Document Type

Article

Publication Date

3-1997

Publication Title

IEEE Transactions on Parallel and Distributed Systems

Volume

8

Issue

3

Pages

254--262

Abstract

In this paper, we examine the wormhole routing problem in terms of the “congestion” c and “dilation” d for a set of packet paths. We show, with mild restrictions, that there is a simple randomized algorithm for routing any set of P packets in O(cdη+cLηlogP) time with high probability, where L is the number of flits in a packet, and η=min{d,L}; only a constant number of flits are stored in each queue at any time. Using this result, we show that a fat-tree network of area Θ(A) can simulate wormhole routing on any network of comparable area with O(log^3 A) slowdown, when all worms have the same length. Variable-length worms are also considered. We run some simulations on the fat-tree which show that not only does wormhole routing tend to perform better than the more heavily studied store-and-forward routing in this context, but that performance superior to our provable bound is attainable in practice.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Share

COinS