Realistic Website Fingerprinting Attacks
John Mikos and Eric Chan-Tin

Problem & Motivation
- Website fingerprinting [1] attacks allow an adversary to identify the website visited even if the victim utilizes anonymity network, e.g. Tor [2] and HTTPS.
- However, real users visit multiple websites (overlapping website visits) at the same time.
- Visiting multiple websites add enough noise to mitigate website fingerprinting attacks.

Goals

Overlapping Point

Website 1

Overlapped Part

Website 2

Datasets
- January to February 2019
- 118 unique websites from Alexa [3] top 200 sites
- In between 120 and 150 visits (instances) to each website in a given directory
- Overlap: 10 seconds and 20 seconds
 - First website is randomly chosen from the 118 sites
 - Second website is randomly chosen from the remaining 117 sites
 - 1,000 instances each

Proposed Algorithms

Key idea: create a reference list that holds the non-unique outgoing packet sizes

Create Reference List
- Loop through all websites and count the number of occurrences of each packet size.
- Choose a threshold value
- Loop through the packetsizes present in the list and remove any packetsizes whose number of occurrences >= that threshold value

Detect Overlap
- Read through all the websites dataset
- For each instance of the websites
 - Building off the reference list, take the timestamp:packet size data and add it to a unique set S only if the packet size is not present in the reference list
 - Loop through every packet size in set S to find the packet size with the earliest timestamp
 - If a packet size was found, record it and use the timestamp information to calculate average time, median time, standard deviation, and percent correct.
 - Percent correct is the percentage of websites with a predicted average time ±1 second from the real overlap time (10 seconds or 20 seconds)

Graphs

The number of points are the datapoints chosen from a whole collection of recordings. The graphs represent the most important changes throughout all data.

Fig 1. The 20s directory as reference against the 10s directory data to see percent correct achieved.

Fig 2. The 20s directory as reference against the Training directory data to see the average time achieved.

Fig 3. The 20s directory as reference against 10s directory data to see the average time achieved.

Fig 4 + 5. The 20s directory as reference against itself. Two different views are presented to show how the results behave as number of occurrences increases.

Acknowledgements
- LUROP: Provost Fellowship for funding the continuation of this research.
- We thank Tao Chen for collecting and providing us the dataset.

References
2. Tor Project, https://www.torproject.org