack of symmetry in the distributions of the criterion for different 

values of a dichotomous predictor variable. Asymmetry occurs in many 

areas of research. For example, asymmetry is likely to occur when apti­

tude tests are used that are too difficult for examinees, or when 

employment tests are designed to optimally discriminate at a point where 
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most examinees will fail the test (Brewer & Hill, 1969). In particular, 

asymmetry is likely to be present when scores from an extreme range are 

selected. Brewer and Hill recommended not using range correction formu­

las when the difference in skewness for different values of the pre­

dictor is greater than one. 

Another finding of Brewer and Hill (1969) was that a large part of 

the range of the population sample must be included in the study sample 

for the range correction formula to be accurate. For example, the cor­

rected correlation coefficient can vary from . 26 to . 77 if the study 

sample includes 37% of the original sample and the correlation in the 

population is .51. In most cases in applied research, one would suspect 

that the study sample would represent less than 37% of the sample. The 

study sample in the aforementioned study by Thorndike (1947) represented 

only 10% of the total population. Thus, corrected correlation coeffi­

cients may be very inaccurate for study samples found in applied 

research. 

Another assumption of restriction of range formulas is that com­

plete truncation occurs at some point on the test. Olson and Becker 

(1983) have pointed out that in most cases incomplete truncation occurs. 

With incomplete truncation, observations are present at any point along 

the range of test values but the probability that an observation is 

"lost" from the sample is associated with the observation's values on 

the predictor and/or criterion variable. 
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For a variety of reasons, incomplete truncation is more likely 

than complete truncation in most areas of applied research. For exam­

ple, voluntary quits and promotions in personnel selection research are 

likely to lead to some incomplete truncation. Moreover, unmeasured 

variables such as personality, race, or personal finances may be corre­

lated with the selection process and so may produce incomplete trunca­

tion. For example, the admission procedures of the health organization, 

the willingness of the patient to seek medical attention, and the nature 

of the disease influence who becomes part of a medical research study. 

Becker and Olson (1983) have demonstrated that using range 

restriction formulas in samples that violate correction formulas' 

assumptions of complete truncation can lead to seriously misleading 

results. A range formula that assumes incomplete truncation on the pre­

dictor and criterion was given by Thorndike (1949, p. 174). Unfortu­

nately, this formula requires knowledge of the variable or variables 

that completely determine the selection process. O·lson and Becker 

(1983) discuss a more practical procedure for estimating the population 

parameters. This procedure is discussed in further detail in the sec­

tion of this paper that discusses ways to control for problems associ­

ated with exclusion bias. 

Another problem associated with range restriction formulas is that 

they assume the population that one corrects for in restriction of range 

formulas is a constant. In personnel selection research, the population 
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of job applicants can vary with extent of advertising, characteristics 

of the job preview, changes in numbers and quality of available appli­

cants due to demographic economic factors etc. . . These factors may 

affect the population so that the population variance may vary widely 

for different times and circumstances. Thus, assuming that the popula-

tion variance is a constant may be unreasonable. In fact, correction 

formula estimates may reflect nothing more than changes in the variance 

of available job applicants rather than unbiased estimates of the valid­

ity of the tests. The true practical validity of a test is concerned 

with whether the test can discriminate between individuals that will 

perform successfully and those that will not. That is, there must be 

some score or cutoff point on the test that will accurately divide 

applicants into two groups; those hired and those not hired. The cutoff 

point on the test should divide the applicants so that the number it 

indicates should be hired is approximately equal to the number that the 

company wants to hire. Thus, the practical validity of a test is not 

related to the variance of test scores in the population but the loca­

tion of the cutoff score. 

A final assumption of range restriction formulas is that the pre­

dictor and criterion are continuous variables. The majority of studies 

concerning range restriction have come from the industrial psychology 

literature where the correlational approach is dominant. There is a 

problem with assuming that study variables are continuous. The correla-



16 

tiona! approach is not very informative in many applied research situ­

ations. That is, predictor variables in most applied research are used 

to make dichotomous as opposed to continuous decisions such as to hire 

or not to hire. An approach that identifies optimal decision points 

based on scores on the predictor variable is needed. The value of the 

dichotomous variable approach is that one can easily see how predictor 

variables can be used to make decisions (i.e., hire or not hire, is the 

patient diseased or not diseased). Thus, the approach taken in medical 

research has been to treat variables as dichotomous. Moreover, the 

assumptions of constant test validity and homoscedasticity which are 

often difficult to meet with medical variables are not required. 

Perhaps the approach that medical researchers have taken to 

addressing problems associated with exclusion bias is quite different 

from the range restriction approach taken by industrial psychologists 

because medical researchers treat variables as dichotomous. For exam­

ple, Kleinbaum, Morgenstern, and Kupper (1981) demonstrated the effects 

that different probabilities of diseased versus nondiseased subjects in 

the study population can have on the direction of statistical associa-

tions found. The advantage of the dichotomous approach is that it 

becomes very easy to see how different probabilities in extreme score 

groups affect the results of studies. 

A problem with the dichotomous variable approach is that research­

ers typically assume that the cutpoint chosen is optimal. The first 
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computer simulation presented in this paper challenges this assumption 

and demonstrates that choosing a suboptimal cutpoint can severely reduce 

statistical associations. 

This paper uses a DT approach to describe the sample selection 

process. The DT approach treats the predictor variable as a dichotomous 

variable so that assumptions of constant test validity and homoscedas­

ticity are not required. The criterion variable is treated as a contin­

uous variable so as to be able to assess problems associated with using 

a suboptimal cutpoint. Thus, the DT approach can be used to assess 

effects of different proportions of diseased versus nondiseased popula-

tions being included in the sample. In addition, problems associated 

with suboptimal cutpoints can be assessed. Thus, the DT approach has 

several advantages over treating all study variables as either correla­

tional or dichotomous. 

The approach taken in this paper differs in two other respects 

from the literature on range restriction. The focus of the range 

restriction literature has been on obtaining an accurate estimation of 

the correlation between a predictor and a criterion in the general popu­

lation. In contrast, this paper is concerned with whether studies of 

selected populations can find statistically significant results. Thus, 

where the range restriction literature has focused on correcting the 

study sample correlation, this paper attempts to show how the degree of 

statistical association (as measured by the X2 statistic) is influenced 

by exclusion bias. 
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Finally, the degree of extremity of scores is ignored in range 

correction formulas. This paper demonstrates that by using DT research­

ers more accurately estimate the degree to which extremity of the range 

of scores in the study sample reduces statistical significance. 

Decision Theory 

Terminology. The purpose of this section is to define explicitly 

how exclusion bias reduces statistical significance. To this end, a DT 

model of exclusion bias is presented. An understanding of a DT model of 

exclusion bias requires a knowledge of the terminology and assumptions 

of DT. Therefore, the next few paragraphs of this paper are a brief 

introduction to DT; for a more detailed discussion, see Raiffa (1968). 

DT uses several terms to describe the statistical association 

between a predictor variable and a criterion. A predictor variable is 

presumed to be the cause of the criterion variable. For research on 

Type A behavior and arteriosclerosis, Type A behavior is the predictor 

variable and arteriosclerosis is the criterion. Units of analysis are 

referred to as observations. For research on Type A behavior and arter­

iosclerosis, observations are patients that have undergone a coronary 

angiography. A sample is the collection of all observations included in 

a single research study. 

The attribute or set of attributes that a measurement instrument 

uses to classify observations for a criterion variable are referred to 

as decision criteria. For example, the decision criteria is a physi-
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cian's judgment of arteriosclerosis based upon the results of a coronary 

angiography. A decision rule is used to categorize all observations 

into two and only two mutually exclusive and exhaustive groups. A cut­

point is defined as the value on a measuring instrument associated with 

the decision rule that is used to categorize observations. Scores that 

are lower than the value of the cutpoint on the measuring instrument are 

designated as negatives, and higher values than the value associated 

with the cutpoint are designated as positives. For example, the cut­

point for the JAS would be the score where all who received higher 

scores would be considered Type A's and all who received a lower score 

would be considered Type B's. 

All possible categories that result from using decision rules on 

the predictor and criterion are given in the contingency table illus­

trated in Figure 1. Actual negatives are observations that the decision 

criterion indicates are negative. In Figure 1, actual negatives are 

located in the two squares on the left-hand side of the graph. Actual 

positives are observations that the criterion indicates are positive. 

Actual positive observations are represented in the two squares on the 

right-hand side of Figure 1. For research on Type A behavior and arter­

iosclerosis, actual negatives would be all subjects that the physician 

decides do not have arteriosclerosis and actual positives would be all 

observations the physician labels as possessing arteriosclerosis. Pre­

dicted positives are observations that the predictor variable indicates 
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A Decision Theory Contingency Table. 
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should be actual positives. Predicted negatives are observations that 

the predictor variable indicates should be actual negatives. For 

research on Type A behavior and arteriosclerosis, predicted positives 

would be all individuals classified as Type A's and predicted negatives 

would be Type B's. 

True positives are observations that the decision rule of the pre­

dictor variable indicates are positive and are actual positives. That 

is, true positives are observations where the predictor variable cor­

rectly predicts the observations are actual positives. For research on 

Type A behavior and arteriosclerosis, the true positive cell in Figure 1 

would include all patients that are Type A's and that have arterioscle­

rosis. True negatives are observations where the decision rule cor­

rectly indicates are actual negatives. For research on Type A behavior 

and arteriosclerosis, true negatives would be all observations where the 

physician decides the patient does not have arteriosclerosis and the JAS 

score indicates the patient is a Type B. False positives are observa­

tions where the decision rule of the predictor variable indicates the 

observations are positive when the criterion variable indicates the 

observations are actual negatives. The percentage of false positives 

among all actual negatives is commonly referred to as the probability of 

making a Type I error. False positives would be all observations where 

the physician decides the patient does not have arteriosclerosis but the 

patient's JAS score indicates they are Type A's. False negatives are 
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observations where the predictor variable indicates the observations are 

negative although the observations are actual positives. The percentage 

of false negatives from among all actual negatives is associated with 

the risk of making a Type II error. False negatives would be all obser­

vations where the physician decides the patient has arteriosclerosis but 

the patient's JAS score indicates they are Type B's. 

Parameters that determine statistical significance. The extent to 

which the predictor variable is able to accurately classify observations 

as actual positives or negatives can be evaluated by a x2 statistic. 

The formula given at the bottom of Figure 1 indicates that the size of 

x2 depends upon two parameters (a) sample size, and (b) the ratio of 

false positives and false negatives to true positives and true neg­

atives. Therefore, larger X2 's are more likely to occur with larger 

sample sizes and/or fewer false positives and negatives. 

The most well known statistical parameter that can reduce the 

power of a study is a small sample size. However, parameters other than 

sample size can influence statistical power. In this respect, the con­

tingency table in Figure 1 is misleading because three additional param­

eters that influence the size of X2 have been implicitly defined a 

priori within the contingency table. Figure 2 can be used to illustrate 

how these other parameters influence the x2 statistic. Figure 2 repre­

sents all the information in the contingency table and includes addi­

tional information about several other parameters that can affect the 
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size of X2 including: (a) the magnitude of the standardized difference 

between the mean score of actual positives and negatives on the pre­

dictor variable--~', (b) the decision rule that defines the location of 

the cutpoint--£, and (c) the extremity and range of scores on the cri­

terion variable. 

Figure 2 illustrates the case where the criterion variable is con­

tinuous and the predictor variable is dichotomous. The x-axis in Figure 

2 represents the continuum of values associated with the criterion vari­

able. The x-axis could represent various degrees of coronary occlusion 

among patients that have been administered an angiography. The y-axis 

represents the frequency of occurrence of values on the criterion vari­

able for a corresponding value on the x-axis. For example, the height 

of the curves in Figure 2 could indicate the number of patients associ­

ated with various degrees of arteriosclerosis indicated by different 

values on the x-axis. The normal distribution on the left hand side of 

Figure 2 represents the frequency of various degrees of arteriosclerosis 

for all Type B's in the sample. The distribution on the right hand side 

of Figure 2 represents all predicted positives Type A's. 

Figure 2 displays several parameters that influence the size of 

x2 • First, the symbol~' is the standardized distance between the means 

of the distributions of actual positives and negatives and is an indica­

tor of the extent to which actual positives can be distinguished from 

actual negatives by the predictor variable. For research on Type A 
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behavior and arteriosclerosis, d' would be the standardized difference 

between the mean arterial disease score for all patients that are Type 

B's and the mean arterial disease score for all Type A patients. As d' 

becomes large, the proportion of false negatives and positives dimin­

ishes and the statistical association between the predictor and cri­

terion variables becomes stronger. Thus, larger values of~· indicate a 

strong association between the predictor and criterion while smaller d's 

are associated with smaller x2 s. 

The size of the X2 statistic is often interpreted to be an esti­

mate of the degree of statistical association between two variables but 

x2 is a sample biased statistic. That is, the magnitude of X2 is, in 

part, based upon sample size and, in part, based on d'. In contrast, d' 

is not dependent upon sample size and, therefore, is a purer measure of 

statistical association uninfluenced by sample size (Glass, 1976). It 

should be noted that d' is also a direct function of the tetrachoric r 

(Davidoff & Goheen, 1953). Thus, d' is directly related to theE used 

in range restriction formulas. 

Another feature revealed by Figure 2 is the location of the deci­

sion rule. The vertical line labeled c is the "cutpoint" associated 

with the decision rule that determines whether values on the criterion 

are categorized as actual positives or negatives. Scores on the left 

side of c are observations the decision rule indicates are actual neg­

atives on the criterion--nondiseased. Observations on the right hand 
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side of c are observations the decision rule indicates are actual posi­

tives--a diagnosis of arteriosclerosis. 

In Figure 2 observations that are Type B's are predicted negatives 

and Type A's are predicted positives. Type B's located to the right of 

£ are false positives. Observations located to the left of c that are 

Type A's are false negatives. Type A's located to the right of c are 

true positives and Type B's located to the left of c are true negatives. 

In Figure 2, the numbered markings on the x-axis indicate the dis­

tance in standard deviations from the optimal cutpoint that is located 

at the point on the x-axis designated by a zero. Note that the optimal 

cutpoint that maximizes the value of the X2 statistic is located where 

the distributions of Type A's and Type B's intersect (Cureton, 1957). 

The point is located where an equal number of Type A's and Type B's are 

present on the x-axis and is the zero point on the x-axis in Figure 2. 

Cohen (1977) has presented a series of power tables that allow 

researchers to determine when the sample size is too small to detect 

important statistical relationships. Parameters other than sample size 

have not been subjected to analyses to determine their influence on sta­

tistical power. One purpose of this paper is to present some computer 

simulations that illustrate how other parameters (i.e., the location of 

the cutpoint and the numbers of predicted positives versus negatives 

included in the sample) influence statistical significance. These simu­

lations can be used by researchers to determine the statistical power of 
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their studies just as Cohen 's work has been used to assess the sample 

size associated with a given degree of statistical power. 

Many other characteristics of a sample can influence the statisti­

cal power between variables including, degree of error variance, and 

unequal variances and/or asymmetrical distributions for different levels 

of the predictor variable. These problems are not discussed in this 

paper because exclusion bias is not hypothesized to influence these 

parameters. What is discussed is the degree to which parameters influ­

enced by exclusion bias can reduce statistical significance. 

A Statistical Model of Exclusion Bias 

Previous work with DT has used symbols and terminology that 

describe a single sample or universe. The purpose of this paper is to 

describe how statistical associations change for different subsamples of 

a population. Therefore, additional symbols and terminology are 

required to describe the relationship between a sample and the popula­

tion from which the sample was obtained. 

Figure 3 illustrates a statistical model of exclusion bias. Fig­

ure 3 includes the same parameters illustrated in Figure 2. As in Fig­

ure 2, the x-axis in Figure 3 represents various values on the criterion 

variable and the y-axis indicates the frequency of observations associ­

ated with each value on the criterion variable. In addition, Figure 3 

includes some other parameters not illustrated in Figure 2. The shaded 

portion in Figure 3 represents a subsample selected from the population. 
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A Statistical Model of Exclusion Bias. 
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The two lines drawn around the shaded portion of Figure 3 indicate 

the range of values that have been excluded from the study sample. 

Shaded observations between the two lines are considered to be observa­

tions that have been included in the study sample. The symbol c' asso­

ciated with each of the lines represents the location of an exclusion 

rule. A cutoff point or c' is defined as an endpoint associated with a 

value on the criterion variable where observations are either included 

or excluded from the study sample. All observations outside the shaded 

portion of the figure represent observations excluded from the study. 

For research on Type A behavior and arteriosclerosis, extreme 

scores may have been excluded at the c' located on the right hand side 

of the figure because no person could survive total occlusion of all 

his/her coronary arteries. Such patients would be excluded from the 

study a priori because they would have already become ill and so would 

have either received treatment or previously expired. Another exclusion 

rule is located on the left hand side of Figure 3. This c' could indi­

cate where patients with little coronary occlusion were excluded. Not 

surprisingly, some people would never be in a study involving an angiog­

raphy because they are healthy. 

This paper refers to the exclusion rule on the left hand side of 

the figure as the negative exclusion rule because mostly actual neg­

atives are excluded from the sample. Similarly, exclusion rules located 

to the right of the study sample are referred to as positive exclusion 
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rules because actual positive observations are mostly excluded. As 

decision rules determine the proportion of false positives and negatives 

within a sample, exclusion rules determine the extent of exclusion bias 

within a sample. 



cmtPUTER SHfULATIONS OF EXCLUSION BIAS 

This paper proposes that there are three ways that exclusion bias 

can influence the statistical power of a study. First, exclusion bias 

may lead researchers to use suboptimal decision rules. In many cases, 

researchers use a median split or some other arbitrary means to deter­

mine the location of the decision rule. Moreover, even when the optimal 

cutpoint is found in one sample other researchers may find that the same 

cutpoint is suboptimal in their sample. A computer simulation is used 

to demonstrate the degree to which using a less than optimal cutpoint 

can severely reduce a study's statistical power. 

Second, this paper demonstrates that exclusion bias can produce 

unequal numbers of observations for different values on either the pre-

dieter or criterion variable. The more extreme the range of values 

included in the sample, the more disproportionate the numbers of posi­

tives and negatives will be. This paper refers to this type of problem 

as unequal ratios of positives and negatives. Unequal numbers of obser­

vations on either the criterion or predictor variable can reduce x2 • A 

computer simulation is used to demonstrate that when total sample size 

is held constant, statistical power decreases as the ratio of predicted 

and/or actual positives to negatives becomes more disproportionate. 

A related problem is that observations surrounding the optimal 

cutpoint may be excluded from the sample if a disproportionate ratio of 

31 
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positives to negatives is due to the degree of extremity of scores 

included in the sample. This paper demonstrates that obtaining statis­

tical significance is impossible when the optimal decision rule is 

excluded from the study sample. 

A third way that exclusion bias reduces the power of a study is by 

restricting the range of values on the criterion and predictor vari-

ables. In Figure 3, the distance between the negative and positive 

exclusion rules is an indicator of the degree of variance reduction in 

the sample. The relative importance of restriction of range as compared 

with other parameters that reduce statistical significance is discussed. 

In this section, several computer simulations are used to illus­

trate how X2 is influenced by suboptimal decision rules, unequal ratio 

of positives and negatives, range restriction, and combinations of all 

three. The computer simulations presented in this paper were produced 

by SAS/GRAPH (1984) software. The computer programs that produced the 

figures are given in Appendix A. 

Computer simulations are used in this paper to investigate hypoth­

eses concerning exclusion bias. A computer simulation approach was used 

because one purpose of this paper is to demonstrate just how much of an 

effect exclusion bias can have on statistical significance. The results 

of data from a single study would be less convincing because the results 

could be attributed to idiosyncrasies in the data. Moreover, the com­

puter simulation approach allows researchers to assess the degree to 
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which various statistical parameters (e.g., sample size, d', sample var-

iance, and unequal numbers of positives and negatives) influence statis-

tical significance across a wide range of possible conditions. Thus, 

the simulations can illustrate under what conditions exclusion bias has 

important consequences for empirical researchers. 

Assumptions of the Computer Simulations 

Before discussing the computer simulations, the assumptions under-

lying these simulations are presented. The computer simulations are 

based upon four assumptions. First, the simulations assume that distri-

butions of values on the criterion for predicted negatives and positives 

have the same degree of skewness. This assumption was made because 

asymmetrical distributions alter tests of significance. One purpose of 

this paper is to demonstrate that all other things being equal, exclu-

sion bias will reduce statistical significance. Exclusion bias is not 

hypothesized to influence the degree of skewness between different lev-

els of the predictor variable. Therefore, the computer simulations 

assume that the frequency distributions of predicted positives and neg-

atives are symmetrically distributed across the range of values on the 

criterion variable. The variables were assumed to be a normally dis-

tributed to ease the computational formulas used by the computer simula-

tion program. 

One would expect that the distribution of various degrees of 

arteriosclerosis would be highly positively skewed because most individ-
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uals in the general population would have very little arteriosclerosis 

present. However, normalizing transformations are usually used before 

data analysis takes place for such medical variables (see Steel & Ter­

rie, 1980). 

A second assumption of the simulations is that the variances of 

the distributions of actual positives and negatives are equal. Rorer et 

al. (1966a) demonstrated that unequal variances change the location of 

optimal cutpoints and can alter the potential accuracy of a predictor 

variable. The variances of Type A and B scores for various degrees of 

coronary arteriosclerosis is not known because researchers have opera-

tionalized arteriosclerosis as a discrete variable. Thus, somewhat 

arbitrarily, the simulations assume that the variances of predicted 

positives and negatives are equal. 

To ease interpretation of the simulations the variances of pre­

dicted positives and negatives for the simulations were set to equal to 

1.0 so that the simulations can be reported as if the results are being 

reported in standardized scores. For example, the extremity of ranges 

included in various samples can then be expressed as differences in the 

number of standard deviations from the population mean. 

A third assumption for most of the simulations is that the numbers 

of predicted and/or actual positives and negatives in the sample are 

equal. Unequal numbers of positives and negatives change the location 

of the optimal cutpoints (Rorer et al., 1966a). The degree to which 
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unequal numbers of positives and negatives can influence statistical 

significance is discussed later. 

A fourth assumption of the simulations is that statistical signif­

icance is only obtained when there is a less than 1 in 20 twenty chance 

of committing a Type I error and the value of committing a Type II error 

is dependent upon sample size. The assumptions were made because that 

is the accepted standard for tests of significance in research studies. 

For this paper, the X2 statistic is used to assess statistical signifi­

cance. In applied research, Type II errors may be more serious. For 

example, Type II errors would be associated with the JAS suggesting that 

patients do not have arteriosclerosis when they actually do. Rorer, 

Hoffman, and Hsieh (1966b) have demonstrated how to locate optimal cut­

points when Type I and Type II errors are to be weighted in some other 

fashion. 

Figure 2 represents the distributional characteristics of pre­

dicted negatives and positives based upon the assumptions used in this 

paper. That is, the distributions of predicted positives and negatives 

are normally distributed and have equal sample sizes with variances 

equal to one. 

Suboptimal Decision Rules 

Reasons for the use of suboptimal decision rules. DT can be used 

to evaluate problems associated with the use of suboptimal decision 

rules. DT has been used in medical research and is the basis for the 
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well known medical concepts of sensitivity and specificity (Metz, 1978) 

and has occasionally been used to identify the optimal decision rules 

for diagnostic tests (Swets Pickett, Whitehead, Getty, Schnur, Swets, & 

Freeman, 1979). DT also provides the basis for clinical decision analy-

sis (Weinstein & Fineberg, 1980). Nevertheless, suboptimal decision 

rules continue to be used in many areas of medical research (Christen­

sen-Szlankski, Diehr, Bushyhead, & Wood, 1978). 

Assuming that false positives and negatives are to be considered 

equally costly, the point that maximizes the value of the X2 statistic 

is located where the distribution of predicted positives and negatives 

intersect. Although Rorer et al. (1966a) have recommended that 

researchers use optimal cutpoints in their samples, most researchers 

continue to choose their cutpoints arbitrarily. The use of suboptimal 

decision rules is a serious problem in many areas of research. For 

example, an important part of medical research is concerned with evalu­

ating the efficacy of diagnostic tests. Typically, the actual cutoff 

point used to determine which individuals are diseased and which are 

nondiseased is chosen somewhat arbitrarily. Therefore, the researcher 

may falsely conclude a diagnostic test is of little value when a subop­

timal cutoff point is used. However, the same test may have had great 

diagnostic value if the appropriate cutoff point had been chosen. 

Many researchers appear to choose their study sample cutpoint by 

using the point that equally divides study sample observations into 
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equal numbers of actual positives and negatives. However, this practice 

may lead to the use of suboptimal decision rules. For example, if the 

sample illustrated in Figure 3 selected a cutpoint using a median split 

the point chosen would be located -1 standard deviations from the opti­

mal cutpoint. 

Note that the proportions of false negatives, false positives, 

true negatives and true positives changes as £ changes. For example, 

when c is one standard deviation to the left so that c is located above 

the -1 mark on the x-axis in Figure 3, the figure has many more false 

positives and slightly fewer false negatives. Overall there are more 

false positives and negatives so the value of X2 is less. Because X2 is 

determined by the frequency of false positives and negatives (see for­

mula displayed in Figure 1), as c varies so will x2 • Thus, researchers 

that arbitrarily use a median split may be reducing the statistical 

power of their studies. 

Note that the location of the optimal cutpoint does not change if 

some observations are excluded from the study sample. Therefore, the 

optimal cutpoint is located at the same point in Figure 3 regardless of 

where the exclusion rules are located. 

Nevertheless, even when a cutpoint is used that finds statisti­

cally significant results, the cutpoint may not be appropriate for 

another study sample. Thus, other researchers may not be able to repli­

cate a previous study's significant results. The best way to describe 
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how the location of optimal cutpoints can vary from study sample to 

study sample is to use a hypothetical example. Suppose a physician were 

to conduct coronary angiographies on the same group of men at three 

points in time: Once when the men were all 40 years old, once when they 

were 50 years old, and again when they were 60 years old. Also, suppose 

that all of these men have a family history of heart disease, are heavy 

smokers and drinkers, and have high cholesterol diets. In other words, 

the hypothetical study sample includes a group of men that are at high 

risk to develop arteriosclerosis and so most eventually will. Therefore 

by the time the physician conducts coronary angiographies at 60 years of 

age, most of them have at least one artery that is more than 50% 

occluded. Also assume that half of the men are Type A's and the other 

half are Type B's. 

The series of graphs in Figure 4 represent the hypothetical study. 

As with previous figures, the x-axis in Figure 4 represents values on 

the criterion variable (e.g., percentage of occlusion in most severely 

diseased artery) and the y-axis indicates the frequency of observations 

for any given value on the x-axis. The line labeled c' indicates where 

the patients' disease is severe enough that death or medical 

intervention (e.g., a coronary bypass operation) has occurred. Thus, 

observations to the right of c' are excluded from the study. The 

diagram located at the top of Figure 4 labeled '(a)' represents the 

sample of men when they are forty year old, the middle diagram labeled 
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A Hypothetical Longitudinal Study of Arteriosclerosis and Type A 
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'(b)' represents the sample when the men are fifty years old, and the 

bottom diagram labeled '(c)' represents the sample when the men are 

sixty years old. As one might expect, as the age of the men increases 

the proportion of men that have arteriosclerosis increases. In Figure 

4, the distributions of Type A's are located to the right of the Type B 

distributions because Type A's should develop arteriosclerosis sooner 

than Type B 's if Type A behavior really does cause heart disease. 

Therefore, Type A's in Figure 4 are illustrated as developing 

arteriosclerosis at earlier ages than Type B's. 

Note that in the graphs in Figure 4 that as the range of values in 

the sample changes as the men become older, the location of the optimal 

cutpoint also changes. Thus, the location of the optimal cutpoint may 

vary from sample to sample depending upon the range of values included 

in the sample for other variables (i.e., age) that are correlated with 

either the predictor or criterion. Thus, researchers that use cutpoints 

that were optimal in one sample may not be optimal for another sample. 

For example, researchers in Type A research may find a statistically 

significant result in one sample but not in another because the ages of 

the patients in the sample may differ. 

Rorer et al. (1966a) have demonstrated how researchers can 

determine the optimal cutpoints for their samples; however, Rorer et al. 

did not demonstrate how much of a problem using less than optimal 

cutpoints can be. The purpose of the first two computer simulations is 
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to illustrate the degree to which using a suboptimal cutpoint can 

influence the statistical significance of a study. 

The relationship between x2 and c. The purpose of the first two 

simulations is to demonstrate the degree or extent of influence that c 

has on x2 • For the first simulation, a computer program was written 

that calculated x2 values given a value of c and a value of d'. Values 

of d' were varied from .3 to .7 by intervals of .1 and values of c were 

varied from 2. 5 standard deviations below to 2. 5 standard deviations 

above the optimal cutpoint at intervals of . 2 standard deviations. 

Values of d' were varied from . 3 to . 7 because this range of values 

represents an average range of values found in social science research 

(Glass, 1976). The actual size of d' in Type A behavior and 

arteriosclerosis research is not known. Previous researchers have not 

reported their ~'s and these would probably be biased estimates anyway 

because of the presence of exclusion bias. 

The range of values of c was varied from -2.5 to 2.5 standard 

deviations because this is the range of values that the X2 statistic is 

an accurate indicator of statistical significance. For values outside 

the -2.4 to 2.4 range the cell counts are likely to become less than 5 

per cell and the X2 statistic is no longer an appropriate indicator of 

statistical significance. 

For the first simulation, sample size was held at a constant value 

of 200. The value of 200 was chosen because the sample size is slightly 
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larger than what most studies on the relationship between Type A 

behavior and arteriosclerosis have used. A slightly larger value was 

chosen to demonstrate that using a less than optimal cutpoint can have 

an effect on x2 even when the researcher uses a large sample size. 

Table 1 gives a list of the sample sizes used in previous Type A 

behavior and arteriosclerosis research that used the SI to assess Type A 

behavior. The list of published studies in Appendix B was obtained from 

a computer assisted search of the past ten years of Psychological 

Abstracts and ~ledicus Index. The search revealed 27 published articles 

and one dissertation on the relationship between Type A behavior and 

coronary arteriosclerosis that used the results of a coronary 

angiography as a criterion (see Appendix B). The fifth column from the 

right hand side of Table 1 gives the sample sizes of previous studies. 

On the average, most studies have used sample sizes between 100 and 150. 

For the first simulation, no truncation of the study sample was 

assumed because the purpose was to demonstrate the influence of 

suboptimal cutpoints on X2 and not other factors influenced by exclusion 

bias that reduce statistical significance (i.e., a reduction in 

variance). 

Figure 5 illustrates the results of the computer simulation. The 

y-axis indicates the size of X2 while the x-axis indicates the location 

of c. For research on Type A behavior and arteriosclerosis £ would be 

the cutpoint where the physician decides that enough coronary occlusion 
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Table 1 

Results of Angiography Studies that Used the SI. 

AUTHOR %A's Scoring % Age N p< %A's %B's xz 
method ill range .05 ill ill 

Blumenthal I I 
et al. (1978) 60 TOTCI 45 15-691 142 + I 60 23 17.29 

I I 
Krantz et al. I I 
(1981) 75 TOTCI 59 30-671 83 - I 61 52 .001 

I I 
Blumenthal I I 
et al. (1985) 65 TOTCI 73 20-711 281 - I 

I I 
Dembroski et I I 
al. (1985a) 63 TOTCI 69 I 132 - I 

I I 
Williams et I I 
al. (1980) 75 >75% 70 I 424 + I 71 56 7.35 

I I 
Arrowood et I 
al. (1982) 61 >75% 75 - I 

I 
Frank et al. I 
(1978) 73 >50% 80 29-65 147 +I 87 59 12.22 

I 
Krantz et al. I 
(1981) 79 >50% 78 130-67 83 - I 73 76 .34 

I I 
Schwertner et I I 
al. (1982) * 42 >50% I 50 + I 52 14 

I I 
Scherwitz et I I 
al. (1983) 70 >50% >85 135-69 52 - I 

I I 
Dimsdale et I I 
al. (1979a,b, I I 
1980) 64 >50% 84 118-70 103 - I 85 84 .02 

TOTCI = Total Coronary Index 
*=This study used only Type A1's and excluded A2's from analysis. 
+ = Study found a statistical significant association. 
- = Study did not obtain statistical significance. 
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is present to conclude that the patient has arteriosclerosis. The 

straight horizontal line that runs across the middle of Figure 5 

indicates where X2 values reach statistical significance. The x2 values 

that appear above the line are statistically significant and values 

below the line are nonsignificant. 

Each point on the curved lines in Figure 5 corresponds to the 

single x2 value on the y-axis that is associated with a£ on the x-axis. 

Each of the curves is associated with a single value of d'. The value 

of d' associated with each curve is indicated on the legend located at 

the bottom of Figure 5. Thus, each curved line represents relationships 

between X2 s and £S for a given~·. For research on Type A behavior and 

arteriosclerosis ~· would represent the difference between the average 

degree of coronary occlusion in Type A's and B's. The curves that are 

located towards the top part of the graph are curves associated with 

larger ~' s. The curves with larger d's are located above the curves 

with smaller d's because larger ~' s increase the size of the X2 

statistic and so are generally associated with larger X2 values. Note 

for a d' of .3 it is virtually impossible to obtain statistical 

significance and that the larger the value of d' the greater the range 

of values that are statistically significant. 

Note that £S located further away from the optimal cutpoint (the 

zero point) are associated with smaller x2 s. This occurs regardless of 

whether the cutpoint is located to the left or the right of the optimal 
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point. Note that, statistical significance is never achieved if the 

cutpoint is located two standard deviations or more from the optimal £· 

For approximately half of the values presented in Figure 5 statistical 

significance was not obtained. The slope of each curve indicates the 

degree of influence that the location of the cutpoint has on statistical 

significance. Note that the decrease in statistical significance is 

more dramatic for larger £ 1 s. For example, when d 1 is equal to .6, the 

x2 statistic decreases approximately 50 percent per standard deviation 

increase in distance from the optimal cutpoint. Thus, for larger £ 1 s 

extremely deviant cutpoints are still not statistically significant. 

Therefore, even for very strong relationships between a predictor and 

criterion variable the use of a highly deviant cutpoint can insure 

nonsignificant findings. 

The influence of sample size on the relationship between c and x2 • 

Another simulation was conducted to demonstrate the effects of 

suboptimal decision rules for different sample sizes. For this 

simulation, d 1 was fixed at a constant value of .5. For most areas of 

research a d 1 of . 5 would be considered a moderately large effect 

(Glass, 1976). Sample size was varied from 250 to 50 by intervals of 50 

and the cutpoint was varied from -2.0 to 2.0. 

Figure 6 illustrates the results of the simulation. As in Figure 

5, the x-axis in Figure 6 indicates the location of the cutpoint and the 

y-axis indicates the value of x2 • Again, the values above the 
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horizontal line that runs across the middle of the figure are 

statistically significant and values below the line are nonsignificant. 

Each curved line in Figure 6 represents a different sample size. The 

sample size associated with each line is indicated on the legend below 

the figure. Figure 6 is identical in all respects to Figure 5 except 

that while each curved line in Figure 5 was related to a different~'. 

Each curved line in Figure 6 is associated with a different sample size. 

In Figure 6, the five curves each correspond to a different sample 

size. The curve associated with the highest X2 values corresponds to a 

sample size of 250, the next highest curve represents a sample size of 

200, and so forth. As one would expect, Figure 6 illustrates that for 

smaller sample sizes fewer values are significant. For sample sizes 

less than 150, statistical significance is never obtained. 

As in Figure 5, the steepness of the curves indicates the 

influence that the location of c has on x2
• For cutpoints located 

further from the optimal cutpoint statistical significance decreases. 

Statistical significance is never obtained for cutpoints that are more 

than 1. 5 standard deviations from the optimal cutpoint. The range of 

statistically significant values increases for greater samples. Thus, 

for a sample size of 250 the range of statistically significant values 

covers 3 standard deviations. For a sample size of 150, the range of 

statistically significant values is 1. 6 standard deviations. However, 

the curves become steeper for greater sample sizes. Thus, the range of 
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statistically significant values does not increase rapidly for larger 

sample sizes. The results of the simulation suggest that even for large 

sample sizes a researcher that uses extremely deviant cutpoints may not 

obtain statistically significant results. 

Implications for research on Type A behavior and arteriosclerosis. 

It is difficult to say how much the actual results of research on Type A 

behavior and arteriosclerosis have been affected by suboptimal decision 

rules because the actual d's, and cs found in Type A research may be - -

much different. However, the simulations do show that across a wide 

range of circumstances suboptimal decision rules can dramatically reduce 

statistical significance. There is some reason to suspect that 

suboptimal decision rules have been used because research on 

arteriosclerosis has used many different decision rules. Some 

researchers have only considered patients diseased if 50% stenosis of 

one artery is present while others have used 75% as the decision rule 

(see Table 1). Blumenthal, Williams, Kong, Schanburg, and Thompson 

(1978) used a Total Coronary Index (TOTCI) score where each major 

coronary artery vessel is rated on a four point scale. Young, 

Barboriak, Anderson, and Hoffman (1980) used a coronary occlusion score. 

Each of the three major coronary arteries are given a score from 0 to 

100% occlusion. The left main coronary artery score is weighted double 

because it is larger and more important than the other coronary 

arteries. 
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Despite the abundance of decision rules, previous researchers have 

not reported using any systematic techniques to locate optimal 

cutpoints. For example, the 50% occlusion score was chosen because 

patients with one artery that is 50% occluded usually report that they 

only experience angina after physical exertion (Pearson, 1983). 

Moreover, research has demonstrated that physicians in clinical practice 

use different decision criteria for determining what patients have 

arteriosclerosis (Hlatky et al., 1983). 

Similarly, studies to determine the optimal cutpoints for measures 

of Type A behavior have not been conducted and researchers have not 

produced any evidence suggesting that the cutpoints obtained from the 

Western Collaborative Group Study (Rosenman et al., 1964) were optimal 

for that sample or for any other. 

In sum, the wide variety of cutpoints used by researchers without 

any reports of attempting to locate optimal cutpoints suggests that 

suboptimal cutpoints have been used. The simulations presented suggest 

that under many circumstances using suboptimal cutpoints can lead to 

nonsignificant findings even when a strong relationship between a 

predictor and a criterion does exist. Thus, the negative findings found 

in many of the studies reported in Table 1 may be due to the use of 

suboptimal decision rules. 
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Unequal Numbers of Positives and Negatives 

Unequal numbers of predicted positives and negatives. Another 

factor that can influence statistical significance is the degree to 

which the study sample includes more or less actual positives than 

negatives. Similarly, the degree to which the study sample includes 

more or less predicted positives than negatives also influences 

statistical significance. 

The Taylor-Russell Tables (Taylor & Russell, 1939) give the 

percentage of true positives for a particular ratio of actual positives 

to negatives and a given size of the correlation between the predictor 

and criterion variable. This is useful to determine the practical value 

of a test. In personnel research, the number of true positives 

represents job candidates that would be successful and have passed the 

test. The Taylor-Russell tables can be used to determine the increase 

in the percentage of successful employees a valid selection would 

produce. Although the table may be useful to applied researchers, it is 

of limited usefulness when the researcher is interested in determining 

statistical power. The following simulations illustrate the influence 

that different ratios of positives and negatives can have on statistical 

significance. 
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The relationship between the ratio of predicted positives to 

negatives and X2 for various d's. The decision rule used by the 

predictor variable to classify observations as Type A's and B's is not 

presented in Figure 2 or any of the other figures. However, the effects 

of the decision rule can be inferred because the location of the 

decision rule influences the ratio of positives and negatives in the 

study sample. For example, the distribution of predicted positives 

would be smaller and the distribution of Type B's would be larger if the 

cutpoint on the JAS is raised so that only very high scores are 

cons ide red to be Type A's . Conversely, fewer observations would be 

diagnosed as being Type B 's and more as Type A's if the cutpoint was 

lowered. 

The extent to which the study sample includes more or less 

positives than negatives can be expressed as a ratio. For this paper, 

the ratio of positives divided by negatives is used. The extent to 

which a ratio of positives to negatives departs from one indicates the 

degree of inequality that exists. The next two computer simulations are 

used to illustrate that as the ratio of predicted positives to negatives 

departs from 1. 0, a larger sample size is required for statistical 

significance to be achieved. 

Figure 7 illustrates a situation where more positives are present 

in the study sample than negatives. Figure 7 is similar to Figure 2 in 

all respects except the distribution of predicted positives is larger 
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Figure 7 

A Population with Greater Numbers of Predicted Positives than Negatives. 

c 
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than the distribution of predicted negatives. In Figure 7, predicted 

negatives could be Type B's and predicted positives would be Type A's. 

As usual, they-axis indicates the frequency of observations. Thus, the 

larger distribution on the right hand side of Figure 7 indicates there 

are more predicted positive observations--Type A's--than the 

distribution of predicted negatives--Type B's--on the left. 

The next simulation is used to demonstrate that as the ratio of 

predicted positives to negatives departs from one, the likelihood of 

obtaining statistically significant results decreases if sample size is 

held constant. Sample size was held at a constant value of 200 and c 

was adjusted for all calculations so it was located at its most optimal 

point. The value of .2' was varied from . 3 to . 7 by intervals of .1. 

The ratio of predicted positives to negatives was varied from 1 to 9 by 

intervals of 1. Note that a ratio of 3 to 1 corresponds to a 75 percent 

to 25 percent distribution of positives to negatives. This is 

approximately equal to the ratio of Type A's to Type B's, and diseased 

to nondiseased found in most research on Type A behavior and 

arteriosclerosis (see Table 1). As in the previous simulations, no 

truncation of variables was assumed so that the effects of an unequal 

ratio of positives to negatives could be assessed independently. 

Figure 8 illustrates the relationship between d', X2
, and the 

ratio of predicted positives to negatives. The y-axis in Figure 8 

indicates the value of X2 and the x-axis represents the number of 
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predicted positives divided by the number of predicted negatives. Each 

point on the curve corresponds to a x2 value on the y-axis and a ratio 

of positives to negatives on the x-axis. That is, each point represents 

the x2 that would be obtained for a given ratio of predicted positives 

to negatives. 

Each curved line in Figure 8 illustrates the relationship between 

x2 and the ratio of positives to negatives for a single£'. Again for 

large £' s, the X2 values are greater. Thus, curves associated with 

larger d's are located higher in the figure. The d' associated with 

each curve is indicated on the legend below Figure 8. 

The steepness of the curves illustrates the effect that a 

disproportionate ratio has on statistical significance. Note that for 

ratios between 1 and 3 statistical significance is more sharply reduced 

and for ratios greater than 3 statistical significance decreases more 

gradually. Figure 8 illustrates that even for large £'s, a 

disproportionate ratio of predicted positives to negatives lead to 

nonsignificant findings. Only a£' of .7 is significant when the ratio 

of positives to negatives is greater than 9 to one. For smaller £'s, 

statistically nonsignificant results are obtained for much smaller 

ratios. For larger £'s, the slopes of the curves are greater suggesting 

that a large d' cannot correct for an extremely disproportionate ratio. 
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The relationship between x2 and the ratio of predicted positives 

and negatives for various sample sizes. Another simulation is used to 

demonstrate that even for large sample sizes a statistically significant 

result is difficult to obtain if unequal numbers of positives and 

negatives are present. For this simulation, d' was held constant at a 

value of .5. Sample size was varied from 50 to 250 by intervals of 50. 

As in the previous simulations, the ratio of positives to negatives was 

varied from 1 to 9. The computer simulation program calculated X2 

values for all possible combinations of ratios and sample sizes. 

The results of the simulation are presented in Figure 9. Figure 9 

is similar to Figure 8 in all respects except that the curved lines 

represent different sample sizes with d' held at a constant value of .5. 

Again the x-axis indicates the ratio of positives to negatives and the 

y-axis indicates the value of x2 • Each point on a line indicates the X2 

associated with a ratio of positive to negatives. Each curve in Figure 

9 represents the relationship between X2 and the ratio of predicted 

positives to negatives for a different sample size. 

Note that for larger sample sizes the range of x2 values that are 

statistically significant is greater. Thus, the curves located at the 

top of the graph correspond to larger sample sizes. The sample size 

that corresponds to each curve is indicated on the legend at the bottom 

of the figure. 
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The steepness of the curves illustrates the influence the ratio of 

positives to negatives has on statistical significance. Note that for 

each curve statistical significance is reduced as the ratio of positives 

to negatives becomes greater. Statistical significance is never 

obtained for ratios greater than 5. For larger sample sizes, the values 

of X2 decreases more rapidly. Thus, the range of statistically 

significant values does not increase as much as one might expect for 

larger sample sizes. Even for a sample size of 250, statistical 

significance is not possible if the ratio of positives to negatives is 

greater than five. Thus, very large sample sizes may be necessary if 

the ratio of positives to negatives is great. 

Implications for TyPe A and arteriosclerosis research. There is 

abundant evidence suggesting that unequal numbers of predicted positives 

and negatives have played a role in Type A/arteriosclerosis research. 

The first column from the left in Table 1 gives the percentages of Type 

A's in the sample. In Table 1, the ratio of Type A's to Type B's varies 

from 1.5 to 3. Yet in studies that sampled normal healthy individuals 

(e.g., Rosenman et al., 1966) the ratio of Type A's to Type B's was 

approximately equal to one. This suggests that Type A/arteriosclerosis 

researchers are using a sampling frame that includes a greater 

proportion of observations to the right of the optimal cutpoint where 

more Type A's are present than Type B 's. Thus, researchers may be 

underestimating the strength of the relationship between Type A behavior 
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and arteriosclerosis because unequal numbers of positives and negatives 

have reduced statistical significance in many studies. 

The problem of unequal ratios of positives to negatives is even 

greater for prospective studies of heart disease where the vast majority 

of subjects remain well for the duration of the study. For example, 

ratio bias has drastically reduced the statistical associations found in 

the Western Collaborative Group studies. The Western Collaborative 

Group Study (Rosenman, et al., 1964) was a prospective study lasting 

eight and one-half years of middle aged 30 to 50 year old men. After 

two years the proportion of nondiseased to diseased men who were between 

39 and 49 years old (Rosenman, Friedman, Straus, Wurm, Jenkins, & 

Messinger, 1966) was eighty-four to one, after four and one-half years 

(Rosenman, Friedman, Straus, Jenkins, Zyzanski, & Wurm, 1970) the ratio 

was forty to one and after eight and one-half years (Rosenman, Brand, 

Jenkins, Friedman, Straus, & Wurm, 1975) the ratio was sixteen to one. 

Only the studies at four and one half years and eight and on-half years 

reached statistical significance. 

Unequal numbers of actual negatives and positives. The effects of 

unequal numbers of actual positives and negatives is statistically 

equivalent to the problem of unequal numbers of predicted positives and 

negatives. Therefore, no additional computer simulations need to be 

produced. However, unequal numbers of actual positives and negatives 

does have different implications for research on Type A behavior and 

arteriosclerosis. 
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Research suggests that coronary angiography studies have sampled 

much more diseased samples than exist in the general population. 

Angiography studies only include patients that agree with their 

physician that they should be willing to undergo an angiography. 

Physicians and patients will be reluctant to use the procedure unless 

they are fairly certain that an angiography will find some 

arteriosclerosis present. 

arteriosclerosis. 

Therefore, most patients will have some 

The fourth column of Table 1 indicates the percentage of 

observations from each study that were diseased. For all of the 

studies, more patients were diagnosed as having arteriosclerosis than 

not. Most studies (see Table 1, column 3) included patients that have a 

high degree of disease. In contrast, most validity studies of coronary 

occlusion in individuals that die from violent deaths reported that 

approximately 20% of the population had 50% occlusion in at least one 

coronary artery (see Pearson, 1984). Rissanen (1975) found that for men 

between the ages of 45-64, approximately 40% had occlusion. One would 

suspect that most observations in Type A/arteriosclerosis research are 

located to the right of the optimal cutpoint because the percentage of 

occlusion in coronary angiography studies is much higher than the degree 

of occlusion found in autopsy studies. 

Note that in the study illustrated in Figure 4 only the fifty year 

old sample has equal numbers of actual positives and negatives. The 
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forty year old sample has fewer observations diagnosed as having 

arteriosclerosis while the sixty year old sample has more observations 

diagnosed as having arteriosclerosis. Therefore, the researcher may 

only find a statistically significant relationship in the sample of 

fifty year olds because the numbers of actual positives and negatives 

are unequal for the forty and sixty year old samples. Type A behavior 

and arteriosclerosis research may best be represented by the sample of 

sixty year olds. That is, most individuals scheduled for angiography 

are high on some risk factors for disease (although the risk factor may 

be some factor other than age). As in the sixty year old sample, most 

observations will be diseased and very few patients will be nondiseased. 

In sum, the results of the preceding simulations suggest that 

unequal numbers of positives and negatives are biasing the results of 

angiography studies towards failing to reject the null hypothesis. 

Extremity of the Range of Sample Values 

Factors that produce samples that only include extreme scores. 

Exclusion bias can be produced by differences in values of clinicians 

and applied researchers. Under most circumstances, clinicians consider 

Type II errors as more costly. Thus, there is a tendency to reduce the 

number of Type II errors by excluding negatives--either predicted or 

actual negatives--from the sample. For example, clinicians attempt to 

administer angiographies only to patients that are diseased. This 

tendency can be described mathematically as moving the negative 
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exclusion rule to the right, thereby excluding more negatives. As the 

exclusion rule moves further to the right, observations located around 

the optimal cutpoint may be excluded from the study sample and the ratio 

of actual positives to negatives becomes larger. 

Figure 10 illustrates the case where the physician's clinical 

judgment improves so that the negative exclusion rule moves to the right 

thereby excluding more negatives from the sample. Figure 10 also 

illustrates the hypothetical study sample distributions that would 

account for why one study may find statistical significance and another 

would not. Figure 10 is identical in all respects to Figure 4 except 

that Figure 10 illustrates two as opposed to one study samples. The 

portion of the graph in Figure 10 shaded with horizontal lines 

represents the sampling frame of a study that would not find 

statistically significant results. The portion of the graph shaded by 

vertical lines represents the range of the sample distribution of the 

study that would find statistically significant results. Notice that 

the nonsignificant study sample includes more observations located to 

the right of the optimal cutpoint. Thus, the nonsignificant sample 

distribution includes a more disproportionate number of actual and 

predicted positives. 

For research on Type A behavior and arteriosclerosis, the 

nonsignificant study findings may have been produced because an 

experienced physician did not subject many nondiseased individuals to an 
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The Hypothesized Relationship Between Significant and Nonsignificant 
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angiography. The significant study would represent the outcomes of a 

study from a physician with less experience. Thus, there are equal 

numbers of diseased and nondiseased subjects in the sample. 

As mentioned previously, statistical significance cannot be 

obtained when observations around the optimal cutpoint have been 

excluded. This represents a more extreme case of the nonsignificant 

study finding illustrated in Figure 10. Even though the criterion and 

predictor variable are strongly associated, no statistically significant 

association can appear in the study sample regardless of sample size. 

This is the case because the x2 statistic assesses the degree to which 

greater numbers of true negatives than false negatives and greater 

numbers of true positives than false positives are present within the 

study. In Figure 3, more actua 1 positives are present throughout the 

entire range of the study sample regardless of where the decision rule 

is placed. Therefore, more false negatives are present regardless of 

where the decision rule is placed. 

significance is not possible. 

Thus, finding statistical 

Implications for research on Type A behavior and arteriosclerosis. 

In the present section, some data from actual studies of coronary 

angiography is used to illustrate the influence that extremity of scores 

can have on statistical significance. The two graphs in Figure 11 

illustrate the two published studies (Blumenthal et al., 1978; Krantz, 

Schaeffer, Davia, Dembroski, MacDougall, & Schaeffer, 1981) that 
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Krantz et aD. (1981) 
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reported sufficient data to reproduce frequency distributions using 

TOTCI as a disease criterion. The x-axis in each graph indicates the 

extent of disease by TOTCI score. As mentioned previously, the TOTCI 

score rates each major coronary artery vessel on a four point scale; 3 

points for total occlusion, two points for a stenosis of 75%-99% 

decrease in luminal diameter, one point for a stenosis less than 75%, 0 

points for non stenosis. The TOTCI is determined by taking the sum of 

the scores from all vessels that constitute the coronary artery system. 

Based on the TOTCI score, patients are grouped into three categories of 

mild < 3, moderate 3-6, and> 6 severe arteriosclerosis. 

The y-axes in the graphs in Figure 11 indicate the number of 

patients that fall within each TOTCI disease category. At the bottom of 

each figure, the percentage of the study sample associated with each 

disease classification is given. The broken line labeled Type B' s 

indicates the number of Type B's associated with each TOTCI score. The 

solid line indicates the frequency of Type A's for each TOTCI score. In 

the Blumenthal et al. (1978) study illustrated in Figure 11(b) more Type 

B' s were present for those patients with a TOTCI score of 1 and more 

Type A's were present for TOTCI scores of 2 and 3. Thus, the cross-over 

pattern that occurs between a TOTCI score of 1 and 2 in the Blumenthal 

et al. (1978) study, indicates that a statistical association is present 

and that the location of the optimal cutpoint lies between a TOTCI score 

of 1 and 2. In the Blumenthal et al. study, 45 percent of the study 
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sample had a TOTCI of 1 and 55% had a score of 2 or 3. Thus, 

approximately equal numbers of actual positives and negatives were 

evenly distributed around the optimal cutpoint. For the Blumenthal et 

al. study, Table 1 in the column furthest to the right indicates that 

the results were statistically significant supporting the hypothesis 

that Type A behavior is associated with more severe disease. 

The Krantz et al. (1981) study in Figure ll(b) presents a 

different picture. Across all levels of disease, a greater percentage 

of Type A's were present than Type B's. Thus, the statistical analysis 

of the Krantz et al. study indicates that there was no relationship 

between Type A behavior and arteriosclerosis. Comparing the two 

figures, 55 percent of the patients in the Blumenthal et al. (1978) 

study had a TOTCI score of 1 as compared with 41 percent in the Krantz 

et al. study. One reason why Blumenthal et al. may have found 

statistical significance and Krantz et al. didn't is that the optimal 

cutpoint is located towards the nondiseased end of the distribution of 

TOTCI scores. Blumenthal et al. may have found statistical significance 

because a larger percentage of Blumenthal et al. 's patients were located 

within the more nondiseased range. That is, there is a less extreme 

range of scores present in the Blumenthal et al. study. 

Figure 10 illustrates the hypothetical study sample distributions 

that would account for why Blumenthal et al. (1978) found statistical 

significance and Krantz et al. (1981) did not. The portion of the graph 
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in Figure 10 shaded with horizontal lines represents the sampling frame 

of the Krantz et al. study. The portion of the graph shaded by vertical 

lines represents the range of the sample distribution of the Blumenthal 

et al. study. Notice that the Krantz et al. distribution is located to 

the right of the Blumenthal et al. distribution. The Krantz et al. 

sample distribution includes greater numbers of actual and predicted 

positives. Thus, the Krantz et al. study should have a higher 

percentage of Type A's than the Blumenthal et al. study if Figure 10 is 

an accurate representation of why there are differences between the 

Blumenthal et al. and Krantz et al. studies. In fact, this is the case. 

Krantz et al.'s study had 75% Type A's while Blumenthal et al. 's study 

had only 60% Type A's. Similarly, the Krantz et al. study had a higher 

proportion of diseased patients (55%) than the Blumenthal et al. study 

(45%). Note in Table 1, that the two other studies (Blumenthal, 1985 

and Dembroski, 1985a) that reported nonsignificant findings using a 

TOTCI disease scoring system had percentages of Type A's and B' s and 

numbers of diseased patients similar to those obtained in the Krantz et 

al. study. 

Another disease criterion that has been used is to count the 

number of arteries that are have greater than 50% occlusion. The 

disease criteria is not as stringent as the TOTCI scoring method. That 

is, the TOTCI method classifies fewer subjects as diseased than the 50% 

occlusion method does. Because the optimal cutpoint appears to be 
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located at the end of the TOTCI continuum, one would suspect that the 

50~o occlusion decision rule is even further from the optimal cutpoint 

than a TOTCI score of 1. Thus, finding statistically significant 

results should be more difficult using the 50% occlusion rule than using 

TOTCI. 

Figure 12 illustrates the three studies that published their data 

that used 50~o occlusion as a disease criterion. The basic setup of the 

graphs is the same as in Figure 11. The x-axis indicates the number of 

arteries that are occluded by more than 50%. The y-axis indicates the 

number of patients. The differences in frequencies of Type A's across 

the disease categories is indicated by the solid lines. The broken 

lines indicate frequency of Type B's. 

Among various levels of disease across all three studies (13 

levels in all) only one study found more Type B's than Type A's (Frank 

et al., 1978 in the nondiseased artery group). The results are 

consistent with the hypothesis that all three distributions have sampled 

subjects that are mostly far to the right, on the diseased side, of the 

optimal cutpoint. Only the Frank et al. study found statistically 

significant results. Note the cross-over pattern in the Frank et al. 

study suggests that the optimal cutpoint is located very close to the 

negative exclusion rule. 

For the Dimsdale et al. (1979a) study only 16 percent of the 

subjects had no diseased arteries. The Frank et al. (1978) study 
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reported 20~ nondiseased and the Krantz et al. (1981) study found 22% as 

nondiseased. There are higher percentages of diseased using the 50% 

occlusion method. Similarly, each study reported high percentages of 

Type A's (see Table 1). 

Implications for medical research. Research in medicine can be 

viewed as developing diagnostic techniques in three stages. In the 

first stage, researchers experiment with the new technique only on 

patients they feel may receive substantial benefits at little risk. 

Research during this stage uses the case study approach and little 

effort is made to test whether the results support theories about the 

precursors of the disease that the diagnostic instrument attempts to 

measure. 

In the second stage, the technique becomes more widely used 

because physicians become more confident using the techniques and begin 

to experiment. In this stage, researchers will use samples with wider 

ranges of disease because there is some uncertainty concerning when the 

technique should be used. Thus, researchers are more likely to include 

observations located around the optimal cutpoint so these studies are 

more likely to find statistically significant predictors of disease. 

In the third stage, physicians become more experienced and can 

accurately determine who has the disease before confirming their results 

with the technique. Therefore, the diagnostic instrument is seldom used 

on nondiseased patients and so study samples becomes more diseased 
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because fewer nondiseased individuals are selected to be evaluated by 

the diagnostic test. Thus, more observations located near the optimal 

decision rule are excluded from the sample because the accuracy of the 

physician's judgments has increased. In the third stage, researchers 

may have trouble finding variables that significantly predict disease. 

This problem occurs because there will be too few actual negatives in 

the study sample. 

The three stages of research as described above may have occurred 

in research on Type A behavior and arteriosclerosis. As physicians 

conducted more angiographies their experience developed and new research 

suggested ways for them to decrease the number of patients subjected to 

an angiography. In fact, physicians today are much less willing to do a 

coronary angiography than they were ten years ago (Pickering, 1985). 

Perhaps, as physicians developed more experience, fewer angiographies on 

nondiseased patients were performed resulting in research samples where 

almost the entire sample is diseased. Table 1 shows that recent studies 

have not found statistically significant results. Three of the four 

studies that found statistically significant results were published 

before 1981. The fourth study, published in 1982, was different in many 

respects from the other studies (e.g., Type A2's were excluded from 

analysis, only healthy normal individuals that were high on risk factors 

for disease were included in the sample). These differences may have 

produced the significant results. 



77 

A computer simulation of the effects of extremity of sample range 

and degree of range restriction on x2 • It would seem that the most 

obvious effect of exclusion bias is restriction of range. As mentioned 

previously, range restriction has been the focus of most previous 

research on exclusion bias. 

The final simulation of this paper compares the effects of range 

restriction with the effects that extremity of range has on statistical 

significance. Each study sample was operationalized as a section of a 

population as illustrated in Figure 3. A series of samples with 

different degrees of widths of ranges of values was simulated. The 

variance for each study sample was taken to be the standardized distance 

between the positive and negative exclusion rule. For example, the 

range in Figure 3 is 2 because that is the standardized distance between 

the exclusion rules. For this simulation, the variance was varied from 

3 to 7 standard deviations between exclusion rules. 

Extremity was operationalized as the distance between the median 

of the study sample and the optimal cutpoint. That is, the distance 

between the optimal cutpoint and the midpoint between the study sample's 

negative and positive exclusion rules. For example, the study sample 

midpoint in Figure 3 is at -1 because that is the midpoint between the 

exclusion rules located at -2 and 0. The optimal cutpoint in Figure 3 

is located at 0. Thus, the distance between the study sample midpoint 

and the optimal cutpoint is -1 standard deviations. For the simulation, 

extremity of range was varied from -3 to 3. 
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Thus, the simulation calculated X2
, values based on the ranges, 

and extremity of values included in the sample. For this simulation, £' 

was held at a constant value of .5 and sample size was fixed at 200. 

Note that the value of the optimal cutpoint does not change as the 

aforementioned parameters are varied. For this simulation, the cutpoint 

was always located at its most optimal point at zero. 

Note that this simulation assumes complete truncation on the 

criterion variable. That is, complete truncation occurs at values 

associated with an exclusion rule. As mentioned previously, the 

assumption of complete truncation does not usually hold; incomplete 

truncation at a single value on the criterion is more likely to occur. 

Other variables, usually some of which are unknown, also determine what 

observations are selected into the sample (Olson & Becker, 1983). This 

topic is discussed in more detail in the next section section of this 

paper. 

Figure 13 illustrates the results of the simulation. The 

horizontal line that runs across Figure 13 indicates that X2 values 

above the line are statistically significant and X2 values below the 

line are nonsignificant. The y-axis indicates the value of x2
• 

Extremity of the range of values included in the sample is indicated by 

the values on the x-axis. Each curved line corresponds to a different 

width or range of a study sample. The range of sample values in 

standard deviations that is associated with each curved line is 
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indicated on the legend at the bottom of the figure. For example, when 

the distance between the study sample midpoint and the optimal cutpoint 

is -1 and the range of values included in a sample is equal to 4 

standard deviations, the X2 value would be approximately equal to 4.0. 

The steepness of the curves in Figure 13 indicates the effects of 

extremity of range on X2 • Note that for each curve x2 decreases rapidly 

as the midpoint of the study sample moves away from the optimal 

cutpoint. The effects are dramatic because the ratios of positives to 

negatives (both actual and predicted) becomes more disproportionate as 

the midpoint of the study sample moves away from the optimal cutpoint. 

Note for each curve, values associated with midpoints further from the 

optimal cutpoint are less significant. In all, only about half of the 

values presented in Figure 13 are statistically significant. 

The differences in the x2 values associated with each curve gives 

the reader an impression of the influence that range restriction has on 

study findings. The curve associated with the highest x2 values in 

Figure 13 represents a range of six standard deviations. The next curve 

is associated with a range of values that are five standard deviations 

in width and so forth. Note that for wider ranges more X2 values are 

statistically significant. Thus, the range of values included in the 

sample is related to statistical significance as range restriction 

formulas suggest. 
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Note the range of values included in the study sample must be 

fairly large--3 standard deviations--before statistically significant 

results are possible. Note that with wider ranges of values the range 

of statistically significant samples greatly increases. For a range of 

values of 7 standard deviations, the midpoint of the study sample can be 

located at -2.6 and still be statistically significant. Note that for 

statistical significance to be obtained the range of values must include 

the optimal cutpoint. Thus, statistical significance is not obtained 

when the midpoint of the study sample is 2 and the range of values is 3 

because the optimal cutpoint would not exist within the study sample. 

Implications for research on Type A behavior and arteriosclerosis. 

Figure 13 clearly indicates that with a greater range of values in the 

sample, the effects of exclusion bias will be less severe. 

Unfortunately, to give angiographies to a large representative sample of 

individuals would be impractical and unethical. Thus, other techniques 

need to be used to control or assess the effects of exclusion bias. The 

next section discusses techniques and methods for controlling for 

exclusion bias. 



METHODS FOR CONTROLLING FOR EXCLUSION BIAS 

Subject Selection 

There are a number of factors that may influence the relationship 

between Type A behavior and arteriosclerosis. Figure 4 can be used to 

illustrate how risk factors other than Type A behavior can change the 

degree of statistical significance found between Type A behavior and 

arteriosclerosis. 

Age as described in the previously discussed hypothetical example 

was a variable that influenced the statistical association between Type 

A behavior and arteriosclerosis. Sampling frames that include higher 

values (e.g., increasingly older populations) are represented on the 

graph located at the bottom of Figure 4 where most of the observations 

are located to the right of c. Figure 4(a) illustrates a situation 

where the median point of the sample would be 1.5 standard deviations 

from the optimal cutpoint and the range of sample values would be 

approximately equal to .4. Thus, with a sample size of 200, according 

to Figure 13, statistical significance would not be obtained. 

Therefore, the age of the study sample can have a strong influence on 

whether a study finds statistically significant results. 

Some examples of this type of age bias are obvious. For example, 

in medical research one would not expect to find an association between 

smoking and cancer in a population composed of college students because 

82 
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the relationship is only expressed after an individual has been smoking 

for a lifetime. That is, the college students are too young to have 

smoked enough years for differences between smokers and nonsmokers to 

become apparent. Therefore, the sampling frame of college students is 

inappropriate; an older population would be more appropriate. 

For research on the relationship between smoking and cancer, 

whether the person smokes or not and the number of years they have 

smoked influences the strength of the relationship between smoking and 

cancer. The years and intensity with which the patient smoked has been 

used as an estimate of the cumulative effects of smoking. Perhaps, Type 

A research would benefit from measuring Type A behavior as smoking is 

measured. Presumably, individuals who have displayed more intense Type 

A behavior for longer periods of time would be more vulnerable to 

arteriosclerosis than Type A's who are younger and have displayed less 

extreme behaviors. Test-retest Type A scores from multi-stage 

prospective studies could be used to estimate the cumulative effects of 

Type A behavior. Presumably, such measures of Type A-ness would be 

better predictors of arteriosclerosis and would in part control for 

problems of exclusion bias. 

Researchers need to recognize that in extremely diseased 

populations, there are a number of ways that arteriosclerosis may have 

been produced. For example, people with high cholesterol scores may not 

need to be extreme Type A's in order to develop arteriosclerosis. 



84 

Similarly, older individuals may score lower on other risk factors such 

as cholesterol and still develop arteriosclerosis. Thus, researchers 

need to plan their study samples so that they include sufficient numbers 

of individuals whose arteriosclerosis is unexplained by other risk 

factors. 

If Type A behavior predicts coronary artery disease after 

controlling for traditional risk factors, the percentage of A's in the 

real population for different age groups should vary. Presumably, more 

heart attacks (unexplained by family history, cholesterol etc.) would 

occur with Type A's after a number of years (i.e., between the age of 40 

and 60) than in populations that used sampling frames that included 

younger or older patients. Researchers have selected subjects that are 

too young to have expressed the disease because of Type A behavior. The 

age ranges of most studies has been from 20 to 70 (see Table 1, column 

4). Because Type A behavior alone cannot cause heart failure at age 

twenty, including subjects that are only twenty years old reduces the 

power of the overall test. One study attempted to control for age using 

analysis of covariance but this is inappropriate because this procedure 

assumes that Type A's and B's have equal ages. From their own published 

data, Krantz et al. (1981) did not meet this assumption. 

Similarly, including subjects that are too old can influence study 

findings. In the sample of sixty year olds illustrated in Figure 4(c), 

a substantial number of observations have been excluded from the sample 
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because of the positive exclusion rule. In Figure 4(c) more Type B' s 

than A's would be dying of heart disease. This occurs because all the 

Type A's in the sixty year old sample have already died of artery 

disease. 

Have problems associated with a positive exclusion rule actually 

occurred in research on Type A behavior and arteriosclerosis? Recently, 

Williams, Barefoot, Haney, et al. (1986) combined and reanalyzed all the 

studies conducted at Duke University and Massachusetts General Hospital, 

and found that the correlation between Type A behavior and 

arteriosclerosis was only significant in younger men. More Type B's had 

arteriosclerosis for older samples. The results are consistent with the 

prediction that an exclusion rule exists within the samples. As in 

Figure 4, older Type A's may have been excluded from the sample because 

of previous heart problems. Similarly, Haynes, Feinleib, and Kannel 

(1980) found in the Framingham Heart Study that for men between the ages 

of 65 and 74 a greater percentage of Type B's had heart attacks. 

Type A researchers must begin to test more explicit hypotheses 

concerning the relationship between Type A behavior and 

arteriosclerosis. That is, problems of positive and negative exclusion 

rules and the effects of variables such as age need to be assessed for 

each sample. Negatives findings can be due to exclusion bias if such 

problems are not taken into account in the study design. 



86 

Using Appropriate Comparison Groups 

The appropriate comparison group is not the case-control approach 

that recommends finding individuals similar in all respects except for 

presence of disease. The case-control approach only enhances the 

potential that individuals are different on some unknown third variable 

that is related to the disease. Instead, different disease groups 

within the same hospital should be studied. For example, researchers 

could begin to examine differences between patients at various disease 

stages within the same hospital. For example, patients in the same 

hospital who are being treated for different levels of disease (e.g., 

high blood pressure, angina, and MI) could be examined for what predicts 

differences between these different levels of disease. 

Presumably, individuals that are in the more diseased comparison 

groups would be exposed to the same risk factors longer or more 

intensely than individuals with less disease. Similarly, one would 

hypothesize that all of these diseased groups should have been exposed 

to higher levels of the risk factor than other nondiseased individuals 

served by the hospital. 

An Information Synthesis Approach 

A similar approach could be applied to reviews of the previous 

literature. One can argue that the proportion of Type A's should be 

higher in more severely diseased populations (see Figure 13) if Type A 

behavior produces heart disease. The number of predicted positives and 



87 

negatives in the sample is influenced by the extremity of the range of 

values included in the study sample. There is a larger proportion of 

Type A's in samples that only include values from the extreme right end 

of the population (see Figure 4(c)). More Type B's are present in 

samples that come from observations on the left hand side of population 

distribution--as in Figure 4(a). Therefore, studies that sample more 

diseased populations should report higher percentages of Type A's. For 

example, studies of coronary occlusion at autopsy (e.g., see Friedman, 

Rosenman, Straus, Wurm, & Kositchek, 1968) should report higher 

percentages of Type A's than studies of heart attack recovery. 

Similarly, studies of coronary angiography should have higher 

percentages of Type A's than studies that sample healthy college 

students. A review of previous studies' percentages of Type A's at each 

decision point would provide a test of this hypothesis. 

Figure 14 illustrates the continuum. The section furtherest to 

the left indicates a hypothetical distribution of disease for study 

samples of cardiovascular reactivity and Type A behavior. These studies 

usually consist of samples of healthy college students. Further to the 

right is the range of values included in studies of arteriosclerosis and 

Type A behavior. The study sample represents a more diseased group so 

the range of values is located further to the right of the 

cardiovascular reactivity studies. Even further to the right in Figure 

14 are studies of myocardial infarcation. Still further to the right 
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are autopsy studies of the cardiovascular systems of subjects that die 

during prospective studies of heart disease (e.g., Friedman et al., 

1968). 

In addition, the percentages of Type A's should increase as 

disease severity increases. In more recent studies, the percentage of 

Type A's in the sample has increased (see Table 1) as disease severity 

in the sample increased, thereby supporting the hypothesis that Type A 

behavior is related to disease severity. 

The Selector Variable Approach 

Recent work by econometricians (see Heckman, 1980) has developed a 

method for modeling the selection process and obtaining an unbiased 

estimate of the correlation between two variables from a selected 

sample. The procedure requires the researcher to obtain an estimate of 

the X 2 from a probit analysis between the predictor variable and a 

dichotomous "selector variable. 11 The researcher must collect a 

representative sample of observations on the predictor variable. For 

example, a representative sample of the community that is served by the 

hospital where the coronary angiographies are conducted would be 

administered a measure of Type A behavior. For each observation, a 

selector variable is coded as 1 if the observation is included in the 

selected sample--patient has an angiography--and 0 if it is an excluded 

observation--a subject from the community sample that has not been 

administered an angiography. Thus, degree of disease would only be 
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measured by coronary angiography in the selected sample. Becker and 

Olson (1983) describe formulas that can be used for estimating the 

correlation coefficient between arteriosclerosis and Type A behavior in 

the community that is served by the hospital where angiographies are 

conducted. 

Longitudinal Studies 

Longitudinal studies that follow normal healthy individuals over 

time can be used to assess relationships between Type A behavior and 

arteriosclerosis. Krantz, Sanmarco, Selvester, and Matthews (1979) 

actually conducted such a study. In the Krantz et al. study, subjects 

were given two angiographies separated by an average of seventeen 

months. The study found that degree of Type A behavior predicted the 

extent of increase in arterial disease. Similarly, Corse, Manick, 

Cantwell, Giordani, & Matthews (1982) examined increases in coronary 

artery disease among survivors of an initial heart attack and found that 

coronary artery disease progressed more rapidly in Type A's. 

However, the results of these studies may be interpreted in 

another way. Perhaps, the disease process progresses more rapidly, when 

more occlusion is present to begin with. If Type A's start with more 

disease then this could account for why Type A's become occluded at a 

more rapid rate than Type B 's. Some research has suggested that Type 

A's delay seeking treatment longer so they are not scheduled for 

angiography until their disease becomes more severe (Matthews & Brunson, 
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1979; Matthews, Siegel, Kieller, Thompson, Varat, 1981; Weidner & 

Matthews, 1978). In the Krantz et al. (1981) study Type A's may have 

more disease because a longer time occurred between the time Type A's 

were scheduled for their second angiography. Krantz et al. should have 

controlled for initial disease severity and time between angiographies 

to rule out the possibility that the results were due to differences in 

Type A's initial levels of disease or length of time between 

angiographies. 

The value of the Krantz et al. (1979) has been overlooked. The 

statistical power of this type of longitudinal study is much greater 

than the cross-sectional studies because exclusion bias is not as great 

a problem. The statistical power of longitudinal studies relies upon 

within subjects change so the degree of variability in change scores is 

what determines the power of the test. For this type of study, 

exclusion bias is the degree of sample attrition. Study attrition is 

not as much of a problem as unrepresentativeness in cross-sectional 

studies can be. Thus, statistical power is much greater in these type 

of studies. This may account for why Krantz et al. found statistically 

significant results with a small sample size. 

Testing Study Power 

The variance and range of scores of arteriosclerosis in the 

general population has been estimated from autopsy studies of accident 

victims (for a review see Pearson, 1983). Similarly, the variance and 
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range of Type A behavior scores in the general population can be 

estimated by surveys. These variance estimates of the population can be 

compared with the variances found in angiography studies. From these 

comparisons, the researcher can estimate the degree of exclusion bias 

present in his/her sample. By modifying the computer programs presented 

in Appendix A to conform to variance and range estimates researchers can 

estimate the degree of statistical power present in his/her sample. 

Locating Optimal Cutpoints 

Researchers that do find statistical significance should report 

their results in ways that permit other researchers to determine where 

the optimal cutpoints in their samples were located. This may include 

making an effort to measure the criterion variable as a continuous 

variable. Young et al's (1980) coronary occlusion index appears to be 

an appropriate way to measure coronary occlusion as a continuous 

variable. 

Researchers that find nonsignificant results should report the 

range and variance of values in their studies so future researchers can 

determine if the negative findings were due to exclusion of the optimal 

cutpoint from the study sample. 



Sillll'1ARY 

In this paper, an explicit quantitative definition of one type of bias 

(exclusion bias) was introduced. Computer simulations were used to 

illustrate how statistical power is influenced by exclusion bias. In 

addition, several suggestions were made for how problems of exclusion 

bias can be dealt with. 

Suggestions for Future Research 

This paper raises several questions concerned with the value 

judgments of applied versus theoretical researchers. For example, many 

medical researchers recommend only using diagnostic tests that are the 

"gold standard" and the most valid indicators of disease (e.g., Prorok, 

1979). However, highly valid indicators are typically invasive, are 

accompanied by risk to the patient and thus can only be ethically used 

for individuals for whom there is a strong suspicion of disease. The 

value of less accurate procedures that can be used to sample the whole 

population is usually not considered. Thus, there is a trade-off 

between diagnostic accuracy and exclusion bias, in most applied research 

situations. Researchers must begin to recognize these tradeoffs and 

begin to consider whether the costs of using extremely accurate but more 

invasive diagnostic devices are really worthwhile. 

In many areas of research, a laboratory study is conducted to test 

a hypothesis and then a follow-up study in a field setting is conducted 

to determine if the results of the laboratory study are "clinically 
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relevant." The two study samples may be at opposite tails of the 

distribution to which the researcher wants to generalize. Therefore, 

exclusion bias may bias both studies towards accepting the null 

hypothesis. Negative results should therefore should be considered in 

terms of the degree of exclusion bias present within the study sample 

and not only whether the range of values includes a clinically relevant 

sample. 

For example, study samples obtained from more severely depressed 

populations (e.g., inpatient units as opposed to outpatient units) will 

encounter negative findings because exclusion bias may be more severe. 

The researchers may falsely conclude that although mild depression 

appears to be related to the predictor variable, the variable is not 

"clinically relevant" for severely depressed populations. 

The quantitative approach taken in this paper could be applied to 

other types of biases. This may give researchers a more quantitative 

and systematic description of how biases influence the results of their 

research. 

Problems of exclusion bias may lead to nonsignificant findings in 

research on the relationship between job performance and selection 

tests. For example, as a personnel selection test becomes more accurate 

(or more highly correlated with the selection practices) fewer actual 

negatives will be included in the study sample. Note that the goal of 

personnel researchers is to design a test where the exclusion rule (who 
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is hired) is located at the same optimal cutpoint (the point where the 

test maximally discriminates between those hired and not hired). Note 

under these circumstances the test is guaranteed not to be significantly 

related to any measures of on the job performance. Thus, as test 

designers begin to design their tests to optimally discriminate at the 

number of positions available nonsignificant findings should occur 

between the selection device and job performance. In other words, a 

valid hiring device has a much different optimal cutpoint than a valid 

measure of job performance for those applicants that are hired (see 

Alexander, Barrett, & Doverspike, 1983). Note that range restriction 

formulas do not correct for this problem. 
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Appendix A 

SAS/GRAPH Computer Programs to Generate Figures 

GOPTIONS; 
DATA FIVE; 
N = 200; 
DOd= .3 TO .7 BY .1; 
DOC= -2.5 TO 2.5 BY .1; 

Figure 5 

LABEL C ='LOCATION OF CUTPOINT'; 
LABEL d = EFFECT SIZE; 
LABEL N = SAMPLE SIZE ; 

ZTN = C + d/2; 
TN= PROBNORM(ZTN); 
TN= TN * N/2; 

LABEL TN = FREQ OF TRUE NEGATIVES; 
FP = N/2 - TN; 

LABEL FP = FREQ OF FALSE POSITIVES; 
ZFN = ZTN - d; 

LABEL ZFN = Z OF FALSE NEGATIVES; 
FN = PROBNORM(ZFN); 
FN = FN * N/2; 

LABEL FN = FREQ OF FALSE NEGATIVES; 
TP = N/2 - FN; 
ONE= (TN* TP) - (FP * FN); 
TWO= (TN+ FP) * (FN + TP) * (TN+ FN) * (~P + TP); 

LABEL TP = FREQ OF TRUE POSITIVES; 
X = N *((ABS(ONE) - N/2)**2)/TWO; 
LABEL X = CHI-SQUARED; 

OUTPUT; END ; END ; 
PROC GPLOT; 
TITLE1 .F= NONE .H=2 FIGURE 5; 
TITLE2 .F= NONE .H=2 THE RELATIONSHIP BETWEEN CHI-SQUARED; 
TITLE3 .F=NONE .H=2 AND THE CUTPOINT FOR VARIOUS EFFECT SIZES; 
PLOT X*C=D/VREF=3.816 CTEXT=BLACK HAXIS= -3 TO 3 BY 1; 
SYMBOL1 !=SPLINE C=BLACK L=1; 
SYMBOL2 !=SPLINE C=BLACK L=4; 
SYMBOL3 !=SPLINE C=BLACK L=3; 
SYMBOL4 !=SPLINE C=BLACK L=2; 
SYMBOLS !=SPLINE C=BLACK L=1; 
ENDSAS; 
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GOPTIONS; 
DATA SIX; 
D = 0.5; 

DO N = 50 TO 250 BY 50; 
DOC= -2.0 TO 2.0 BY .1; 

LABEL C = CUTPOINT; 
LABEL D = d ' ' ; 
LABEL N = SAMPLE SIZE ; 

ZTN = C + D/2; 
TN= PROBNORM(ZTN); 
TN = TN * N/2; 

Figure 6 

LABEL TN = FREQ OF TRUE NEGATIVES; 
FP = N/2 - TN; 

LABEL FP = FREQ OF FALSE POSITIVES; 
ZFN = ZTN - D; 

LABEL ZFN = Z OF FALSE NEGATIVES; 
FN = PROBNORM(ZFN); 
FN = FN * N/2; 

LABEL FN = FREQ OF FALSE NEGATIVES; 
TP = N/2 - FN; 
ONE = (TN* TP) - (FP * FN); 
TWO= (TN+ FP) * (FN + TP) * (TN+ FN) * (FP + TP); 

LABEL TP = FREQ OF TRUE POSITIVES; 
X= N *((ABS(ONE) - N/2)**2)/TWO; 
LABEL X = CHI-SQUARED; 

OUTPUT; END ; END; 
PROC GPLOT; 
TITLE1 .F=NONE .H=2 FIGURE 6; 
TITLE2 .F=NONE .H=2 CHI-SQUARED BY CUTPOINT; 
TITLE3 .H=2 FOR SEVERAL DIFFERENT SAMPLE SIZES; 
PLOT X*C=N/ CTEXT= BLACK ; 
SYMBOL! !=SPLINE C=BLACK 1=1; 
SYMBOL2 !=SPLINE C=BLACK 1=4; 
SYMBOL3 !=SPLINE C=BLACK 1=3; 
SYNBOL4 !=SPLINE C=BLACK 1=2; 
SYMBOLS !=SPLINE C=BLACK 1=1; 
ENDSAS; 
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GOPTIONS ; 
DATA EIGHT; 

DO D = .3 to .7 BY .1; 
DO RATIO = 1 TO 9; 

n = 200 I (1 +RATIO); 
C = (1 I RATIO) - 1; 

LABEL C = CUTPOINT; 
LABEL D = d I I ; 

LABEL N = SAMPLE SIZE; 

Figure 8 

LABEL RATIO = RATIO OF POSITIVES TO NEGATIVES; 
ZTN = C + Dl2; 
TN= PROBNORM(ZTN); 
TN= TN * N; 

LABEL TN = FREQ OF TRUE NEGATIVES; 
FP = N - TN; 

LABEL FP = FREQ OF FALSE POSITIVES; 
ZFN = ZTN - D; 

LABEL ZFN = Z OF FALSE NEGATIVES; 
FN = PROBNORM(ZFN); 
FN = FN * N * RATIO; 

LABEL FN = FREQ OF FALSE NEGATIVES; 
TP = (N * RATIO) - FN; 
ONE= (TN* TP) - (FP * FN); 
TWO= (TN+ FP) * (FN + TP) * (TN+ FN) * (FP + TP); 

LABEL TP = FREQ OF TRUE POSITIVES; 
X = 200 *((ABS(ONE) - 20012)**2)ITWO; 
LABEL X = CHI-SQUARED; 

OUTPUT; END ; end; 
PROC gpLOT; 
TITLE1 .F= NONE .H=2 FIGURE 8; 
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TITLE2 .F= NONE .H=2 CHI-SQUARED BY RATIO OF PREDICTED POSITIVES TO; 
TITLE3 .H=2 NEGATIVES FOR VARIOUS EFFECT SIZES 
PLOT X*RATIO=DI 

CTEXT=BLACK VREF=3.816 HAXIS=1 to 9 BY 1; 
SYMBOL1 !=SPLINE C=BLACK L=1; 
SYMBOL2 !=SPLINE C=BLACK L=4; 
SYMBOL3 !=SPLINE C=BLACK L=3; 
SYMBOL4 !=SPLINE C=BLACK L=2; 
SYMBOLS !=SPLINE C=BLACK L=1; 
ENDSAS; 



DATA NINE; 
D = .5; 

DO RATIO = 1 TO 9; 
DO N = 50 TO 250 BY 50; 

NSIZE = N I (1 +RATIO); 
C = (1 I RATIO) - 1; 

LABEL C = CUTPOINT; 
LABEL D = d I I ; 

LABEL N = SAMPLE SIZE; 

Figure 9 

LABEL RATIO = RATIO OF POSITIVES TO NEGATIVES; 
ZTN = C + Dl2; 
TN= PROBNORM(ZTN); 
TN= TN * NSIZE; 

LABEL TN = FREQ OF TRUE NEGATIVES; 
FP = NSIZE - TN; 

LABEL FP = FREQ OF FALSE POSITIVES; 
ZFN = ZTN - D; 

LABEL ZFN = Z OF FALSE NEGATIVES; 
FN = PROBNORM(ZFN); 
FN = FN * NSIZE * RATIO; 

LABEL FN = FREQ OF FALSE NEGATIVES; 
TP = (NSIZE * RATIO) - FN; 
ONE= (TN* TP) - (FP * FN); 
TWO= (TN+ FP) * (FN + TP) * (TN+ FN) * (FP + TP); 

LABEL TP = FREQ OF TRUE POSITIVES; 
X = n *((ABS(ONE) - NI2)**2)1TWO; 
LABEL X = CHI-SQUARED; 

OUTPUT; END ; END; 
PROC GPLOT; 
TITLE! .F= NONE .H=2 FIGURE 9; 

106 

TITLE2 .F= NONE .H=2 CHI-SQUARED BY RATIO OF PREDICTED POSITIVES TO; 
TITLE3 .H=2 NEGATIVES FOR VARIOUS SMtPLE SIZES 
PLOT X*RATIO=NI 

CTEXT=BLACK VREF=3.816 HAXIS=l to 9 by 1; 
SYMBOL! !=SPLINE C=BLACK L=l; 
SYMBOL2 !=SPLINE C=BLACK 1=4; 
SYMBOL3 !=SPLINE C=BLACK 1=3; 
SYMBOL4 !=SPLINE C=BLACK 1=2; 
SYMBOLS !=SPLINE C=BLACK L=l; 
ENDSAS; 



DATA THIRTEEN; 
N = 200 ; 
D = .5; 

DO CSIZE = 3 to 7 BY 1; 
DO C = .2 TO 7 BY .2; 

LABEL C = UPPER LIMIT; 
C2 = X - CSIZE; 
LABEL C2 = LOWER LHUT; 
LABEL D = D I I ; 

LABEL N = SAMPLE SIZE; 
CUTPOINT = 0; 
ZTN = CUTPOINT + Dl2; 
ZC = C + Dl2; 
ZT = C2 +DI2; 

Figure ·13 

TN= PROBNORN(ZTN) - PROBNORM(ZT); 
LABEL TN = FREQ OF TRUE NEGATIVES; 

FP = 1 - PROBNORM(ZTN) - (1 - PROBNORM(ZC)); 
ZF = ZT - D; 
ZFT = ZF + CSIZE; 
ZFN = ZTN - D; 
TP = 1 - PROBNORM(ZFN) - (1 - PROBNORM(ZFT)); 

LABEL FP = FREQ OF FALSE POSITIVES; 
LABEL ZFN = Z OF FALSE NEGATIVES; 

FN = PROBNORM(ZFN) - PROBNORM(ZF); 
LABEL FN = FREQ OF FALSE NEGATIVES; 

TOTAL = FP + TP + TN + FN; 
FP = N * FP I TOTAL; 
FN = N * FN I TOTAL; 
TP = N * TP I TOTAL; 
TN = N * TN I TOTAL; 
ONE= (TN* TP) - (FP * FN); 
TWO= (TN+ FP) * (FN + TP) * (TN+ FN) * (FP + TP); 

LABEL TP = FREQ OF TRUE POSITIVES; 
X = N *((ABS(ONE) - NI2)**2)1TWO; 
LABEL X = CHI-SQUARED; 

IF X GE 50 THEN X = 0; 
IF C2 GE 0 THEN X = 0; 
IF TWO LT .5 THEN X=.; 
MIDPOINT = (C + C2)12; 
OUTPUT; END; end; 
PROC GPLOT ; 
TITLE! .F= NONE .H=2 FIGURE 13; 
TITLE2 .F= NONE .H=2 THE RELATIONSHIP BETWEEN CHI-SQUARED AND THE 
TITLE3 .H=2 RANGE AND EXTREMITY OF VALUES INCLUDED IN THE SAMPLE; 
PLOT X*MIDPOINT=CSIZEIVREF=3.816 HAXIS= -3 TO 3 BY 1; 
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SYMBOLl !=SPLINE C=RED L=l; 
STI1BOL2 !=SPLINE C=RED 1=4; 
STI1BOL3 !=SPLINE C=RED 1=3; 
SYMBOL4 !=SPLINE C=RED 1=2; 
SYMBOLS !=SPLINE C=RED L=l; 
ENDSAS; 
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