Evaluating Quality Interactions in Preschool Math: Validation of a Video-based Observation Protocol

Joanna Skourletos
Loyola University Chicago, jskourletos@luc.edu

Erin Reid
Erikson Institute, ereid@erikson.edu

Follow this and additional works at: https://ecommons.luc.edu/grs

This Open Access is brought to you for free and open access by the Conferences at Loyola eCommons. It has been accepted for inclusion in Graduate Research Symposium by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Evaluating Quality Interactions in Preschool Math: Validation of a Video-based Observation Protocol

Erin E. Reid¹ & Joanna Skourletos¹,²
¹Erikson Institute & ²Loyola University

LITERATURE REVIEW

Overview
An important determinant of what students are taught is what their teachers know.² ¹⁷ This is particularly true of mathematics. Although most young children come to school with some informal understanding of mathematics, it takes a knowledgeable and effective teacher to make connections between informal knowledge and the foundational mathematical competencies that will serve children for the rest of their lives. The earlier children are exposed to effective teachers, the better the outcomes.¹³ Unfortunately, finding an instrument that can measure the quality of mathematics instruction in preschool classrooms, much less one that has empirical support, is nearly impossible.

Why is it important to develop a reliable and valid measure of mathematics teaching quality in preschool?

1. Math achievement gaps appear before school entry

Mathematical competence has been linked to a variety of short- and long-term outcomes.¹ ² ³ ⁴ ⁵ ⁶ ⁷ ¹⁴ ¹⁵ Recent research suggests that the level of mathematics skills at kindergarten entry is relatively stable beyond first grade, even into eighth grade.⁶ ¹⁰ These initial skill differences may lead children to remain behind their more knowledgeable peers.² ⁸ ¹⁸ Therefore, we need a means for assessing the quality of math instruction in order to ensure that children are provided with rich opportunities to engage in math interactions with skilled teachers.

2. Early childhood teachers are not well-prepared to support children’s mathematical development

Research indicates that, cumulatively, teachers account for up to 33% of the variance in student mathematics achievement over four years of schooling.¹² Unfortunately, in pre-service training, early childhood teachers are exposed to less math content than teachers of higher-grade levels. As a result, early childhood teachers often lack the necessary mathematical content knowledge to deliver effective instruction¹³ ¹⁶ which leads to inadequate teaching practices.¹⁷ Moreover, professional development for early childhood in-service teachers around teaching math is very limited and largely ineffective¹⁸ which offers a lack of opportunity for teachers to improve their practices.

Therefore, there is a need for an instrument that identifies areas of strengths and weaknesses in teachers’ mathematical instruction so that we can effectively support teachers to strengthen their practice around teaching mathematics.

3. There is lack of existing tools that measure preschool math instructional quality

There is an increasing demand for accountability around quality instruction.¹⁹ As a result, teacher evaluations have become “high-stakes” so there is a growing push for empirically validated observation tools from funding sources (e.g., Race to the Top) and initiatives (e.g. Gates Foundation Measure of Effective Teaching project). Unfortunately, the development and validation of observation measures for teaching quality in preschool—and particularly for mathematics teaching quality—is lagging behind those developed for the elementary grades. Few observation tools currently exist that are focused on math instructional quality in preschool.

Therefore, there is a need to create an observational tool that measures math instructional quality for preschool.

EQUIP-M

Purpose
This tool was designed to measure the quality of mathematical instruction during a video observation of a preschool teacher interacting with students.

EQUIP-M is predicated upon two assumptions:
1. Instructional opportunities for preschool math are embedded in routines, games, play, books, block etc.
2. Mathematical quality of instruction can be assessed by examining the interactions between teacher and students around the mathematics, as illustrated in the instructional triangle below.

Dimensions

Teacher Intentionality
The degree to which the teacher plans, prepares, and implements math learning opportunities for students with intention.

Teacher Responsiveness
The degree to which the teacher adds mathematical value to student contributions, promotes peer collaboration and uses mistakes as a learning opportunity.

Student Mathematical Sense-Making
The degree to which students are expressing their mathematical thinking and exhibit positive learning behaviors that lead to mathematical sense-making.

Scoring
Each dimension is scored on a 4-point scale:
• 0 – No evidence of indicators were observed for this dimension.
• 1 – Minimal evidence was observed for this dimension.
• 2 – Mid-range or mixed evidence was observed for this dimension.
• 3 – High level of evidence was observed for this dimension.

References
⁴ Vasilyeva, M., & Hedges, L.V. (2006). Minimal evidence was observed for that dimension
¹⁴ Longitudinal analyses of academic achievement
¹⁵ Phillips, J., & Hedges, L. V. (2005). Minimal evidence was observed for that dimension
¹⁶ Longitudinal analyses of academic achievement
¹⁷ Phillips, J., & Hedges, L. V. (2005). Minimal evidence was observed for that dimension
¹⁸ Phillips, J., & Hedges, L. V. (2005). Minimal evidence was observed for that dimension
¹⁹ Phillips, J., & Hedges, L. V. (2005). Minimal evidence was observed for that dimension

Method
Sample: EQUIP-M scores on 1,161 videos collected from 179 teachers who participated in a multi-year professional development program were analyzed for evidence of interrater reliability. A subsample of scores on 479 videos (n = 175 teachers) collected in the fall prior to teacher participation in PD were analyzed for structural validity.

Procedures: Videographers visited classrooms at prearranged times and recorded math activities from beginning to end. Each teacher was recorded leading math activities up to three times during a 2-week period. Certified raters watched videos in their entirety and assigned scores to each dimension. Dimension scores were summed to create a total score. Each video was scored by at least two raters and approximately 10% of videos were scored by all 10 raters.

Analyses: Because each video had multiple sets of scores, the median of the total scores was calculated and used in analyses. To examine inter-rater reliability of scores, we calculated intraclass correlation coefficients (ICCs) using a two-way random effects model. To examine the structure of the dimensions, we conducted a series of principal factor analyses (PFA) with Promax rotation.

Results
• ICCs for videos scored by two raters ranged from 0.53 – 0.67 for individual dimensions and 0.84 for the total score.
• ICCs for videos scored by all 10 raters ranged from 0.76 – 0.91 for individual dimensions and 0.91 for the total score.
• PFA results indicated that the eight dimensions measured one underlying construct. Factor loadings ranged from 0.48 – 0.84.

DISCUSSION

This work represents the first step in validating the use and interpretation of a new observation system that evaluates the quality of interactions around math in preschool classrooms. Preliminary evidence indicates that:
• raters can be trained to apply scoring rubrics accurately and consistently;
• the sum of the dimensions scores is the most reliable score produced; and
• the hypothetical conceptual structure of the tool was not supported.

That is the dimensions measured one underlying construct, such as math teaching quality, as opposed to three separate domains—teacher intentionality, teacher responsiveness, and student mathematical sense-making.

Future Implications:
With further development and evaluation, this tool has the potential to identify strengths and weaknesses in preschool math teaching and, ultimately, to inform educational professionals about how they can improve teacher-child interactions around math.