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Abstract 

 In this review, we summarize the recent literature on the dapE-encoded N-succinyl-

L,L-diaminopimelic acid desuccinylase (DapE) enzymes with an emphasis on structure-

function studies, which have provided insight into the catalytic mechanism of DapE enzymes.  

Crystallographic data has also provided insight into residues that might be involved in 

substrate, and hence inhibitor recognition and binding.  These data have led to the design and 

synthesis of several new DapE inhibitors, which are described along with what is known 

about how inhibitors interact with the active site of DapE enzymes including the efficacy of a 

moderately strong DapE inhibitor.  

 

 

 

 

Key Words:  DapE, Metallohydrolase, Antibiotics, Zinc, X-ray Crystallography, Inhibitor 

Design, Catalytic Mechanism. 
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The emergence of antibiotic-resistant bacterial infections has created a significant and 

growing medical problem in the United States and throughout the world [1-5].  Antibiotic 

resistance has been recognized since the introduction of penicillin more than 50 years ago 

when penicillin-resistant infections caused by Staphylococcus aureus rapidly appeared [3, 6].  

Because bacteria have been exposed to many of the currently available antibiotics such as β–

lactams, fluoroquinolones, macrolides, tetracyclines, aminoglycosides, glycopeptides, or 

trimethoprim combinations for years, they have evolved resistance to these drugs due to 

mutation or the acquisition of genes that impart resistance from other organisms [3, 7-10].  In 

fact, several pathogenic bacteria, some of which were thought to have been eradicated, have 

made a significant resurgence due to bacterial resistance to antibiotics [3, 6].  For example, 

tuberculosis is currently the leading cause of death in adults by an infectious disease 

worldwide, which is significant given that death rates due to tuberculosis had declined to near 

imperceptible levels in industrial nations [11-13].  According to the CDC, several bacterial 

strains currently exhibit multidrug resistance with more than 60% hospital acquired infections 

in the United States caused by the so-called ESKAPE pathogens (Enterococcus faecium, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 

aeruginosa, and Enterobacter species).   

Antibiotics work by interfering with a vital bacterial cell function at a specific cellular 

target by either killing the bacteria or arresting their multiplication [5].  This allows the 

patient's immune system to clear the bacteria from the body.  Inhibitors of cell wall 

biosynthesis (vancomycin and β-lactams, to name a few) have proven to be very potent 

antibiotics, evidence that interfering with cell-wall synthesis has deleterious effects on 

bacterial cell survival.  Enzymes that are targeted by these antibiotics tend to be present in all 

bacteria and are highly similar in structure and function, such that certain antibiotics kill or 

inhibit the growth of a broad range of bacterial species (i.e., broad-spectrum antibiotics) [3, 7-
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10].  Unfortunately, only two new classes of anti-bacterial drugs have emerged since 1962.  

According to the Infectious Diseases Society of America at least ten new systemic 

antibacterial drugs should enter the market by the year 2020; however, most of these are 

derivatives of existing classes of antibiotics.  Since every antibiotic has a finite lifetime, as 

resistance will ultimately occur particularly if the same enzymes are repeatedly targeted, 

development of new classes of inhibitors that target previously untargeted cellular enzymes is 

essential to retain control of infectious disease [14, 15].  

 

Lysine Biosynthetic Pathway  

Based on bacterial genetic information, the meso-diaminopimelate (mDAP)/lysine 

biosynthetic pathway offers several potential antibacterial enzyme targets that have yet to be 

explored (Figure 1) [16-18].  One of the products of this pathway, lysine, is required in 

protein synthesis and is also used in the peptidoglycan layer of Gram-positive bacterial cell 

walls.  A second product of this pathway, mDAP is an essential component of the 

peptidoglycan cell wall for Gram-negative bacteria, providing a link between polysaccharide 

strands.  Since lysine is an essential amino acid and is not synthesized by humans, it must be 

ingested.  However, most bacteria, plants and algae synthesize lysine and mDAP from 

aspartic acid through three related pathways that diverge after the production of L-

tetrahydrodipicolinate [16, 17, 19].  The presence of multiple biosynthetic pathways in 

bacteria for the synthesis of mDAP/lysine highlights the importance of mDAP/lysine for 

bacterial cell survival.   

The succinylase pathway is the primary biosynthetic pathway for mDAP/lysine and is 

utilized by all Gram-negative and most Gram-positive bacteria [16].  The dehydrogenase 

pathway forms mDAP directly from L-tetrahydrodipicolinate but this is a high-energy 

transformation and is limited to only a few Bacillus species [16].  The acetylase pathway is 
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also a minor biosynthetic pathway for mDAP production and is also limited to only a few 

Bacillus species [17].  One of the enzymes in the succinylase pathway, the dapE-encoded N-

succinyl-L,L-diaminopimelic acid desuccinylase (DapE), is a Zn(II) containing 

metallohydrolase.  It has been shown that deletion of the gene encoding for DapE is lethal to 

Helicobacter pylori and Mycobacterium smegmatis [20, 21].  Even in the presence of lysine 

supplemented media H. pylori was unable to grow, suggesting that lysine can’t be synthesized 

by other pathways or imported.  Therefore, DapE's appear to be essential for cell growth and 

proliferation and are part of a biosynthetic pathway that is the only source of lysine in most 

bacteria.  Since there are no similar biosynthetic pathways in mammals, DapE’s appear to be 

potential targets for inhibitors that may possess antimicrobial activity [16].  

 

DapE’s Contain a Dinuclear Zn(II) Active Site 

DapE's catalyze the hydrolysis of N-succinyl-L,L-diaminopimelic acid (L,L-SDAP), 

forming L,L-diaminopimelic acid and succinate (Figure 2) [19].  DapE’s have been purified 

from multiple sources and genes identified in a large number of pathogenic Gram-positive and 

Gram-negative bacteria including all of the ESKAPE pathogens [20-25].  Alignment of 

several of the DapE gene sequences show a minimum of 49% identity [26].  Significantly, all 

of the residues that are metal binding ligands in the M28 family of dinuclear Zn(II)-dependent 

metalloproteases [27], including the aminopeptidase from Vibrio proteolyticus (Aeromonas 

proteolytica, AAP) and the carboxypeptidase from Pseudomonas sp strain-RS-16 (CPG2) [28, 

29] are strictly conserved in all DapE enzymes.  Since the catalytic activity of DapE’s require 

Zn(II) and both CPG2 and AAP possess (µ-aquo)(µ-carboxylato)dizinc(II) active sites with 

one terminal carboxylate and one histidine residue at each metal site, a similar active site was 

proposed for DapE enzymes [19, 30-32].  Evidence for a dinuclear Zn(II)-active site in DapE 

enzymes was obtained via Zn K-edge Extended X-ray Absorption Fine Structure (EXAFS) 

spectra of the DapE from H. influenzae in the presence of one and two equivalents of Zn(II) 
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(i.e. [Zn_(DapE)] and [ZnZn(DapE)]) [33].  Fourier transforms of the Zn EXAFS are 

dominated by a peak at ca. 2.0 Å, which was best fit assuming ca. 5 (N,O) scatterers at 1.96 

and 1.98 Å for [Zn_(DapE)] and [ZnZn(DapE)], respectively.  Inclusion of a sulfur (S) atom 

provided poorer fits based on Debye-Waller Factors.  A second-shell feature at ca. 3.34 Å 

appears in the [ZnZn(DapE)] EXAFS spectrum but is significantly diminished in 

[Zn_(DapE)].  These data confirmed that DapE enzymes can bind two Zn(II) ions that form a 

dinuclear site. 

Both AAP and CPG2 contain active site His residues that function as ligands to the 

Zn1 and Zn2 centers.  Based on sequence alignment of the DapE from H. influenzae with 

AAP and CPG2, both H67 and H349 were predicted to be Zn(II) ligands [32].  In an effort to 

clearly define the active site residues and provide insight into the structural properties of each 

divalent metal ion in DapE enzymes, the H67A and H349A DapE mutant enzymes were 

prepared.  The H67A DapE enzyme exhibited a decrease in catalytic efficiency (~180-fold) 

compared to WT DapE towards the substrate L,L-SDAP.  No catalytic activity was observed 

for H349A under the experimental conditions used.  EPR and UV-Vis data indicated that the 

Co(II) ion bound to H349A-DapE is analogous to that of WT DapE after the addition of a 

single Co(II) ion.  The addition of one equivalent of Co(II) to H67A DapE provided spectra 

that are very different from the first Co(II) binding site of the WT enzyme, but similar to the 

second binding site.  The UV-Vis and EPR data, in conjunction with the kinetic data, are 

consistent with the assignment of H67 and H349 as active site metal ligands for DapE.  

Furthermore, these data suggest that H67 is a ligand in the first metal binding site while H349 

resides in the second metal binding site.   

Sequence alignment with AAP and CPG2 also suggested that the active site residue in 

the DapE from H. influenzae, E134, likely functioned as the general acid/base during the 

hydrolysis reaction catalyzed by DapE [19].  In order to elucidate the catalytic role of E134, 

the E134A and E134D mutant DapE enzymes were prepared [34].  The Michaelis constant 
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(Km) was found to not change upon substitution to aspartate but the kcat values changed 

drastically in the order: glutamate (140 s-1), aspartate (0.13 s-1), and alanine (none detected).  

Examination of the pH dependence of the kinetic constants kcat and Km for the E134D enzyme 

revealed ionizations at pH 6.4, 7.4, and ~9.7.  Isothermal titration calorimetry (ITC) studies 

on WT DapE provided Kd values for the first and second Zn(II) binding sites of 4.4 and 13.6 

µM.  ITC experiments on E134D- and E134A-DapE revealed a significant weakening in 

metal Kd values of 2.9 and 1.4 times for the first metal binding event, respectively.  

Interestingly, UV-Vis and EPR spectra obtained on Co(II)-substituted E134D and E134A 

DapE did not reveal any significant changes suggesting that both Co(II) ions reside in 

distorted trigonal bipyramidal coordination geometries [35].  Combination of these data 

indicates that E134 is intrinsically involved in the hydrolysis reaction catalyzed by DapE and 

likely plays the role of a general acid/base. 

 

Structural Characterization of DapE Enzymes 

A major limitation in developing a previously undescribed class of antimicrobials that 

target DapE enzymes was the lack of knowledge about their active site structure including 

potential residues involved in substrate binding.  The X-ray crystal structure of the DapE 

enzyme from N. meningitidis was reported at 1.9 Å but was in the apo-form, providing little 

information about the Zn(II) active site [36].  Recently, the X-ray crystal structure of the 

DapE from H. influenzae was reported for both the mono and dinuclear Zn(II) forms at 2.0 

and 2.3 Å resolution, respectively [37].  Similar to the DapE from N. meningitidis, the DapE 

from H. influenzae forms a homodimer where the catalytic domain consists of an α/β globular 

domain with a twisted β-sheet hydrophobic core sandwiched between α-helices (Figure 3).  

The active-site cleft is located in the center of the catalytic domain above the centrally located 
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parallel strands of the β-sheet and is covered by loops.  The location and the architecture of 

the active site are strikingly similar to the active sites of CPG2 and AAP.28,29   

The active site of the mononuclear Zn(II) form of DapE ([Zn_(DapE)]), reveals that 

Zn1 resides in a distorted tetrahedral geometry coordinated by the carboxylate oxygens (OD1) 

of D100 and (OE1) of E163 as well as one nitrogen atom (NE2) of H67 (Figure 4).  The 

remaining coordination site is filled by an oxygen atom provided from a water molecule.  In 

the dinuclear Zn(II) form of DapE ([ZnZn(DapE)]), the active site contains two Zn(II) ions at a 

distance of 3.36 Å compared with 3.45 Å for AAP and 3.25 Å for CPG2.
28,29  Each of the 

Zn(II) ions adopts a distorted tetrahedral geometry and is coordinated by one imidazole group 

(H67 for Zn1 and H349 for Zn2) and one carboxylate group (E163 for Zn1 and E135 for Zn2).  

Both Zn(II) ions are bridged by an additional carboxylate group (D 100) on one side and 

water/hydroxide on the opposite side, forming a (µ-aquo)(µ-carboxylato)dizinc(II) core with 

one terminal carboxylate and one histidine residue at each metal site.  These structures confirm 

the assignment of H67 and H349 as active site ligands with H67 residing in the first metal 

binding site as well as the role of Glu134.   

Inspection of the X-ray crystal structures of [Zn_(DapE)] and[ZnZn(DapE)], 

combined with surface analysis, revealed a crescent-shaped cavity that extends along the 

catalytic domain and surrounds the active site (Figure 5).  This well-defined, negatively 

charged cavity is shaped from the top by strand β12 and α8 and in the middle by the loop 

connecting these two elements.  The bottom of the cavity is formed by a loop connecting β-

strands β6 and β7, and a loop connecting β5 and α4.  Taking into account the linear character 

of the substrate, it is likely that the substrate binds in an extended conformation [38], lining up 

along the grove with the peptide bond positioned over the active site metals.  It is conceivable 

that substrate binding is further stabilized by interaction of the substrate carboxylate groups 

with positively charged amino acid side chains.  Potential candidates include K175, R258, and 
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R329 (Figure 6).  In the [ZnZn(DapE)] structure, R258, and R329 form a charged dipole 

interaction with a sulfate ion, a possible mimic of the carboxylic group of the substrate.  R329 

is centrally positioned in a positively charged pocket that it forms together with R258.  

Interestingly, the active site pocket of CPG2 contains an arginine that is conserved in DapE 

(R329) and has been proposed to bind the carboxylate group of the side chain.  These data, in 

combination with previously reported inhibitor binding studies [32, 33, 39, 40], indicate that 

DapE represents an excellent target for a highly specific drug that should have high efficacy 

and low toxicity. 

 

Proposed Catalytic Mechanism of DapE 

The X-ray structures of [Zn_DapE] and [ZnZn_DapE] provide a structural foundation 

for a proposed reaction mechanism of DapE [19, 32, 34].  Analysis of the available structures 

along with the previously reported kinetic and spectroscopic data for DapE enzymes allowed 

a detailed mechanism of catalysis for DapE's to be proposed (Figure 7) [37].  Based on the 

proposed catalytic mechanism for AAP [41, 42], the first step in catalysis for DapE's is likely 

recognition of the L,L-SDAP side chain by the crescent-shaped cavity adjacent to the Zn1 

site.  Next, the peptide carbonyl oxygen of L,L-SDAP coordinates to Zn1 and expands its 

coordination number from four to five, activating the carbonyl for nucleophilic attack.  

Deprotonation of the metal-bound water molecule by E134 to form a nucleophilic hydroxide 

moiety is consistent with the postulated pKa of the zinc-bound water molecule [19].  Once the 

zinc-bound hydroxide is formed, it can attack the activated carbonyl carbon of the substrate, 

forming an η -1-µ-transition-state complex [33].  Solvent kinetic isotope effect studies yielded 

an inverse isotope effect that was explained by the attack of a zinc-bound hydroxide on the 

amide carbonyl [19].   E134 may provide a proton to the penultimate amino nitrogen, similar 

to that observed for AAP, returning it to its ionized state thus facilitating product release.  

Once the products are released, a water molecule bridging the two metal ions is replaced.  In 
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the absence of a second metal ion, the catalytic mechanism does not likely change markedly 

as H349 is in position to assist in orienting the substrate properly in the active site through the 

formation of a hydrogen bond with a carboxylate side chain of the substrate, thereby 

stabilizing the transition-state intermediate reminiscent to proposals for the mono-metalated 

forms of AAP and the methionine aminopeptidase from E. coli [43-45].  In the presence of a 

dinuclear site, the second metal ion likely coordinates either the peptide carbonyl oxygen in a 

bridging fashion or a carboxylate side chain of the substrate.  

 

Design and Synthesis of DapE Inhibitors   

  The design and synthesis of novel DapE inhibitors requires information regarding 

substrate specificity.  Therefore, the four isomers of SDAP as well as a number of acetylated 

amino acids have been examined as potential substrates.  DapE was not able to hydrolyze the 

D,D-, L,D-, or D,L-isoforms of SDAP confirming that L,L-SDAP is the only known 

biological substrate for DapE enzymes.  Moreover, no hydrolytic degradation was observed 

for any acetylated amino acids tested [25, 32], therefore, the DapE active site has strict 

substrate specificity with regard to both functional groups and stereochemistry.  These data 

also suggest that the carboxylate of the succinyl moiety forms an important interaction within 

the active site of DapE since the acetylated amino acids could not be hydrolyzed.  

Alternatively, the acetylated versions of these amino acids may introduce a repulsive 

interaction because of bulky alkyl groups, thus, preventing hydrolysis.  Given the lack of 

hydrolytic activity towards the SDAP isoforms, a series of potential DapE inhibitors based on 

SDAP bearing different N-linked acyl side chains terminated with (i) a carboxyl group or (ii) 

a lipophilic moiety, were synthesized.  Unfortunately, none of these compounds functioned as 

potent inhibitors of DapE [32, 33, 39, 40].  Finally, D,L-succinyl aminopimelate was 

examined, which only differs from the natural substrate, L,L-SDAP, by the absence of the 
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amine group on the amino acid side chain.  Interestingly, DapE could not hydrolyze this 

compound implying that the amine provides an important interaction for substrate binding.   

The next step in inhibitor design for DapE enzymes involved understanding how 

inhibitors bind to the active site.  To date, no X-ray structural data for a DapE enzyme in the 

presence of an inhibitor has been reported; however, Zn K-edge EXAFS spectra of 

[ZnZn(DapE)] in the presence of the competitive inhibitors 2- carboxyethylphosphonic acid 

(CEPA; Ki = 800 µM) and 5- mercaptopentanoic acid (MSPA; Ki = 6 µM) have been 

reported.[33]  Phosphonic acid-containing compounds have been shown to be potent 

inhibitors of metallohydrolases, including AAP and the bovine lens leucine aminopeptidase 

(blLAP) and have been used as probes of the transition-state of hydrolysis reactions.  The 

EXAFS data for [ZnZn(DapE)]-CEPA indicate that the average coordination number of each 

Zn(II) ion is five, and the Zn-Zn distance remains 3.34Å.  An increase in the M-M distance of 

[ZnZn(AAP)], from 3.5 to 3.9 Å, is observed upon the addition of the transition-state analog 

inhibitor L-leucine- phosphonic acid (LPA), which contains a similar ligating group to CEPA 

[46].  The X-ray crystal structure and EXAFS data for [ZnZn(AAP)]-LPA, reveal that the 

bridging water molecule is displaced by LPA resulting in an η-1,2-µ-phosphonate bridge and 

an increase in the Zn-Zn distance of 0.4 Å.  The fact that the Zn-Zn distance is not altered 

upon CEPA binding to [ZnZn(DapE)] suggests an η-1-µ-phosphonate bridge exists, similar to 

the binding mode of LPA to blLAP [46, 47].  On the other hand, MSPA binding to 

[ZnZn(DapE)] has a marked effect on the Zn K-edge, suggesting that the average electronic 

environment of the dinuclear Zn(II) site has changed significantly.  The observed shift to 

lower energy in the absorption edge position is indicative of a net increase in electron density 

at the dinuclear Zn(II) site, consistent with a sulfur ligand.  In addition, the EXAFS data for 

[ZnZn(DapE)]-MSPA reveals a new feature at 2.3 Å that is highly characteristic of a direct 

zinc-sulfur interaction.  Moreover, the M-M distance is lengthened from 3.34 Å to 3.64 Å.  
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These data indicate that the thiol group of MSPA binds to one or both of the Zn(II) ions in the 

active site of DapE.  

The fact that thiol based molecules were shown to be moderately strong inhibitors of 

DapE provided insight into examining bifunctional molecules that contained, in addition to a 

thiol zinc binding group (ZBG), a carboxylate moiety that could interact with the positively-

charged lysine and arginine side chains that purportedly reside near the active site.  These 

studies led to the identification of several low micromolar inhibitors of DapE, all of which, 

like MSPA, contain a thiol functional group [39].  Thiol containing compounds are typically 

good inhibitors of Zn(II) metalloproteins since Zn(II) is a soft acid and thiols are soft bases 

[48].  One of the better inhibitors was L-penicillamine (Figure 8) which exhibited an IC50 

value of 13.7 µM, and a measured Ki of 4.6 µM (competitive).   DapE is stereoselective with 

respect to recognition of inhibitors, as D-penicillamine gave an IC50 of 50 µM.  Given the 

success with these carboxylic acid-containing thiols, L-captopril (Figure 8) an angiotensin-

converting enzyme (ACE) inhibitor was examined, which contains the requisite ZBG and 

carboxylate functionalities.  L-Captopril exhibited an IC50 of 3.3 µM and a measured Ki of 1.8 

µM (competitive).  Again, the binding is stereoselective, as D-captopril was an order of 

magnitude less potent, with an IC50 of 42.0 µM.  Given the good potency of L-captopril, 

another ACE inhibitor, enalapril, was screened but did not show any potency towards DapE.  

4-Mercaptobutyric acid is also an inhibitor of DapE and exhibits an IC50 value of 43 µM 

while 2-mercaptobenzoic acid has a measured IC50 value of 34 µM.  For these low 

micromolar inhibitors, it was hypothesized that the presence of a negatively-charged 

carboxylate in the molecule participates in an ionic interaction with a positively-charged 

lysine or arginine near the active site.   

 Given that L-captopril functions as a moderately strong inhibitor of DapE, its efficacy 

was examined using a standard plate assay [39].  Application of L-captopril or L-
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penicillamine directly to plates cultured with E. coli showed a dose-responsive antibiotic 

activity for L-captopril.  Very little inhibition is observed for 1 mg of L-captopril, but 5 mg 

and 20 mg demonstrate a clear positive antibiotic result.  These data suggest that L-captopril 

can cross the bacterial cell membrane and function to inhibit bacterial cell growth.  Whether 

DapE is the cellular target of L-captopril was not addressed, however, a recent study 

suggested that DapE is not the main target of L-captopril antimicrobial activity since L-

captopril inhibited S. enterica and E. coli in a DapE-independent manner [49].  Clearly, 

further studies are needed to verify DapE as an antimicrobial target and such studies will 

necessitate the discovery of strong binding inhibitors that are specific for DapE enzymes. 

 

Concluding Remarks 

Bacterial infections, some of which were thought to be eradicated, have made a 

significant resurgence due to bacterial resistance to all known antibiotics [2-4].  

Consequently, new compounds that combat these pathogens and target enzymes involved in 

bacterial cell wall synthesis or pathways involved in cell replication are in high demand [50-

57].  That the meso-diaminopimelate (mDAP)/lysine biosynthetic pathway offers several 

potential anti-bacterial targets that have yet to be explored.  While our understanding of the 

catalytic mechanism of DapE has markedly improved over the past few years, it has not yet 

been entirely delineated.  For example, several substrate binding steps have been proposed 

and the roles of each metal ion during catalysis are still in question.  Therefore, more 

experimental evidence is needed to distinguish between the competing mechanistic proposals 

for DapE.  Even so, results obtained from the studies described in this review have provided 

new insight into the structure and function of DapE enzymes and have led to new medicinal 

chemistry leads.  Additional insight into the catalytic mechanism of DapE and the 
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determinants of substrate-binding will be critical for the rational design of future selective 

DapE inhibitors that may function as a new class of antimicrobial agents.   
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Figure Captions 

Figure 1.  Biosynthetic pathways of meso-diaminopimelic acid and lysine in bacteria. 

 

Figure 2.  Reaction catalyzed by DapE. 

 

Figure 3.  Ribbon diagram of the X-ray crystal structure of the DapE from H. influenzae 

showing the dimer and catalytic structural domains.  Zinc ions are labeled in black (Zn1-the 

catalytic zinc) and grey (Zn2) [58].  

 

Figure 4.  Active site of the A) Zn_DapE and B) ZnZnDapE from H. influenzae [58]. 

 

Figure 5.  Surface rendering of [ZnZn(DapE)] from H. influenzae showing the charge 

distribution and depicting the crescent-shaped active site cavity [58]. 

 

Figure 6.  Charged residues near the dinuclear active site of DapE that may play a role in 

substrate recognition and binding process [58].   

 

Figure 7.  Proposed catalytic mechanism of DapE.   

 

Figure 8.  Structures of L-captopril and L-penicillamine.
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Figure 8 
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