
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Master's Theses Theses and Dissertations 

2016 

Characterization of Il-22-Producing Cells in the Human Thymus Characterization of Il-22-Producing Cells in the Human Thymus 

and the Mechanism by Which Il-22 Expression Is Modulated by and the Mechanism by Which Il-22 Expression Is Modulated by 

Thymic Epithelial Cells. Thymic Epithelial Cells. 

Nadine N. Morgan 
Loyola University Chicago 

Follow this and additional works at: https://ecommons.luc.edu/luc_theses 

 Part of the Immunology and Infectious Disease Commons 

Recommended Citation Recommended Citation 
Morgan, Nadine N., "Characterization of Il-22-Producing Cells in the Human Thymus and the Mechanism 
by Which Il-22 Expression Is Modulated by Thymic Epithelial Cells." (2016). Master's Theses. 3564. 
https://ecommons.luc.edu/luc_theses/3564 

This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It 
has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more 
information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
Copyright © 2016 Nadine N. Morgan 

https://ecommons.luc.edu/
https://ecommons.luc.edu/luc_theses
https://ecommons.luc.edu/td
https://ecommons.luc.edu/luc_theses?utm_source=ecommons.luc.edu%2Fluc_theses%2F3564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=ecommons.luc.edu%2Fluc_theses%2F3564&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.luc.edu/luc_theses/3564?utm_source=ecommons.luc.edu%2Fluc_theses%2F3564&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


 
 

LOYOLA UNIVERSITY CHICAGO 

 

 

CHARACTERIZATION OF IL-22-PRODUCING CELLS IN THE HUMAN THYMUS 

AND THE MECHANISM BY WHICH IL-22 EXPRESSION IS MODULATED BY 

THYMIC EPITHELIAL CELLS.  

 

 

A THESIS SUBMITTED TO 

THE FACULTY OF THE GRADUATE SCHOOL 

IN CANDIDACY FOR THE DEGREE OF 

MASTER OF SCIENCE 

 

PROGRAM IN INFECTIOUS DISEASE AND IMMUNOLOGY 

 

BY 

 

NADINE N. MORGAN 

CHICAGO, ILLINOIS 

DECEMBER 2016



 

ii 
 

ACKNOWLEDGEMENTS 

I would like to thank my basic science mentor, Dr. Phong Le for his guidance, 

direction and training. I must also thank my clinical mentor, Dr. Patrick Stiff for his 

contribution of his time, and his resources. Additionally, thanks go out to Dr. John 

Clancy Jr. and to my committee chair, Dr. Makio Iwashima, for their continued time, 

support, patience and suggestions on my project.  

I would also like to acknowledge the Infectious Disease and Immunology 

Research Institute, including its co-directors Dr. Katherine Knight and Dr. James Cook, 

and the graduate program director, Dr. Makio Iwashima, for providing the opportunity to 

obtain a unique master’s degree that will open additional professional opportunities for 

me in the future. Thanks to my family, and the friends that I have made at Loyola for 

their continual support and encouragement.  

 



 

iii 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS        ii 

  

LIST OF TABLES                  v 

  

LIST OF FIGURES                  vi 

  

LIST OF ABBREVIATIONS AND SURFACE MARKERS                   vii 

  

ABSTRACT             x 

  

CHAPTER ONE: LITERATURE REVIEW              1 

   Thymic function and thymic epithelial cells              1 

   Interleukin-22 (IL-22)                 2 

   IL-22 function in different tissues              4 

   Innate lymphoid cells              9 

   The development of NCR+IL-22+ILC3 and the regulation of IL-22 by               11 

   environmental cues.                        

   IL-22 expression and regulation of T cell populations                   12 

  

CHAPTER TWO: SPECIFIC AIMS                   15 

   Specific Aim 1. To determine if IL-22-producing cells are present                16 

    among human thymocytes and the identities of the IL-22-producing 

cells  

   Specific Aim 2. To determine if thymic epithelial cells modulate IL-22               16 

   expression by thymic and circulating ILC3s and whether the  

   modulation is mediated by Notch signaling via DL4 ligand  

  

CHAPTER THREE: RATIONALE AND EXPERIMENTAL DESIGN                    17 

   Specific Aim 1. To determine if IL-22-producing cells are present                      17 

   among human thymocytes and the identities of the IL-22-producing 

cells  

     Rationale:                    17 

      Experiment Design:                        17  

     1A. Determine if LIN- RORγt+ IL-22-producing cells are present                      17 

            in the pediatric human thymocytes  

      1B. Determine whether cells sorted lineage negative pediatric human                    18 

             thymocyte sample express IL-22 mRNA.  

   Specific Aim 2. To determine if thymic epithelial cells modulate the                     18 

   expression of IL-22 in RORγt+IL-22+ cells and whether modulation of     

   IL-22 expression is Notch dependent  

      Rationale:                 18 

      Experiment Design:                   19 

file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390098942
file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390098943
file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390098950
file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390098969
file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390098970
file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390098975
file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390098977
file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390098978
file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390098983
file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390099000


 

iii 
 

 

 

      2A. Determine if interaction between thymocytes and TECs can                   19 

             increase the frequencies of LIN- RORγt+ cells in the human  

             thymocyte population and whether this modulation is Notch   

             dependent  

      2B. Determine whether TECs also regulate the frequency of                   20 

             circulating peripheral blood LIN- RORγt+ cells in a Notch   

             dependent manner  

  

CHAPTER FOUR: RESULTS                   21 

   Identify IL-22+RORγt+ cells within the human thymus                   21 

   IL-22 mRNA expression in sorted LIN- cells and T cell subsets                    26 

   The expression of IL-22 by IL-22+RORγt+ cells following                     28 

   TEC/thymocyte co-culture                         

   Expression of IL-22 by IL-22+RORγt+ cells after PBMC/TEC                     31 

   co-culture  

  

CHAPTER FIVE: DISCUSSION                      38 

   IL-22-producing cells are present in the human thymus                      38 

   Thymic epithelial cells do not modulate intrathymic IL-22 expression                       40 

   ex vivo  

   Circulating LIN-IL-22+RORγt+ cells can produce IL-22 independent                             42  

   of TECs in vitro  

   The role of notch signaling in TEC modulation of IL-22 expression                          44 

   by LIN-IL-22+ RORγt +cells                                                     

   The significance of this study                         49 

  

CHAPTER SIX: MATERIALS AND METHOD                         50 

   Cells and Cell lines                         50 

      Human thymocytes                         50 

      Peripheral Blood Mononuclear Cells                         50 

      Thymic epithelial cells                         50 

   Flow cytometry and data analysis                         50 

   Cell co-culture                         52 

   Cell Sorting                         52 

   RNA isolation and reverse transcriptase                         53 

   Statistical analysis                         53 

                        

REFERENCES                         54 

  

VITA                         59 

file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390099009
file:///E:/nadine%20thesis/content%20thesis.xlsx%23RANGE!_Toc390099009


 

iv 
 

  



 

v 
 

LIST OF TABLES 

 

 

Table 1. Distribution of RORγt+ IL-22+ cells in pediatric human 

thymus 24 

   

 Table 2. The frequency of RORγt+ IL-22+ thymocytes in pediatric  25 

  human thymus determined by using RORyt negative   

  population gating strategy.  

 

 

Table 3. The mRNA expression of IL-22 in sorted cell subsets. 26 



 

 

vi 
 

 LIST OF FIGURES 

  

Figure 1.  IL-22 signaling pathway 3 

   

Figure 2. Group 3 innate Lymphoid Cells (ILC3s) 10 

   

Figure 3. The different subsets of IL-22-producing cells 13 

   

Figure 4. LIN- IL-22+ RORγt+ cells are detected within human thymocytes 22 

   

Figure 5. CD3+ IL-22+ RORγt+ cells are detected within the human thymus 23 

   

Figure 6. IL-22 mRNA expression in sorted LIN- and T cells subsets 27 

   

Figure 7. IL-22 and RORγt expression of thymoctyes co-cultured with 29 

  thymic epithelial cells (TECs)  

   

Figure 8. The frequency of RORγt+ IL-22+ cells among thymocytes does 

not significantly increased following TEC/thymocytes co-culture  

30 

   

Figure 9. IL-22 and RORγt expression following PBMC/TEC co-cultured  32 

   

Figure 10. The percentage of LIN- RORγt+ cells following PBMC/TEC co-

culture 

33 

   

Figure 11. The frequency of LIN-IL-22+RORγt+ cells increases when PBMC 34 

  were cultured with TEC-DL4  

   

Figure 12. The frequency of CD3+CD4+IL-22+RORγt+ cells increases when  35 

 PBMC were cultured with TEC-DL4  

   

Figure 13 The frequency of CD3+CD8+ IL-22+RORγt+ cells increases 

when PBMC were cultured with TEC-DL4 

36 

   

Figure 14. The frequency, but not the total cells number of CD8+ RORγt + 

IL-22+ cells increases when PBMC were cultured with TEC-DL4. 

37 

   

Figure 15. Model for the regulation of IL-22 production of circulating ILC3s. 48 



 

 

vii 
 

 

LIST OF ABBREVIATIONS AND CELL SURFACE MARKERS 

 

 

 
AHR Aryl hydrocarbon receptor 

APC Allophycocyanin 

AF750 Alexa-Fluorochrome 750 

CD Cluster of differentiation 

cDNA Complementary Deoxyribonucleic acid 

DL1 Delta-like 1 

DL4 Delta-like 4 

DSS Dextran sodium sulfate  

eF450 e-Fluorochrome 450 

ELISA Enzyme-linked immunosorbent assay 

FACS Fluorescence-activated cell sorting 

FBS Fetal bovine serum 

FCS Fetal calf serum 

FITC Fluorescein isothiocyanate 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

Hr Hours 

IBD Inflammatory bowel disease 

ID2 Inhibitor of DNA binding-2 



 

viii 
 

 

 

 

IFN-γ Interferon-gamma 

ILCs  Innate Lymphoid Cells 

ILC1 Group 1 innate lymphoid cells 

ILC2 Group 2 innate lymphoid cells 

ILC3 Group 3 innate lymphoid cells 

IL Interleukin 

IL-7R IL7 receptor 

IL-22R IL22 receptor 

JAK Janus kinase  

LIN- Lineage negative 

LPS Lipopolysaccaride 

MALT Mucosa-associated lymphoid tissue  

MHC Major histocompatibility complex 

NKT Natural Killer cells 

NCR Natural cytoxicity triggering receptor 

PBMC Peripheral blood mononuclear cell 

PCR Polymerase chain reaction 

PE Phycoerythrin 

PerCPeF710 Peridinin chlorophyll protein 710 

PE-Cy7 phycoerythrin-Cy7 

RNA Ribonucleic acid 

http://en.wikipedia.org/wiki/Janus_kinase


 

ix 
 

 

 

 

RT-PCR Reverse transcriptase-PCR 

STAT Signal transducers and activators of transcription 

TCR T cell receptor 

TEC Thymic epithelial cell 

Th T helper cell 

CCR7 C-C chemokine receptor 7 

CD3 Cell surface marker for T cell 

CD4 Co-receptor for helper T cells 

CD8 Co-receptor for cytotoxic T cells 

CD56 Cell surface marker for NK Cells 



 

x 

ABSTRACT 

Thymic epithelial cells (TECs) are indispensable for T cell development and 

maturation. Therefore, damages to the thymic epithelial cells are detrimental to thymic 

function and immune response. In young healthy individuals, TECs have a high 

regenerative potential and are capable of renewal from serious damage; however, the 

molecular mechanism of this recovery is unclear. A recent study has shown that IL-22-

producing ILCs are present in the mouse thymus and can regenerate thymic epithelial 

cells following radiation induced injuries (7). However, it is unknown whether IL-22-

producing cells are also found in the human thymus. Thus, the goal of this study is to 

identify IL-22 producing cells in the human thymus and to determine the mechanism by 

which IL-22 production is modulated. IL-22 is an effector cytokine that has been linked 

to promoting epithelial survival and proliferation within several secondary lymphoid 

tissues organs of mice and humans (53). To investigate the presence of IL-22-producing 

cells in the human thymus, we used flow cytometry and Reverse Transcriptase-PCR (RT-

PCR) to analyze IL-22 expression in human pediatric thymocytes. 

 We reported that the highest percentage of IL-22-producing cells found in ex vivo 

thymocytes are the LIN-RORγt+IL-22+ cells and CD4+ RORγt+IL-22+ T cell subsets. 

We also reported that the production of IL-22 by the LIN-RORγt+IL-22+ cells and the 

CD4+ RORγt+IL-22+ T cells are not solely modulated by TECs. Furthermore, although 

the frequency of circulating RORγt-expressing ILC3-derived IL-22 increased following 



 

xi 

PBMC co-cultured with TECs, we could not rule out whether this effect is likely due to 

allogenic T cell response and/or cytokines produced by the activated allogenic T cells. 

Since so much is still unknown about IL-22 biology, particularly in the human thymus, 

the results from study contribute to our current understanding of the biology of IL-22 

with the expectation that the new findings provide opportunities towards elucidating the 

mechanism of thymus regeneration, repair and maintenance.
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CHAPTER ONE 

INTRODUCTION – LITERATURE REVIEW 

Thymic function and thymic epithelial cells  

The thymus is an essential lymphoid organ in which T cell development occurs in mice 

and humans. Following T cell maturation, single positive CD4+ and CD8+ T cells are 

exported from the thymus into the peripheral and made up the T cell pool with T cell 

repertoire required for an effective immune response against non-self as well as 

pathogens (1). Even though age dependent thymic involution affects T cell development 

and the output of naïve T cells, more evidences are emerging to suggest that a normal 

thymus can export mature T cells throughout life, although with reduced capacity (1, 2, 

3).  

One crucial component of the thymic microenvironment is the thymic epithelial 

cells (TECs) which through cell-cell interactions, cytokine productions and chemokine 

secretions induce the development and differentiation of functional T cells from 

hematopoietic stem cells, a process term thymopoiesis (1-3). The thymic epithelium is 

susceptible to deleterious factors such as stress, inflammation, chronic infections and 

immunosuppressive drugs, which can lead to impaired thymopoiesis (2-5). Harmful 

factors such as stress and inflammation can cause tissue injuries. The thymus is believed 

to be able to recover from these tissue injuries (2-3).   However, a more extensive tissue 

damage such as that caused by myeloabative conditioning for organ transplantation can 

cause stromal cell injury and thymocyte death leading to lymphopenia (2, 3-6). Previous 

studies have shown that lethal or sublethal total body irradiation in mice lead to a 
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dramatic shrinkage of thymic volume and a significant decrease in thymic cellularity (7, 

8). For individuals like patients with chronic infections such as HIV, or patients with 

complications after transplantation such as GVHD, the regeneration of TECs is crucial to 

maintain thymus homeostasis and thymopoiesis. However, factors that contribute to the 

proliferation of TECs following damage are not well defined. In fact, there are limited 

studies investigating the role of TECs in prolonging/restoring thymic function (3). Since 

the thymus is such an important organ in host defense, therapeutic strategies are needed 

to regenerate the thymic epithelium to restore thymic function and to re-establish the T 

cell repertoire following T-cell immunodeficiency. In this context, it is necessary to 

investigate factors that contribute to the maintenance of homeostasis within the thymic 

microenvironment and particularly their role in triggering the regeneration program of 

TECs.  

Interleukin 22 

IL-22 is a newly characterized class 2 α-helical cytokine that is a member of the 

interleukin-10 family of cytokines (8-12). The human IL-22 shares 79% homology with 

the mouse IL-22; the IL22 gene is located on human chromosome 12 (9, 12, 14). IL-22 

signals through a heterodimer receptor complex (IL-22R) which comprised of the 

subunits IL-22R1 (IL22Rα1) and the IL-10R2 (IL-10Rβ2) (9-16). IL-22 binds first to IL-

22R1, and then the IL-22/IL-22R1 complex binds to the IL-10R2 to generate downstream 

signals (9-16). IL-22 uses the Jak-STAT signal transduction pathway to
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induce the phosphorylation of kinase JAK1 and Tyk2 and the STAT1, 3, and 5 

transcription factors which then induce proliferative and anti-apoptotic pathways (9, 12, 

and 13). IL-22 has been shown to also induce MAP kinase, MER/ERK, JNK and p38 

signaling pathway (9, 13, and 16). The IL-22R receptor expression is restricted to non-

immune cells with epithelial origin such as intestinal epithelial cells, respiratory epithelial 

cells, keratinocytes, acinar cells and hepatocytes; IL-10R is ubiquitously expressed (9-

16). Wolk et al. showed that there is basal level of IL-22Rα1 expression in the skin, 

pancreas, intestine, liver, lungs and the kidneys (13.14).

Figure 1. IL-22 signaling pathway. IL-22 binding to IL-22 receptor complex leads to 

the activation of the receptor-associated Janus kinases JAK1 and Tyk2, followed by 

activation of transcription factors STAT3, and often STAT1 and/or STAT5. Other 

signaling pathways that are recruited by this receptor are MAPK (Mitogen Activated 

Protein Kinase), p90RSK and p38. 
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Therefore, IL-22 signals non-immune cells, but it is produce by immune cells (13, 

14). Binding of IL-22 to its membrane receptor IL22Rα1/IL10Rβ2 is regulated by the 

competitive binding to the soluble IL-22 binding protein (IL-22Rα2) which has a higher 

affinity for IL-22 than IL-22Rα1 (17, 18). The source of IL-22 binding protein is mainly 

CD11+ c dendritic cells (DC). IL-22 binding protein is found in many cells and tissues 

such as the lungs, intestine, skin, pancreas, thymus and spleen (17). 

IL-22 function in different tissues 

IL-22 receptors are expressed by various cells including keratinocytes, 

hepatocytes, tracheal and colonic epithelial cells (9-15). There are many documented 

findings that support a role for IL-22 as a mediator of epithelial barrier function and in 

maintaining epithelial homeostasis (9-15). IL-22 promotes proliferation and survival by 

inducing expression of proteins (Muc1, Muc3, Muc10, Muc13) that make up the 

protective mucus layer, pro-survival genes (Bcl-2, Bcl-XL and Mcl-1), and proliferative 

factors (c-Myc, cyclinD1, Rb2 and CDK4) (9, 21, 23). In additional, several studies have 

shown that IL-22 induces mRNA expression of acute phase proteins such as serum 

amyloid A, α1- antichymotrypsin, and haptoglobin in the HepG2 human hepatoma cell 

line (13). IL-22 has differential functions in many tissues many of which includes 

preventing tissue destruction, enhancing wound healing, promoting epithelial cell 

regeneration, and inhibiting differentiation of keratinocytes (6-30). Below, I will provide 

a comprehensive review of the role of IL-22 at different barrier tissues.  

Very recently, studies have begun to unravel IL-22 role in tissue regeneration in 

the thymus (7, 8). Van der Brink and colleagues showed that following depletion of 

CD8+CD4+ T cells by radiation treatment, or by administration of synthetic steroid the



 
 
 

                                                                                                                                                                      5 

 

levels of IL-22 in the mouse thymus were elevated. They also demonstrated that IL-22- 

deficient mice displayed impaired thymic recovery; however, upon treatment with 

exogenous IL-22, thymic recovery was enhanced. In this study, IL-22 was produced by 

LTi cells that were induced by IL-23-secreting DC. The authors suggested that IL-22 

augments the proliferation and survival of thymic epithelial cells following thymic insult 

(7). Concurrently, Pan et al. also showed that increased IL-22 expression confers 

protection following thymic damage induced by high dose of dexamethasone and total 

body irradiation; both contribute to the depletion of CD8+ CD4+ T cells in the mouse 

thymus. In addition, these investigators demonstrated that Foxn1 a transcriptional factor 

that promotes the development of TEC, as well as, genes such as CCL25, and DLL4 were 

upregulated in TECs following thymic injury. They concluded that thymic insults 

promote the regenerative program in TECs (8). 

It is well documented that IL-22 has protective roles against enteropathogenic 

bacterial infections such as Citrobacter rodentium and Salmonella enteritidis (15, 16, 19, 

20). The protection occurs when IL-22 acts directly on intestinal epithelial cells, leading 

to the increase production of antimicrobial proteins such as RegIIIβ and RegIIIγ that 

promote immune responses against these gut pathogens (15, 16, 19).  

Further investigation into the role of IL-22 in the gut and the gut inflammation has 

led to evidences suggesting that IL-22 has both an inflammatory and a protective role in 

inflammatory bowel disease (IBD). In one type of IBD (Crohn’s disease), studies have 

shown that upregulated IL-22 levels act on subepithelial myofibolast and promote the 

expression of other pro-inflammatory cytokines and matrix degrading proteins. Patients
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with Crohn’s disease have been shown to have an elevated number of CD4+ IL-22-

producing cells as well as an increased level of LPS-binding protein (23).  

On the other hand, studies have shown that IL-22 confers protection when colitis, 

another IBD, was induced by acute dextran sodium sulfate (19). In this colitis model, IL-

22 acts on the intestinal epithelial cells, resulting in increased expression of pro-

inflammatory genes necessary for enhancing the integrity of intestinal barrier through 

inducing intestinal cell migration and antimicrobial peptides (19). 

Yet in another study, in which intestinal inflammation is induced by GVHD, IL-

22 was shown to have a protective role. Hanash et al., corroborated this finding in their 

study by using bone-marrow chimeras as secondary transplant recipients to elegantly 

illustrate that transplantation of MHC mismatched bone marrow into IL-22-deficient 

recipients caused more severe pathology in the intestinal tract (21). The findings 

demonstrated that the recipient-derived hematopoietic cells produce IL-22 which protects 

epithelial stem cells from GVHD-induced cell death (21). 

In addition to the GI tract, IL-22 also has been shown to play a protective role in 

inflammatory conditions in organs such as the liver, pancreas and lungs. A report by 

Zenewicz et al. studying the role of IL-22 on hepatocytes during acute liver inflammation 

demonstrated that IL-22 deficient mice are extremely susceptible to hepatitis, and that 

adoptive transfer of IL-22+ Th17 cells protected hepatocytes during ConA- mediated 

hepatitis (22). In another study, it was also shown that IL-22 prevents systemic 

inflammation though a mechanism that involves expression of lipopolysaccharide-

binding protein in hepatocytes (23). Furthermore, IL-22 confers survival of hepatocytes 

by upregulating anti-apoptotic proteins such as Bcl-xL and Bcl-2 via STAT3 (23).  
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Data from previous work also suggest that IL-22 mediates direct protection 

against tissue destruction in a mouse model of hepatitis and acute pancreatitis (24-26). 

Radaeva et al. reported that there is a significant IL-22 production and T-cell infiltration 

following Concanavalin A induce hepatitis (24). Colletti et al. expanded on these findings 

showing that IL-22 plays a direct role in hepatocytes protection which is not limited to T 

cell-mediated hepatitis. They further demonstrated that there was an increase in IL-22Rα 

levels at early time point after partial hepatectomy, and that blocking of IL-22 with a 

neutralizing IL-22 antibody could delayed liver regeneration (25). In the context of the 

pancreas, Xue, Jing et al., found that IL-22 provides protection against acute pancreatitis 

by upregulating IL-22Rα1 levels on pancreatic acinar cells following the administration 

of exogenous IL-22. The effect of administration of IL-22 led to a reduction of acute 

pancreatitis and associated lung injury, which is mediated through AhR. Mice with 

blunted AhR activation develop acute pancreatitis and the protective effect of IL-22 is 

specific because IL-22 blockade abrogate the effect (26). 

In the lungs, studies have shown that IL-22 is critical for promoting host 

protective immunity against bacterial pathogens, reducing inflammation and promoting 

lung tissue repair (27-30). For example, during Klebsiella pneumonia infection IL-22 

promotes the production of inflammatory mediators such as IL-6 and G-CSF and 

chemokines such as CXCL1, CXCL5, and CXCL9 from air way epithelial cells (27). 

Although IL-22 have no substantial direct role on viral pathogens, Kumar et al. showed 

that following epithelial cell damage by influenza infection in mice, IL-22 derived from 

conventional NK cells were crucial for the regeneration of tracheal and epithelial cells 

after injury (28). In this study, IL-22-deficient mice challenged with influenza virus failed 
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to regenerate tracheal epithelial cells and displayed a decrease in the proliferation of 

tracheal epithelial cells. However, adoptive transfer of IL-22 sufficient NK cells into IL-

22-deficient mice challenged with influenza virus restored the regeneration of tracheal 

epithelial cells as well as protect against inflammation (28). In additional, Taube et al. 

also showed a role for IL-22 produced by innate lymphoid cells in limiting allergenic 

airway disease, since the administration of exogenous IL-22 to allergen sensitive Il-22 

deficient mice prior to challenge with antigen displayed reduction of allergic asthma 

mediated cytokines, as well as, a reduction in inflammation and airway constriction (29).  

In addition to anti-inflammatory role, IL-22 has been suggested to play a pro-

inflammatory role in psoriasis, a chronic autoimmune disease of the skin (14, 16, 31). 

Investigators focus on characterizing the effect of IL-22 on keratinocytes have so afar 

shown that IL-22 induces antimicrobial proteins, reduces differentiation-associated 

protein, and promotes mobility regulating proteins such as matrix metalloproteinase 1 and 

3 (13, 14).  

The effect of IL-22 on keratinocyte mirrors the phenotype of psoriasis’s patients; 

furthermore, psoriatic plaques and the blood of psoriasis’s patients displayed high 

expression of IL-22 (14, 31). Wolk et al., confirmed the role of IL-22 in psoriasis with the 

observation that transgenic mice that over-express IL-22 displayed psoriasis-like skin 

alterations (31). Adding to this finding, Zheng et al., used IL-22-deficient mice to 

demonstrate that the ablation of IL-22 diminished IL-23-dependent dermal inflammation 

(32). Overall, these data demonstrate that depending on the

 cytokine and tissue microenvironments or target cell types, IL-22 display either 

protective or inflammatory effects (23-32).  
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Innate lymphoid cells 

IL-22 are produce by group three innate lymphoid cells (ILCs). ILCs are a 

heterogeneous population of cells that are important in innate immunity and lymphoid 

tissue formation (17, 19, 22-28). ILCs lack lineage markers (LIN-) and in humans are 

defined as negative for CD1a, CD3, CD11c, CD34, CD123, TCRαβ, TCRγδ, BDCA2, 

FcεRl, CD19, CD14 and CD16 (22-25). All LIN- ILCs express the lymphoid progenitor 

marker IL-7 receptor α chain (IL-7Rα; CD127) and the cytokine common gamma (γc) 

receptor chain (22, 27). ILCs require IL-7 and ID2 (inhibitor of DNA binding-2) for their 

development and maintenance (23-27).  

ILCs produce many helper (Th) cell-associated cytokines (Figure 2 and 3) and can 

be divided into three distinct cell subsets: ILC1s, ILC2s and ILC3s based on their 

cytokines production and transcription factors expression (17, 2-23-24, 28). Within the 

group three ILCs (ILC3s) are subtypes that produce IL-22 and depend on the 

transcriptional factor RORγt (RORC- human analogue) for their development and 

function (16, 21-24, 28). In humans, RORγt+IL-22+ ILC3 cells express the natural 

cytoxicity triggering receptor 46 (NKP46) as well as NKP30 and NKP44; NKP44 is 

unique for humans and is not expressed in mice. The ILC3s subtype NCR+IL-22+ is the 

proposed new nomenclature; previously, these cells have been referred to as NCR22, 

NKR-LTi, NK22 and ILC22 cells (17, 23-28, 53). NCR+IL-22+ILC3s have been shown 

to originate from a lineage distinct from the conventional Natural Killer (NK) cells  
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although they both express NK receptor (NKP44) and over 50% of NCR+ILC3s also 

express CD56 (29, 30). As shown in Figure 2, other subtypes of group 3 ILC3s include 

NCR-ILC3s and LTi cells. These cells also depend on RORγt and IL-7Rα but have been 

shown to produce both IL-22 and IL-17. In mice and humans, NCR+IL-22+ILC3s are 

present in secondary lymphoid organs such as the spleen, lungs, lymph nodes, tonsils and 

other intestinal lymphoid tissue (17, 23-30). Murine studies have shown that ILC3s 

development and function depended on several different cytokines, chemokines and 

Figure 2. Group 3 innate lymphoid cells (ILC3s). Group 3 ILCs are characterized 

as LIN-cells (CD3-CD4-CD8-) that express the transcriptional factor RORγt. There 

are three subgroups of ILC3s based on the expression of NCR and cytokine 

production; NCR+ILC3 have been shown to produce only IL-22 while NCR-ILC3 

and LTi cell produce IL-17 and IL-22. LTi cells are mostly present during fetal 

development.  
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transcriptional factors. ILC3s express the receptors IL-1R1, IL-7R, IL-23R, IL-2Rβγ and 

c-kit (5, 17, 23, 22-24, 29). Studies have indicated that IL-22–producing ILC3s can be 

activated by cytokines released by the epithelium (17, 28-31). These cytokines include 

IL-23, IL-7, IL-21, IL-6 and IL-1β that can stimulate IL-22-producing cells 

differentiation, function and survival (17, 22-31). In additional, ILC3s express CCR6 the 

chemokine receptor for CCL20, which influences the localization and expression of IL-

22 and may be involved in the migration of ILC3s to different periphery tissues from the 

bone marrow (17, 22, and 32). 

The development of NCR+IL-22+ILC3 and the regulation  

of IL-22 expression by environmental cues 

The transcriptional factors RORγt, AhR and Notch have been shown in murine 

models to be required for ILC3 development (9, 8, 17, 20, 24, 28, 29, 31). The lack of 

RORγt in mice impairs the development of ILC3s (17, 28). Several studies have indicated 

that mouse innate lymphoid cells that are RORγt negative fail to produce IL-22 (7, 8, 18, 

24 and 26). Ahr-deficient mice showed reduced expression of IL-22 in the small intestine 

and colon which suggest a role for AhR in the maintenance and functions of ILC3s (17, 

39).  

There are not many studies addressing the role of Notch signaling in the 

development of ILC3s. These studies have shown that in mice, AhR induces ILC 

development in a Notch -1 and Notch -2 dependent manners (33-35). Further evidence 

supporting a role for Notch signaling includes studies which showed that blocking Notch 

signaling in hematopoietic cells reduced the levels of NKp46+ ILCs in the intestinal 

lamina propria (17, 28, 33, 36). Several studies have also link the role Notch signaling in
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ILC development and function within a specific microenvironment of ILCs (9, 17, 33-34, 

36-38). One study has indicated that prolong Notch signaling in the mouse thymus 

induced the differentiation of T cells over ILCs (9). Interestingly, another study has also 

recently shown that higher strength Notch signaling favors ILC2s generation over T cells 

in the human thymus (38). 

IL-22 expression and regulation in T cells population 

In humans, IL-22 is produced mainly by activated T cells and NK cells (9, 12, 

13). The major αβ T cell subsets that produce IL-22 are T helper 22 (Th22) cells, Th1 

cells and Th17 cells. The presence of the different cytokines (Figure 3) and the 

expression of different transcriptional factors contribute to the differentiation and 

maintenance of these cell types.  

Th17 cells were the first cell subset to be characterize as IL-22 producers. It was 

later shown that Th22 a subtype of Th17 cells produced IL-22 but not IL-17. It is unclear 

whether RORγt is necessary for these cells function and maintenance, however like the 

NCR+IL-22+ILC3s, Th22 cells express CCR6 (12,13). In human peripheral blood, about 

35% of all IL-22-producing CD4+ T cells were Th1 cells (10). The cytokines IFN-γ and 

Tbet are important for IL-22 production by the Th1 cells. Th1 cells have high expression 

of IL-18R, and studies have shown that IL-12 and IL-18 synergize to enhance IL-22 

expression in Th1 cells (10). Other αβ T cell subsets that produce IL-22 include a 

functional distinct subset of CD8+T cell termed Tc22 cells. Studies have shown that IL-

21 can induce human naïve CD8+ T cells to differentiate into Tc22 cells, however, these 

cells are found mostly in the tissue or blood following infection and cancer (12). These 
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cells also express the transcriptional factor RORγt. Notch plays an important role in the 

regulation of peripheral T cell differentiation. Since the Notch 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ligand DL4 promotes the expression of RORγt+ and expansion of CD8+ T cells and 

CD4+ T cells (40-42). Other innate cell types that produce IL-22 include γδT cells, NK 

(natural killer) T cells and NK cells. Murine IL-22-producing γδT cells express high level 

of IL-18R. (8). Studies have shown that in these cells IL-18 together with IL-23 induce 

 

Figure 3. The different subsets of IL-22-producing cells. The different cytokines 

required for the differentiation of cells into the different subsets of IL-22-producing 

cells. 
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IL-22/IL-17 production, and enhance RORγt+ and IL-23 expression (13). IL-22-

producing γδT cells express RORγt+, AHR and CCR6. Studies have also shown that 

NKT cells isolated from mouse spleen can be stimulated by αCD3/αCD28 to produce IL-

22 (13, 28). IL-22-producing NK cells found in the gut mucosa have also been described 

in both humans and mice.  
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CHAPTER TWO 

SPECIFIC AIMS 

Thymic epithelial cells (TEC) are an essential component of the thymic 

microenvironment and play pivotal roles in the generation of mature T cells expressing T 

cell receptor αβ chain through a process termed thymopoiesis (1-3). Thymic tissue 

injuries caused by radiation, chronic inflammation, immunosuppressive therapies and 

infection lead to alterations in thymic epithelial cell function and survival, resulting in 

thymic dysfunction leading to compromised immune (1-4). Therefore, the regeneration of 

thymic epithelial cells following these situations is critical to maintain thymic function. 

Several murine studies have shown that the production of IL-22 by IL-22- producing 

cells promote epithelial cells proliferation, differentiation and survival in the gut, lungs, 

liver and spleen (7-12). Recent studies in mice have shown that following radiation 

treatment, innate lymphoid cells group 3 (ILC3s) in the thymus produce IL-22 that 

induces epithelial cell proliferation, leading to the regeneration of thymic function caused 

by the radiation induced thymic injury (7). Whether IL-22-producing ILC3s are also 

present in the human thymus has yet to be investigated. I hypothesized that IL-22-

producing cells are present in the human thymus. Because, TECs are known to function 

through cell-cell contacts and the production of cytokines, I further hypothesized that that 

interaction between TEC and IL-22-producing cells modulates IL-22 expression. Lastly, 

because TEC express the Notch ligands Delta-like 1 (DL1) and Delta-like 4 (DL4), I 

investigated whether Notch signaling mediates IL-22 expression in 
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IL-22-producing cells. To test the above hypotheses, I proposed the following two 

specific aims:  

Specific Aim 1. To determine if IL-22-producing cells are present amongst human 

thymocytes and the identities of the IL-22-producing cells. 

 

a) Determine whether the LIN- (CD3-CD4-CD8-CD56-) RORγt+ expressing IL-22 

cells (ILC3s) are present in pediatric human thymocytes by flow cytometry. 

b) Determine whether the sorted LIN- (CD3-CD4-CD8-CD56-) RORγt+ (ILC3s) from 

pediatric human thymocytes express IL-22 mRNA. 

Specific Aim 2: To determine if thymic epithelial cells (TECs) modulate IL-22 

expression by thymic and circulating ILC3s and whether the modulation is 

mediated by Notch signaling via DLL4 ligand.  

a) Determine whether co-culturing human thymocytes and TECs increases the 

frequencies of LIN-RORγt+IL-22-producing cells in a Notch dependent manner. 

b) Determine whether TECs also regulate the frequency of circulating peripheral blood 

LIN-RORγt+IL-22-producing cells in in a Notch dependent manner.
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CHAPTER THREE 

RATIONALE AND EXPERIMENTAL DESIGN 

Specific Aim 1. To determine if IL-22-producing cells are present amongst human 

thymocytes and the identities of the IL22-producing cells. 

.   

Rationale: A recent study has identified a population of RORγt+ innate lymphoid cells in 

the mouse thymus. These cells were shown to be critical for thymic tissue repair 

following radiation damage (21, 22). Literatures have established that RORγt+ IL-22-

producing cells are present in tonsil, lung, spleen and intestine in both mice and humans 

(17, 23-30). Although RORγt+ IL-22-producing cells are found in the mouse thymus, it is 

unknown whether phenotypically similar populations of RORγt+IL-22-producing cells 

are also present in the human thymus. The goal of Aim 1 is to determine whether 

RORγt+ IL-22-producing cells (ILC3s) are present in the human thymus.  

Experimental Design:  

1A. Determine if the LIN- RORγt+ IL-22-producing cells are present in pediatric 

human thymocytes. To investigate the presence of IL-22-producing (ILC3s) in the 

human thymus, we used flow cytometry to determine the phenotype of IL-22-expressing 

cells within cryopreserved ex vivo pediatric human thymocyte samples. For analysis of 

the percentage of RORγt+ IL-22-producing cells within the lineage negative cells, two 

different negative control method were used: an isotype control for both RORγt and IL-

22, and a RORγt negative control since cells that are RORγt- fail to produce
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IL-22. All flow cytometry data were analyzed using fluorescent activated cell sorting 

(FACS) on a Fortessa and FlowJo software version 7.6.5 (Tree Star, Inc, Ashland, OR). 

The average percentages of LIN- IL-22+RORγt cells in thymocytes from three different 

donors were calculated for statistical analysis. 

 

1B. Determine whether sorted lineage negative pediatric human thymocyte sample 

express IL-22 mRNA. To confirm the presence of IL-22, lineage negative (CD3-CD4-

CD8-) thymocytes and the T cells subsets (CD4+ T cells, CD8+Tcells, CD8+CD4+ T 

cells and CD3-CD4+CD8+ T cells) within the human thymocyte population were sorted 

from ex vivo cryopreserve human thymocytes and IL-22 transcript levels of the sorted 

populations were measured by RT-PCR. Expression of GAPDH was used to establish 

relative expression levels.  

Specific Aim 2: Determine if thymic epithelial cells (TECs) modulate the expression 

of IL-22 in RORγt+ IL-22+ cells and whether modulation of IL-22 expression is 

Notch dependent.   

Rationale: TECs have been shown to an essential function in the development of 

T cells (1, 2, 4, and 14). TECs mediate their functions through bidirectional signaling 

involving direct contact by ligand–receptor interaction and cytokine production (4, 14, 20 

and 21). IL-22-producing cells (ILC3s) can be activated by cytokines produce by 

epithelium (17, 28). TECs has been shown to express Delta-like 1 and Delta-like 4 

ligands that bind to the receptor Notch-1 expressed on other cell types (22, 23, 24).
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Several studies have implicated a role for Notch signaling in innate lymphoid cell 

development and function through the induction of Notch 1 and Notch 2 by AhR (9, 17, 

29, 34, 35, 37-39 and 30). Our first goal is to determine whether interaction between 

thymocytes and TECs can increase the percent and total cell number of IL-22-expressing 

cells within the thymocyte population; and secondly, to investigate whether IL-22 

expression can be increase by TECs in a Notch dependent manner. 

Experimental Design: 

2A. Determine if interaction between thymocytes and TECs can increase the 

frequencies of LIN-RORγt+ cells in the human thymocyte population and whether 

this modulation is Notch dependent. To test whether Notch plays a role in TEC 

regulation of IL-22 expression by LIN- RORγt+ cells, we used flow cytometry to 

compare the percent and the total cell numbers of LIN- RORγt+ IL-22-producing cells 

when thymocytes were co-cultured with two different TEC cell lines: TEC-DL4 which 

overexpress the Notch ligand DL4 and TEC-84 which expresses low levels of human 

DL4. Thymocytes were cultured for 2 and 4 days with TEC lines and harvested following 

2 hrs of monensin treatment. The cultured thymocytes were analyzed for cytoplasmic IL-

22 by flow cytometry. Isotype controls for RORγt and IL-22 were used to define RORγt 

positive and IL-22 positive population in the LIN- thymocyte subset. The Mann-Whitney 

U test was used for statistical test and significance was determined at p≤0.05.
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2B. Determine whether TECs also regulate the frequency of circulating peripheral 

blood LIN-RORγt+IL-22-producing cells in in a Notch dependent manner. 

Rationale: The microenvironment of ILCs has been shown to have different influence on 

their development and their regulation (8, 25, 26, 21, 28 and 31). Since ILC3s have been 

shown present within the peripheral blood, we next determine whether interaction 

between PBMCs and TECs could increase d IL-22 expression in ILC3s and whether 

enhanced IL-22 expression is Notch dependent. To determine if interaction between 

PBMCs and TECs can increase the percentage and the total cell numbers of RORγt-

expressing ILC3s within peripheral blood. Human PBMCs were co-cultured with TEC-

DL4 or TEC-84 and then the non-adherent cells were analyzed using flow cytometry.  To 

test this, PBMCs were cultured 4 days with each TEC line, harvested following monensin 

treatment and IL22-producing cells were assessed by flow cytometry. For analysis, I 

gated on the LIN- population, then assess fractions that are positive for RORγt and IL-22 

as described in previous sections. The Mann-Whitney U test was used for statistical test 

and the significance was determined at p≤ 0.05. 
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CHAPTER FOUR 

RESULTS 

Identifying LIN-IL-22+RORγt +cells within the human thymus 

IL-22 expressing cells have been identified in mice thymus, however it has yet to 

be shown that a phenotypically and functionally similar cell subset is present in the 

human thymus. We have investigated the presence of IL-22-producing cells in the human 

thymocytes. As shown in Figure 4, LIN- cells were selected for which were further 

analyzed for the IL-22+RORγt+ cells. The quadrants for positive and negative were 

based on unstained cells, cells stained with isotype control for IL-22 and RORγt, and by 

RORγt negative controls gating. Based on our isotype control gating strategy, we 

observed that an average of 1.08 % of the lineage negative thymocyte population were 

RORγt+ IL-22+ cell (Table 1). In contrast, gating based on RORγt negative population 

showed an average 1.49% RORγt+ IL-22+ cells (Table 2). Since these cells express the 

identification markers associated with group 3 innate lymphoid cells we term them ILC3s 

and therefore there is an average 1.0-1.5% ILC3s found in the human thymus at steady 

state.  

We next evaluated the presence of other IL-22-producing cells such as γδ T cells, 

CD8+ and CD4+ T cells which are found in the human thymus that have been indicated 

to produce IL-22 in other organs (17, 23-30). Figure 5 is a representative flow cytometry 

profile of the CD3+CD8+CD56- T cells. The CD4- CD8- T cells, CD4+ T cells, CD8+T 

cells and CD4+CD8+ T cells were defined within the CD4 CD8 lymphocyte gate 

followed by gating on CD3+ and CD56- cells.
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Figure 4. LIN- IL-22+ RORγt+ cells are detected within the human thymus. (A) 

Identification of LIN- cells. 1-2 x 106 ex vivo thymocytes (sample 64) were stained 

with surface markers CD3, CD4, CD8, and CD56 and then intracellularly stained for 

IL-22 and RORγt; middle panel shows the gating for CD4-CD8- cells; right panel 

shows gating for the CD3 negative and CD56 negative population. (B and C) Two 

strategies to detect RORγt pos IL-22 pos populations: (B) Based on isotype control for 

RORγt; (C) Based on RORγt neg and pos populations. Data shown are from a 

representative analysis of thymocyte sample 64 
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Figure 5. CD3+ IL-22+ RORγt+ cells are detected within the human thymus.                  

A) Identification of CD3+CD8+CD56- cells. 1-2 x 106 ex vivo thymocytes (sample 64) 

were stained with surface markers CD3, CD4, CD8, and CD56 and then intracellularly 

stained for IL-22 and RORγt. Thymocytes were gated first on CD4-CD8+ then on the 

CD3+ CD56- population. Data shown are a representative profile of CD3+CD8+CD56- 

cells using thymocyte sample #64. B and C) The CD3+CD8+CD56-RORγt+IL-22+ cells. 

Data are representative of the gating strategy for isotype control and RORγt negative 

gating to determine IL-22-expressing cells. 
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For the analysis of the percentage of RORγt+ IL-22-producing cells within the 

thymocytes population again we used our two-different negative control method: an 

isotype control for both RORγt and IL-22, and gating on the RORγt negative population. 

We found cells within the thymocyte population that were CD3+CD8+ (CD8 + T cells), 

CD3+CD4+CD8+ (double positive (DP) cells), CD3+CD4-CD8- (double negative (DN) 

cells) and CD3+CD4+CD8-(CD4+ T cells) that express both RORγt and IL-22. Using the 

isotype control (Table 1), we found that an average percentage of the 1.11% CD3+CD4+ 

T cells, 1.81% CD3+CD8+T cells and the 0.63% CD3+CD4-CD8- cells express both 

RORγt and IL-22.

 

Table 1. Distribution of RORγt+ IL-22+ cells in human thymus Three ex vivo cryopreserved 

pediatric thymocyte samples were evaluated to determine the phenotype of IL-22-expressing 

cells within the human thymus. 1.0-2.0 x 106 thymocytes were stained with surface markers 

CD3, CD4, CD8, and CD56 then intracellularly stained for IL-22 and RORγt. The percent of 

CD4, CD8 populations was determined from the viable lymphocyte fraction followed by 

selecting for CD3 fractions. Quadrants for positive and negative were based on isotype control 

for IL-22 and RORγt.  
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 Using the RORγt negative population gating (Table 2) we found that an average of 

1.13% CD3+CD4+ T cells, 2.89% CD3+CD8+ T cells and the 3.77% CD3+CD4-CD8- T 

cells that express both RORγt and IL-22. Taken together the data indicate that 1.2% of 

IL-22-producing cells in the human thymus are CD4+ T cells, 2.4% are CD8+ T cells, 

and 2.2% are double negative, or double positive cells. There is a lot of variability 

between the percentages of each cell population from the different samples. These may 

be due to biological variability in the human samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The frequency of RORγt+ IL-22+ thymocytes in pediatric human 

thymus determined by using RORyt negative population gating strategy.        

Three ex vivo cryopreserved pediatric thymocyte samples were evaluated to determine 

the phenotype of IL-22-expressing cells within the human thymus.  1.0-2.0 x 106 

thymocytes were stained with surface markers CD3, CD4, CD8, and CD56 then 

intracellularly stained for IL-22 and RORγt. The percent of CD4CD8 populations was 

determined from the viable lymphocyte fraction followed by selecting for CD3 

fractions. The percentage of RORγt+ and IL-22+ positive cells were based gating on 

RORγt negative population.  
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IL-22 mRNA expression in sorted LIN- cells and T cell subsets 

 To confirm that IL-22 was expressed in subsets of human thymocytes, we next 

investigate IL-22 mRNA expression in these thymocyte subsets. Cells were sorted based 

on the expression of CD3, CD4, CD8 and CD56. Five different cell subsets were sorted; 

these include: CD3+CD4+CD56-(CD4+ T cells), CD3+CD8+CD56- (CD 8+ T cells), 

CD3+CD4-CD8-CD56- (DN cells), CD3+CD4+CD8+ (DP cells) and CD3-CD4-CD8- 

cells (ILC3s). The RNA was isolated and IL-22 mRNA expression was evaluated in the 

five different cell subsets (Table 3). 

 

 

 

 

 

 

 

 

 

Table 3. The mRNA expression of IL-22 in sorted cell subsets. 40x106 cells were 

sorted based on the expression of CD3, CD4, CD8 and CD56. The RNA was isolated 

for each of the sorted subsets and used to perform RT-PCR for IL-22 expression. The + 

sign indicates positive IL-22 expression, *NP indicates that the IL-22 was not evaluated 

while – sign indicates no IL-22 expression. Data are representative of three different 

patient thymocyte samples. 
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We observed differential expression of IL-22 in the cell subsets for the 3 different 

thymocyte samples assessed. Thymocyte sample 64 (Figure 6) displayed high IL-22 

mRNA expression by all cell subsets except CD4 + T cells that were not process due to 

low quality RNA. For thymocyte sample 12 we observed IL-22 mRNA expression for 

only ILC3s and CD4+ cells. While thymocyte 21 showed detectable level of IL-22 

mRNA by only CD4+ cells. Overall we found that there was expression of IL-22 mRNA 

 

Figure 6. IL-22 mRNA expression in sorted LIN- and T cell subsets. IL-

22 relative to GAPDH in LIN- cells sorted from ex vivo cryopreserved 

thymocyte samples as determined by RT- PCR. PBMC was used as a positive 

control since it has been shown that PBMC have IL-22 expression. Data are 

representative of 3 independent experiments using thymocyte 64. 
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in the CD3-CD4-CD8- cells and CD3+CD4+CD56- cells with variable expression of IL-

22 mRNA in the CD3+CD8+CD56- cells, and CD3+CD4+CD8+ cells (Table 3).  

The expression of IL-22 by IL-22+RORγt+ cells following TEC/thymocyte 

co-culture 

We analyzed thymocytes cultured with TEC for the expression of IL-22. Figure 6 

is a representative flow panel showing IL-22 and RORγt expression following thymocyte 

co-culture with TEC; the negative and positive quadrants were established by using both 

isotype control and RORγt negative control. The data suggest that TECs have some effect 

on the expression of IL-22 by LIN-RORγt+ cells. However, these differences are not 

statistically significant (Figure 7). We also found that the percentage and total cell 

number of the LIN- RORγt+ IL-22+ cells, and the total cell number of LIN- RORγt+ 

cells within the thymocyte population co-cultured with TEC did not statistically increased 

in comparison to cells cultured without TEC (Figure 8). 

Similarly, we compared the percent and the total cell numbers of the CD3+ RORγt+ IL-

22+ T cell subsets within the thymocyte population of each treatment conditions, and 

found no significant changes in the percent and the total cell number of CD3+ RORγt+ 

IL-22+ cells, or in the total cell number of CD3+ RORγt+ cells subsets following 

thymocyte-TEC co-culture (data not shown).
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Figure 7. IL-22 and RORγt expression of thymocytes co-cultured with thymic 

epithelial cells (TECs). Following TEC84 or TECDL4 co-culture with thymocytes 

(sample 64), thymocytes were harvested, treated with monensin for 2 hrs and analyzed 

for the expression of CD3, CD4, CD8, IL-22 and RORγt. The positive and negative 

quadrants were determined using isotype control. The data shown are representative 

of four independent experiments.IL-22 and RORγt expression in the lineage negative 

cells within thymocyte population. 
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Percentage of ILC3s determined by 

Isotype control 

Percentage of ILC3s determined by 

RORγt negative gating 

Figure 8. The frequency of IL-22+RORγt+ cells among thymocytes does not 

significantly increase following TEC/thymocytes co-culture. (A and B) Boxplot of 

RORγt+ IL-22+ cells percent determined by isotype control and RORγt+ negative 

gating respectively. (C and D) LIN-RORγt+ cells and LIN-RORγt+ IL-22+ cells. Data 

are presented as the total cell number of LIN-RORγt+ cells and LIN-RORγt+ IL-22+ 

cells within the thymocyte population of co-culture cells. Data represent one of four 

independent experiments. Boxplot depicts mean, ± SEM and statistics (n.s: not 

significant, p>0.05) represent Mann-Whitney comparisons. 

 
 

Total number of LIN-RORγt +cells 

using Isotype control 

A B 

C D 

Total number of LIN-RORγt +IL-22+ 

cells using isotype control 
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The expression of IL-22 by IL-22+RORγt+ cells following TEC/PBMC co-culture 

Upon the examination of IL-22 expression following TEC/PBMC co-culture we 

found that the frequencies of the LIN-RORγt+ IL-22+ cells within the PBMC/TEC co-

culture increased in comparison to the frequencies of LIN-RORγt+ IL-22+ cells cultured 

alone (Figure 9 and 10). Statistical analysis using data from both controls confirmed that 

the LIN-RORγt+ IL-22+ cells within the PBMC-TECDL4 co-culture significantly 

increased in comparison to LIN-RORγt+ IL-22 cells cultured alone (Figure 11A and 

11B). Cell co-culture with TEC84 showed significant increased when evaluated with 

negative gating but not isotype control gating. Thus, we observed no significant 

difference in the expression of IL-22 by ILC3s when co-cultured with TEC expressing a 

low level of Notch ligand or a high level of Notch ligand based on negative control gating 

strategy. However, we did observe a significant difference between ILC3s culture with 

TEC with low Notch ligand expression or high Notch ligand expression based on our 

isotype control. While the percentages changed significantly, the total number of LIN-

RORγt+ IL-22+ cells and LIN-RORγt+ cells within PBMC-TEC co-culture showed no 

significant difference as compared to the PBMC cultured alone (Figure 11C and 11D).  

We also found that the frequency of IL-22+RORγt+ cells within the CD3+CD4+ 

(Figure 12) and CD3+CD8+ (Figure 13 and 14) population significantly increased 

following PBMC/TEC co-culture using both gating strategy. However, there is no 

statistically significant difference between cells that were culture with TEC that have low 

Notch ligand expression or high Notch ligand expression. 
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There were no differences in the total number of IL-22+RORγt+ cells or RORγt+ cells 

within the CD3+CD4+ (data no shown) and the CD3+CD8+ (Figure 14C and 14D) 

populations in the PBMC cultured alone, or co-cultured with low Notch ligand 

expressing or high Notch ligand expressing TECs. 

 

Figure 9. IL-22 and RORγt expression following PBMC/TEC co-culture. Following 

72hr co-culture with TEC84 or TECDL4 PBMCs were treated with monensin for 2 hrs and 

analyzed for the expression of CD3, CD4, CD8, IL-22 and RORγt. The positive and 

negative quadrants were determined using isotype control. The data shown are a 

representative of four independent experiments. 
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Figure 10. The percentage of LIN- RORγt+ cells following PBMC/TEC co-

culture. LIN- RORγt+ IL22+ cells were analyzed using RORγt negative gating to 

determine positive and negative staining for IL-22. Numbers shown are percentages 

within each fraction. Data are a representative of 4 different PBMC-TEC co-cultures. 
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Figure 11. The frequency of LIN- RORγt +IL-22+ cells increased when PBMC were 

cultured with TEC. (A) Boxplot showing the percentages of RORγt+ IL-22+ cells as 

determined by isotype control. (B) Boxplot showing the percentage of RORγt+ IL-22+ cells 

determined by RORγt negative gating. (C and D) The total number of LIN- RORγt+ and LIN- 

RORγt +IL-22+ cells did not increase when cultured with TEC. Data were obtained using 

isotype control. Similar data were obtained using RORγt negative control.  Boxplots depict 

mean, ± SEM and the statistics (*p<0.05) are represented by Mann-Whitney comparisons. 

Data are representative of 4 independent experiments. 
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Figure 12. The frequency of CD3+CD4+IL-22+RORγt+ cells significantly increases when  

PBMC were cultured with TEC-DL4. Following 72hr co-culture with TEC84 or TECDL4 

PBMCs were treated with monensin for 2 hrs and analyzed for the expression of CD3, CD4, 

CD8, IL-22 and RORγt. The positive and negative quadrants were determined using isotype 

control. The data shown are representative of IL-22 and RORγt expression in the CD3CD8 

cells within lymphocyte population of cultured cells. Data are representative of 4 independent 

experiments. 
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Figure 13. The frequency of CD3+CD8+ IL-22+RORγt+ cells increases when 

PBMC were cultured with TEC-DL4. Following 72hr co-culture with TEC84 or 

TECDL4 PBMCs were treated with monensin for 2 hrs and analyzed for the expression 

of CD3, CD4, CD8, IL-22 and RORγt. The positive and negative quadrants were 

determined using isotype control. The data shown are representative of IL-22 and 

RORγt expression in the CD3CD8 cells within lymphocyte population of cultured 

cells. 
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Figure 14. The frequency, but not the total cells number of CD3+CD8+ cells increases 

when PBMC were cultured with TEC-DL4. (A). Boxplot showing the percentage of CD8+ 

RORγt+ IL-22+ cells as determined by isotype control. (B) Boxplot showing the percentage of 

CD8+RORγt+ IL-22+ cells determined by RORγt negative gating. (C and D) Boxplot of the 

total cell number of CD8+RORγt+ and CD8+RORγt+ IL-22+ cells did not increase when 

cultured with TEC. Data were obtained using isotype control. Similar data were obtained using 

RORγt negative control.  Boxplots depict mean, ± SEM and the statistics (*p<0.05) are 

represented by Mann-Whitney comparisons. Data are representative of 4 independent 

experiments. 
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CHAPTER FIVE 

DISCUSSION 

IL-22-producing cells are present in the human thymus 

  It was recently reported that IL-22-producing ILCs are present in the mouse 

thymus, and play a critical role in the proliferation and regeneration of thymic epithelial 

cells following thymic insults (6). IL-22-producing cells, particularly the ILC3s have 

been shown to be present in most secondary lymphoid tissues in humans and mice (9-13, 

53). In fact, IL-22 is constitutively produced by ILC3s in the small intestine. Studies have 

demonstrated that the ILC3s in the gut produce IL-22 under steady states through ILR1-

MyD88 signaling (18). Furthermore, in the gut, IL-22 protects intestinal epithelial cells 

from bacterial infections through the production of antimicrobial peptides and promotes 

tissue repair through the induction of epithelial cell proliferation (11). 

 However, it is still unknown whether ILC3s are present in the human thymus. 

Here we have investigated the presence of IL-22-producing cells in the human thymus. 

Our analysis of ex vivo thymocytes from pediatric thymus demonstrated that there are 

LIN- RORγt+ IL-22+ cells present in the human thymus at the protein and mRNA levels. 

We did see a variability in the percentage of LIN- RORγt+ IL-22+ cells; these variations 

may simply be due to the biological variability between the patients. 

 Alternatively, it is possible that the health condition of the patients at the time of 

their surgery when their thymus was removed, as well as, the medications they were 

administered before or during the surgery could contribute to the variability observed. At 

this point these are only mere speculations; however, the present or absence of other 

health conditions that may have affected thymic function should be examined in 
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future studies. In addition to ILC3s in the thymus, we reported that at steady state there 

are CD4+ cells, CD8+ cells, CD3+CD4-CD8- (possible γδ T) cells, and CD4+CD8+ 

(DP) cells which express IL-22 at the protein level.  

Although we observed low to undetectable levels of IL-22 mRNA expression in 

CD4+ cells, CD8+ cells, CD3+CD4-CD8- cells, and CD4+CD8+ cells within the 

thymocyte population this is somewhat not surprising. Wolk et al., and others have 

previously reported that the highest expression of IL-22 is observed following infection 

or damage, when T cells such as CD8+ T cells, CD4+ T cells and γδ T cells are activated 

(8). Therefore, it is likely that in the absent of tissue damage or inflammation in the 

thymus, DP T cells, and γδ T cells IL-22 mRNA levels are lower than ILC3s, CD8+ T 

cells, and CD4+ T cells and these cells may require activation following injury or 

inflammation to produce a higher level of IL-22 mRNA expression. It is also possible 

that some population of cells that produce IL-22 at the protein levels in the thymus at 

steady state are so low that it is more difficult to detect their IL-22 mRNA expression. 

Therefore, more sophisticated technology may be need to be employed to answer these 

questions. 

 Furthermore, most studies evaluated IL-22 mRNA expression in murine 

stimulated- T cells lines and stimulated -human peripheral blood, have reported that IL-

22 can only be found in activated T cells (13). On the other hand, other studies have 

demonstrated that T cells can produce IL-22 under steady state conditions (12). These T 

cells include human CD4+ T cells and CD8+ T cells that can differentiate into IL-22- 

producing cells known as TH22 and TC22, respectively. The TH22 and TC22 cells are 
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normally found present in the skin of normal and inflamed individuals (12). Furthermore, 

naïve T cells can secrete IL-22 without the need for T effector cells polarizing cytokines 

(10).  

Studies have indicated that IL-22 involved in homeostasis at barrier organs in the 

individuals healthy as well as in individuals with inflamed states (9-13). Therefore, it is 

likely IL-22 release is governed by factors such as internal micro-environmental stimuli, 

the cytokine milieu and the tissue in which IL-22 is expressed. Therefore, it is highly 

possible that in the thymus, direct interaction between thymocytes and different type of 

thymic stromal cells could induce the necessary stimuli for IL-22 expression. The fact is 

that the mechanism underling IL-22-expressing cells differentiation, development and 

regulation in the human thymus is yet to be studied. 

Thymic epithelial cells do not modulate IL-22 expression ex vivo 

It is well established that direct contact between developing thymocytes within 

the thymus and thymic epithelial cells can induce the expression of different cytokines by 

the thymic epithelial cells (12, 13 and 15). These cytokines in turn are known to induce 

expression of other cytokines; certain the cytokine profile can induce differentiation of 

ILC3s and T cell subsets (Figure 2). We next assess the effects of thymic epithelial cells 

on LIN- RORγt+ cells in terms of IL-22 expression. We co-cultured thymocytes with 

thymic epithelial cells and evaluated the percentage of IL-22- producing cells using flow 

cytometry. Although we observed a trend suggesting an increase in ILC3 RORγt+ 

expressing IL-22 (Figure 7) following thymocyte/TEC co-culture, there were no 

statistical significant differences between cell cultured with or without TEC. The finding 
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indicates that TEC alone may not be sufficient to modulate IL-22 expression in ILC3s in 

the human thymus. 

 IL-22 production by most cell subsets requires cytokine induction such as, IL-7, 

IL-1β, IL-23 and IL-6 (33-46). Studies have shown that ILC3 development and 

proliferation require a milieu of cytokines particularly in an infectious state or during 

repair. These includes IL-23 and IL-1β which are required by ILC3s for effector function 

both in vitro and in vivo (41, 45). IL-1β in combination with IL-17 and IL-2/IL-15 can 

induce the proliferation, accumulation and activation of ILC3s (41). Other important 

cytokines include IL-7, TSLP, and SCF these cytokines are necessary for ILC3 

maintenance (33, 41, and 42). These cytokines are produce by cells such as fibroblast, 

epithelial cells and different stromal cells and should be produce in our co-culture system. 

However, the production of other cytokines such as IL-23 may require the present of 

other cell types that is a normal part of the thymic stroma such as CD103+ DCs. Studies 

have shown that DCs regulated ILC3s activities (17). ILCs can be activated directly by 

dendritic cells (DCs) cytokines such as IL-23 (6, 17). Therefore, it is also likely that DCs 

as well as thymic epithelial cells may be required for IL-22 production by LIN- RORγt+ 

IL-22+ cells. 

 Another alternative is that the cytokines that are produce in our co-culture system 

could be blunting IL-22 expression. In fact, the TECs in our co-culture system express 

TGF-β, and studies have shown that TGF-β can drive IL-17 production and inhibit IL-22 

expression in Tc22 and Th22 cells depending on the context of the tissue (11, 15, and 

33). Studies have shown that ILC3s can switch from producing of IL-22 to produce TNF 

and IL-2 (33). Furthermore, it has been previously demonstrated that the loss of RORγt 
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stability due to the absence of IL-7 and its ability to enhance LTα1β1 expression can 

result in the conversion from IL-22-producing ILC3s (LTi) into IFN-γ-producing ILC3s 

(19,33, 34). Studies have shown that ILC3s generated in the presence of IL-2, IL-15 and 

IL-12 cytokines can result in the conversion from IL-22-producing ILC3s (LTi) into IFN-

γ-producing ILC3s (33-35). Whether this is true for other ILC3s in the human thymus is 

unknown. To analyze these possibilities in the future, it is necessary to measure the 

supernatant in the co-culture assay using ELISA to determine whether cytokines such as 

IL-7, IL-1β, IL-23, IFN-γ, IL-2, TNF and IL-6 are produced in our culture system. 

Furthermore, flow cytometry analysis of thymocytes co-cultured with TEC with the 

addition of cytokines combination (IL-7, IL-1β, IL-23 and IL-6) should be performed to 

elucidate the mechanism of IL-22 regulation by TEC. 

Circulating LIN- RORγt + cells can produce IL-22 independent of thymic epithelial 

cells in vitro 

 IL-22- producing cells are present in peripheral blood mononuclear cells (17, 15, 

and 43). We have also shown that the total PBMC have higher expression levels of IL-22 

mRNA (Figure 5). Studies have indicated that the microenvironment of ILC3s play a role 

in their development and function (47-53). This led us to look at the ability of thymic 

epithelial cells to modulate expression of IL-22 in circulating ILC3s.We observed a trend 

towards increase in IL-22 secretion (Figure 7) by RORγt-expressing ILC3s following 

PBMC /TEC84 co-culture. However, statistical analysis of our data showed conflicting 

results. There was no statistical significant difference (Figure 11A) between cell cultures 

with or without TEC84 using isotype control gating, but there was statistical significant 

difference (Figure 11B) between cell cultured with or without TEC84 using 
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 RORγt negative control gating. These discrepancies may be due to more variance 

generated using isotype control gating. We may be able to see a statistically significant 

increase by increasing the number of experiments. 

However, if we go by the isotype control gating and assume that thymic epithelial 

cells alone may not be sufficient to modulate peripheral ILC3-derived IL-22 in vitro then 

as mentioned above these results may be due to the nature of the cytokine production 

profile in the PBMC that can act as stimulators that leads to IL-22 production in culture. 

In supporting this notion, there are studies showing that TH22 cells in the peripheral 

blood can be stimulated by dendritic cells promoting their differentiation from naïve to 

IL-22- producing cells (12). Furthermore, TH22 are polyclonal TCRαβ+CD4+ T cells that 

are autoreactive to CD1a, a MHC Class1 like molecules (12). Whether TC22 have a 

similar population of cells is yet to be shown. Over all, in our co-culture sytem of PBMC 

there may be factors increasing IL-22 expression by the IL-22-producing cells which 

could explain why there is no difference between PBMC culture alone, and PBMC-

TEC84 co-culture. 

 Alternately, there are other factors that regulate the development, proliferation, 

and maintenance of ILC3s and IL-22-producing T cells and can influence IL-22 

production. These includes AHR, RORγt, STAT3 and Notch signaling (45-59). Possot C 

et al., have shown that ILCs progenitors can develop independently of the thymic 

environment under the influence of Notch 2 signaling (48). Therefore, it is of importance 

to examine the role of Notch in the ability of ILC3s and T cells to produce IL-22. 
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The role of Notch signaling in TEC modulation of IL-22 expression by LIN-IL-

RORγt + cells 

  Notch signaling is involved in several cellular processes such cellular 

proliferation, border formation and program cell death (50). In mammalians, there are 

four Notch receptors (Notch 1-4) that bind to five different Notch ligands (Delta-like 1, 3, 

4 and Jagged 1 and 2). The role of Notch in the crosstalk between developing 

thymocytes and thymic epithelial cells are well documented (50, 57). Thymocytes 

express Notch receptors while Notch ligands genes such as the Delta like1, 3, 4 and 

Jagged 1, 2 have been shown to be expressed by thymic epithelial cells (57). Studies in 

mice have also shown that Notch signaling can upregulate IL-22 production from CD4+ 

T cells through the regulation of AhR expression (49). Studies have also shown that 

Notch is involved in the activation and differentiation of CD8 + T cells (54, 58). 

However, whether Notch can also induce IL-22 production by CD8 + T cells is unclear. 

Mounting evidence has implicated a role for Notch signaling in innate lymphoid cell 

development and function through the induction of Notch -1 and Notch 2 expression by 

AhR (47, 48, 51, and 52).  

Therefore, we next investigated the possibility that thymic epithelial cells mediate 

IL-22 expression in ILC3s through Notch signaling. When PBMCs co-cultured with 

TECDL4, there was a significant increase in the frequency of IL-22-producing cells 

(ILC3s, RORγt+ CD4+ and RORγt+ CD8) when compared to PBMC cultured without 

TEC. Whether the increase was mediated by Notch signaling remains to be determined. 

Overall our data suggest that Notch signaling in particularly through DL4 ligand, at least 

partly mediates the increase in the frequencies of IL-22 positive cells within the ILC3s, 
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RORγt+CD8 + and RORγt+CD4 + T cells. However, we cannot exclude the possibility 

that Notch mediates IL-22 expression indirectly thought Notch mediated effector 

functions. Therefore, it is possible that Notch signaling contributed to the differentiation 

of effectors cells (Th1, Th17, and Th22) which causes the induction of cytokines such as 

IL-1β, IL-6 and IL-23 which can up-regulate IL-22 expression (58).  

It is also important not to dismiss the potential effect of alloreactivity in the 

induction of IL-22 because TECs and PBMCs do not come from the same donor and are 

HLA-missed match. The fact is that the significant increase in the frequency of IL-22 

expression by RORγt+CD8+ T cells and RORγt+CD4 + T cells could be a result of 

activated allogeneic T cells responding to allogeneic TECs as in our co-culture system. 

The allogeneic activated T cells may in turn cause increase production of cytokines that 

can up-regulate the expression of IL-22 in the RORγt –expressing CD8+ and CD4+ T 

cells and ILC3s independent of Notch signaling. We can rule out a role for Th17 effector 

cells in the production of IL-22, since we did not detect IL-17 expression among the 

PBMC when co-cultured with TEC (data not shown). With these data one may want to 

infer that TEC, Notch signaling and allogeneic T cell activation is involved in modulating 

effector functions leading to the upregulation of IL-22 by ILC3s and other IL-22-

expressing T cells in our co-culture system. 

Taking all of this into consideration, we expected to see a difference between cells 

that were co-culture with TEC84 and TECDL4, since TECDL4 has a higher expression 

of DL4 ligand. However, we observed no significant difference in the expression of IL-

22 by ILC3s and T cells within the PBMC-TEC84 and PBMC–TECDL4 co-culture based
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on negative control gating strategy with RORγt, but we did observe a significant 

difference based on our isotype control. I am unsure of the reason behind this difference 

other than there been more variable using my negative control gating (may also be due to 

technical differences in my culture system from experiment to experiment). These 

variables may be also solved through performing experiments and adding more samples.  

Another consideration is that although TEC84 cells express a low level of DL4, it 

is possible that they have other ligands such as Jagged1 that could come into play. In this 

scenario, the differential effects on IL-22 production could be in part due to differential 

binding and signaling induced by various Notch ligands. It is also possible that within 

our co-culture system different triggers may contribute to the cytokine–production 

profile that induce IL-22-producing cells. These signals could be induced through a 

combination of the TEC, Notch signaling and allogenic reactivity. 

For now, more experiments are necessary to further elucidate the role of Notch 

signaling in the regulation of IL-22 expression. Therefore, to clarify whether Notch 

signaling through DL4 plays a role in TEC modulation of IL-22 expression by ILC3s, 

CD8+ T cells and CD4+ T cells it is necessary to blocking Notch receptors via soluble 

DLL4 to prevent Notch signaling and then examine IL-22, RORγt and cytokines 

expression after PBMC-TEC co-culture. Furthermore, since other ligands such as Jagged 

1 and 2 that are expressed by thymic epithelial cells are likely involved in the Notch 

signaling, it is important to establish that only DL4 contribute to the increase frequency
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of IL-22 expression by RORγt–expressing CD8+ T cells, therefore, co-culture assays 

should be perform using γ-secretase inhibitor to block Notch signaling. 

Another experiment to answer these questions is to isolate LIN- cells from PBMC 

and carry out co-culture assays to determine whether similar observation is seen when 

LIN- cells are cultured alone without other lymphoid cells. I have attempted this 

experiment, however we failed to detect any IL-22 expression. One of the problems I 

think was due to the absence of the necessary cytokines to facilitate ILC3 maintenance 

and proliferation. I did add in IL-7, however as mentioned in my introduction there are 

many additional cytokines necessary for ILC3 survival and proliferation. Therefore, it is 

essential to repeat these studies using these necessary cytokines.
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Figure 15. Model for the regulation of IL-22 production of circulating ILC3s. Notch 

signaling mediates thymic epithelial cells up-regulation of IL-22 through nonspecific 

regulation of notch on T cell effector functions. Allogeneic activated T cells generate effector 

cells that produce cytokines which in turn induce IL-22 production. Direct contact between 

thymic epithelial cells and circulating cells induce increase production of cytokines that up-

regulate IL-22 production in a notch independent or dependent notch manner.  
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Significance of this study 

Due to the importance of the thymus in establish peripheral tolerance and 

educating T cells understanding how the thymus recover from damage should as radiation 

and infection is relevant. IL-22 role in regenerating thymic epithelial cells is of 

importance for the development future treatments and therapies as well as reestablishing 

the thymic microenvironment following damages from chemotherapies and chronic 

infections such as HIV, or even the effects cause by aging within the thymus. 
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CHAPTER SIX 

MATERIALS AND METHODS 

Cells and cell lines 

Human Thymocytes:  Cryogenically preserved ex vivo human thymocytes that were 

previously isolated from human pediatric thymus tissue were quickly thawed and 

incubated with thaw media (RPMI 1640 supplemented with 30% FCS, 100 µg/ml DNase 

I, and 10 µg/ml gentamicin) for 1hr at 37oC. The dead cells were separated by Ficoll-

Hypaque centrifugation using lymphocyte media (Corning, Cell gro). Cells were 

resuspend in RPMI-1640 media with L-glutamine supplemented 5% fetal bovine serum, 

100U/mL penicillin-streptomycin and 5% human AB serum then counted using 

hemocytometer and used for co-culture assays and flow cytometry. 

Peripheral mononuclear blood cells:  Cryogenically preserved human peripheral blood 

mononuclear cells were previously obtained from healthy patients’ blood and separated 

were quickly thawed and incubated with RPMI 1640 supplemented with 5% FCS, 100 

µg/ml DNase I, and 10 µg/ml gentamicin for 1hr at 37oC. The dead cells were separated 

by Ficoll-Hypaque centrifugation using lymphocyte media (Corning, Cell gro). Cells 

were then resuspend in RPMI-1640 media with L-glutamine supplemented 5% fetal 

bovine serum, 100U/mL penicillin-streptomycin and 5% human AB serum and counted 

using hemocytometer and used for co-culture assays and flow cytometry
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Thymic epithelial cells:  Previously, a primary TEC culture from pediatric thymus tissue 

was generated and described (4). TEC cell lines TEC84 express low levels of the human 

Notch ligands, DL1 (<1000 transcript copies/µg RNA) and DL4 (3000 transcript 

copies/µg RNA). The TEC-DL4 cell line was also previously generated by infecting the 

TEC-84 cell line with retrovirus containing Migr1-DL4-GFP to enhance the potential of 

the TEC-84 cell line. The generated cell line was termed TEC-DL4 cell line which 

homogenously express GFP and express high levels of the human Notch ligand, DL4. (4).  

TEC-84 and TEC-Dl4 were used in cell co-culture assays. 

Flow cytometry and data analysis 

For phenotyping experiments, 1-2x10⁶ thymocytes were treated for 2 hours with 

monensin (Biolegend). Then incubated with Rat anti-human antibodies: anti-CD3 FTTC 

(eBioscience; UCRHT) or anti-CD3 PE (eBioscience; UCRHT), anti-CD4 AF750 

(eBioscience; RPAT4), anti-IL-17eF450 (eBioscience; RPATH), anti-CD8 PE-Cy7 

(eBioscience; RPAT8), anti-CD56 PE (eBioscience; HCD56), or anti-CD56 AF700 

(bioscience; HCD56) for 30 minute on ice in the dark. To characterize RORγ+ IL-22+ 

cells, following the above surface staining, the cells were fixed and permeabilized at RT 

for 20 minutes with IC fixation buffer 1X Permeabilization buffer (eBioscience). Then 

incubated with Rat antihuman IL-22 PerCpeF710 and RORγ+ APC, and for the isotype 

control the cells were incubated with IL-22 Rat IgG2a PerCpeF710 (EBR2α) and RORγ+ 

Rat IgG2a APC (EBR2α) for 30 min an ice in the dark. The samples were analyzed using 

BD LSRFortessa with tree star Flow Jo Software version 7.5.6.
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Cell Co-culture 

Co-culture of thymocyte with TEC-84 or TEC-DL4, and co-culture of PBMC 

with TEC-84 or TEC-DL4: 3x104 TEC-84 or TEC-DL4 were cultured at 3x104/mL in a 

flat bottom 24- well culture plate with TE media (3; Dulbeecco’s modified Eagle’s 

medium: F12 medium with 5% fetal calf serum, 5.5µg/ mL bovine insulin, 0.4 µg/ml 

Hydrocortisone, 9ng/mL, cholera toxin, 0.3% adenine hydrochloride, 1mM sodium 

pyruvate, 10ng/mL epidermal growth factor, 2.5 µg/ mL, amphotericin B, and 55 ng/ mL 

gentamicin sulfate) until 50% confluent. 1-2X106 thymocytes/well or PBMC/well were 

co-cultured with 50% confluent TEC-84 or TEC-Dl4in RPMI-1640 media with L-

glutamine supplemented 5% fetal bovine serum, 100U/mL penicillin-streptomycin and 

5% human AB serum. Cells were cultured for 2, 4 and 8 days then treated with monensin 

for 2hrs before harvest. The total number of live cells harvested was counted on a 

hemocytometer using Trypan blue (Life technologies) to exclude the dead cells. 

Harvested cells were analyzed using flow cytometry to compare IL-22 and RORγt 

expression of cells culture with or without TEC-84 or TEC-DL4. 

Cell Sorting 

For cell sorting of LIN- cells and T cell subsets, 40 x106 thymocytes were surface 

stained with anti-CD3 FTTC (eBioscience; UCRHT, anti-CD4 AF750 (eBioscience; 

RPAT4), anti-CD8 PE-Cy7 (eBioscience; RPAT8), anti-CD56 PE (eBioscience; 

HCD56). FACS sort was performed with a FACSAria cell sorter (BD Biosciences). 

Purified LIN- cells and CD8+ T cells, CD4 + T cells, CD8+CD4+T cells, 

CD3+CD8+CD4+ T cells were used for RNA isolation described below.
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RNA isolation and Reverse Transcriptase-PCR 

RNA from sorted cell subsets and total RNA from PBMC was isolated using 

Trizol reagent (Sigma-Aldrich) according to the manufacturer's protocol. Isolated RNA 

was then treated with DNase using Ambion DNA-free kit and 0.5 to 1 μg of RNA was 

used for cDNA synthesis using the Invitrogen's SuperScript II synthesis kit with Oligo-

dT primers, per the manufacture’s instruction. The resulting cDNA was used for PCR 

with primers as follow IL-22: forward 5’- TCTCCTTCCCAGTCACCAGTT                                     

and reverse 5’TCATGATGGAGTTTGGCTTCC, GAPDH; forward 5’- 

GCACCGTCAAGGCTGAGAAC and reverse 5’ GCCTTCTCCATGGTGAA. PCR 

thermal cycler profile was run as follows: 95C 4min, 950C 15min, 550C 20 min, 720C 40 

min, 720C 40 min, 720C 4 min 100C 5min.The PCR products were run on a 1.8% gel, 

then stained with ethidium bromide and image using BioRad ChemiDoc XRS + w/image 

lab software.  

Statistical Analysis 

Statistical analysis was performed using Prism 5.0 (Graph Pad software). 

Comparison between two groups was performed with the unpaired Man- Whitney U test, 

values of p<0.05 are considered statistically significant. 
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