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ABSTRACT 

As many as 1 in 2 women will have at least one urinary tract infection (UTI) in 

their lifetime. UTIs can cause complications in pregnancy and decrease quality of life, 

and their treatment and prevention are expensive. Uropathogenic E. coli (UPEC) is the 

primary cause of UTI. The probiotic and bactericidal capacities of gut and vaginal 

Lactobacillus isolates have been studied, but the same attention has not been paid to 

urinary strains. These urinary isolates of L. crispatus appear to have a greater killing 

capacity against UPEC and this bactericidal activity does not depend on the cells 

themselves, consistent with the hypothesis that they secrete a molecule with anti-UPEC 

activity. In the future, this bacterium could be useful as a probiotic and molecules it 

produces could be used as antibacterial compounds. 

The SCS of one urinary isolate of L. crispatus killed several logs of UPEC within 

2 hours of exposure. This isolate creates a more acidic environment than isolates of other 

Lactobacillus species, but the killing of UPEC was not due to low pH alone, as buffered 

of the SCS delayed but did not eliminate the bactericidal effect. This effect became 

stronger after the SCS was left to sit for 24 hours. The molecule was not heat sensitive.  

A urinary L. crispatus isolate produces a unique soluble molecule that can kill up 

to 9 logs of UPEC within 24 hours. The molecule may be an antimicrobial peptide or 

bacteriocin. Further experiments are required. 
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CHAPTER ONE: 

INTRODUCTION 

As many as 1 in 2 women will have at least one urinary tract infection (UTI) in 

their lifetime. UTIs can cause complications in pregnancy and decrease quality of life, 

and their treatment and prevention are expensive (24). The ultimate goal of studying the 

bladder microbiota is to find ways to prevent growth of uropathogens that cause UTIs, to 

prevent dysbiosis, and to promote a balanced and healthy bladder microenvironment. 

Uropathogenic E. coli (UPEC) is the primary cause of UTI (25). 

Lactobacilli are commonly found in the mouth, GI tract, and genital tract. 

Previous studies by the Wolfe lab have shown that Lactobacillus species, especially L. 

crispatus, L. gasseri, L. jensenii, and L. iners, are also found in urine obtained from the 

bladder (26, 27). In contrast to other Lactobacillus species, L. crispatus was found to be 

statistically associated with women with no lower urinary tract symptoms (26), and was 

only rarely isolated along with E. coli, much less often than the other Lactobacillus 

species (27). These results support the hypothesis that L. crispatus is part of a healthy 

bladder flora and/or that its presence can prevent blooms of uropathogenic E. coli. It has 

been shown that a vaginal suppository of Lactobacillus crispatus can protect against 

recurrent UTIs caused by UPEC (28), and vaginal Lactobacillus isolates have been 

shown to produce by-products that inhibit the growth of UPEC (3). The probiotic and 
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bactericidal capacities of gut and vaginal Lactobacillus isolates have been studied, but the 

same attention has not been paid to urinary strains.  

Literature Review 

The genus Lactobacillus consists of Gram-positive, microaerophilic, rod-shaped 

bacteria. They are associated with mucosal surfaces in animals, such as the gut and 

vaginal epithelia (1). Many studies have investigated the bactericidal and/or inhibitory 

activity of various strains of Lactobacillus. Lactobacillus species can inhibit the growth 

of other bacteria through competitive exclusion, interference with adhesion, and use of 

secreted factors such as organic acids, hydrogen peroxide, bacteriocins, and other 

antimicrobial molecules (16). 

All Lactobacillus species produce lactic acid and many produce other organic 

acids as well. In vitro studies have shown that the bactericidal activity of some 

Lactobacilli depends on the pH of the cell culture. The anti-E. coli activity of vaginal 

fluid correlated with low pH and a high lactic acid content (2). In a study of spent culture 

supernatants of probiotic, urogenital strains L. rhamnosus GR-1 and L. reuteri RC-14, 

lactic acid and the culture supernatants downregulated promoter activity of genes that 

encode molecules critical for adherence to the urothelium by uropathogenic E. coli 

(UPEC) strain C1212 (3). It has been shown that some Lactobacillus species can prevent 

pathogens from adhering to host cells (4). The effect of Lactobacilli on Shiga toxin-

producing E. coli depends on lactic acid production, resulting in a bacteriostatic phase at 

lower lactic acid concentrations and a bactericidal phase at higher concentrations (5). 
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Though many studies implicate lactic acid in the antagonistic activity of 

Lactobacillus species, it rarely works alone. Lactic acid permeabilizes the outer 

membrane of Gram-negative bacteria, making them vulnerable to the activity of other 

molecules (6). One study suggests a synergistic action of lactic acid and unidentified 

proteinaceous substances in the bactericidal activity of L. acidophilus HN027, L. 

rhamnosus DR20, and Bifidobacterium lactis DR10 against E. coli O157:H7 (7). The 

bacteriocin nisin has broad-spectrum activity against Gram-positive and Gram-negative 

bacteria specifically when the outer membrane of the Gram-negatives is compromised 

(8).  

Hydrogen peroxide is another product of many Lactobacilli. L. crispatus and L. 

jensenii inhibit the growth of N. gonorrhoeae on plates through the production of H2O2 

(9). Vaginal E. coli colonization is significantly more frequent in women who lack H2O2-

positive Lactobacilli (10). A highly concentrated H2O2-producing Lactobacilli culture is 

toxic to Gardnerella vaginalis (11). A strong association exists between species 

associated with bacterial vaginosus and species inhibited by H2O2-producing Lactobacilli 

(12). Another group studied twenty-two vaginal Lactobacillus strains for production of 

lactic acid, H2O2, and bacteriocin. They found that 80% of these Lactobacillus strains 

produced bacteriocin that inhibited G. vaginalis, while 60% produced lactic acid, H2O2, 

and bacteriocin (13). 

One study investigated the killing activities of the human intestinal strain 

Lactobacillus johnsonii NCC933 and the human vaginal strain Lactobacillus gasseri 
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KS120.1 against several pathogens, including the UPEC strain CFT073, and found that a 

co-operative effect of lactic acid and hydrogen peroxide kills UPEC (14). 

Bacteriocins are protease-sensitive peptides and proteins produced by bacteria. 

Generally, bacteriocins exhibit antimicrobial activity against a narrow range of closely 

related bacteria, but some have a wider range against Gram-positives, and they are not 

frequently active against Gram-negatives (15). The bacteriocin family includes a wide 

variety of peptides and proteins, with various molecular weights and mechanisms of 

action (16). Three classes of bacteriocin exist. Class I bacteriocins, also known as 

lantibiotics because they contain the non-canonical amino acid lanthionine, are heat-

stable peptides that weigh less than five kilodaltons. Nisin, mentioned above, is a 

lantibiotic. Class II bacteriocins are also heat-stable peptides weighing less than five 

kilodaltons, but they lack lanthionine. Some class II bacteriocins are formed by a 

complex of two distinct peptides. Class III bacteriocins are heat-sensitive and weigh 

greater than thirty kilodaltons. 

Like nisin, many bacteriocins require the presence of an organic acid to be active 

against Gram-negative bacteria. However, this is not always the case. L. acidophilus 

produces a small bacteriocin that maintains activity across a very wide pH range against a 

narrow range of bacteria including E. coli (17).  

L. salivarius M7 produces salivaricin B, a broad spectrum bacteriocin, and L. 

acidophilus M46 produces acidocin B, which has a narrow activity spectrum within the 

genus Lactobacillus (18). A bacteriocin may be responsible for the inhibitory effect L. 

casei/rhamnosus (the species could not be identified) and L. acidophilus exert on UPEC 
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strains, a heat-sensitive effect retained under pH buffer and with a molecular weight 

greater than 12kDa – 14kDa (19).  

Lactobacillus species also produce antimicrobial molecules other than 

bacteriocins. One group described a microcin, a low molecular weight peptide, 

insensitive to proteases, whose production is mediated by plasmids (20). This molecule is 

produced by Lactobacillus species GG, is heat stable, and inhibits a wide range of species 

including E. coli in a pH range of 3 – 5. The authors speculate that the molecule might be 

a short chain fatty acid, rather than a peptide. Another group described another inhibitory 

molecule insensitive to protease treatment. It has a wide range of activity, is heat stable, 

and is produced by L. casei and L. helveticus (21). Another wide-range, protease-

insensitive molecule is secreted by L. acidophilus LA1, independent of lactic acid 

production (22). Recently, a study of proteins active against E. coli found in 

cervicovaginal lavage found that four corresponded to L. crispatus or L. jensenii proteins. 

The group described these proteins as distinct from bacteriocins due to their resistance to 

proteinase K. They also found the spent culture supernatant from L. jensenii to be 

bactericidal against E. coli, even when buffered to pH 6.3 (23).  

Our lab has demonstrated that the spent culture supernatant (SCS) of certain 

urinary isolates of L. crispatus can kill UPEC (27). These isolates appear to have a 

greater killing capacity against UPEC than urinary isolates of L. jensenii or L. gasseri. 

The killing is not dependent on contact between L. crispatus cells and UPEC, and UPEC 

does not need to be present to somehow induce L. crispatus to produce the active 

molecule, consistent with the hypothesis that they secrete a molecule with anti-UPEC 
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activity (27). The bactericidal molecule must be excreted, secreted or sloughed off the 

surface. The molecule could be unique and never studied before or alternatively, it could 

be a well-known product of lactic acid bacteria. 

Whereas lactic acid is produced by L. gasseri and L. jensenii, which do not 

possess the bactericidal activity of L. crispatus, it is possible that some urinary isolates of 

L. crispatus produce more lactic acid. Lactobacillus species also secrete biosurfactants, 

bacteriocins, and anti-microbial peptides (16, 29). Urinary L. crispatus may kill E. coli 

using lactic acid, hydrogen peroxide, a bacteriocin, a molecule similar to one of the many 

previously described, or a unique molecule. In the future, this bacterium could be useful 

as a probiotic and molecules it produces could be used as antibacterial compound.
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CHAPTER TWO: 

MATERIALS AND METHODS 

Culture Conditions 

 Lactobacillus isolates were grown on blood agar plates in anaerobic conditions at 

37C for 48 hours. Colonies were then inoculated into de Man, Rogosa and Sharpe broth 

(MRS) and grown in CO2 at 37°C for 48 hours. E. coli isolates were grown on tryptic soy 

agar (TSA) plates in ambient conditions at 37°C overnight. Colonies were inoculated into 

tryptic soy broth (TSB) and grown in ambient conditions at 37°C overnight. Other 

bacterial isolates from the urinary culture collection were grown on blood agar plates in 

anaerobic conditions at 37°C for 48 hours. Colonies were inoculated into TSB and grown 

in CO2 at 37°C for 48 hours. The Staphylococcus aureus and S. epidermidis strains 

(generous gifts from Dr. Alonzo) were grown on TSA plates, then inoculated into TSB 

and grown in ambient conditions at 37°C overnight. 

Bacterial Survival Assay 

 L. crispatus and NU14 were grown as described above. The L. crispatus was 

centrifuged for 2 minutes at 13000 rpm. The spent culture supernatant (SCS) was 

removed and filter-sterilized. Two mL each of NU14 and SCS were combined in a new 
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test tube, which was placed on a shaker at 37°C in ambient conditions. The negative 

control was two mL each of NU14 and MRS combined and maintained under the same 

conditions as the tubes containing SCS. Aliquots of 100 µl were taken at chosen time 

points. The samples were serially diluted and spread on TSA plates, which were placed at 

37°C in ambient conditions for 24 hours. Colonies were counted and the CFU/mL of 

NU14 calculated. 

 To test the effect of heat on killing, the SCS was heated in epi tubes on a heating 

block for either ten minutes or 60 minutes at 100°C. 

 To test the effect of pH on killing, the SCS was separated into 3 mL aliquots. 

Equal parts KH2PO4 and K2HPO4 were combined to make a buffer. The aliquots were 

prepared as follows: aliquot 1, no buffer added, pH 3.7; aliquot 2, added 1mL buffer, pH 

4.8; aliquot 3, added 2mL buffer, pH 5.74; aliquot 4, added 3mL buffer, pH 6.1. MRS 

was then added to each aliquot to bring the concentration of SCS to 50% in each, as 

follows: 1 mL aliquot 1 plus 1 mL MRS; aliquot 2 plus 2 mL MRS; aliquot 3 plus 1 mL 

MRS; aliquot 4, no MRS added. Two mL of each aliquot were added to 2mL NU14 for 

the experiment.  

 To test the effect of pH alone, I made an acidic solution of MRS and lactic acid. I 

used DL-lactic acid to make a lactic acid solution with the concentration of 65mM. This 

had a pH of 2.27. I added this solution to MRS until the mixture had a pH of 3.9. The 

final concentration of lactic acid in this mixture was 43.3mM.  
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 To test the effect of catalase on SCS, I added catalase to LC040 SCS to a 

concentration of 2.5mg/ml, then let it sit at 37°C for three hours before use.  

 To test for a co-operative effect of lactic acid and hydrogen peroxide, I made the 

solution of MRS and lactic acid as described above, then added hydrogen peroxide until I 

had a final concentration of 10 mg/ml.  

Lawn Competition Assay 

 LC040 and uropathogens were grown as described above. All uropathogen 

cultures were standardized to an O.D. of 1.000. 700µl of TSB were added to a TSA plate, 

50µl of uropathogen were added to the TSB, the liquid was spread over the plate, and the 

plate was allowed to dry. I made a 10x concentration of the LC040 culture. Once the 

plate was completely dry, I added a 10µl spot of LC040. A 10µl spot of MRS broth was 

the negative control. Once the spots had completely dried, the plate was incubated at 

37°C in CO2 for 24 hours. The results were recorded and characterized. 

Ethidium Bromide Assay 

Uropathogens and LC040 were grown as previously described. LC040 SCS was 

separated via centrifugation and filter-sterilized. I mixed 450µl uropathogen and 450µl 

SCS in a microcentrifuge tube and let each duplicate mixture sit at the bench for 20 

minutes, 1 hour, 2 hours, 4 hours, or 24 hours. This enabled me to determine which 

amount of time to use in future experiments with each uropathogen. The activity of SCS 

may be apparent within 20 minutes in some uropathogens, while for others the mixture 

should sit for up to 24 hours. I then diluted ethidium bromide 1:10 and added 100µl to the 
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tube, let the mixture sit for 5 minutes, performed a series of washes with PBS to remove 

the unbound ethidium bromide, and transferred the final mixture to a clean tube. I 

photographed the result under UV light. If DNA is exposed to the mixture, ethidium 

bromide will have bound and the liquid will glow under UV light. For a positive control, 

I heated the uropathogen at 100°C for 10 minutes and added TSB. For a negative control, 

I added MRS instead of SCS.
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CHAPTER THREE: 

RESULTS 

Background 

Summer intern Nikita Patel, under the supervision of Travis Price, spotted L. 

crispatus isolates onto lawns of E. coli strains (including several strains of UPEC) and 

observed no E. coli growth in the spotted zone. To characterize this behavior, Travis 

mixed strains of UPEC strain NU14 with filter-sterilized spent culture supernatants (SCS) 

of three different isolates each of three different Lactobacillus species (L. crispatus, L. 

jensenii, and L. gasseri) and of another commonly isolated urinary bacterium 

(Gardnerella vaginalis) (Figure 1). Two hours of incubation with L. crispatus SCS 

reduced UPEC’s colony forming units (CFU) per milliliter (mL) by approximately 6 

orders of magnitude. In contrast, it took 24 hours of incubation with SCS from the other 

two Lactobacillus species to reduce CFU/ml by two orders of magnitude. G. vaginalis 

SCS had no effect that does not depend on cell-cell contact. Thus, Travis determined that 

L. crispatus exhibits a species-specific bactericidal activity. At the time, we believed this 

activity was unlikely to result strictly from its production of lactic acid and hydrogen 

peroxide as the other Lactobacillus species also produce these two compounds. 

Furthermore, this bactericidal activity does not require cell-to-cell contact, as the SCS 

sufficed to kill UPEC. I tested the hypothesis that L. crispatus produces some secreted 
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bactericidal molecule and that the presence of another bacterium is unnecessary to 

stimulate its production.  

 

 

Figure 1: E. coli survival in culture supernatant of urinary isolates over time. Each bar 

shows the survival, in logs, of E. coli 2 or 24 hours after the addition of spent culture 

supernatant from one of the listed bacteria. Each bar is an average of several experiments 

using multiple isolates of the particular bacteria. The dotted bar represents the amount of 

E .coli living in the culture before the addition of supernatant. 

Screening Urinary Isolates Against Uropathogens 

Screening more urinary isolates of L. crispatus for their bactericidal activity 

would enable us to separate them into categories depending on whether they have high or 
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low activity. If necessary, the genomes of high and low activity isolates could be 

sequenced and those sequences could be compared for genetic differences that could 

account for their difference in activity. 

I compared the bactericidal capacity of three different L. crispatus isolates (Figure 

2). Of the three, LC040 had the greatest effect, reducing UPEC CFU/ml by about four 

logs after two hours incubation. By 24 hours, both LC040 and LC044 reduced CFU/ml 

below the level of detection. In contrast, LC020 had no significant activity against UPEC. 

I conclude that urinary isolates of L. crispatus can exhibit different levels of bactericidal 

activity. Because LC040 exhibited the strongest activity, I use it as my positive control. 

Because LC020 exhibited the least activity, I use it as a negative control or a comparison 

isolate where one is needed.  

I found a urogenital L. crispatus strain ATCC-33197 in our lab’s strain collection 

and compared its activity to that of LC040 (Figure 3). ATCC-33197 has bactericidal 

activity similar to that of LC040.  

If LC040 has similar activity against other uropathogens, I would be able to 

determine whether clear differences exist between affected and unaffected groups of 

uropathogens. This is the first step in elucidating the type of activity that is involved. 

Some known bactericidal molecules target the cell wall or membranes. These tend to 

separate Gram-positive and Gram-negative bacteria broadly into susceptible or resistant 

groups.  

 



14 

 

 

Figure 2: E. coli survival in culture supernatants of three L. crispatus urinary isolates over 

time. Each bar shows E. coli survival after the addition of spent culture supernatant. 

LC020, LC040, and LC044 are clinical isolates of L. crispatus. This graph shows 

averaged data from three experiments. 

To screen a prioritized set of uropathogens and other urinary isolates for their 

sensitivity to LC040, I used the lawn competition assay used previously by Travis Price 

and Nikita Patel (Table 1). No clear pattern emerged between sensitive and resistant 

uropathogens. In addition to the Gram-negative E. coli, LC040 killed a number of Gram-

positive Firmicutes, including multiple Staphylococcus species and Streptococcus 

anginosus. However, LC040 did not kill Klebsiella pneumoniae, a close relative of E. 

coli, nor did it kill Enterococcus faecalis or Streptococcus agalactiae, relatives of the 

sensitive Firmicutes. 
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Figure 3: E. coli survival in supernatants from LC040 and ATCC-33197 over time. 

“NU14” is the control with media added. 

 

 Killing on Plate Number of Isolates 

Tested 

E. coli + 5 

Proteus mirabilis + 1 

Klebsiella 

pneumoniae 

- 3 

Staphylococcus 

aureus 

+ 7 

Staphylococcus 

haemolyticus 

+ 2 

Streptococcus 

agalactiae 

+ / - 2 / 2 

Streptococcus 

anginosus 

+ 2 

Enterococcus 

faecalis 

+ / - 1 / 3 

Candida albicans + 1 

Table 1: Results of lawn competition assay on various urinary isolates. All isolates listed 

were tested two or more times. Each assay tested activity of LC040. 
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bacterial survival assay with S. aureus (Figure 4). LC040 killed S. aureus in liquid 

culture, but at a much slower rate than it killed UPEC. Using the lawn assay, I tested a 

number of different S. aureus strains, including several strains of MRSA (Table 2). All 

MRSA strains tested were killed by LC040 on the plate. 

MW2 

MRSA 2395 

MRSA 2404 

Newman 

LAC 

Table 2: list of S. aureus strains borrowed from Dr. Alonzo. 

 

 

Figure 4: Comparison of survival of E. coli and S. aureus in L. crispatus culture 

supernatant over time. “LC 910” is the S. aureus with supernatant added, “LC NU14” is 

the E. coli with supernatant added, and “MRS 910” and “MRS NU14” are the controls 

with media alone added to each bacteria. 
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Because no clear sensitivity pattern has emerged and because the LC040-induced 

death of the Gram-negative bacterium E. coli did not resemble the LC040-induced death 

of the Gram-positive bacterium S. aureus, our current hypothesis is that LC040 possesses 

two distinct bactericidal mechanisms.  

Traits of the Bactericidal Molecule 

Because different Lactobacillus species and different L. crispatus isolates might 

produce differing amounts of lactic acid, I measured the pH of the SCSs of LC040 grown 

in MRS, LC040 grown in buffered MRS, LC020, two isolates of L. gasseri, and one 

isolate of L. jensenii (Table 3). The SCS of LC040 has a lower pH than that of LC020, 

which was in turn lower than that of the other Lactobacillus species isolates. However, 

the pH of LC040 grown in buffered media was comparable with that of LC020. A 

comparison of bacterial survival assay results using SCS from LC040 grown in buffered 

media and SCS from LC020 shows that by 24 hours both SCSs have killed the UPEC 

strain NU14 below the level of detection (Figure 5).  

L. gasseri 59 4.2 

L. gasseri 56 4.18 

L. jensenii 847 5 

LC040  3.72 

LC040  

in buffered MRS 

4.3 

LC020 4.1 

Table 3: pH measurements for SCS of various bacterial cultures. 
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Figure 5: Comparison of E. coli survival in SCS from LC040 grown in buffered MRS and 

in SCS from LC020 grown in regular MRS. The buffer used was KH2PO4/K2HPO4. It 

was added while the media was made. LC040 grown in buffered MRS has a pH of 4.3, 

while LC020 grown in regular MRS has a pH of 4.1.  

To determine whether the low pH of the SCS caused the death of NU14, I added 

different amounts of the buffer KH2PO4/K2HPO4 to aliquots of LC040 SCS to achieve 

several higher pHs and tested the survival of NU14 in these new solutions (Figure 6). 

Even at the lowest buffered pH, 4.78, the SCS lost its ability to kill E. coli. Combined 

with the data from Figure 5, I conclude that the bactericidal activity of LC040 SCS is pH-

sensitive with a threshold between the pHs of 4.3 and 4.78. This could be because low pH 

is sufficient to kill NU14 or it could be that the putative bactericidal molecule is active 

below a certain pH. 
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Figure 6: E. coli survival in buffered SCS from LC040. The buffer used is 

KH2PO4/K2HPO4. The untampered SCS had a pH of around 3.7. The buffered SCSs had 

pHs of 4.78, 5.74, and 6.1.  

If pH alone is enough to kill NU14, a mixture of MRS and lactic acid should kill 

NU14. I tested this hypothesis using a mixture of MRS and 65mM DL-lactic acid, a 

concentration recommended by Atassi and Servin (14). This mixture had a pH of 3.9. I 

compared this mixture to LC040 SCS (Figure 7).  By 24 hours, the lactic acid mixture 

had not killed NU14. Therefore, I conclude that NU14 is killed either by a co-operative 

effect of lactic acid and hydrogen peroxide or by a unique molecule.  

To test whether hydrogen peroxide is required for the function of LC040 SCS, I 

added catalase to the SCS for a final concentration of 2.5 mg/ml and left the mixture for 

three hours, as in Kang et al., 2004 (30). The SCS with and without catalase killed NU14 

equally well (Figure 8). 
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Figure 7: Survival of NU14 in LC040 SCS versus survival in a mixture of MRS and 

lactic acid. The pH of LC040 SCS was 3.7. The pH of the lactic acid mixture was 3.9. 

To ensure that LC040 kills NU14 with a unique molecule/mechanism, I made a 

mixture of MRS, lactic acid, and hydrogen peroxide and tested its effect on NU14. This 

mixture contained a final concentration of 43.3 mM lactic acid as in an earlier 

experiment. I added hydrogen peroxide to a final concentration of 10 mg/ml. This 

concentration was one of several used in a similar experiment in Atassi and Servin (14). I 

compared the activity of this mixture to that of LC040 SCS (Figure 9).  The combination 

of lactic acid and hydrogen peroxide was not sufficient to kill NU14. Therefore, I 

conclude that there must be one or more unique molecules in the supernatant that kills 

NU14.  
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Figure 8: Survival of NU14 in LC040 SCS versus survival of NU14 in LC040 SCS with 

catalase added. Catalase was added to a final concentration of 2.5 mg/ml and the SCS 

was incubated at 37°C for three hours before being added to the NU14.  

  

Figure 9: Survival of NU14 in LC040 SCS or in a combination of MRS, 43.3 mM lactic 

acid, and 10 mg/ml hydrogen peroxide. 
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 Determining the stability of the active molecule will provide information 

concerning the nature of molecule. Bacteriocins and antimicrobial peptides are heat-

stable (15). Some must be processed to become active (31).  Although lactic acid and 

peroxide are heat stable, it is unlikely that they would become more active over time. 

Heating supernatant at 100°C for 10 minutes should denature the majority of 

proteins. Therefore, I did another bacterial survival assay to determine whether the SCS 

was as functional after heating as before (Figure 10). I found that the heated and 

untreated SCS kill at comparatively the same rate. The difference in degree of killing at 3 

hours was only present in one trial of the experiment, while the other two trials showed 

no difference. I also tested the activity of SCS after heating it for one hour at 100°C 

(Figure 11). I did not repeat this experiment. The single experiment showed that the SCS 

continues to function after this longer period of heat exposure. As heating did not destroy 

the activity, then the bactericidal molecule is unlikely to be a protein, unless it is a very 

stable one. 
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Figure 10: Comparison of E. coli survival in room temperature supernatant versus 

supernatant heated at 100°C for 10 minutes. 

 

 

Figure 11: E. coli survival in LC040 SCS heated for 60 minutes at 100°C. Experiment 

performed only once. 
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Because some molecules lose their activity over time, I tested LC040 SCS and 

LC020 SCS after leaving them to sit for 24 hours. I found that SCS becomes more potent 

over time, regardless of whether it was stored at room temperature or 4°C (Figure 12). 

LC040 killed 9 logs of NU14 in 2 hours instead of killing 4 logs, and LC020 killed 9 logs 

in 24 hours instead of killing 2 logs. Because the L. crispatus cells had been filtered out 

and therefore cannot be making more of the molecule, the molecule itself must become 

more active. It may be activated by a cleavage event, either by another molecule or by the 

molecule itself. This is unlikely to be due to any change in pH over time (Table 3). 

 

Figure 12: Comparison of E. coli survival in culture supernatant stored on the bench for 

24 hours and culture supernatant used immediately after separation from L. crispatus 

cells. Data for E. coli survival in culture supernatant stored in the refrigerator for 24 

hours closely resembles the bench data. 

The Ethidium Bromide Assay 

To test bactericidal activity against greater numbers of uropathogens, we needed a 

simpler, more rapid assay than the lawn competition assay. This assay also would be 
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useful to test bactericidal activity outside of this project, especially when determining the 

putative activity of other combinations of urinary isolates. 

Travis established the ethidium bromide assay on the principle that since ethidium 

bromide binds to DNA, it can be used to detect the presence of free or accessible DNA in 

a mixture of cells, either because the cells have lysed or because their membranes have 

been compromised. Therefore, bound ethidium bromide indicates the presence of dead 

cells. 

I modified the protocol to better remove the excess ethidium bromide through 

extra washes and swapping the mixture to a new tube before photographing. I then 

worked to determine how long a sample of NU14 needed to be exposed to LC040 SCS 

before enough DNA was present in the solution to be visibly bound by ethidium bromide 

(Figure 13). I did the same with S. aureus (Figure 14). However, when I measured the pH 

of the SCS, I realized that the acidity could kill enough bacteria to produce positive 

results in this assay. Originally I had planned to buffer the SCS to remove the effect of 

acidity and leave the effect of the molecule itself. However, I found that low pH was 

necessary to the function of the molecule, as described above (Figure 6), so I could not 

use the ethidium bromide assay to separate the activity of the acid from the molecule. 

This assay could be useful to screen for L. crispatus isolates that kill E. coli or to screen 

for killing interactions between other urinary isolates in our collection. 
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Figure 13: Ethidium bromide assay testing the effect of LC040 SCS on NU14. A) 

Positive control: NU14 heated at 100°C for 10 minutes; B-D) SCS added to NU14 for  a 

series of time periods: B) 20 minutes, C) 1 hour, D) 2 hours; E) Negative control: MRS 

added to NU14. 

 

Figure 14: Ethidium bromide assay testing the effect of LC040 SCS on S. aureus. A) 

Positive control: S. aureus heated at 100°C for 10 minutes; B) SCS added to S. aureus for 

24 hours; C) Negative control: MRS added to S. aureus.
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CHAPTER FOUR: 

DISCUSSION 

Identity of the Bactericidal Molecule 

 Lactobacillus species kill or inhibit the growth of other bacteria through secretion 

of organic acids, hydrogen peroxide, bacteriocins, and other antimicrobial molecules 

(16). On the basis of the results of my research, I can eliminate some of the options and 

speculate on the identity of the molecule.  

 When I added buffer to the SCS of isolate LC040 to test its activity at various 

pHs, I found that activity was dependent on a low pH (Figure 6). LC040 SCS normally 

possesses at an average pH of 3.7. Grow of LC040 in buffered media resulted in an SCS 

with a pH of 4.3 and retention of its bactericidal activity (Figure 5). Somewhere between 

pH 4.3 and pH 4.8, the pH is too high and the activity is lost. Thus, the bactericidal 

activity of LC040 SCS requires a pH below 4.8. Giuseppe Pistone, a Master’s student in 

our lab, will explore the range of pH between 4.3 and 4.8 to determine where the SCS 

loses its bactericidal activity.  

 Loss of activity above a certain pH could mean that low pH kills UPEC. 

However, a biologically relevant concentration of lactic acid, bringing the media to a pH 

of 3.9, was not sufficient to kill UPEC (Figure 7). Therefore, pH (caused primarily by 

excretion of lactic acid) must act together with some molecule or condition. Lactic acid 
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has been shown to be bactericidal in co-operation with hydrogen peroxide. Thus, I added 

catalase (which degrades hydrogen peroxide) to LC040 SCS, but it retained its 

bactericidal activity (Figure 8). A mixture of lactic acid and hydrogen peroxide added to 

media also did not kill UPEC (Figure 9). Therefore, hydrogen peroxide is not necessary 

for the bactericidal activity of LC040 SCS and a mixture of hydrogen peroxide and lactic 

acid is not sufficient.  

Thus, the bactericidal activity of LC040 SCS is not due to lactic acid alone, nor is 

it due to hydrogen peroxide. Because the unknown molecule is heat-stable (Figure 10), it 

is very unlikely to be a protein, as boiling for 10 minutes would denature most proteins. 

Bacteriocins are heat-stable, so the bactericidal molecule could be a bacteriocin. 

Bacteriocins are susceptible to proteases, so the next step in identifying the molecule 

should be to add a protease to the SCS. Because of the low pH, pepsin would be the best 

choice of protease. Most other proteases work best at a more neutral pH. Giuseppe 

intends to perform this experiment shortly. 

 Many bacteriocins are only active against a narrow range of bacteria closely 

related to the bacterium that secreted the bacteriocin (15). In the case of bacteriocins from 

Lactobacillus species, this narrow range is therefore within the Gram-positive phlya. 

However, lactic acid can permeabilize the outer membrane of Gram-negative bacteria (6). 

There are examples of Lactobacillus products that only kill Gram-negative bacteria in a 

narrow pH range or in the presence of high concentrations of lactic acid or another 

permeabilizing agent (7, 8). I speculate that this weakening of the Gram-negative outer 

membrane may be the reason lactic acid is necessary for the bactericidal activity of 
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LC040 SCS. However, it is also possible that the bactericidal molecule is modified in 

some way in the presence of lactic acid or cannot fold correctly at a more basic pH. 

Given the results of this project so far, I cannot make a firm conclusion.  

 High Performance Liquid Chromatography (HPLC) should be used to determine 

the size of the active molecule by fractionating the SCS and testing each fraction for 

bactericidal activity. If the molecule is both susceptible to protease and has a low 

molecular weight (<5 kDa), it may be a bacteriocin. The classification of bactericidal 

molecules can be complicated. For example, most bacteriocins have a narrow range of 

bactericidal activity confined to bacteria closely related to the bacterium that produces the 

bacteriocin (15). However, some bacteriocins have a wider molecular weight range. Class 

I and class II bacteriocins weigh less than five kilodaltons, but class III bacteriocins 

weigh greater than thirty kilodaltons (15). Where size is concerned, there does not seem 

to be a strict definition of what can be classified as a bacteriocin.  

 Lactobacillus species also produce bactericidal or inhibitory molecules that can be 

generally classified as antimicrobial peptides (16). If the molecule produced by LC040 is 

not sensitive to protease, it may not be a bacteriocin but may instead be a unique 

molecule. Lack of sensitivity to protease may also indicate that the molecule is not a 

peptide at all. After separating the SCS into fractions via HPLC, the active fraction 

should be sent for mass spectrometry analysis.  
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Molecule that kills S. aureus 

 When L. crispatus was spotted onto a lawn of UPEC, the killing zone was 

restricted to the spot itself. When L. crispatus was tested on a lawn of S. aureus, the 

killing zone extended out from the spotted inoculum, indicating diffusion of the 

bactericidal molecule. In the bacterial survival assay, however, LC040 SCS alone killed 

S. aureus to a lesser degree than it killed UPEC (Figure 4). These two differences suggest 

the possibility that UPEC and S. aureus are killed by different molecules/mechanisms. 

This is supported by the knowledge that many bactericidal molecules produced by 

Lactobacillus species have a narrow range of activity (16).  

 To determine whether S. aureus and UPEC are killed by different molecules, I 

would subject the LC040 SCS to the same conditions as I did for anti-UPEC activity (for 

example, boiling the SCS for 10 minutes or buffering the SCS). If this bactericidal 

activity was not heat-stable and/or pH independent, it would indicate that S. aureus was 

killed by a different molecule. After the anti-UPEC bactericidal molecule is identified 

and isolated, it could be tested against S. aureus. The molecule could also be removed 

from the LC040 SCS and the remainder could be tested against S. aureus. 

LC020 v LC040 

 LC020 SCS and LC040 SCS have different levels of anti-UPEC activity (Figure 

2). This could be because (1) they produce different amounts of the bactericidal 

molecule, (2) they produce different amounts of acid (LC040 SCS has a lower pH), or (3) 
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they produce different bactericidal molecules altogether. The first and second options 

seem more likely to me than the third.  

 To distinguish these three possibilities, I would propose to first perform the same 

experiments to test heat-stability and pH-dependence of the LC020 SCS. Once the 

bactericidal molecule in the LC040 SCS is identified, it should be possible to determine 

whether it is present in the LC020 SCS.  

Lack of Killing Pattern 

 LC040 kills both Gram-negatives and Gram-positives on the plate in lawn 

survival assays (Table 1). However, even within the limited number of bacteria I tested, 

there are some noticeable questions. For example, LC040 killed every strain of E. coli 

tested, including lab strains of UPEC (NU14 and CFT073), and several urinary isolates, 

but LC040 did not kill the closely related Klebsiella pneumoniae. Within the Gram-

positives, I found that some isolates of certain species (namely Streptococcus agalactiae 

and Enterococcus faecalis) could be killed while other isolates of the same species could 

not. In the case of E. faecalis, one isolate was killed and three were not, suggesting to me 

that I may have read the plates wrong for that one isolate. It can be difficult to tell 

whether killing has occurred on a spot or whether the lawn was diluted in that spot or the 

lawn was simply uneven. These experiments must be repeated and extended, something 

Giuseppe intends to do. 
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Future Directions 

 As he takes on this project, Giuseppe has begun to repeat some of my experiments 

and do some of his own. He has repeated many of my experiments using the UPEC strain 

CFT073 instead of NU14, and has found that LC040 SCS also kills CFT073. He has 

found that the bactericidal molecule remains stable after two weeks of storage. Through 

experiments focusing on many more time points than I sampled, he has found that the 

amount of E. coli killed by around two hours is not consistent, but the amount killed by 

six hours is much more consistent. This could explain why some of my experiments show 

much less killing at two hours than others.  

 There are many questions left to answer regarding this bactericidal molecule. 

What is the nature of the molecule and what is its mechanism of killing? Does the 

molecule require a low pH because lactic acid weakens the outer membrane of E. coli or 

because the molecule can only fold correctly at a low pH? Is there a cut-off pH after 

which the environment is too basic for the molecule to function or is the transition more 

gradual? Does a single molecule kill both Gram-negatives and Gram-positives, or are 

there more than one? Why is LC040 SCS more potent than LC020 SCS? My lab mates, 

Travis Price and Krystal Thomas-White have struck up collaborations to sequence the 

genomes of many of our urinary isolates, including L. crispatus. These sequenced 

genomes should help guide our efforts to identify the bactericidal molecule(s). 

 In conclusion, I found that some urinary isolates of L. crispatus produce a heat-

stable, pH-dependent, bacteridical molecule that kills uropathogenic E. coli. Other 

members of the lab will continue to study it. Hopefully, the compound could be used as 
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an antimicrobial therapy to fight urinary tract infections. Alternatively, the bacterium 

itself could one day be used as a probiotic to fight urinary tract infections.
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